Sample records for organic solvent buffer

  1. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    PubMed

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  2. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  3. Optimization of buffer injection for the effective bioremediation of chlorinated solvents in aquifers

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.

    2008-12-01

    Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range

  4. Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents.

    PubMed

    Hu, Yifan; Guo, Zheng; Lue, Bena-Marie; Xu, Xuebing

    2009-05-13

    The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model solvent. With organic solvents as media, the esterification rates of esculin depended mainly on its solubility in solvents; for the reactions in ILs, the reaction rates were generally low, and the anion part of the IL played a critical role in enzyme activity. Therefore, the esterification of esculin in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf(2)N](-) > [PF(6)](-) > [BF(4)](-) > [CF(3)SO(3)](-) > [C(4)F(9)SO(3)](-) > [TAF](-) > [MDEGSO(4)](-) > [OctSO(4)](-) > [ES](-) = [DMP](-) = [OTs](- )= Cl(-). The reaction behaviors differed in different systems and largely depended on the properties of the ILs and organic solvents. In general, improvements were observed in terms of both solubility and reaction efficiency. The knowledge acquired in this work gives a better understanding of multiple interactions in IL-organic solvent systems, which provide guidance for system design and optimization.

  5. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics.

    PubMed

    Akhtar, Muhammad T; Mushtaq, Mian Y; Verpoorte, Robert; Richardson, Michael K; Choi, Young H

    2016-01-01

    Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further

  6. Thermodynamic study of the transfer of acetanilide and phenacetin from water to different organic solvents.

    PubMed

    Baena, Yolima; Pinzón, Jorge A; Barbosa, Helber J; Martínez, Fleming

    2005-06-01

    The molar (K(C)(o/w)) and rational (K(X)(o/w)) partition coefficients in the octanol/buffer, i-propyl myristate/buffer, chloroform/buffer, and cyclohexane/buffer systems were determined for acetanilide and phenacetin at 25.0, 30.0, 35.0, and 40.0 degrees C. In all cases except for cyclohexane, the K(C)(o/w) and K(X)(o/w) values were greater than unity. This demonstrates that these two drugs have predominantly lipophilic behavior. Gibbs and van't Hoff thermodynamic analyses have revealed that the transfer of these drugs from water to organic solvents is spontaneous and that it is mainly driven enthalpically for i-propyl myristate and chloroform, and entropy-driven for octanol and cyclohexane.

  7. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  8. Organic solvents in the pharmaceutical industry.

    PubMed

    Grodowska, Katarzyna; Parczewski, Andrzej

    2010-01-01

    Organic solvents are commonly used in the pharmaceutical industry as reaction media, in separation and purification of synthesis products and also for cleaning of equipment. This paper presents some aspects of organic solvents utilization in an active pharmaceutical ingredient and a drug product manufacturing process. As residual solvents are not desirable substances in a final product, different methods for their removal may be used, provided they fulfill safety criteria. After the drying process, analyses need to be performed to check if amounts of solvents used at any step of the production do not exceed acceptable limits (taken from ICH Guideline or from pharmacopoeias). Also new solvents like supercritical fluids or ionic liquids are developed to replace "traditional" organic solvents in the pharmaceutical production processes.

  9. Organic Solvent Effects in Biomass Conversion Reactions.

    PubMed

    Shuai, Li; Luterbacher, Jeremy

    2016-01-01

    Transforming lignocellulosic biomass into fuels and chemicals has been intensely studied in recent years. A large amount of work has been dedicated to finding suitable solvent systems, which can improve the transformation of biomass into value-added chemicals. These efforts have been undertaken based on numerous research results that have shown that organic solvents can improve both conversion and selectivity of biomass to platform molecules. We present an overview of these organic solvent effects, which are harnessed in biomass conversion processes, including conversion of biomass to sugars, conversion of sugars to furanic compounds, and production of lignin monomers. A special emphasis is placed on comparing the solvent effects on conversion and product selectivity in water with those in organic solvents while discussing the origins of the differences that arise. We have categorized results as benefiting from two major types of effects: solvent effects on solubility of biomass components including cellulose and lignin and solvent effects on chemical thermodynamics including those affecting reactants, intermediates, products, and/or catalysts. Finally, the challenges of using organic solvents in industrial processes are discussed from the perspective of solvent cost, solvent stability, and solvent safety. We suggest that a holistic view of solvent effects, the mechanistic elucidation of these effects, and the careful consideration of the challenges associated with solvent use could assist researchers in choosing and designing improved solvent systems for targeted biomass conversion processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Solvent-modified ultrafast decay dynamics in conjugated polymer/dye labeled single stranded DNA

    NASA Astrophysics Data System (ADS)

    Kim, Inhong; Kang, Mijeong; Woo, Han Young; Oh, Jin-Woo; Kyhm, Kwangseuk

    2015-07-01

    We have investigated that organic solvent (DMSO, dimethyl sulfoxide) modifies energy transfer efficiency between conjugated polymers (donors) and fluorescein-labeled single stranded DNAs (acceptors). In a mixture of buffer and organic solvent, fluorescence of the acceptors is significantly enhanced compared to that of pure water solution. This result can be attributed to change of the donor-acceptor environment such as decreased hydrophobicity of polymers, screening effect of organic solvent molecules, resulting in an enhanced energy transfer efficiency. Time-resolved fluorescence decay of the donors and the acceptors was modelled by considering the competition between the energy harvesting Foerster resonance energy transfer and the energy-wasting quenching. This enables to quantity that the Foerster distance (R0 = 43.3 Å) and resonance energy transfer efficiency (EFRET = 58.7 %) of pure buffer solution become R0 = 38.6 Å and EFRET = 48.0 % when 80% DMSO/buffer mixture is added.

  11. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  12. Effects of liquid chromatography mobile phases and buffer salts on phosphorus inductively coupled plasma atomic emission and mass spectrometries utilizing ultrasonic nebulization and membrane desolvation.

    PubMed

    Carr, John E; Kwok, Kaho; Webster, Gregory K; Carnahan, Jon W

    2006-01-23

    Atomic spectrometry, specifically inductively coupled plasma atomic emission spectrometry (ICP-AES) and mass spectrometry (ICP-MS) show promise for heteroatom-based detection of pharmaceutical compounds. The combination of ultrasonic nebulization (USN) with membrane desolvation (MD) greatly enhances detection limits with these approaches. Because pharmaceutical analyses often incorporate liquid chromatography, the study herein was performed to examine the effects of solvent composition on the analytical behaviors of these approaches. The target analyte was phosphorus, introduced as phosphomycin. AES response was examined at the 253.7 nm atom line and mass 31 ions were monitored for the MS experiments. With pure aqueous solutions, detection limits of 5 ppb (0.5 ng in 0.1 mL injection volumes) were obtained with ICP-MS. The ICP-AES detection limit was 150 ppb. Solvent compositions were varied from 0 to 80% organic (acetonitrile and methanol) with nine buffers at concentrations typically used in liquid chromatography. In general, solvents and buffers had statistically significant, albeit small, effects on ICP-AES sensitivities. A few exceptions occurred in cases where typical liquid chromatography buffer concentrations produced higher mass loadings on the plasma. Indications are that isocratic separations can be reliably performed. Within reasonable accuracy tolerances, it appears that gradient chromatography can be performed without the need for signal response normalization. Organic solvent and buffer effects were more significant with ICP-MS. Sensitivities varied significantly with different buffers and organic solvent content. In these cases, gradient chromatography will require careful analytical calibration as solvent and buffer content is varied. However, for most buffer and solvent combinations, signal and detection limits are only moderately affected. Isocratic separations and detection are feasible.

  13. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    PubMed

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  14. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.

    PubMed

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

    2014-07-16

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  15. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A [Aberdeen, ID; Law, Jack D [Pocatello, ID; Herbst, R Scott [Idaho Falls, ID; Romanovskiy, Valeriy N [St. Petersburg, RU; Smirnov, Igor V [St.-Petersburg, RU; Babain, Vasily A [St-Petersburg, RU; Esimantovski, Vyatcheslav M [St-Petersburg, RU

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  16. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  17. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    PubMed

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV).

  18. Occupational exposure to organic solvents and sleep-disordered breathing.

    PubMed

    Ulfberg, J; Carter, N; Talbäck, M; Edling, C

    1997-01-01

    To investigate whether people with occupational exposure to organic solvents have a higher prevalence of obstructive sleep apnea syndrome (OSAS) than the general population and to examine the relationship between snoring and exposure to organic solvents. Consecutive patients, aged 30-64 years, referred during a 3-year period to the sleep laboratory at Avesta Hospital, Sweden, because of suspected OSAS made up the patient groups. Following admission, patients underwent a simplified sleep apnea investigation and were divided into two groups, OSAS (n = 320) and snorers (n = 443). A random sample of 296 men and 289 women aged 30-64 years obtained from a register of all country residents maintained by the county tax authority served as referents (controls). Both patients and referents responded to two questionnaires, including questions about occupation, exposure to organic solvents, and other chemical and physical agents. Men with OSAS or snoring and women with snoring had more often been occupationally exposed to organic solvents than the referents, showing an almost twofold increase in risk for those exposed during whole workdays. For men, the risk of OSAS or snoring increased with increasing exposure. The result indicates that occupational exposure to organic solvents might cause sleep apnea. A new observation is that even snoring could be caused by exposure to organic solvents. It is important to elucidate whether exposure to organic solvents is a cause of OSAS, because such a finding may have important implications for prevention and treatment of sleep disturbances.

  19. Sleep disturbances and exposure to organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindelof, B.; Almkvist, O.; Goethe, C.

    An inquiry about sleep habits and sleep disturbances revealed a significantly higher prevalence of insomnia in a solvent-exposed group than in a comparable group that had no occupational exposure to organic solvents. The solvent-exposed group has also registered an increased consumption of hypnotics, and a significant increase occurred in the number of individuals who had consulted physicians because of sleep disorders. The results indicate that solvent exposure could induce sleep disturbances.

  20. Lipase in aqueous-polar organic solvents: Activity, structure, and stability

    PubMed Central

    Kamal, Md Zahid; Yedavalli, Poornima; Deshmukh, Mandar V; Rao, Nalam Madhusudhana

    2013-01-01

    Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ∼20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km); however significantly enhanced the kcat. Melting temperature (Tm) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein. PMID:23625694

  1. Rational enhancement of enzyme performance in organic solvents. Final technical report, 1992--1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klibanov, A.M.

    1996-12-31

    This research focused on the following: the dependence of enzymatic activity of several model hydrolases in nonaqueous solvents; control of substrate selectivity of the protease subtilisin Carlsberg by the solvent; control of catalytic activity and enantioselectivity of this enzyme in organic solvents by immobilization support; lipase-catalyzed acylation of sugars in anhydrous hydrophobic media; the possibility of accelerating enzymatic processes in organic solvents by certain cosolvents; whether lipase catalysis in organic solvents can be enhanced by introducing interfaces in the in the reaction medium; the structure of proteins suspended in organic solvents; improving enzymatic enantioselectivity in organic solvents; analyzing the plungemore » in enzymatic activity upon replacing water with organic solvents; and the structural basis for the phenomenon of molecular memory of imprinted proteins in organic solvents.« less

  2. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.

    PubMed

    Quirino, Joselito P; Aranas, Agnes T

    2011-10-14

    The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Self-healing Microencapsulation of Biomacromolecules without Organic Solvents**

    PubMed Central

    Reinhold, Samuel E.; Desai, Kashappa-Goud H.; Zhang, Li; Olsen, Karl F.

    2012-01-01

    Microencapsulation of biomacromolecules in PLGA is routinely performed with organic solvent through multiple complex steps deleterious to the biomacromolecule. The new self-healing based PLGA microencapsulation obviates micronization- and organic solvent-induced protein damage, provides very high encapsulation efficiency, exhibit stabilization and slow release of labile tetanus protein antigen, and provides long-term testosterone suppression in rats following a single injection of encapsulated leuprolide. PMID:23011773

  4. Enhanced Enzymatic Synthesis of a Cephalosporin, Cefadroclor, in the Presence of Organic Co-solvents.

    PubMed

    Liu, Kun; Li, Sha; Pang, Xiao; Xu, Zheng; Li, Dengchao; Xu, Hong

    2017-05-01

    In this study, we investigated the enzymatic synthesis of a semi-synthetic cephalosporin, cefadroclor, from 7-aminodesacetoxymethyl-3-chlorocephalosporanic acid (7-ACCA) and p-OH-phenylglycine methyl ester (D-HPGM) using immobilized penicillin G acylase (IPA) in organic co-solvents. Ethylene glycol (EG) was employed as a component of the reaction mixture to improve the yield of cefadroclor. EG was found to increase the yield of cefadroclor by 15-45%. An investigation of altered reaction parameters including type and concentration of organic solvents, pH of reaction media, reaction temperature, molar ratio of substrates, enzyme loading, and IPA recycling was carried out in the buffer mixture. The best result was a 76.5% conversion of 7-ACCA, which was obtained from the reaction containing 20% EG (v/v), D-HPGM to 7-ACCA molar ratio of 4:1 and pH 6.2, catalyzed by 16 IU mL -1 IPA at 20 °C for 10 h. Under the optimum conditions, no significant loss of IPA activity was found after seven repeated reaction cycles. In addition, cefadroclor exhibited strong inhibitory activity against yeast, Bacillus subtilis NX-2, and Escherichia coli and weaker activity against Staphylococcus aureus and Pseudomonas aeruginosa. Cefadroclor is a potential antibiotic with activity against common pathogenic microorganisms.

  5. Dispersion and separation of nanostructured carbon in organic solvents

    NASA Technical Reports Server (NTRS)

    Evans, Christopher M. (Inventor); Ruf, Herbert J. (Inventor); Landi, Brian J. (Inventor); Raffaelle, Ryne P. (Inventor)

    2011-01-01

    The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.

  6. Prediction of the solvent affecting site and the computational design of stable Candida antarctica lipase B in a hydrophilic organic solvent.

    PubMed

    Park, Hyun June; Joo, Jeong Chan; Park, Kyungmoon; Kim, Yong Hwan; Yoo, Young Je

    2013-02-10

    Enzyme reactions in organic solvent such as for organic synthesis have great industrial potential. However, enzymes lose their stability in hydrophilic organic solvents due to the deformation of the enzyme by the solvent. It is thus important to enhance the stability of enzymes in hydrophilic organic solvents. Previous approaches have not considered on the interaction between enzymes and solvents due to the lack of information. In this study, the structural motions of the enzyme in methanol cosolvent and the interaction between the enzyme surface and the solvent molecule were investigated using molecular dynamics simulation (MD). By analyzing the MD simulation results, the surface residues of Candida antarctica lipase B (CalB) with higher root mean square deviation (RMSD) in a methanol solvent were considered as methanol affecting site and selected for site-directed mutagenesis. The methanol affecting site was computationally redesigned by lowering the RMSD. Among the candidate mutants, the A8T, A92E, N97Q and T245S mutants showed higher organic solvent stability at various methanol concentrations. The rational approach developed in this study could be applied to the stabilization of other industrial enzymes used in organic solvents. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-05

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  9. Olfactory function in painters exposed to organic solvents.

    PubMed

    Sandmark, B; Broms, I; Löfgren, L; Ohlson, C G

    1989-02-01

    The olfactory receptor cells are in direct contact with the exterior environment, and some chemical agents can impair olfactory function. The olfactory function of 54 painters exposed to organic solvents was compared with that of 42 unexposed referents. A new clinical test validated for the sense of smell was used, the University of Pennsylvania Smell Identification Test. Age, smoking habits, exposure to organic solvents, and medical disorders of importance for the sense of smell were recorded. The painters had a somewhat lower test score than the referents. However, the influence of the exposure variable was not statistically significant in a multiple regression analysis including age and smoking habits. The exposure to organic solvents was low, and therefore an effect of high exposure on olfactory function cannot be ruled out. Since some of the painters had earlier been highly exposed, the effects of high exposure are likely to be reversible.

  10. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    PubMed

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  11. Mechanism of transport and distribution of organic solvents in blood

    NASA Technical Reports Server (NTRS)

    Lam, C. W.; Galen, T. J.; Boyd, J. F.; Pierson, D. L.

    1990-01-01

    Little is known about the mechanism of transport and distribution of volatile organic compounds in blood. Studies were conducted on five typical organic solvents to investigate how these compounds are transported and distributed in blood. Groups of four to five rats were exposed for 2 hr to 500 ppm of n-hexane, toluene, chloroform, methyl isobutyl ketone (MIBK), or diethyl ether vapor; 94, 66, 90, 51, or 49%, respectively, of these solvents in the blood were found in the red blood cells (RBCs). Very similar results were obtained in vitro when aqueous solutions of these solvents were added to rat blood. In vitro studies were also conducted on human blood with these solvents; 66, 43, 65, 49, or 46%, respectively, of the added solvent was taken up by the RBCs. These results indicate that RBCs from humans and rats exhibited substantial differences in affinity for the three more hydrophobic solvents studied. When solutions of these solvents were added to human plasma and RBC samples, large fractions (51-96%) of the solvents were recovered from ammonium sulfate-precipitated plasma proteins and hemoglobin. Smaller fractions were recovered from plasma water and red cell water. Less than 10% of each of the added solvents in RBC samples was found in the red cell membrane ghosts. These results indicate that RBCs play an important role in the uptake and transport of these solvents. Proteins, chiefly hemoglobin, are the major carriers of these compounds in blood. It can be inferred from the results of the present study that volatile lipophilic organic solvents are probably taken up by the hydrophobic sites of blood proteins.

  12. Extracting organic matter on Mars: A comparison of methods involving subcritical water, surfactant solutions and organic solvents

    NASA Astrophysics Data System (ADS)

    Luong, Duy; Court, Richard W.; Sims, Mark R.; Cullen, David C.; Sephton, Mark A.

    2014-09-01

    The first step in many life detection protocols on Mars involves attempts to extract or isolate organic matter from its mineral matrix. A number of extraction options are available and include heat and solvent assisted methods. Recent operations on Mars indicate that heating samples can cause the loss or obfuscation of organic signals from target materials, raising the importance of solvent-based systems for future missions. Several solvent types are available (e.g. organic solvents, surfactant based solvents and subcritical water extraction) but a comparison of their efficiencies in Mars relevant materials is missing. We have spiked the well characterised Mars analogue material JSC Mars-1 with a number of representative organic standards. Extraction of the spiked JSC Mars-1 with the three solvent methods provides insights into the relative efficiency of these methods and indicates how they may be used on future Mars missions.

  13. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  14. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    PubMed

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  15. Acquired intolerance to organic solvents and results of vestibular testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyntelberg, F.; Vesterhauge, S.; Fog, P.

    1986-01-01

    Among 160 consecutive patients referred to the Clinic of Occupational Medicine, Rigshospitalet, for symptoms connected with exposure to organic solvents, 20 exhibited symptoms of acquired intolerance to minor amounts of organic solvents. Later, an additional 30 consecutive patients with symptoms of acquired intolerance were included, yielding a total of 43 men and 7 women. The characteristics of the clinical syndrome described are complaints of dizziness, nausea, and weakness after exposure to minimal solvent vapor concentrations. After having tolerated long-term occupational exposure to moderate or high air concentrations of various organic solvents, the patients became intolerant within a short period ofmore » time. Since dizziness was a frequent complaint, we tried to obtain a measure of the patients' complaints using vestibular tests. As a diagnostic test the combined vestibular tests had a sensitivity of 0.55 and a specificity of 0.87. No differences between patients with and without intolerance could be detected by the vestibular tests used. We conclude that acquired intolerance to organic solvents is a new but characteristic and easily recognizable syndrome, often with severe consequences for the patient's working ability.« less

  16. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review

    PubMed Central

    Miazek, Krystian; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Goffin, Dorothee

    2017-01-01

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted. PMID:28677659

  17. Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell

    NASA Astrophysics Data System (ADS)

    Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko

    2017-02-01

    We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.

  18. Solvent tuning configurational conversion of lycopene aggregates in organic-aqueous mixing solvent

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Zhang, Di; Wang, Xin-Yue; Wang, Peng

    2018-06-01

    In general cases, carotenoid aggregates are prepared in organic-water mixing solvent depending on its hydrophobic character. It is well-known that one of carotenoids, lycopene, is more likely to form typical H-aggregates. In this study, new type lycopene J-aggregates were prepared in DMSO-water mixing solvent with small amount of toluene, which was observed for the first time. We proposed a potential structure model combining with exciton model to interpret the mechanism of spectra changes. Our finding has provided new methods and novel ideas for controlling carotenoid aggregates formation.

  19. Properties and Synthetic Applications of Enzymes in Organic Solvents.

    PubMed

    Carrea; Riva

    2000-07-03

    Biotransformations already represent an effective and sometimes preferable alternative to chemical synthesis for the production of fine chemicals and optically active compounds. To further widen the versatility of the biological approach, the so-called "nonaqueous enzymology", which now represents an important area of research and biotechnological development, has emerged in the last ten years or so. This new methodology is especially suitable for the modification of precursors of pharmaceutical compounds and fine chemicals, which, in most cases, are insoluble or poorly soluble in water. Even though the idea of carrying out an enzymatic process in organic solvent was initially considered with scepticism, biocatalysis in such media is now investigated and exploited in numerous academic and industrial laboratories. One of the reasons that makes enzymatic catalysis in nonaqueous media so appealing, is the important new properties that enzymes exhibit in organic solvents. For example, they are often more stable and can catalyze reactions that are impossible or difficult in water. Furthermore, enzyme selectivity can also differ from that in water and can change, or even reverse, from one solvent to another. This phenomenon, which can be called "medium engineering", can be exploited as a valid alternative to protein engineering. The first part of this review examines the thermodynamic, kinetic, spectroscopic, and physical approaches that have been adopted to investigate the factors that affect activity, stability, structure, and selectivity of enzymes in organic solvents. These combined studies have brought the understanding of enzyme catalysis in organic solvents to a level almost comparable to that reached for biocatalysis in aqueous media. The second part surveys a number of the synthetic applications of enzymes in organic media, which span from the preparation of milligrams of specifically labeled compounds to the modification of fats on multiton scale and from the

  20. Occupational exposure to organic solvents as a cause of sleep apnoea.

    PubMed Central

    Edling, C; Lindberg, A; Ulfberg, J

    1993-01-01

    A high prevalence of sleep apnoea was found in a group of men occupationally exposed to organic solvents. Workers with long term exposure to organic solvents often report symptoms such as fatigue, forgetfulness, and concentration difficulties. These symptoms are strikingly similar to those reported by patients with obstructive sleep apnoea syndrome (OSAS). This is a frequently diagnosed disorder characterised by disturbed sleep causing psychic or somatic complications and daytime sleepiness. A study was undertaken to evaluate whether people with long term occupational exposure to organic solvents have a higher prevalence of sleep apnoea than the general population. Patients exposed to solvents (66 men) were invited to participate in a screening for sleep apnoea. A static charge sensitive bed was used for the monitoring of respiration movements and pulse oximetry during one night. A classical sleep apnoea was diagnosed if periodic respiration movement exceeded 45% of estimated sleep time and the oxygen desaturation index exceeded 6. The prevalence of sleep apnoea among the men exposed to solvents was compared with the prevalence in the general population (1.4%). The prevalence among the participating exposed men was 19.7% which gave a conservative relative risk estimate of 14.1 (95% confidence interval (95% CI) 7.5-24.2). The results indicate that exposure to organic solvents causes sleep apnoea. An alternative possibility is that people with sleep apnoea are misdiagnosed as cases of solvent induced toxic encephalopathy. The interpretation has importance for the caring of the patient. PMID:8457496

  1. Hematin crystallization from aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Ketchum, Megan A.; Olafson, Katy N.; Petrova, Elena V.; Rimer, Jeffrey D.; Vekilov, Peter G.

    2013-09-01

    Hematin crystallization is the main mechanism of detoxification of heme that is released in malaria-infected erythrocytes as a byproduct of the hemoglobin catabolism by the parasite. A controversy exists over whether hematin crystals grow from the aqueous medium of the parasite's digestive vacuole or in the lipid bodies present in the vacuole. To this end, we compare the basic thermodynamic and structural features of hematin crystallization in an aqueous buffer at pH 4.8, as in the digestive vacuole, and in water-saturated octanol that mimics the environment of the lipid nanospheres. We show that in aqueous solutions, hematin aggregation into mesoscopic disordered clusters is insignificant. We determine the solubility of the β-hematin crystals in the pH range 4.8-7.6. We image by atomic force microscopy crystals grown at pH 4.8 and show that their macroscopic and mesoscopic morphology features are incompatible with those reported for biological hemozoin. In contrast, crystals grown in the presence of octanol are very similar to those extracted from parasites. We determine the hematin solubility in water-saturated octanol at three temperatures. These solubilities are four orders of magnitude higher than that at pH 4.8, providing for faster crystallization from organic than from aqueous solvents. These observations further suggest that the lipid bodies play a role in mediating biological hemozoin crystal growth to ensure faster heme detoxification.

  2. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.

    PubMed

    Zhang, Ke; Pei, Zhijian; Wang, Donghai

    2016-01-01

    Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  4. Impaired colour vision in workers exposed to organic solvents: A systematic review.

    PubMed

    Betancur-Sánchez, A M; Vásquez-Trespalacios, E M; Sardi-Correa, C

    2017-01-01

    To evaluate recent evidence concerning the relationship between the exposure to organic solvents and the impairment of colour vision. A bibliographic search was conducted for scientific papers published in the last 15 years, in the LILACS, PubMed, Science Direct, EBSCO, and Cochrane databases that included observational studies assessing the relationship between impairment in colour vision and exposure to organic solvents. Eleven studies were selected that were performed on an economically active population and used the Lanthony D-15 desaturated test (D-15d), measured the exposure to organic solvents, and included unexposed controls. It was found that there is a statistically significant relationship between the exposure to organic solvents and the presence of an impairment in colour vision. The results support the hypothesis that exposure to organic solvents could induce acquired dyschromatopsia. The evaluation of colour vision with the D-15d test is simple and sensitive for diagnosis. More studies need to be conducted on this subject in order to better understand the relationship between impaired colour vision and more severe side effects caused by this exposure. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. SOLVENT-FREE ACCELERATED ORGANIC SYNTHESES USING MICROWAVES

    EPA Science Inventory

    Abstract: A solvent-free approach for organic synthesis is described which involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst or catalyzed by the surfaces of inexpensive and recyclable mineral supports such as alumina, silica, clay, or...

  6. Organic microchemical performance of solvent resistant polycarbosilane based microreactor.

    PubMed

    Yoon, Tae-Ho; Jung, Sang-Hee; Kim, Dong-Pyo

    2011-05-01

    We report the successful fabrication of preceramic polymer allylhydridopolycarbosilane (AHPCS) derived microchannels with excellent organic solvent resistance and optical transparency via economic imprinting process, followed by UV and post thermal curing process at 160 degrees C for 3 h. The microchemical performance of the fabricated microreactors was evaluated by choosing two model micro chemical reactions under organic solvent conditions; syntheses of 2-aminothiazole in DMF and dimethylpyrazole in THF, and compared with glass-based microreactor having identical dimensions and batch system with analogy. It is clear that AHPCS derived microreactor showed excellent solvent resistance and chemical stability compare with glass derived microreactor made by high cost of photolithography and thermal bonding process. The novel preceramic polymer derived microreactors showed reliable mechanical and chemical stability and conversion yields compare with that of glass derived microreactors, which is very promising for developing an integrated microfluidics by adopting available microstructuring techniques of the polymers.

  7. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    NASA Astrophysics Data System (ADS)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  8. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, Frank K.

    1986-01-01

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  9. Solvent wash solution

    DOEpatents

    Neace, J.C.

    1984-03-13

    A process is claimed for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 vol % of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  10. Solvent wash solution

    DOEpatents

    Neace, James C.

    1986-01-01

    Process for removing diluent degradation products from a solvent extraction solution, which has been used to recover uranium and plutonium from spent nuclear fuel. A wash solution and the solvent extraction solution are combined. The wash solution contains (a) water and (b) up to about, and including, 50 volume percent of at least one-polar water-miscible organic solvent based on the total volume of the water and the highly-polar organic solvent. The wash solution also preferably contains at least one inorganic salt. The diluent degradation products dissolve in the highly-polar organic solvent and the organic solvent extraction solvent do not dissolve in the highly-polar organic solvent. The highly-polar organic solvent and the extraction solvent are separated.

  11. Direct analysis of terpenes from biological buffer systems using SESI and IR-MALDESI.

    PubMed

    Nazari, Milad; Malico, Alexandra A; Ekelöf, Måns; Lund, Sean; Williams, Gavin J; Muddiman, David C

    2018-01-01

    Terpenes are the largest class of natural products with a wide range of applications including use as pharmaceuticals, fragrances, flavorings, and agricultural products. Terpenes are biosynthesized by the condensation of a variable number of isoprene units resulting in linear polyisoprene diphosphate units, which can then be cyclized by terpene synthases into a range of complex structures. While these cyclic structures have immense diversity and potential in different applications, their direct analysis in biological buffer systems requires intensive sample preparation steps such as salt cleanup, extraction with organic solvents, and chromatographic separations. Electrospray post-ionization can be used to circumvent many sample cleanup and desalting steps. SESI and IR-MALDESI are two examples of ionization methods that employ electrospray post-ionization at atmospheric pressure and temperature. By coupling the two techniques and doping the electrospray solvent with silver ions, olefinic terpenes of different classes and varying degrees of volatility were directly analyzed from a biological buffer system with no sample workup steps.

  12. Solvent Selection for Recrystallization: An Undergraduate Organic Experiment.

    ERIC Educational Resources Information Center

    Baumann, Jacob B.

    1979-01-01

    This experiment develops the students' ability to carry out a simple recrystallization effectively, and demonstrates how a solvent may be selected or rejected for the recrystallization of a specific organic compound. (Author/BB)

  13. High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.

    PubMed

    Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo

    2017-01-17

    Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Response Mechanisms in Serratia marcescens IBBPo15 During Organic Solvents Exposure.

    PubMed

    Stancu, Mihaela Marilena

    2016-12-01

    Serratia marcescens strain IBB Po15 (KT315653) which possesses serratiopeptidase (ser) gene (KT894207) exhibited good solvent tolerance. During the exposure of S. marcescens IBB Po15 cells to 5 % organic solvents, n-decane was less toxic for this bacterium, compared with n-hexane, cyclohexane, ethylbenzene, toluene, and styrene. The exposure of the S. marcescens IBB Po15 cells to n-hexane, cyclohexane, ethylbenzene, toluene, and styrene induced the formation of large clusters, while in control and n-decane-exposed cells, only organization into small clusters was observed. The data obtained suggested that S. marcescens IBB Po15 cells produced some secondary metabolites (i.e., surfactant serrawettin, red pigment prodigiosin) which are well known as valuable molecules due to their large applications. The exposure of the bacterial cells to organic solvents induced secondary metabolites profile modifications. However, S. marcescens IBB Po15 possesses only alkB1, todM, rhlAB, pswP, mpr, and ser genes, the unspecific amplification of other fragments being acquired also when the primers for alkM1, xylM, ndoM, and C23DO genes were used. Modifications of DNA patterns were not depicted in S. marcescens IBB Po15 cells exposed to organic solvents.

  15. Assessment of time to pregnancy and spontaneous abortion status following occupational exposure to organic solvents mixture.

    PubMed

    Attarchi, Mir Saeed; Ashouri, Monir; Labbafinejad, Yasser; Mohammadi, Saber

    2012-04-01

    Due to increasing usage of chemicals in various industries, occupational exposure of women with these materials is unavoidable. Nowadays, some studies indicate adverse effects of exposure to these chemicals, especially organic solvents on the reproductive system of females. This study aimed to assess the relationship between spontaneous abortion and occupational exposure to organic solvents mixture in pharmaceutical industry. This study was carried out in a pharmaceutical factory located in the suburb of Tehran in 2010. During the study, married women who were working in the factory laboratory units and had exposure to mixed organic solvents were compared with married women who were working in the packing units of the factory without occupational exposure to organic solvents in terms of spontaneous abortion frequency and duration of pregnancy using statistical methods. In this study, the frequency of spontaneous abortion in employees with and without exposure to organic solvents mixture was 10.7 and 2.9% respectively. This study showed that even after adjustment for confounding factors, there was a significant correlation between spontaneous abortion and occupational exposure to organic solvents mixture and this correlation increased with increasing levels of exposure to organic solvents. Also, a significant correlation was observed between occupational exposure to mixed organic solvents and waiting time to become pregnant (TTP). Furthermore, this study showed that even after adjustment for confounding variables, shift workers were significantly more affected by spontaneous abortion compared to daytime workers (P < 0.001). Also, in our study, synergistic effect between shift working and occupational exposure to organic solvents mixture on spontaneous abortion was seen. According to the results of this study, since there is probability of spontaneous abortion resulting from occupational exposure to various chemicals including organic solvents, recommendation to

  16. Comparison of polymer induced and solvent induced trypsin denaturation: the role of hydrophobicity.

    PubMed

    Jasti, Lakshmi S; Fadnavis, Nitin W; Addepally, Uma; Daniels, Siona; Deokar, Sarika; Ponrathnam, Surendra

    2014-04-01

    Trypsin adsorption from aqueous buffer by various copolymers of allyl glycidyl ether-ethylene glycol dimethacrylate (AGE-EGDM) copolymer with varying crosslink density increases with increasing crosslink density and the effect slowly wears off after reaching a plateau at 50% crosslink density. The copolymer with 25% crosslink density was reacted with different amines with alkyl/aryl side chains to obtain a series of copolymers with 1,2-amino alcohol functional groups and varying hydrophobicity. Trypsin binding capacity again increases with hydrophobicity of the reacting amine and a good correlation between logPoctanol of the amine and protein binding is observed. The bound trypsin is denatured to the extent of 90% in spite of the presence of hydrophilic hydroxyl and amino groups. The behavior was comparable to that in mixtures of aqueous buffer and water-miscible organic co-solvents where the solvent concentration required to deactivate 50% of the enzyme (C50) is dependent on logPoctanol of the co-solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Automated process for solvent separation of organic/inorganic substance

    DOEpatents

    Schweighardt, F.K.

    1986-07-29

    There is described an automated process for the solvent separation of organic/inorganic substances that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In the process, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control apparatus. The mixture in the filter is agitated by ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process. 4 figs.

  18. Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabulis, K.; Klibanov, A.M.

    1993-03-05

    When seven different hydrolytic enzymes (four proteases and three lipases) were lyophilized from aqueous solution containing a ligand, N-Ac-L-Phe-NH[sub 2], their catalytic activity in anhydrous solvents was far greater (one to two orders of magnitude) than that of the enzymes lyophilized without the ligand. This ligand-induced activation was expressed regardless of whether the substrate employed in organic solvents structurally resembled the ligand. Furthermore, nonligand lyoprotectants [sorbitol, other sugars, and poly(ethylene glycol)] also dramatically enhanced enzymatic activity in anhydrous solvents when present in enzyme aqueous solution prior to lyophilization. The effects of the ligand and of the lyoprotectants were nonadditive, suggestingmore » the same mechanism of action. Excipient-activated and nonactivated enzymes exhibited identical activities in water. Also, addition of the excipients directly to suspensions of nonactivated enzymes in organic solvents had no appreciable effect on catalytic activity. These observations indicate that the mechanism of the excipient-induced activation is based on the ability of the excipients to alleviate reversible denaturation of enzymes upon lyophilization. Activity enhancement induced by the excipients is displayed even after their removal by washing enzymes with anhydrous solvents. Subtilisin Carlsberg, lyophilized with sorbitol, was found to be a much more efficient practical catalyst than its regular' counterpart.« less

  19. Solubility, stability, and electrochemical studies of sulfur-sulfide solutions in organic solvents

    NASA Technical Reports Server (NTRS)

    Fielder, W. L.; Singer, J.

    1978-01-01

    A preliminary study of the sulfur electrode in organic solvents suggests that the system warrants further investigation for use in a low temperature (100 deg to 120 C) Na-S secondary battery. A qualitative screening was undertaken at 120 C to determine the solubilities and stabilities of Na2S and Na2S2 in representatives of many classes of organic solvents. From the screening and quantitative studies, two classes of solvents were selected for work; amides and cyclic polyalcohols. Voltammetric and Na-S cell charge discharge studies of sulfide solutions in organic solvents (e.g., N, N-dimethylformamide) at 120 C suggested that the reversibilities of the reactions on Pt or high density graphite were moderately poor. However, the sulfur electrode was indeed reducible (and oxidizable) through the range of elemental sulfur to Na2S. Reactions and mechanisms are proposed for the oxidation reduction processes occurring at the sulfur electrode.

  20. Iodination of insulin in aqueous and organic solvents

    PubMed Central

    Massaglia, A.; Rosa, U.; Rialdi, G.; Rossi, C. A.

