Science.gov

Sample records for organic solvent buffer

  1. Efficiency of buffered aqueous carboxylic acid solutions and organic solvents to absorb SO/sub 2/ from industrial flue gas; solubility data from gas-liquid chromatography

    SciTech Connect

    Sanza, G.J.

    1982-01-01

    Nine adsorbents were examined. These potential candidates for flue gas desulfurization included 1-methyl-2-pyrrolidinone, tri-n-butyl phosphate (TBP), both 0.5 M and 1.0 M solutions of citric acid and glycolic acid, buffered to pH's of 4.5 and 3.8, and pure water. Infinite dilution activity coefficients of SO/sub 2/ were obtained by gas-liquid chromatography in a trial solvent of Nitrobenzene, and then in systems of 1-methyl-2-pyrrolidinone and TBP, independently. The solubility data of SO/sub 2/ was derived and found to be comparable to data obtained from a classical bubble-sparger apparatus. Solubility data was then programmed into an absorber-stripper computer simulator in order to calculate the various concentration and temperature profiles that would exist, the degree of desulfurization, and the steam consumption for all nine systems. Concentrated solutions of citric acid buffered to a low pH exhibited the most favorable conditions for application in direct steam regeneration processes. 1-methyl-2-pyrrolidinone yielded better performance than TBP did with high-pressure indirect steam used for stripping. Comparison between the aqueous solution systems which employed direct steam, and the organic systems which used indirect steam was inconclusive.

  2. Organic solvent topical report

    SciTech Connect

    Cowley, W.L.

    1998-04-30

    This report is the technical basis for the accident and consequence analyses used in the Hanford Tank Farms Basis for Interim Operation. The report also contains the scientific and engineering information and reference material needed to understand the organic solvent safety issue. This report includes comments received from the Chemical Reactions Subcommittee of the Tank Advisory Panel.

  3. Organic solvent topical report

    SciTech Connect

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  4. Optimization of buffer injection for the effective bioremediation of chlorinated solvents in aquifers

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.

    2008-12-01

    Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range

  5. Nanopapers for organic solvent nanofiltration.

    PubMed

    Mautner, A; Lee, K-Y; Lahtinen, P; Hakalahti, M; Tammelin, T; Li, K; Bismarck, A

    2014-06-01

    Would it not be nice to have an organic solvent nanofiltration membrane made from renewable resources that can be manufactured as simply as producing paper? Here the production of nanofiltration membranes made from nanocellulose by applying a papermaking process is demonstrated. Manufacture of the nanopapers was enabled by inducing flocculation of nanofibrils upon addition of trivalent ions. PMID:24752201

  6. Organic Solvent Effects in Biomass Conversion Reactions.

    PubMed

    Shuai, Li; Luterbacher, Jeremy

    2016-01-01

    Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes. PMID:26676907

  7. Glove permeation by organic solvents

    SciTech Connect

    Nelson, G.O.; Lum, B.Y.; Carlson, G.J.; Wong, C.M.; Johnson, J.S.

    1981-03-01

    The vapor penetration of 29 common laboratory solvents on 28 protective gloves has been tested and measured using gas-phase, infrared spectrophotometric techniques to determine the permeation characteristics. Five different types of permeation behavior were identified. No one glove offered complete protection against all the solvents tested. The permeation rate of the solvent was found to be inversely proportional to glove thickness for a given manufacturer's material. Of two solvent mixtures tested, one exhibited a large, positive, synergistic rate.

  8. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  9. Organic Solvent Tolerant Lipases and Applications

    PubMed Central

    Kanwar, Shamsher S.

    2014-01-01

    Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s) could be performed in water-restricted organic media as organic solvent(s) not only improve(s) the solubility of substrate and reactant in reaction mixture but also permit(s) the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented. PMID:24672342

  10. Hematin crystallization from aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Ketchum, Megan A.; Olafson, Katy N.; Petrova, Elena V.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2013-09-01

    Hematin crystallization is the main mechanism of detoxification of heme that is released in malaria-infected erythrocytes as a byproduct of the hemoglobin catabolism by the parasite. A controversy exists over whether hematin crystals grow from the aqueous medium of the parasite's digestive vacuole or in the lipid bodies present in the vacuole. To this end, we compare the basic thermodynamic and structural features of hematin crystallization in an aqueous buffer at pH 4.8, as in the digestive vacuole, and in water-saturated octanol that mimics the environment of the lipid nanospheres. We show that in aqueous solutions, hematin aggregation into mesoscopic disordered clusters is insignificant. We determine the solubility of the β-hematin crystals in the pH range 4.8-7.6. We image by atomic force microscopy crystals grown at pH 4.8 and show that their macroscopic and mesoscopic morphology features are incompatible with those reported for biological hemozoin. In contrast, crystals grown in the presence of octanol are very similar to those extracted from parasites. We determine the hematin solubility in water-saturated octanol at three temperatures. These solubilities are four orders of magnitude higher than that at pH 4.8, providing for faster crystallization from organic than from aqueous solvents. These observations further suggest that the lipid bodies play a role in mediating biological hemozoin crystal growth to ensure faster heme detoxification.

  11. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  12. SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    The latest results on microwave-expedited solvent-free approach as applied to the assembly of organic molecules will be presented. The salient features of this expeditious methodology such as solvent conservation and ease of manipulation etc. will be described in the context of r...

  13. SOLVENT EXTRACTION OF ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Based on experiments with model systems of known organic water pollutants and environmental samples, conclusions are reached concerning the best general solvent for extraction and the most appropriate methods for related manipulations. Chloroform, methylene chloride-ether mixture...

  14. Effect of salts, solvents and buffer on miRNA detection using DNA silver nanocluster (DNA/AgNCs) probes

    NASA Astrophysics Data System (ADS)

    Shah, Pratik; Cho, Seok Keun; Waaben Thulstrup, Peter; Bhang, Yong-Joo; Ahn, Jong Cheol; Choi, Suk Won; Rørvig-Lund, Andreas; Yang, Seong Wook

    2014-01-01

    MicroRNAs (miRNAs) are small regulatory RNAs (size ˜21 nt to ˜25 nt) which regulate a variety of important cellular events in plants, animals and single cell eukaryotes. Especially because of their use in diagnostics of human diseases, efforts have been directed towards the invention of a rapid, simple and sequence selective detection method for miRNAs. Recently, we reported an innovative method for the determination of miRNA levels using the red fluorescent properties of DNA/silver nanoclusters (DNA/AgNCs). Our method is based on monitoring the emission drop of a DNA/AgNCs probe in the presence of its specific target miRNA. Accordingly, the accuracy and efficiency of the method relies on the sensitivity of hybridization between the probe and target. To gain specific and robust hybridization between probe and target, we investigated a range of diverse salts, organic solvents, and buffer to optimize target sensing conditions. Under the newly adjusted conditions, the target sensitivity and the formation of emissive DNA/AgNCs probes were significantly improved. Also, fortification of the Tris-acetate buffer with inorganic salts or organic solvents improved the sensitivity of the DNA/AgNC probes. On the basis of these optimizations, the versatility of the DNA/AgNCs-based miRNA detection method can be expanded.

  15. Effect of salts, solvents and buffer on miRNA detection using DNA silver nanocluster (DNA/AgNCs) probes.

    PubMed

    Shah, Pratik; Cho, Seok Keun; Thulstrup, Peter Waaben; Bhang, Yong-Joo; Ahn, Jong Cheol; Choi, Suk Won; Rørvig-Lund, Andreas; Yang, Seong Wook

    2014-01-31

    MicroRNAs (miRNAs) are small regulatory RNAs (size ~21 nt to ~25 nt) which regulate a variety of important cellular events in plants, animals and single cell eukaryotes. Especially because of their use in diagnostics of human diseases, efforts have been directed towards the invention of a rapid, simple and sequence selective detection method for miRNAs. Recently, we reported an innovative method for the determination of miRNA levels using the red fluorescent properties of DNA/silver nanoclusters (DNA/AgNCs). Our method is based on monitoring the emission drop of a DNA/AgNCs probe in the presence of its specific target miRNA. Accordingly, the accuracy and efficiency of the method relies on the sensitivity of hybridization between the probe and target. To gain specific and robust hybridization between probe and target, we investigated a range of diverse salts, organic solvents, and buffer to optimize target sensing conditions. Under the newly adjusted conditions, the target sensitivity and the formation of emissive DNA/AgNCs probes were significantly improved. Also, fortification of the Tris-acetate buffer with inorganic salts or organic solvents improved the sensitivity of the DNA/AgNC probes. On the basis of these optimizations, the versatility of the DNA/AgNCs-based miRNA detection method can be expanded. PMID:24393838

  16. Synthesis of protein-containing polymers in organic solvents.

    PubMed

    Yang, Z; Williams, D; Russell, A J

    1995-01-01

    Subtilisin has been modified with polyethylene glycol (PEG) monomethacrylate (MW 8000) by reductive alkylation, and incorporated into polymethyl methacrylate durring free-radical initiated polymerization. The activity and stability of the PEG-modified enzymes have been determined in aqueous buffer and organic solvents. The K(m) and V(max) values for unmodified, singly and doubly modified subtilisin were compared in these environments, and the half-lives of both modified enzymes were remarkably high (up to 2 months). The protein-containing polymer was analyzed for activity and polymer properties, and our results indicate that active subtilisin can be incorporated into polymethyl methacrylate during polymerization in organic solvents while retaining its activity and stability. (c) 1995 John Wiley & Sons, Inc. PMID:18623046

  17. Modeling organic solvents permeation through protective gloves.

    PubMed

    Chao, Keh-Ping; Wang, Ven-Shing; Lee, Pak-Hing

    2004-02-01

    Several researchers have studied the diffusion of organic solvents through chemical protective gloves and have estimated the diffusion coefficients by using various models. In this study, permeation experiments of benzene, toluene, and styrene through nitrile and Neoprene gloves were conducted using the ASTM F-739 standard test method. The diffusion coefficients were estimated using several models from the literature. Using a one-dimensional diffusion equation based on Fick's second law and the estimated diffusion coefficients, the permeation concentrations were simulated and compared with the experimental results. The modeling results indicated that the solubility of the solvent in the glove materials obtained by immersion tests was not an appropriate boundary condition for organic solvent permeation through the polymer gloves. The modeling work of this study will assist industrial hygienists to assess exposure of chemicals to workers through the chemical protective gloves. PMID:15204879

  18. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    PubMed

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV). PMID:26000570

  19. Phase separation phenomena of polysulfone/solvent/organic nonsolvent and polyethersulfone/solvent/organic nonsolvent systems

    SciTech Connect

    Wang, Dongliang; Li, K.; Sourirajan, S.; Teo, W.K. . Dept. of Chemical Engineering)

    1993-12-10

    The precipitation values (PVs) of several organic nonsolvents in polysulfone (PSf)/solvent and polyethersulfone (PESf)/solvent systems were measured in temperatures ranging from 10 to 80 C by the direct titration method and compared with those of water in the same systems. The solvents used were N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAC); the organic nonsolvents employed were methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, ethylene glycol, and diethylene glycol as well as acetic acid and propionic acid. The compositions of nonsolvent, polymer, and solvent at the precipitation points for different polymer concentrations up to 10 wt% were also determined at 30 C with respect to both the polymers and six nonsolvents presented. These results were used to obtain the polymer precipitation curves in the polymer-solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent triangular phase diagrams and to determine the theta composition of solvent-nonsolvent for a polymer. The effect of temperature on the precipitation value was observed to be dramatically different for different polymer/solvent/nonsolvent systems. These results were explained on the basis of polar and nonpolar interactions of the polymer, solvent, and nonsolvent system.

  20. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  1. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  2. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  3. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  4. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Regulation on organic solvent use. 52... on organic solvent use. (a) Definitions: (1) Organic solvents include diluents and thinners and are defined as organic materials which are liquids at standard conditions and which are used as...

  5. Organic Solvent Tropical Report [SEC 1 and 2

    SciTech Connect

    COWLEY, W.L.

    2000-06-21

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an unmitigated organic solvent fire is within risk evaluation guidelines.

  6. Fast molecular beacon hybridization in organic solvents with improved target specificity.

    PubMed

    Dave, Neeshma; Liu, Juewen

    2010-12-01

    DNA hybridization is of tremendous importance in biology, bionanotechnology, and biophysics. Molecular beacons are engineered DNA hairpins with a fluorophore and a quencher labeled on each of the two ends. A target DNA can open the hairpin to give an increased fluorescence signal. To date, the majority of molecular beacon detections have been performed only in aqueous buffers. We describe herein DNA detection in nine different organic solvents, methanol, ethanol, isopropanol, acetonitrile, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene glycol, and glycerol, varying each up to 75% (v/v). In comparison with detection in water, the detection in organic solvents showed several important features. First, the molecular beacon hybridizes to its target DNA in the presence of all nine solvents up to a certain percentage. Second, the rate of this hybridization was significantly faster in most organic solvents compared with water. For example, in 56% ethanol, the beacon showed a 70-fold rate enhancement. Third, the ability of the molecular beacon to discriminate single-base mismatch is still maintained. Lastly, the DNA melting temperature in the organic solvents showed a solvent concentration-dependent decrease. This study suggests that molecular beacons can be used for applications where organic solvents must be involved or organic solvents can be intentionally added to improve the molecular beacon performance. PMID:21062084

  7. Swelling of lignites in organic solvents

    SciTech Connect

    R.G. Makitra; D.V. Bryk

    2008-10-15

    Data on the swelling of Turkish lignites can be summarized using linear multiparameter equations that take into account various properties of solvents. Factors responsible for the amounts of absorbed solvents are the basicity and cohesion energy density of the solvents.

  8. Interaction of organic solvents with protein structures at protein-solvent interface.

    PubMed

    Khabiri, Morteza; Minofar, Babak; Brezovský, Jan; Damborský, Jiří; Ettrich, Rudiger

    2013-11-01

    The effect of non-denaturing concentrations of three different organic solvents, formamide, acetone and isopropanol, on the structure of haloalkane dehalogenases DhaA, LinB, and DbjA at the protein-solvent interface was studied using molecular dynamics simulations. Analysis of B-factors revealed that the presence of a given organic solvent mainly affects the dynamical behavior of the specificity-determining cap domain, with the exception of DbjA in acetone. Orientation of organic solvent molecules on the protein surface during the simulations was clearly dependent on their interaction with hydrophobic or hydrophilic surface patches, and the simulations suggest that the behavior of studied organic solvents in the vicinity of hyrophobic patches on the surface is similar to the air/water interface. DbjA was the only dimeric enzyme among studied haloalkane dehalogenases and provided an opportunity to explore effects of organic solvents on the quaternary structure. Penetration and trapping of organic solvents in the network of interactions between both monomers depends on the physico-chemical properties of the organic solvents. Consequently, both monomers of this enzyme oscillate differently in different organic solvents. With the exception of LinB in acetone, the structures of studied enzymes were stabilized in water-miscible organic solvents. PMID:22760789

  9. USE OF ORGANIC SOLVENTS IN TEXTILE SIZING AND DESIZING

    EPA Science Inventory

    The report gives results of a study of textile sizing and desizing in organic solvents. Properties of materials applicable as warp sizes in organic solvents were satisfactory for use as warp sizes. Properties of fabrics made from solvent-sized yarns were equal in quality to those...

  10. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  11. Solid-state enzyme deactivation in air and in organic solvents

    SciTech Connect

    Toscano, G.; Pirozzi, D.; Maremonti, M.; Greco, G. Jr. . Dipartimento di Ingegneria Chimica)

    1994-09-05

    Thermal deactivation of solid-state acid phosphatase is analyzed, both in the presence and in the absence of organic solvents. The thermal deactivation profile departs from first order kinetics and shows an unusual, temperature-dependent, asymptotic value of residual activity. The process is described by a phenomenological equation, whose theoretical implications are also discussed. The total amount of buffer salts in the enzyme powder dramatically affects enzyme stability in the range 70 to 105 C. The higher salt/protein ratio increases the rate of thermal deactivation. The deactivation rate is virtually unaffected by the presence of organic solvents, independent of their hydrophilicity.

  12. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the...: Solvent/Solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  13. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  14. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  15. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the...: Solvent/Solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  16. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  17. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  18. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  19. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in... formulation data. Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic...

  20. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the...: Solvent/Solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  1. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  2. COSOLVENCY OF PARTIALLY MISCIBLE ORGANIC SOLVENTS ON THE SOLUBILITY OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    The cosolvency of completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs) on the solubility of hydrophobic organic chemicals (HOCs) was examined, with an emphasis on PMOSs. Measured solubilities were compared with predictions from the log- lin...

  3. Contraction of weak polyelectrolyte multilayers in response to organic solvents.

    PubMed

    Gu, Yuanqing; Ma, Yubing; Vogt, Bryan D; Zacharia, Nicole S

    2016-02-14

    Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer assembly technique have recently been found to demonstrate a unique contraction upon exposure to organic solvents. This response is dependent upon which organic solvent is employed, and fundamental questions have not been clarified regarding the correlation of the magnitude of the film contraction with solvent type. In this work, we used solubility parameters to analyze the response of branched poly(ethylene imine)/poly(acrylic acid) (BPEI/PAA) multilayers when exposed to a variety of solvents. BPEI/PAA multilayers were immersed in a series of 16 different organic solvents and solvent mixtures. Immersion in organic solvent caused film dehydration and therefore contraction and also induced changes in the mechanical properties of PEMs. The film thickness was the best predictor of how a film swelled in water or contracted in organic solvent when using different batches of commercially available polyelectrolytes, rather than polyelectrolyte assembly pH conditions. The degree of film contraction was correlated with Hansen and Kamlet-Taft solubility parameters as well as solvent dielectric constant. In most cases, the hydrogen bonding ability of solvents is the primary factor to determine the magnitude of film contraction. For these solvents, increasing the temperature which corresponds to decreasing the strength of hydrogen bonding, also decreases the ability to dehydrate the films. For solvents that do not follow these trends with the strength of hydrogen bonding, a stronger correlation was found between contraction and dielectric constant, indicating that both traditional solvent quality arguments and electrostatics are important to understanding the contraction of PEMs in organic solvents. PMID:26699080

  4. Selective precipitation and recovery of xylanase using surfactant and organic solvent.

    PubMed

    Shin, Youn-Ok; Wahnon, Daphne; Weber, Martin E; Vera, Juan H

    2004-06-20

    The selective precipitation of xylanase from an aqueous phase containing mixtures of xylanase and cellulase was studied using an ionic surfactant as precipitating ligand and a polar organic solvent as recovery solvent. Of four ionic surfactants tested, sodium di-(2-ethylhexyl) sulfosuccinate (AOT) showed a complete removal of xylanase at pH 4.5. The recovery of xylanase from the xylanase-AOT complex was a strong function of the type and the volume of the polar solvent and of the concentration of sodium acetate buffer in the final aqueous solution used to solubilize the recovered xylanase. With ethanol as a recovery solvent, a recovery of xylanase activity of 78 +/- 10% was obtained. The cellulase activity in the recovered xylanase was below the detection limit. The results demonstrate that an ionic surfactant can recover enzymes from aqueous solutions without loss in their activity. PMID:15137082

  5. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  6. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP,...