    1969-01-01

    1. The iodination of insulin was studied under various experimental conditions in aqueous media and in some organic solvents, by measuring separately the uptake of iodine by the four tyrosyl groups and the relative amounts of monoiodotyrosine and di-iodotyrosine that are formed. In aqueous media from pH1 to pH9 the iodination occurs predominantly on the tyrosyl groups of the A chain. Some organic solvents increase the iodine uptake of the B-chain tyrosyl groups. Their efficacy in promoting iodination of Tyr-B-16 and Tyr-B-26 is in the order: ethylene glycol and propylene glycol≃methanol and ethanol>dioxan>8m-urea. 2. It is suggested that each of the four tyrosyl groups in insulin has a different environment: Tyr-A-14 is fully exposed to the solvent; Tyr-A-19 is sterically influenced by the environmental structure, possibly by the vicinity of a disulphide interchain bond; Tyr-B-16 is embedded into a non-polar area whose stability is virtually independent of the molecular conformation; Tyr-B-26 is probably in a situation similar to Tyr-B-16 with the difference that its non-polar environment depends on the preservation of the native structure. PMID:5346365

  1. Recurrent Acute Liver Failure Because of Acute Hepatitis Induced by Organic Solvents: A Case Report.

    PubMed

    Ito, Daisuke; Tanaka, Tomohiro; Akamatsu, Nobuhisa; Ito, Kyoji; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Nakagawa, Hayato; Fujinaga, Hidetaka; Kokudo, Norihiro

    2016-01-01

    The authors present a case of recurrent acute liver failure because of occupational exposure to organic solvents. A 35-year-old man with a 3-week history of worsening jaundice and flu-like symptoms was admitted to our hospital. Viral hepatitis serology and autoimmune factors were negative. The authors considered liver transplantation, but the patient's liver function spontaneously recovered. Liver biopsy revealed massive infiltration of neutrophils, but the cause of the acute hepatitis was not identified. Four months after discharge, the patient's liver function worsened again. The authors considered the possibility of antinuclear antibody-negative autoimmune hepatitis and initiated steroid treatment, which was effective. Four months after discharge, the patient was admitted for repeated liver injury. The authors started him on steroid pulse therapy, but this time it was not effective. Just before the first admission, he had started his own construction company where he was highly exposed to organic solvents, and thus the authors considered organic solvent-induced hepatitis. Although urine test results for organic solvents were negative, a second liver biopsy revealed severe infiltration of neutrophils, compatible with toxic hepatitis. Again, his liver function spontaneously improved. Based on the pathology and detailed clinical course, including the patient's high exposure to organic solvents since just before the first admission, and the spontaneous recovery of his liver damage in the absence of the exposure, he was diagnosed with toxic hepatitis. The authors strongly advised him to avoid organic solvents. Since then, he has been in good health without recurrence. This is the first report of recurrent acute liver failure because of exposure to organic solvents, which was eventually diagnosed through a meticulous medical history and successfully recovered by avoiding the causative agents. In acute liver failure with an undetermined etiology, clinicians should rule

  2. Comparison of extraction buffers for the detection of fumonisin B(1) in corn by immunoassay and high-performance liquid chromatography.

    PubMed

    Kulisek, E S; Hazebroek, J P

    2000-01-01

    The Associatian of Official Analytical Chemists approved method for quantification of fumonisin B(1) (FB(1)) in corn meal or corn-based food products includes extraction into methanol (MeOH)/water (3:1, v/v). Disposal of the extraction medium can pose safety and environmental problems. To secure a rapid and inexpensive screen for FB(1) contamination, a sensitive competitive ELISA using a rabbit polyclonal antibody was developed. This assay was used in a comparative study measuring the extraction efficiency of FB(1) in aqueous or organic solvent buffers using 16 field corn samples. An aqueous phosphate buffer was found to be suitable for extracting FB(1), thus eliminating the need for organic solvents. HPLC and ELISA determinations compared well in fortified samples at known concentrations between 1 and 50 microg/mL of extract. Overestimation at levels >50 microg/mL were common. The characteristics and application of the ELISA for screening purposes are discussed.

  3. pH Control for Effective Anaerobic Bioremediation of Chlorinated Solvents

    NASA Astrophysics Data System (ADS)

    Robinson, C.; Barry, D.; Gerhard, J. I.; Kouznetsova, I.

    2007-12-01

    SABRE (Source Area BioREmediation) is a 4-year collaborative project that aims to evaluate the performance of enhanced anaerobic bioremediation for the treatment of chlorinated solvent DNAPL source areas. The project focuses on a pilot scale demonstration at a trichloroethene (TCE) DNAPL field site, and includes complementary laboratory and modelling studies. Organic acids and hydrogen ions (HCl) typically build up in the treatment zone during anaerobic bioremediation. In aquifer systems with relatively low buffering capacity the generation of these products can cause significant groundwater acidification thereby inhibiting dehalogenating activity. Where the soil buffering capacity is exceeded, addition of buffer may be needed for the effective continuation of TCE degradation. As an aid to the design of remediation schemes, a geochemical model was designed to predict the amount of buffer required to maintain the source zone pH at a suitable level for dechlorinating bacteria (i.e. > 6.5). The model accounts for the amount of TCE to be degraded, site water chemistry, type of organic amendment and soil mineralogy. It assumes complete dechlorination of TCE, and further considers mineral dissolution and precipitation kinetics. The model is applicable to a wide range of sites. For illustration we present results pertinent to the SABRE field site. Model results indicate that, for the extensive dechlorination expected in proximity to the SABRE DNAPL source zone, significant buffer addition may be necessary. Additional simulations are performed to identify buffer requirements over a wider range of field conditions.

  4. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Smart, Marshall C. (Inventor); Surampudi, Subbarao (Inventor); Bugga, Ratnakumar V. (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  5. ACTIVE EFFLUX OF ORGANIC SOLVENTS BY PSEUDOMONAS PUTIDA S12 IS INDUCED BY SOLVENTS

    EPA Science Inventory

    Induction of the membrane-associated organic solvent efflux system SrpABC of Pseudomonas putida S12 was examined by cloning a 312-bp DNA fragment, containing the srp promoter, in the broad-host-range reporter vector pKRZ-1. Compounds that are capable of inducing expression of the...

  6. Vapor-phase interactions and diffusion of organic solvents in the unsaturated zone

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1990-01-01

    This article presents an analysis of the interactions and static movement of 37 organic solvents as vapors through the unsaturated soil zone. The physicochemical interactions of the organic vapors with unsaturated soil materials were emphasized with focus on diffusive, and adsorptive interactions. Fick's Law and porous media diffusion coefficients for most of the solvent vapors were either compiled or estimated; coefficients were not available for some of the fluorinated solvents. The adsorption of some of the solvent vapors by silica was concluded to be due to hydrogen bond formation with surface silanol groups. Heats of adsorption data for different adsorbents were also compiled. There were very few data on the adsorption of these solvent vapors by soils, but it appears that the magnitude of adsorption of nonpolar solvents is reduced as the relative humidity of the vapor-solid system is increased. Consequently, the interaction of the vapors may then separated into two processes; (1) gas-water partitioning described by Henry's Law constants, and (2) solid-water adsorption coefficients which may be estimated from liquid-solid partition coefficients (Kd values). ?? 1990 Springer-Verlag New York Inc.

  7. Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents

    NASA Astrophysics Data System (ADS)

    Kang, Di; Duan, Ruixue; Tan, Yerpeng; Hong, Fan; Wang, Boya; Chen, Zhifei; Xu, Shaofang; Lou, Xiaoding; Wei, Wei; Yurke, Bernard; Xia, Fan

    2014-11-01

    The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an example, first we have demonstrated that the DSDR is highly accelerated in the beginning of the reaction and it can complete 60% of replacement reactions (160% enhancement compared with aqueous buffer) in the first 300 seconds. Secondly, we calculated that the ΔΔG of the DSDR in 20% ethanol (-18.2 kcal mol-1) is lower than that in pure aqueous buffer (-32.6 kcal mol-1), while the activation energy is lowered by introducing ethanol. Finally, we proved that the DSDR on the electrode surface can also be accelerated using this simple strategy. More importantly, to test the efficacy of this approach in nanodevices with a complicated and slow DNA self-assembly process, we apply this strategy in the hybridization chain reaction (HCR) and prove the acceleration is fairly obvious in 20% ethanol, which demonstrates the feasibility of the proposed strategy in DNA nanotechnology and DNA-based biosensors.The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an

  8. Lanthanide-organic complexes based on polyoxometalates: Solvent effect on the luminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Qun; Liu Shuxia, E-mail: liusx@nenu.edu.cn; Liang Dadong

    2012-06-15

    A series of lanthanide-organic complexes based on polyoxometalates (POMs) [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}][W{sub 6}O{sub 19}] (Ln=La(1), Ce(2), Sm(3), Eu(4), Gd(5); DNBA=3,5-dinitrobenzoate; DMF=N,N-dimethylformamide) has been synthesized. These complexes consist of [W{sub 6}O{sub 19}]{sup 2-} and dimeric [Ln{sub 2}(DNBA){sub 4}(DMF){sub 8}]{sup 2+} cations. The luminescence properties of 4 are measured in solid state and different solutions, respectively. Notably, the emission intensity increases gradually with the increase of solvent permittivity, and this solvent effect can be directly observed by electrospray mass spectrometry (ESI-MS). The analyses of ESI-MS show that the eight coordinated solvent DMF units of dimeric cation are active. They can movemore » away from dimeric cations and exchange with solvent molecules. Although the POM anions escape from 3D supramolecular network, the dimeric state structure of [Ln{sub 2}(DNBA){sub 4}]{sup 2+} remains unchanged in solution. The conservation of red luminescence is attributed to the maintenance of the aggregated state structures of dimeric cations. - Graphical abstract: 3D POMs-based lanthanide-organic complexes performed the solvent effect on the luminescence property. The origin of such solvent effect can be understood and explained on the basis of the existence of coordinated active sites by the studies of ESI-MS. Highlights: Black-Right-Pointing-Pointer The solvent effect on the luminescence property of POMs-based lanthanide-organic complexes. Black-Right-Pointing-Pointer ESI-MS analyses illuminate the correlation between the structure and luminescence property. Black-Right-Pointing-Pointer The dimeric cations have eight active sites of solvent coordination. Black-Right-Pointing-Pointer The aggregated state structure of dimer cation remains unchanged in solution. Black-Right-Pointing-Pointer Luminescence associating with ESI-MS is a new method for investigating the interaction of complex and solvent.« less

  9. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A new desorption method for removing organic solvents from activated carbon using surfactant.

    PubMed

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime

    2017-03-28

    A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power.

  11. Organic solvent exposure and hearing loss in a cohort of aluminium workers.

    PubMed

    Rabinowitz, P M; Galusha, D; Slade, M D; Dixon-Ernst, C; O'Neill, A; Fiellin, M; Cullen, M R

    2008-04-01

    Organic solvent exposure has been shown to cause hearing loss in animals and humans. Less is known about the risk of hearing loss due to solvent exposures typically found in US industry. The authors performed a retrospective cohort study to examine the relationship between solvent exposure and hearing loss in US aluminium industry workers. A cohort of 1319 workers aged 35 years or less at inception was followed for 5 years. Linkage of employment, industrial hygiene and audiometric surveillance records allowed for estimation of noise and solvent exposures and hearing loss rates over the study period. Study subjects were classified as "solvent exposed" or not, on the basis of industrial hygiene records linked with individual job histories. High frequency hearing loss was modelled as both a continuous and a dichotomous outcome. Typical solvent exposures involved mixtures of xylene, toluene and/or methyl ethyl ketone (MEK). Recorded solvent exposure levels varied widely both within and between jobs. In a multivariate logistic model, risk factors for high frequency hearing loss included age (OR = 1.06, p = 0.004), hunting or shooting (OR = 1.35, p = 0.049), noisy hobbies (OR = 1.74, p = 0.01), baseline hearing level (OR = 1.04, p<0.001) and solvent exposure (OR = 1.87, p = 0.004). A multivariate linear regression analysis similarly found significant associations between high frequency hearing loss and age (p<0.001), hunting or shooting (p<0.001), noisy hobbies (p = 0.03), solvent exposure (p<0.001) and baseline hearing (p = 0.03). These results suggest that occupational exposure to organic solvent mixtures is a risk factor for high frequency hearing loss, although the data do not allow conclusions about dose-response relationships. Industries with solvent-exposed workers should include such workers in hearing conservation programs.

  12. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents.

    PubMed

    Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo

    2018-06-01

    Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.

  13. Chronic Organic Solvent Exposure Changes Visual Tracking in Men and Women.

    PubMed

    de Oliveira, Ana R; Campos Neto, Armindo de Arruda; Bezerra de Medeiros, Paloma C; de Andrade, Michael J O; Dos Santos, Natanael A

    2017-01-01

    Organic solvents can change CNS sensory and motor function. Eye-movement analyses can be important tools when investigating the neurotoxic changes that result from chronic organic solvent exposure. The current research measured the eye-movement patterns of men and women with and without histories of chronic organic solvent exposure. A total of 44 volunteers between 18 and 41 years old participated in this study; 22 were men (11 exposed and 11 controls), and 22 were women (11 exposed and 11 controls). Eye movement was evaluated using a 250-Hz High-Speed Video Eye Tracker Toolbox (Cambridge Research Systems) via an image of a maze. Specific body indices of exposed and non-exposed men and women were measured with an Inbody 720 to determine whether the differences in eye-movement patterns were associated with body composition. The data were analyzed using IBM SPSS Statistics version 20.0.0. The results indicated that exposed adults showed significantly more fixations ( t = 3.82; p = 0.001; r = 0.51) and longer fixations ( t = 4.27; p = 0.001, r = 0.54) than their non-exposed counterparts. Comparisons within men (e.g., exposed and non-exposed) showed significant differences in the number of fixations ( t = 2.21; p = 0.04; r = 0.20) and duration of fixations ( t = 3.29; p = 0.001; r = 0.35). The same was true for exposed vs. non-exposed women, who showed significant differences in the number of fixations ( t = 3.10; p = 0.001; r = 0.32) and fixation durations ( t = 2.76; p = 0.01; r = 0.28). However, the results did not show significant differences between exposed women and men in the number and duration of fixations. No correlations were found between eye-movement pattern and body composition measures ( p > 0.05). These results suggest that chronic organic solvent exposure affects eye movements, regardless of sex and body composition, and that eye tracking contributes to the investigation of the visual information processing disorders acquired by workers exposed to

  14. Removal of ion-implanted photoresists on GaAs using two organic solvents in sequence

    NASA Astrophysics Data System (ADS)

    Oh, Eunseok; Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2016-07-01

    Organic solvents can effectively remove photoresists on III-V channels without damage or etching of the channel material during the process. In this study, a two-step sequential photoresist removal process using two different organic solvents was developed to remove implanted ArF and KrF photoresists at room temperature. The effects of organic solvents with either low molar volumes or high affinities for photoresists were evaluated to find a proper combination that can effectively remove high-dose implanted photoresists without damaging GaAs surfaces. The performance of formamide, acetonitrile, nitromethane, and monoethanolamine for the removal of ion-implanted ArF and KrF photoresists were compared using a two-step sequential photoresist removal process followed by treatment in dimethyl sulfoxide (DMSO). Among the various combinations, the acetonitrile + DMSO two-step sequence exhibited the best removal of photoresists that underwent ion implantation at doses of 5 × 1013-5 × 1015 atoms/cm2 on both flat and trench-structured GaAs surfaces. The ability of the two-step process using organic solvents to remove the photoresists can be explained by considering the affinities of solvents for a polymer and its permeability through the photoresist.

  15. Conductivity Enhancement of PEDOT:PSS Films Through the Surface Treatment with Organic Solvent.

    PubMed

    Lee, Sungkoo

    2016-03-01

    The improvement of conductivity is a key factor in application of conducting polymer to elec- tronic devices. The conductivity enhancement of PSS films were observed after dipping in polar organic solvents, including DMSO, ethylene glycol, glycerol and IPA. The conductivity of PSS films increased from 0.5 S/cm to over 800 S/cm, that is, by a factor of more than 1,600. The conductivity enhancement was dependent on the type of organic solvents and dipping time of PSS into solvent. The enhancement of conductivity may be caused by the phase separation between PEDOT chains and PSS counter anions.

  16. Improving the industrial production of 6-APA: enzymatic hydrolysis of penicillin G in the presence of organic solvents.

    PubMed

    Abian, Olga; Mateo, César; Fernández-Lorente, Gloria; Guisán, José M; Fernández-Lafuente, Roberto

    2003-01-01

    The hydrolysis of penicillin G in the presence of an organic solvent, used with the purpose of extracting it from the culture medium, may greatly simplify the industrial preparation of 6-APA. However, under these conditions, PGA immobilized onto Eupergit displays very low stability (half-life of 5 h in butanone-saturated water) and a significant degree of inhibition by the organic solvent (30%). The negative effect of the organic solvent strongly depended on the type of solvent utilized: water saturated with butanone (around 28% v/v) had a much more pronounced negative effect than that of methylisobutyl ketone (MIBK) (solubility in water was only 2%). These problems were sorted out by using a new penicillin G acylase derivative designed to work in the presence of organic solvents (with each enzyme molecule surrounded by an hydrophilic artificial environment) and a suitable organic solvent (MIBK). Using such solvent, this derivative kept its activity unaltered for 1 week at 32 degrees C. Moreover, the enzyme activity was hardly inhibited by the presence of the organic solvent. In this way, the new enzyme derivative thus prepared enables simplification of the industrial hydrolysis of penicillin G.

  17. A new desorption method for removing organic solvents from activated carbon using surfactant

    PubMed Central

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime

    2017-01-01

    Objectives: A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Methods: Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. Results: A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. Conclusions: A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power. PMID:28132972

  18. Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents

    NASA Astrophysics Data System (ADS)

    Wang, Yuru; Wang, Tianren; Chen, Xi; Xu, Yang; Li, Huanrong

    2018-04-01

    Herein, we prepared a Mn(II)-coordinated carbon dots (CDs) with fluorescence and MRI (magnetic resonance imaging) bimodal properties by a one-pot solvothermal method and separated via silica column chromatography. The quantum yield of the CDs increased greatly from 2.27% to 6.75% with increase of Mn(II) doping, meanwhile the CDs exhibited a higher MR activity (7.28 mM-1s-1) than that of commercial Gd-DTPA (4.63 mM-1s-1). In addition, white light emitting CDs were obtained by mixing the different types of CDs. Notably, these CDs exhibited different fluorescence emissions in different organic solvents and could be used to discriminate organic solvents based on the polarity and protonation of the solvents.

  19. Organic solvent exposure and depressive symptoms among licensed pesticide applicators in the Agricultural Health Study

    PubMed Central

    Siegel, Miriam; Starks, Sarah E.; Sanderson, Wayne T.; Kamel, Freya; Hoppin, Jane A.; Gerr, Fred

    2017-01-01

    Purpose Although organic solvents are often used in agricultural operations, neurotoxic effects of solvent exposure have not been extensively studied among famers. The current analysis examined associations between questionnaire-based metrics of organic solvent exposure and depressive symptoms among farmers. Methods Results from 692 male Agricultural Health Study participants were analyzed. Solvent type and exposure duration were assessed by questionnaire. An “ever-use” variable and years of use categories were constructed for exposure to gasoline, paint/lacquer thinner, petroleum distillates, and any solvent. Depressive symptoms were ascertained with the Center for Epidemiologic Studies Depression Scale (CES-D); scores were analyzed separately as continuous (0-60) and dichotomous (<16 versus ≥16) variables. Multivariate linear and logistic regression models were used to estimate crude and adjusted associations between measures of solvent exposure and CES-D score. Results Forty-one percent of the sample reported some solvent exposure. The mean CES-D score was 6.5 (SD=6.4; median=5; range=0 – 44); 92% of the sample had a score below 16. After adjusting for covariates, statistically significant associations were observed between ever-use of any solvent, long duration of any solvent exposure, ever-use of gasoline, ever-use of petroleum distillates, and short duration of petroleum distillate exposure and continuous CES-D score (p<0.05). Although nearly all associations were positive, fewer statistically significant associations were observed between metrics of solvent exposure and the dichotomized CES-D variable. Conclusions Solvent exposures were associated with depressive symptoms among farmers. Efforts to limit exposure to organic solvents may reduce the risk of depressive symptoms among farmers. PMID:28702848

  20. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  1. Mixed organic solvents induce renal injury in rats.

    PubMed

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  2. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  3. S5 Lipase: an organic solvent tolerant enzyme.

    PubMed

    Rahman, Raja Noor Zaliha Abdul; Baharum, Syarul Nataqain; Salleh, Abu Bakar; Basri, Mahiran

    2006-12-01

    In this study, an organic solvent tolerant bacterial strain was isolated. This strain was identified as Pseudomonas sp. strain S5, and was shown to degrade BTEX (Benzene, Toluene, Ethyl-Benzene, and Xylene). Strain S5 generates an organic solvent-tolerant lipase in the late logarithmic phase of growth. Maximum lipase production was exhibited when peptone was utilized as the sole nitrogen source. Addition of any of the selected carbon sources to the medium resulted in a significant reduction of enzyme production. Lower lipase generation was noted when an inorganic nitrogen source was used as the sole nitrogen source. This bacterium hydrolyzed all tested triglycerides and the highest levels of production were observed when olive oil was used as a natural triglyceride. Basal medium containing Tween 60 enhanced lipase production to the most significant degree. The absence of magnesium ions (Mg2+) in the basal medium was also shown to stimulate lipase production. Meanwhile, an alkaline earth metal ion, Na+, was found to stimulate the production of S5 lipase.

  4. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  5. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  6. Morphological control in polymer solar cells using low-boiling-point solvent additives

    NASA Astrophysics Data System (ADS)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  7. Effect of reduced use of organic solvents on disability pension in painters

    PubMed Central

    Järvholm, Bengt; Burdorf, Alex

    2017-01-01

    Objective To investigate whether the decreased use of paints based on organic solvents has caused a decreased risk for neuropsychiatric disorders in painters by studying their incidence in disability pensions. Methods The incidence of disability pension in Swedish painters who had participated in health examinations between 1971 and 1993 was studied through linkage with Swedish registers of disability pension over 1971–2010 and compared with the incidence in other construction workers as woodworkers, concrete workers and platers. When phasing out began in the 1970s, about 40% of paints were based on organic solvents and it had decreased to 4% in 1990s. The analysis was adjusted for age, time period, body mass index and smoking. Results The painters (n=23 065) had an increased risk of disability pension due to neurological diagnosis (n=285, relative risk (RR) 1.92, 95% CI 1.67 to 2.20) and psychiatric diagnosis (n=632, RR=1.61, 95 % CI 1.42 to 1.82). For neurological disorders there was a time trend with a continuously decreasing risk from 1980 onwards, but there was no such trend for psychiatric disorders. Conclusions High exposure to organic solvents increased the risk for disability pension in neurological disorders, and the risk decreased when the use of organic solvents decreased. The painters also had an increased risk of disability pension due to psychiatric disorders, but the causes have to be further investigated. PMID:28780566

  8. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  9. Models for liquid-liquid partition in the system dimethyl sulfoxide-organic solvent and their use for estimating descriptors for organic compounds.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2011-07-15

    Partition coefficients for varied compounds were determined for the organic solvent-dimethyl sulfoxide biphasic partition system where the organic solvent is n-heptane or isopentyl ether. These partition coefficient databases are analyzed using the solvation parameter model facilitating a quantitative comparison of the dimethyl sulfoxide-based partition systems with other totally organic partition systems. Dimethyl sulfoxide is a moderately cohesive solvent, reasonably dipolar/polarizable and strongly hydrogen-bond basic. Although generally considered to be non-hydrogen-bond acidic, analysis of the partition coefficient database strongly supports reclassification as a weak hydrogen-bond acid in agreement with recent literature. The system constants for the n-heptane-dimethyl sulfoxide biphasic system provide an explanation of the mechanism for the selective isolation of polycyclic aromatic compounds from mixtures containing low-polarity hydrocarbons based on the capability of the polar interactions (dipolarity/polarizability and hydrogen-bonding) to overcome the opposing cohesive forces in dimethyl sulfoxide that are absent for the interactions with hydrocarbons of low polarity. In addition, dimethyl sulfoxide-organic solvent systems afford a complementary approach to other totally organic biphasic partition systems for descriptor measurements of compounds virtually insoluble in water. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  11. Organic solvent desorption from two tegafur polymorphs.

    PubMed

    Bobrovs, Raitis; Actiņš, Andris

    2013-11-30

    Desorption behavior of 8 different solvents from α and β tegafur (5-fluoro-1-(tetrahydro-2-furyl)uracil) has been studied in this work. Solvent desorption from samples stored at 95% and 50% relative solvent vapor pressure was studied in isothermal conditions at 30 °C. The results of this study demonstrated that: solvent desorption rate did not differ significantly for both phases; solvent desorption in all cases occurred faster from samples with the largest particle size; and solvent desorption in most cases occurred in two steps. Structure differences and their surface properties were not of great importance on the solvent desorption rates because the main factor affecting desorption rate was sample particle size and sample morphology. Inspection of the structure packing showed that solvent desorption rate and amount of solvent adsorbed were mainly affected by surface molecule arrangement and ability to form short contacts between solvent molecule electron donor groups and freely accessible tegafur tetrahydrofuran group hydrogens, as well as between solvents molecule proton donor groups and fluorouracil ring carbonyl and fluoro groups. Solvent desorption rates of acetone, acetonitrile, ethyl acetate and tetrahydrofuran multilayers from α and β tegafur were approximately 30 times higher than those of solvent monolayers. Scanning electron micrographs showed that sample storage in solvent vapor atmosphere promotes small tegafur particles recrystallization to larger particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Quantifying Volatile Organic Compound Emissions from Solvents and their Impacts on Urban Air Quality

    NASA Astrophysics Data System (ADS)

    Mcdonald, B. C.; De Gouw, J. A.; Gilman, J.; Ahmadov, R.; Cappa, C. D.; Frost, G. J.; Goldstein, A. H.; Jathar, S.; Jimenez, J. L.; Kim, S. W.; McKeen, S. A.; Roberts, J. M.; Trainer, M.

    2016-12-01

    Solvents, which consist of personal care products, paints, degreasing agents, and other chemical products, are an important anthropogenic source of volatile organic compound (VOC) emissions. Yet there are many unresolved questions related to their emission rates, chemical composition, and relative importance on urban air quality problems. Using atmospheric measurements of speciated VOCs collected at a ground site located in the Los Angeles basin during the California Nexus (CalNex) Study in 2010, and utilizing data on the composition of solvent emissions from the California Air Resources Board (CARB), we are able to reconcile solvent emissions with ambient observations. Our analysis indicates that solvent emissions are underestimated by a factor of 2-3 in the CARB inventory. We then estimate the reactivity of solvent emissions with the hydroxyl (OH) radical, and also estimate the propensity of solvent emissions to form secondary organic aerosol (SOA). Solvents contain significant fractions of oxygenated compounds, including intermediate volatility compounds, which if released to the atmosphere are potentially reactive and can lead to the formation of SOA. Overall, our results suggest that in the Los Angeles basin, solvents are now the largest anthropogenic source of VOC emissions, OH reactivity, and SOA formation, and larger than the contribution from motor vehicles. This suggests that more research is needed in better constraining this potentially important source of urban VOC emissions.

  13. A new organic solvent for use in the clearing of tissues. I. Soft tissue histology.

    PubMed

    Wishe, H I; Roy, M; Piliero, S J

    1980-07-01

    Histosol is a non-flammable solvent mixture of synthetic aromatic hydrocarbons with a flash point of 124 degrees F (T.C.C.). It has a lower vapor pressure and evaporation rate than other organic solvents, such as xylene, routinely used as clearing and deparaffinizing agents. Although both xylene and Histosol clear and deparaffinize soft organ tissues effectively in the preparation of permanently mounted stained slides, Histosol appears, in many instances, to be the choice solvent: tissues are easier to section; cell borders and cell surface modifications are most distinct; cytoplasmic eosinophilia is more vivid; and nuclear detail is improved. Of prime importance, Histosol is a safer and more efficient solvent for use in histological and pathological laboratories.

  14. Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents.

    PubMed

    kang, Di; Duan, Ruixue; Tan, Yerpeng; Hong, Fan; Wang, Boya; Chen, Zhifei; Xu, Shaofang; Lou, Xiaoding; Wei, Wei; Yurke, Bernard; Xia, Fan

    2014-11-06

    The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an example, first we have demonstrated that the DSDR is highly accelerated in the beginning of the reaction and it can complete 60% of replacement reactions (160% enhancement compared with aqueous buffer) in the first 300 seconds. Secondly, we calculated that the ΔΔG of the DSDR in 20% ethanol (-18.2 kcal mol(-1)) is lower than that in pure aqueous buffer (-32.6 kcal mol(-1)), while the activation energy is lowered by introducing ethanol. Finally, we proved that the DSDR on the electrode surface can also be accelerated using this simple strategy. More importantly, to test the efficacy of this approach in nanodevices with a complicated and slow DNA self-assembly process, we apply this strategy in the hybridization chain reaction (HCR) and prove the acceleration is fairly obvious in 20% ethanol, which demonstrates the feasibility of the proposed strategy in DNA nanotechnology and DNA-based biosensors.

  15. Personality and long term exposure to organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindstroem, K.; Martelin, T.

    1980-01-01

    Personality, especially emotional reactions of two solvent exposed groups and a nonexposed reference group were described by means of 20 formal, content and check-list type of Rorschach variables. Another objective of the study was to explore the suitability and psychological meaning of other types of Rorschach variables than those applied earlier in the field of behavioral toxicology. The factor analyses grouped the applied variables into factors of Productivity, Ego Strength, Control of Emotionality, Defensive Introversion and Aggressiveness. One solvent group, a patient groups (N.53), was characterized by a high number of Organic signs and a low Genetic Level, indicating possiblemore » psychoorganic deterioration. The other solvent group, styrene exposed but subjectively healthy (N.98), was characterized by few emotional reactions, low Anxiety and a low number of Neurotic Signs. the long duration of exposure of the solvent patient group (mean 10.2 +/- 8.7 years) was related to variables of the Productivity factor, a finding that indicates a possible better adjustment of those exposed for a longer time. The duration of exposure of the styrene exposed group (mean 4.9 +/- 3.2 years) revealed a very slight relation to personality variables, but the mean urinary mandelic acid concentration, indicating the level of styrene exposure, correlated with increased emotional reactions. For the most part definite causal conclusions could not be drawn because of the cross-sectional design of the study.« less

  16. Tandem organic light-emitting diodes with buffer-modified C60/pentacene as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zheng, Xin; Liu, Fei; Wang, Pei; Gan, Lin; Wang, Jing-jing

    2017-09-01

    Buffer-modified C60/pentacene as charge generation layer (CGL) is investigated to achieve effective performance of charge generation. Undoped green electroluminescent tandem organic light-emitting diodes (OLEDs) with multiple identical emissive units and using buffer-modified C60/pentacene organic semiconductor heterojunction (OHJ) as CGL are demonstrated to exhibit better current density and brightness, compared with conventional single-unit devices. The current density and brightness both can be significantly improved with increasing the thickness of Al. However, excessive thickness of Al seriously decreases the transmittance of films and damages the interface. As a result, the maximum current efficiency of 1.43 cd·A-1 at 30 mA·cm-2 can be achieved for tandem OLEDs with optimal thickness of Al. These results clearly demonstrate that Cs2CO3/Al is an effective buffer for C60/pentacene-based tandem OLEDs.

  17. Low operational stability of enzymes in dry organic solvents: changes in the active site might affect catalysis.

    PubMed

    Bansal, Vibha; Delgado, Yamixa; Legault, Marc; Barletta, Gabriel

    2012-02-14

    The potential of enzyme catalysis in organic solvents for synthetic applications has been overshadowed by the fact that their catalytic properties are affected by organic solvents. In addition, it has recently been shown that an enzyme's initial activity diminishes considerably after prolonged exposure to organic media. Studies geared towards understanding this last drawback have yielded unclear results. In the present work we decided to use electron paramagnetic resonance spectroscopy (EPR) to study the motion of an active site spin label (a nitroxide free radical) during 96 h of exposure of the serine protease subtilisin Carlsberg to four different organic solvents. Our EPR data shows a typical two component spectra that was quantified by the ratio of the anisotropic and isotropic signals. The isotropic component, associated with a mobile nitroxide free radical, increases during prolonged exposure to all solvents used in the study. The maximum increase (of 43%) was observed in 1,4-dioxane. Based on these and previous studies we suggest that prolonged exposure of the enzyme to these solvents provokes a cascade of events that could induce substrates to adopt different binding conformations. This is the first EPR study of the motion of an active-site spin label during prolonged exposure of an enzyme to organic solvents ever reported.

  18. [Evaluation of exposure of auto painters to organic solvents in the city of Bogota].

    PubMed

    Palma, Marien; Briceño, Leonardo; Idrovo, Álvaro J; Varona, Marcela

    2015-08-01

    Painters of automobiles are exposed to pure and mixed solvents that have been associated with neurological effects and carcinogenic mutations. To characterize the health and work conditions of individuals who are occupationally exposed to organic solvents used in sheet metal and auto body shops in Bogota. Descriptive, cross-sectional study that characterizes the health and work conditions of individuals exposed to organic solvents in sheet metal and auto body shops in Bogota. A group exposed to the solvents was compared to an unexposed group. Air concentrations of benzene, toluene and xylene (BTX) were determined, individual questionnaires were administered and phenylmercapturic, hippuric and ortho- and para-methylhippuric acids were measured in urine. The results of the measurements and the questionnaires were correlated to determine the exposure panorama. For the three BTX metabolites, statistically significant differences (p<0.001) were found between the population exposed to the solvents and the unexposed population. For the exposed population, positive correlations were found between toluene in air and hippuric acid in urine (rho=0.82) and between xylene in air and o-methylhippuric acid in urine (rho=0.76). Hippuric acid values exceeded permissible levels in 11 workers and p-methylhippuric acid exceeded permissible levels in 8 workers. None of the phenylmercapturic values exceeded the limit. Auto painters are exposed to high levels of organic solvents at the workplace and do not have adequate industrial health and safety conditions to perform their jobs.

  19. Simply enhancing throughput of free-flow electrophoresis via organic-aqueous environment for purification of weak polarity solute of phenazine-1-carboxylic acid in fermentation of Pseudomonas sp. M18.

    PubMed

    Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan

    2012-09-01

    Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.

  1. Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie

    2017-03-01

    Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.

  2. Hemin-utilizing G-quadruplex DNAzymes are strongly active in organic co-solvents.

    PubMed

    Canale, Thomas D; Sen, Dipankar

    2017-05-01

    The widespread use of organic solvents in industrial processes has focused in recent years on the utility of "green" solvents - those with less harmful environmental, health, and safety properties - such as methanol and formamide. However, protein enzymes, regarded as green catalysts, are often incompatible with organic solvents. Herein, we have explored the oxidative properties of a Fe(III)-heme, or hemin, utilizing catalytic DNA (heme·DNAzyme) in different green solvent-water mixtures. We find that the peroxidase and peroxygenase activities of the heme·DNAzyme are strongly enhanced in 20-30% v/v methanol or formamide, relative to water alone. Protic solvent content of >30% v/v gradually diminishes heme·DNAzyme catalytic activity; however, the heme·DNAzyme is still active in as high as 80% v/v methanol. In contrast to protic solvents, aqueous dimethylformamide solutions largely inhibit heme·DNAzyme activity. In view of the strong catalytic activity of heme·DNAzyme in aqueous methanol, we were able to determine that a 60% v/v methanol-water mixture gives the most optimal yield of the dibenzothiophene sulfoxide (DBTO) oxidation product of petroleum-derived dibenzothiophene (DBT). The high product yield reflects both DNAzyme catalysis and a high substrate availability. Overall, these results emphasize the excellent promise of G-quadruplex forming DNA catalysts in application to "greener" industrial chemistry. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine

    PubMed Central

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-01-01

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine. PMID:27098929

  4. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine.

    PubMed

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-04-21

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine.

  5. Superfund Innovative Technology Evaluation: Demonstration Bulletin: Organic Extraction Utilizing Solvents

    EPA Science Inventory

    This technology utilizes liquified gases as the extracting solvent to remove organics, such as hydrocarbons, oil and grease, from wastewater or contaminated sludges and soils. Carbon dioxide is generally used for aqueous solutions, and propane is used for sediment, sludges and ...

  6. Effect of reduced use of organic solvents on disability pension in painters.

    PubMed

    Järvholm, Bengt; Burdorf, Alex

    2017-11-01

    To investigate whether the decreased use of paints based on organic solvents has caused a decreased risk for neuropsychiatric disorders in painters by studying their incidence in disability pensions. The incidence of disability pension in Swedish painters who had participated in health examinations between 1971 and 1993 was studied through linkage with Swedish registers of disability pension over 1971-2010 and compared with the incidence in other construction workers as woodworkers, concrete workers and platers. When phasing out began in the 1970s, about 40% of paints were based on organic solvents and it had decreased to 4% in 1990s. The analysis was adjusted for age, time period, body mass index and smoking. The painters (n=23 065) had an increased risk of disability pension due to neurological diagnosis (n=285, relative risk (RR) 1.92, 95% CI 1.67 to 2.20) and psychiatric diagnosis (n=632, RR=1.61, 95 % CI 1.42 to 1.82). For neurological disorders there was a time trend with a continuously decreasing risk from 1980 onwards, but there was no such trend for psychiatric disorders. High exposure to organic solvents increased the risk for disability pension in neurological disorders, and the risk decreased when the use of organic solvents decreased. The painters also had an increased risk of disability pension due to psychiatric disorders, but the causes have to be further investigated. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. A Peptide Amphiphile Organogelator of Polar Organic Solvents.

    PubMed

    Rouse, Charlotte K; Martin, Adam D; Easton, Christopher J; Thordarson, Pall

    2017-03-03

    A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents.

  8. A Peptide Amphiphile Organogelator of Polar Organic Solvents

    PubMed Central

    Rouse, Charlotte K.; Martin, Adam D.; Easton, Christopher J.; Thordarson, Pall

    2017-01-01

    A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents. PMID:28255169

  9. Combined effects of exposure to occupational noise and mixed organic solvents on blood pressure in car manufacturing company workers.