  7. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  8. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass...

  9. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP,...

  10. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  11. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  12. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  13. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  14. Unraveling the rationale behind organic solvent stability of lipases.

    PubMed

    Chakravorty, Debamitra; Parameswaran, Saravanan; Dubey, Vikash Kumar; Patra, Sanjukta

    2012-06-01

    Organic solvent-stable lipases have pronounced impact on industrial economy as they are involved in synthesis by esterification, interesterification, and transesterification. However, very few of such natural lipases have been isolated till date. A study of the recent past provided few pillars to rely on for this work. The three-dimensional structure, inclusive of the surface and active site, of 29 organic solvent-stable lipases was analyzed by subfamily classification and protein solvent molecular docking based on fast Fourier transform correlation approach. The observations revealed that organic solvent stability of lipases is their intrinsic property and unique with respect to each lipase. In this paper, factors like surface distribution of charged, hydrophobic, and neutral residues, interaction of solvents with catalytically immutable residues, and residues interacting with essential water molecules required for lipase activity, synergistically and by mutualism contribute to render a stable lipase organic solvent. The propensity of surface charge in relation to stability in organic solvents by establishing repulsive forces to exclude solvent molecules from interacting with the surface and prohibiting the same from gaining entry to the protein core, thus stabilizing the active conformation, is a new finding. It was also interesting to note that lipases having equivalent surface-exposed positive and negative residues were stable in a wide range of organic solvents, irrespective of their LogP values. PMID:22562495

  15. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Organic solvent usage. 52.254 Section 52.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.254 Organic solvent usage. (a) This section is applicable in the Sacramento...

  16. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor); Ruf, Herbert J. (Inventor); Evans, Christopher M. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  17. COMPARISON OF COMMON SOLVENT EVAPORATION TECHNIQUES IN ORGANIC ANALYSIS

    EPA Science Inventory

    Isolation of organic constituents from water frequently involves an extraction with a large volume of organic solvent which must be reduced to achieve the desired sensitivity. The objective of this research was to evaluate common solvent evaporation techniques to determine which ...

  18. Mechanism of paint removing by organic solvents

    SciTech Connect

    Del Nero, V.; Siat, C.; Marti, M.J.; Aubry, J.M.; Lallier, J.P.; Dupuy, N.; Huvenne, J.P.

    1996-01-01

    The mechanism of paint removing has been studied by comparing the stripping efficiency of a given solvent with its ability to swell the film. The most effective solvents have a Hildebrand{close_quote}s parameter, {delta}{sub H}, ranging from 10.5 to 12 and a Dimroth parameter, ET{sub (30)}, ranging from 0.25 to 0.4. The synergy observed with the mixtures DMSO/non polar solvent is explained by a dissociation of the DMSO clusters into individual molecules which diffuse more easily. {copyright} {ital 1996 American Institute of Physics.}

  19. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical...

  20. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction...

  1. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction...

  2. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... OOOO of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction...

  3. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical...

  4. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... manufacturer's formulation data Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical...

  5. The oxidation of chiral alcohols catalyzed by catalase in organic solvents

    SciTech Connect

    Magner, E.; Klibanov, A.M.

    1995-04-20

    The catalytic properties of bovine liver catalase have been investigated in organic solvents. In tetrahydrofuran, dioxane, and acetone (all containing 1% to 3% of water), the enzyme breaks down tert-butyl hydroperoxide several fold faster than in pure water. Furthermore, the rate of catalase-catalyzed production of tert-butanol from tert-butyl hydroperoxide increases more than 400-fold upon transition from aqueous buffer to ethanol as the reaction medium. The mechanistic rationale for this striking effect is that in aqueous buffer the rate-limiting step of the enzymatic process involves the reduction of catalase`s compound 1 by tert-butyl hydroperoxide. In ethanol, an additional step in the reaction scheme becomes available in which ethanol, greatly outcompeting the hydroperoxide, is oxidized by compound 1 regenerating the free enzyme. In solvents, such as acetonitrile or tetrahydrofuran, which themselves are not oxidizable by compound 1, catalase catalyzes the oxidation of numerous primary and secondary alcohols with tert-butyl hydroperoxide to the corresponding aldehydes or ketones. The enzymatic oxidation of some chiral alcohols (2,3-butanediol, citronellol, and menthol) under these conditions occurs enantioselectively. Examination of the enantioselectivity for the oxidation of 2,3-butanediol in a series of organic solvents reveals a considerable solvent dependence.

  6. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP mass fraction must be used for that solvent blend. Otherwise, use the organic HAP...

  7. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP mass fraction must be used for that solvent blend. Otherwise, use the organic HAP...

  8. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass... organic HAP mass fraction must be used for that solvent blend. Otherwise, use the organic HAP...

  9. SOLVENT-FREE ORGANIC SYNTHESES USING SUPPORTED REAGENTS AND MICROWAVES

    EPA Science Inventory

    The latest results on microwave-expedited solvent-free approach as applied to the assembly of organic molecules will be presented. The salient features of this expeditious methodology such as solvent conservation and ease of manipulation etc. will be described in the context of ...

  10. Mechanism of transport and distribution of organic solvents in blood

    NASA Technical Reports Server (NTRS)

    Lam, C. W.; Galen, T. J.; Boyd, J. F.; Pierson, D. L.

    1990-01-01

    Little is known about the mechanism of transport and distribution of volatile organic compounds in blood. Studies were conducted on five typical organic solvents to investigate how these compounds are transported and distributed in blood. Groups of four to five rats were exposed for 2 hr to 500 ppm of n-hexane, toluene, chloroform, methyl isobutyl ketone (MIBK), or diethyl ether vapor; 94, 66, 90, 51, or 49%, respectively, of these solvents in the blood were found in the red blood cells (RBCs). Very similar results were obtained in vitro when aqueous solutions of these solvents were added to rat blood. In vitro studies were also conducted on human blood with these solvents; 66, 43, 65, 49, or 46%, respectively, of the added solvent was taken up by the RBCs. These results indicate that RBCs from humans and rats exhibited substantial differences in affinity for the three more hydrophobic solvents studied. When solutions of these solvents were added to human plasma and RBC samples, large fractions (51-96%) of the solvents were recovered from ammonium sulfate-precipitated plasma proteins and hemoglobin. Smaller fractions were recovered from plasma water and red cell water. Less than 10% of each of the added solvents in RBC samples was found in the red cell membrane ghosts. These results indicate that RBCs play an important role in the uptake and transport of these solvents. Proteins, chiefly hemoglobin, are the major carriers of these compounds in blood. It can be inferred from the results of the present study that volatile lipophilic organic solvents are probably taken up by the hydrophobic sites of blood proteins.

  11. 40 CFR 52.1145 - Regulation on organic solvent use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... evaporation of such solvent into the atmosphere. (g) Emissions of organic materials into the atmosphere..., evaporation, or drying of saturated halogenated hydrocarbons or perchloroethylene. (4) The use of any...

  12. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass...

  13. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the following.../solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1....

  14. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  15. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the following.../solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1....

  16. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  17. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  18. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP...

  19. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  20. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    PubMed Central

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  1. Acute toxicity of organic solvents on Artemia salina

    SciTech Connect

    Barahona-Gomariz, M.V.; Sanz-Barrera, F.; Sanchez-Fortun, S. )

    1994-05-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulation. In laboratory bioassays, the use of organic formulations. In laboratory bioassays, the use of organic solvents is often unavoidable, since many pesticides and organic pollutants have low water solubility and must be dissolved in organic solvents prior to addition into experimental systems. In the toxicant bioassays, invertebrates with special reference to aquatic arthropod species are of recent interest as test models due to the need for developing nonmammalian test systems. Toxic effects of organic solvents have been tested with a few aquatic species, but information on the comparative toxicity of solvents towards Artemia salina is not available. Artemia salina have, within recent years, gained popularity as test organisms for short-term toxicity testing. Because Artemia salina exhibit rapid development and growth within 48 hr after hatch, their potential as a model organism for toxicology screening has been considered. To do this, synchronous populations of Artemia salina at different development intervals must be available.

  2. Skin barrier modification with organic solvents.

    PubMed

    Barba, Clara; Alonso, Cristina; Martí, Meritxell; Manich, Albert; Coderch, Luisa

    2016-08-01

    The primary barrier to body water loss and influx of exogenous substances resides in the stratum corneum (SC). The barrier function of the SC is provided by patterned lipid lamellae localized to the extracellular spaces between corneocytes. SC lipids are intimately involved in maintaining the barrier function. It is generally accepted that solvents induce cutaneous barrier disruption. The main aim of this work is the evaluation of the different capability of two solvent systems on inducing changes in the SC barrier function. SC lipid modifications will be evaluated by lipid analysis, water sorption/desorption experiments, confocal-Raman visualization and FSTEM images. The amount of SC lipids extracted by chloroform/methanol was significantly higher than those extracted by acetone. DSC results indicate that acetone extract has lower temperature phase transitions than chloroform/methanol extract. The evaluation of the kinetics of the moisture uptake and loss demonstrated that when SC is treated with chloroform/methanol the resultant sample reach equilibrium in shorter times indicating a deterioration of the SC tissue with higher permeability. Instead, acetone treatment led to a SC sample with a decreased permeability thus with an improved SC barrier function. Confocal-Raman and FSTEM images demonstrated the absence of the lipids on SC previously treated with chloroform/methanol. However, they were still present when the SC was treated with acetone. Results obtained with all the different techniques used were consistent. The results obtained increases the knowledge of the interaction lipid-solvent, being this useful for understanding the mechanism of reparation of damaged skin. PMID:27184268

  3. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and which match either the solvent blend name or the chemical abstract series (CAS) number. If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass fraction... matching either the solvent blend name or CAS number, or use the organic HAP mass fraction from table 4...

  4. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... formulation data and which match either the solvent blend name or the chemical abstract series (CAS) number. If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass... matching either the solvent blend name or CAS number, or use the organic HAP mass fraction from table 4...

  5. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, Frank K.

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  6. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  7. Graphene oxide membranes with tunable semipermeability in organic solvents.

    PubMed

    Huang, Liang; Li, Yingru; Zhou, Qinqin; Yuan, Wenjing; Shi, Gaoquan

    2015-07-01

    Graphene oxide membranes (GOMs) are mechanically stable in various organic solvents, and their nanochannels can be narrowed by thermal annealing or widened by solvation. Therefore, the semipermeability of GOMs can be easily modulated, and they can be used as "multipurpose membranes" for molecular sieving in organic media. PMID:25994919

  8. INFLUENCE OF ORGANIC BUFFERS ON BACTERIOCIN PRODUCTION BY STREPTOCOCCUS THERMOPHILUS ST110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of the organic buffer salts MES, MOPS and PIPES on the growth of S. thermophilus ST110, medium pH and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In non buffered medium, thermophilin 110 production at 37°C ...

  9. ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS

    EPA Science Inventory

    Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...

  10. Solvent effects on infrared spectra of methyl 4-hydroxybenzoate in pure organic solvents and in ethanol/CCl 4 binary solvents

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Fang, Danjun; Zheng, Jianping

    2004-06-01

    Infrared spectroscopy studies of methyl 4-hydroxybenzoate (MHB) in 17 different organic solvents and in ethanol/CCl 4 binary solvent were undertaken to investigate the solvent-solute interactions. The frequencies of carbonyl stretching vibration ν(CO) of MHB in single solvents were correlated with the solvent acceptor number (AN) and the linear solvation energy relationships (LSER). The assignments of the two bands of ν(CO) of MHB in alcohols and the single one of that in non-alcoholic solvents were discussed. The shifts of ν(CO) of MHB in ethanol/CCl 4 binary solvents showed that several kinds of solute-solvent hydrogen bonding interactions coexisted in the mixture solvents, with a change in the mole fraction of ethanol in the binary solvents.

  11. Solvent extraction of polychlorinated organic compounds from porous materials

    SciTech Connect

    Knowles, V.M.

    1988-07-19

    A method of reducing the level of hexachlorinated organic compounds selected from hexachloroethane, hexachlorobutadiene, hexachlorobenzene, or mixtures thereof to a non-hazardous level in a solid, porous DERAKANE vinyl ester resin, which has been previously used as the material of construction of a cell to produce chlorine, which vinyl ester resin was in contact with chlorine during chlorine manufacture is descried which comprises: (a) contacting the hexachlorinated compound-containing porous vinyl ester resin with an extraction solvent wherein the extraction solvent is selected from chloroform, carbon tetrachloride, trichlorethane, methyl chloroform, tetrachloroethane, perchloroethylene, benzene, toluene, xylene, acetone, methyl ethyl ketone, or mixtures thereof, at a temperature and for a time sufficient to remove the absorbed hexachlorinated organic compound; and (b) separating the hexachlorianated organic compound-containing extraction solvent and vinyl ester resin.

  12. [Psychological problem due to long-term organic solvent abuse].

    PubMed

    Kobayashi, T; Fukui, K; Hayakawa, S; Koga, E; Ono, I; Fukui, Y; Tani, N; Kato, A; Nakajima, T

    1995-10-01

    Organic solvent abuse in adolescents has become a serious social problem. One of the reasons for this is the relationship to juvenile delinquency, and another is that it leads to various clinical symptoms including disturbance of consciousness, hallucinations, fantasia and apathy. In this study, using a health questionnaire that is composed of 33 psychiatric and 29 physical items and the Rorschach Test, we investigated these symptoms and the psychodynamics of personality respectively. The principal component analysis obtained for the health questionnaire extracted four factors as follows: 1) feelings of general fatigue and somatic symptoms, 2) feelings of guilt and self blame, 3) low self esteem and withdrawal adaptation, and 4) unreasonable anxiety and sleeping disturbance. The results of Rorschach Test supported the loss of libido, disability of reality testing and ego vulnerability in organic solvent abusers. This research strongly suggests that apathetic or depressive mood in chronic organic solvent abusers relates with loss of drive. PMID:8534223

  13. Mobility of organic solvents in water-saturated soil materials

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1985-01-01

    This investigation presents an analysis of the mobility of 37 organic solvents in saturated soil-water systems, focusing on adsorption phenomena at the solid-liquid interface This analysis was made, in part, by applying predictive expressions that estimate the potential magnitude of adsorption by soil materials Of the 37 solvents considered, 19 were classified as either "very highly mobile" or "highly mobile" and, thus, would have little tendency to be retained by soils to a significant extent, 12 were considered to have medium mobility and 6 low mobility None of these solvents were in the immobile class The limited information available indicates that these predictive expressions yield satisfactory first approximations of the magnitude of adsorption of these solvents by soil materials ?? 1985 Springer-Verlag New York Inc.

  14. Poly(ionic liquid) superabsorbent for polar organic solvents.

    PubMed

    Horne, W Jeffrey; Andrews, Mary A; Terrill, Kelsey L; Hayward, Spenser S; Marshall, Jeannie; Belmore, Kenneth A; Shannon, Matthew S; Bara, Jason E

    2015-05-01

    A simple, polymerized ionic liquid (poly(IL)) based on methylimidazolium cations tethered to a polystyrene backbone exhibits superabsorbent behavior toward polar organic solvents, most notably propylene carbonate (PC) and dimethyl sulfoxide (DMSO), wherein the poly(IL) was observed to swell more than 390 and 200 times (w/w) its original mass, yet absorbs negligible quantities of water, hexanes, and other solvents, many of which were miscible with the IL monomer. Although solubility parameters and dielectric constants are typically used to rationalize such behaviors, we find that poly(IL)-solvent compatibility is most clearly correlated to solvent dipole moment. Poly(IL) superabsorbency is not reliant upon the addition of a cross-linking agent. PMID:25893981

  15. Transitioning organic synthesis from organic solvents to water. What's your E Factor?

    PubMed Central

    Lipshutz, Bruce H.; Ghorai, Subir

    2014-01-01

    Traditional organic chemistry, and organic synthesis in particular, relies heavily on organic solvents, as most reactions involve organic substrates and catalysts that tend to be water-insoluble. Unfortunately, organic solvents make up most of the organic waste created by the chemical enterprise, whether from academic, industrial, or governmental labs. One alternative to organic solvents follows the lead of Nature: water. To circumvent the solubility issues, newly engineered “designer” surfactants offer an opportunity to efficiently enable many of the commonly used transition metal-catalyzed and related reactions in organic synthesis to be run in water, and usually at ambient temperatures. This review focuses on recent progress in this area, where such amphiphiles spontaneously self-aggregate in water. The resulting micellar arrays serve as nanoreactors, obviating organic solvents as the reaction medium, while maximizing environmental benefits. PMID:25170307

  16. Can Dispersion Forces Govern Aromatic Stacking in an Organic Solvent?

    PubMed

    Yang, Lixu; Brazier, John B; Hubbard, Thomas A; Rogers, David M; Cockroft, Scott L

    2016-01-18

    Experimental support for the dominance of van der Waals dispersion forces in aromatic stacking interactions occurring in organic solution is surprisingly limited. The size-dependence of aromatic stacking in an organic solvent was examined. The interaction energy was found to vary by about 7.5 kJ mol(-1) on going from a phenyl-phenyl to an anthracene-pyrene stack. Strikingly, the experimental data were highly correlated with dispersion energies determined using symmetry-adapted perturbation theory (SAPT), while the induction, exchange, electrostatic, and solvation energy components correlated poorly. Both the experimental data and the SAPT-dispersion energies gave high-quality correlations with the change in solvent accessible area upon complexation. Thus, the size-dependence of aromatic stacking interactions is consistent with the dominance of van der Waals dispersion forces even in the presence of a competing polarizable solvent. PMID:26632979

  17. Superfund Innovative Technology Evaluation: Demonstration Bulletin: Organic Extraction Utilizing Solvents

    EPA Science Inventory

    This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...

  18. Cardiovascular malformations and organic solvent exposure during pregnancy in Finland

    SciTech Connect

    Tikkanen, J.; Heinonen, O.P.

    1988-01-01

    In order to investigate the possible association between cardiovascular malformations and maternal exposure to organic solvents during the first trimester of pregnancy, 569 cases and 1,052 controls were retrospectively studied. The cases represented all infants with diagnosed cardiovascular malformations born in Finland in 1982-1984, and the controls were randomly selected from all normal births in the country during the same period. All mothers were interviewed approximately 3 months after delivery by a midwife using a structured questionnaire. Exposures to organic solvents at work during the first trimester of pregnancy were slightly more prevalent among the mothers of affected infants (10.4%) than among those of controls (7.8%). Logistic regression analysis of exposure to organic solvents showed an adjusted relative odds ratio of 1.3 (95% confidence interval, 0.8-2.2). In the analysis of ventricular septal defect, exposure to organic solvents showed an adjusted relative odds ratio of 1.5 (95% confidence interval, 1.0-3.7).

  19. Solubilization of coal by biocatalysts in organic solvents

    SciTech Connect

    Scott, C.D.; Faison, B.D.; Woodward, C.A. )

    1989-01-01

    The use of isolated enzymes for coal solubilization has been investigated, with an emphasis on enhancing enzyme activity, especially in organic solvents. Possible enzymatic interactions and oxidative processes are discussed. Subbituminous and bituminous coals were studied in two different types of solubilization tests, followed by two analytical methods. (CBS)

  20. SOLVENT-FREE ACCELERATED ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Abstract: A solvent-free approach for organic synthesis is described which involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst or catalyzed by the surfaces of inexpensive and recyclable mineral supports such as alumina, silica, clay, or...

  1. PREDICTIVE TEST METHODS: PERMEATION OF POLYMERIC MEMBRANES BY ORGANIC SOLVENTS

    EPA Science Inventory

    As the result of screening elastomeric materials that may be suitable for formulating chemical-protective clothing, a simple test method has been developed that allows the prediction of the permeation of an organic solvent through a polymeric membrane. The test method, based on l...

  2. ACCURACY OF PESTICIDE REFERENCE STANDARD SOLUTIONS. PART I. FACTORS AFFECTING ORGANIC SOLVENT EVAPORATION

    EPA Science Inventory

    A gravimetric experiment was undertaken to identify the factors affecting solvent evaporation from analytical reference standard solutions and to establish the magnitude of the resultant solvent evaporation. The evaporation of organic solvent from standard solutions is affected b...

  3. Ultrasonic Spraying of Carbon Nanotubes using Organic Solvents

    NASA Astrophysics Data System (ADS)

    Willey, Anthony; Davis, Robert; Vanfleet, Richard

    2012-10-01

    Because of their unique electrical and mechanical properties, thin films of carbon nanotubes have several potential applications, especially in the fields of organic electronics and photovoltaics. We present a method for spraying thin films of nanotubes that have been suspended in organic solvents N-methyl Pyrollidone (NMP) and N-Cyclohexyl-2-pyrrolidone (CHP). The sprayed nanotubes are randomly oriented, and films are transparent, conductive, and mechanically stable.

  4. Investigation of HNO2 Production in Solvent Extraction Organic Phases

    SciTech Connect

    Leigh R. Martin

    2014-09-01

    This document is a letter report that was prepared to meet FCR&D level 4 milestone M4FT-14IN0304054, “Investigate HNO2 production in solvent extraction organic phases.” This work was carried out under the auspices of the Fundamental Radiation Chemistry FCR&D work package. This document reports on an initial tests performed to follow HNO2 formation in reference flowsheet relevant organic phases.

  5. Solvent-free, direct printing of organic semiconductors in atmosphere

    NASA Astrophysics Data System (ADS)

    Biswas, Shaurjo; Pipe, Kevin P.; Shtein, Max

    2010-06-01

    Additive, solvent-free printing of molecular organic semiconductors in ambient atmosphere is demonstrated, by evaporating organic source material into nitrogen carrier gas, collimating and impinging it onto a substrate where the organic molecules condense. A surrounding annular guard flow focuses the primary jet and shields it from contact with the ambient oxygen and moisture, enabling device-quality deposits. As an example, electroluminescence efficiency of organic light emitting devices (OLEDS) with emissive layers printed in air is shown to increase with guard flow rate, attaining parity with all-vacuum thermally evaporated OLEDs.

  6. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Solvent Groups 6 Table 6 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL... Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content data for solvent..., Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.) 3 1% Xylene,...

  7. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. PMID:26994584

  8. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents

    NASA Astrophysics Data System (ADS)

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  9. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Furniture Pt. 63, Subpt. RRRR, Table 3 Table 3 to Subpart RRRR of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the following table...

  10. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 6 Table 6 to Subpart KKKK of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the following table...

  11. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Metal Furniture Pt. 63, Subpt. RRRR, Table 3 Table 3 to Subpart RRRR of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the following table...

  12. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 6 Table 6 to Subpart KKKK of Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the following table...

  13. Efficient organic solar cells processed from hydrocarbon solvents

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Li, Yunke; Yang, Guofang; Jiang, Kui; Lin, Haoran; Ade, Harald; Ma, Wei; Yan, He

    2016-02-01

    Organic solar cells have desirable properties, including low cost of materials, high-throughput roll-to-roll production, mechanical flexibility and light weight. However, all top-performance devices are at present processed using halogenated solvents, which are environmentally hazardous and would thus require expensive mitigation to contain the hazards. Attempts to process organic solar cells from non-halogenated solvents lead to inferior performance. Overcoming this hurdle, here we present a hydrocarbon-based processing system that is not only more environmentally friendly but also yields cells with power conversion efficiencies of up to 11.7%. Our processing system incorporates the synergistic effects of a hydrocarbon solvent, a novel additive, a suitable choice of polymer side chain, and strong temperature-dependent aggregation of the donor polymer. Our results not only demonstrate a method of producing active layers of organic solar cells in an environmentally friendly way, but also provide important scientific insights that will facilitate further improvement of the morphology and performance of organic solar cells.

  14. Effect of temperature and solvent composition on acid dissociation equilibria, I: Sequenced (s)(s)pKa determination of compounds commonly used as buffers in high performance liquid chromatography coupled to mass spectroscopy detection.

    PubMed

    Padró, Juan M; Acquaviva, Agustín; Tascon, Marcos; Gagliardi, Leonardo G; Castells, Cecilia B

    2012-05-01

    A new automated and rapid potentiometric method for determining the effect of organic-solvent composition on pK(a) has been developed. It is based on the measurements of pH values of buffer solutions of variable solvent compositions using a combined glass electrode. Additions of small volumes of one precisely thermostated solution into another, both containing exactly the same analytical concentrations of the buffer components, can produce continuous changes in the solvent composition. Two sequences of potential measurements, one of increasing and the other of decreasing solvent content, are sufficient to obtain the pK(a) values of the acidic compound within the complete solvent-composition range in about 2h. The experimental design, procedures, and calculations needed to convert the measured pH into the thermodynamic pK(a) values are thoroughly discussed. This rapid and automated method allows the systematic study of the effect of solvent compositions and temperatures on the pK(a). It has been applied to study the dissociation constants of two monoprotic acids: formic acid and triethylamine:HCl in acetonitrile/water mixtures within the range from 0 to 90% (v/v) at temperatures between 20°C and 60°C. These volatile compounds are frequently used to control the pH of the mobile phase in HPLC, especially in methods coupled to mass-spectrometry detection. The obtained pK(a) values are in excellent agreement with those previously reported. The results were fitted to empirical functions between pK(a) and temperature and composition. These equations, which can be used to estimate the pK(a) of these substances at any composition and temperature, would be highly useful in practical work during chromatographic method development. PMID:22502616

  15. Rational enhancement of enzyme performance in organic solvents. Final technical report, 1992--1996

    SciTech Connect

    Klibanov, A.M.

    1996-12-31

    This research focused on the following: the dependence of enzymatic activity of several model hydrolases in nonaqueous solvents; control of substrate selectivity of the protease subtilisin Carlsberg by the solvent; control of catalytic activity and enantioselectivity of this enzyme in organic solvents by immobilization support; lipase-catalyzed acylation of sugars in anhydrous hydrophobic media; the possibility of accelerating enzymatic processes in organic solvents by certain cosolvents; whether lipase catalysis in organic solvents can be enhanced by introducing interfaces in the in the reaction medium; the structure of proteins suspended in organic solvents; improving enzymatic enantioselectivity in organic solvents; analyzing the plunge in enzymatic activity upon replacing water with organic solvents; and the structural basis for the phenomenon of molecular memory of imprinted proteins in organic solvents.

  16. Alterations in cognitive and psychological functioning after organic solvent exposure

    SciTech Connect

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.; Robin, N. )

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workers indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.

  17. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface

    NASA Astrophysics Data System (ADS)

    Sun, Huabin; Yin, Yao; Wang, Qijing; Jun, Qian; Wang, Yu; Tsukagoshi, Kazuhito; Wang, Xizhang; Hu, Zheng; Pan, Lijia; Zheng, Youdou; Shi, Yi; Li, Yun

    2015-08-01

    The reduction of contact resistance in ferroelectric organic field-effect transistors (Fe-OFETs) by buffering the interfacial polarization fluctuation was reported. An ultrathin poly(methyl methacrylate) layer was inserted between the ferroelectric polymer and organic semiconductor layers. The contact resistance was significantly reduced to 55 kΩ cm. By contrast, Fe-OFETs without buffering exhibited a significantly larger contact resistance of 260 kΩ cm. Results showed that such an enhanced charge injection was attributed to the buffering effect at the semiconductor/ferroelectric interface, which narrowed the trap distribution of the organic semiconductor in the contact region. The presented work provided an efficient method of lowering the contact resistance in Fe-OFETs, which is beneficial for the further development of Fe-OFETs.

  18. Behavioural evaluation of workers exposed to mixtures of organic solvents.

    PubMed Central

    Maizlish, N A; Langolf, G D; Whitehead, L W; Fine, L J; Albers, J W; Goldberg, J; Smith, P

    1985-01-01

    Reports from Scandinavia have suggested behavioural impairment among long term workers exposed to solvents below regulatory standards. A cross sectional study of behavioural performance was conducted among printers and spray painters exposed to mixtures of organic solvents to replicate the Scandinavian studies and to examine dose-response relationships. Eligible subjects consisted of 640 hourly workers from four midwestern United States companies. Of these, 269 responded to requests to participate and 240 were selected for study based on restrictions for age, sex, education, and other potentially confounding variables. The subjects tested had been employed on average for six years. Each subject completed an occupational history, underwent a medical examination, and completed a battery of behavioural tests. These included the Fitts law psychomotor task, the Stroop colour-word test, the Sternberg short term memory scanning test, the short term memory span test, and the continuous recognition memory test. Solvent exposure for each subject was defined as an exposed or non-exposed category based on a plant industrial hygiene walk-through and the concentration of solvents based on an analysis of full shift personal air samples by gas chromatography. The first definition was used to maintain consistency with Scandinavian studies, but the second was considered to be more accurate. The average full shift solvent concentration was 302 ppm for the printing plant workers and 6-13 ppm for the workers at other plants. Isopropanol and hexane were the major components, compared with toluene in Scandinavian studies. Performance on behavioural tests was analysed using multiple linear regression with solvent concentration as an independent variable. Other relevant demographic variables were also considered for inclusion. No significant (p greater than 0.05) relation between solvent concentration and impairment on any of the 10 behavioural variables was observed after controlling for

  19. Personality and long term exposure to organic solvents

    SciTech Connect

    Lindstroem, K.; Martelin, T.

    1980-01-01

    Personality, especially emotional reactions of two solvent exposed groups and a nonexposed reference group were described by means of 20 formal, content and check-list type of Rorschach variables. Another objective of the study was to explore the suitability and psychological meaning of other types of Rorschach variables than those applied earlier in the field of behavioral toxicology. The factor analyses grouped the applied variables into factors of Productivity, Ego Strength, Control of Emotionality, Defensive Introversion and Aggressiveness. One solvent group, a patient groups (N.53), was characterized by a high number of Organic signs and a low Genetic Level, indicating possible psychoorganic deterioration. The other solvent group, styrene exposed but subjectively healthy (N.98), was characterized by few emotional reactions, low Anxiety and a low number of Neurotic Signs. the long duration of exposure of the solvent patient group (mean 10.2 +/- 8.7 years) was related to variables of the Productivity factor, a finding that indicates a possible better adjustment of those exposed for a longer time. The duration of exposure of the styrene exposed group (mean 4.9 +/- 3.2 years) revealed a very slight relation to personality variables, but the mean urinary mandelic acid concentration, indicating the level of styrene exposure, correlated with increased emotional reactions. For the most part definite causal conclusions could not be drawn because of the cross-sectional design of the study.

  20. Solubility of C60 and PCBM in Organic Solvents.

    PubMed

    Wang, Chun I; Hua, Chi C

    2015-11-12

    The ability to correlate fullerene solubility with experimentally or computationally accessible parameters can significantly facilitate nanotechnology nowadays for a wide range of applications, while providing crucial insight into optimum design of future fullerene species. To date, there has been no single relationship that satisfactorily describes the existing data clearly manifesting the effects of solvent species, system temperature, and isomer. Using atomistic molecular dynamics simulations on two standard fullerene species, C60 and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester), in a representative series of organic solvent media (i.e., chloroform, toluene, chlorobenzene, 1,3-dichlorobenzene, and 1,2-dichlorobenzene), we show that a single time constant characterizing the dynamic stability of a tiny (angstrom-sized) solvation shell encompassing the fullerene particle can be utilized to effectively capture the known trends of fullerene solubility as reported in the literature. The underlying physics differs substantially between the two fullerene species, however. Although C60 was previously shown to be dictated by a diffusion-limited aggregation mechanism, the side-chain-substituted PCBM is demonstrated herein to proceed with an analogous reaction-limited aggregation with the "reaction rate" set by the fullerene rotational diffusivity in the medium. The present results suggest that dynamic quantities-in contrast to the more often employed, static ones-may provide an excellent means to characterize the complex (entropic and enthalpic) interplay between fullerene species and the solvent medium, shed light on the factors determining the solvent quality of a nanoparticle solution, and, in particular, offer a practical pathway to foreseeing optimum fullerene design and fullerene-solvent interactions. PMID:26488132

  1. Enzyme activity evaluation of organic solvent-treated phenylalanine ammonia lyase.

    PubMed

    Quinn, Andrew J; Pickup, Margaret J; D'Cunha, Godwin B

    2011-01-01

    The direct one-step synthesis of L-phenylalanine methyl ester in an organic-aqueous biphasic system using phenylalanine ammonia lyase (E.C.4.3.1.5, PAL) containing Rhodotorula glutinis yeast whole cells was reported earlier. We report here further optimization of this biotransformation using isolated PAL, when the lyophilized enzyme is treated with different water miscible and water immiscible organic solvents. Use of isolated PAL enzyme is advantageous in overcoming diffusion barriers encountered when using PAL containing R.glutinis whole cells, and resulted in increased product yield due to better interaction of enzyme with the substrate. Among the water miscible solvents, ethanol treated and methanol-treated enzymes supported maximum PAL forward and reverse activities; respectively. In the water immiscible solvents category, heptane-treated enzyme exhibited maximal activity for both PAL forward and reverse reactions. PAL activity obtained with enzyme specimens treated with methanol, ethanol, and heptane varied in the range of 91–99% of that observed in aqueous buffer medium for the forward reaction; and 89–95% for the reverse reaction. n-butanol,acetone, and benzene were found to have a inhibitory effect on PAL enzyme, in that, it resulted in only 31–33% activity of that obtained with aqueous solution. Raman spectroscopy was used to monitor amide I and II bands which are sensitive to changes in the secondary structure of proteins. No changes in structure could be detected from the analyses of AI and AII bands of PAL spectra. This data obtained for PAL, a tetramer, could be significant in predicting how solvent interactions affect the structure and function of multimeric proteins and enzymes in nonaqueous media. PMID:22235485

  2. Iodination of insulin in aqueous and organic solvents

    PubMed Central

    Massaglia, A.; Rosa, U.; Rialdi, G.; Rossi, C. A.

    1969-01-01

    1. The iodination of insulin was studied under various experimental conditions in aqueous media and in some organic solvents, by measuring separately the uptake of iodine by the four tyrosyl groups and the relative amounts of monoiodotyrosine and di-iodotyrosine that are formed. In aqueous media from pH1 to pH9 the iodination occurs predominantly on the tyrosyl groups of the A chain. Some organic solvents increase the iodine uptake of the B-chain tyrosyl groups. Their efficacy in promoting iodination of Tyr-B-16 and Tyr-B-26 is in the order: ethylene glycol and propylene glycol≃methanol and ethanol>dioxan>8m-urea. 2. It is suggested that each of the four tyrosyl groups in insulin has a different environment: Tyr-A-14 is fully exposed to the solvent; Tyr-A-19 is sterically influenced by the environmental structure, possibly by the vicinity of a disulphide interchain bond; Tyr-B-16 is embedded into a non-polar area whose stability is virtually independent of the molecular conformation; Tyr-B-26 is probably in a situation similar to Tyr-B-16 with the difference that its non-polar environment depends on the preservation of the native structure. PMID:5346365

  3. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  4. The dual role of lakes as buffers and amplifiers of dissolved organic matter temporal dynamics: Buffering transport and amplifying transformation

    NASA Astrophysics Data System (ADS)

    Ejarque, Elisabet; Schelker, Jakob; Khan, Samiullah; Hollaus, Lisa-Maria; Steniczka, Gertraud; Kainz, Martin; Battin, Tom

    2016-04-01

    Lakes that disrupt the flow of water and its constituents within the fluvial continuum can modify the downstream dynamics of dissolved organic matter (DOM). Potential causes of this change may include the hydrological buffering capacity of lakes relative to streams and rivers and the amplification of biotic processes. To test this hypothesis, we measured DOM quantity and quality at the inflow and outflow of sub-alpine Lake Lunz (Lower Austria) during one year. DOM quality was characterised using optical metrics indicative of the humic-like composition (fluorescence peak C), humification (HIX), and aromaticity (SUVA) degree, predominance of autochthonous components (BIX), and average molecular weight (E2:E3). Total annual variability was found to be lower in the outflow compared with the inflow (SDout:SDin < 1) for dissolved organic carbon (DOC) concentration and HIX. These variables showed a minimal seasonal variation in both inflow and outflow, together with a more accentuated response to hydrology in the inflow. Mean DOC concentration was significantly higher in the outflow (1.70 ± 0.14 mg L‑1) than in the inflow (1.3 ± 0.25 mg L‑1), and this pattern was only occasionally reversed during high flow. By contrast, the total annual variability of peak C, SUVA, BIX and E2:E3 was higher in the outflow than in the inflow (SDout:SDin > 1). This was due to the large seasonal variability in the outflow, which contrasted with a reduced temporal dynamics in the inflow. Combined, this created a shift from similar inflow-outflow DOM characteristics during winter, to uncoupled DOM characteristics during summer. This uncoupling consisted in a higher signal of the autotrophic origin of DOM, a lower average molecular weight, as well as a lower aromatic and humic-like content in the outflow. Overall, these results highlight the role of the Lake Lunz as a DOC source and as a buffer of hydrological pulses of DOC export. Moreover, results emphasise the capacity of the lake to

  5. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Contents of Solvents and Solvent Blends 5 Table 5 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  6. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Contents of Solvents and Solvent Blends 5 Table 5 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  7. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Contents of Solvents and Solvent Blends 5 Table 5 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  8. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Contents of Solvents and Solvent Blends 5 Table 5 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  9. 40 CFR Table 5 to Subpart Vvvv of... - Default Organic HAP Contents of Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Contents of Solvents and Solvent Blends 5 Table 5 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  10. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Petroleum Solvent Groups 6 Table 6 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL... Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content..., Naphthol Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.) 3...