    PubMed

    Attarchi, Mirsaeed; Golabadi, Majid; Labbafinejad, Yasser; Mohammadi, Saber

    2013-02-01

    Recent studies suggest that occupational exposures such as noise and organic solvents may affect blood pressure. The aim of this study was to investigate interaction of noise and mixed organic solvents on blood pressure. Four hundred seventy-one workers of a car manufacturing plant were divided into four groups: group one or G1 workers exposed to noise and mixed organic solvents in the permitted limit or control group, G3 exposed to noise only, G2 exposed to solvents only, and G4 workers exposed to noise and mixed organic solvents at higher than the permitted limit or co-exposure group. Biological interaction of two variables on hypertension was calculated using the synergistic index. The workers of co-exposure group (G4), noise only group (G3), and solvents only group (G2) had significantly higher mean values of SBP and DBP than workers of control group (G1) or office workers (P < 0.05). Also logistic regression analysis showed a significant association between hypertension and exposure to noise and mixture of organic solvents. Odds ratio for hypertension in the co-exposure group and the noise only and solvents only exposed groups was 14.22, 9.43, and 4.38, respectively, compared to control group. In this study, the estimated synergism index was 1.11. Our results indicate that exposure to noise or a mixture of organic solvents may be associated with the prevalence of hypertension in car manufacturing company workers and co-exposure to noise and a mixture of solvents has an additive effect in this regard. Therefore appropriate preventive programs in these workers recommended. Copyright © 2012 Wiley Periodicals, Inc.

  10. Enhancement of room temperature ferromagnetism in tin oxide nanocrystal using organic solvents

    NASA Astrophysics Data System (ADS)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2017-10-01

    The effect of organic solvents (ethanol & ethylene glycol) on the room temperature ferromagnetism in nanocrystalline tin oxide has been studied. The samples were synthesized using sol-gel method with the mixture of water & organic liquid as solvent. It is found that pristine SnO2 nanocrystal contain two different types of paramagnetic centres over their surface:(i) surface chemisorbed oxygen species and (ii) Sn interstitial & oxygen vacancy defect pair. The magnetic moment induced in the as-prepared samples is mainly contributed by the alignment of local spin moments resulting from these defects. These surface defect states are highly activated by the usage of ethylene glycol solvent rather than ethylene in tin oxide nanostructure synthesis. Powder X-ray diffraction, transmission electron microscope imaging, energy dispersive spectrometry, Fourier transformed infrared spectroscopy, UV-vis absorption spectroscopy, photoluminescence spectroscopy, vibrating sample magnetometer measurement and electron spin resonance spectroscopy were employed to characterize the nanostructured tin oxide materials.

  11. Alterations in cognitive and psychological functioning after organic solvent exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, L.A.; Ryan, C.M.; Hodgson, M.J.

    1990-05-01

    Exposure to organic solvents has been linked repeatedly to alterations in both personality and cognitive functioning. To assess the nature and extent of these changes more thoroughly, 32 workers with a history of exposure to mixtures of organic solvents and 32 age- and education-matched blue-collar workers with no history of exposure were assessed with a comprehensive battery of neuropsychological tests. Although both groups were comparable on measures of general intelligence, significant differences were found in virtually all other cognitive domains tested (Learning and Memory, Visuospatial, Attention and Mental Flexibility, Psychomotor Speed). In addition, Minnesota Multiphasic Personality Inventories of exposed workersmore » indicated clinically significant levels of depression, anxiety, somatic concerns and disturbances in thinking. The reported psychological distress was unrelated to degree of cognitive deficit. Finally, several exposure-related variables were associated with poorer performance on tests of memory and visuospatial ability.« less

  12. A novel organic solvent-based coupling method for the preparation of covalently immobilized proteins on gold.

    PubMed Central

    Parker, M. C.; Patel, N.; Davies, M. C.; Roberts, C. J.; Tendler, S. J.; Williams, P. M.

    1996-01-01

    A novel organic solvent-based coupling method has been developed for the covalent immobilization of biological material to gold surfaces. The method employs the polar organic solvent anhydrous 2,2,2-trifluoroethanol as the reaction medium and involves dissolution of the protein (catalase) in the solvent allowing protein coupling to proceed under basic conditions in a dry organic environment. The advantage of this method is that protein attachment is favored over hydrolysis of the coupling reagent. We have shown qualitatively and quantitatively that following attachment to the gold surface a significant proportion of the enzyme catalase remains catalytically active (at least 20-31%). PMID:8931151

  13. Determination of water traces in various organic solvents using Karl Fischer method under FIA conditions.

    PubMed

    Dantan, N; Frenzel, W; Küppers, S

    2000-05-31

    Flow injection methods utilising the Karl Fischer (KF) reaction with spectrophotometric and potentiometric detection are described for the determination of the trace water content in various organic solvents. Optimisation of the methods resulted in an accessible (linear) working range of 0.01-0.2% water for many solvents studied with a typical precision of 1-2% R.S.D. Only 50 mul of organic solvent was injected and the sampling frequency was about 120 samples per h. Since the slopes of the calibration curves were different for different solvents appropriate calibration was required. Problems associated with spectrophotometric detection and caused by refractive index changes were pointed out and a nested-loop configuration was proposed to overcome this kind of interference. The potentiometric method with a novel flow-through detector cell was shown to surpass the performance of spectrophotometric detection in any respect. The characteristics of the procedures developed made them well applicable for on-line monitoring of technical solvent distillations in an industrial plant.

  14. Poly(2-ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents.

    PubMed

    Plothe, Ramona; Sittko, Ina; Lanfer, Franziska; Fortmann, Maximilian; Roth, Meike; Kolbach, Vivien; Tiller, Joerg C

    2017-01-01

    Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2-ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39-45. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Influence of dilution with organic solvents on emission spectra of CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kumakura, Mitsutaka; Kinan, Asuka; Moriyasu, Takeshi

    2017-04-01

    The emission spectra of CdSe/ZnS core-shell dots have been monitored after the dilution of their toluene solution with organic solvents (toluene, n-hexane, diethyl ether, acetone, ethanol, and methanol). In addition to the well-known difference of the emission efficiency according to the solvent, we found their time variation depending on the solvent. From the discussion based on the solubility of the capping organic ligand, hexadecylamine (HDA), to each solvent it is suggested that the observed time variation is caused by the liquation of the capping molecules form the dot surface and the resulting change of the number of the trap site for charges in the quantum dot.

  16. The solvent component of macromolecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less

  17. Volumetric Properties of the Ionic Liquid, 1-Butyl-3-methylimidazolium Tetrafluoroborate, in Organic Solvents at T = 298.15K

    NASA Astrophysics Data System (ADS)

    Shekaari, Hemayat; Zafarani-Moattar, Mohammed Taghi

    2008-04-01

    Apparent molar volumes, V_φ , and compressibilities, kappa _φ , of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) have been determined from precise density and speed-of-sound measurements in organic solvents, methanol (MeOH), acetonitrile (MeCN), tetrahydrofuran (THF), N, N-dimethylacetamide (DMA), and dimethylsulfoxide (DMSO) in the dilute region of the ionic liquid. Corresponding values at infinite dilution are estimated by the Redlich-Mayer and Pitzer equations. The results have been interpreted by the interaction of the [BMIm][BF4] in the organic solvents. Results show that the structure and dielectric constant of the organic solvents play an important role for the ion-solvent interactions in these mixtures. It was found that the strength of interaction between [BMIm][BF4] with the studied organic solvents has the order DMSO > DMA > MeOH > MeCN > THF.

  18. Tandem repeated application of organic solvents and sodium lauryl sulphate enhances cumulative skin irritation.

    PubMed

    Schliemann, Sibylle; Schmidt, Christina; Elsner, Peter

    2014-01-01

    The objective of our study was to investigate the tandem irritation potential of two organic solvents with concurrent exposure to the hydrophilic detergent irritant sodium lauryl sulphate (SLS). A tandem repeated irritation test was performed with two undiluted organic solvents, cumene (C) and octane (O), with either alternating application with SLS 0.5% or twice daily application of each irritant alone in 27 volunteers on the skin of the back. The cumulative irritation induced over 4 days was quantified using visual scoring and non-invasive bioengineering measurements (skin colour reflectance, skin hydration and transepidermal water loss). Repeated application of C/SLS and O/SLS induced more decline of stratum corneum hydration and higher degrees of clinical irritation and erythema compared to each irritant alone. Our results demonstrate a further example of additive harmful skin effects induced by particular skin irritants and indicate that exposure to organic solvents together with detergents may increase the risk of acquiring occupational contact dermatitis. © 2014 S. Karger AG, Basel.

  19. Bimetallic nanocomposite as hole transport co-buffer layer in organic solar cell

    NASA Astrophysics Data System (ADS)

    Mola, Genene Tessema; Arbab, Elhadi A. A.

    2017-12-01

    Silver-zinc bimetallic nanocomposite (Ag:Zn BiM-NPs) was used as an inter-facial buffer layer in the preparation of thin film organic solar cell (TFOSC). The current investigation focuses on the effect of bimetallic nanoparticles on the performance of TFOSC. A number experiments were conducted by employing Ag:Zn nanocomposite buffer layer of thickness 1 nm at various positions of the device structure. In all cases, we found significant improvement on the power conversion efficiency of the solar cells. It is also noted that the open circuit voltage of the devices are decreasing when Ag:Zn form direct contact with the ITO electrode and without the inclusion of PEDOT:PSS. However, all results show that the introduction of Ag:Zn nanocomposite layer close to PEDOT:PSS could be beneficial to improve the charge transport processes in the preparation of thin film organic solar cell. The Ag:Zn BiM-NPs and the device properties were presented and discussed in terms of optical, electrical and film morphologies of the devices.

  20. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  1. Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers

    NASA Astrophysics Data System (ADS)

    Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong

    2018-02-01

    Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.

  2. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  3. Desalting by crystallization: detection of attomole biomolecules in picoliter buffers by mass spectrometry.

    PubMed

    Gong, Xiaoyun; Xiong, Xingchuang; Wang, Song; Li, Yanyan; Zhang, Sichun; Fang, Xiang; Zhang, Xinrong

    2015-10-06

    Sensitive detection of biomolecules in small-volume samples by mass spectrometry is, in many cases, challenging because of the use of buffers to maintain the biological activities of proteins and cells. Here, we report a highly effective desalting method for picoliter samples. It was based on the spontaneous separation of biomolecules from salts during crystallization of the salts. After desalting, the biomolecules were deposited in the tip of the quartz pipet because of the evaporation of the solvent. Subsequent detection of the separated biomolecules was achieved using solvent assisted electric field induced desorption/ionization (SAEFIDI) coupled with mass spectrometry. It allowed for direct desorption/ionization of the biomolecules in situ from the tip of the pipet. The organic component in the assistant solvent inhibited the desorption/ionization of salts, thus assured successful detection of biomolecules. Proteins and peptides down to 50 amol were successfully detected using our method even if there were 3 × 10(5) folds more amount of salts in the sample. The concentration and ion species of the salts had little influence on the detection results.

  4. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents.

    PubMed

    Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae

    2016-02-19

    Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A New Method Without Organic Solvent to Targeted Nanodrug for Enhanced Anticancer Efficacy

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Yang, Xiangrui; Zou, Mingyuan; Hou, Zhenqing; Yan, Jianghua

    2017-06-01

    Since the hydrophobic group is always essential to the synthesis of the drug-loaded nanoparticles, a majority of the methods rely heavily on organic solvent, which may not be completely removed and might be a potential threat to the patients. In this study, we completely "green" synthesized 10-hydroxycamptothecine (HCPT) loaded, folate (FA)-modified nanoneedles (HFNDs) for highly efficient cancer therapy with high drug loading, targeting property, and imaging capability. It should be noted that no organic solvent was used in the preparation process. In vitro cell uptake study and the in vivo distribution study showed that the HFNDs, with FA on the surface, revealed an obviously targeting property and entered the HeLa cells easier than the chitosan-HCPT nanoneedles without FA modified (NDs). The cytotoxicity tests illustrated that the HFNDs possessed better killing ability to HeLa cells than the individual drug or the NDs in the same dose, indicating its good anticancer effect. The in vivo anticancer experiment further revealed the pronounced anticancer effects and the lower side effects of the HFNDs. This new method without organic solvent will lead to a promising sustained drug delivery system for cancer diagnosis and treatment.

  6. 40 CFR 63.5749 - How do I calculate the organic HAP content of aluminum wipedown solvents?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the past 12 months, liters. Dj= density of aluminum wipedown solvent j, kilograms per liter. Wj= mass fraction of organic HAP in aluminum wipedown solvent j. m = number of different aluminum surface coatings...

  7. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOEpatents

    Bhattacharya, Raghu N [Littleton, CO

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  8. A neurological evaluation of workers exposed to mixtures of organic solvents.

    PubMed Central

    Maizlish, N A; Fine, L J; Albers, J W; Whitehead, L; Langolf, G D

    1987-01-01

    Workers with long term exposure to mixtures of organic solvents below regulatory limits have been reported to experience mild, but clinically detectable, sensory or sensorimotor polyneuropathies. In conjuction with a cross sectional study of behavioural performance a clinical neurological evaluation was conducted among printers and spray painters to examine dose response relations. All 240 subjects completed an occupational history and symptom questionnaire and underwent a clinical neurological examination. On average, subjects had been employed on their current job for six years. Classification of solvent exposure for each subject was based on exposed versus non-exposed job titles and observations during an industrial hygiene walk-through or on the measured concentration of solvents in full shift personal air samples. The average full shift solvent concentration was 302 ppm for printing plant workers and 6-13 ppm for workers at other plants. Isopropanol and hexane were the major constituents. Neurological abnormalities consistent with mild polyneuropathy were found in 16% of subjects; none was clinically significant. Exposed/non-exposed comparisons showed slightly higher frequency of symptoms in the exposed subjects which was not related to solvent level. Subjects categorised as exposed during the walk- through survey also had poorer vibratory sensation measured at the foot and diminished ankle reflexes. In multiple linear regression models, however, controlling for age, sex, alcohol intake, and examiner, no significant (p less than 0.05) relation was found between solvent concentration and poor neurological function except for two point discrimination measured at the foot. This investigation has not provided evidence for dose related adverse neurological effects from exposure to moderately low levels of solvent mixtures for a relatively short duration, although this may be due to the shortness of exposure duration, the type of solvent exposure, or to selection

  9. Solvent-Free Toner Printing of Organic Semiconductor Layer in Flexible Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Koh, Tokuyuki; Toyoshima, Kenji; Nakamori, Kouta; Okada, Yugo; Yamauchi, Hiroshi; Sadamitsu, Yuichi; Shinamura, Shoji; Kudo, Kazuhiro

    2017-07-01

    A solvent-free printing process for printed electronics is successfully developed using toner-type patterning of organic semiconductor toner particles and the subsequent thin-film formation. These processes use the same principle as that used for laser printing. The organic thin-film transistors are prepared by electrically distributing the charged toner onto a Au electrode on a substrate film, followed by thermal lamination. The thermal lamination is effective for obtaining an oriented and crystalline thin film. Toner printing is environmentally friendly compared with other printing technologies because it is solvent free, saves materials, and enables easy recycling. In addition, this technology simultaneously enables both wide-area and high-resolution printing.

  10. Digitally-Enabled Organizational Routines at the Organization-Environment Boundary: Buffering and the Role of Technology

    ERIC Educational Resources Information Center

    Hillison, Derek William

    2009-01-01

    Boundary units of an organization uniquely experience the tension between adaptation to environmental variation and maintaining stable outcomes for the rest of the organization. In our world of just-in-time supply chain systems, lot-sizes of one, lean manufacturing and an increasing focus on services, traditional forms of buffering such as queuing…

  11. Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shiming; Kumar, Prajwal; Nouas, Amel Sarah

    2015-01-01

    Organic electrochemical transistors based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) are of interest for several bioelectronic applications. In this letter, we investigate the changes induced by immersion of PEDOT:PSS films, processed by spin coating from different mixtures, in water and other solvents of different polarities. We found that the film thickness decreases upon immersion in polar solvents, while the electrical conductivity remains unchanged. The decrease in film thickness is minimized via the addition of a cross-linking agent to the mixture used for the spin coating of the films.

  12. Determination of low solvent concentration by nano-porous silicon photonic sensors using volatile organic compound method.

    PubMed

    Bui, Huy; Pham, Van Hoi; Pham, Van Dai; Hoang, Thi Hong Cam; Pham, Thanh Binh; Do, Thuy Chi; Ngo, Quang Minh; Nguyen, Thuy Van

    2018-05-07

    A vast majority of the organic solvents used in industry and laboratories are volatile, hazardous and toxic organic compounds, they are considered as a potent problem for human health and a cause of environmental pollution. Although analytical laboratory methods can determine extremely low solvent concentration, the sensing method with low cost and high sensitivity remains a conundrum. This paper presents and compares three methods (volatile organic compound (VOC), liquid drop and saturated vapour pressure) for determination of organic solvents in liquid environment by using photonic sensor based on nano-porous silicon (pSi) microcavity structures. Among those, the VOC method provides the highest sensitivity at low solvent volume concentrations because it can create a high vapour pressure of the analyte on the sensor surface owing to the capillary deposition of organic solvent into the silicon pores. This VOC method consists of three steps: heating the solution with its particular boiling temperature, controlling the flowing gas through liquid and cooling sensor. It delivers the highest sensitivity of 6.9 nm/% at concentration of 5% and the limit of detection (LOD) of pSi-sensor is 0.014% in case of ethanol in water when using an optical system with a resolution of 0.1 nm. Especially, the VOC method is capable of detecting low volume concentration of methanol in two tested ethanol solutions of 30% (v/v) and 45% (v/v) with the LOD of pSi-sensor up to 0.01% and 0.04%, respectively. This result will help pave a way to control the quality of contaminated liquor beverages.

  13. A novel and organic solvent-free preparation of solid lipid nanoparticles using natural biopolymers as emulsifier and stabilizer.

    PubMed

    Xue, Jingyi; Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Luo, Yangchao

    2017-10-05

    In this work, a new and novel organic solvent-free and synthetic surfactant-free method was reported to fabricate stable solid lipid nanoparticles (SLNs) from stearic acid, sodium caseinate (NaCas) and pectin, as well as water. Melted stearic acid was directly emulsified into an aqueous phase containing NaCas and pectin, followed by pH adjustment and thermal treatment to induce the formation of a compact and dense polymeric coating which stabilized SLNs. The preparation procedures and formulations were comprehensively optimized. The inter- and intra-molecular interactions among three ingredients were characterized by fluorescence and Fourier transform infrared spectroscopies. The stability of as-prepared SLNs was evaluated under simulated gastrointestinal conditions, and compared with traditional SLNs prepared with organic solvents. Our results revealed that the SLNs prepared from this organic solvent-free method had superior physicochemical properties over the traditional SLNs, including smaller size and better stability. Furthermore, redispersible SLNs powders were obtained by nano spray drying, but only the SLNs prepared by organic solvent-free method had sub-micron scale, uniform and spherical morphology. The organic solvent-free preparation method was proved to be a promising approach to prepare stable and uniform SLNs for potential oral delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor.

    PubMed

    Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik

    2012-07-01

    In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).

  15. NEPTUNIUM SOLVENT EXTRACTION PROCESS

    DOEpatents

    Dawson, L.R.; Fields, P.R.

    1959-10-01

    The separation of neptunium from an aqueous solution by solvent extraction and the extraction of neptunium from the solvent solution are described. Neptunium is separated from an aqueous solution containing tetravalent or hexavalent neptunium nitrate, nitric acid, and a nitrate salting out agent, such as sodium nitrate, by contacting the solution with an organic solvent such as diethyl ether. Subsequently, the neptunium nitrate is extracted from the organic solvent extract phase with water.

  16. Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells.

    PubMed

    Li, Xiaodong; Zhang, Wenjun; Wu, Yulei; Min, Chao; Fang, Junfeng

    2013-09-25

    We reported a facile solution-processed method to fabricate a MoSx anode buffer layer through thermal decomposition of (NH4)2MoS4. Organic solar cells (OSCs) based on in situ growth MoSx as the anode buffer layer showed impressive improvements, and the power conversion efficiency was higher than that of conventional PEDOT:PSS-based device. The MoSx films obtained at different temperatures and the corresponding device performance were systematically studied. The results indicated that both MoS3 and MoS2 were beneficial to the device performance. MoS3 could result in higher Voc, while MoS2 could lead to higher Jsc. Our results proved that, apart from MoO3, molybdenum sulfides and Mo(4+) were also promising candidates for the anode buffer materials in OSCs.

  17. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  18. Psychophysical Evaluation of Achromatic and Chromatic Vision of Workers Chronically Exposed to Organic Solvents

    PubMed Central

    Lacerda, Eliza Maria da Costa Brito; Lima, Monica Gomes; Rodrigues, Anderson Raiol; Teixeira, Cláudio Eduardo Correa; de Lima, Lauro José Barata; Ventura, Dora Fix; Silveira, Luiz Carlos de Lima

    2012-01-01

    The purpose of this paper was to evaluate achromatic and chromatic vision of workers chronically exposed to organic solvents through psychophysical methods. Thirty-one gas station workers (31.5 ± 8.4 years old) were evaluated. Psychophysical tests were achromatic tests (Snellen chart, spatial and temporal contrast sensitivity, and visual perimetry) and chromatic tests (Ishihara's test, color discrimination ellipses, and Farnsworth-Munsell 100 hue test—FM100). Spatial contrast sensitivities of exposed workers were lower than the control at spatial frequencies of 20 and 30 cpd whilst the temporal contrast sensitivity was preserved. Visual field losses were found in 10–30 degrees of eccentricity in the solvent exposed workers. The exposed workers group had higher error values of FM100 and wider color discrimination ellipses area compared to the controls. Workers occupationally exposed to organic solvents had abnormal visual functions, mainly color vision losses and visual field constriction. PMID:22220188

  19. Experimental Limiting Oxygen Concentrations for Nine Organic Solvents at Temperatures and Pressures Relevant to Aerobic Oxidations in the Pharmaceutical Industry

    PubMed Central

    2015-01-01

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. The data obtained from these studies help define safe operating conditions for the use of oxygen with organic solvents. PMID:26622165

  20. Water-enhanced solvation of organic solutes in ketone and ester solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; Brunt, V. van; King, C.J.

    1994-05-01

    Previous research has shown that the solubilities of dicarboxylic acids in certain electron-donor solvents are substantially increased in the presence of water. Information on solubilities, liquid-liquid equilibria and maximum-boiling ternary azeotropes was screened so as to identify other systems where codissolved water appears to enhance solvation of organic solutes in solvents. Several carboxylic acids, an alcohol, diols, and phenols were selected for examination as solutes in ketone and ester solvents. Effects of water upon solute solubilities and volatilities were measured. Results showed that water-enhanced solvation is greatest for carboxylic acids. Solute activity coefficients decreased by factors of 2--3, 6--8, andmore » 7--10 due to the presence of water for mono-, di and tricarboxylic acids, respectively. Activity coefficients decreased by a factor of about 1.5 for ethanol and 1,2-propanediol as solutes. Water-enhanced solvation of phenols is small, when existent.« less

  1. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  2. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices.

    PubMed

    Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa

    2016-11-22

    Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.

  3. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa

    2016-11-01

    Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.

  4. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices

    PubMed Central

    Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa

    2016-01-01

    Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs. PMID:27874030

  5. The colour degradation of anthocyanin-rich extract from butterfly pea (Clitoria ternatea L.) petal in various solvents at pH 7.

    PubMed

    Marpaung, Abdullah Muzi; Andarwulan, Nuri; Hariyadi, Purwiyatno; Nur Faridah, Didah

    2017-10-01

    A spectroscopic study was conducted to evaluate the colour degradation mechanism of anthocyanin-rich extract from butterfly pea petal. The extract was diluted in four different solvent systems, which were buffer solution pH 7 (AQ7) and the mixture of organic solvent with buffer solution pH 7 (4:1 v/v). The organic cosolvent involved were methanol (ME7), ethanol (ET7) and acetone (AC7). The samples were stored in containers with 0% and 50% headspace, and their colour intensity, total anthocyanin and hypsochromic shift were evaluated periodically. The rank of colour and anthocyanin degradation from the biggest was AQ7 > ME7 > ET7 > AC7. The longest hypsochromic shift was AQ7 > ME7 > ET7, while in AC7 the shift was absent. There was evidence that the volume of package headspace provoked colour stability. The colour degradation in AC7 was proposed to occur through hydrophobic interaction unfolding, and in AQ7 was through the deacylation, while in ME7 and ET7 was due to both mechanisms.

  6. Thermodynamics of solvent interaction with the metal-organic framework MOF-5.

    PubMed

    Akimbekov, Zamirbek; Wu, Di; Brozek, Carl K; Dincă, Mircea; Navrotsky, Alexandra

    2016-01-14

    The inclusion of solvent in metal-organic framework (MOF) materials is a highly specific form of guest-host interaction. In this work, the energetics of solvent MOF-5 interactions has been investigated by solution calorimetry in 5 M sodium hydroxide (NaOH) at room temperature. Solution calorimetric measurement of enthalpy of formation (ΔH(f)) of Zn4O(C8H4O4)3·C3H7NO (MOF-5·DMF) and Zn4O(C8H4O4)3·0.60C5H11NO (MOF-5·0.60DEF) from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H2BDC), N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF) gives values of 16.69 ± 1.21 and 45.90 ± 1.46 kJ (mol Zn4O)(-1), respectively. The enthalpies of interaction (ΔH(int)) for DMF and DEF with MOF-5 are -82.78 ± 4.84 kJ (mol DMF)(-1) and -89.28 ± 3.05 kJ (mol DEF)(-1), respectively. These exothermic interaction energies suggest that, at low guest loading, Lewis base solvents interact more strongly with electron accepting Zn4O clusters in the MOF than at high solvent loading. These data provide a quantitative thermodynamic basis to investigate transmetallation and solvent assisted linker exchange (SALE) methods and to synthesize new MOFs.

  7. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance.

    PubMed

    Okochi, Mina; Kanie, Kei; Kurimoto, Masaki; Yohda, Masafumi; Honda, Hiroyuki

    2008-06-01

    Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.

  8. 40 CFR 63.5749 - How do I calculate the organic HAP content of aluminum wipedown solvents?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... content of aluminum wipedown solvents? 63.5749 Section 63.5749 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5749 How do I calculate the organic HAP content of aluminum wipedown solvents? (a) Use equation 1 of this section to calculate...

  9. Influence of organic buffers on bacteriocin production by Streptococcus thermophilus ST110.

    PubMed

    Somkuti, George A; Gilbreth, Stefanie E

    2007-08-01

    The effect of the organic buffer salts MES, MOPS, and PIPES on the growth of S. thermophilus ST110, medium pH, and accumulation of the antipediococcal bacteriocin thermophilin 110 were evaluated in whey permeate media over a period of 24 h. In nonbuffered medium, thermophilin 110 production at 37 degrees C paralleled the growth of S. thermophilus ST110 and reached a maximum after 8-10 h. Addition of organic buffer salts decreased the drop in medium pH and resulted in increased biomass (dry cells; microg/mL) and higher yields of thermophilin 110 (units/microg cells). The best results were obtained by the addition of 1% (w/v) MES to the medium, which reduced the pH drop to 1.8 units after 10 h of growth (compared to 2.3 pH units in the control) and resulted in a 1.5-fold increase in cell mass (495 microg/mL) and a 7-fold increase in thermophilin 110 yield (77 units/microg dry cells) over the control. The results showed that whey permeate-based media may be suitable for producing large amounts of thermophilin 110 needed for controlling spoilage pediococci in industrial wine and beer fermentations.

  10. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    PubMed

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  11. The influence of organic solvents on estimates of genotoxicity and antigenotoxicity in the SOS chromotest.

    PubMed

    Quintero, Nathalia; Stashenko, Elena E; Fuentes, Jorge Luis

    2012-04-01

    In this work, the toxicity and genotoxicity of organic solvents (acetone, carbon tetrachloride, dichloromethane, dimethylsulfoxide, ethanol, ether and methanol) were studied using the SOS chromotest. The influence of these solvents on the direct genotoxicity induced by the mutagens mitomycin C (MMC) and 4-nitroquinoline-1-oxide (4-NQO) were also investigated. None of the solvents were genotoxic in Escherichia coli PQ37. However, based on the inhibition of protein synthesis assessed by constitutive alkaline phosphatase activity, some solvents (carbon tetrachloride, dimethylsulfoxide, ethanol and ether) were toxic and incompatible with the SOS chromotest. Solvents that were neither toxic nor genotoxic to E. coli (acetone, dichloromethane and methanol) significantly reduced the genotoxicity of MMC and 4-NQO. When these solvents were used to dissolve vitamin E they increased the antigenotoxic activity of this compound, possibly through additive or synergistic effects. The relevance of these results is discussed in relation to antigenotoxic studies. These data indicate the need for careful selection of an appropriate diluent for the SOS chromotest since some solvents can modulate genotoxicity and antigenotoxicity.

  12. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43.

    PubMed

    Kumar, Davender; Parshad, Rajinder; Gupta, Vijay Kumar

    2014-05-01

    This paper presents the molecular identification of a newly isolated bacterial strain producing a novel and organic solvent stable lipase, statistical optimization of fermentation medium, and its application in the synthesis of ethyl laurate. On the basis of nucleotide homology and phylogenetic analysis of 16S rDNA sequence, the strain was identified as Bacillus safensis DVL-43 (Gen-bank accession number KC156603). Optimization of fermentation medium using Plackett-Burman design and response surface methodology led to 11.4-fold increase in lipase production. The lipase from B. safensis DVL-43 exhibited excellent stability in various organic solvents. The enzyme retained 100% activity after 24h incubation in xylene, DMSO and toluene, each solvent being used at a concentration of 25% (v/v). The use of partially purified DVL-43 lipase as catalyst in the synthesis of ethyl laurate, an esterification product of lauric acid and ethanol, resulted in 80% esterification in 12h under optimized conditions. The formation of ethyl laurate was confirmed using TLC and (1)H NMR. Organic solvent stable lipases exhibiting potential application in enzymatic esterification are in great demand in flavor, fine chemicals and pharma industries. We could not find any report on lipase production from B. safensis strain and its application in esterification. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. PERTURBATION OF VOLTAGE-SENSITIVE CALCIUM FUNCTION IN PHEOCHROMOCYTOMA CELLS BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    Volatile organic solvents such as toluene (TOL) and trichloroethylene perturb nervous system function and share characteristic effects with other central nervous system depressants such as anesthetic gasses, ethanol, benzodiazepines and barbiturates. Recently, mechanistic studies...

  14. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  15. To Keep or Not to Keep? The Question of Crystallographic Waters for Enzyme Simulations in Organic Solvent

    PubMed Central

    Dahanayake, Jayangika N.; Gautam, Devaki N.; Verma, Rajni; Mitchell-Koch, Katie R.

    2016-01-01

    The use of enzymes in non-aqueous solvents expands the use of biocatalysts to hydrophobic substrates, with the ability to tune selectivity of reactions through solvent selection. Non-aqueous enzymology also allows for fundamental studies on the role of water and other solvents in enzyme structure, dynamics, and function. Molecular dynamics simulations serve as a powerful tool in this area, providing detailed atomic information about the effect of solvents on enzyme properties. However, a common protocol for non-aqueous enzyme simulations does not exist. If you want to simulate enzymes in non-aqueous solutions, how many and which crystallographic waters do you keep? In the present work, this question is addressed by determining which crystallographic water molecules lead most quickly to an equilibrated protein structure. Five different methods of selecting and keeping crystallographic waters are used in order to discover which crystallographic waters lead the protein structure to reach an equilibrated structure more rapidly in organic solutions. It is found that buried waters contribute most to rapid equilibration in organic solvent, with slow-diffusing waters giving similar results. PMID:27403032

  16. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  17. Aqueous Alkaline Cleaners: An Alternative to Organic Solvents

    DTIC Science & Technology

    1993-09-01

    F021, F022, F023, F026, F027, F1028) Spent solvents (FOOl, F002, F003, F004, F005) July 8, 1987 California list wastes (Liquid hazardous wastes...installations and has been successful in developing a recycling program to reclaim spent Stoddard solvent and produce a material that meets Army specifications...metal parts it has cleaned. As the contamination level rises, it depletes the solvent’s effective cleaning power until the solvent becomes " spent

  18. Sugar-Based Polyamides: Self-Organization in Strong Polar Organic Solvents.

    PubMed

    Rosu, Cornelia; Russo, Paul S; Daly, William H; Cueto, Rafael; Pople, John A; Laine, Roger A; Negulescu, Ioan I

    2015-09-14

    Periodic patterns resembling spirals were observed to form spontaneously upon unassisted cooling of d-glucaric acid- and d-galactaric acid-based polyamide solutions in N-methyl-N-morpholine oxide (NMMO) monohydrate. Similar observations were made in d-galactaric acid-based polyamide/ionic liquid (IL) solutions. The morphologies were investigated by optical, polarized light and confocal microscopy assays to reveal pattern details. Differential scanning calorimetry was used to monitor solution thermal behavior. Small- and wide-angle X-ray scattering data reflected the complex and heterogeneous nature of the self-organized patterns. Factors such as concentration and temperature were found to influence spiral dimensions and geometry. The distance between rings followed a first-order exponential decay as a function of polymer concentration. Fourier-Transform Infrared Microspectroscopy analysis of spirals pointed to H-bonding between the solvent and the pendant hydroxyl groups of the glucose units from the polymer backbone. Tests on self-organization into spirals of ketal-protected d-galactaric acid polyamides in NMMO monohydrate confirmed the importance of the monosaccharide's pendant free hydroxyl groups on the formation of these patterns. Rheology performed on d-galactaric-based polyamides at high concentration in NMMO monohydrate solution revealed the optimum conditions necessary to process these materials as fibers by spinning. The self-organization of these sugar-based polyamides mimics certain biological materials.

  19. Acid neutralizing processes in an alpine watershed front range, Colorado, U.S.A.-1: Buffering capacity of dissolved organic carbon in soil solutions

    USGS Publications Warehouse

    Iggy, Litaor M.; Thurman, E.M.

    1988-01-01

    Soil interstitial waters in the Green Lakes Valley, Front Range, Colorado were studied to evaluate the capacity of the soil system to buffer acid deposition. In order to determine the contribution of humic substances to the buffering capacity of a given soil, dissolved organic carbon (DOC) and pH of the soil solutions were measured. The concentration of the organic anion, Ai-, derived from DOC at sample pH and the concentration of organic anion, Ax- at the equivalence point were calculated using carboxyl contents from isolated and purified humic material from soil solutions. Subtracting Ax- from Ai- yields the contribution of humic substances to the buffering capacity (Aequiv.-). Using this method, one can evaluate the relative contribution of inorganic and organic constituents to the acid neutralizing capacity (ANC) of the soil solutions. The relative contribution of organic acids to the overall ANC was found to be extremely important in the alpine wetland (52%) and the forest-tundra ecotone (40%), and somewhat less important in the alpine tundra sites (20%). A failure to recognize the importance of organic acids in soil solutions to the ANC will result in erroneous estimates of the buffering capacity in the alpine environment of the Front Range, Colorado. ?? 1988.

  20. Detergent-compatible, organic solvent-tolerant alkaline protease from Bacillus circulans MTCC 7942: Purification and characterization.

    PubMed

    Patil, Ulhas; Mokashe, Narendra; Chaudhari, Ambalal

    2016-01-01

    Proteases are now recognized as the most indispensable industrial biocatalyst owing to their diverse microbial sources and innovative applications. In the present investigation, a thermostable, organic solvent-tolerant, alkaline serine protease from Bacillus circulans MTCC 7942, was purified and characterized. The protease was purified to 37-fold by a three-step purification scheme with 39% recovery. The optimum pH and temperature for protease was 10 and 60 °C, respectively. The apparent molecular mass of the purified enzyme was 43 kD as revealed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Km and Vmax values using casein-substrate were 3.1 mg/mL and 1.8 µmol/min, respectively. The protease remained stable in the presence of organic solvents with higher (>3.2) log P value (cyclohexane, n-octane, n-hexadecane, n-decane, and n-dodecane), as compared to organic solvents with lower (<3.2) log P value (acetone, butanol, benzene, chloroform, toluene). Remarkably, the protease showed profound stability even in the presence of organic solvents with less log P values (glycerol, dimethyl sulfate [DMSO], p-xylene), indicating the possibility of nonaqueous enzymatic applications. Also, protease activity was improved in the presence of metal ions (Ca(2+), Mg(2+), Mn(2+)); enhanced by biosurfactants; hardly affected by bleaching agents, oxidizing agents, and chemical surfactants; and stable in commercial detergents. In addition, a protease-detergent formulation effectively washed out egg and blood stains as compared to detergent alone. The protease was suitable for various commercial applications like processing of gelatinous film and as a compatible additive to detergent formulation with its operative utility in hard water.

  1. Real-time ESI-MS of enzymatic conversion: impact of organic solvents and multiplexing.

    PubMed

    Scheerle, Romy K; Grassmann, Johanna; Letzel, Thomas

    2012-01-01

    Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.

  2. Controlled release of beta-estradiol from PLAGA microparticles: the effect of organic phase solvent on encapsulation and release.

    PubMed

    Birnbaum, D T; Kosmala, J D; Henthorn, D B; Brannon-Peppas, L

    2000-04-03

    To determine the effect of the organic solvent used during microparticle preparation on the in vitro release of beta-estradiol, a number of formulations were evaluated in terms of size, shape and drug delivery performance. Biodegradable microparticles of poly(lactide-co-glycolide) were prepared containing beta-estradiol that utilized dichloromethane, ethyl acetate or a mixture of dichloromethane and methanol as the organic phase solvent during the particle preparation. The drug delivery behavior from the microparticles was studied and comparisons were made of their physical properties for different formulations. The varying solubilities of beta-estradiol and poly(lactide-co-glycolide) in the solvents studied resulted in biodegradable microparticles with very different physical characteristics. Microparticles prepared from solid suspensions of beta-estradiol using dichloromethane as the organic phase solvent were similar in appearance to microparticles prepared without drug. Microparticles prepared from dichloromethane/methanol solutions appeared transparent to translucent depending on the initial amount of drug used in the formulation. Microparticles prepared using ethyl acetate appeared to have the most homogeneous encapsulation of beta-estradiol, appearing as solid white spheres regardless of initial drug content. Studies showed that microparticles prepared from either ethyl acetate or a mixture of dichloromethane and methanol gave a more constant release profile of beta-estradiol than particles prepared using dichloromethane alone. For all formulations, an initial burst of release increased with increasing drug loading, regardless of the organic solvent used.