  11. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Petroleum Solvent Groups 6 Table 6 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL... Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content..., Naphthol Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.) 3...

  12. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Petroleum Solvent Groups 6 Table 6 to Subpart VVVV of Part 63 Protection of Environment ENVIRONMENTAL... Contents of Petroleum Solvent Groups As specified in § 63.5758(a)(6), when detailed organic HAP content..., Naphthol Spirits, Petroleum Spirits, Petroleum Oil, Petroleum Naphtha, Solvent Naphtha, Solvent Blend.) 3...

  13. Use of detergents and high contents of organic solvents for simultaneous quantitation of ionic and nonionic drugs by electrokinetic chromatography.

    PubMed

    Cifuentes, A; Bernal, J L; Diez-Masa, J C

    1998-10-16

    Buffers containing high percentages of organic solvents, typically 50% of acetonitrile and/or methanol, together with sodium dodecyl sulfate (SDS) are employed for the separation and quantitation by electrokinetic chromatography (EKC) of analytes found in a nasal spray. Solutes consist of benzalkonium chloride, a family of highly positive compounds, and 2-phenylethanol and beclomethasone dipropionate, which are electrically neutral and poorly soluble in aqueous buffers. It is observed that the effect of both concentration of SDS and temperature on the separation depends on the organic solvent used and the solute nature. It is also observed that SDS-solute interaction for neutral and cationic compounds are weaker in the presence of high contents of acetonitrile than in methanol. Concentration of SDS, temperature, and organic solvent nature and content, allow one to modify the selectivity of the separation when neutral and ionic species have to be simultaneously determined. The optimization of EKC conditions enables the analysis of compounds in less than 5 min. A one-step sample treatment consisting of centrifugation of the nasal spray solved in acetonitrile, together with the referenced optimum separation conditions enable the reproducible quantitation of the analytes. Relative standard deviation values of inter-day migration times lower than 2.45% are obtained (R.S.D.n = 12), while R.S.D.n = 12 values for inter-day peak areas were lower than 6.32%. PMID:9818431

  14. Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification.

    PubMed

    Herbst, Daniela; Peper, Stephanie; Niemeyer, Bernd

    2012-12-31

    In the present study the influence of water content, solvent composition and reaction temperature on the transesterification of 1-phenylpropan-2-ol catalyzed by Candida rugosa lipase was examined. Reactions were carried out in different mixtures of hexane and tetrahydrofurane. The studies showed that an increasing water content of the organic solvent results in an increasing enzyme activity and a decreasing enantiomeric excess. Furthermore, a significant influence of the solvent hydrophilicity both on the enzyme activity and on the enantiomeric excess was found. An increase in solvent hydrophilicity leads to a decrease of enzyme activity and an increase of the enantiomeric excess. This indicates that the enzyme becomes more selective with decreasing flexibility. Similar effects were found by variation of the reaction temperature. Taken together, the decrease in conversion and the increase in selectivity with increasing solvent hydrophilicity are induced by the different water contents on the enzyme surface and not by the solvent itself. PMID:22465292

  15. Occupational Exposure to Organic Solvents during Bridge Painting

    PubMed Central

    Qian, Hua; Fiedler, Nancy; Moore, Dirk F.; Weisel, Clifford P.

    2010-01-01

    Exposure to volatile organic compounds (VOCs) from bridge painting was measured in New York City and New Jersey during the summer and fall seasons from 2005 to 2007. The effect of painting activities (paint coating layer, confinement setup, and application method) and meteorological conditions (temperature, humidity, and wind speed) on solvent exposure to aromatic, ketone, ester, and alkane compounds were individually evaluated. Mixed-effect models were used to examine the combination effects of these factors on the air concentration of total VOCs as the individual compound groups were not present in all samples. Air concentration associated with spraying was not affected by meteorological conditions since spraying was done in a confined space, thus reducing their impact on solvent air concentration. The mixed models for brushing and rolling samples included two fixed factors, i.e. application method and temperature, and one random factor, i.e. sampling day. An independent dataset (daily air samples) was used to validate the mixed model constructed for brushing and rolling samples. The regression line of the predicted values and actual measurements had a slope of 1.32 ± 0.15 for daily brushing and rolling samples, with almost all points being within the 95% confidence bands. The constructed model provides practical approaches for estimating the solvent exposure from brushing and rolling activities among construction painters. An adjusted mean air concentration derived from the activity-specific spray samples was the best estimate for that painting application. PMID:20354053

  16. Dissolving efficacy of some organic solvents on gutta-percha.

    PubMed

    Magalhães, Bianca Silva; Johann, Julia Elis; Lund, Rafael Guerra; Martos, Josué; Del Pino, Francisco Augusto Burkert

    2007-01-01

    The aim of this study was to evaluate the solubility of gutta-percha in four organic solvents used in endodontics. The solubility of gutta-percha (Dentsply) was assessed in xylol, orange oil, eucalyptol, chloroform and distilled water. A hundred and fifty samples of gutta-percha were prepared using a standardized stainless steel mould and divided into five groups for immersion in the different solvents tested and in distilled water (control group) for 2, 5 and 10 minutes. The means of gutta-percha dissolution in the solvents were obtained by the difference between the pre-immersion original weight and the post-immersion weight in a digital analytical scale (Gehaka-AG2000). Data were statistically analyzed by Analysis of Variance (ANOVA) and multiple comparisons with Scheffes test (p<0.05). The best solvency capacity was obtained with xylol. Chloroform, orange oil and eucalyptol presented similar results, and distilled water did not promote alterations in the gutta-percha. PMID:18060255

  17. [New means of isolating restriction endonuclease preparations using organic solvents].

    PubMed

    Sokolov, N N; Votrin, I I; Fitsner, A B; Kirsanova, I D; Dedov, S S

    1980-01-01

    A new procedure is developed for isolation of highly purified preparations of restrictional endonoucleases Bam HI and Eco RI by means of fractionation with isopropyl alcohol. Restrictional endonuclease Bam HI, practically free of unspecific nucleases, was isolated after ultrasonic destruction of cells, precipitation of the restrictases with isopropanol and chromatography on DEAE cellulose. Additional chromatography on hydroxyapatite enabled to obtain the homogenous preparation of Bam HI restrictase, as shown by polyacrylamide gel disc electrophoresis. Other organic solvents (acetone, ethanol) might be also used for purification of the restrictional endonucleases. PMID:6256963

  18. Direct optical excitation of singlet oxygen in organic solvents

    NASA Astrophysics Data System (ADS)

    Bagrov, I. V.; Kiselev, V. M.; Kislyakov, I. M.; Sosnov, E. N.

    2014-04-01

    Efficient excitation of singlet oxygen is demonstrated for several organic solvents (CS2, CCl4, and C6F14) that are irradiated using LED in the visible spectral range in the absorption bands of the O2-O2 collision complexes at the corresponding cooperative transitions. It is shown that the two-photon interaction of the pumping radiation in the Herzberg I band of molecular oxygen with its excitation to the 3Σ{/u +} state and the subsequent collisional relaxation to the 1Σ g and 1Δ g singlet states contributes to the excitation of singlet oxygen.

  19. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method. PMID:25381609

  20. Interaction of protonated merocyanine dyes with amines in organic solvents

    NASA Astrophysics Data System (ADS)

    Ribeiro, Eduardo Alberton; Sidooski, Thiago; Nandi, Leandro Guarezi; Machado, Vanderlei Gageiro

    2011-10-01

    2,6-Diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate ( 1a) and 4-[(1-methyl-4(1 H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one ( 2a) were protonated in organic solvents (dichloromethane, acetonitrile, and DMSO) to form 1b and 2b, respectively. The appearance of the solvatochromic bands of 1a and 2a was studied UV-vis spectrophotometrically by deprotonation of 1b and 2b in solution in the presence of the following amines: aniline (AN), N-methylaniline (NMAN), N, N-dimethylaniline (NDAN), n-butylamine (BA), diethylamine (DEA), and triethylamine (TEA). Titrations of 1b and 2b with the amines were carried out and the binding constants were determined from the titration curves in each solvent, using a mathematical model adapted from the literature which considers the simultaneous participation of two dye: amine stoichiometries, 1:1 and 1:2. The data obtained showed the following base order for the two compounds in DMSO: BA > DEA > TEA, while aromatic amines did not cause any effect. In dichloromethane, the following base order for 1b was verified: TEA > DEA > BA ≫NDAN, while for 2b the order was: TEA > DEA > BA, suggesting that 1b is more acidic than 2b. The data in acetonitrile indicated for 1b and 2b the following order for the amines: DEA > TEA > BA. The diversity of the experimental data were explained based on a model that considers the level of interaction of the protonated dyes with the amines to be dependent on three aspects: (a) the basicity of the amine, which varies according to their molecular structure and the solvent in which it is dissolved, (b) the molecular structure of the dye, and (c) the solvent used to study the system.

  1. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  2. IUPAC-NIST Solubility Data Series. 99. Solubility of Benzoic Acid and Substituted Benzoic Acids in Both Neat Organic Solvents and Organic Solvent Mixtures

    NASA Astrophysics Data System (ADS)

    Acree, William E.

    2013-09-01

    Solubility data are compiled and reviewed for benzoic acid and 63 substituted benzoic acids dissolved in neat organic solvents and well-defined binary and ternary organic solvent mixtures. The compiled solubility data were retrieved from the published chemical and pharmaceutical literature covering the period from 1900 to the beginning of 2013.

  3. S5 Lipase: an organic solvent tolerant enzyme.

    PubMed

    Rahman, Raja Noor Zaliha Abdul; Baharum, Syarul Nataqain; Salleh, Abu Bakar; Basri, Mahiran

    2006-12-01

    In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of production were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions (Mg2+) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, Na+, was found to stimulate the production of S5 lipase. PMID:17205035

  4. High exposures to organic solvents among graffiti removers.

    PubMed

    Anundi, H; Lind, M L; Friis, L; Itkes, N; Langworth, S; Edling, C

    1993-01-01

    The exposure to organic solvents among 12 graffiti removers was studied. Health effects were also assessed by structured interview and a symptom questionnaire. Blood and urine samples were collected at the end of the day of air sampling. The concentrations of dichloromethane, glycol ethers, trimethylbenzenes and N-methyl-2-pyrrolidinone in the breathing zone of each worker were measured during one working day. The 8-h time-weighted average exposure to dichloromethane ranged from 18 to 1200 mg/m3. The Swedish Permissible Exposure Limit value for dichloromethane is 120 mg/m3. The air concentrations of glycol ethers, trimethylbenzenes and N-methyl-2-pyrrolidinone were low or not detectable. No exposure-related deviations in the serum concentrations of creatinine, aspartate transaminase, alanine transaminase, gamma-glutamyl transpeptidase or hyaluronan or the urine concentrations of alpha 1-microglobulin, beta 2-microglobulin or N-acetyl-beta-glucosaminidase were found. Irritative symptoms of the eyes and upper respiratory tract were more prevalent than in the general population. This study demonstrates that old knowledge about work hazards is not automatically transferred to new professions. Another aspect is that the public is also exposed as the job is performed during daytime in underground stations. At least for short periods, bystanders may be exposed to high concentrations of organic solvent vapours. People with predisposing conditions, e.g. asthmatics, may risk adverse reactions. PMID:8144235

  5. Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers.

    PubMed

    Đorđević, Luka; Marangoni, Tomas; Miletić, Tanja; Rubio-Magnieto, Jenifer; Mohanraj, John; Amenitsch, Heinz; Pasini, Dario; Liaros, Nikos; Couris, Stelios; Armaroli, Nicola; Surin, Mathieu; Bonifazi, Davide

    2015-07-01

    The self-assembly and self-organization behavior of uracil-conjugated enantiopure (R)- or (S)-1,1'-binaphthyl-2,2'-diol (BINOL) and a hydrophobic oligo(p-phenylene ethynylene) (OPE) chromophore exposing 2,6-di(acetylamino)pyridine termini are reported. Systematic spectroscopic (UV-vis, CD, fluorescence, NMR, and SAXS) and microscopic studies (TEM and AFM) showed that BINOL and OPE compounds undergo triple H-bonding recognition, generating different organic nanostructures in solution. Depending on the solvophobic properties of the liquid media (toluene, CHCl3, CHCl3/CHX, and CHX/THF), spherical, rod-like, fibrous, and helical morphologies were obtained, with the latter being the only nanostructures expressing chirality at the microscopic level. SAXS analysis combined with molecular modeling simulations showed that the helical superstructures are composed of dimeric double-cable tape-like structures that, in turn, are supercoiled at the microscale. This behavior is interpreted as a consequence of an interplay among the degree of association of the H-bonded recognition, the vapor pressure of the solvent, and the solvophobic/solvophilic character of the supramolecular adducts in the different solutions under static and dynamic conditions, namely solvent evaporation conditions at room temperature. PMID:25990283

  6. Characterizing DNA Condensation and Conformational Changes in Organic Solvents

    PubMed Central

    Ke, Fuyou; Luu, Yen Kim; Hadjiargyrou, Michael; Liang, Dehai

    2010-01-01

    Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF) at low concentration via laser light scattering (LLS), TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8–10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems. PMID:20949017

  7. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems.

    PubMed

    Tsuchiyama, Shotaro; Doukyu, Noriyuki; Yasuda, Masahiro; Ishimi, Kosaku; Ogino, Hiroyasu

    2007-01-01

    The PST-01 protease is a metalloprotease that has zinc ion at the active center and is very stable in the presence of water-soluble organic solvents. The reaction rates and the equilibrium yields of the aspartame precursor N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (Cbz-Asp-Phe-OMe) synthesis from N-carbobenzoxy-L-aspartic acid (Cbz-Asp) and L-phenylalanine methyl ester (Phe-OMe) in the presence of water-soluble organic solvents were investigated under various conditions. Higher reaction rate and yield of Cbz-Asp-Phe-OMe were attained by the PST-01 protease when 30 mM Cbz-Asp and 500 mM Phe-OMe were used. The maximum reaction rate was obtained pH 8.0 and 37 degrees C. In the presence of dimethylsulfoxide (DMSO), glycerol, methanol, and ethylene glycol, higher reaction rates were obtained. The equilibrium yield was the highest in the presence of DMSO. The equilibrium yield of Cbz-Asp-Phe-OMe using the PST-01 protease attained 83% in the presence of 50% (v/v) DMSO. PMID:17480054

  8. Solvent Effects on Electronic Excitations of an Organic Chromophore.

    PubMed

    Zuehlsdorff, T J; Haynes, P D; Hanke, F; Payne, M C; Hine, N D M

    2016-04-12

    In this work we study the solvatochromic shift of a selected low-energy excited state of alizarin in water by using a linear-scaling implementation of large-scale time-dependent density functional theory (TDDFT). While alizarin, a small organic dye, is chosen as a simple example of solute-solvent interactions, the findings presented here have wider ramifications for the realistic modeling of dyes, paints, and pigment-protein complexes. We find that about 380 molecules of explicit water need to be considered in order to yield an accurate representation of the solute-solvent interaction and a reliable solvatochromic shift. By using a novel method of constraining the TDDFT excitation vector, we confirm that the origin of the slow convergence of the solvatochromic shift with system size is due to two different effects. The first factor is a strong redshift of the excitation due to an explicit delocalization of a small fraction of the electron and the hole from the alizarin onto the water, which is mainly confined to within a distance of 7 Å from the alizarin molecule. The second factor can be identified as long-range electrostatic influences of water molecules beyond the 7 Å region on the ground-state properties of alizarin. We also show that these electrostatic influences are not well reproduced by a QM/MM model, suggesting that full QM studies of relatively large systems may be necessary in order to obtain reliable results. PMID:26967019

  9. DNA-catalyzed Henry reaction in pure water and the striking influence of organic buffer systems.

    PubMed

    Häring, Marleen; Pérez-Madrigal, Maria M; Kühbeck, Dennis; Pettignano, Asja; Quignard, Françoise; Díaz, David Díaz

    2015-01-01

    In this manuscript we report a critical evaluation of the ability of natural DNA to mediate the nitroaldol (Henry) reaction at physiological temperature in pure water. Under these conditions, no background reaction took place (i.e., control experiment without DNA). Both heteroaromatic aldehydes (e.g., 2-pyridinecarboxaldehyde) and aromatic aldehydes bearing strong or moderate electron-withdrawing groups reacted satisfactorily with nitromethane obeying first order kinetics and affording the corresponding β-nitroalcohols in good yields within 24 h. In contrast, aliphatic aldehydes and aromatic aldehydes having electron-donating groups either did not react or were poorly converted. Moreover, we discovered that a number of metal-free organic buffers efficiently promote the Henry reaction when they were used as reaction media without adding external catalysts. This constitutes an important observation because the influence of organic buffers in chemical processes has been traditionally underestimated. PMID:25749682

  10. Rapid carbon nanotubes suspension in organic solvents using organosilicon polymers.

    PubMed

    Dalcanale, Federico; Grossenbacher, Jonas; Blugan, Gurdial; Gullo, Maurizio R; Brugger, Jürgen; Tevaearai, Hendrik; Graule, Thomas; Kuebler, Jakob

    2016-05-15

    A strategy for a simple dispersion of commercial multi-walled carbon nanotubes (MWCNTs) using two organosilicones, polycarbosilane SMP10 and polysilazane Ceraset PSZ20, in organic solvents such as cyclohexane, tetrahydrofuran (THF), m-xylene and chloroform is presented. In just a few minutes the combined action of sonication and the presence of Pt(0) catalyst is sufficient to obtain a homogeneous suspension, thanks to the rapid hydrosilylation reaction between SiH groups of the polymer and the CNT sidewall. The as-produced suspensions have a particle size distribution <1μm and remain unchanged after several months. A maximum of 0.47 and 0.50mg/ml was achieved, respectively, for Ceraset in THF and SMP10 in chloroform. Possible applications as polymeric and ceramic thin films or aerogels are presented. PMID:26939076

  11. Non-equilibrium plasma reactors for organic solvent destruction

    SciTech Connect

    Yang, C.L.; Beltran, M.R.; Kravets, Z.

    1997-12-31

    Two non-equilibrium plasma reactors were evaluated for their ability to destroy three widely used organic solvents, i.e., 2-butanone, toluene and ethyl acetate. The catalyzed plasma reactor (CPR) with 6 mm glass beads destroys 98% of 50 ppm toluene in air at 24 kV/cm and space velocities of 1,400 v/v/hr. Eighty-five percent of ethyl acetate and 2-butanone are destroyed under the same conditions. The tubular plasma reactor (TPR) has an efficiency of 10% to 20% lower than that of a CPR under the same conditions. The 1,400 v/v/hr in a CPR is equal to a residence time of 2.6 seconds in a TPR. The operating temperatures, corona characteristics, as well as the kinetics of VOC destruction in both TPR and CPR were studied.

  12. Chemicals from wood by organic-solvent delignification. Final report

    SciTech Connect

    April, G.C.; Nayak, R.G.; Daley, P.L.; Jabali, F.; Meraab, J.

    1983-10-01

    Studies undertaken to evaluate the effectiveness of organic-solvent delignification of sweet gum and southern yellow pine wood are reported. Batch delignification investigations were conducted using aqueous n-butanol, ethanol, and phenol solutions at temperatures between 135C and 205C. Temperature, catalyst type and concentration, wood type, and treatment method were some of the variables considered. Southern yellow pine pretreatment studies were performed using water, and the use of semi-batch pulping methods was evaluated. Both delignification and pulp loss were described by first-order kinetics, and results generally agreed with those reported in the literature. Soluble pulp rate constants agreed closely with the bulk delignification rate constants, indicating the probability of a common mechanism describing the hydrolysis of wood during the initial periods. Second-step rate constants indicated a significantly slower delignification process. Finally, findings indicate that high temperatures are needed to effectively remove lignin from softwoods when no chemical additives are used.

  13. Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics.

    PubMed

    Alonzo, José; Kochemba, W Michael; Pickel, Deanna L; Ramanathan, Muruganathan; Sun, Zhenzhong; Li, Dawen; Chen, Jihua; Sumpter, Bobby G; Heller, William T; Kilbey, S Michael

    2013-10-01

    Buffer layers that control electrochemical reactions and physical interactions at electrode/film interfaces are key components of an organic photovoltaic cell. Here the structure and properties of layers of semi-rigid poly(3-hexylthiophene) (P3HT) chains tethered at a surface are investigated, and these functional systems are applied in an organic photovoltaic device. Areal density of P3HT chains is readily tuned through the choice of polymer molecular weight and annealing conditions, and insights from optical absorption spectroscopy and semiempirical quantum calculation methods suggest that tethering causes intrachain defects that affect co-facial π-stacking of brush chains. Because of their ability to modify oxide surfaces, P3HT brushes are utilized as an anode buffer layer in a P3HT-PCBM (phenyl-C₆₁-butyric acid methyl ester) bulk heterojunction device. Current-voltage characterization shows a significant enhancement in short circuit current, suggesting the potential of these novel nanostructured buffer layers to replace the PEDOT:PSS buffer layer typically applied in traditional P3HT-PCBM solar cells. PMID:23955069

  14. Toxic effects of organic solvents on the growth of chlorella vulgaris and Selenastrum capicornutum

    SciTech Connect

    El Jay, A.

    1996-10-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulations. In laboratory bioassays, the use of organic solvents is unavoidable since many pesticides and organic pollutants have low water solubilities and need to be dissolved in organic solvents prior to addition into experimental systems. So, one area of concern with laboratory bioassays is the stress imposed on test organisms by organic solvents. Most reports on the comparative toxicity of solvents towards test organisms deals with the effects of solvents on fish and aquatic invertebrates with some data available for blue-green algae and green algae. The US Environmental Protection Agency recommends maximum allowable limits of 0.05% solvent for acute tests and 0.01% for chronic tests but, in the literature, the nature of the solvent and the final concentration used vary among the different authors and are often higher than EPA limits due to problems associated with the use of small test volumes and toxicant solubility. Organic solvents can cause toxic effects on their own, but it has been also reported that they can interact with pesticides to alter toxicity. The first step in choosing a solvent for use in bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study (pesticide and solvent interactions) to choose the best concentration to use. The purpose of this study is to compare the inhibitory effects of our solvents used in pesticide bioassays towards the growth of two green algae. 18 refs., 4 figs., 1 tabs.

  15. Headspace gas chromatography-flame ionization detector method for organic solvent residue analysis in dietary supplements.

    PubMed

    Jeong, Mijeong Lee; Zahn, Michael; Trinh, Thao; Jia, Qi; Ma, Wenwen

    2006-01-01

    An analytical method has been developed for the identification and quantification of 20 organic solvent residues in dietary supplements. The method utilizes a headspace sampler interfaced with gas chromatography and flame ionization detection. With split injection (5:1) and a DB-624 column, most of the organic solvents are separated in 9 min. The method has been validated and was found to be relatively simple and fast, and it can be applied to most common organic solvent residues. With the mass detector, the method was able to identify organic solvents beyond the 20 standards tested. PMID:17225592

  16. Effect of Buffer Conditions and Organic Cosolvents on the Rate of Strain-Promoted Azide-Alkyne Cycloaddition.

    PubMed

    Davis, Derek L; Price, Erin K; Aderibigbe, Sabrina O; Larkin, Maureen X-H; Barlow, Emmett D; Chen, Renjie; Ford, Lincoln C; Gray, Zackery T; Gren, Stephen H; Jin, Yuwei; Keddington, Keith S; Kent, Alexandra D; Kim, Dasom; Lewis, Ashley; Marrouche, Rami S; O'Dair, Mark K; Powell, Daniel R; Scadden, Mick'l H C; Session, Curtis B; Tao, Jifei; Trieu, Janelle; Whiteford, Kristen N; Yuan, Zheng; Yun, Goyeun; Zhu, Judy; Heemstra, Jennifer M

    2016-08-01

    We investigate the effect of buffer identity, ionic strength, pH, and organic cosolvents on the rate of strain-promoted azide-alkyne cycloaddition with the widely used DIBAC cyclooctyne. The rate of reaction between DIBAC and a hydrophilic azide is highly tolerant to changes in buffer conditions but is impacted by organic cosolvents. Thus, bioconjugation reactions using DIBAC can be carried out in the buffer that is most compatible with the biomolecules being labeled, but the use of organic cosolvents should be carefully considered. PMID:27387821

  17. Regioselective self-acylating cyclodextrins in organic solvent

    PubMed Central

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  18. Regioselective self-acylating cyclodextrins in organic solvent.

    PubMed

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D; Choi, Youngjin; Jung, Seunho

    2016-01-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods. PMID:27020946

  19. Relevance of an organic solvent for absorption of siloxanes.

    PubMed

    Ghorbel, Leila; Tatin, Romuald; Couvert, Annabelle

    2014-01-01

    A wide range of siloxanes exist but the most abundant in biogas are Hexamethyldisiloxane (L2) and Octamethyltrisiloxane (L3) as linear siloxanes and Octamethylcyclotetrasiloxane (D4) as a cyclic siloxane. In order to remove volatile organic compound from biogas, different processes can be used. A promising process for siloxane removal is their absorption in an organic solvent. In this work, three oils were tested to absorb the selected siloxanes: silicone oil 47V20, Seriola 1510 and Polyalphaolefin. Initially, the characterization of these oils was realized by measuring their viscosities and densities, depending on temperature. The second time, the absorption capacity of the siloxanes by selected oils was characterized through the determination of their Henry's constants, but also owing to the implementation of a wet-wall column. Both Henry's constants and removal efficiencies in continuous regime revealed that silicone oil (47V20) can be considered as the most efficient oil among the three selected siloxanes. Moreover, the cyclic siloxane (D4) showed more affinity with oils than linear siloxanes. Silicone oil 47V20 appeared to be the best oil (intermediate price 14 euro/L, low viscosity, low volatility, chemical inertness (no corrosion) and resistance to high and low temperatures). PMID:24600877

  20. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  1. Organic solvents for pharmaceutical parenterals and embolic liquids: a review of toxicity data.

    PubMed

    Mottu, F; Laurent, A; Rufenacht, D A; Doelker, E

    2000-01-01

    Non-aqueous solvents have long been used in subcutaneous or intramuscular pharmaceutical formulations to dissolve water-insoluble drugs. In recent years, the need for these vehicles was increased since the drug discovery process has yielded many poorly water-soluble drugs. Besides, preparations containing embolic materials dissolved in undiluted non-aqueous water-miscible solvents have been proposed for the intravascular treatment of aneurysms, arteriovenous malformations, or tumors. These organic solvents, regarded as chemically and biologically inert, may show pharmacological and toxicological effects. Therefore, knowledge of tolerance and activity of non-aqueous solvents is essential before they can be administered, especially when given undiluted. This paper focuses on thirteen organic solvents reported as possible vehicles for injectable products and details toxicological data when they have been administered intravascularly. These solvents can be subdivided into three groups according to their description in the literature either for intravenous pharmaceutical parenterals or for intravascular embolic liquids: well-documented organic solvents (propylene glycol, polyethylene glycols, ethanol), solvents described in specific applications (dimethyl sulfoxide, N-methyl-2-pyrrolidone, glycofurol, Solketal, glycerol formal, acetone), and solvents not reported in intravascular applications but potentially useful (tetrahydrofurfuryl alcohol, diglyme, dimethyl isosorbide, ethyl lactate). This review of the literature shows that toxicity data on intravascular organic solvents are insufficient because they concern solvents diluted with water and because of the lack of comparative evaluation using the same methodologies. PMID:11107838

  2. The Buffering Balance: Modeling Arctic river total-, inorganic-, and organic-alkalinity fluxes

    NASA Astrophysics Data System (ADS)

    Hunt, C. W.; Salisbury, J.; Wollheim, W. M.; Mineau, M.; Stewart, R. J.

    2014-12-01

    River-borne inputs of alkalinity influence the pH and pCO2 of coastal ocean waters, and changes in alkalinity inputs also have implications for responses to climate-driven ocean acidification. Recent work has shown that alkalinity fluxes from rivers are not always dominated by inorganic carbon species, and can instead be composed somewhat or mostly of non-carbonate, presumably organic species. Concentrations and proportions of organic alkalinity (O-Alk) are correlated to dissolved organic carbon (DOC) concentrations and fluxes, which are predicted to rise as Arctic permafrost thaws and the hydrologic cycle intensifies. We have scaled results from watershed studies to develop a process-based model to simulate and aggregate Arctic river exports of total alkalinity, DOC, and O-Alk to the coastal sea. Total alkalinity, DOC, and O-Alk were loaded to a river network and routed through a 6-minute hydrologic model (FrAMES). We present results contrasting poorly buffered (e.g. the Kolyma river) and highly buffered (e.g. the Yukon river) systems, the impact of O-Alk on river pH and pCO2, and examine the seasonalities of inorganic and organic influences on coastal ocean carbonate chemistry.

  3. Process for separating a fluid feed mixture containing hydrocarbon oil and an organic solvent

    SciTech Connect

    Bitter, J.G.A.; Haan, J.P.

    1989-03-07

    This patent describes a process for separating a fluid feed mixture containing a hydrocarbon lubricating base oil and an organic solvent selected from furfural and mixture of toluene and methyl ethyl ketone which process comprises subjecting the fluid feed mixture to reverse osmosis in a reverse osmosis zone with a membrane comprising a layer of a silicone polymer. The process provides a retentate stream having an organic solvent content higher than the feed mixture, and a permeate stream having an organic solvent content less than the amount of solvent in the feed mixture, and permits recovering hydrocarbon oil from the permeate stream.

  4. Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets

    NASA Astrophysics Data System (ADS)

    Karan, Santanu; Samitsu, Sadaki; Peng, Xinsheng; Kurashima, Keiji; Ichinose, Izumi

    2012-01-01

    Chemical, petrochemical, energy, and environment-related industries strongly require high-performance nanofiltration membranes applicable to organic solvents. To achieve high solvent permeability, filtration membranes must be as thin as possible, while retaining mechanical strength and solvent resistance. Here, we report on the preparation of ultrathin free-standing amorphous carbon membranes with Young’s moduli of 90 to 170 gigapascals. The membranes can separate organic dyes at a rate three orders of magnitude greater than that of commercially available membranes. Permeation experiments revealed that the hard carbon layer has hydrophobic pores of ~1 nanometer, which allow the ultrafast viscous permeation of organic solvents through the membrane.

  5. Extracting organic matter on Mars: A comparison of methods involving subcritical water, surfactant solutions and organic solvents

    NASA Astrophysics Data System (ADS)

    Luong, Duy; Court, Richard W.; Sims, Mark R.; Cullen, David C.; Sephton, Mark A.

    2014-09-01

    The first step in many life detection protocols on Mars involves attempts to extract or isolate organic matter from its mineral matrix. A number of extraction options are available and include heat and solvent assisted methods. Recent operations on Mars indicate that heating samples can cause the loss or obfuscation of organic signals from target materials, raising the importance of solvent-based systems for future missions. Several solvent types are available (e.g. organic solvents, surfactant based solvents and subcritical water extraction) but a comparison of their efficiencies in Mars relevant materials is missing. We have spiked the well characterised Mars analogue material JSC Mars-1 with a number of representative organic standards. Extraction of the spiked JSC Mars-1 with the three solvent methods provides insights into the relative efficiency of these methods and indicates how they may be used on future Mars missions.

  6. Performance of organic photovoltaics using an ytterbium trifluoride n-type buffer layer

    NASA Astrophysics Data System (ADS)

    Ji, Chan Hyuk; Jang, Ji Min; Oh, Se Young

    2016-03-01

    Ytterbium trifluoride (YbF3) was used as an n-type cathode buffer layer in conventional poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PC60BM) bulk heterojunction (BHJ) organic photovoltaic cells. This buffer layer acts as an electron-transport layer and improves the open circuit voltage ( V oc), power conversion efficiency (PCE), and interfacial durability of the device. The physical properties and performance of the device were studied using impedance spectroscopy, photocurrent measurements, ultraviolet photoelectron spectroscopy, and atomic force microscopy. The PCE reached to 3.2% with a 65% fill factor under 1 sun irradiation. The PCE decreased to half of its original value after 120 h at room temperature in air or 24 h at 70°C in air. Comparison with Yb and TiOx cathode buffer layers reveals that YbF3 has superior performance and longevity. These findings suggest that YbF3 has the potential to replace costly device encapsulation. [Figure not available: see fulltext.

  7. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases.

    PubMed

    Stepankova, Veronika; Damborsky, Jiri; Chaloupkova, Radka

    2013-06-01

    Haloalkane dehalogenases are microbial enzymes with a wide range of biotechnological applications, including biocatalysis. The use of organic co-solvents to solubilize their hydrophobic substrates is often necessary. In order to choose the most compatible co-solvent, the effects of 14 co-solvents on activity, stability and enantioselectivity of three model enzymes, DbjA, DhaA, and LinB, were evaluated. All co-solvents caused at high concentration loss of activity and conformational changes. The highest inactivation was induced by tetrahydrofuran, while more hydrophilic co-solvents, such as ethylene glycol and dimethyl sulfoxide, were better tolerated. The effects of co-solvents at low concentration were different for each enzyme-solvent pair. An increase in DbjA activity was induced by the majority of organic co-solvents tested, while activities of DhaA and LinB decreased at comparable concentrations of the same co-solvent. Moreover, a high increase of DbjA enantioselectivity was observed. Ethylene glycol and 1,4-dioxane were shown to have the most positive impact on the enantioselectivity. The favorable influence of these co-solvents on both activity and enantioselectivity makes DbjA suitable for biocatalytic applications. This study represents the first investigation of the effects of organic co-solvents on the biocatalytic performance of haloalkane dehalogenases and will pave the way for their broader use in industrial processes. PMID:23420811

  8. Organic solvent soluble oxide supported hydrogenation catalyst precursors

    DOEpatents

    Edlund, David J.; Finke, Richard G.; Saxton, Robert J.

    1992-01-01

    The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.

  9. Tertiary phase diagram of cellulose, ionic liquid and organic solvent

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Henderson, Doug; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert M.; Wang, Howard

    Cellulose is the most abundant natural polymer on earth, and widely used in products from clothing to paper. Fundamental understanding of molecular solutions of cellulose is the key to realize advanced technologies beyond cellulose fibers. It has been reported that certain ionic liquid/organic solvent mixtures dissolve cellulose. In this study, the tertiary phase diagram of microcrystalline cellulose, 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and dimethylformamide (DMF) mixtures has been determined using optical cloud point method and small angle neutron scattering (SANS). Data indicate that a molar ratio of EMIMAc to cellulose repeating unit equal or greater than 3 is necessary but not sufficient in forming one-phase homogeneous solutions. A miscibility gap exists in the dilute regime, where a minimum of 5 mol% of EMIM Ac in DMF is needed to form homogenous solutions. SANS show that cellulose chains adopt Gaussian-like conformation in homogenous solutions. The solutions exhibit the characteristics of upper critical solution temperature. Clustering of cellulose chains occurs at low EMIMAc/DMF or EMIMAc/cellulose ratio, or at low temperatures. The mechanism of cellulose dissolution in tertiary mixture is discussed.

  10. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution.