  3. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory.

    PubMed

    Hie, Liana; Chang, Jonah J; Garg, Neil K

    2015-03-10

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.

  4. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry

    DOE PAGES

    Osterberg, Paul M.; Niemeier, Jeffry K.; Welch, Christopher J.; ...

    2014-12-06

    Applications of aerobic oxidation methods in pharmaceutical manufacturing are limited in part because mixtures of oxygen gas and organic solvents often create the potential for a flammable atmosphere. To address this issue, limiting oxygen concentration (LOC) values, which define the minimum partial pressure of oxygen that supports a combustible mixture, have been measured for nine commonly used organic solvents at elevated temperatures and pressures. The solvents include acetic acid, N-methylpyrrolidone, dimethyl sulfoxide, tert-amyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, methanol, acetonitrile, and toluene. Furthermore, the data obtained from these studies help define safe operating conditions for the use of oxygen with organicmore » solvents.« less

  5. Multidimensional analysis of the effect of occupational exposure to organic solvents on lung cancer risk: the ICARE study

    PubMed Central

    Mattei, Francesca; Liverani, Silvia; Guida, Florence; Matrat, Mireille; Cenée, Sylvie; Azizi, Lamiae; Menvielle, Gwenn; Sanchez, Marie; Pilorget, Corinne; Lapôtre-Ledoux, Bénédicte; Luce, Danièle; Richardson, Sylvia; Stücker, Isabelle

    2016-01-01

    Background The association between lung cancer and occupational exposure to organic solvents is discussed. Since different solvents are often used simultaneously, it is difficult to assess the role of individual substances. Objectives The present study is focused on an in-depth investigation of the potential association between lung cancer risk and occupational exposure to a large group of organic solvents, taking into account the well-known risk factors for lung cancer, tobacco smoking and occupational exposure to asbestos. Methods We analysed data from the Investigation of occupational and environmental causes of respiratory cancers (ICARE) study, a large French population-based case–control study, set up between 2001 and 2007. A total of 2276 male cases and 2780 male controls were interviewed, and long-life occupational history was collected. In order to overcome the analytical difficulties created by multiple correlated exposures, we carried out a novel type of analysis based on Bayesian profile regression. Results After analysis with conventional logistic regression methods, none of the 11 solvents examined were associated with lung cancer risk. Through a profile regression approach, we did not observe any significant association between solvent exposure and lung cancer. However, we identified clusters at high risk that are related to occupations known to be at risk of developing lung cancer, such as painters. Conclusions Organic solvents do not appear to be substantial contributors to the occupational risk of lung cancer for the occupations known to be at risk. PMID:26911986

  6. Toxic hepatitis in occupational exposure to solvents

    PubMed Central

    Malaguarnera, Giulia; Cataudella, Emanuela; Giordano, Maria; Nunnari, Giuseppe; Chisari, Giuseppe; Malaguarnera, Mariano

    2012-01-01

    The liver is the main organ responsible for the metabolism of drugs and toxic chemicals, and so is the primary target organ for many organic solvents. Work activities with hepatotoxins exposures are numerous and, moreover, organic solvents are used in various industrial processes. Organic solvents used in different industrial processes may be associated with hepatotoxicity. Several factors contribute to liver toxicity; among these are: species differences, nutritional condition, genetic factors, interaction with medications in use, alcohol abuse and interaction, and age. This review addresses the mechanisms of hepatotoxicity. The main pathogenic mechanisms responsible for functional and organic damage caused by solvents are: inflammation, dysfunction of cytochrome P450, mitochondrial dysfunction and oxidative stress. The health impact of exposure to solvents in the workplace remains an interesting and worrying question for professional health work. PMID:22719183

  7. Precursor-route ZnO films from a mixed casting solvent for high performance aqueous electrolyte-gated transistors.

    PubMed

    Althagafi, Talal M; Algarni, Saud A; Al Naim, Abdullah; Mazher, Javed; Grell, Martin

    2015-12-14

    We significantly improved the performance of precursor-route semiconducting zinc oxide (ZnO) films in electrolyte-gated thin film transistors (TFTs). We find that the organic precursor to ZnO, zinc acetate (ZnAc), dissolves more readily in a 1 : 1 mixture of ethanol (EtOH) and acetone than in pure EtOH, pure acetone, or pure isopropanol. XPS and SEM characterisation show improved morphology of ZnO films converted from a mixed solvent cast ZnAc precursor compared to the EtOH cast precursor. When gated with a biocompatible electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived from ZnAc cast from pure EtOH. The sheet resistance at VG = VD = 1 V is 30 kΩ □(-1), lower than for any organic TFT, and lower than for any electrolyte-gated ZnO TFT reported to date.

  8. [Analysis of organic solvent poisonings occurring in Japan from 1995 to 2006].

    PubMed

    Maki, Syou; Nawata, Hideki; Ogawa, Yasutaka

    2011-01-01

    Statistical analyses based on incidence rate were carried out for organic solvent poisonings occurring in Japan. We used the published data of "Typical cases of occupational diseases" and "Current situation of occupational disease occurrence" in the "Industrial Hygiene Guidebook (Roudoueisei no Shiori)". The number of workers as a population of occupational solvent handlers was obtained from the Ministry of Health, Labour and Welfare, Japan. The annual incidences of solvent poisoning from 1995 to 2006, poisoning, death-by-poisoning, and secondary poisoning were 3.3-5.4, 0.0-0.83, and 0.0-0.34 cases/(100,000 solvent handlers × yr), respectively. Annual incidence classified by manufacturing, construction, and other services were 2.5, 52.0, and 6.1, respectively. Manufacturing showed a small increase from 1999 to 2003, and stopped increasing after 2004. Construction had a peak in 2000. Other services notably decreased from 14.4 in 1999 to 2.5 in 2006. The monthly distribution of the number of poisoning cases was prominent in January. Annual incidences of poisoning, death-by-poisoning, and secondary poisoning were 3.9, 0.5, 0.2 for toluene, 3.5, 0.5, 0.3 for xylene, and 16.4, 4.7, 2.3 for trichloroethylene, respectively. The annual incidences classified by industry and solvents showed no change for manufacturing, whereas that for construction notably decreased from 88.6 in 2000 to 12.0 in 2006.

  9. Color vision impairments among shipyard workers exposed to mixed organic solvents, especially xylene.

    PubMed

    Lee, Eun-Hee; Paek, Domyung; Kho, Young Lim; Choi, Kyungho; Chae, Hong Jae

    2013-01-01

    We evaluated color vision impairment in workers exposed to organic solvents, especially xylene. Three groups of subjects, comprising 63 workers occupationally exposed to organic solvents, 122 non-exposed workers in the same industry, and 185 subjects from the general population as controls, were evaluated for color vision. Exposure to solvents was indirectly evaluated by measuring the concentration of a urinary metabolite. Color vision was assessed using the Lanthony Desaturated 15-hue (Lanthony D-15) panel. Color confusion index (CCI) values in the exposed group were significantly higher than in the non-exposed workers or the general population, after adjustment for age and education, and significantly correlated with the concentration of methylhippuric acid. Color vision impairments were detected more frequently among the exposed group, and the most common types were type III and complex impairments. The rate of type III impairments was 9.52% in the exposed group, 1.64% in the non-exposed group, and 1.62% in the general population. Our results support the hypothesis that acquired color vision impairments could be induced by exposure to xylene. Testing for color vision impairment is a relatively simple, non-invasive and sensitive diagnostic method for relatively low-level exposures to xylene. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Response of Rhodococcus erythropolis strain IBBPo1 to toxic organic solvents

    PubMed Central

    Stancu, Mihaela Marilena

    2015-01-01

    Abstract Recently, there has been a lot of interest in the utilization of rhodococci in the bioremediation of petroleum contaminated environments. This study investigates the response of Rhodococcus erythropolis IBBPo1 cells to 1% organic solvents (alkanes, aromatics). A combination of microbiology, biochemical, and molecular approaches were used to examine cell adaptation mechanisms likely to be pursued by this strain after 1% organic solvent exposure. R. erythropolis IBBPo1 was found to utilize 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) as the sole carbon source. Modifications in cell viability, cell morphology, membrane permeability, lipid profile, carotenoid pigments profile and 16S rRNA gene were revealed in R. erythropolis IBBPo1 cells grown 1 and 24 h on minimal medium in the presence of 1% alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene). Due to its environmental origin and its metabolic potential, R. erythropolis IBBPo1 is an excellent candidate for the bioremediation of soils contaminated with crude oils and other toxic compounds. Moreover, the carotenoid pigments produced by this nonpathogenic Gram-positive bacterium have a variety of other potential applications. PMID:26691458

  11. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    NASA Astrophysics Data System (ADS)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  12. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    PubMed

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  13. Buffering the buffer

    Treesearch

    Leslie M. Reid; Sue Hilton

    1998-01-01

    Riparian buffer strips are a widely accepted tool for helping to sustain aquatic ecosystems and to protect downstream resources and values in forested areas, but controversy persists over how wide a buffer strip is necessary. The physical integrity of stream channels is expected to be sustained if the characteristics and rates of tree fall along buffered reaches are...

  14. Regioselective self-acylating cyclodextrins in organic solvent

    NASA Astrophysics Data System (ADS)

    Cho, Eunae; Yun, Deokgyu; Jeong, Daham; Im, Jieun; Kim, Hyunki; Dindulkar, Someshwar D.; Choi, Youngjin; Jung, Seunho

    2016-03-01

    Amphiphilic cyclodextrins have been synthesized with self-acylating reaction using vinyl esters in dimethylformamide. In the present study no base, catalyst, or enzyme was used, and the structural analyses using thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry show that the cyclodextrin is substituted preferentially by one acyl moiety at the C2 position of the glucose unit, suggesting that cyclodextrin functions as a regioselective catalytic carbohydrate in organic solvent. In the self-acylation, the most acidic OH group at the 2-position and the inclusion complexing ability of cyclodextrin were considered to be significant. The substrate preference was also observed in favor of the long-chain acyl group, which could be attributed to the inclusion ability of cyclodextrin cavity. Furthermore, using the model amphiphilic building block, 2-O-mono-lauryl β-cyclodextrin, the self-organized supramolecular architecture with nano-vesicular morphology in water was investigated by fluorescence spectroscopy, dynamic light scattering and transmission electron microscopy. The cavity-type nano-assembled vesicle and the novel synthetic methods for the preparation of mono-acylated cyclodextrin should be of great interest with regard to drug/gene delivery systems, functional surfactants, and carbohydrate derivatization methods.

  15. Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent.

    PubMed

    Kang, Sung-Won; Kim, Hye-Min; Rahman, M Shafiur; Kim, Ah-Na; Yang, Han-Sul; Choi, Sung-Gil

    2017-01-01

    Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO 2 ) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO 2 (DBLSC-CO 2 ) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO 2 samples had significantly higher ( p <0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using SC-CO 2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO 2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO 2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO 2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO 2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents.

  16. Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent

    PubMed Central

    Kang, Sung-Won; Kim, Hye-Min; Rahman, M. Shafiur; Kim, Ah-Na; Yang, Han-Sul

    2017-01-01

    Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO2) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO2 (DBLSC-CO2) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO2 samples had significantly higher (p<0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using SC-CO2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents. PMID:28316468

  17. Comprehensive Model for Enhanced Biodegradation of Chlorinated Solvents in Groundwater

    NASA Astrophysics Data System (ADS)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Robinson, C.; Barry, A. D.; Harkness, M.; Mack, E. E.; Dworatzek, S.

    2007-12-01

    SABRE (Source Area BioREmediation) is a public/private consortium whose charter is to de-termine if enhanced anaerobic bioremediation can result in effective treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research and development project is a field site in the United Kingdom containing TCE DNAPL. A comprehensive numerical model for simulating dehalogenation of chlorinated ethenes has been developed. The model considers the kinetic dissolution of DNAPL and nonaqueous organic amendments, bacterial growth and decay, and the interaction of biological and geochemical reactions that might influence biological activity. The model accounts for inhibitory effects of high chlorin-ated solvent concentrations as well as the link between fermentation and dehalogenation due to dynamic hydrogen concentration (the direct electron donor). In addition to the standard biodegradation pathways, sulphate reduction, mineral dissolution and precipitation kinetics are incorporated. These latter processes influence the soil buffering capacity and thus the net acidity generated. One-dimensional simulations were carried out to reproduce the data from columns packed with site soil and groundwater exhibiting both intermediate (250 mg/L) and near solubility (1100 mg/L) TCE concentrations. The modelling aims were to evaluate the key processes underpinning bioremediation success and provide a tool for investigating field sys-tem sensitivity to site data and design variables. This paper will present the model basis and validation and examine sensitivity to key processes including chlorinated ethene partitioning into soybean oil, sulphate reduction, and geochemical influences such as pH and the role of buffering in highly dechlorinating systems.

  18. Role of solvent environments in single molecule conductance used insulator-modified mechanically controlled break junctions

    NASA Astrophysics Data System (ADS)

    Muthusubramanian, Nandini; Maity, Chandan; Galan Garcia, Elena; Eelkema, Rienk; Grozema, Ferdinand; van der Zant, Herre; Kavli Institute of Nanoscience Collaboration; Department of Chemical Engineering Collaboration

    We present a method for studying the effects of polar solvents on charge transport through organic/biological single molecules by developing solvent-compatible mechanically controlled break junctions of gold coated with a thin layer of aluminium oxide using plasma enhanced atomic layer deposition (ALD). The optimal oxide thickness was experimentally determined to be 15 nm deposited at ALD operating temperature of 300°C which yielded atomically sharp electrodes and reproducible single-barrier tunnelling behaviour across a wide conductance range between 1 G0 and 10-7 G0. The insulator protected MCBJ devices were found to be effective in various solvents such as deionized water, phosphate buffered saline, methanol, acetonitrile and dichlorobenzene. The yield of molecular junctions using such insulated electrodes was tested by developing a chemical protocol for synthesizing an amphipathic form of oligo-phenylene ethynylene (OPE3-PEO) with thioacetate anchoring groups. This work has further applications in studying effects of solvation, dipole orientation and other thermodynamic interactions on charge transport. Eu Marie Curie Initial Training Network (ITN). MOLECULAR-SCALE ELECTRONICS: ``MOLESCO'' Project Number 606728.

  19. Longitudinal nuclear spin relaxation of ortho- and para-hydrogen dissolved in organic solvents.

    PubMed

    Aroulanda, Christie; Starovoytova, Larisa; Canet, Daniel

    2007-10-25

    The longitudinal relaxation time of ortho-hydrogen (the spin isomer directly observable by NMR) has been measured in various organic solvents as a function of temperature. Experimental data are perfectly interpreted by postulating two mechanisms, namely intramolecular dipolar interaction and spin-rotation, with activation energies specific to these two mechanisms and to the solvent in which hydrogen is dissolved. This permits a clear separation of the two contributions at any temperature. Contrary to the self-diffusion coefficients at a given temperature, the rotational correlation times extracted from the dipolar relaxation contribution do not exhibit any definite trend with respect to solvent viscosity. Likewise, the spin-rotation correlation time obeys Hubbard's relation only in the case of hydrogen dissolved in acetone-d6, yielding in that case a spin-rotation constant in agreement with literature data. Concerning para-hydrogen, which is NMR-silent, the only feasible approach is to dissolve para-enriched hydrogen in these solvents and to follow the back-conversion of the para-isomer into the ortho-isomer. Experimentally, this conversion has been observed to be exponential, with a time constant assumed to be the relaxation time of the singlet state (the spin state of the para-isomer). A theory, based on intermolecular dipolar interactions, has been worked out for explaining the very large values of these relaxation times which appear to be solvent-dependent.

  20. Structural analysis of benzothienobenzothiophene-based soluble organic semiconducting crystals grown by liquid crystal solvent

    NASA Astrophysics Data System (ADS)

    Shibata, Yosei; Matsuzaki, Tomoya; Ishinabe, Takahiro; Fujikake, Hideo

    2018-06-01

    In this study, we analyzed organic semiconducting single crystals composed of benzothienobenzothiophene derivatives (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, C8-BTBT) grown by nematic-phase liquid crystal (LC) solvent. As a result, we clarified that the crystal b-axis direction of the C8-BTBT single crystals was consistent with the LC alignment direction. By optical evaluation and simulation based on density functional theory, we found that the C8-BTBT single crystals in LC solvent exhibited a novel molecular conformation having alkyl chains oriented toward the b-axis.

  1. Solvent-free directed patterning of a highly ordered liquid crystalline organic semiconductor via template-assisted self-assembly for organic transistors.

    PubMed

    Kim, Aryeon; Jang, Kwang-Suk; Kim, Jinsoo; Won, Jong Chan; Yi, Mi Hye; Kim, Hanim; Yoon, Dong Ki; Shin, Tae Joo; Lee, Myong-Hoon; Ka, Jae-Won; Kim, Yun Ho

    2013-11-20

    Highly ordered organic semiconductor micropatterns of the liquid-crystalline small molecule 2,7-didecylbenzothienobenzothiophene (C10 -BTBT) are fabricated using a simple method based on template-assisted self-assembly (TASA). The liquid crystallinity of C10 -BTBT allows solvent-free fabrication of high-performance printed organic field-effect transistors (OFETs). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents.

    PubMed

    Tessensohn, Malcolm E; Lee, Melvyn; Hirao, Hajime; Webster, Richard D

    2015-01-12

    Voltammetric experiments with 9,10-anthraquinone and 1,4-benzoquinone performed under controlled moisture conditions indicate that the hydrogen-bond strengths of alcohols in aprotic organic solvents can be differentiated by the electrochemical parameter ΔEp (red) =|Ep (red(1)) -Ep (red(2)) |, which is the potential separation between the two one-electron reduction processes. This electrochemical parameter is inversely related to the strength of the interactions and can be used to differentiate between primary, secondary, tertiary alcohols, and even diols, as it is sensitive to both their steric and electronic properties. The results are highly reproducible across two solvents with substantially different hydrogen-bonding properties (CH3 CN and CH2 Cl2 ) and are supported by density functional theory calculations. This indicates that the numerous solvent-alcohol interactions are less significant than the quinone-alcohol hydrogen-bonding interactions. The utility of ΔEp (red) was illustrated by comparisons between 1) 3,3,3-trifluoro-n-propanol and 1,3-difluoroisopropanol and 2) ethylene glycol and 2,2,2-trifluoroethanol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mercaptobenzothiazole-on-gold organic phase biosensor systems: 1. Enhanced organosphosphate pesticide determination.

    PubMed

    Somerset, V; Baker, P; Iwuoha, E

    2009-02-01

    This paper reports the construction of the gold/mercaptobenzothiazole/polyaniline/acetylcholinesterase/polyvinylacetate (Au/ MBT/PANI/AChE/PVAc) thick-film biosensor for the determination of certain organophosphate pesticide solutions in selected aqueous organic solvent solutions. The Au/MBT/PANI/AChE/PVAc electrocatalytic biosensor device was constructed by encapsulating acetylcholinesterase (AChE) enzyme in the PANI polymer composite, followed by the coating of poly(vinyl acetate) (PVAc) on top to secure the biosensor film from disintegration in the organic solvents evaluated. The electroactive substrate called acetylthiocholine (ATCh) was employed to provide the movement of electrons in the amperometric biosensor. The voltammetric results have shown that the current shifts more anodically as the Au/MBT/PANI/AChE/PVAc biosensor responded to successive acetylthiocholine (ATCh) substrate addition under anaerobic conditions in 0.1 M phosphate buffer, KCl (pH 7.2) solution and aqueous organic solvent solutions. For the Au/MBT/PANI/AChE/PVAc biosensor, various performance and stability parameters were evaluated. These factors include the optimal enzyme loading, effect of pH, long-term stability of the biosensor, temperature stability of the biosensor, the effect of polar organic solvents, and the effect of non-polar organic solvents on the amperometric behavior of the biosensor. The biosensor was then applied to detect a series of 5 organophosphorous pesticides in aqueous organic solvents and the pesticides studied were parathion-methyl, malathion and chlorpyrifos. The results obtained have shown that the detection limit values for the individual pesticides were 1.332 nM (parathion-methyl), 0.189 nM (malathion), 0.018 nM (chlorpyrifos).

  4. Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers.

    PubMed

    Lee, Inhwa; Noh, Jonghyeon; Lee, Jung-Yong; Kim, Taek-Soo

    2017-10-25

    Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens-Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function.

  5. Interaction of protonated merocyanine dyes with amines in organic solvents.

    PubMed

    Ribeiro, Eduardo Alberton; Sidooski, Thiago; Nandi, Leandro Guarezi; Machado, Vanderlei Gageiro

    2011-10-15

    2,6-Diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (1a) and 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (2a) were protonated in organic solvents (dichloromethane, acetonitrile, and DMSO) to form 1b and 2b, respectively. The appearance of the solvatochromic bands of 1a and 2a was studied UV-vis spectrophotometrically by deprotonation of 1b and 2b in solution in the presence of the following amines: aniline (AN), N-methylaniline (NMAN), N,N-dimethylaniline (NDAN), n-butylamine (BA), diethylamine (DEA), and triethylamine (TEA). Titrations of 1b and 2b with the amines were carried out and the binding constants were determined from the titration curves in each solvent, using a mathematical model adapted from the literature which considers the simultaneous participation of two dye: amine stoichiometries, 1:1 and 1:2. The data obtained showed the following base order for the two compounds in DMSO: BA>DEA>TEA, while aromatic amines did not cause any effect. In dichloromethane, the following base order for 1b was verified: TEA>DEA>BA≫NDAN, while for 2b the order was: TEA>DEA>BA, suggesting that 1b is more acidic than 2b. The data in acetonitrile indicated for 1b and 2b the following order for the amines: DEA>TEA>BA. The diversity of the experimental data were explained based on a model that considers the level of interaction of the protonated dyes with the amines to be dependent on three aspects: (a) the basicity of the amine, which varies according to their molecular structure and the solvent in which it is dissolved, (b) the molecular structure of the dye, and (c) the solvent used to study the system. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-01

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm2/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  7. [Characterization of severe acute occupational poisoning accidents related to organic solvents in China between 1989 and 2003].

    PubMed

    Wang, Huan-Qiang; Li, Tao; Zhang, Min; Wang, Hong-Fei; Chen, Shu-Yang; Du, Xie-Yi; Wang, Dan; Zhang, Shuang; Qin, Jian

    2006-12-01

    To analyze severe acute occupational poisoning accidents related to organic solvents reported in China between 1989 and 2003, and to study the characteristics of severe acute occupational poisoning accidents and provide scientific evidences for prevention and control strategies. The data from the national occupational poisoning case reporting system were analyzed with descriptive methods. (1) There were 58 severe acute occupational poisoning accidents related to organic solvents for 15 years with 393 workers poisoned and 48 workers died. The total poisoning rate was 51.2%, and the total mortality was 12.2%. The average poisoning age was (30.9 +/- 8.8) years old and the average death age was (30.6 +/- 12.0) years old. (2) There were 11 types of chemicals that caused these poisoning accidents, and most of the accidents were caused by benzene and homologs. (3) Most of the accidents occurred in manufacture, chemical industry, construction industry, transportation and storage industry, service and commerce. The risk was higher in some jobs than in others, such as paint spraying and cleanout. The poisoning accidents occurred more frequently from April to July each year. (4) The main causes of the accidents were poor ventilation (23.6%), lack of personal protection equipment (21.2%), lack of safety education (19.2%), and lack of safety work practice (15.8%) etc. The ventilation at the workplace involved in organic solvents should be maintained and the skin contacting directly with the organic solvents should be avoided, and it is encouraged to replace the poison with the nontoxic or lower toxic chemicals.

  8. Polarization studies on zinc in hydrochloric acid solution containing some organic solvents

    NASA Astrophysics Data System (ADS)

    Mohamed, A. K.

    1999-05-01

    The corrosion behaviour of zinc metal in some organic solvents was tested electrochemically using galvanometric polarization measurements. The results showed that the studied organic solvents act as mixed type inhibitors. The inhibition was assumed to occur via physical adsorption of the inhibitor molecules fitting a Temkin's isotherm. The inhibition eficiency of the solvents increase in the order: glycerol>ethylene glycol>DMSO>dioxane. This order is not affected by the variation in temperature in the range 35-55 circC. The increase in temperature was found to increase the corrosion in absence and in presence of inhibitors. Some thermodynamic parameters for adsorption were also computed and discussed. Le comportement de corrosion du zinc métallique dans certains solvants organiques a été testé électrochimiquement en utilisant les mesures de polarisation galvanométrique. Les résultats ont montré que les solvants organiques étudiés agissent comme des inhibiteurs de type mixte. L'inhibition semble se produire par l'adsorption physique des molécules inhibitrices selon une isotherme de Temkin. L'efficacité d'inhibition des solvants augmente dans l'ordre suivant : glycérol>éthylène glycol>DMSO>dioxane. Cet ordre n'est pas affecté par une variation de température dans l'intervalle compris entre 35 et 55 circC. La corrosion augmente avec la température, en absence ou en présence d'inhibiteurs. Certains paramètres thermodynamiques d'adsorption ont été calculés et discutés.

  9. Thiolsubtilisin acts as an acetyltransferase in organic solvents.

    PubMed

    Tai, Dar Fu; Liaw, Wen Chen

    2002-04-24

    The catalytic mechanism of arylamine N-acetyltransferase has been proposed to involve Cys-His-Asp as its catalytic triad. Thiolsubtilisin, a chemically modified enzyme that has a catalytic triad of Cys-His-Asp at the active site, mimics the catalysis of arylamine N-acetyltransferase, serotonin N-acetyltransferase, histone N-acetyltransferase and amino acid N-acetyltransferase. Thiolsubtilisin not only can catalyze amino acid transacetylation, but is also able to catalyze amine transacetylation. Ethyl acetate was used as the acylating reagent to form N-acetyl amino acids and amines in organic solvents with moderate yield. Hence, these findings broaden our understanding of the structural features required for N-acetyltransferases activity as well as provide a structural relationship between cysteine protease and other N-acyltransferases.

  10. Conformational isomerism of phenolic procyanidins: preferred conformations in organic solvents and water

    Treesearch

    Tsutomu Hatano; Richard W. Hemingway

    1997-01-01

    NMR studies of catechin-{4α→8)-epicatechin (I) and catechin-{4α→8)-catechin (2) provided complete assignment of the proton and carbon resonances for both the more extended and compact conformers in the free phenolic form. When 1 is in organic solvents, the more extended rotamer is preferred over the more compact rotamer (10:7), but...

  11. Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli.

    PubMed Central

    Aono, R; Negishi, T; Nakajima, H

    1994-01-01

    A variety of genes are involved in determining the level of organic solvent tolerance of Escherichia coli K-12. Gene ostA is one of the genes contributing to the level of organic solvent tolerance. This gene was cloned from an n-hexane-tolerant strain of E. coli, JA300. A JA300-based n-hexane-sensitive strain, OST4251, was converted to the n-hexane-tolerant phenotype by transformation with DNA containing the ostA gene derived from JA300. Thus, the cloned ostA gene complemented the n-hexane-sensitive phenotype of OST4251. Images PMID:7811102

  12. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.

    PubMed

    Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X

    2014-04-01

    The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.

  13. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  14. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    NASA Astrophysics Data System (ADS)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  15. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, Robert T.; Jackson, Kenneth J.; Duba, Alfred G.; Chen, Ching-I

    1998-01-01

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating.

  16. Impairments of colour vision induced by organic solvents: a meta-analysis study.

    PubMed

    Paramei, Galina V; Meyer-Baron, Monika; Seeber, Andreas

    2004-09-01

    The impairment of colour discrimination induced by occupational exposure to toluene, styrene and mixtures of organic solvents is reviewed and analysed using a meta-analytical approach. Thirty-nine studies were surveyed covering a wide range of exposure conditions. Those studies using the Lanthony Panel D-15 desaturated test (D-15d) were further considered. From these for 15 samples data on colour discrimination ability (Colour Confusion Index, CCI) and exposure levels were provided, required for the meta-analysis. In accordance with previously reported higher CCI values for the exposed groups, the computations yielded positive effect sizes for 13 of the 15 samples, indicating that in the great majority of the studies the exposed groups showed inferior colour discrimination. However, the meta-analysis showed great variation in effect sizes across the studies. Possible reasons for inconsistency among the reported findings are discussed. These pertain to exposure-related parameters, as well as to confounders such as conditions of test administration and characteristics of subject samples. Those factors vary considerably among the studies and might have greatly contributed to divergence in measured colour vision capacity, thereby obscuring consistent effects of organic solvents on colour discrimination.

  17. Development and application of solvent-free extraction for the detection of aflatoxin M1 in dairy products by enzyme immunoassay.

    PubMed

    Anfossi, Laura; Calderara, Marianna; Baggiani, Claudio; Giovannoli, Cristina; Arletti, Enrico; Giraudi, Gianfranco

    2008-03-26

    The official methods for the quantification of aflatoxin M1 in dairy products (cheese and yogurt) include extraction into dichloromethane or chloroform, evaporation of the solvent, partitioning of the reconstituted residue with hexane, and subsequent analysis. To secure a rapid and inexpensive screen for aflatoxin M1 contamination, a sensitive competitive ELISA, using a rabbit polyclonal antibody, was developed for measuring aflatoxin M1 in milk and used in a comparative study for measuring the extraction efficiency of aflatoxin M1 in aqueous or organic solvent buffers using yogurt samples. An aqueous sodium citrate solution was found to be suitable for extracting aflatoxin M1, thus eliminating the need for organic solvents. The citrate extraction proved to be efficient (recovery ranged from 70 to 124%) in fortified samples of very different kinds of dairy products, including yogurt and six types of cheese. Fourteen yogurt and cheese samples were extracted with citrate solution and analyzed by ELISA. A good correlation was observed (y=0.95x-0.59, r2=0.98) when the data were compared with those obtained through the official method, across a wide range of aflatoxin M1 contaminations (10-200 ng/kg).

  18. Buffer capacity of biologics--from buffer salts to buffering by antibodies.

    PubMed

    Karow, Anne R; Bahrenburg, Sven; Garidel, Patrick

    2013-01-01

    Controlling pH is essential for a variety of biopharmaceutical process steps. The chemical stability of biologics such as monoclonal antibodies is pH-dependent and slightly acidic conditions are favorable for stability in a number of cases. Since control of pH is widely provided by added buffer salts, the current study summarizes the buffer characteristics of acetate, citrate, histidine, succinate, and phosphate buffers. Experimentally derived values largely coincide with values calculated from a model that had been proposed in 1922 by van Slyke. As high concentrated protein formulations become more and more prevalent for biologics, the self-buffering potential of proteins becomes of relevance. The current study provides information on buffer characteristics for pH ranges down to 4.0 and up to 8.0 and shows that a monoclonal antibody at 50 mg/mL exhibits similar buffer capacity as 6 mM citrate or 14 mM histidine (pH 5.0-6.0). Buffer capacity of antibody solutions scales linearly with protein concentration up to more than 200 mg/mL. At a protein concentration of 220 mg/mL, the buffer capacity resembles the buffer capacity of 30 mM citrate or 50 mM histidine (pH 5.0-6.0). The buffer capacity of monoclonal antibodies is practically identical at the process relevant temperatures 5, 25, and 40°C. Changes in ionic strength of ΔI=0.15, in contrast, can alter the buffer capacity up to 35%. In conclusion, due to efficient self-buffering by antibodies in the pH range of favored chemical stability, conventional buffer excipients could be dispensable for pH stabilization of high concentrated protein solutions. Copyright © 2013 American Institute of Chemical Engineers.

  19. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations.

    PubMed

    Pandey, Sandeep; Singh, S P

    2012-04-01

    A haloalkaliphilic bacterium was isolated from salt-enriched soil of Mithapur, Gujarat (India) and identified as Bacillus agaradhaerens Mi-10-6₂ based on 16S rRNA sequence analysis (NCBI gene bank accession, GQ121032). The bacterium was studied for its α-amylase characteristic in the presence of organic solvents. The enzyme was quite active and it retained considerable activity in 30% (v/v) organic solvents, dodecane, decane, heptane, n-hexane, methanol, and propanol. At lower concentrations of solvents, the catalysis was quite comparable to control. Enzyme catalysis at wide range of alkanes and alcohol was an interesting finding of the study. Mi-10-6₂ amylase retained activity over a broader alkaline pH range, with the optimal pH at 10-11. Two molars of salt was optimum for catalysis in the presence of most of the tested solvents, though the enzyme retained significant activity even at 4 M salt. With dodecane, the optimum temperature shifted from 50 °C to 60 °C, while the enzyme was active up to 80 °C. Over all, the present study focused on the effect of organic solvents on an extracellular α-amylase from haloalkaliphilic bacteria under varying conditions of pH, temperature, and salt.

  20. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    PubMed Central

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360

  1. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola

    2015-05-19

    Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soilsmore » with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.« less

  2. Characterization of nicergoline polymorphs crystallized in several organic solvents.

    PubMed

    Malaj, Ledjan; Censi, Roberta; Capsoni, Doretta; Pellegrino, Luca; Bini, Marcella; Ferrari, Stefania; Gobetto, Roberto; Massarotti, Vincenzo; Di Martino, Piera

    2011-07-01

    Nicergoline (NIC), a poorly water-soluble semisynthetic ergot derivative, was crystallized from several organic solvents, obtaining two different polymorphic forms, the triclinic form I and the orthorhombic form II. NIC samples were then characterized by several techniques such as (13)C cross-polarization magic angle spinning solid-state spectroscopy, room-temperature and high-temperature X-ray powder diffraction, differential scanning calorimetry, and by analysis of weight loss, solvent content, powder density, morphology, and particle size. Solubility and intrinsic dissolution rates determined for the two polymorphic forms in water and hydrochloride solutions (HCl 0.1 N) were always higher for form II than for form I, which is actually the form used for the industrial preparation of NIC medicinal products. Preformulation studies might encourage industry for the evaluation of polymorph II, as it is more suitable for pharmaceutical applications. Results in drug delivery, as well as those obtained by the above-mentioned techniques, and the application of Burger-Ramberger's rules make it possible to conclude that there is a thermodynamic relation of monotropy between the two polymorphs. This last assumption may help formulators in predicting the relative stability of the two forms. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  3. A case study on co-exposure to a mixture of organic solvents in a Tunisian adhesive-producing company.

    PubMed

    Gargouri, Imed; Khadhraoui, Moncef; Nisse, Catherine; Leroyer, Ariane; Masmoudi, Mohamed L; Frimat, Paul; Marzin, Daniel; Elleuch, Boubaker; Zmirou-Navier, Denis

    2011-11-14

    to assess environmental and biological monitoring of exposure to organic solvents in a glue-manufacturing company in Sfax, Tunisia. Exposure of volunteer workers, in the solvented glue-work-stations, in the control laboratory and in the storage rooms of the finished products, was assessed through indoor-air and urine measurements. Informed consent of the workers was obtained. The exposure indexes were found with high values in the solvented workshop as well as in the control laboratory and were respectively, 8.40 and 3.12. These indexes were also correlated with hexane and toluene indoor air concentrations. As to urine, the obtained results for the 2,5-hexandione and hippuric acid, metabolites of hexane and toluene, respectively, were in accord with the indoor-air measurements, with an average of 0.46 mg/l and 1240 mg/g of creatinine. This study assessed for the first time biological exposure to organic solvents used in Tunisian adhesive industries. Although values are likely to underestimate true exposure levels, some figures exceed European and American occupational exposure guidelines.

  4. Influence of Organic Solvents on Chalcopyrite Oxidation Ability of Thiobacillus ferrooxidans

    PubMed Central

    Torma, Arpad E.; Itzkovitch, Irwin J.

    1976-01-01

    It has been shown that organic solvents used primarily for the extraction of metals from aqueous leach liquors decrease both the surface tension of the aqueous phase and the chalcopyrite oxidation ability of Thiobacillus ferrooxidans. For the reagents and modifiers investigated, the order of inhibition was found to be LIX 70 < LIX 73 < LIX 71 < LIX 64N < LIX 65N < TBP ∼ isodecanol ∼ nonylphenol < LIX 63 <<< D2EHPA ∼ Kelex 100 < Kelex 120 <<< Alamine 336 ∼ Alamine 308 ∼ Alamine 310 < Alamine 304 < Adogen 381 ∼ Aliquat 336 < Adogen 364. To avoid limitation in bacterial activity, organic matter should be removed from the recycling liquor prior to leaching. PMID:16345164

  5. A toxic organic solvent-free technology for the preparation of PEGylated paclitaxel nanosuspension based on human serum albumin for effective cancer therapy

    PubMed Central

    Yin, Tingjie; Dong, Lihui; Cui, Bei; Wang, Lei; Yin, Lifang; Zhou, Jianping; Huo, Meirong

    2015-01-01

    Clinically, paclitaxel (PTX) is one of most commonly prescribed therapies against a wide range of solid neoplasms. Despite its success, the clinical applicability of PTX (Taxol®) is severely hampered by systemic toxicities induced by Cremophor EL. While attempts to bypass the need for Cremophor EL have been developed through platforms such as Abraxane™, nab™ relies heavily on the use of organic solvents, namely, chloroform. The toxicity introduced by residual chloroform poses a potential risk to patient health. To mitigate the toxicities of toxic organic solvent-based manufacture methods, we have designed a method for the formulation of PTX nanosuspensions (PTX-PEG [polyethylene glycol]-HSA [human serum albumin]) that eliminates the dependence on toxic organic solvents. Coined the solid-dispersion technology, this technique permits the dispersion of PTX into PEG skeleton without the use of organic solvents or Cremophor EL as a solubilizer. Once the PTX-PEG dispersion is complete, the dispersion can be formulated with HSA into nanosuspensions suitable for intravenous administration. Additionally, the incorporation of PEG permits the prolonged circulation through the steric stabilization effect. Finally, HSA-mediated targeting permits active receptor-mediated endocytosis for enhanced tumor uptake and reduced side effects. By eliminating the need for both Cremophor EL and organic solvents while simultaneously increasing antitumor efficacy, this method provides a superior alternative to currently accepted methods for PTX delivery. PMID:26715846

  6. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wei; Han, Shijiao; Huang, Wei

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role inmore » enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.« less

  7. Migration behavior of organic dyes based on physicochemical properties of solvents as background electrolytes in non-aqueous capillary electrophoresis.