    PubMed

    Kawata, Takuya; Ogino, Hiroyasu

    2009-01-01

    LST-03 lipase from an organic solvent-tolerant Pseudomonas aeruginosa LST-03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent-stability of LST-03 lipase was attempted by directed evolution. The structural gene of the LST-03 lipase was amplified by the error prone-PCR method. Organic solvent-stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri-n-butyrin and which overlaid a plate medium. And the organic solvent-stability was also confirmed by measuring the half-life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent-stability in the presence of DMSO. The organic solvent-stabilities of mutated LST-03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half-lives of the LST-03-R65 lipase in the presence of cyclohexane and n-decane were about 9 to 11-fold longer than those of the wild-type lipase, respectively. Some substituted amino acid residues of mutated LST-03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues. PMID:19731302

  11. Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells

    PubMed Central

    2012-01-01

    Ultraviolet-ozone-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)was used as the anode buffer layer in copper phthalocyanine (CuPc)/fullerene-based solar cells. The power conversion efficiency of the cells with appropriated UV-ozone treatment was found to increase about 20% compared to the reference cell. The improved performance is attributed to the increased work function of the PEDOT:PSS layer, which improves the contact condition between PEDOT:PSS and CuPc, hence increasing the extraction efficiency of the photogenerated holes and decreasing the recombination probability of holes and electrons in the active organic layers. PMID:22901365

  12. Surface plasmon enhanced organic solar cells with a MoO3 buffer layer.

    PubMed

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhang, Guang; Zhao, Haifeng; Yang, Haigui; Ma, Yuejia; Chu, Bei; Li, Wenlian

    2013-12-26

    High-efficiency surface plasmon enhanced 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane:C70 small molecular bulk heterojunction organic solar cells with a MoO3 anode buffer layer have been demonstrated. The optimized device based on thermal evaporated Ag nanoparticles (NPs) shows a power conversion efficiency of 5.42%, which is 17% higher than the reference device. The improvement is attributed to both the enhanced conductivity and increased absorption due to the near-field enhancement of the localized surface plasmon resonance of Ag NPs. PMID:24320799

  13. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents

    PubMed Central

    Trodler, Peter; Pleiss, Jürgen

    2008-01-01

    Background The structure and flexibility of Candida antarctica lipase B in water and five different organic solvent models was investigated using multiple molecular dynamics simulations to describe the effect of solvents on structure and dynamics. Interactions of the solvents with the protein and the distribution of water molecules at the protein surface were examined. Results The simulated structure was independent of the solvent, and had a low deviation from the crystal structure. However, the hydrophilic surface of CALB in non-polar solvents decreased by 10% in comparison to water, while the hydrophobic surface is slightly increased by 1%. There is a large influence on the flexibility depending on the dielectric constant of the solvent, with a high flexibility in water and a low flexibility in organic solvents. With decreasing dielectric constant, the number of surface bound water molecules significantly increased and a spanning water network with an increasing size was formed. Conclusion The reduced flexibility of Candida antarctica lipase B in organic solvents is caused by a spanning water network resulting from less mobile and slowly exchanging water molecules at the protein-surface. The reduced flexibility of Candida antarctica lipase B in organic solvent is not only caused by the interactions between solvent-protein, but mainly by the formation of a spanning water network. PMID:18254946

  14. Structural investigation of diglycerol polyisostearate reverse micelles in organic solvents.

    PubMed

    Shrestha, Lok Kumar; Shrestha, Rekha Goswami; Oyama, Keiichi; Matsuzawa, Makoto; Aramaki, Kenji

    2009-09-24

    The structure of glycerol-based reverse micelles in the surfactant/oil binary system without external water addition has been investigated using a small-angle X-ray scattering technique, and different tunable parameters for the structure control of reverse micelles are determined. The scattering data were evaluated by the generalized indirect Fourier transformation (GIFT) method and complemented by model fitting. It was found that diglycerol polyisostearates (abbreviated as (iso-C18)nG2, n=2-4, where n represents the number of isosterate chains per surfactant molecule) form reverse micelles in a variety of organic solvents such as cyclohexane, n-decane, and n-hexadecane without the addition of water from outside, and their structure (shape and size) depends on solvent properties (alkyl chain length), tail architecture of the surfactant, temperature, and added water. Small globular types of micelles were observed in the (iso-C18)2G2/cyclohexane system at 25 degrees C. The micellar size and the aggregation number were increased with increasing the alkyl chain length of the oils resulting in elongated ellipsoidal prolate or rodlike type micelles in the (iso-C18)2G2/hexadecane system. This structural evolution is caused by the different penetration tendency depending on the chain length of oils to the lipophilic chain of the surfactant. At fixed oil, composition, and temperature, the tail architecture of the surfactant played a crucial role in the micellar structure. The micellar size and, hence, the aggregation number decreased monotonically with increasing number of isostearate chain per surfactant molecule due to the voluminous lipophilic part of the surfactant. Composition could not modulate the structure of micelles but led to strong repulsive interactions among the micelles due to reduced osmotic compressibility of the system at higher concentrations. Increasing temperature decreased the micellar size, while the cross-section structure remains essentially the

  15. Immobilization of Lipase by Adsorption Onto Magnetic Nanoparticles in Organic Solvents.

    PubMed

    Shi, Ying; Liu, Wei; Tao, Qing-Lan; Jiang, Xiao-Ping; Liu, Cai-Hong; Zeng, Sha; Zhang, Ye-Wang

    2016-01-01

    In order to improve the performance of lipase in organic solvents, a simple immobilization method was developed by adsorption of lipase onto Fe₃O₄@ SiO₂magnetic nanoparticles in organic solvent. Among the solvents tested, toluene was found to be the most effective solvent for the immobilization. A maximum immobilization yield of 97% and relative activity of 124% were achieved in toluene at 30 °C. The optimal temperature, enzyme loading and water activity were 30 °C, 1.25 mg/mg support and 0.48 aw, respectively. The residual activity of immobilized lipase was 67% after 10 cycles of use. The advantages of the immobilized lipase including easy recovery, high stability, and enhanced activity of immobilized lipase in organic solvents show potential industrial applications in anhydrous solvents. PMID:27398494

  16. Effect of prolonged exposure to organic solvents on the active site environment of subtilisin Carlsberg

    PubMed Central

    Bansal, Vibha; Delgado, Yamixa; Fasoli, Ezio; Ferrer, Amaris; Griebenow, Kai; Secundo, Francesco; Barletta, Gabriel L

    2010-01-01

    The potential of enzyme catalysis as a tool for organic synthesis is nowadays indisputable, as is the fact that organic solvents affect an enzyme’s activity, selectivity and stability. Moreover, it was recently realized that an enzyme’s initial activity is substantially decreased after prolonged exposure to organic media, an effect that further hampers their potential as catalysts for organic synthesis. Regrettably, the mechanistic reasons for these effects are still debatable. In the present study we have made an attempt to explain the reasons behind the partial loss of enzyme activity on prolonged exposure to organic solvents. Fluorescence spectroscopic studies of the serine protease subtilisin Carlsberg chemically modified with polyethylene glycol (PEG-SC) and inhibited with a Dancyl fluorophore, and dissolved in two organic solvents (acetonitrile and 1,4-dioxane) indicate that when the enzyme is initially introduced into these solvents, the active site environment is similar to that in water; however prolonged exposure to the organic medium causes this environment to resemble that of the solvent in which the enzyme is dissolved. Furthermore, kinetic studies show a reduction on both Vmax and KM as a result of prolonged exposure to the solvents. One interpretation of these results is that during this prolonged exposure to organic solvents the active-site fluorescent label inhibitor adopts a different binding conformation. Extrapolating this to an enzymatic reaction we argue that substrates bind in a less catalytically favorable conformation after the enzyme has been exposed to organic media for several hours. PMID:20414456

  17. Exposure Characteristics of Construction Painters to Organic Solvents

    PubMed Central

    Park, Hyunhee; Park, Hae Dong; Jang, Jae-Kil

    2015-01-01

    Background Construction painters have not been studied well in terms of their hazards exposure. The objective of this study was to evaluate the exposure levels of total volatile organic compounds (TVOCs) for painters in the construction industry. Methods Activity-specific personal air samplings were carried out in three waterproofing activities [polyurethane (PU), asphalt, and cement mortar] and three painting activities (epoxy, oil based, and water based) by using organic-vapor-monitor passive-sampling devices. Gas chromatograph with flame ionization detector could be used for identifying and quantifying individual organic chemicals. The levels of TVOCs, by summing up 15 targeted substances, were expressed in exposure-index (EI) values. Results As arithmetic means in the order of concentration levels, the EIs of TVOCs in waterproofing works were 10.77, 2.42, 1.78, 1.68, 0.47, 0.07, and none detected (ND) for indoor PU-primer task, outdoor PU-primer task, outdoor PU-resin task, indoor PU-resin task, asphalt-primer task, asphalt-adhesive task, and cement-mortar task, respectively. The highest EI for painting works was 5.61 for indoor epoxy-primer task, followed by indoor epoxy-resin task (2.03), outdoor oil-based-spray-paint task (1.65), outdoor water-based-paint task (0.66), and indoor oil-based-paint task (0.15). Assuming that the operations were carried out continuously for 8 hours without breaks and by using the arithmetic means of EIs for each of the 12 tasks in this study, 58.3% (7 out of 12) exceeded the exposure limit of 100% (EI > 1.0), while 8.3% (1 out of 12) was in 50–100% of exposure limit (0.5 > EI > 1.0), and 4 tasks out of 12 were located in less than 50% of the limit range (EI < 0.5). Conclusion From this study, we recognized that construction painters are exposed to various solvents, including carcinogens and reproductive toxins, and the levels of TVOC concentration in many of the painting tasks exceeded the exposure limits. Construction

  18. Structure, Optical Absorption, and Performance of Organic Solar Cells Improved by Gold Nanoparticles in Buffer Layers.

    PubMed

    Yang, Yingguo; Feng, Shanglei; Li, Meng; Wu, Zhongwei; Fang, Xiao; Wang, Fei; Geng, Dongping; Yang, Tieying; Li, Xiaolong; Sun, Baoquan; Gao, Xingyu

    2015-11-11

    11-Mercaptoundecanoic acid (MUA)-stabilized gold nanoparticles (AuNPs) embedded in copper phthalocyanine (CuPc) were used as a buffer layer between a poly(3-hexyl-thiophene) (P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction and anodic indium-tin oxide (ITO) substrate. As systematic synchrotron-based grazing incidence X-ray diffraction (GIXRD) experiments demonstrated that the AuNPs present in the buffer layer can improve the microstructure of the active layer with a better lamella packing of P3HT from the surface to the interior, UV-visible absorption spectrum measurements revealed enhanced optical absorption due to the localized surface plasma resonance (LSPR) generated by the AuNPs. The device of ITO/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/CuPc:MUA-stabilized AuNPs/P3HT:PCBM/LiF/Al was found with over 24% enhancement of power conversion efficiency (PCE) in comparison with reference devices without AuNPs. This remarkable improvement in PCE should be partially attributed to LSPR generated by the AuNPs and partially to improved crystallization as well as preferred orientation order of P3HT due to the presence of the AuNPs, which would promote more applications of metal NPs in the organic photovoltaic devices and other organic multilayer devices. PMID:26477556

  19. COMPATIBILITY OF ORGANIC SOLVENTS WITH THE MICROSCREEN PROPHAGE-INDUCTION ASSAY: SOLVENT-MUTAGEN INTERACTIONS

    EPA Science Inventory

    The following solvents did not induce prophage lambda in the Escherichia coli WP2 s (Microscreen assay: cetone, benzene, chloroform, ethanol, n-hexane, isopropanol methanol, toluene, and a mixture of the three isomers of xylene. imethyl sulfoxide was genotoxic in the presence and...

  20. Fetotoxic effects of exposure to the vapor of organic solvents from a synthetic adhesive in mice

    SciTech Connect

    Tachi, N.; Shimotori, S.; Naruse, N.; Itani, T.; Aoyama, M. ); Fujise, H.; Sonoki, S. )

    1994-09-01

    Synthetic adhesives are widely used in various industries as well as at home. Adhesives usually contain several organic solvents which easily vaporize. Exposure can cause aplastic anemia and polyneuropathy in adults. Chronic glue sniffing results in aplastic anemia, polyneuropathy, and muscular atrophy. Inhalation of the solvent contained in adhesives, such as n-hexane, toluene, xylene, and benzene by pregnant animals can decrease the number of live fetuses and retard fetal growth. In humans, the risk of spontaneous abortion is increased in workers exposed to organic solvents. However, information is still limited about the effects of exposure to organic solvents vaporized from adhesives on fetuses. In the present study, female mice were exposed throughout pregnancy to organic solvents vaporized from an adhesive to clarify the effects of the inhalation on progeny. 19 refs., 1 fig., 4 tabs.

  1. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  2. Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies.

    PubMed

    Rehan, Mohd; Younus, Hina

    2006-05-30

    Effect of six organic solvents-methanol, ethanol, propanol, dimethyl sulphoxide (DMSO), N,N-dimethyl formamide (DMF), and glycerol on the conformation and interaction of catalase and anticatalase antibodies were studied with the aim of identifying the solvents in which antigen-antibody interactions are strong. The antigen binding activity of the antibodies in the various organic solvents increased in the following order: ethanolorganic solventorganic solvents used in this study. Catalase activity was inhibited in DMSO. However, the enzyme was activated in DMF upto about 50% of its concentration. PMID:16677702

  3. Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation

    PubMed Central

    Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi

    2014-01-01

    Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm2 V−1 s−1 is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the “reading” and “programming” speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method. PMID:25428665

  4. Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation

    NASA Astrophysics Data System (ADS)

    Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi

    2014-11-01

    Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm2 V-1 s-1 is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the ``reading'' and ``programming'' speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method.

  5. The effect of solvent-conditioning on soil organic matter sorption affinity for diuron and phenanthrene.

    PubMed

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2009-08-01

    The effect of solvent-conditioning on the sorption of diuron and phenanthrene was investigated. The organic carbon-normalized sorption coefficients (K(OC)) for diuron and phenanthrene (determined from single initial concentrations of 0.8mgL(-1) and 1.5mgL(-1), respectively) were consistently higher following solvent-conditioning of a whole soil with five organic solvents (acetonitrile, acetone, methanol, chloroform and dichloromethane). The relative increase in K(OC) was inversely related to the polarity of the conditioning solvent (i.e. greater increases in K(OC) were observed for the least polar solvents: chloroform and dichloromethane). The effect of solvent-conditioning on the sorption properties of the same soil that had been lipid-extracted using accelerated solvent extraction (ASE) was also investigated. Since lipid extraction involves treatment with a non-polar solvent (95:5 dichloromethane:methanol) one may have expected no further increase in K(OC) on solvent-conditioning. On the contrary, the lipid-extracted soil exhibited very similar increases in K(OC) as the whole soil. This demonstrated that lipid removal and solvent-conditioning, which both increased K(OC) for this soil, are quite separate phenomena. PMID:19435638

  6. Fitness of a gas mask for the face of a worker handling organic solvents.

    PubMed

    Tanaka, S; Tanaka, M; Kimura, K; Nozaki, K; Seki, Y

    1997-04-01

    The fitness of the half facepiece of a gas mask to the face of a worker handling organic solvents was evaluated through the quantitative determination of the concentrations of both organic solvent vapors and airborne dust inside and outside the facepiece. Leakage rates for dust were measured using a mask-fitting tester on a facepiece with a dust filter-covered respirator cartridge of organic solvents. The same facepiece was evaluated for the leakage rate for organic solvent vapors through the determination of the concentrations of the air inside and outside the facepiece. Highly significant correlations were found between the leakage rates obtained for dust and those for organic solvent vapors. The leakage rates for organic solvents were found to be slightly higher than those for dust. The present finding suggested that the leakage of organic solvent vapors from the interstice between the facepiece of gas masks and workers' faces can be evaluated using the leakage rate for dust for the same facepiece of the gas mask attached with the cartridge covered with a high efficiency particulate air (HEPA) filter. PMID:9127565

  7. Effects of organic solvents on the barrier properties of human nail.

    PubMed

    Smith, Kelly A; Hao, Jinsong; Li, S Kevin

    2011-10-01

    The effects of organic solvent systems on nail hydration and permeability have not been well studied. The objectives of the present study were to investigate the effects of binary aqueous organic solvent systems of ethanol (EtOH), propylene glycol (PPG), and polyethylene glycol 400 (PEG) on the barrier properties of nail plates. (3) H-water, (14) C-urea, and (14) C-tetraethylammonium ions were the probes in the nail uptake and transport experiments to study the effect(s) of organic solvents on nail hydration and permeability. Gravimetric studies were also performed as a secondary method to study nail hydration and the reversibility of the nail after organic solvent treatments. Both ungual uptake and transport were directly related to the concentration of the organic solvent in the binary systems. Partitioning of the probes into and transport across the nail decreased with an increase in the organic solvent concentration. These changes corresponded to the changes in solution viscosity and the barrier properties of the nail. In general, the effects for PPG and PEG were more pronounced than those for EtOH. Practically, these results suggest that organic solvents in formulations can increase nail barrier resistivity. PMID:21607952

  8. Effects of Organic Solvents on the Barrier Properties of Human Nail

    PubMed Central

    Smith, Kelly A.; Hao, Jinsong; Li, S. Kevin

    2012-01-01

    The effects of organic solvent systems on nail hydration and permeability have not been well studied. The objectives of the present study were to investigate the effects of binary aqueous organic solvent systems of ethanol (EtOH), propylene glycol (PPG), and polyethylene glycol 400 (PEG) on the barrier properties of nail plates. 3H–water, 14C–urea, and 14C–tetraethylammonium ions were the probes in the nail uptake and transport experiments to study the effect(s) of organic solvents on nail hydration and permeability. Gravimetric studies were also performed as a secondary method to study nail hydration and the reversibility of the nail after organic solvent treatments. Both ungual uptake and transport were directly related to the concentration of the organic solvent in the binary systems. Partitioning of the probes into and transport across the nail decreased with an increase in the organic solvent concentration. These changes corresponded to the changes in solution viscosity and the barrier properties of the nail. In general, the effects for PPG and PEG were more pronounced than those for EtOH. Practically, these results suggest that organic solvents in formulations can increase nail barrier resistivity. PMID:21607952

  9. Validation of a UV Spectrometric Method for the Assay of Tolfenamic Acid in Organic Solvents

    PubMed Central

    Ahmed, Sofia; Mustaan, Nafeesa; Sheraz, Muhammad Ali; Nabi, Syeda Ayesha Ahmed un; Ahmad, Iqbal

    2015-01-01

    The present study has been carried out to validate a UV spectrometric method for the assay of tolfenamic acid (TA) in organic solvents. TA is insoluble in water; therefore, a total of thirteen commonly used organic solvents have been selected in which the drug is soluble. Fresh stock solutions of TA in each solvent in a concentration of 1 × 10−4 M (2.62 mg%) were prepared for the assay. The method has been validated according to the guideline of International Conference on Harmonization and parameters like linearity, range, accuracy, precision, sensitivity, and robustness have been studied. Although the method was found to be efficient for the determination of TA in all solvents on the basis of statistical data 1-octanol, followed by ethanol and methanol, was found to be comparatively better than the other studied solvents. No change in the stock solution stability of TA has been observed in each solvent for 24 hours stored either at room (25 ± 1°C) or at refrigerated temperature (2–8°C). A shift in the absorption maxima has been observed for TA in various solvents indicating drug-solvent interactions. The studied method is simple, rapid, economical, accurate, and precise for the assay of TA in different organic solvents. PMID:26783497

  10. Screening for organic solvents in Hanford waste tanks using organic vapor concentrations

    SciTech Connect

    Huckaby, J.L.; Sklarew, D.S.

    1997-09-01

    The potential ignition of organic liquids stored in the Hanford Site high-level radioactive waste tanks has been identified as a safety issue because expanding gases could potentially affect tank dome integrity. Organic liquid waste has been found in some of the waste tanks, but most are thought to contain only trace amounts. Due to the inhomogeneity of the waste, direct sampling of the tank waste to locate organic liquids may not conclusively demonstrate that a given tank is free of risk. However, organic vapors present above the organic liquid waste can be detected with a high degree of confidence and can be used to identify problem tanks. This report presents the results of a screening test that has been applied to 82 passively ventilated high-level radioactive waste tanks at the Hanford Site to identify those that might contain a significant amount of organic liquid waste. It includes seven tanks not addressed in the previous version of this report, Screening for Organic Solvents in Hanford Waste Tanks Using Total Non-Methane Organic Compound Vapor Concentrations. The screening test is based on a simple model of the tank headspace that estimates the effective surface area of semivolatile organic liquid waste in a tank. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Thirteen tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Most of the tanks identified as containing potentially significant quantities of organic liquid waste are in the 241-BY and 241-C tank farms, which agrees qualitatively with the fact that these tank farms received the majority of the PUREX process organic wash waste and waste organic liquids.

  11. Degradation problems with the solvent extraction organic at Roessing uranium

    SciTech Connect

    Munyungano, Brodrick; Feather, Angus; Virnig, Michael

    2008-07-01

    Roessing Uranium Ltd recovers uranium from a low-grade ore in Namibia. Uranium is recovered and purified from an ion-exchange eluate in a solvent-extraction plant. The solvent-extraction plant uses Alamine 336 as the extractant for uranium, with isodecanol used as a phase modifier in Sasol SSX 210, an aliphatic hydrocarbon diluent. Since the plant started in the mid 1970's, there have been a few episodes where the tertiary amine has been quickly and severely degraded when the plant was operated outside certain operating parameters. The Rossing experience is discussed in more detail in this paper. (authors)

  12. Lipase in aqueous-polar organic solvents: Activity, structure, and stability

    PubMed Central

    Kamal, Md Zahid; Yedavalli, Poornima; Deshmukh, Mandar V; Rao, Nalam Madhusudhana

    2013-01-01

    Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ∼20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein. PMID:23625694

  13. IUPAC-NIST Solubility Data Series. 98. Solubility of Polycyclic Aromatic Hydrocarbons in Pure and Organic Solvent Mixtures--Revised and Updated. Part 3. Neat Organic Solvents

    NASA Astrophysics Data System (ADS)

    Acree, William E.

    2013-03-01

    This work updates Vols. 54, 58, and 59 in the IUPAC Solubility Data Series and presents solubility data for polycyclic aromatic hydrocarbon solutes dissolved in neat organic solvents. Published solubility data for acenaphthene, anthracene, biphenyl, carbazole, dibenzofuran, dibenzothiophene, fluoranthene, fluorene, naphthalene, phenanthrene, phenothiazine, pyrene, thianthrene, and xanthene that appeared in the primary literature from 1995 to the end of 2011 are compiled and critically evaluated. Experimental solubility data for more than 550 different solute-organic solvent systems are included. Solubility data published prior to 1995 were contained in three earlier volumes (Vols. 54, 58, and 59) and are not repeated in this volume.

  14. Digitally-Enabled Organizational Routines at the Organization-Environment Boundary: Buffering and the Role of Technology

    ERIC Educational Resources Information Center

    Hillison, Derek William

    2009-01-01

    Boundary units of an organization uniquely experience the tension between adaptation to environmental variation and maintaining stable outcomes for the rest of the organization. In our world of just-in-time supply chain systems, lot-sizes of one, lean manufacturing and an increasing focus on services, traditional forms of buffering such as queuing…

  15. EXPEDITIOUS SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocol...

  16. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials.

    PubMed

    Torres, Sebastian; Pandey, Ashok; Castro, Guillermo R

    2011-01-01

    Organic-solvent-tolerant bacteria are considered extremophiles with different tolerance levels that change among species and strains, but also depend on the inherent toxicity of the solvent. Extensive studies to understand the mechanisms of organic solvent tolerance have been done in Gram-negative bacteria. On the contrary, the information on the solvent tolerance mechanisms in Gram-positive bacteria remains scarce. Possible shared mechanisms among Gram-(-) and Gram-(+) microorganisms include: energy-dependent active efflux pumps that export toxic organic solvents to the external medium; cis-to-trans isomerization of unsaturated membrane fatty acids and modifications in the membrane phospholipid headgroups; formation of vesicles loaded with toxic compounds; and changes in the biosynthesis rate of phospholipids to accelerate repair processes. However, additional physiological responses of Gram-(+) bacteria to organic solvents seem to be specific. The aim of the present work is to review the state of the art of responsible mechanisms for organic solvent tolerance in Gram-positive bacteria, and their industrial and environmental biotechnology potential. PMID:21504787

  17. PERTURBATION OF VOLTAGE-SENSITIVE CALCIUM FUNCTION IN PHEOCHROMOCYTOMA CELLS BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    Volatile organic solvents such as toluene (TOL) and trichloroethylene perturb nervous system function and share characteristic effects with other central nervous system depressants such as anesthetic gasses, ethanol, benzodiazepines and barbiturates. Recently, mechanistic studies...

  18. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  19. STABLE ISOTOPIC INVESTIGATIONS OF IN SITU BIOREMEDIATION OF CHLORINATED ORGANIC SOLVENTS

    EPA Science Inventory

    We propose to develop innovative methods for investigating the mechanism and extent of in situ bioremediation of chlorinated organic solvents. These methods will use precise isotopic ratio measurements of chlorine and carbon in reactant and product species in laboratory experimen...

  20. Recurrent Acute Liver Failure Because of Acute Hepatitis Induced by Organic Solvents: A Case Report.

    PubMed

    Ito, Daisuke; Tanaka, Tomohiro; Akamatsu, Nobuhisa; Ito, Kyoji; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Nakagawa, Hayato; Fujinaga, Hidetaka; Kokudo, Norihiro

    2016-01-01

    The authors present a case of recurrent acute liver failure because of occupational exposure to organic solvents. A 35-year-old man with a 3-week history of worsening jaundice and flu-like symptoms was admitted to our hospital. Viral hepatitis serology and autoimmune factors were negative. The authors considered liver transplantation, but the patient's liver function spontaneously recovered. Liver biopsy revealed massive infiltration of neutrophils, but the cause of the acute hepatitis was not identified. Four months after discharge, the patient's liver function worsened again. The authors considered the possibility of antinuclear antibody-negative autoimmune hepatitis and initiated steroid treatment, which was effective. Four months after discharge, the patient was admitted for repeated liver injury. The authors started him on steroid pulse therapy, but this time it was not effective. Just before the first admission, he had started his own construction company where he was highly exposed to organic solvents, and thus the authors considered organic solvent-induced hepatitis. Although urine test results for organic solvents were negative, a second liver biopsy revealed severe infiltration of neutrophils, compatible with toxic hepatitis. Again, his liver function spontaneously improved. Based on the pathology and detailed clinical course, including the patient's high exposure to organic solvents since just before the first admission, and the spontaneous recovery of his liver damage in the absence of the exposure, he was diagnosed with toxic hepatitis. The authors strongly advised him to avoid organic solvents. Since then, he has been in good health without recurrence. This is the first report of recurrent acute liver failure because of exposure to organic solvents, which was eventually diagnosed through a meticulous medical history and successfully recovered by avoiding the causative agents. In acute liver failure with an undetermined etiology, clinicians should rule

  1. Recurrent Acute Liver Failure Because of Acute Hepatitis Induced by Organic Solvents

    PubMed Central

    Ito, Daisuke; Tanaka, Tomohiro; Akamatsu, Nobuhisa; Ito, Kyoji; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Nakagawa, Hayato; Fujinaga, Hidetaka; Kokudo, Norihiro

    2016-01-01

    Abstract The authors present a case of recurrent acute liver failure because of occupational exposure to organic solvents. A 35-year-old man with a 3-week history of worsening jaundice and flu-like symptoms was admitted to our hospital. Viral hepatitis serology and autoimmune factors were negative. The authors considered liver transplantation, but the patient's liver function spontaneously recovered. Liver biopsy revealed massive infiltration of neutrophils, but the cause of the acute hepatitis was not identified. Four months after discharge, the patient's liver function worsened again. The authors considered the possibility of antinuclear antibody-negative autoimmune hepatitis and initiated steroid treatment, which was effective. Four months after discharge, the patient was admitted for repeated liver injury. The authors started him on steroid pulse therapy, but this time it was not effective. Just before the first admission, he had started his own construction company where he was highly exposed to organic solvents, and thus the authors considered organic solvent-induced hepatitis. Although urine test results for organic solvents were negative, a second liver biopsy revealed severe infiltration of neutrophils, compatible with toxic hepatitis. Again, his liver function spontaneously improved. Based on the pathology and detailed clinical course, including the patient's high exposure to organic solvents since just before the first admission, and the spontaneous recovery of his liver damage in the absence of the exposure, he was diagnosed with toxic hepatitis. The authors strongly advised him to avoid organic solvents. Since then, he has been in good health without recurrence. This is the first report of recurrent acute liver failure because of exposure to organic solvents, which was eventually diagnosed through a meticulous medical history and successfully recovered by avoiding the causative agents. In acute liver failure with an undetermined etiology, clinicians

  2. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    PubMed

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only. PMID:22613899

  3. Enhanced production and organic solvent stability of a protease fromBrevibacillus laterosporus strain PAP04

    PubMed Central

    Anbu, P.

    2016-01-01

    A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media. PMID:27007657

  4. Enhanced production and organic solvent stability of a protease from Brevibacillus laterosporus strain PAP04.

    PubMed

    Anbu, P

    2016-01-01

    A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media. PMID:27007657

  5. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Taohong, Wang; Changbo, Chen; Kunping, Guo; Guo, Chen; Tao, Xu; Bin, Wei

    2016-03-01

    The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.

  6. Phase behavior and self-organized structures of diglycerol monolaurate in different nonpolar organic solvents.

    PubMed

    Shrestha, Lok Kumar; Sato, Takaaki; Aramaki, Kenji

    2007-06-01

    Nonaqueous phase behavior and reverse micellar structures of diglycerol monolaurate (DGL) in different nonpolar organic solvents, such as n-decane, n-tetradecane, and n-hexadecane, have been studied over a wide range of compositions and temperatures. The equilibrium phases are identified by means of visual observation and small-angle X-ray scattering (SAXS). A solid phase present at lower temperature swells small amount of oils and transforms into a lamellar liquid crystalline structure at higher temperature. The melting temperature of the solid phase is virtually constant at all mixing ratios of the surfactant and oil. With the further increase of temperature, the liquid crystal transforms into an isotropic single-liquid phase near the surfactant axis, whereas there is a coexistence region of two isotropic phases near the solvent axis. The area of the two-liquid (II) phase region depends largely on the hydrocarbon chain length of the oils, the longer chain leading to the wider II area. Accordingly, the DGL surfactant is most miscible with decane, exhibiting a reduced miscibility with increasing solvent hydrocarbon chain length. Increasing temperature enhances the dissolution tendency of the surfactant in oil, where the two-liquid phase transforms into an isotropic single phase. SAXS analysis based on the GIFT technique is used to characterize the structure of the reverse micellar aggregates in the isotropic single-phase liquids. We have demonstrated that instead of changing polarity or a functional group of the solvent molecules, if we optimize the hydrophilic nature of the surfactant head group, the alkyl chain length of the solvent oils can serve as a tunable parameter of the micellar geometry. The hydrophilic surfactant DGL interestingly forms cylindrical micelles in nonpolar oils, decane, and tetradecane in the dilute region above the II phase region. The micellar size shows temperature dependence behavior, and the micellar length goes on increasing with

  7. Passive dosing versus solvent spiking for controlling and maintaining hydrophobic organic compound exposure in the Microtox® assay.

    PubMed

    Smith, Kilian E C; Jeong, Yoonah; Kim, Jongwoon

    2015-11-01

    Microbial toxicity bioassays such as the Microtox® test are ubiquitously applied to measure the toxicity of chemicals and environmental samples. In many ways their operation is conducive to the testing of organic chemicals. They are of short duration, use glass cuvettes and take place at reduced temperatures in medium lacking sorbing components. All of these are expected to reduce sorptive and volatile losses, but particularly for hydrophobic organics the role of such losses in determining the bioassay response remains unclear. This study determined the response of the Microtox® test when using solvent spiking compared to passive dosing for introducing the model hydrophobic compounds acenaphthene, phenanthrene, fluoranthene and benzo(a)pyrene. Compared to solvent spiking, the apparent sensitivity of the Microtox® test with passive dosing was 3.4 and 12.4 times higher for acenaphthene and phenanthrene, respectively. Furthermore, fluoranthene only gave a consistent response with passive dosing. Benzo(a)pyrene did not result in a response with either spiking or passive dosing even at aqueous solubility. Such differences in the apparent sensitivity of the Microtox® test can be traced back to the precise definition of the dissolved exposure concentrations and the buffering of losses with passive dosing. This highlights the importance of exposure control even in simple and short-term microbial bioassays such as the Microtox® test. PMID:26117202

  8. Selection of desorbing solvents for organic compounds from active carbon tubes.

    PubMed

    Matsumura, Y

    1996-01-01

    To ensure the effective performance of active carbon tubes for working environment measurements, suitable desorbing solvents were selected for 46 kinds of organic compounds by the phase equilibrium method. The criteria for suitable desorbing solvents in this study was desorption of the objective compounds from active carbon at efficiencies greater than 90% and to give good separation between its own peak and that of the objective compound on a gas chromatogram. For most non-polar or hydrophobic compounds, carbon disulfide was a versatile and effective solvent. But for polar and hydrophilic compounds like alcohol, N,N-dimethylformamide and dimethylsulfoxide were good desorbing solvents if their peaks did not overlap with those of the objective compounds. Mixtures of lower molecular weight alcohols with carbon disulfide or dichloromethane could be alternative solvents for hydrophilic compounds as well. A thermodynamic parameter of the solute-solvent system, i.e., the mixing energy derived from the solubility parameter, gave a rough indication of the effectiveness of solvents but it could not be used as a critical indicator for the efficient desorbing solvents for organic vapors collected on active carbon. PMID:8768662

  9. Solubility, stability, and electrochemical studies of sulfur-sulfide solutions in organic solvents

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Singer, J.

    1978-01-01

    A preliminary study of the sulfur electrode in organic solvents suggests that the system warrants further investigation for use in a low temperature (100 deg to 120 C) Na-S secondary battery. A qualitative screening was undertaken at 120 C to determine the solubilities and stabilities of Na2S and Na2S2 in representatives of many classes of organic solvents. From the screening and quantitative studies, two classes of solvents were selected for work; amides and cyclic polyalcohols. Voltammetric and Na-S cell charge discharge studies of sulfide solutions in organic solvents (e.g., N, N-dimethylformamide) at 120 C suggested that the reversibilities of the reactions on Pt or high density graphite were moderately poor. However, the sulfur electrode was indeed reducible (and oxidizable) through the range of elemental sulfur to Na2S. Reactions and mechanisms are proposed for the oxidation reduction processes occurring at the sulfur electrode.

  10. Artificially MoO3 graded ITO anodes for acidic buffer layer free organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Min; Kim, Seok-Soon; Kim, Han-Ki

    2016-02-01

    We report characteristics of MoO3 graded ITO anodes prepared by a RF/DC graded sputtering for acidic poly(3,4-ethylene dioxylene thiophene):poly(styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs). Graded sputtering of the MoO3 buffer layer on top of the ITO layer produced MoO3 graded ITO anodes with a sheet resistance of 12.67 Ω/square, a resistivity of 2.54 × 10-4 Ω cm, and an optical transmittance of 86.78%, all of which were comparable to a conventional ITO anode. In addition, the MoO3 graded ITO electrode showed a greater work function of 4.92 eV than that (4.6 eV) of an ITO anode, which is beneficial for hole extraction from an organic active layer. Due to the high work function of MoO3 graded ITO electrodes, the acidic PEDOT:PSS-free OSCs fabricated on the MoO3 graded ITO electrode exhibited a power conversion efficiency 3.60% greater than that of a PEDOT:PSS-free OSC on the conventional ITO anode. The successful operation of PEDOT:PSS-free OSCs indicates simpler fabrication steps for cost-effective OSCs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable OSCs.

  11. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments. PMID:26296102

  12. Photonic sensing of organic solvents through geometric study of dynamic reflection spectrum

    PubMed Central

    Zhang, Yuqi; Fu, Qianqian; Ge, Jianping

    2015-01-01

    Traditional photonic sensing based on the change of balanced reflection of photonic structures can hardly distinguish chemical species with similar refractive indices. Here a sensing method based on the dynamic reflection spectra (DRS) of photonic crystal gel has been developed to distinguish even homologues, isomers and solvents with similar structures and physical properties. There are inherent relationships between solvent properties, diffusion behaviour and evolution of reflection signals, so that the geometric characteristics of DRS pattern including ascending/descending, colour changes, splitting/merging and curvature of reflection band can be utilized to recognize different organic solvents. With adequate solvents being tested, a database of DRS patterns can be established, which provide a standard to identify an unknown solvent. PMID:26082186

  13. [A nationwide survey on the use of organic solvents in Japan].