    PubMed

    Gu, Minjeong; Cho, Keunchang; Kang, Seong Ho

    2018-07-27

    The migration behavior of organic fluorescent dyes (i.e., crystal violet, methyl violet base, methyl violet B base, rhodamine 6G, and rhodamine B base) in non-aqueous capillary electrophoresis (NACE) was investigated by focusing on the physicochemical properties of various organic solvents [ethanol, methanol, 2-propanol, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)] in background electrolyte (BGE). Laser-induced fluorescence (LIF) and UV/Vis detectors were employed to observe both the migration time of organic dyes and the electroosmotic flow (EOF) in NACE, respectively. As seen in conventional aqueous BGE, the mobility of EOF in organic solvents tended to rise when the ratio between the dielectric constant and the solvent's viscosity (ε/η) increased in accordance with Smoluchowski's equation. However, unlike the ε/η of pure organic solvents, the migration order of dyes changed as follows: methanol (60.0) > DMF (45.8) > ethanol (22.8) > DMSO (23.4) > 2-propanol (9.8). Since the amount of acetic acid added to balance the pH depends on the pK a of each solvent, EOF changed when the difference in the ε/η value was small. This resulted from the inhibition of mobility, and its difference was dependent on the ε/η of BGEs with high ionic strength. In particular, the actual mobility of dyes in DMF showed excellent compliance with the Debye-Hückel-Onsager (DHO) theory extended by Falkenhagen and Pitts, which enabled us to analyze all dyes within 15 min with excellent resolution (R s >  2.5) under optimum NACE conditions (10 mM sodium borate and 4661 mM acetic acid in 100% DMF, pH 4.5). In addition, the NACE method was successfully applied for analyzing commercially available ballpoint ink pens. Thus, these results could be used to anticipate the migration order of organic dyes in a 100% NACE separation system. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis.

    PubMed

    Cecchini, Martina Maya; Charnay, Clarence; De Angelis, Francesco; Lamaty, Frédéric; Martinez, Jean; Colacino, Evelina

    2014-01-01

    PEG-based ionic liquids are a new appealing group of solvents making the link between two distinct but very similar fluids: ionic liquids and poly(ethylene glycol)s. They find applications across a range of innumerable disciplines in science, technology, and engineering. In the last years, the possibility to use these as alternative solvents for organic synthesis and catalysis has been increasingly explored. This Review highlights strategies for their synthesis, their physical properties (critical point, glass transition temperature, density, rheological properties), and their application in reactions catalyzed by metals (such as Pd, Cu, W, or Rh) or as organic solvent (for example for multicomponent reactions, organocatalysis, CO2 transformation) with special emphasis on their toxicity, environmental impact, and biodegradability. These aspects, very often neglected, need to be considered in addition to the green criteria usually considered to establish ecofriendly processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental and Theoretical Study of Molecular Response of Amine Bases in Organic Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathmann, Shawn M.; Cho, Herman M.; Chang, Tsun-Mei

    2014-05-08

    Reorientational correlation times of various amine bases (viz., pyridine, 2,6-lutidene, 2,2,6,6-tetramethylpiperidine) and organic solvents (dichloromethane, toluene) were determined by solution-state NMR relaxation time measurements and compared with predictions from molecular dynamics (MD) simulations. The bases and solvents are reagents in complex reactions involving Frustrated Lewis Pairs (FLP), which display remarkable catalytic activity in metal-free H2 scission. The comparison of measured and simulated correlation times is a key test of the ability of recent MD and quantum electronic structure calculations to elucidate the mechanism of FLP activity. Correla- tion times were found to be in the range 1.4-3.4 ps (NMR) andmore » 1.23-5.28 ps (MD) for the amines, and 0.9-2.3 ps (NMR) and 0.2-1.7 ps (MD) for the solvent molecules. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacic Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.« less

  10. Organic solvent-free sugar-based transparency nanopatterning material derived from biomass for eco-friendly optical biochips using green lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Oshima, Akihiro; Oyama, Tomoko G.; Ito, Kenta; Sugahara, Kigenn; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2014-05-01

    An organic solvent-free sugar-based transparency nanopatterning material which had specific desired properties such as nanostructures of subwavelength grating and moth-eye antireflection, acceptable thermal stability of 160 °C, and low imaginary refractive index of less than 0.005 at 350-800 nm was proposed using electron beam lithography. The organic solvent-free sugar-based transparency nanopatterning material is expected for non-petroleum resources, environmental affair, safety, easiness of handling, and health of the working people, instead of the common developable process of tetramethylammonium hydroxide. 120 nm moth-eye antireflection nanopatterns images with exposure dose of 10 μC/cm2 were provided by specific process conditions of electron beam lithography. The developed sugar derivatives with hydroxyl groups and EB sensitive groups in the organic solvent-free sugar-based transparency nanopatterning material were applicable to future development of optical interface films of biology and electronics as a novel chemical design.

  11. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  12. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    DOEpatents

    Taylor, R.T.; Jackson, K.J.; Duba, A.G.; Chen, C.I.

    1998-05-19

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs.

  13. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Wang, Weixuan; Chen, Lingyun; Bai, Yitong; Ming, Zhu; Yang, Sheng-Tao

    2016-01-01

    Graphene sponge (GS) has found applications in oil removal due to the hydrophobic nature of graphene sheets. Current hydrothermal preparations of GS use toxic reducing reagents, which might cause environmental pollution. In this study, we reported that graphene oxide (GO) could be hydrothermally reduced by glucose to form GS for the adsorption of oils and various organic solvents. Graphene sheets were reduced by glucose during the hydrothermal treatment and formed 3D porous structure. GS efficiently adsorbed organic solvents and oils with competitive adsorption capacities. GS was able to treat pollutants in pure liquid form and also in the simulated seawater. GS could be easily regenerated by evaporating or burning. After 10 cycles, the adsorption capacity still retained 77% by evaporating and 87% by burning. The implication to the applications of GS in water remediation is discussed.

  14. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    PubMed

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  15. A new irreversible enzyme-aided esterification method in organic solvents.

    PubMed

    Jeromin, Günter E; Zoor, Annegreth

    2008-05-01

    A new irreversible esterification method for carboxylic acids catalyzed by a lipase from Candida antarctica (Novozyme 435) in organic solvents has been developed. The water produced during the process is chemically destroyed by a corresponding ester of acetoacetate, which acts as a sacrificial substrate in this reaction. The flavour esters isobutyl acetate, methyl butyrate, ethyl butyrate and benzyl butyrate were synthesized either in small scale (0.05 mol) or large scale (1 mol). The yields range from 82 to 92% within 24 h at 52 degrees C. Optimal molar ratios of reactants were 1:1:1 (carboxylic acid:alcohol:acetoacetate).

  16. Prediction of Bicarbonate Requirements for Enhanced Reductive Bioremediation of Chlorinated Solvent-Contaminated Sites

    NASA Astrophysics Data System (ADS)

    Robinson, C.; Barry, D. A.

    2008-12-01

    Enhanced anaerobic dechlorination is a promising technology for in situ remediation of chlorinated ethene DNAPL source areas. However, the build-up of organic acids and HCl in the source zone can lead to significant groundwater acidification. The resulting pH drop inhibits the activity of the dechlorinating microorganisms and thus may stall the remediation process. Source zone remediation requires extensive dechlorination, such that it may be common for soil's natural buffering capacity to be exceeded, and for acidic conditions to develop. In these cases bicarbonate addition (e.g., NaHCO3, KHCO3) is required for pH control. As a design tool for treatment strategies, we have developed BUCHLORAC, a Windows Graphical User Interface based on an abiotic geochemical model that allows the user to predict the acidity generated during dechlorination and associated buffer requirements for their specific operating conditions. BUCHLORAC was motivated by the SABRE (Source Area BioREmediation) project, which aims to evaluate the effectiveness of enhanced reductive dechlorination in the treatment of chlorinated solvent source zones.

  17. A new capillary electrophoresis buffer for determining organic and inorganic anions in electroplating bath with surfactant additives.

    PubMed

    Sun, H; Lau, K M; Fung, Y S

    2010-05-07

    Monitoring of trace impurities in electroplating bath is needed to meet EU requirements for WEEE and RoHS and for quality control of electrodeposits. Methods using IC and 100% aqueous CE buffer were found producing non-repeatable results attributed to interference of surfactants and major methanesulphonate anion. A new CE buffer containing 1.5mM tetraethylenepentaamine, 3mM 1,3,5-benzenetricarboxylic acid and 15 mM Tris in 20% (v/v) methanol at pH=8.4 was shown to enhance the separation window, reduce interaction between buffer and bath constituents, and give satisfactory repeatability with baseline separation for 14 organic and inorganic anions within 14 min, good repeatability for migration time (0.32-0.57% RSD), satisfactory peak area and peak height (2.9-4.5 and 3-4.7% respectively), low detection limit (S/N=2, 20-150 ppb), and wide working ranges (0.1-100 ppm). The CE buffer with 20% (v/v) methanol has demonstrated its capability for identifying anion impurities causing problem in aged tin bath and the use of only 10-fold dilution to produce reliable results for quality assessment in plating bath containing high surfactant additives. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    PubMed

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  19. SOLVENT EXTRACTION OF URANIUM VALUES

    DOEpatents

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  20. Measuring the Absorption Rate of CO 2 in Nonaqueous CO 2 -Binding Organic Liquid Solvents with a Wetted-Wall Apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathias, Paul M.; Zheng, Feng; Heldebrant, David J.

    2015-09-17

    The kinetics of the absorption of CO 2 into two nonaqueous CO 2-binding organic liquid (CO 2BOL) solvents were measured at T=35, 45, and 55 °C with a wetted-wall column. Selected CO 2 loadings were run with a so-called “first-generation” CO 2BOL, comprising an independent base and alcohol, and a “second-generation” CO 2BOL, in which the base and alcohol were conjoined. Liquid-film mass-transfer coefficient (k'g) values for both solvents were measured to be comparable to values for monoethanolamine and piperazine aqueous solvents under a comparable driving force, in spite of far higher solution viscosities. An inverse temperature dependence of themore » k'g value was also observed, which suggests that the physical solubility of CO 2 in organic liquids may be making CO 2 mass transfer faster than expected. Aspen Plus software was used to model the kinetic data and compare the CO 2 absorption behavior of nonaqueous solvents with that of aqueous solvent platforms. This work continues our development of the CO2BOL solvents. Previous work established the thermodynamic properties related to CO 2 capture. The present paper quantitatively studies the kinetics of CO 2 capture and develops a rate-based model.« less

  1. Implementation of a solvent management program to control paint shop volatile organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floer, M.M.; Hicks, B.H.

    1997-12-31

    The majority of automobile assembly plant volatile organic compound (VOC) emissions are generated from painting operations. Typical paint operations generate more than 90 percent of the total plant emissions and, up to, 50 percent can be released by cleaning sources. Plant practices which contribute to the release of VOC emissions include the cleaning of paint lines and equipment, tanks, spray booths, floors and vehicles. Solvents continue to be the largest contributing source of VOC emissions in an automotive paint shop. To reduce overall VOC emissions, environmental regulations and guidelines were introduced under the Clean Air Act; Pollution Prevention and Wastemore » Minimization programs, Control Techniques, and special air permit conditions. The introduction of these regulations and guidelines has driven industry toward continual refinement of their present cleaning methods while pursuing new techniques and technologies. Industry has also shown a proactive approach by introducing new waterborne and powder coating paint technologies to reduce overall emissions. As new paint technologies are developed and introduced, special attention must be given to the types of materials utilized for cleaning. The development and implementation of a solvent management program allows a facility to standardize a program to properly implement materials, equipment, technologies and work practices to reduce volatile organic compound emissions, meet strict cleaning requirements posed by new paint technologies and produce a vehicle which meets the high quality standards of the customer. This paper will assess the effectiveness of a solvent management program by examining pollution prevention initiatives and data from four different painting operations.« less

  2. [Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest].

    PubMed

    Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong

    2014-11-01

    Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by

  3. Non-equilibrium plasma reactors for organic solvent destruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.L.; Beltran, M.R.; Kravets, Z.

    1997-12-31

    Two non-equilibrium plasma reactors were evaluated for their ability to destroy three widely used organic solvents, i.e., 2-butanone, toluene and ethyl acetate. The catalyzed plasma reactor (CPR) with 6 mm glass beads destroys 98% of 50 ppm toluene in air at 24 kV/cm and space velocities of 1,400 v/v/hr. Eighty-five percent of ethyl acetate and 2-butanone are destroyed under the same conditions. The tubular plasma reactor (TPR) has an efficiency of 10% to 20% lower than that of a CPR under the same conditions. The 1,400 v/v/hr in a CPR is equal to a residence time of 2.6 seconds inmore » a TPR. The operating temperatures, corona characteristics, as well as the kinetics of VOC destruction in both TPR and CPR were studied.« less

  4. Solvent replacement for green processing.

    PubMed Central

    Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A

    1998-01-01

    The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018

  5. Buffer-regulated biocorrosion of pure magnesium.

    PubMed

    Kirkland, Nicholas T; Waterman, Jay; Birbilis, Nick; Dias, George; Woodfield, Tim B F; Hartshorn, Richard M; Staiger, Mark P

    2012-02-01

    Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO(2) atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.

  6. The spectral properties of (-)-epigallocatechin 3-O-gallate (EGCG) fluorescence in different solvents: dependence on solvent polarity.

    PubMed

    Snitsarev, Vladislav; Young, Michael N; Miller, Ross M S; Rotella, David P

    2013-01-01

    (-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.

  7. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  8. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE PAGES

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    2017-01-05

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  9. Comparative responses of river biofilms at the community level to common organic solvent and herbicide exposure.

    PubMed

    Paule, A; Roubeix, V; Swerhone, G D W; Roy, J; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L; Lawrence, J R

    2016-03-01

    Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L(-1) of alachlor and 25 mg L(-1) of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L(-1), whereas at 10 μg L(-1), it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested

  10. Solvent-programmed microchip open-channel electrochromatography.

    PubMed

    Kutter, J P; Jacobson, S C; Matsubara, N; Ramsey, J M

    1998-08-01

    Open-channel electrochromatography in combination with solvent programming is demonstrated using a microchip device. Channel walls were coated with octadecylsilanes at ambient temperatures, yielding stationary phases for chromatographic separations of neutral dyes. The electroosmotic flow after coating was sufficient to ensure transport of all species and on-chip mixing of isocratic and gradient elution conditions with acetonitrile-buffer mixtures. Chips having different channel depths between 10.2 and 2.9 μm were evaluated for performance, and van Deemter plots were established. Channel depths of about 5 μm were found to be a good compromise between efficiency and ease of operation. Isocratic and gradient elution conditions were easily established and manipulated by computer-controlled application of voltages to the terminals of the microchip. Linear gradients with different slopes, start times, duration times, and start percentages of organic modifier proved to be powerful tools to tune selectivity and analysis time for the separation of a test mixture. Even very steep gradients still produced excellent efficiencies. Together with fast reconditioning times, complete runs could be finished in under 60 s.

  11. Comparison of the exposure-excretion relationship between men and women exposed to organic solvents.

    PubMed

    Kawai, Toshio; Takeuchi, Akito; Ikeda, Masayuki

    2015-01-01

    The present study was initiated to examine if application of the same biological occupational exposure limits (BOELs) for organic solvents is applicable across the sexes. A survey was conducted in 69 micro-scale enterprises in a furniture-producing industrial park. In practice, 211 men and 52 women participated in the survey. They worked in a series of production process, and were exposed to solvent vapor mixtures. The exposure intensities were monitored with two types of diffusive samplers, one with carbon cloth (for solvents in general) and the other with water (for methyl alcohol) as adsorbents. Solvents in the adsorbents and head-space air from urine samples were analyzed with capillary FID-GC. The measured values were subjected to linear regression analysis followed by statistical evaluation for possible sex-related differences in slopes. Essentially no significant difference was detected between men and women in regression line parameters including slopes. Possible differences in the cases of acetone and toluene were discussed and excluded. With the exceptions for acetone and toluene, the present study did not detect any clear differences between men and women. In examinations of past reports, no support for the observed differences was found. The present findings deserve further study so that a solid conclusion can be formed.

  12. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    NASA Technical Reports Server (NTRS)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  13. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    PubMed

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  14. Impact Of Organic Solvents And Common Anions On 2-Chlorobiphenyl Dechlorination Kinetics With Pd/Mg

    EPA Science Inventory

    The current study evaluates Pd/Mg performance for 2-chlorobiphenyl (2-CB) dechlorination in the presence of naturally abundant anions such as sulfate, chloride, nitrate, hydroxide and carbonates and organic solvents that are used for ex-situ PCB extraction or may accompany PCB co...

  15. Solution based zinc tin oxide TFTs: the dual role of the organic solvent

    NASA Astrophysics Data System (ADS)

    Salgueiro, Daniela; Kiazadeh, Asal; Branquinho, Rita; Santos, Lídia; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira

    2017-02-01

    Chemical solution deposition is a low cost, scalable and high performance technique to obtain metal oxide thin films. Recently, solution combustion synthesis has been introduced as a chemical route to reduce the processing temperature. This synthesis method takes advantage of the chemistry of the precursors as a source of energy for localized heating. According to the combustion chemistry some organic solvents can have a dual role in the reaction, acting both as solvent and fuel. In this work, we studied the role of 2-methoxyethanol in solution based synthesis of ZTO thin films and its influence on the performance of ZTO TFTs. The thermal behaviour of ZTO precursor solutions confirmed that 2-methoxyethanol acts simultaneously as a solvent and fuel, replacing the fuel function of urea. The electrical characterization of the solution based ZTO TFTs showed a slightly better performance and lower variability under positive gate bias stress when urea was not used as fuel, confirming that the excess fuel contributes negatively to the device operation and stability. Solution based ZTO TFTs demonstrated a low hysteresis (ΔV  =  -0.3 V) and a saturation mobility of 4-5 cm2 V-1 s-1.

  16. A fluorescent paramagnetic Mn metal-organic framework based on semi-rigid pyrene tetra-carboxylic acid: sensing of solvent polarity and explosive nitroaromatics.

    PubMed

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-09-01

    An Mn metal-organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt's solvent polarity parameter (E T (N)). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF.

  17. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry.

    PubMed

    Tfaily, Malak M; Chu, Rosalie K; Tolić, Nikola; Roscioli, Kristyn M; Anderton, Christopher R; Paša-Tolić, Ljiljana; Robinson, Errol W; Hess, Nancy J

    2015-01-01

    Soil organic matter (SOM), a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and accurately predict how terrestrial carbon fluxes will respond to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O/C ratios (<0.1); water (H2O) was selective for carbohydrates with high O/C ratios; acetonitrile (ACN) preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O/C > 0.5; methanol (MeOH) has higher selectivity toward compounds characterized with low O/C < 0.5; and hexane, MeOH, ACN, and H2O solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils. We present the first comparative study of the molecular composition of SOM from different ecosystems using ultra high-resolution mass spectrometry.

  18. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents.

    PubMed

    McMillan, Lana J; Hepowit, Nathaniel L; Maupin-Furlow, Julie A

    2016-01-15

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg(-1) for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg(2+). Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a "salt-loving" noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents

    PubMed Central

    McMillan, Lana J.; Hepowit, Nathaniel L.

    2015-01-01

    Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a Vmax of 465 U · mg−1 for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg2+. Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a “salt-loving” noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies. PMID:26546423

  20. The solvation of the ground and transition states in the reaction of ortho-palladized acetanilide with styrene in organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakodynskaya, I.K.; Neverov, A.A; Ryabov, A.D.

    1986-07-01

    The rate of the reaction of di-mu-chlorobis(acetanilidato-2C, 0) dipalladium(II) with styrene leading to 2-acetaminostilbene was found in 11 organic solvents. In all media, the reaction has second-order kinetics. The free energy, enthalpy and entropy of activation were determined in each solvent. The data for the solubility of the starting Pd(II) complex were used to determine the free energy for the transfer of the ground state of this reaction from a standard solvent (heptane) to the other solvents. The analogous transfer functions were calculated for the transition state. The correlation of the transfer functions of the starting and transition states ofmore » this reaction with empirical solvent parameters was examined.« less

  1. Biochar contribution to soil pH buffer capacity

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type

  2. Using mixed solvent and changing spin-coating parameters to increase the efficiency and lifetime of organic solar cells.

    PubMed

    Tsai, Yu Sheng; Chu, Wei-Ping; Tang, Rong-Ming; Juang, Fuh-Shyang; Chang, Ming-Hua; Liu, Mark O; Hsieh, Tsung-Eong

    2008-10-01

    The derivative of C60, i.e., PCBM, and P3HT (3-hexylthiophene) were dissolved in chloroform:dichlorobenzene mixed solvent, then spin-coated as the active layer for organic solar cells (OSC). The experimental parameters were studied carefully to obtain the optimum power conversion efficiency (PCE), including the solvent mixing ratio, spin-coating speed, annealing conditions for the active layer, etc. The OSC devices were packaged with glass and a newly developed UV-glue to improve the lifetime and PCE. Dichlorobenzene solvent has great effect upon the PCE. Changing the spin-coating speed and increasing the number of steps increased the PCE apparently to 1.4%.

  3. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  4. Molecular insights into early stage aggregation of di-Fmoc-L-lysine in binary mixture of organic solvent and water

    NASA Astrophysics Data System (ADS)

    Huda, Md Masrul; Rai, Neeraj

    Molecular gels are relatively new class of soft materials, which are formed by the supramolecular aggregation of low molecular weight gelators (LMWGs) in organic solvents and/or water. Hierarchical self-assembly of small gelator molecules lead to three-dimensional complex fibrillar networks, which restricts the flow of solvents and results in viscous solid like materials or gels. These gels have drawn significant attentions for their potential applications for drug delivery, tissue engineering, materials for sensors etc. As of now, self-assembly of gelator molecules into one-dimensional fibers is not well understood, although that is very important to design new gelators for desired applications. Here, we present molecular dynamics study that provides molecular level insight into early stage aggregation of selected gelator, di-Fmoc-L-lysine in binary mixture of organic solvent and water. We will present the role of different functional groups of gelator molecule such as aromatic ring, amide, and carboxylic group on aggregation. We will also present the effect of concentrations of gelator and solvent on self-assembly of gelators. This study has captured helical fiber growth and branching of fiber, which is in good agreement with experimental observations.

  5. ORGANIC-HIGH IONIC STRENGTH AQUEOUS SOLVENT SYSTEMS FOR SPIRAL COUNTER-CURRENT CHROMATOGRAPHY: GRAPHIC OPTIMIZATION OF PARTITION COEFFICIENT

    PubMed Central

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2012-01-01

    A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system. PMID:23467197

  6. Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function

    PubMed Central

    Jiménez Barbosa, Ingrid Astrid

    2015-01-01

    Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners

  7. Effect of certain natural products and organic solvents on quorum sensing in Chromobacterium violaceum.

    PubMed

    Chaudhari, Vimla; Gosai, Haren; Raval, Shreya; Kothari, Vijay

    2014-09-01

    To investigate the effect of seed extracts of Pongamia pinnata, Pyrus pyrifolia, and Manilkara hexandra, bacterial pigment prodigiosin, and three organic solvents (ethanol, methanol, and dimethylsulfoxide), on quorum sensing (QS) in Chromobacterium violaceum (C. violaceum). C. violaceum was challenged with plant extracts prepared by microwave assisted extraction method, prodigiosin, and organic solvents. Effect of these test substances on C. violaceum growth, and quorum sensing regulated pigment (violacein) production was studied by broth dilution assay. High performance liquid chromatography was also applied to generate chromatographic fingerprint of the active extracts. Effect of sub-minimum inhibitory concentration level of the antibiotic streptomycin on quorum sensing regulated pigment production was also studied. Pongamia pinnata seed extracts and prodigiosin were found to possess anti-QS, and Manilkara hexandra and Pyrus pyrifolia seed extracts to possess QS-enhancing effect in C. violaceum. Dimethylsulfoxide was found to enhance violacein production, whereas ethanol and methanol reduced violacein production in C. violaceum. Streptomycin at sub-minimum inhibitory concentration level was able to significantly arrest QS-regulated pigment production in C. violaceum and Serratia marcescens. Prodigiosin and the seed extracts used in this study could affect quorum sensing in C. violaceum to a notable extent. Results of this study also emphasize the importance of inclusion of appropriate solvent controls (negative controls) in bioassays designed for screening of antimicrobial and/or anti-QS compounds. Antipathogenic potential of low concentrations of streptomycin was also demonstrated. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. Inverted bulk-heterojunction organic solar cells with the transfer-printed anodes and low-temperature-processed ultrathin buffer layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Sakai, Shota; Fukuda, Katsutoshi

    2018-03-01

    We studied the effects of a hole buffer layer [molybdenum oxide (MoO3) and natural copper oxide layer] and a low-temperature-processed electron buffer layer on the performance of inverted bulk-heterojunction organic solar cells in a device consisting of indium-tin oxide (ITO)/poly(ethylene imine) (PEI)/titanium oxide nanosheet (TiO-NS)/poly(3-hexylthiopnehe) (P3HT):phenyl-C61-butyric acid methylester (PCBM)/oxide/anode (Ag or Cu). The insertion of ultrathin TiO-NS (˜1 nm) and oxide hole buffer layers improved the open circuit voltage V OC, fill factor, and rectification properties owing to the effective hole blocking and electron transport properties of ultrathin TiO-NS, and to the enhanced work function difference between TiO-NS and the oxide hole buffer layer. The insertion of the TiO-NS contributed to the reduction in the potential barrier at the ITO/PEI/TiO-NS/active layer interface for electrons, and the insertion of the oxide hole buffer layer contributed to the reduction in the potential barrier for holes. The marked increase in the capacitance under positive biasing in the capacitance-voltage characteristics revealed that the combination of TiO-NS and MoO3 buffer layers contributes to the selective transport of electrons and holes, and blocks counter carriers at the active layer/oxide interface. The natural oxide layer of the copper electrode also acts as a hole buffer layer owing to the increase in the work function of the Cu surface in the inverted cells. The performance of the cell with evaporated MoO3 and Cu layers that were transfer-printed to the active layer was almost comparable to that of the cell with MoO3 and Ag layers directly evaporated onto the active layer. We also demonstrated comparable device performance in the cell with all-printed MoO3 and low-temperature-processed silver nanoparticles as an anode.

  9. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... volume of solvent: (1) A combination of hydrocarbons, alcohols, aldehydes, esters, ethers, or ketones... benzoate; 8 percent; (3) A combination of ethylbenzene, ketones having branched hydrocarbon structures...

  10. Carbon, hydrogen and nitrogen isotopes in solvent-extractable organic matter from carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Epstein, S.

    1982-01-01

    CCl4 and CH3OH solvent extractions were performed on the Murray, Murchison, Orgueil and Renazzo carbonaceous chondrites. Delta-D values of +300-+500% are found in the case of the CH3OH-soluble organic matter. The combined C, H and N isotope data makes it unlikely that the CH3OH-soluble components are derivable from, or simply related to, the insoluble organic polymer found in the same meteorites. A relation between the event that formed hydrous minerals in CI1 and CM2 meteorites and the introduction of water- and methanol-soluble organic compounds is suggested. Organic matter soluble in CCl4 has no N, and delta-C-13 values are lower than for CH3OH-soluble phases. It is concluded that there either are large isotopic fractionations for carbon and hydrogen between different soluble organic phases, or the less polar components are partially of terrestrial origin.

  11. Impact of organic solvents on cytochrome P450 probe reactions: filling the gap with (S)-Warfarin and midazolam hydroxylation.

    PubMed

    González-Pérez, Vanessa; Connolly, Elizabeth A; Bridges, Arlene S; Wienkers, Larry C; Paine, Mary F

    2012-11-01

    (S)-Warfarin 7-hydroxylation and midazolam 1'-hydroxylation are among the preferred probe substrate reactions for CYP2C9 and CYP3A4/5, respectively. The impact of solvents on enzyme activity, kinetic parameters, and predicted in vivo hepatic clearance (Cl(H)) associated with each reaction has not been evaluated. The effects of increasing concentrations [0.1-2% (v/v)] of six organic solvents (acetonitrile, methanol, ethanol, dimethyl sulfoxide, acetone, isopropanol) were first tested on each reaction using human liver microsomes (HLMs), human intestinal microsomes (midazolam 1'-hydroxylation only), and recombinant enzymes. Across enzyme sources, relative to water, acetonitrile and methanol had the least inhibitory effect on (S)-warfarin 7-hydroxylation (0-58 and 9-96%, respectively); acetonitrile, methanol, and ethanol had the least inhibitory effect on midazolam 1'-hydroxylation (0-29, 0-22, and 0-20%, respectively). Using HLMs, both acetonitrile and methanol (0.1-2%) decreased the V(max) (32-60 and 24-65%, respectively) whereas methanol (2%) increased the K(m) (100%) of (S)-warfarin-hydroxylation. (S)-Warfarin Cl(H) was underpredicted by 21-65% (acetonitrile) and 13-84% (methanol). Acetonitrile, methanol, and ethanol had minimal to modest impact on both the kinetics of midazolam 1'-hydroxylation (10-24%) and predicted midazolam Cl(H) (2-20%). In conclusion, either acetonitrile or methanol at ≤0.1% is recommended as the primary organic solvent for the (S)-warfarin 7-hydroxylation reaction; acetonitrile is preferred if higher solvent concentrations are required. Acetonitrile, methanol, and ethanol at ≤2% are recommended as primary organic solvents for the midazolam 1'-hydroxylation reaction. This information should facilitate optimization of experimental conditions and improve the interpretation and accuracy of in vitro-in vivo predictions involving these two preferred cytochrome P450 probe substrate reactions.

  12. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  13. Gas separation by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  14. Water as a Solvent for Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Pratt, Lawrence R.

    2015-01-01

    "Follow the water" is our basic strategy in searching for life in the universe. The universality of water as the solvent for living systems is usually justified by arguing that water supports the rich organic chemistry that seeds life, but alternative chemistries are possible in other organic solvents. Here, other, essential criteria for life that have not been sufficiently considered so far, will be discussed.

  15. Solvent containing processes and work practices: environmental observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalliokoski, P.

    1986-01-01

    Even though there has been a shift toward water-based or fully solid systems, organic solvents still comprise a significant occupational health hazard. Fortunately, exposure levels can nowadays be effectively controlled by proper enclosures and ventilation in most remaining applications of organic solvents, and, generally taken, the development of occupational health conditions has been favorable on the workplaces using organic solvents. When as many as 24.2% of the 2639 solvent measurements carried out by the Institute of Occupational Health in Finland exceeded the occupational health standards between 1971 and 1976, such non-compliance levels were detected only in 3.0% of the 2823more » samples taken between 1977 and 1980. The persons dealing with occupational health problems in workplaces should also be aware of the possible existence of solvent misuse. This may not develop into the level of solvent sniffing, but into a milder addiction. The workers adopt working habits that cause unnecessary exposure. Repeatedly found exceptionally high concentration levels in biological exposure tests are an indication of a possible abuse. 25 references.« less

  16. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low thatmore » a large proportion of the substrate surface is bare.« less

  17. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef

    2015-09-04

    A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  19. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  20. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organic HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  1. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Shen, Wei-De; Xiang, Ru-Li; Zhuge, Lan-Jian; Gao, Wei-Jian; Wang, Wen-Bao

    2007-10-01

    When Silk fibre derived from Bombyx mori, a native biopolymer, was dissolved in highly concentrated neutral salts such as CaCl2, the regenerated liquid silk, a gradually degraded peptide mixture of silk fibroin, could be obtained. The silk fibroin nanoparticles were prepared rapidly from the liquid silk by using water-miscible protonic and polar aprotonic organic solvents. The nanoparticles are insoluble but well dispersed and stable in aqueous solution and are globular particles with a range of 35-125 nm in diameter by means of TEM, SEM, AFM and laser sizer. Over one half of the ɛ-amino groups exist around the protein nanoparticles by using a trinitrobenzenesulfonic acid (TNBS) method. Raman spectra shows the tyrosine residues on the surface of the globules are more exposed than those on native silk fibers. The crystalline polymorph and conformation transition of the silk nanoparticles from random-coil and α-helix form (Silk I) into anti-parallel β-sheet form (Silk II) are investigated in detail by using infrared, fluorescence and Raman spectroscopy, DSC, 13C CP-MAS NMR and electron diffraction. X-ray diffraction of the silk nanoparticles shows that the nanoparticles crystallinity is about four fifths of the native fiber. Our results indicate that the degraded peptide chains of the regenerated silk is gathered homogeneously or heterogeneously to form a looser globular structure in aqueous solution. When introduced into excessive organic solvent, the looser globules of the liquid silk are rapidly dispersed and simultaneously dehydrated internally and externally, resulting in the further chain-chain contact, arrangement of those hydrophobic domains inside the globules and final formation of crystalline silk nanoparticles with β-sheet configuration. The morphology and size of the nanoparticles are relative to the kinds, properties and even molecular structures of organic solvents, and more significantly to the looser globular substructure of the degraded silk

  2. Arise, amphibians: stream buffers affect more than fish.

    Treesearch

    Sally Duncan

    2003-01-01

    Buffers along streams cover a tremendous proportion of the land base in the forested systems of the western Pacific Northwest. These buffers were designated primarily to conserve and restore habitat for salmon and trout, but conservation of habitat for a number of other organisms also has been implicit in their design. Recent research evaluated the importance of...

  3. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    PubMed

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.

  4. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    PubMed

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    PubMed Central

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S.

    2012-01-01

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s. PMID:23235441

  6. Preparation of polydopamine nanocapsules in a miscible tetrahydrofuran-buffer mixture.

    PubMed

    Ni, Yun-Zhou; Jiang, Wen-Feng; Tong, Gang-Sheng; Chen, Jian-Xin; Wang, Jie; Li, Hui-Mei; Yu, Chun-Yang; Huang, Xiao-hua; Zhou, Yong-Feng

    2015-01-21

    A miscible tetrahydrofuran-tris buffer mixture has been used to fabricate polydopamine hollow capsules with a size of 200 nm and with a shell thickness of 40 nm. An unusual non-emulsion soft template mechanism has been disclosed to explain the formation of capsules. The results indicate that the capsule structure is highly dependent on the volume fraction of tetrahydrofuran as well as the solvent, and the shell thickness of capsules can be controlled by adjusting the reaction time and dopamine concentration.

  7. A fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetra­carboxylic acid: sensing of solvent polarity and explosive nitroaromatics

    PubMed Central

    Bajpai, Alankriti; Mukhopadhyay, Arindam; Krishna, Manchugondanahalli Shivakumar; Govardhan, Savitha; Moorthy, Jarugu Narasimha

    2015-01-01

    An Mn metal–organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhibits a heretofore unprecedented solvent-dependent fluorescence emission maximum, permitting its use as a probe of solvent polarity; the emission maxima in different solvents correlate excellently with Reichardt’s solvent polarity parameter (E T N). Further, the applicability of Mn-L to the sensing of nitroaromatics via fluorescence quenching is demonstrated; the detection limit for TNT is shown to be 125 p.p.m. The results bring out the fact that MOFs based on paramagnetic metal ions can indeed find application when the quenching mechanisms are attenuated by certain geometries of the organic linkers of the MOF. PMID:26306197

  8. Enzymatic synthesis of 6-O-glucosyl-poly(3-hydroxyalkanoate) in organic solvents and their binary mixture.

    PubMed

    Gumel, A M; Annuar, M S M; Heidelberg, T

    2013-04-01

    The effects of organic solvents and their binary mixture in the glucose functionalization of bacterial poly-3-hydroxyalkanoates catalyzed by Lecitase™ Ultra were studied. Equal volume binary mixture of DMSO and chloroform with moderate polarity was more effective for the enzyme catalyzed synthesis of the carbohydrate polymer at ≈38.2 (±0.8)% reactant conversion as compared to the mono-phasic and other binary solvents studied. The apparent reaction rate constant as a function of medium water activity (aw) was observed to increase with increasing solvent polarity, with optimum aw of 0.2, 0.4 and 0.7 (±0.1) observed in hydrophilic DMSO, binary mixture DMSO:isooctane and hydrophobic isooctane, respectively. Molecular sieve loading between 13 to 15gL(-1) (±0.2) and reaction temperature between 40 to 50°C were found optimal. Functionalized PHA polymer showed potential characteristics and biodegradability. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Protein instability toward organic solvent/water emulsification: implications for protein microencapsulation into microspheres.

    PubMed

    Sah, H

    1999-01-01

    The objective of this study was to investigate the behavior of three proteins at an organic solvent/water interface. To simulate the first microencapsulation step of a water-in-oil-in-water emulsion technique, a water-in-oil emulsion was prepared by emulsifying an aqueous protein solution in either methylene chloride or ethyl acetate. Phase separation was then followed to collect protein samples from the aqueous phase and the organic solvent/water interface. Their properties were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size exclusion-HPLC. Bovine serum albumin was relatively unharmed during emulsification, compared to other proteins such as ovalbumin and lysozyme. In particular, the methylene chloride treatment on ovalbumin led to the formation of a large quantity of water-insoluble, solid-like aggregates and changes in the composition of monomeric and dimeric ovalbumin species. With regard to the question of ovalbumin recovery, only 9.74 approximately 37.72% of the used ovalbumin was present in the aqueous phases after emulsification. Similar penchant was noted with lysozyme. Water-insoluble aggregates brought with by emulsification were found to be covalently bound. Interestingly, less emulsification-induced denaturing effects were observed with ethyl acetate. Our study clearly demonstrated the emulsification-induced adverse events that were detrimental to the integrity of proteins and the importance of preserving protein stability toward microencapsulation.

  10. Surface interactions between silica particles and water and organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douillard, J.M.; Elwafir, M.; Partyka, S.

    1994-04-01

    A silica sample has been studied by vapor adsorption and by microcalorimetric methods. The combination of these two methods in the case of water allows one to calculate all the thermodynamic terms related to the adhesion on this silica. Adhesion between silica and miscellaneous solvents has been studied by immersion microcalorimetry. The silica is slightly hydrophobic, but the enthalpy of immersion into water is the most energetic one of all the solvents studied. It appears a clear graduation of the enthalpies of immersion due to the presence of delocalized electrons in the studied solvents.

  11. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions.

    PubMed

    Gilchrist, Elizabeth S; Nesterenko, Pavel N; Smith, Norman W; Barron, Leon P

    2015-03-20

    There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5-50 mM hydroxide with 0-80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20-45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30-40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Impact of solvent extraction organics on adsorption and bioleaching of A. ferrooxidans and L. ferriphilum

    NASA Astrophysics Data System (ADS)

    Hualong, Yu; Xiaorong, Liu

    2017-04-01

    Copper solvent extraction entrained and dissoluted organics (SX organics) in the raffinate during SX operation can contaminated chalcopyrite ores and influence bioleaching efficiency by raffinate recycling. The adsorption and bioleaching of A. ferrooxidans and L. ferriphilum with contaminated ores were investigated. The results showed that, A. ferrooxidans and L. ferriphilum cells could adsorb quickly on minerals, the adsorption rate on contaminated ores were 83% and 60%, respectively, larger than on uncontaminated ores. However, in the bioleaching by the two kinds of acid bacterias, contaminated ores presented a lower bioleaching efficiency.

  13. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    PubMed

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  14. The effects of the macrotetralide actin antibiotics on the equilibrium extraction of alkali metal salts into organic solvents.

    PubMed

    Eisenman, G; Ciani, S; Szabo, G

    1969-12-01

    In order to clarify the mechanism by which neutral molecules such as the macrotetralide actin antibiotics make phospholipid bilayer membranes selectively permeable to cations, we have studied, both theoretically and experimentally, the extraction by these antibiotics of cations from aqueous solutions into organic solvents. The experiments involve merely shaking an organic solvent phase containing the antibiotic with aqueous solutions containing various cationic salts of a lipid-soluble colored anion. The intensity of color of the organic phase is then measured spectrophotometrically to indicate how much salt has been extracted. From such measurements of the equilibrium extraction of picrate and dinitrophenolate salts of Li, Na, K, Rb, Cs, and NH4 into n-hexane, dichloromethane, and hexane-dichloromethane mixtures, we have verified that the chemical reactions are as simple as previously postulated, at least for nonactin, monactin, dinactin, and trinactin. The equilibrium constant for the extraction of each cation by a given macrotetralide actin antibiotic was also found to be measurable with sufficient precision for meaningful differences among the members of this series of antibiotics to be detected. It is noteworthy that the ratios of selectivities among the various cations were discovered to be characteristic of a given antibiotic and to be completely independent of the solvent used. This finding and others reported here indicate that the size and shape of the complex formed between the macrotetralide and a given cation is the same, regardless of the species of cation bound. For such "isosteric" complexes, notable simplifications of the theory become possible which enable us to predict not only the electrical properties of a membrane made of the same solvent and having the thinness of the phospholipid bilayer but also, and more importantly, the electrical properties of the phospholipid bilayer membrane itself. These predictions will be compared with experimental

  15. Influence of Polar Organic Solvents in an Ionic Liquid Containing Lithium Bis(fluorosulfonyl)amide: Effect on the Cation-Anion Interaction, Lithium Ion Battery Performance, and Solid Electrolyte Interphase.

    PubMed

    Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank

    2016-12-14

    Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py 1,4 ]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.

  16. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents.

    PubMed

    Svärd, Michael; Valavi, Masood; Khamar, Dikshitkumar; Kuhs, Manuel; Rasmuson, Åke C

    2016-06-01

    Melting temperatures and enthalpies of fusion have been determined by differential scanning calorimetry (DSC) for 2 polymorphs of the drug tolbutamide: FI(H) and FV. Heat capacities have been determined by temperature-modulated DSC for 4 polymorphs: FI(L), FI(H), FII, FV, and for the supercooled melt. The enthalpy of fusion of FII at its melting point has been estimated from the enthalpy of transition of FII into FI(H) through a thermodynamic cycle. Calorimetric data have been used to derive a quantitative polymorphic stability relationship between these 4 polymorphs, showing that FII is the stable polymorph below approximately 333 K, above which temperature FI(H) is the stable form up to its melting point. The relative stability of FV is well below the other polymorphs. The previously reported kinetic reversibility of the transformation between FI(L) and FI(H) has been verified using in situ Raman spectroscopy. The solid-liquid solubility of FII has been gravimetrically determined in 5 pure organic solvents (methanol, 1-propanol, ethyl acetate, acetonitrile, and toluene) over the temperature range 278 to 323 K. The ideal solubility has been estimated from calorimetric data, and solution activity coefficients at saturation in the 5 solvents determined. All solutions show positive deviation from Raoult's law, and all van't Hoff plots of solubility data are nonlinear. The solubility in toluene is well below that observed in the other investigated solvents. Solubility data have been correlated and extrapolated to the melting point using a semiempirical regression model. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Organic solvent soluble oxide supported hydrogenation catalyst precursors

    DOEpatents

    Edlund, David J.; Finke, Richard G.; Saxton, Robert J.

    1992-01-01

    The present invention discloses two polyoxoanion supported metal complexes found to be useful in olefin hydrogenation. The complexes are novel compositions of matter which are soluble in organic solvents. In particular, the compositions of matter comprise A.sub.x [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.15 M'.sub.3 O.sub.62 ].sup.x- and A.sub.y [L.sub.n Ir.sup.(I) .multidot.X.sub.2 M.sub.9 M'.sub.3 O.sub.40 ].sup.y- where L is a ligand preferably chosen from 1,5-cyclooctadiene (COD), ethylene, cyclooctene, norbornadiene and other olefinic ligands; n=1 or 2 depending upon the number of double bonds present in the ligand L; X is a "hetero" atom chosen from B, Si, Ge, P, As, Se, Te, I, Co, Mn and Cu; M is either W or Mo; M' is preferably Nb or V but Ti, Zr, Ta, Hf are also useful; and A is a countercation preferably selected from tetrabutyl ammonium and alkali metal ions.

  18. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  20. Small-Molecule Organic Photovoltaic Modules Fabricated via Halogen-Free Solvent System with Roll-to-Roll Compatible Scalable Printing Method.

    PubMed

    Heo, Youn-Jung; Jung, Yen-Sook; Hwang, Kyeongil; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Sehyun; Jeon, Ye-Jin; Lee, Donmin; Kim, Dong-Yu

    2017-11-15

    For the first time, the photovoltaic modules composed of small molecule were successfully fabricated by using roll-to-roll compatible printing techniques. In this study, blend films of small molecules, BTR and PC 71 BM were slot-die coated using a halogen-free solvent system. As a result, high efficiencies of 7.46% and 6.56% were achieved from time-consuming solvent vapor annealing (SVA) treatment and roll-to-roll compatible solvent additive approaches, respectively. After successful verification of our roll-to-roll compatible method on small-area devices, we further fabricated large-area photovoltaic modules with a total active area of 10 cm 2 , achieving a power conversion efficiency (PCE) of 4.83%. This demonstration of large-area photovoltaic modules through roll-to-roll compatible printing methods, even based on a halogen-free solvent, suggests the great potential for the industrial-scale production of organic solar cells (OSCs).

  1. Tube radial distribution phenomenon with a two-phase separation solution of a fluorocarbon and hydrocarbon organic solvent mixture in a capillary tube and metal compounds separation.

    PubMed

    Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2014-01-01

    A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single phase) changed to a heterogeneous solution (two phases) with inner tetradecafluorohexane and outer hexane phases in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a separation technique for metal compounds. A model analyte mixture, copper(II) and hematin, was separated through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.

  2. Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation

    PubMed Central

    Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi

    2014-01-01

    Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm2 V−1 s−1 is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the “reading” and “programming” speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method. PMID:25428665

  3. Evaluation of the effect of extraction solvent and organ selection on the chemical profile of Astragalus spinosus using HPTLC- multivariate image analysis.

    PubMed

    Shawky, Eman; Selim, Dina A

    2017-09-01

    The evaluation of extraction protocols for untargeted and targeted metabolomics was implemented for root and aerial organs of Astragalus spinosus in this work. The efficiency and complementarity of commonly used extraction solvents, namely petroleum ether, methylene chloride, ethyl acetate and n-butanol were considered for method evaluation using chemometric techniques in conjunction with new, simple, and fast high performance thin layer chromatography (HPTLC) method for fingerprint analysis by extracting information from a digitalized HPTLC plate using ImageJ software. A targeted approach was furtherly implemented by developing and validating an HPTLC method allowing the quantification of three saponin glycosides. The results of untargeted and targeted principle component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that the apparent saponins profile seems to depend on a combined effect of matrix composition and the properties of the selected solvent for extraction, where both the biological matrix of the investigated plant organs, as well as the extraction solvent can influence the precision of metabolite abundances. Although, the aerial part is frequently discarded as waste, it is shown hereby that it has similar chemical profile compared to the medicinal part, roots, yet a different extraction solvents pattern is recognized between the two organs which can be attributed to the differences in the composition, permeability or accessibility of the sample matrix/organ tissues, rather than the chemical structures of the detected metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Risk of liver cancer and exposure to organic solvents and gasoline vapors among Finnish workers.

    PubMed

    Lindbohm, Marja-Liisa; Sallmén, Markku; Kyyrönen, Pentti; Kauppinen, Timo; Pukkala, Eero

    2009-06-15

    We investigated the association between exposure to various groups of solvents and gasoline vapors and liver cancer. A cohort of economically active Finns born between 1906 and 1945 was followed up during the period 1971-1995. The incident cases of primary liver cancer (n = 2474) were identified in a record linkage with the Finnish Cancer Registry. Occupations from the 1970 census were converted to exposures using a job-exposure matrix. Cumulative exposure was calculated as the product of estimated prevalence, level and duration of exposure, and we used Poisson regression to calculate the relative risks (RR). Among the occupations entailing exposure to organic solvents, an elevated liver cancer incidence was observed in male printers, and varnishers and lacquerers. Among men, the risk was increased in the highest exposure category of aromatic hydrocarbons [RR 1.77, 95% confidence interval (CI) 1.30-2.40], aliphatic/alicyclic hydrocarbons (RR 1.47, 95% CI 0.99-2.18), chlorinated hydrocarbons (RR 2.65, 95% CI 1.38-5.11) and "other solvents" (RR 2.14, 95% CI 1.23-3.71). Among women, the risk was increased for the group "other solvents" that includes mainly alcohols, ketones, esters and glycol ethers (RR 2.73, 95% CI 1.21-6.16). Our finding of an increased risk among workers exposed to chlorinated hydrocarbons is in line with several earlier studies on trichloroethylene. The results also suggest a link between exposure to other types of solvents and the risk of liver cancer. The possibility that alcohol consumption contributes to the observed risks cannot be totally excluded. Copyright 2008 UICC.

  5. Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents.

    PubMed

    Schmid, A; Kollmer, A; Mathys, R G; Witholt, B

    1998-08-01

    Many pseudomonads and other bacteria can grow on aliphatic and aromatic hydrocarbons that occur in the environment. We are examining the potential of such organisms as biocatalysts for the oxidation of a variety of substituted aliphatic and aromatic compounds. To attain a high production rate of oxidation products via such biotransformations, we have focused on two-liquid phase culture systems. In these systems, cells are grown in liquid media consisting of an aqueous phase containing water-soluble growth substrates and droplets of a water-immicible organic solvent containing bioconversion substrates and products. For industrial applications of such two-liquid phase processes, several questions remain. What are the maximum rates at which apolar compounds can be transferred from the apolar phase to cells growing in the aqueous phase, i.e., what are the maximum space-time yields attainable in two-liquid phase fermentations under practical conditions? What does an efficient downstream processing of two-liquid phase medium involve? What safety regimes should be considered in working with flammable organic solvents? Can elevated pressure be used to increase oxygen transfer? Based on answers to these questions, we have recently developed a high-pressure, explosion-proof bioreactor system with Bioengineering AG (Wald, Switzerland), which will be installed in our pilot plant and used to explore two-liquid phase bioconversions at a pilot scale.

  6. Solvent selection and optimization of α-chymotrypsin-catalyzed synthesis of N-Ac-Phe-Tyr-NH2 using mixture design and response surface methodology.

    PubMed

    Hu, Shih-Hao; Kuo, Chia-Hung; Chang, Chieh-Ming J; Liu, Yung-Chuan; Chiang, Wen-Dee; Shieh, Chwen-Jen

    2012-01-01

    A peptide, N-Ac-Phe-Tyr-NH(2) , with angiotensin I-converting enzyme (ACE) inhibitor activity was synthesized by an α-chymotrypsin-catalyzed condensation reaction of N-acetyl phenylalanine ethyl ester (N-Ac-Phe-OEt) and tyrosinamide (Tyr-NH(2) ). Three kinds of solvents: a Tris-HCl buffer (80 mM, pH 9.0), dimethylsulfoxide (DMSO), and acetonitrile were employed in this study. The optimum reaction solvent component was determined by simplex centroid mixture design. The synthesis efficiency was enhanced in an organic-aqueous solvent (Tris-HCl buffer: DMSO: acetonitrile = 2:1:1) in which 73.55% of the yield of N-Ac-Phe-Tyr-NH(2) could be achieved. Furthermore, the effect of reaction parameters on the yield was evaluated by response surface methodology (RSM) using a central composite rotatable design (CCRD). Based on a ridge max analysis, the optimum condition for this peptide synthesis included a reaction time of 7.4 min, a reaction temperature of 28.1°C, an enzyme activity of 98.9 U, and a substrate molar ratio (Phe:Tyr) of 1:2.8. The predicted and the actual (experimental) yields were 87.6 and 85.5%, respectively. The experimental design and RSM performed well in the optimization of synthesis of N-Ac-Phe-Tyr-NH(2) , so it is expected to be an effective method for obtaining a good yield of enzymatic peptide. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  7. Transport of Proteins Dissolved in Organic Solvents Across Biomimetic Membranes

    NASA Astrophysics Data System (ADS)

    Bromberg, Lev E.; Klibanov, Alexander M.

    1995-02-01

    Using lipid-impregnated porous cellulose membranes as biomimetic barriers, we tested the hypothesis that to afford effective transmembrane transfer of proteins and nucleic acids, the vehicle solvent should be able to dissolve both the biopolymers and the lipids. While the majority of solvents dissolve one or the other, ethanol and methanol were found to dissolve both, especially if the protein had been lyophilized from an aqueous solution of a pH remote from the protein's isoelectric point. A number of proteins, as well as RNA and DNA, dissolved in these alcohols readily crossed the lipidized membranes, whereas the same biopolymers placed in nondissolving solvents (e.g., hexane and ethyl acetate) or in those unable to dissolve lipids (e.g., water and dimethyl sulfoxide) exhibited little transmembrane transport. The solubility of biopolymers in ethanol and methanol was further enhanced by complexation with detergents and poly(ethylene glycol); significant protein and nucleic acid transport through the lipidized membranes was observed from these solvents but not from water.

  8. Solvents, Ethanol, Car Crashes and Tolerance: How Risky is Inhalation of Organic Solvents?

    EPA Science Inventory

    A research program in the National Health and Environmental Effects Research Laboratory of the U.S. EPA has led to some surprising considerations regarding the potential hazard of exposure to low concentrations of solvent vapors. This program involved conducting experiments to ch...

  9. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    PubMed

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  10. Microwave-assisted Bi2Se3 nanoparticles using various organic solvents

    NASA Astrophysics Data System (ADS)

    Vijila, J. Joy Jeba; Mohanraj, K.; Henry, J.; Sivakumar, G.

    2016-01-01

    Microwave assisted Bi2Se3 nanoparticles were synthesized from five different solvents DMF, EG, EG + H2O, EDA + dil.HNO3 and N2H4 + H2O + Ethanol. The influence of solvents on purity of the compound was analysed by using X-ray diffraction patterns. The result indicates pure rhombohedral Bi2Se3 nanoparticles formed for N2H4 + H2O + Ethanol. The presence of vibrational bands in the range of 400-800 cm- 1 is confirmed the formation of Bi2Se3. The maximum optical absorption observed around 450 nm and the band gap values are found in the range of 1.5 eV-2.17 eV for all the solvents. The nanostructure of the Bi2Se3 particles change with solvents. From the experimental results, the solvent N2H4 + H2O + Ethanol produces pure nanosize Bi2Se3 particles under the microwave assisted method.

  11. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  12. Systematic assessment of different solvents for the extraction of drugs of abuse and pharmaceuticals from an authentic hair pool.

    PubMed

    Madry, Milena M; Kraemer, Thomas; Baumgartner, Markus R

    2018-01-01

    Hair analysis has been established as a prevalent tool for retrospective drug monitoring. In this study, different extraction solvents for the determination of drugs of abuse and pharmaceuticals in hair were evaluated for their efficiency. A pool of authentic hair from drug users was used for extraction experiments. Hair was pulverized and extracted in triplicate with seven different solvents in a one- or two-step extraction. Three one- (methanol, acetonitrile, and acetonitrile/water) and four two-step extractions (methanol two-fold, methanol and methanol/acetonitrile/formate buffer, methanol and methanol/formate buffer, and methanol and methanol/hydrochloric acid) were tested under accurately equal experimental conditions. The extracts were directly analyzed by liquid chromatography-tandem mass spectrometry for opiates/opioids, stimulants, ketamine, selected benzodiazepines, antidepressants, antipsychotics, and antihistamines using deuterated internal standards. For most analytes, a two-step extraction with methanol did not significantly improve the yield compared to a one-step extraction with methanol. Extraction with acetonitrile alone was least efficient for most analytes. Extraction yields of acetonitrile/water, methanol and methanol/acetonitrile/formate buffer, and methanol and methanol/formate buffer were significantly higher compared to methanol. Highest efficiencies were obtained by a two-step extraction with methanol and methanol/hydrochloric acid, particularly for morphine, 6-monoacetylmorphine, codeine, 6-acetylcodeine, MDMA, zopiclone, zolpidem, amitriptyline, nortriptyline, citalopram, and doxylamine. For some analytes (e.g., tramadol, fluoxetine, sertraline), all extraction solvents, except for acetonitrile, were comparably efficient. There was no significant correlation between extraction efficiency with an acidic solvent and the pka or log P of the analyte. However, there was a significant trend for the extraction efficiency with acetonitrile to

  13. Organic-Solvent-Free Phase-Transfer Oxidation of Alcohols Using Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Hulce, Martin; Marks, David W.

    2001-01-01

    Organic-solvent-free oxidations of alcohols using aqueous hydrogen peroxide in the presence of sodium tungstate and phase-transfer catalysts provide a general, safe, simple, and cost-effective means to prepare ketones. Six representative alcohols, 1-phenylethanol, 1-phenylpropanol, benzhydrol, 4-methylbenzhydrol, cis,trans-4-tert-butylcyclohexanol, and benzyl alcohol are oxidized to the corresponding aldehyde or ketone over 1-3 hours in 81-99% yields. Purities are very high, with only small to trace amounts of starting alcohol remaining. Experiments can be readily designed for one or two 3-hour laboratory periods, integrating the various techniques of extraction, drying, filtration, column chromatography, gas chromatography, NMR and IR spectroscopy, and reaction kinetics.

  14. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  15. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  16. COMPARISON OF SORPTION ENERGTICS FOR HYDROPHOBIC ORGANIC CHEMICALS BY SYNTHETIC AND NATURAL SORBENTS FROM METHANOL/WATER SOLVENT MIXTURES

    EPA Science Inventory

    Reversed-phase liquid chromatography (RPLC) was used to investigate the thermodynamics and mechanisms of hydrophobic organic chemical (HOC) retention from methanol/water solvent mixtures. The enthalpy-entropy compensation model was used to infer that the hydro- phobic sorptive me...

  17. Investigation of organic solvents assisted nano magnesium oxide nanoparticles and their structural, morphological, optical and antimicrobial performance

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Rajendran, V.

    2018-01-01

    Investigation on the structural, morphological, optical studies and antimicrobial performance of organic solvent assisted magnesium oxide (MgO) nanoparticles. Nanoparticles are in 16-18 nm of grain size prepared by sol-gel method. The XRD studies shows as synthesized products are in cubic phase with periclase structurer. The well disperesd spherical morphology were obtained in SEM and TEM. The organic solvent methanol had profound effects on the size of the nano particles. The optical absorption edge energy was present in UV region and the corresponding band gap energy values are 4.5 and 4.9 eV for water with ethanol and methanol mediated MgO sample respectively. The PL emission spectrum has a emission peak at 340 and 353 nm which is due to surface defects. The obtained MgO nanoparticles showed superior antimicrobial activities for the gram positive, gram negative and fungus strains using the ELISA reader at 450 nm.

  18. Synthesis and the luminescent properties of the Nd3+ ions doped three kinds of fluoride nanocrystals in organic solvents

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Tian, Changyong; Bo, Shuhui; Liu, Xinhou; Zhen, Zhen

    2015-10-01

    Oleic acid (OA)-modified LaF3:Nd, NaYF4:Nd and CaF2:Nd nanocrystals (NCs) with the different Nd3+ ion concentration (2% and 5%) have been prepared. The structure and morphology of NCs were identified by XRD, TEM, FT-IR and TGA. The size of OA-modified NC is a mean diameter of 5-10 nm and can be dispersed in common organic solvents to form a transparent solution. The optical loss of NCs in organic solvent is the first time to discuss in this work. The luminescence properties of NCs were also characterized and studied by fluorescence spectrometer. The nanoparticles in solid and in the solution all exhibited the strong emission at the 1060 nm when the materials were excited around 800 nm. Compared with the LaF3 and CaF2 matrix, NaYF4 as the host can protect the Nd3+ ions more efficiently away from the nonradiative transitions. The longest luminescent lifetime of the solid NaYF4:2%Nd NCs was up to 136 μs, and the little difference of the fluorescence lifetime existed between the NCs in solid state and in solution. The low optical loss in organic solvent indicated that the Nd3+ ions-doped fluoride NCs are promising materials for optical amplification fields.

  19. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  20. Can organized leisure-time activities buffer the negative outcomes of unstructured activities for adolescents' health?

    PubMed

    Badura, Petr; Madarasova Geckova, Andrea; Sigmundova, Dagmar; Sigmund, Erik; van Dijk, Jitse P; Reijneveld, Sijmen A

    2018-06-02

    We aimed to assess the associations of involvement in selected unstructured activities (UA) with health-risk behaviours and academic achievement and the degree to which the participation in organized leisure-time activities (OLTA) changes these associations. Using a sample of 6935 Czech adolescents aged 13 and 15 years, we investigated adolescents' weekly involvement in hanging out, visiting shopping malls for fun and meeting friends after 8 p.m., OLTA and engagement in three health-risk behaviours and academic achievement. Weekly involvement in the selected UA was associated with higher odds for regular smoking, being drunk, having early sexual intercourse and low academic achievement. Concurrent participation in OLTA did not buffer these negative outcomes, except for sexual experience. However, those highly engaged only in UA were more likely to participate in the health-risk behaviours and report worse academic achievement than those participating in any OLTA concurrently. The selected UA are strongly associated with an increased occurrence of adolescents' health-risk behaviours and low academic achievement. Concurrent participation in OLTA does not buffer these negative outcomes significantly, but adolescents engaged only in UA consistently report the least favourable outcomes.

  1. Cleaning without chlorinated solvents

    NASA Technical Reports Server (NTRS)

    Thompson, L. M.; Simandl, R. F.

    1995-01-01

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92 percent. The program has been a twofold effort. Vapor degreasers used in batch cleaning operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting, and bonding. Cleaning ability was determined using techniques such as x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes, and swelling of epoxies.

  2. Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease.

    PubMed

    Montani, David; Lau, Edmund M; Descatha, Alexis; Jaïs, Xavier; Savale, Laurent; Andujar, Pascal; Bensefa-Colas, Lynda; Girerd, Barbara; Zendah, Inès; Le Pavec, Jerome; Seferian, Andrei; Perros, Frédéric; Dorfmüller, Peter; Fadel, Elie; Soubrier, Florent; Sitbon, Oliver; Simonneau, Gérald; Humbert, Marc

    2015-12-01

    Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension characterised by predominant remodelling of pulmonary venules. Bi-allelic mutations in the eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4) gene were recently described as the major cause of heritable PVOD, but risk factors associated with PVOD remain poorly understood. Occupational exposures have been proposed as a potential risk factor for PVOD, but epidemiological studies are lacking.A case-control study was conducted in consecutive PVOD (cases, n=33) and pulmonary arterial hypertension patients (controls, n=65). Occupational exposure was evaluated via questionnaire interview with blinded assessments using an expert consensus approach and a job exposure matrix (JEM).Using the expert consensus approach, PVOD was significantly associated with occupational exposure to organic solvents (adjusted OR 12.8, 95% CI 2.7-60.8), with trichloroethylene being the main agent implicated (adjusted OR 8.2, 95% CI 1.4-49.4). JEM analysis independently confirmed the association between PVOD and trichloroethylene exposure. Absence of significant trichloroethylene exposure was associated with a younger age of disease (54.8±21.4 years, p=0.037) and a high prevalence of harbouring bi-allelic EIF2AK4 mutations (41.7% versus 0%, p=0.015).Occupational exposure to organic solvents may represent a novel risk factor for PVOD. Genetic background and environmental exposure appear to influence the phenotypic expression of the disease. Copyright ©ERS 2015.

  3. Photodegradation of Polyfluorinated Dibenzo-p-Dioxins in Organic Solvents: Experimental and Theoretical Studies.

    PubMed

    Zeng, Xiaolan; Qu, Ruijuan; Feng, Mingbao; Chen, Jing; Wang, Liansheng; Wang, Zunyao

    2016-08-02

    Eighteen polyfluorinated dibenzo-p-dioxins (PFDDs) were synthesized by pyrolysis of fluorophenols. Using a 500 W Xe lamp as the light source, the PFDDs photodegradation kinetics in n-hexane were investigated. The photolysis reactions obeyed the pseudo-first-order rate equation, and higher fluorinated PFDDs tended to photolyze more slowly. Theoretically calculated parameters reflecting the molecular structural properties were used to develop a new model of PFDDs photolysis rates. The results indicated that the substitution pattern for fluorine atoms and the C-O bond length were major factors in the photolysis of PFDDs. We selected octafluorinated dibenzo-p-dioxin (OFDD) as a representative PFDDs to explore the influence of solvent on the photolysis rate of PFDDs, and the results indicated that neither the polarity nor donor hydrogen of organic solvents are independent influencing factors. Mechanistic pathways for the photolysis of OFDD in n-hexane were first studied. The results indicated that photodegradation of OFDD produces octafluorinated dihydroxybiphenyls, octafluorinated phenoxyphenols, and fluorinated phenols. The major pathway for photodegradation of OFDD was C-O bond cleavage. Defluorination reactions did not occur during the photolysis process.

  4. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research†

    PubMed Central

    Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325

  5. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    EPA Science Inventory

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  6. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    PubMed

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    PubMed

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    PubMed

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  9. Preparation of high-aspect-ratio ZnO nanorod arrays for the detection of several organic solvents at room working temperature

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Mu; Zheng, Min-Ren

    2013-11-01

    Chemical sensors based on ZnO nanorod arrays were prepared using chemical bath deposition (CBD) to investigate the sensing performance for the detection of several organic solvents with low concentrations (0.1%, 0.5%, 1%, v/v) at room temperature. High quality and high aspect-ratio (value ˜28) ZnO nanorods have a diameter of about 74 nm and average length of 2.1 μm. Nyquist plots and Bode plots of the ZnO sensors under different organic solvents were obtained by electrical impedance spectroscopy (EIS). The sensing properties such as charge-transfer resistance, double-layer capacitance and dielectric parameters were determined from the impedance spectra to explore the charge transport in low-concentration aqueous solutions. The decreasing trend of the charge-transfer resistance (Rct) as decreasing solvent concentrations is observed, and a straight line at low frequency regime indicates adsorption of water molecules on the oxide surface. The sensitivity of the ZnO sensors was calculated from the resistance variation in target solvents and in deionized water. We demonstrated the use of ZnO nanorod arrays as a chemical sensor capable of generating a different response upon exposure to methanol, ethanol, isopropyl alcohol, acetone and water, wherein the methanol sensing exhibited highest sensitivity. In addition, the ZnO sensor also demonstrates good stability and reproducibility for detection of methanol and ethanol.

  10. Comparative study of the quality characteristics of defatted soy flour treated by supercritical carbon dioxide and organic solvent.

    PubMed

    Kang, Sung-Won; Rahman, M Shafiur; Kim, Ah-Na; Lee, Kyo-Yeon; Park, Chan-Yang; Kerr, William L; Choi, Sung-Gil

    2017-07-01

    Defatted soy flour is a potential source of food protein, amino acids, ash and isoflavones. The supercritical carbon dioxide (SC-CO 2 ) and a traditional organic solvent extraction methods were used to remove fat from soy flour, and the quality characteristics of a control soy flour (CSF), defatted soy flour by SC-CO 2 (DSFSC-CO 2 ) and defatted soy flour by an organic solvent (DSF-OS) were compared. The SC-CO 2 process was carried out at a constant temperature of 45 °C, and a pressure of 40 MPa for 3 h with a CO 2 flow rate of 30 g/min. The DSFSC-CO 2 had significantly higher protein, ash, and amino acids content than CSF and DSF-OS. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated that CSF and DSFSC-CO 2 had protein bands of similar intensity and area that indicated no denaturation of protein, whereas DSF-OS showed diffuse bands or no bands due to protein denaturation. In addition to higher nutritional value and protein contents, DSFSC-CO 2 showed superior functional properties in terms of total soluble solids content, water and oil absorption, emulsifying and foaming capacity. The SC-CO 2 method offers a nutritionally and environmentally friendly alternative extraction processing approach for the removal of oil from high-protein food sources. It has a great potential for producing high-protein fat-free, and low-calorie content diet than the traditional organic solvent extraction method.

  11. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  12. Dynamics and mitigation of six pesticides in a "Wet" forest buffer zone.

    PubMed

    Passeport, Elodie; Richard, Benjamin; Chaumont, Cédric; Margoum, Christelle; Liger, Lucie; Gril, Jean-Joël; Tournebize, Julien

    2014-04-01

    Pesticide pollution is one of the main current threats on water quality. This paper presents the potential and functioning principles of a "Wet" forest buffer zone for reducing concentrations and loads of glyphosate, isoproturon, metazachlor, azoxystrobin, epoxiconazole, and cyproconazole. A tracer injection experiment was conducted in the field in a forest buffer zone at Bray (France). A fine time-scale sampling enabled to illustrate that interactions between pesticides and forest buffer substrates (soil and organic-rich litter layer), had a retarding effect on molecule transfer. Low concentrations were observed for all pesticides at the forest buffer outlet thus demonstrating the efficiency of "Wet" forest buffer zone for pesticide dissipation. Pesticide masses injected in the forest buffer inlet directly determined concentration peaks observed at the outlet. Rapid and partially reversible adsorption was likely the major process affecting pesticide transfer for short retention times (a few hours to a few days). Remobilization of metazachlor, isoproturon, desmethylisoproturon, and AMPA was observed when non-contaminated water flows passed through the forest buffer. Our data suggest that pesticide sorption properties alone could not explain the complex reaction mechanisms that affected pesticide transfer in the forest buffer. Nevertheless, the thick layer of organic matter litter on the top of the forest soil was a key parameter, which enhanced partially reversible sorption of pesticide, thus retarded their transfer, decreased concentration peaks, and likely increased degradation of the pesticides. Consequently, to limit pesticide pollution transported by surface water, the use of already existing forest areas as buffer zones should be equally considered as the most commonly implemented grass buffer strips.

  13. Verification of the modified model of drying process of a polymer liquid film on a flat substrate by experiment (3) - using organic solvent

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2007-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication and have presented the fruits through Photomask Japan 2002, 2003, 2004, Smart Materials, Nano-, and Micro-Smart Systems 2006 and so on. And for example numerical simulation of the model qualitatively reappears a typical thickness profile of the polymer film formed after drying, that is, the profile that the edge of the film is thicker and just the region next to the edge's bump is thinner. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of many numerical simulations. Then we did a few kinds of experiments so as to verify the modified model and reported the results of them through Photomask Japan 2005 and 2006. We could observe some results supporting the modified model. But we could not observe a characteristic region of a valley next to the edge's bump of a polymer film after drying. After some trial of various improved experiments we reached the conclusion that the characteristic region didn't appear by reason that water which vaporized slower than organic solvent was used as solvent. Then, in this study, we adopted organic solvent instead of water as solvent for experiments. As a result, that the characteristic region as mentioned above could be seen and we could verify the model more accurately. In this paper, we present verification of the model through above improved experiments for verification using organic solvent.

  14. Thermodynamic and kinetic control of charged, amphiphilic triblock copolymer assembly via interaction with organic counterions in solvent mixtures

    NASA Astrophysics Data System (ADS)

    Cui, Honggang

    2007-12-01

    Amphiphilic block copolymers, consisting of at least two types of monomers with different affinity to the dissolving solvent(s), have been recognized as a molecular building unit for their chemical tunability and design flexibility. Amphiphilic block copolymers with a chargeable block have structural features of polyelectrolytes, block copolymers and surfactants. The combination of these different features offers great flexibility for developing novel assembled morphologies at the nanoscale and outstanding ability to control and manipulate those morphologies. The nanostructures, formed from the spontaneous association of amphiphilic block copolymer in selective solvents, show promise for applications in nanotechnology and pharmaceuticals, including drug delivery, tissue engineering and bio-imaging. A basic knowledge of their modes of self-assembly and their correspondence to application-related properties is just now being developed and poses a considerable scientific challenge. The goal of this dissertation is to investigate the associative behavior of charged, amphiphilic block copolymers in solvent mixtures while in the presence of organic counterions. Self-assembly of poly (acrylic acid)- block-poly (methyl acrylate)-block-polystyrene (PAA- b-PMA-b-PS) triblock copolymers produces nanodomains in THF/water solution specifically through the interaction with organic counterions (polyamines). These assembled structures can include classic micelles (spheres, cylinders and vesicles), but, more importantly, include non-classic micelles (disks, toroids, branched micelles and segmented micelles). Each micelle structure is stable and reproducible at different assembly conditions. The assembled micellar structures depend on not only solution components (thermodynamics) but also mixing procedure and consequent self-assembly pathway (kinetics). The key factors that determine the thermodynamic interactions that partially define the assembled structures and the kinetic

  15. Effect of binary organic solvents together with emulsifier on particle size and in vitro behavior of paclitaxel-encapsulated polymeric lipid nanoparticles.

    PubMed

    Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin

    2017-12-21

    Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Solvent effect on redox properties of hexanethiolate monolayer-protected gold nanoclusters.

    PubMed

    Su, Bin; Zhang, Meiqin; Shao, Yuanhua; Girault, Hubert H

    2006-11-02

    The capacitance of monolayer-protected gold nanoclusters (MPCs), C(MPC), in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to C(MPC) and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparing the redox properties of MPCs in four organic solvents: 1,2-dichloroethane (DCE), dichloromethane (DCM), chlorobenzene (CB), and toluene (TOL), in all of which MPCs have excellent solubility. Furthermore, this set of organic solvents features a dielectric constant in a range from 10.37 (DCE) to 2.38 (TOL), which is wide enough to probe the solvent effect. In these organic solvents, tetrahexylammonium bis(trifluoromethylsulfonyl)imide (THATf2N) is used as the supporting electrolyte. Cyclic and differential pulse voltammetric results provide concrete evidence that, despite the monolayer protection, the solvent plays a significant effect on the properties of MPCs in solution.

  17. SOURCE ASSESSMENT: RECLAIMING OF WASTE SOLVENTS, STATE OF THE ART

    EPA Science Inventory

    This document reviews the state of the art of air emissions from the reclaiming of waste solvents. The composition, quantity, and rate of emissions are described. Waste solvents are organic dissolving agents which are contaminated with suspended and dissolved solids, organics, wa...

  18. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Parental Occupational Exposure to Organic Solvents and Testicular Germ Cell Tumors in their Offspring: NORD-TEST Study.