    PubMed

    Inoue, T; Ikeda, M; Ogata, M; Saito, K; Sakurai, H; Takeuchi, Y; Hara, I; Matsushita, T; Hisanaga, N; Ono, Y

    1984-11-01

    A total of 1,179 organic solvent products used as thinners, paint, degreasers, inks, adhesive and others, were collected nationwide from factories of various sizes and kinds in Japan, and analyzed by gas chromatography. Solvent components per sample, frequency of each solvent component, and contents of each component were analyzed and classified by use. Paints, inks, and adhesives which contained nonvolatile substances were analyzed by head space techniques. Seventy-seven percent of all samples, 93% of paints, 85% of thinners, 73% of adhesives, and 52% of degreasers contained mixed organic solvents. The average numbers of solvent components per sample were 4.14 (max. 13) in thinner, 3.29 (max. 7) in paint, 2.23 (max. 5) ink, 2.19 (max. 6) in adhesive, 1.71 (max. 6) in degreaser, when gasoline was excluded. Toluene, xylene, methylalcohol, isopropylalcohol, ethylacetate, methylethylketone, industrial gasoline were widely used in the above-mentioned products. Toluene was the most popular component in the solvent products, excluding degreasers. Many kinds of solvent components were used in thinner and paint. However, toluene, xylene and industrial gasoline were their main components and contents per sample were very high. Acetates, alcohols, ketones and glycols were frequently detected in solvent products, but their contents per sample were relatively low, because these solvent components were usually used as subordinate solvents. The chlorinated hydrocarbons such as trichloroethylene, tetrachloroethylene and 1,1,1-trichloroethane, and industrial gasoline were the most popular components in degreasers. 1,4-dioxane was detected in a relatively large number of the samples, but its content per sample was very low, because it is usually used as an additive to 1,1,1-trichloroethane. Toluene was the most popular component in ink solvents, too. In addition, isopropylacohol, methylalcohol, methylethylketone were frequently detected in inks. Toluene was also the most popular

  14. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    SciTech Connect

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  15. Efficient and Specific Trypsin Digestion of Microgram to Nanogram Quantities of Proteins in Organic-Aqueous Solvent Systems

    SciTech Connect

    Strader, Michael B; Tabb, Dave L; Hervey, IV, William Judson; Pan, Chongle; Hurst, Gregory {Greg} B

    2006-01-01

    Mass spectrometry-based identification of the components of multiprotein complexes often involves solution-phase proteolytic digestion of the complex. The affinity purification of individual protein complexes often yields nanogram to low-microgram amounts of protein, which poses several challenges for enzymatic digestion and protein identification. We tested different solvent systems to optimize trypsin digestions of samples containing limited amounts of protein for subsequent analysis by LC-MS-MS. Data collected from digestion of 10-, 2-, 1-, and 0.2- g portions of a protein standard mixture indicated that an organicaqueous solvent system containing 80% acetonitrile consistently provided the most complete digestion, producing more peptide identifications than the other solvent systems tested. For example, a 1-h digestion in 80% acetonitrile yielded over 52% more peptides than the overnight digestion of 1 g of a protein mixture in purely aqueous buffer. This trend was also observed for peptides from digested ribosomal proteins isolated from Rhodopseudomonas palustris. In addition to improved digestion efficiency, the shorter digestion times possible with the organic solvent also improved trypsin specificity, resulting in smaller numbers of semitryptic peptides than an overnight digestion protocol using an aqueous solvent. The technique was also demonstrated for an affinityisolated protein complex, GroEL. To our knowledge, this report is the first using mass spectrometry data to show a linkage between digestion solvent and trypsin specificity. Mass spectrometry (MS) has become a widely used method for studying proteins, protein complexes, and whole proteomes because of innovations in soft ionization techniques, bioinformatics, and chromatographic separation techniques.1-7 An example of a high-throughput mass spectrometry strategy commonly used for this purpose is a variation of the "shotgun" approach, involving in-solution digestion of a protein complex followed by

  16. Mild oxygen plasma treated PEDOT:PSS as anode buffer layer for vacuum deposited organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunfei; Yuan, Yongbo; Lian, Jiarong; Zhang, Jie; Pang, Hongqi; Cao, Lingfang; Zhou, Xiang

    2006-08-01

    The surface morphology of PEDOT:PSS after mild oxygen plasma treatment were investigated by scanning electron microscopy and atomic force microscopy. The nanometer-scale islands on the surface of treated PEDOT:PSS were observed. Vacuum deposited organic light-emitting diodes (OLEDs) with treated PEDOT:PSS as anode buffer layer had been fabricated. The OLEDs with an appropriately treated PEDOT:PSS as anode buffer layer exhibited significantly enhanced lifetime and decreased driving voltage. The results suggest that the appropriate mild oxygen plasma treatment of PEDOT:PSS layers may be useful for the improvement of the interface with the hole transport layer and enhanced device performance.

  17. Uncovering the role of cathode buffer layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  18. Uncovering the role of cathode buffer layer in organic solar cells.

    PubMed

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL. PMID:25588623

  19. Organic Solvent Tolerance of Escherichia coli Is Independent of OmpF Levels in the Membrane

    PubMed Central

    Asako, Hiroyuki; Kobayashi, Kei; Aono, Rikizo

    1999-01-01

    The organic solvent tolerance of Escherichia coli was measured under conditions in which OmpF levels were controlled by various means as follows: alteration of NaCl concentration in the medium, transformation with a stress-responsive gene (marA, robA, or soxS), or disruption of the ompF gene. It was shown that solvent tolerance of E. coli did not depend upon OmpF levels in the membrane. PMID:9872794

  20. Growth of lanthanum manganate buffer layers for coated conductors via a metal-organic decomposition process

    NASA Astrophysics Data System (ADS)

    Venkataraman, Kartik

    LaMnO3 (LMO) was identified as a possible buffer material for YBa2Cu3O7-x conductors due to its diffusion barrier properties and close lattice match with YBa2Cu 3O7-x. Growth of LMO films via a metal-organic decomposition (MOD) process on Ni, Ni-5at.%W (Ni-5W), and single crystal SrTiO3 substrates was investigated. Phase-pure LMO was grown via MOD on Ni and SrTiO 3 substrates at temperatures and oxygen pressures within a thermodynamic "process window" wherein LMO, Ni, Ni-5W, and SrTiO3 are all stable components. LMO could not be grown on Ni-5W in the "process window" because tungsten diffused from the substrate into the overlying film, where it reacted to form La and Mn tungstates. The kinetics of tungstate formation and crystallization of phase-pure LMO from the La and Mn acetate precursors are competitive in the temperature range explored (850--1100°C). Temperatures <850°C might mitigate tungsten diffusion from the substrate to the film sufficiently to obviate tungstate formation, but LMO films deposited via MOD require temperatures ≥850°C for nucleation and grain growth. Using a Y2O3 seed layer on Ni-5W to block tungsten from diffusing into the LMO film was explored; however, Y2O3 reacts with tungsten in the "process window" at 850--1100°C. Tungsten diffusion into Y2O3 can be blocked if epitaxial, crack-free NiWO4 and NiO layers are formed at the interface between Ni-5W and Y2O3. NiWO 4 only grows epitaxially if the overlying NiO and buffer layers are thick enough to mechanically suppress (011)-oriented NiWO4 grain growth. This is not the case when a bare 75 nm-thick Y2O3 film on Ni-5W is processed at 850°C. These studies show that the Ni-5W substrate must be at a low temperature to prevent tungsten diffusion, whereas the LMO precursor film must be at elevated temperature to crystallize. An excimer laser-assisted MOD process was used where a Y2O 3-coated Ni-5W substrate was held at 500°C in air and the pulsed laser photo-thermally heated the Y2O3 and LMO

  1. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  2. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent...

  3. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  4. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups 1 You May Use the Mass Fraction Values in the...: Solvent type Average organic HAP mass fraction Typical organic percent HAP, by mass Aliphatic 2 0.03...

  5. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  6. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  7. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups 1 You May Use the Mass Fraction Values in the...: Solvent type Average organic HAP mass fraction Typical organic percent HAP, by mass Aliphatic 2 0.03...

  8. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  9. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for...—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by...

  10. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... MMMM of Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass... manufacturer's formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent...

  11. [Sensing characteristics of a real-time monitor using a photoionization detector on organic solvent vapors].

    PubMed

    Hori, Hajime; Ishematsu, Sumiyo; Fueta, Yukiko; Hinoue, Mitsuo; Ishidao, Toru

    2012-12-01

    Measurements of organic solvents in the work environment are carried out by either direct sampling using plastic bags/gas chromatography, solid sorbent adsorption using charcoal tubes/gas chromatography, or by a direct reading method using detector tubes. However, these methods cannot always measure the work environment accurately because the concentration of hazardous materials changes from time to time, and from space to space. In this study, the sensor characteristics of a real time monitor using a photoionization detector that can monitor vapor concentration continuously were investigated for 52 organic solvent vapors that are required to be measured in the work environment by the Ordinance of Organic Solvent Poisoning Prevention in Japan. The sensitivity of the monitor was high for the solvents with low ionization potential. However, the sensitivity for the solvents with high ionization potential was low, and the sensor could not detected 7 solvents. Calibration of the sensor using a standard gas was desirable before being used for measurement because the sensitivity of the sensor was variable. PMID:23270260

  12. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    PubMed

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials. PMID:26270020

  13. Improved performance of organic light-emitting devices with plasma treated ITO surface and plasma polymerized methyl methacrylate buffer layer

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Sung; Shin, Paik-Kyun

    2007-02-01

    Transparent indium-tin-oxide (ITO) anode surface was modified using O 3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N, N'-Diphenyl- N, N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq 3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.

  14. Incineration of contaminated organic solvents in a fluidized-bed calciner

    SciTech Connect

    Schindler, R.E.

    1980-01-01

    The reprocessing of expended reactor fuels at the Idaho Chemical Processing Plant (ICPP) generates contaminated organic solvents. An evaluation of potential management alternatives shows that several are suitable for management of contaminated solvents containing tri-butyl phosphate (TBP): the solvent could be burned in a commercially-available burner which absorbs the phosphorus on a fluidized-bed of limestone leaving a solid product for burial; the solvent could be burned in a small fluidized-bed calciner which solidifies non-radioactive feed by in-bed combustion of the contaminated solvent. The fluidized-bed absorbs the phosphate forming a solid product for burial; the solvents could be solidified with a gel or sorbant for burial if the reprocessing system were modified to reduce the solvent volume; and the contaminated solvent could be burned in an existing fluidized-bed calciner designed for solidifying high-level aqueous wastes. Burning the solvent in the existing calciner was selected for process verification because it provides an existing burner, off-gas system, and solids transfer and storage system. No additional wastes are generated. A set of four pilot-plant tests verified the absence of adverse effects from the phosphorus in the fuel when calcining simulated ICPP aqueous wastes. Essentially all of the phosphorus remained in the calcined solids with only a neglegible quantity remaining in the scrubbed off-gas. Combustion efficiency was high (93 to 96%). There were no observable adverse effects on solids in the scrubbing system, corrosion rates, or solids flowability (for retrieval). Conclusions of general applicability are: alternative technologies are available for disposal of contaminated solvents, and the use of an existing fuel-using facility, e.g., calciner or incinerator - designed for contaminated wastes will usually be cost effective.

  15. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  16. The influence of organic solvents on estimates of genotoxicity and antigenotoxicity in the SOS chromotest

    PubMed Central

    Quintero, Nathalia; Stashenko, Elena E.; Fuentes, Jorge Luis

    2012-01-01

    In this work, the toxicity and genotoxicity of organic solvents (acetone, carbon tetrachloride, dichloromethane, dimethylsulfoxide, ethanol, ether and methanol) were studied using the SOS chromotest. The influence of these solvents on the direct genotoxicity induced by the mutagens mitomycin C (MMC) and 4-nitroquinoline-1-oxide (4-NQO) were also investigated. None of the solvents were genotoxic in Escherichia coli PQ37. However, based on the inhibition of protein synthesis assessed by constitutive alkaline phosphatase activity, some solvents (carbon tetrachloride, dimethylsulfoxide, ethanol and ether) were toxic and incompatible with the SOS chromotest. Solvents that were neither toxic nor genotoxic to E. coli (acetone, dichloromethane and methanol) significantly reduced the genotoxicity of MMC and 4-NQO. When these solvents were used to dissolve vitamin E they increased the antigenotoxic activity of this compound, possibly through additive or synergistic effects. The relevance of these results is discussed in relation to antigenotoxic studies. These data indicate the need for careful selection of an appropriate diluent for the SOS chromotest since some solvents can modulate genotoxicity and antigenotoxicity. PMID:22888301

  17. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    PubMed

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose. PMID:17507215

  18. The Effect of Solvent on the Analysis of Secondary Organic Aerosol Using Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Walser, Maggie L.; Dessiaterik, Yury; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2008-08-29

    Solvent-analyte reactions in organic aerosol (OA) extracts prepared for analysis by electrospray ionization mass spectrometry (ESI-MS) were examined. Secondary organic aerosol (SOA) produced by ozonation of d-limonene as well as several test organic chemicals with functional groups typical for OA constituents were dissolved and stored in methanol, d3-methanol, acetonitrile, and d3-acetonitrile to investigate the extent and relative rates of reactions between analyte and solvent. High resolution ESI-MS showed that reactions of carbonyls with methanol produce significant amounts of hemiacetals and acetals on time scales ranging from several minutes to several days, with the reaction rates increasing in acidified solutions. Carboxylic acid groups were observed to react with methanol resulting in the formation of esters. In contrast, acetonitrile extracts showed no evidence of reactions with analyte molecules, suggesting that acetonitrile is the preferred solvent for SOA extraction. The use of solvent-analyte reactivity as an analytical chemistry tool for the improved characterization of functional groups in complex organic mixtures was also demonstrated. Direct comparison between ESI mass spectra of the same SOA samples extracted in reactive (methanol) versus non-reactive (acetonitrile) solvents was used to estimate the relative fractions of ketones (≥38%), aldehydes (≥6%), and carboxylic acids (≥55%) in d-limonene SOA.

  19. Removal of ion-implanted photoresists on GaAs using two organic solvents in sequence

    NASA Astrophysics Data System (ADS)

    Oh, Eunseok; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2016-07-01

    Organic solvents can effectively remove photoresists on III-V channels without damage or etching of the channel material during the process. In this study, a two-step sequential photoresist removal process using two different organic solvents was developed to remove implanted ArF and KrF photoresists at room temperature. The effects of organic solvents with either low molar volumes or high affinities for photoresists were evaluated to find a proper combination that can effectively remove high-dose implanted photoresists without damaging GaAs surfaces. The performance of formamide, acetonitrile, nitromethane, and monoethanolamine for the removal of ion-implanted ArF and KrF photoresists were compared using a two-step sequential photoresist removal process followed by treatment in dimethyl sulfoxide (DMSO). Among the various combinations, the acetonitrile + DMSO two-step sequence exhibited the best removal of photoresists that underwent ion implantation at doses of 5 × 1013-5 × 1015 atoms/cm2 on both flat and trench-structured GaAs surfaces. The ability of the two-step process using organic solvents to remove the photoresists can be explained by considering the affinities of solvents for a polymer and its permeability through the photoresist.

  20. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  1. Toxic effects of organic solvents on the growth of blue-green algae

    SciTech Connect

    Stratton, G.W.

    1987-06-01

    Relatively few reports have been published on the comparative toxicity of solvents towards test organisms, and these deal primarily with fish and aquatic invertebrates. Information for microbial systems are more limited with some data available for algae and slightly more for fungi. Aside from direct toxic effects of their own, solvents can interact synergistically and antagonistically with the toxicant in solution. This problem has been well documented with pesticides, and a procedure has been developed to identify and eliminate these effects from bioassays. The first step in choosing a solvent for use in microbial bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study to choose the best concentration to use. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards five species of blue-green algae (cyanobacteria), in order to identify solvents with low toxicity for use in bioassays.

  2. Introduction of organic solvents into inductively coupled plasmas by ultrasonic nebulization with cryogenic desolvation

    SciTech Connect

    Wiederin, D.R.; Houk, R.S.; Winge, R.K.; D'Silva, A.P. )

    1990-06-01

    A two-step desolvation system for a continuous-flow ultrasonic nebulizer reduced the solvent load on an argon inductively coupled plasma (ICP). The aerosol was first heated above the boiling point of the solvent. Subsequently, solvent vapor was removed in two condensers kept at {minus}10{degree}C and {approx equal}{minus}80{degree}C. No special plasma ignition procedures were required; a change of solvent did not cause plasma instability. The plasma was stable to a forward power as low as 0.5 kW when methanol, acetone, acetonitrile, or ethanol was nebulized. The plasma could not be sustained while organic solvents were ultrasonically nebulized without at least partial desolvation. Detection limits for metals ranged from 0.2 {mu}g L{sup {minus}1} for Fe to 5 {mu}g L{sup {minus}1} for Pb. The detection limits for each element were approximately the same regardless of the organic solvent used and were comparable to those obtained during ultrasonic nebulization of aqueous solutions. With a forward power of 1.0 kW, molecular band emission from C{sub 2} was about 25 times less than when the aerosol was partially desolvated using a condensation temperature of {minus}10{degree}C.

  3. Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1990-01-01

    This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.

  4. Synthesis of levan in water-miscible organic solvents.

    PubMed

    Castillo, E; López-Munguía, A

    2004-10-19

    The synthesis of levan using a levansucrase from a strain of Bacillus subtilis was studied in the presence of the water-miscible solvents: acetone, acetonitrile and 2-methyl-2-propanol (2M2P). It was found that while the enzyme activity is only slightly affected by acetone and acetonitrile, 2M2P has an activating effect increasing the total activity 35% in 40-50% (v/v) 2M2P solutions at 30 degrees C. The enzyme is highly stable in water at 30 degrees C; however, incubation in the presence of 15 and 50% (v/v) 2M2P reduced the half-life time to 23.6 and 1.8 days, respectively. This effect is reversed in 83% 2M2P, where a half-life time of 11.8 days is observed. The presence of 2M2P in the system increases the transfer/hydrolysis ratio of levansucrase. As the reaction proceeds with 10% (w/v) sucrose in 50/50 water/2M2P sucrose is converted to levan and an aqueous two-phase system (2M2P/Levan) is formed and more sucrose can be added in a fed batch mode. It is shown that high molecular weight levan is obtained as an hydrogel and may be easily recovered from the reaction medium. However, when high initial sucrose concentrations (40% (w/v) in 50/50 water/2M2P) are used, an aqueous two-phase system (2M2P/sucrose) is induce, where the synthesized levan has a similar molecular weight distribution as in water and remains in solution. PMID:15464614

  5. Reactions of metallic Li or LiC6 with organic solvents for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Nakajima, Tsuyoshi; Hirobayashi, Yuki; Takayanagi, Yuki; Ohzawa, Yoshimi

    2013-12-01

    DSC (Differential Scanning Calorimetry) study has been made on the reactions of metallic Li or LiC6 with organic solvents for lithium ion battery. Ethylene carbonate (EC) more easily reacts with metallic Li and LiC6 than propylene carbonate (PC). This may be because formation of lithium alkyl carbonate is more difficult for PC than EC. On the other hand, diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) react with Li in the same manner. Reactions of Li and LiC6 with organic solvents have been discussed based on the results of quantum calculation.

  6. Dynamic solvation shell and solubility of C60 in organic solvents.

    PubMed

    Wang, Chun I; Hua, Chi C; Chen, Show A

    2014-08-21

    The notion of (static) solvation shells has recently proved fruitful in revealing key molecular factors that dictate the solubility and aggregation properties of fullerene species in polar or ionic solvent media. Using molecular dynamics schemes with carefully evaluated force fields, we have scrutinized both the static and the dynamic features of the solvation shells of single C60 particle for three nonpolar organic solvents (i.e., chloroform, toluene, and chlorobenzene) and a range of system temperatures (i.e., T = 250-330 K). The central findings have been that, while the static structures of the solvation shell remain, in general, insensitive to the effects of changing solvent type or system temperature, the dynamic behavior of solvent molecules within the shell exhibits prominent dependence on both factors. Detailed analyses led us to propose the notion of dynamically stable solvation shell, effectiveness of which can be characterized by a new physical parameter defined as the ratio of two fundamental time constants representing, respectively, the solvent relaxation (or residence) time within the first solvation shell and the characteristic time required for the fullerene particle to diffuse a distance comparable to the shell thickness. We show that, for the five (two from the literature) different solvent media and the range of system temperatures examined herein, this parameter bears a value around unity and, in particular, correlates intimately with known trends of solubility for C60 solutions. We also provide evidence revealing that, in addition to fullerene-solvent interactions, solvent-solvent interactions play an important role, too, in shaping the dynamic solvation shell, as implied by recent experimental trends. PMID:25084556

  7. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03...

  8. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the.... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03...

  9. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass...

  10. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03...