    PubMed

    Le Cornet, Charlotte; Fervers, Béatrice; Pukkala, Eero; Tynes, Tore; Feychting, Maria; Hansen, Johnni; Togawa, Kayo; Nordby, Karl-Christian; Oksbjerg Dalton, Susanne; Uuksulainen, Sanni; Wiebert, Pernilla; Woldbæk, Torill; Skakkebæk, Niels E; Olsson, Ann; Schüz, Joachim

    2017-06-30

    Testicular germ cell tumors (TGCT) were suggested to have a prenatal environmentally related origin. The potential endocrine disrupting properties of certain solvents may interfere with the male genital development in utero . We aimed to assess the association between maternal and paternal occupational exposures to organic solvents during the prenatal period and TGCT risk in their offspring. This registry-based case control study included TGCT cases aged 14–49 y ( n =8,112) diagnosed from 1978 to 2012 in Finland, Norway, and Sweden. Controls ( n =26,264) were randomly selected from the central population registries and were individually matched to cases on year and country of birth. Occupational histories of parents prior to the child’s birth were extracted from the national censuses. Job codes were converted into solvent exposure using the Nordic job-Nordic Occupational Cancer Study Job-Exposure Matrix. Conditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Overall, no association was found between prenatal maternal exposure to solvents and TGCT risk. In subset analyses using only mothers for whom occupational information was available in the year of or in the year prior to the child’s birth, there was an association with maternal exposure to aromatic hydrocarbon solvents (ARHC) (OR=1.53; CI: 1.08, 2.17), driven by exposure to toluene (OR=1.67; CI: 1.02, 2.73). No association was seen for any paternal occupational exposure to solvents with the exception of exposure to perchloroethylene in Finland (OR=2.42; CI: 1.32, 4.41). This study suggests a modest increase in TGCT risk associated with maternal prenatal exposure to ARHC. https://doi.org/10.1289/EHP864.

  20. Parental Occupational Exposure to Organic Solvents and Testicular Germ Cell Tumors in their Offspring: NORD-TEST Study

    PubMed Central

    Le Cornet, Charlotte; Fervers, Béatrice; Pukkala, Eero; Tynes, Tore; Feychting, Maria; Hansen, Johnni; Togawa, Kayo; Nordby, Karl-Christian; Oksbjerg Dalton, Susanne; Uuksulainen, Sanni; Wiebert, Pernilla; Woldbæk, Torill; Skakkebæk, Niels E.; Olsson, Ann

    2017-01-01

    Background: Testicular germ cell tumors (TGCT) were suggested to have a prenatal environmentally related origin. The potential endocrine disrupting properties of certain solvents may interfere with the male genital development in utero. Objectives: We aimed to assess the association between maternal and paternal occupational exposures to organic solvents during the prenatal period and TGCT risk in their offspring. Methods: This registry-based case control study included TGCT cases aged 14–49 y (n=8,112) diagnosed from 1978 to 2012 in Finland, Norway, and Sweden. Controls (n=26,264) were randomly selected from the central population registries and were individually matched to cases on year and country of birth. Occupational histories of parents prior to the child’s birth were extracted from the national censuses. Job codes were converted into solvent exposure using the Nordic job-Nordic Occupational Cancer Study Job-Exposure Matrix. Conditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Results: Overall, no association was found between prenatal maternal exposure to solvents and TGCT risk. In subset analyses using only mothers for whom occupational information was available in the year of or in the year prior to the child’s birth, there was an association with maternal exposure to aromatic hydrocarbon solvents (ARHC) (OR=1.53; CI: 1.08, 2.17), driven by exposure to toluene (OR=1.67; CI: 1.02, 2.73). No association was seen for any paternal occupational exposure to solvents with the exception of exposure to perchloroethylene in Finland (OR=2.42; CI: 1.32, 4.41). Conclusions: This study suggests a modest increase in TGCT risk associated with maternal prenatal exposure to ARHC. https://doi.org/10.1289/EHP864 PMID:28893722

  1. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  2. Bioavailability of organic solvents in soils: Input into biologically based dose-response models for human risk assessments. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wester, R.C.; Maibach, H.I.

    1998-06-01

    'The purpose of this study is to determine the bioavailability of organic solvents following dermal exposures to contaminated soil and water. Breath analysis is being used to obtain real-time measurements of volatile organics in expired air following exposure in rats and humans. Rhesus monkeys will be used as surrogates for humans in benzene exposures. The exhaled breath data is being analyzed using physiologically based pharmacokinetic (PBPK) models to determine the dermal bioavailability of organic solvents under realistic exposure conditions. The end product of this research will be a tested framework for the rapid screening of real and potential exposures whilemore » simultaneously developing physiologically based pharmacokinetic (PBPK) models to comprehensively evaluate and compare exposures to organics from either contaminated soil or water. This report summarizes work 7 months into a 3-year project. Method development has produced systems for solvent exposure from soil and water which mimic actual exposure, and for which animals and human volunteers can be safely tested. Soil exposure is generally open to the air (working the soil) while water exposure is generally immersion. For 6--8 hour test exposure, a patch has been developed where soil is contained against the skin by a non-occlusive membrane, while simultaneously allowing volatilization of test solvent to the environment (activated charcoal). The water counterpart is an occlusive glass culture dish, sealed to skin with silicone adhesive. Shorter term exposure is done by one hand immersion in a bucket containing circulating water or soil, the volunteer instructed to move fingers through the water or soil. Human volunteers and animals breathe fresh air via a new breath-inlet system that allows for continuous real-time analysis of undiluted exhaled air. The air supply system is self-contained and separated from the exposure solvent-laden environment. The system uses a Teledyne 3DQ Discovery ion trap

  3. 12 CFR 324.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 324.11 Section 324.11 Banks and Banking FEDERAL DEPOSIT INSURANCE CORPORATION... Requirements and Buffers § 324.11 Capital conservation buffer and countercyclical capital buffer amount. (a...

  4. Urinary metabolite levels and symptoms in Filipino workers using organic solvents.

    PubMed

    Cucueco, M T; Espinosa, N C; Villanueva, M B; Castro, F T; Sison, S Y; Ortega, V S; Hisanaga, N

    1993-01-01

    To compare symptoms with urinary metabolite levels, 900 workers from 7 organic solvent-using industries were studied. Urinary metabolites were determined using a high performance liquid chromatograph. Urinary hippuric acid concentrations exceeding the reference value (2.5 g/g creatinine) were found in 78 (8.7%) workers. However, only 3 (0.3%) and 1 (0.1%) of the participants exceeded the reference value for mandelic (0.8 g/g creatinine) and total methylhippuric acid (1.5 g/g creatinine), respectively. The sum of the values of the ratio of measured urinary metabolite concentration to the corresponding ACGIH's biological exposure indices (BEI) [(HA/BEI of HA + MHA/BEI of MHA + MA/BEI of MA)] exceeded 1.0 in 166 (18.4%) workers. Majority of them were from the footwear manufacturing industry (63/129 or 49.2%). Questionnaire interviews were also administered to determine the prevalence of symptoms while at work (acute symptoms) or within the past 6 months (chronic symptoms). Urinary metabolite levels of individual and mixed solvents were compared with the symptoms of all workers. Analysis using Spearman's rank correlation showed in workers whose urinary hippuric acid exceeded 3.75 g/g creatine (1.5 x BEI), significant correlation between their hippuric acid levels and subjective complaints. Workers whose sum of the values of the ratio of measured urinary metabolite concentration to corresponding BEI exceeded 1.5 were selected and comparing this level with their symptoms, significant correlation was also noted in some complaints.

  5. Aqueous or solvent based surface modification: The influence of the combination solvent - organic functional group on the surface characteristics of titanium dioxide grafted with organophosphonic acids

    NASA Astrophysics Data System (ADS)

    Roevens, Annelore; Van Dijck, Jeroen G.; Geldof, Davy; Blockhuys, Frank; Prelot, Benedicte; Zajac, Jerzy; Meynen, Vera

    2017-09-01

    To alter the versatility of interactions at its surface, TiO2 is modified with organophosphonic acids (PA). A thorough understanding of the role of all synthesis conditions is necessary to achieve controlled functionalization. This study reports on the effect of using water, toluene and their mixtures when performing the modification of TiO2 with PA. Sorption and calorimetry measurements of surface interactions with various probing species clearly indicate that, by grafting PA in water, clear differences appear in the distribution of organic groups on the surface. Also the functional group of the PA determines the impact of using water as solvent. Modification in toluene results in a higher modification degree for propylphosphonic acid (3PA), as the solvent-solute interaction may hinder the grafting with phenylphosphonic acid (PhPA) in toluene. Water is preferred as solvent for PhPA modification as stabilizing π-OH interactions enhance surface grafting overcoming the competitive interaction of water at the surface as observed with 3PA. By using water in toluene mixtures for the functionalization of TiO2 with 3PA, the degree of functionalization is higher than when only water or toluene is used. Furthermore, adding small amounts of water leads to the formation of titanium propylphosphonates, next to surface grafting.

  6. Fluorescence sensor for water in organic solvents prepared from covalent immobilization of 4-morpholinyl-1, 8-naphthalimide.

    PubMed

    Niu, Cheng-Gang; Qin, Pin-Zhu; Zeng, Guang-Ming; Gui, Xiao-Qin; Guan, Ai-Ling

    2007-02-01

    A new fluorescent dye, N-allyl-4-morpholinyl-1,8-naphthalimide (AMN), was synthesized as a fluorescence indicator in the fabrication of a sensor for determining water content in organic solvents. To prevent leakage of the fluorophore, AMN was photo-copolymerized with acrylamide, (2-hydroxyethyl)methacrylate, and triethylene glycol dimethacrylate on a glass surface treated with a silanizing agent. The sensing mechanism is based on the solvatochromic feature of the covalently immobilized AMN. The fluorescence intensity of AMN decreased with increasing water contents when it was excited at 400 nm. In the range of ca. 0.00-4.40% (v/v), the fluorescence intensity of AMN changed as a linear function of water content. The sensor exhibited satisfactory reproducibility, reversibility, and a response time (t (99)) of the order of 50 s. The detection limit was solvent-dependent, when acetonitrile was used as the solvent, and the detection limit could be as low as 0.006% (v/v) of water. Additionally, the prepared sensor is pH-insensitive and possesses a relatively long lifetime of at least one month.

  7. 12 CFR 217.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 217.11 Section 217.11 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS... Requirements and Buffers § 217.11 Capital conservation buffer and countercyclical capital buffer amount. (a...

  8. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations.

    PubMed

    Mozhaev, V V; Poltevsky, K G; Slepnev, V I; Badun, G A; Levashov, A V

    1991-11-04

    A typical hydrophilic enzyme, CT, can be dissolved in nonpolar organic solvents (n-octane, cyclohexane and toluene) up to microM concentrations. In the homogeneous solution obtained, the enzyme possesses catalytic activity and enormously high thermostability. It does not lose this activity even after several hours refluxing in octane (126 degrees C) or cyclohexane (81 degrees C).

  9. Hazardous Waste Cleanup: Solvents & Petroleum Incorporated in Syracuse, New York

    EPA Pesticide Factsheets

    The Solvents and Petroleum Service, Inc. (SPS) facility is located at 1405 Brewerton Road in Syracuse, New York. The current owner is a distributor of organic and chlorinated solvents to industries in the Central New York region. Solvents are stored in

  10. Online sample concentration and analysis of drugs of abuse in human urine by micelle to solvent stacking in capillary zone electrophoresis.

    PubMed

    Aturki, Zeineb; Fanali, Salvatore; Rocco, Anna

    2016-10-01

    A sensitive and rapid CZE-UV method was developed to determine drugs and their metabolites' presence in human urine. Ten drugs of abuse were analyzed including four amphetamines, cocaine, cocaethylene, heroin, morphine, 6-monoacetylmorphine, and 4-methylmethcathinone. An MSS (micelle to solvent stacking) approach was evaluated to enhance method sensitivity. This method considers composition of the micellar sample solution matrix and the injection time. Several analytical conditions influencing the resolution of the drugs mixture as pH and buffer concentration, organic solvent content, were also investigated. The base-line separation of all studied analytes in the same run was achieved within 18 min in an uncoated fused silica capillary (50 μm id × 60 cm) using a background solution containing 50 mM phosphate buffer pH 2.5 and 30% ACN v/v. Other experimental parameters such as applied voltage and capillary temperature were set up at 20 kV and 20°C, respectively. LOD values ranging between 15 and 75 ng/mL for all studied compounds were obtained. From a comparison with conventional CZE, the proposed method provides an increase of sensitivity (39- to 55-fold enhancement factor). Under optimal MSS-CZE conditions, good linearity was achieved (R 2 ≤ 0.9998). The method was finally applied to the analysis of urine samples spiked with a standard mixture after a sample pretreatment, reaching satisfactory recovery values. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Equilibrium disorders in workers exposed to mixed solvents.

    PubMed

    Giorgianni, Concetto; Tanzariello, Mariagiuseppina; De Pasquale, Domenico; Brecciaroli, Renato; Spatari, Giovanna

    2018-02-06

    Organic solvents cause diseases of the vestibular system. However, little is known regarding the correlation between vestibular damage and exposure to organic solvents below threshold limit values. The best measure by which to evaluate vestibular disorders is static and dynamic posturography. The aim of this study was to evaluate equilibrium disorders via static and dynamic posturography in workers without clear symptoms and exposed to low doses of mixed solvents. 200 subjects were selected. Using an Otometrics device (Madsen, Denmark), all subjects endured static and dynamic posturography testing with both eyes-open and eyes-closed conditions. Results were compared with a control group of unexposed individuals. Based on the obtained data, the following results can be drawn: (a) subjects exposed to mixtures of solvents show highly significant differences regarding all static and dynamic posturography parameters in comparison to the control group; (b) posturography testing has proven to be a valid means by which to detect subliminal equilibrium disorders in subjects exposed to solvents. We can confirm that refinery workers exposed to mixtures of solvents can present subliminal equilibrium disorders. Early diagnosis of the latter is made possible by static and dynamic posturography.

  12. The effect of organic solvents on one-bottle adhesives' bond strength to enamel and dentin.

    PubMed

    Reis, André Figueiredo; Oliveira, Marcelo Tavares; Giannini, Marcelo; De Goes, Mário Fernando; Rueggeberg, Frederick A

    2003-01-01

    This study evaluated the microtensile bond strength (pTBS) of ethanol/water- and acetone-based, one-bottle adhesive systems to enamel (E) and dentin (D) in the presence (P) or absence (A) of their respective solvents. Thirty-two freshly extracted third molars were flattened with 600-grit SiC paper and restored with Single Bond (SB) or Prime&Bond 2.1 (PB) according to the manufacturers' instructions and after full solvent elimination. The molars were divided into eight test groups (n = 4): G1-SB-E-P, G2-SB-E-A, G3-PBE-P, G4-PB-E-A, G5-SB-D-P, G6-SB-D-A, G7-PB-D-P and G8-PB-D-A. After applying the adhesive resins, composite crowns of approximately 8 mm were built up with TPH Spectrum composite. After 24-hour water storage, the specimens were serially sectioned bucco-lingually to obtain 0.8 mm slabs that were trimmed to an hourglass shape, approximately 0.8 mm2 at the bonded interface. The specimens were tested in tension using a universal testing machine (0.5 mm/minute). The results were statistically analyzed by ANOVA and Tukey test. The frequency of fracture mode was compared using the Kruskal-Wallis test. There were no statistically significant differences in mean bond strength among the groups restored with or without solvent for enamel. However, the results were significantly different for the dentin groups (MPa): G5-26.2 +/- 8.6a; G7-23.6 +/- 11.3ab; G6-12.8 +/- 2.1bc; G8-6.2 +/- 3.1c. SEM examination indicated that the dentin group failure modes were significantly different from the enamel groups. The results suggest that the presence of organic solvents does not influence microTBS to enamel. However, microTBS to dentin was significantly affected by the absence of solvents in the adhesive system.

  13. EXPEDITIOUS SOLVENT-FREE ORGANIC SYNTHESES USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-expedited solvent-free synthetic processes involve the exposure of neat reactants to microwave (MW) irradiation in the presence of supported reagents or catalysts on mineral oxides. Recent developments are described and the salient features of these high yield protocol...

  14. A Solvent-Free Baeyer-Villiger Lactonization for the Undergraduate Organic Laboratory: Synthesis of Gamma-T-Butyl-Epsilon-Caprolactone

    ERIC Educational Resources Information Center

    Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.

    2005-01-01

    The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.

  15. Monitoring Liverworts to Evaluate the Effectiveness of Hydroriparian Buffers

    NASA Astrophysics Data System (ADS)

    Higgins, Kellina L.; Yasué, Maï

    2014-01-01

    In the coastal temperate rainforest of British Columbia (BC) in western Canada, government policies stipulate that foresters leave unlogged hydroriparian buffer strips up to 25 m on each side of streams to protect wildlife habitat. At present, studies on the effectiveness of these buffers focus on mammals, birds, and amphibians while there is comparably little information on smaller organisms such as liverworts in these hydroriparian buffers. To address this gap of knowledge, we conducted field surveys of liverworts comparing the percent cover and community composition in hydroriparian forested areas ( n = 4 sites, n = 32 plots with nested design) to hydroriparian buffer zones ( n = 4 sites, n = 32 plots). We also examined how substrate type affected the cover of liverworts. Liverwort communities in buffers were similar to those in riparian forest areas and most liverworts were found on downed wood. Thus, hydroriparian buffers of 25-35 m on each side in a coastal temperate rainforest effectively provide habitat for liverworts as long as downed wood is left intact in the landscape. Because liverworts are particularly sensitive to changes in humidity, these results may indicate that hydroriparian buffers are an effective management strategy for bryophytes and possibly for a range of other riparian species that are particularly sensitive to forestry-related changes in microclimate.

  16. Ionic Liquids Beyond Simple Solvents: Glimpses at the State of the Art in Organic Chemistry.

    PubMed

    Kuchenbuch, Andrea; Giernoth, Ralf

    2015-12-01

    Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors' personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis.

  17. Purification of α-glucosidase from mouse intestine by countercurrent chromatography coupled with a reverse micelle solvent system.

    PubMed

    He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli

    2016-02-01

    Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solvent residue content measured by light scattering technique

    NASA Technical Reports Server (NTRS)

    Salkowski, M. J.; Werle, D. K.

    1966-01-01

    Photometric analyzer measures NVR /nonvolatile residue/ in trichloroethylene and other organic solvents. The analyzer converts the liquid solvent to aerosol and passes it between an optically focused light beam and a photodetector that is connected to standard amplifying and readout equipment.

  19. 40 CFR 63.5753 - How do I calculate the combined organic HAP content of aluminum wipedown solvents and aluminum...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HAP content of aluminum wipedown solvents and aluminum recreational boat surface coatings? 63.5753...) National Emission Standards for Hazardous Air Pollutants for Boat Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5753 How do I calculate the combined organic HAP content of...

  20. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Scherman, Carl; Martin, David

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less

  1. Peptide-based ambidextrous bifunctional gelator: applications in oil spill recovery and removal of toxic organic dyes for waste water management.

    PubMed

    Basu, Kingshuk; Nandi, Nibedita; Mondal, Biplab; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2017-12-06

    A low molecular weight peptide-based ambidextrous gelator molecule has been discovered for efficient control of water pollution. The gelator molecules can gel various organic solvents with diverse polarity, e.g. n -hexane, n -octane, petroleum ether, petrol, diesel, aromatic solvents like chlorobenzene, toluene, benzene, o -xylene and even aqueous phosphate buffer of pH 7.5. These gels have been thoroughly characterized using various techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, small angle X-ray scattering and rheological experiments. Interestingly, hydrogel obtained from the gelator molecule has been found to absorb toxic organic dyes (both cationic and anionic dyes) from dye-contaminated water. The gelator molecule can be reused for several cycles, indicating its possible future use in waste water management. Moreover, this gelator can selectively gel petrol, diesel, pump oil from an oil-water mixture in the presence of a carrier solvent, ethyl acetate, suggesting its efficient application for oil spill recovery. These results indicate that the peptide-based ambidextrous gelator produces soft materials (gels) with dual function: (i) removal of toxic organic dyes in waste water treatment and (ii) oil spill recovery.

  2. Facilitation through Buffer Saturation: Constraints on Endogenous Buffering Properties

    PubMed Central

    Matveev, Victor; Zucker, Robert S.; Sherman, Arthur

    2004-01-01

    Synaptic facilitation (SF) is a ubiquitous form of short-term plasticity, regulating synaptic dynamics on fast timescales. Although SF is known to depend on the presynaptic accumulation of Ca2+, its precise mechanism is still under debate. Recently it has been shown that at certain central synapses SF results at least in part from the progressive saturation of an endogenous Ca2+ buffer (Blatow et al., 2003), as proposed by Klingauf and Neher (1997). Using computer simulations, we study the magnitude of SF that can be achieved by a buffer saturation mechanism (BSM), and explore its dependence on the endogenous buffering properties. We find that a high SF magnitude can be obtained either by a global saturation of a highly mobile buffer in the entire presynaptic terminal, or a local saturation of a completely immobilized buffer. A characteristic feature of BSM in both cases is that SF magnitude depends nonmonotonically on the buffer concentration. In agreement with results of Blatow et al. (2003), we find that SF grows with increasing distance from the Ca2+ channel cluster, and increases with increasing external Ca2+, [Ca2+]ext, for small levels of [Ca2+]ext. We compare our modeling results with the experimental properties of SF at the crayfish neuromuscular junction, and find that the saturation of an endogenous mobile buffer can explain the observed SF magnitude and its supralinear accumulation time course. However, we show that the BSM predicts slowing of the SF decay rate in the presence of exogenous Ca2+ buffers, contrary to experimental observations at the crayfish neuromuscular junction. Further modeling and data are required to resolve this aspect of the BSM. PMID:15111389

  3. Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

    PubMed

    Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank

    2018-05-21

    Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O

  4. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  5. Endohexosaminidase-catalysed glycosylation with oxazoline donors: effects of organic co-solvent and pH on reactions catalysed by Endo A and Endo M.

    PubMed

    Heidecke, Christoph D; Parsons, Thomas B; Fairbanks, Antony J

    2009-12-14

    The synthetic efficiency of endohexosaminidase-catalysed glycosylation reactions using N-glycan oxazolines as donors was investigated as two reaction parameters were varied. Both the addition of quantities of an organic co-solvent and modulation of reaction pH between 6.5 and 8.0 were found to have different effects on reactions catalysed by either Endo A (and two available mutants) or Endo M, indicating subtle differences between these two family GH85 enzymes. Fine tuning of reaction pH, or the addition of quantities of an organic co-solvent, resulted in beneficial increases in achievable synthetic efficiency by effecting a reduction in the rate of competitive hydrolytic processes.

  6. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction

    PubMed Central

    Wang, Kun; Xu, Feng; Sun, Runcang

    2010-01-01

    Kraft-AQ pulping lignin was sequentially fractionated by organic solvent extractions and the molecular properties of each fraction were characterized by chemical degradation, GPC, UV, FT-IR, 13C-NMR and thermal analysis. The average molecular weight and polydispersity of each lignin fraction increased with its hydrogen-bonding capacity (Hildebrand solubility parameter). In addition, the ratio of the non-condensed guaiacyl/syringyl units and the content of β-O-4 linkages increased with the increment of the lignin fractions extracted successively with hexane, diethylether, methylene chloride, methanol, and dioxane. Furthermore, the presence of the condensation reaction products was contributed to the higher thermal stability of the larger molecules. PMID:21152286

  7. Buffer capacity of the coelomic fluid in echinoderms.

    PubMed

    Collard, Marie; Laitat, Kim; Moulin, Laure; Catarino, Ana I; Grosjean, Philippe; Dubois, Philippe

    2013-09-01

    The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8mmolkg(-1) SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4mmolkg(-1) SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3mmolkg(-1) SW compared to unfed ones who showed a difference of about 0.5mmolkg(-1) SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH7.7 to about twice that of the control individuals and, for those at pH7

  8. The quantitation of buffering action II. Applications of the formal & general approach.

    PubMed

    Schmitt, Bernhard M

    2005-03-16

    The paradigm of "buffering" originated in acid-base physiology, but was subsequently extended to other fields and is now used for a wide and diverse set of phenomena. In the preceding article, we have presented a formal and general approach to the quantitation of buffering action. Here, we use that buffering concept for a systematic treatment of selected classical and other buffering phenomena. H+ buffering by weak acids and "self-buffering" in pure water represent "conservative buffered systems" whose analysis reveals buffering properties that contrast in important aspects from classical textbook descriptions. The buffering of organ perfusion in the face of variable perfusion pressure (also termed "autoregulation") can be treated in terms of "non-conservative buffered systems", the general form of the concept. For the analysis of cytoplasmic Ca++ concentration transients (also termed "muffling"), we develop a related unit that is able to faithfully reflect the time-dependent quantitative aspect of buffering during the pre-steady state period. Steady-state buffering is shown to represent the limiting case of time-dependent muffling, namely for infinitely long time intervals and infinitely small perturbations. Finally, our buffering concept provides a stringent definition of "buffering" on the level of systems and control theory, resulting in four absolute ratio scales for control performance that are suited to measure disturbance rejection and setpoint tracking, and both their static and dynamic aspects. Our concept of buffering provides a powerful mathematical tool for the quantitation of buffering action in all its appearances.

  9. Organic solvent exposure and contrast sensitivity: comparing men and women

    PubMed Central

    Oliveira, A.R.; Campos, A.A.; de Andrade, M.J.O.; de Medeiros, P.C.B.; dos Santos, N.A.

    2018-01-01

    The goal of this study was to compare the visual contrast sensitivity (CS) of men and women exposed and not exposed to organic solvents. Forty-six volunteers of both genders aged between 18 and 41 years (mean±SD=27.72±6.28) participated. Gas station attendants were exposed to gas containing 46.30 ppm of solvents at a temperature of 304±274.39 K, humidity of 62.25±7.59% and ventilation of 0.69±0.46 m/s (a passive gas chromatography-based sampling method was used considering the microclimate variables). Visual CS was measured via the psychophysical method of two-alternative forced choice using vertical sinusoidal gratings with spatial frequencies of 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, and 16.0 cpd (cycles per degree) and an average luminance of 34.4 cd/m2. The results showed that visual CS was significantly lower (P<0.05) in the following groups: i) exposed men compared to unexposed men at frequencies of 0.2, 0.5, 1.0, and 2.0 cpd; ii) exposed women compared to unexposed women at a frequency of 5.0 cpd; and iii) exposed women compared to exposed men at a frequency of 0.5 cpd, even at exposures below the tolerance limit (300 ppm). These results suggest that the visual CS of exposed men was impaired over a wider range of spatial frequencies than that of exposed women. This difference may have been due to the higher body fat content of women compared to that of men, suggesting that body fat in women can serve as a protective factor against neurotoxic effects. PMID:29340521

  10. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  11. One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water

    NASA Astrophysics Data System (ADS)

    Xiang, Yuqian; Pang, Youyou; Jiang, Xiaomei; Huang, Jie; Xi, Fengna; Liu, Jiyang

    2018-01-01

    Absorbent materials integrated with superhydrophobicity, superoleophilicity and flame-retardancy are highly desired in the adsorption/removal of flammable oils/organic compounds as well as reducing the risk of fire and explosion. Here, one-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy was presented. Using raw melamine (ME) sponge as the supporting matrix, the formation of polydopamine (PDA) nanoaggregates via in-situ self-polymerization of high-concentrated dopamine and the covalent grafting of hydrophobic n-dodecylthiol (DT) onto PDA were combined in a feasible alkaline water/ethanol medium. As investigated by scanning electron microscopy (SEM) and X-ray energy-dispersive spectroscopy (EDS), the as-prepared ME/PDA/DT sponge possessed hierarchical structure with submicron PDA nanoaggregates containing DT motif (low surface energy) on 3D interconnected porous network. It exhibited superhydrophobic (water contact angle 157.7°) and superoleophilic (oily/organic solvent contact angle 0° properties. Owing to the highly porous structure, superhydrophobic property, chemical and mechanical stability, the ME/PDA/DT sponge exhibited outstanding absorbency properties of oily organic solvents including fast absorption kinetics, high absorption capacity, and easy reusability. Also, the ME/PDA/DT sponge could be used for one-line continuous organic solvent/water separation. More interestingly, the ME/PDA/DT sponge demonstrated improved flame-retardant property as compared to the intrinsic flame-retardant nature of the raw melamine sponge. Consequently, the risk of fire and explosion was expected to reduce when the fabricated sponge was used as an absorbent for flammable oils and organic compounds. The ease of the one-step superhydrophobic/superoleophilic modification and the promising feature of the obtained materials exhibit great potential for application in oils/organic solvents clean-up.

  12. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations.

    PubMed

    Cull, S G; Holbrey, J D; Vargas-Mora, V; Seddon, K R; Lye, G J

    2000-07-20

    Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimi- dazolium hexafluorophosphate, [bmim][PF(6)], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1, 3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF(6)] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF(6)] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF(6)] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF(6)] phase. It was also shown that the specific activity of the biocatalyst in the water-[bmim] [PF(6)] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. Copyright 2000 John Wiley & Sons, Inc.

  13. Acute effects of an organic solvent mixture on the human central nervous system.

    PubMed

    Muttray, Axel; Martus, P; Schachtrup, S; Müller, E; Mayer-Popken, O; Konietzko, J

    2005-09-12

    At workplaces, organic solvents are often used as mixtures. Nevertheless, there is limited knowledge of their acute effects on human central nervous system. Here we report the effects of a toluene-acetone mixture. In a parallel design, subgroups of 12 healthy men each were exposed to a mixture containing 25 ppm acetone and 250 ppm toluene or to air (control) in an exposure chamber for 4.5 hours. Concentrations corresponded to the German TLV (TRGS 403). Concentrations of toluene and acetone in venous blood were measured by headspace gas chromatography. Subjects were sedentary. The following tests were performed before and at the end of exposure: Questionnaires, simple reaction time, vigilance, quantitative analysis of EEG with open and closed eyes and during the Color Word Stress test, and visual evoked potentials (VEP). Blood levels were 0.14 (+/- 0.04 SD) mg toluene/l and 5.43 (+/- 1.37 SD) mg acetone/l at the end of solvent exposure. Scores of neurotoxic and irritating symptoms were not elevated during solvent exposure. Exposed subjects performed as well as control subjects on the simple reaction time test and on the vigilance test, neither reaction time nor number of hits differed significantly. A general linear model on log transformed spectral power values showed insignificant changes in EEG. In the alpha subset2-band an average reduction to 86 % was observed in exposed as compared to non exposed subjects with closed eyes, a reduction to 88 % in the theta-band with open eyes, and a reduction to 92 % in the theta-band during the Color Word Stress test. VEP P 100 latencies and amplitudes did not change. The mixture consisting of toluene and acetone did not cause any adverse acute effect. With respect to EEG data, possible subclinical effects on central nervous system cannot be excluded.

  14. The Effects of Acetate Buffer Concentration on Lysozyme Solubility

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Pusey, Marc L.

    1996-01-01

    The micro-solubility column technique was employed to systematically investigate the effects of buffer concentration on tetragonal lysozyme solubility. While keeping the NaCl concentrations constant at 2%, 3%, 4%, 5% and 7%, and the pH at 4.0, we have studied the solubility of tetragonal lysozyme over an acetate buffer concentration range of 0.01M to 0.5M as a function of temperature. The lysozyme solubility decreased with increasing acetate concentration from 0.01M to 0.1M. This decrease may simply be due to the net increase in solvent ionic strength. Increasing the acetate concentration beyond 0.1M resulted in an increase in the lysozyme solubility, which reached a peak at - 0.3M acetate concentration. This increase was believed to be due to the increased binding of acetate to the anionic binding sites of lysozyme, preventing their occupation by chloride. In keeping with the previously observed reversal of the Hoffmeister series for effectiveness of anions in crystallizing lysozyme, acetate would be a less effective precipitant than chloride. Further increasing the acetate concentration beyond 0.3M resulted in a subsequent gradual decrease in the lysozyme solubility at all NaCl concentrations.

  15. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    PubMed

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  16. Solvent-assisted lipid bilayer formation on silicon dioxide and gold.

    PubMed

    Tabaei, Seyed R; Choi, Jae-Hyeok; Haw Zan, Goh; Zhdanov, Vladimir P; Cho, Nam-Joon

    2014-09-02

    Planar lipid bilayers on solid supports mimic the fundamental structure of biological membranes and can be investigated using a wide range of surface-sensitive techniques. Despite these advantages, planar bilayer fabrication is challenging, and there are no simple universal methods to form such bilayers on diverse material substrates. One of the novel methods recently proposed and proven to form a planar bilayer on silicon dioxide involves lipid deposition in organic solvent and solvent exchange to influence the phase of adsorbed lipids. To scrutinize the specifics of this solvent-assisted lipid bilayer (SALB) formation method and clarify the limits of its applicability, we have developed a simplified, continuous solvent-exchange version to form planar bilayers on silicon dioxide, gold, and alkanethiol-coated gold (in the latter case, a lipid monolayer is formed to yield a hybrid bilayer) and varied the type of organic solvent and rate of solvent exchange. By tracking the SALB formation process with simultaneous quartz crystal microbalance-dissipation (QCM-D) and ellipsometry, it was determined that the acoustic, optical, and hydration masses along with the acoustic and optical thicknesses, measured at the end of the process, are comparable to those observed by employing conventional fabrication methods (e.g., vesicle fusion). As shown by QCM-D measurements, the obtained planar bilayers are highly resistant to protein adsorption, and several, but not all, water-miscible organic solvents could be successfully used in the SALB procedure, with isopropanol yielding particularly high-quality bilayers. In addition, fluorescence recovery after photobleaching (FRAP) measurements demonstrated that the coefficient of lateral lipid diffusion in the fabricated bilayers corresponds to that measured earlier in the planar bilayers formed by vesicle fusion. With increasing rate of solvent exchange, it was also observed that the bilayer became incomplete and a phenomenological

  17. Solvent Effects on the Conductance of 1,4-benzenediamine

    NASA Astrophysics Data System (ADS)

    Fatemi, Valla; Kamenetska, Maria; Neaton, Jeffrey; Venkataraman, Latha

    2010-03-01

    We measured the conductance of 1,4-benzenediamine (BDA) by mechanically forming and breaking Au point contacts with a modified STM in a solution of molecules in ambient conditions, using a variety of solvents. Here, we present reliable experimental results which show that the conductance of BDA can be increased by over 50% when dissolved in aromatic organic solvents solely by varying halogen groups on the solvent molecule. The trends in conductance do not correlate with the solvent dielectric constant, dipole moment, or direct solvent-BDA interactions. First-principles density functional theory calculations of solvent molecule binding to gold surfaces are used to discuss mechanisms behind the conductance shift of the BDA molecule.

  18. Solvent dependent photophysical properties of dimethoxy curcumin

    NASA Astrophysics Data System (ADS)

    Barik, Atanu; Indira Priyadarsini, K.

    2013-03-01

    Dimethoxy curcumin (DMC) is a methylated derivative of curcumin. In order to know the effect of ring substitution on photophysical properties of curcumin, steady state absorption and fluorescence spectra of DMC were recorded in organic solvents with different polarity and compared with those of curcumin. The absorption and fluorescence spectra of DMC, like curcumin, are strongly dependent on solvent polarity and the maxima of DMC showed red shift with increase in solvent polarity function (Δf), but the above effect is prominently observed in case of fluorescence maxima. From the dependence of Stokes' shift on solvent polarity function the difference between the excited state and ground state dipole moment was estimated as 4.9 D. Fluorescence quantum yield (ϕf) and fluorescence lifetime (τf) of DMC were also measured in different solvents at room temperature. The results indicated that with increasing solvent polarity, ϕf increased linearly, which has been accounted for the decrease in non-radiative rate by intersystem crossing (ISC) processes.

  19. Behaviour of a solvent trapped in a physical molecular gel

    NASA Astrophysics Data System (ADS)

    Morfin, I.; Spagnoli, S.; Rambaud, C.; Longeville, S.; Plazanet, M.

    2016-03-01

    Physical gels formed by amphiphilic molecules, namely in this study Methyl-4,6-O-benzylidene-? -D-mannopyranoside, can be form either in polar and protic liquid-like water or in organic apolar solvent such as toluene. The solvent, that influences the supramolecular organization of the gelators, plays an important role in the stability and formation of the gel phase. Gelator-solvent interactions govern not only the assembly but also the solvent diffusion in the material. We present here measurements of neutron scattering (Time of Flight and Neutron Spin Echo) characterizing this microscopic behaviour. In addition, we show that transient grating spectroscopy provides valuable information through the characterization of the longitudinal acoustic wave propagating in the system. Opposite effects on the speed of sound in the gels are observed for the two solvents investigated, being relevant of the interactions between the gelators and the surrounding liquid.

  20. Effect of Different Solvents on the Measurement of Phenolics and the Antioxidant Activity of Mulberry (Morus atropurpurea Roxb.) with Accelerated Solvent Extraction.

    PubMed

    Yang, Jiufang; Ou, XiaoQun; Zhang, Xiaoxu; Zhou, ZiYing; Ma, LiYan

    2017-03-01

    The effects of 9 different solvents on the measurement of the total phenolics and antioxidant activities of mulberry fruits were studied using accelerated solvent extraction (ASE). Sixteen to 22 types of phenolics (flavonols, flavan-3-ols, flavanol, hydroxycinnamic acids, hydroxybenzoic acids, and stilbenes) from different mulberry extracts were characterized and quantified using HPLC-MS/MS. The principal component analysis (PCA) was used to determine the suitable solvents to distinguish between different classes of phenolics. Additionally, the phenolic extraction abilities of ASE and ultrasound-assisted extraction (UAE) were compared. The highest extraction efficiency could be achieved by using 50% acidified methanol (50MA) as ASE solvents with 15.14 mg/gallic acid equivalents g dry weight of mulberry fruit. The PCA results revealed that the 50MA followed by 50% acidified acetone (50AA) was the most efficient solvent for the extraction of phenolics, particularly flavonols (627.12 and 510.31 μg/g dry weight, respectively), while water (W) was not beneficial to the extraction of all categories of phenolics. Besides, the results of 3 antioxidant capability assays (DPPH, ABTS free radical-scavenging assay, and ferric-reducing antioxidant power assay) showed that water-based organic solvents increased the antioxidant capabilities of the extracts compared with water or pure organic solvents. ASE was more suitable for the extraction of phenolics than UAE. © 2017 Institute of Food Technologists®.

  1. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production.

    PubMed

    Boyd, Alaina R; Champagne, Pascale; McGinn, Patrick J; MacDougall, Karen M; Melanson, Jeremy E; Jessop, Philip G

    2012-08-01

    A switchable hydrophilicity solvent (SHS) was studied for its effectiveness at extracting lipids from freeze-dried samples of Botryococcus braunii microalgae. The SHS N,N-dimethylcyclohexylamine extracted up to 22 wt.% crude lipid relative to the freeze-dried cell weight. The solvent was removed from the extract with water saturated with carbon dioxide at atmospheric pressure and recovered from the water upon de-carbonation of the mixture. Liquid chromatography-mass spectrometry (LC-MS) showed that the extracted lipids contained high concentrations of long chain tri-, di- and mono-acylglycerols, no phospholipids, and only 4-8% of residual solvent. Unlike extractions with conventional organic solvents, this new method requires neither distillation nor the use of volatile, flammable or chlorinated organic solvents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    PubMed Central

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and wheat straw also induce xylanase production when used as carbon source. The enzyme was active over a range of 0–25% sodium chloride examined in culture broth. The optimum xylanase activity was observed at 5% sodium chloride. Xylanase was purified with 25.81%-fold purification and 17.1% yield. Kinetic properties such as Km and Vmax were 4.2 mg/mL and 0.31 μmol/min/mL, respectively. The enzyme was stable at pH 6.0 and 50°C with 60% activity after 8 hours of incubation. Enzyme activity was enhanced by Ca2+, Mn2+, and Mg2+ but strongly inhibited by heavy metals such as Hg2+, Fe3+, Ni2+, and Zn2+. Xylanase was found to be stable in organic solvents like glutaraldehyde and isopropanol. The purified enzyme hydrolysed lignocellulosic substrates. Xylanase, purified from the halophilic bacterium-OKH, has potential biotechnological applications. PMID:27350996

  3. Racemization of (S)-profen thioesters by strong neutral bases in nonpolar organic solvents: implication for ion-pair kinetic basicity.

    PubMed

    Chen, Chia-Yin; Chang, Yu-Shang; Lin, Shun-An; Wen, Hui-I; Cheng, Yu-Chi; Tsai, Shau-Wei

    2002-05-17

    The racemization of (S)-profen 2,2,2-trifluoroethyl thioesters in isooctane with trioctylamine as base was carried out, in which the Hammett equation log(k(int)) = 3.584sigma - 3.745 was successfully applied to describe the electron-withdrawing effect of the substituents to the alpha-phenyl moiety of the thioesters. A combination of neutral strong organic bases with different nonpolar solvents was employed to determine the second-order interconversion constants for the racemization of (S)-naproxen 2,2,2-trifluoroethyl thioester, in which solvent hydrophobicity was found to have less effect on the racemization. Implication for ion-pair kinetic basicity scale for the neutral strong bases in isooctane was further discussed.

  4. VIRTUAL FRAME BUFFER INTERFACE

    NASA Technical Reports Server (NTRS)

    Wolfe, T. L.

    1994-01-01

    Large image processing systems use multiple frame buffers with differing architectures and vendor supplied user interfaces. This variety of architectures and interfaces creates software development, maintenance, and portability problems for application programs. The Virtual Frame Buffer Interface program makes all frame buffers appear as a generic frame buffer with a specified set of characteristics, allowing programmers to write code which will run unmodified on all supported hardware. The Virtual Frame Buffer Interface converts generic commands to actual device commands. The virtual frame buffer consists of a definition of capabilities and FORTRAN subroutines that are called by application programs. The virtual frame buffer routines may be treated as subroutines, logical functions, or integer functions by the application program. Routines are included that allocate and manage hardware resources such as frame buffers, monitors, video switches, trackballs, tablets and joysticks; access image memory planes; and perform alphanumeric font or text generation. The subroutines for the various "real" frame buffers are in separate VAX/VMS shared libraries allowing modification, correction or enhancement of the virtual interface without affecting application programs. The Virtual Frame Buffer Interface program was developed in FORTRAN 77 for a DEC VAX 11/780 or a DEC VAX 11/750 under VMS 4.X. It supports ADAGE IK3000, DEANZA IP8500, Low Resolution RAMTEK 9460, and High Resolution RAMTEK 9460 Frame Buffers. It has a central memory requirement of approximately 150K. This program was developed in 1985.

  5. MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2001-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  6. Fish Viruses: Buffers and Methods for Plaquing Eight Agents Under Normal Atmosphere

    PubMed Central

    Wolf, Ken; Quimby, M. C.

    1973-01-01

    A universal procedure was sought for plaque assay of eight fish viruses (bluegill myxovirus, channel catfish virus, eel virus, Egtved virus, infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus, lymphocystis virus, and the agent of spring viremia of carp (Rhabdovirus carpio), in dish cultures of various fish cells. Eagle minimal essential medium with sodium bicarbonate-CO2 buffer (Earle’s salt solution) was compared with minimal essential medium buffered principally with tris (hydroxymethyl)aminomethane or N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid at a pH or in the range of 7.6 to 8.0 depending upon temperature. Five fish cell lines collectively capable of replicating all fish viruses thus far isolated were tested and quantitatively found to grow comparably well in the three media. Two-phase (gel-liquid) media incorporating the various buffer systems allowed plaquing at 15 to 33 C either in partial pressures of CO2 or in normal atmosphere, but greater efficiency and sensitivity were obtained with the organic buffers, and, overall, the best results were obtained with tris(hydroxymethyl)aminomethane. Epizootiological data, specific fish cell line response, and plaque morphology permit presumptive identification of most of the agents. At proper pH, use of organic buffers obviates the need for CO2 incubators. Images PMID:4349252

  7. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Chu, Jhih-Wei

    2013-04-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  8. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar

    2013-03-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  9. Thermodynamics of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar; Chu, Jhih-Wei

    2012-10-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  10. Thermodynamic of cellulose solvation in novel solvent mixtures

    NASA Astrophysics Data System (ADS)

    Das, Ritankar

    2012-11-01

    Biomass contains abundant amounts of cellulose as crystalline microfibrils. A limiting step to using cellulose as an alternative energy source, however, is the hydrolysis of the biomass and subsequent transformation into fuels. Cellulose is insoluble in most solvents including organic solvents and water, but it is soluble in some ionic liquids like BMIM-Cl. This project aims to find alternative solvents that are less expensive and are more environmentally benign than the ionic liquids. All-atom molecular dynamics simulations were performed on dissociated glucan chains separated by multiple (4-5) solvation shells, in the presence of several novel solvents and solvent mixtures. The solubility of the chains in each solvent was indicated by contacts calculations after the equilibration of the molecular dynamics. It was discovered that pyridine and imidazole acted as the best solvents because their aromatic electronic structure was able to effectively disrupt the inter-sheet interactions among the glucan chains in the axial direction, and because perturbation of the solvent interactions in the presence of glucan chains was minimal.

  11. Buffer Therapy for Cancer

    PubMed Central

    Ribeiro, Maria de Lourdes C; Silva, Ariosto S.; Bailey, Kate M.; Kumar, Nagi B.; Sellers, Thomas A.; Gatenby, Robert A.; Ibrahim-Hashim, Arig; Gillies, Robert J.

    2013-01-01

    Oral administration of pH buffers can reduce the development of spontaneous and experimental metastases in mice, and has been proposed in clinical trials. Effectiveness of buffer therapy is likely to be affected by diet, which could contribute or interfere with the therapeutic alkalinizing effect. Little data on food pH buffering capacity was available. This study evaluated the pH and buffering capacity of different foods to guide prospective trials and test the effect of the same buffer (lysine) at two different ionization states. Food groups were derived from the Harvard Food Frequency Questionnaire. Foods were blended and pH titrated with acid from initial pH values until 4.0 to determine “buffering score”, in mmol H+/pH unit. A “buffering score” was derived as the mEq H+ consumed per serving size to lower from initial to a pH 4.0, the postprandial pH of the distal duodenum. To differentiate buffering effect from any metabolic byproduct effects, we compared the effects of oral lysine buffers prepared at either pH 10.0 or 8.4, which contain 2 and 1 free base amines, respectively. The effect of these on experimental metastases formation in mice following tail vein injection of PC-3M prostate cancer cells were monitored with in vivo bioluminescence. Carbohydrates and dairy products’ buffering score varied between 0.5 and 19. Fruits and vegetables showed a low to zero buffering score. The score of meats varied between 6 and 22. Wine and juices had negative scores. Among supplements, sodium bicarbonate and Tums® had the highest buffering capacities, with scores of 11 and 20 per serving size, respectively. The “de-buffered” lysine had a less pronounced effect of prevention of metastases compared to lysine at pH 10. This study has demonstrated the anti-cancer effects of buffer therapy and suggests foods that can contribute to or compete with this approach to manage cancer. PMID:24371544

  12. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    PubMed

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  13. Characterization of inclusion complexes of organic ions with hydrophilic hosts by ion transfer voltammetry with solvent polymeric membranes.

    PubMed

    Olmos, José Manuel; Laborda, Eduardo; Ortuño, Joaquín Ángel; Molina, Ángela

    2017-03-01

    The quantitative characterization of inclusion complexes formed in aqueous phase between organic ions and hydrophilic hosts by ion-transfer voltammetry with solvent polymeric membrane ion sensors is studied, both in a theoretical and experimental way. Simple analytical solutions are presented for the determination of the binding constant of the complex from the variation with the host concentration of the electrochemical signal. These solutions are valid for any voltammetric technique and for solvent polymeric membrane ion sensors comprising one polarisable interface (1PI) and also, for the first time, two polarisable interfaces (2PIs). Suitable experimental conditions and data analysis procedures are discussed and applied to the study of the interactions of a common ionic liquid cation (1-octyl-3-metyl-imidazolium) and an ionisable drug (clomipramine) with two hydrophilic cyclodextrins: α-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. The experimental study is performed via square wave voltammetry with 2PIs and 1PI solvent polymeric membranes and in both cases the electrochemical experiments enable the detection of inclusion complexes and the determination of the corresponding binding constant. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Highly Conductive PEDOT:PSS Transparent Hole Transporting Layer with Solvent Treatment for High Performance Silicon/Organic Hybrid Solar Cells.

    PubMed

    Li, Qingduan; Yang, Jianwei; Chen, Shuangshuang; Zou, Jizhao; Xie, Weiguang; Zeng, Xierong

    2017-08-23

    Efficient Si/organic hybrid solar cells were fabricated with dimethyl sulfoxide (DMSO) and surfactant-doped poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT:PSS). A post-treatment on PEDOT:PSS films with polar solvent was performed to increase the device performance. We found that the performance of hybrid solar cells increase with the polarity of solvent. A high conductivity of 1105 S cm - 1 of PEDOT:PSS was achieved by adopting methanol treatment, and the best efficiency of corresponding hybrid solar cells reaches 12.22%. X-ray photoelectron spectroscopy (XPS) and RAMAN spectroscopy were utilized to conform to component changes of PEDOT:PSS films after solvent treatment. It was found that the removal of the insulator PSS from the film and the conformational changes are the determinants for the device performance enhancement. Electrochemical impedance spectroscopy (EIS) was used to investigate the recombination resistance and capacitance of methanol-treated and untreated hybrid solar cells, indicating that methanol-treated devices had a larger recombination resistance and capacitance. Our findings bring a simple and efficient way for improving the performance of hybrid solar cell.

  15. Single crystal growth in spin-coated films of polymorphic phthalocyanine derivative under solvent vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, T.; Ohmori, M.; Ramananarivo, M. F.

    2015-12-01

    The effects of solvent vapor on spin-coated films of a polymorphic phthalocyanine derivative were investigated. Growth of single crystal films via redissolving organic films under solvent vapor was revealed by in situ microscopic observations of the films. X-ray diffraction measurement of the films after exposing to solvent vapor revealed the phase transition of polymorphs under solvent vapor. The direction of crystal growth was clarified by measuring the crystal orientation in a grown monodomain film. The mechanism of crystal growth based on redissolving organic films under solvent vapor was discussed in terms of the different solubilities of the polymorphs.

  16. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices.

    PubMed

    Hoeman, Kurt W; Culbertson, Christopher T

    2008-12-01

    A new buffer has been developed for fast, high-efficiency separations of amino acids by MEKC. This buffer was more environmentally friendly than the most commonly used surfactant-containing buffers for MEKC separations. It used a commercially available dishwashing soap by Seventh Generation (Burlington, VT, USA), which contained three micelle-forming agents. The mixed micelles were composed of sodium lauryl ether sulfate (anionic), cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (non-ionic). The optimized buffer contained 5.0% w/w Seventh Generation Free & Clear dishwashing soap, 10 mM sodium borate, and was completely void of organics. The lack of organics and the biodegradability of the surfactant molecules made this buffer more environmentally friendly than typical SDS-containing buffers. This new buffer also had a different selectivity and provided faster separations with higher separation efficiencies than SDS-based buffers. Fast separations of BODIPY FL labeled amino acids yielded peaks with separation efficiencies greater than 100,000 in less than 20 s.

  17. Terra-Kleen Response Group, Inc. Solvent Extraction Technology Rapid Commercialization Initiative Report

    EPA Science Inventory

    Terra-Kleen Response Group Inc. (Terra-Kleen), has commercialized a solvent extraction technology that uses a proprietary extraction solvent to transfer organic constituents from soil to a liquid phase in a batch process at ambient temperatures. The proprietary solvent has a rel...

  18. Pre-selection and assessment of green organic solvents by clustering chemometric tools.

    PubMed

    Tobiszewski, Marek; Nedyalkova, Miroslava; Madurga, Sergio; Pena-Pereira, Francisco; Namieśnik, Jacek; Simeonov, Vasil

    2018-01-01

    The study presents the result of the application of chemometric tools for selection of physicochemical parameters of solvents for predicting missing variables - bioconcentration factors, water-octanol and octanol-air partitioning constants. EPI Suite software was successfully applied to predict missing values for solvents commonly considered as "green". Values for logBCF, logK OW and logK OA were modelled for 43 rather nonpolar solvents and 69 polar ones. Application of multivariate statistics was also proved to be useful in the assessment of the obtained modelling results. The presented approach can be one of the first steps and support tools in the assessment of chemicals in terms of their greenness. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.

    PubMed

    Lee, Sanghun; Park, Sung Soo

    2011-11-03

    Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.

  20. A search map for organic additives and solvents applicable in high-voltage rechargeable batteries.

    PubMed

    Park, Min Sik; Park, Insun; Kang, Yoon-Sok; Im, Dongmin; Doo, Seok-Gwang

    2016-09-29

    Chemical databases store information such as molecular formulas, chemical structures, and the physical and chemical properties of compounds. Although the massive databases of organic compounds exist, the search of target materials is constrained by a lack of physical and chemical properties necessary for specific applications. With increasing interest in the development of energy storage systems such as high-voltage rechargeable batteries, it is critical to find new electrolytes efficiently. Here we build a search map to screen organic additives and solvents with novel core and functional groups, and thus establish a database of electrolytes to identify the most promising electrolyte for high-voltage rechargeable batteries. This search map is generated from MAssive Molecular Map BUilder (MAMMBU) by combining a high-throughput quantum chemical simulation with an artificial neural network algorithm. MAMMBU is designed for predicting the oxidation and reduction potentials of organic compounds existing in the massive organic compound database, PubChem. We develop a search map composed of ∼1 000 000 redox potentials and elucidate the quantitative relationship between the redox potentials and functional groups. Finally, we screen a quinoxaline compound for an anode additive and apply it to electrolytes and improve the capacity retention from 64.3% to 80.8% near 200 cycles for a lithium ion battery in experiments.

  1. Ionic conduction and self-diffusion near infinitesimal concentration in lithium salt-organic solvent electrolytes

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko

    2000-08-01

    The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.

  2. Biochemical alterations in duckweed and algae induced by carrier solvents: Selection of an appropriate solvent in toxicity testing.

    PubMed

    Hu, Li-Xin; Tian, Fei; Martin, Francis L; Ying, Guang-Guo

    2017-10-01

    Carrier solvents are often used in aquatic toxicity testing for test chemicals with hydrophobic properties. However, the knowledge of solvent effects on test organisms remains limited. The present study aimed to determine the biochemical effects of the 4 common solvents methanol, ethanol, acetone, and dimethyl sulfoxide (DMSO) on 2 test species, Lemna minor and Raphidocelis subcapitata, by applying Fourier transform infrared spectroscopy (FTIR) coupled with multivariate analysis to select appropriate solvents for toxicity testing. The results showed biochemical variations associated with solvent treatments at different doses on test species. From the infrared spectra obtained, the structures of lipid membrane and protein phosphorylation in the test species were found to be sensitive to the solvents. Methanol and ethanol mainly affected the protein secondary structure, whereas acetone and DMSO primarily induced alterations in carbohydrates and proteins in the test species. The FTIR results demonstrated that methanol and ethanol showed higher biochemical alterations in the test species than acetone and DMSO, especially at the high doses (0.1 and 1% v/v). Based on the growth inhibition displayed and FTIR spectroscopy, acetone, and DMSO can be used as carrier solvents in toxicity testing when their doses are lower than 0.1% v/v. Environ Toxicol Chem 2017;36:2631-2639. © 2017 SETAC. © 2017 SETAC.

  3. Development and optimization of a naphthoic acid-based ionic liquid as a "non-organic solvent microextraction" for the determination of tetracycline antibiotics in milk and chicken eggs.

    PubMed

    Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong

    2017-01-15

    In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of pentacene/Ag anode buffer and UV-ozone treatment on durability of small-molecule organic solar cells

    NASA Astrophysics Data System (ADS)

    Inagaki, S.; Sueoka, S.; Harafuji, K.

    2017-06-01

    Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.

  5. Reprogrammable read only variable threshold transistor memory with isolated addressing buffer

    DOEpatents

    Lodi, Robert J.

    1976-01-01

    A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.

  6. 12 CFR 3.11 - Capital conservation buffer and countercyclical capital buffer amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Capital conservation buffer and countercyclical capital buffer amount. 3.11 Section 3.11 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY CAPITAL ADEQUACY STANDARDS Capital Ratio Requirements and Buffers § 3.11 Capital conservation...

  7. Chlorinated solvents in groundwater of the United States

    USGS Publications Warehouse

    Moran, M.J.; Zogorski, J.S.; Squillace, P.J.

    2007-01-01

    Four chlorinated solvents-methylene chloride, perchloroethene (PCE), 1,1,1-trichloroethane, and trichloroethene (TCE)-were analyzed in samples of groundwater taken throughout the conterminous United States by the U.S. Geological Survey. The samples were collected between 1985 and 2002 from more than 5,000 wells. Of 55 volatile organic compounds (VOCs) analyzed in groundwater samples, solvents were among the most frequently detected. Mixtures of solvents in groundwater were common and may be the result of common usage of solvents or degradation of one solvent to another. Relative to other VOCs with Maximum Contaminant Levels (MCLs), PCE and TCE ranked high in terms of the frequencies of concentrations greater than or near MCLs. The probability of occurrence of solvents in groundwater was associated with dissolved oxygen content of groundwater, sources such as urban land use and population density, and hydraulic properties of the aquifer. The results reinforce the importance of understanding the redox conditions of aquifers and the hydraulic properties of the saturated and vadose zones in determining the intrinsic susceptibility of groundwater to contamination by solvents. The results also reinforce the importance of controlling sources of solvents to groundwater. ?? 2007 American Chemical Society.

  8. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOEpatents

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  9. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    NASA Astrophysics Data System (ADS)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  10. Central auditory processing effects induced by solvent exposure.

    PubMed

    Fuente, Adrian; McPherson, Bradley

    2007-01-01

    Various studies have demonstrated that organic solvent exposure may induce auditory damage. Studies conducted in workers occupationally exposed to solvents suggest, on the one hand, poorer hearing thresholds than in matched non-exposed workers, and on the other hand, central auditory damage due to solvent exposure. Taking into account the potential auditory damage induced by solvent exposure due to the neurotoxic properties of such substances, the present research aimed at studying the possible auditory processing disorder (APD), and possible hearing difficulties in daily life listening situations that solvent-exposed workers may acquire. Fifty workers exposed to a mixture of organic solvents (xylene, toluene, methyl ethyl ketone) and 50 non-exposed workers matched by age, gender and education were assessed. Only subjects with no history of ear infections, high blood pressure, kidney failure, metabolic and neurological diseases, or alcoholism were selected. The subjects had either normal hearing or sensorineural hearing loss, and normal tympanometric results. Hearing-in-noise (HINT), dichotic digit (DD), filtered speech (FS), pitch pattern sequence (PPS), and random gap detection (RGD) tests were carried out in the exposed and non-exposed groups. A self-report inventory of each subject's performance in daily life listening situations, the Amsterdam Inventory for Auditory Disability and Handicap, was also administered. Significant threshold differences between exposed and non-exposed workers were found at some of the hearing test frequencies, for both ears. However, exposed workers still presented normal hearing thresholds as a group (equal or better than 20 dB HL). Also, for the HINT, DD, PPS, FS and RGD tests, non-exposed workers obtained better results than exposed workers. Finally, solvent-exposed workers reported significantly more hearing complaints in daily life listening situations than non-exposed workers. It is concluded that subjects exposed to solvents

  11. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    PubMed

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.

    A critical scientific challenge for utilization of CO2 is the development of catalyst systems that do not depend upon expensive or environmentally unfriendly reagents, such as precious metals, strong organic bases, and organic solvents. We have used thermodynamic insights to predict and demonstrate that the HCoI(dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strongmore » organic base was eliminated by performing catalysis in water due to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity. The research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  13. Metal retention in human transferrin: consequences of solvent composition in analytical sample preparation methods.

    PubMed

    Quarles, C Derrick; Randunu, K Manoj; Brumaghim, Julia L; Marcus, R Kenneth

    2011-10-01

    The analysis of metal-binding proteins requires careful sample manipulation to ensure that the metal-protein complex remains in its native state and the metal retention is preserved during sample preparation or analysis. Chemical analysis for the metal content in proteins typically involves some type of liquid chromatography/electrophoresis separation step coupled with an atomic (i.e., inductively coupled plasma-optical emission spectroscopy or -mass spectrometry) or molecular (i.e., electrospray ionization-mass spectrometry) analysis step that requires altered-solvent introduction techniques. UV-VIS absorbance is employed here to monitor the iron content in human holo-transferrin (Tf) under various solvent conditions, changing polarity, pH, ionic strength, and the ionic and hydrophobic environment of the protein. Iron loading percentages (i.e. 100% loading equates to 2 Fe(3+):1 Tf) were quantitatively determined to evaluate the effect of solvent composition on the retention of Fe(3+) in Tf. Maximum retention of Fe(3+) was found in buffered (20 mM Tris) solutions (96 ± 1%). Exposure to organic solvents and deionized H(2)O caused release of ~23-36% of the Fe(3+) from the binding pocket(s) at physiological pH (7.4). Salt concentrations similar to separation conditions used for ion exchange had little to no effect on Fe(3+) retention in holo-Tf. Unsurprisingly, changes in ionic strength caused by additions of guanidine HCl (0-10 M) to holo-Tf resulted in unfolding of the protein and loss of Fe(3+) from Tf; however, denaturing and metal loss was found not to be an instantaneous process for additions of 1-5 M guanidinium to Tf. In contrast, complete denaturing and loss of Fe(3+) was instantaneous with ≥6 M additions of guanidinium, and denaturing and loss of iron from Tf occurred in parallel proportions. Changes to the hydrophobicity of Tf (via addition of 0-14 M urea) had less effect on denaturing and release of Fe(3+) from the Tf binding pocket compared to changes

  14. RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION

    DOEpatents

    Moore, R.L.

    1959-09-01

    An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.

  15. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  16. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    PubMed Central

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-01-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities. PMID:27853187

  17. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy

    PubMed Central

    2018-01-01

    Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958

  18. Solvent effect on the conformation of Benzil

    NASA Astrophysics Data System (ADS)

    Pawelka, Z.; Koll, A.; Zeegers-Huyskens, Th.

    2001-10-01

    The conformation of benzil is investigated by PM3 and density functional theory (B3LYP) combined with the 6-31G(d,p) basis set. The variation of the relative energy with the Odbnd C-Cdbnd O torsion angle indicates only one rather flat minimum, reflecting the flexibility of the benzil molecule. The dipole moment is measured in several organic solvents of various polarity and the IR and Raman spectra investigated in the Cdbnd O stretching region in the same solvents. The torsional Odbnd C-Cdbnd O angle is evaluated from the dipolar and vibrational data. The results indicate that, in all the solvents, benzil is in a skewed conformation, the cisoid conformation being slightly favoured when the polarity of the solvent increases. The contribution of electrostatic and specific interactions to the reduction of the torsional angle is discussed.

  19. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    PubMed

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  20. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process.

    PubMed

    Kim, Min-Soo; Song, Ha-Seung; Park, Hee Jun; Hwang, Sung-Joo

    2012-01-01

    The aims of this study were to identify how the solvent selection affects particle formation and to examine the effect of the initial drug solution concentration on mean particle size and particle size distribution in the supercritical antisolvent (SAS) process. Amorphous atorvastatin calcium was precipitated from seven different solvents using the SAS process. Particles with mean particle size ranging between 62.6 and 1493.7 nm were obtained by varying organic solvent type and solution concentration. By changing the solvent, we observed large variations in particle size and particle size distribution, accompanied by different particle morphologies. Particles obtained from acetone and tetrahydrofuran (THF) were compact and spherical fine particles, whereas those from N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) were agglomerated, with rough surfaces and relatively larger particle sizes. Interestingly, the mean particle size of atorvastatin calcium increased with an increase in the boiling point of the organic solvent used. Thus, for atorvastatin particle formation via the SAS process, particle size was determined mainly by evaporation of the organic solvent into the antisolvent phase. In addition, the mean particle size was increased with increasing drug solution concentration. In this study, from the aspects of particle size and solvent toxicity, acetone was the better organic solvent for controlling nanoparticle formation of atorvastatin calcium.

  1. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    PubMed Central

    Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Normi, Yahaya M.; Mohd Shariff, Fairolniza

    2017-01-01

    The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which

  2. Mapping Soil pH Buffering Capacity of Selected Fields

    NASA Technical Reports Server (NTRS)

    Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.

    2003-01-01

    Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.

  3. Evaluation of organic-vapor respirator cartridge efficiency for toluene diisocyanate vapor in the presence of methylenechloride or acetone solvent.

    PubMed

    Dharmarajan, Venkatram; Cummings, Barbara; Lingg, Robert D

    2003-08-01

    Toluene diisocyanate (TDI) is a widely used raw material in the manufacture of flexible polyurethane foams. Acetone (ACE) and/or methylenechloride (MECL) solvents are the most commonly used solvent-based blowing agents for TDI foams. ACGIH has recommended a TWA exposure limit of 5 ppb for TDI and 500 ppm for ACE. For MECL, OSHA mandates a TWA-exposure limit of 25 ppm. This study evaluated the ability of the organic-vapor respirator cartridges (OVC) to block TDI, as well as the effect of airborne MECL or ACE on the OVCs' efficiency to capture TDI. An aluminum/stainless steel exposure chamber was constructed for simultaneously challenging OVCs in triplicate with a dynamic atmosphere of TDI and ACE or MECL vapor. The challenge atmosphere was generated by combining a TDI-laden nitrogen stream from the headspace of a heated impinger with a humidified stream of the indicated solvent in air. The average challenge concentration for TDI was 275 ppb. The average MECL or ACE concentrations were 547 and 581 ppm, respectively. The challenge atmosphere at room temperature (approximately 24 degrees C) and at 25 or 80 percent relative humidity was drawn through each cartridge at 32 L/min for 40+ hours. During the last 8 hours of the challenge, the atmosphere had only TDI vapor. The pre- and post-cartridge atmospheres were periodically sampled for TDI and solvent. Five tests were conducted--two with MSA and three with North OVCs. Under these extreme test conditions no TDI breakthrough was detected from any OVC. The average-calculated efficiency of the OVCs for TDI was >99.9+ percent. Within the first 6 hours of the challenge the cartridges were saturated with ACE or MECL; nevertheless, continued challenging with TDI and solvents did not cause any TDI breakthrough. The study demonstrates that with an OSHA-compliant respiratory protection program, an OVC can safely be used for 40 hours in most polyurethane foam operations. In typical occupational environments using TDI and solvents

  4. Correlation Analysis of Reactivity in the Photo- and Electro-Reduction of Cobalt(III) Complexes in Binary Organic Solvent/Water Mixtures

    NASA Astrophysics Data System (ADS)

    Sivaraj, Kumarasamy; Elango, Kuppanagounder P.

    2008-08-01

    The photo- and electro-reduction of a series of cobalt(III) complexes of the type cis-β - [Co(trien)(RC6H4NH2)Cl]Cl2 with R = H, p-OMe, p-OEt, p-Me, p-Et, p-F, and m-Me has been studied in binary propan-2-ol/water mixtures. The redox potential (E1/2) and photo-reduction quantum yield (ΦCo(II)) data were correlated with solvent and structural parameters with the aim to shed some light on the mechanism of these reactions. The correlation of E1/2 and ΦCo(II) with macroscopic solvent parameters, viz. relative permittivity, indicated that the reactivity is influenced by both specific and non-specific solute-solvent interactions. The Kamlet-Taft solvatochromic comparison method was used to separate and quantify these effects: An increase in the percentage of organic cosolvent in the medium enhances both reduction processes, and there exists a good linear correlation between E1/2 and ΦCo(II), suggesting a similar solvation of the participants in these redox processes.

  5. Altering the self-organization of dyes on titania with dyeing solvents to tune the charge-transfer dynamics of sensitized solar cells.

    PubMed

    Wang, Yinglin; Yang, Lin; Zhang, Jing; Li, Renzhi; Zhang, Min; Wang, Peng

    2014-04-14

    Herein we selected the model organic donor-acceptor dye C218 and modulated the self-organization of dye molecules on the surface of titania by changing the dyeing solvent from chlorobenzene to a mixture of acetonitrile and tert-butanol. We further unveiled the relationship between the microstructure of a dye layer and the multichannel charge-transfer dynamics that underlie the photovoltaic performance of dye-sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Proteins contribute insignificantly to the intrinsic buffering capacity of yeast cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poznanski, Jaroslaw; Szczesny, Pawel; Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw

    Highlights: Black-Right-Pointing-Pointer We predicted buffering capacity of yeast proteome from protein abundance data. Black-Right-Pointing-Pointer We measured total buffering capacity of yeast cytoplasm. Black-Right-Pointing-Pointer We showed that proteins contribute insignificantly to buffering capacity. -- Abstract: Intracellular pH is maintained by a combination of the passive buffering of cytoplasmic dissociable compounds and several active systems. Over the years, a large portion of and possibly most of the cell's intrinsic (i.e., passive non-bicarbonate) buffering effect was attributed to proteins, both in higher organisms and in yeast. This attribution was not surprising, given that the concentration of proteins with multiple protonable/deprotonable groups in themore » cell exceeds the concentration of free protons by a few orders of magnitude. Using data from both high-throughput experiments and in vitro laboratory experiments, we tested this concept. We assessed the buffering capacity of the yeast proteome using protein abundance data and compared it to our own titration of yeast cytoplasm. We showed that the protein contribution is less than 1% of the total intracellular buffering capacity. As confirmed with NMR measurements, inorganic phosphates play a crucial role in the process. These findings also shed a new light on the role of proteomes in maintaining intracellular pH. The contribution of proteins to the intrinsic buffering capacity is negligible, and proteins might act only as a recipient of signals for changes in pH.« less

  7. Self-Organization of Polymer Brush Layers in a Poor Solvent

    NASA Astrophysics Data System (ADS)

    Karim, A.; Tsukruk, V. V.; Douglas, J. F.; Satija, S. K.; Fetters, L. J.; Reneker, D. H.; Foster, M. D.

    1995-10-01

    Synthesis of densely grafted polymer brushes from good solvent polymer solutions is difficult when the surface interaction is only weakly attractive because of the strong steric repulsion between the polymer chains. To circumvent this difficulty we graft polymer layers in a poor solvent to exploit attractive polymer-polymer interactions which largely nullify the repulsive steric interactions. This simple strategy gives rise to densely grafted and homogeneous polymer brush layers. Model end-grafted polystyrene chains (M_w = 105,000) are prepared in the poor solvent cyclohexane (9.5 °C) where the chains are chemically attached to the surface utilizing a trichlorosilane end-group. Polished silicon wafers were then exposed to the reactive polymer solutions for a series of “induction times” tau_I and the evolving layer was characterized by X-ray reflectivity and atomic force microscopy. Distinct morphologies were found depending on tau_I. For short tau_I, corresponding to a grafting density less than 5 mg/m^2, the grafted layer forms an inhomogeneous island-like structure. At intermediate tau_I, where the coverage becomes percolating, a surface pattern develops which appears similar to spinodal decomposition in bulk solution. Finally, after sufficiently long tau_I, a dense and nearly homogeneous layer with a sharp interface is formed which does not exhibit surface pattern formation. The stages of brush growth are discussed qualitatively in terms of a random deposition model.

  8. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  9. Solvent extraction of gold using ionic liquid based process

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  10. Solvent selection in ultrasonic-assisted emulsification microextraction: Comparison between high- and low-density solvents by means of novel type of extraction vessel.

    PubMed

    Nojavan, Saeed; Gorji, Tayebeh; Davarani, Saied Saeed Hosseiny; Morteza-Najarian, Amin

    2014-08-01

    There are numerous published reports about dispersive liquid phase microextraction of the wide range of substances, however, till now no broadly accepted systematic and purpose oriented selection of extraction solvent has been proposed. Most works deal with the optimization of available solvents without adequate pre-consideration of properness. In this study, it is tried to compare the performances of low- and high-density solvents at the same conditions by means of novel type of extraction vessel with head and bottom conical shape. Extraction efficiencies of seven basic pharmaceutical compounds using eighteen common organic solvents were studied in this work. It was much easier to work with high-density solvents and they mostly showed better performances. This work shows that although exact predicting the performance of the solvents is multifaceted case but the pre-consideration of initial selection of solvents with attention to the physiochemical properties of the desired analytes is feasible and promising. Finally, the practicality of the method for extraction from urine and plasma samples was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Natural deep eutectic solvents as eco-friendly and sustainable dilution medium for the determination of residual organic solvents in pharmaceuticals with static headspace-gas chromatography.

    PubMed

    Wang, Meilian; Fang, Sheng; Liang, Xianrui

    2018-06-04

    Reported here is a simple and rapid static headspace gas chromatography (SHS-GC) method for the determination of trace solvents including ethanol, isopropanol, n-butanol, 1,4-dioxane, tetrahydrofuran, acetonitrile, methanol and acetone which commonly used in drug production process. Natural deep eutectic solvents (NADESs) are firstly used as the matrix medium for this method, which provided high sensitivity for residual solvents detection. With the optimized method, validation experiments were performed and the data showed excellent linearity for all the solvents (R 2 ≥ 0.999, n = 7). The limits of detection (LOD) for ethanol, isopropanol, n-butanol, 1,4-dioxane, tetrahydrofuran, acetonitrile, methanol and acetone are 0.09, 0.08, 0.07, 0.11, 0.06, 0.10, 0.12 and 0.08 μg g -1 , respectively. Accuracy was checked by a recovery experiment at three different levels, and the recoveries of the tested solvents were ranged from 94.3% to 105.4%. The relative standard deviation (RSD) of each solvent for intra- and inter-day precision is in the range of 0.85 to 3.65 and 1.51 to 4.53, respectively. The developed approach can be readily used for determination of the residual solvents in six active pharmaceutical ingredients including pramipexole dihydrochloride, rivaroxaban, lisinopril, ramipril, imatinib mesylate and sitagliptin. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Common buffers, media, and stock solutions.

    PubMed

    2001-05-01

    This appendix describes the preparation of selected bacterial media and of buffers and reagents used in the manipulation of nucleic acids and proteins. Recipes for cell culture media and reagents are located elsewhere in the manual. RECIPES: Acids, concentrated stock solutions; Ammonium acetate, 10 M; Ammonium hydroxide, concentrated stock solution; ATP, 100 mM; BCIP, 5% (w/v); BSA (bovine serum albumin), 10% (100 mg/ml); Denhardt solution, 100x; dNTPs: dATP, dTTP, dCTP, and dGTP; DTT, 1 M; EDTA, 0.5 M (pH 8.0); Ethidium bromide solution; Formamide loading buffer, 2x; Gel loading buffer, 6x; HBSS (Hanks balanced salt solution); HCl, 1 M; HEPES-buffered saline, 2x; KCl, 1 M; LB medium; LB plates; Loading buffer; 2-ME, (2-mercaptoethanol)50 mM; MgCl(2), 1 M; MgSO(4), 1 M; NaCl, 5 M; NaOH, 10 M; NBT (nitroblue tetrazolium chloride), 5% (w/v); PCR amplification buffer, 10x; Phosphate-buffered saline (PBS), pH approximately 7.3; Potassium acetate buffer, 0.1 M; Potassium phosphate buffer, 0.1 M; RNase a stock solution (DNase-free), 2 mg/ml; SDS, 20%; SOC medium; Sodium acetate, 3 M; Sodium acetate buffer, 0.1 M; Sodium phosphate buffer, 0.1 M; SSC (sodium chloride/sodium citrate), 20x; SSPE (sodium chloride/sodium phosphate/EDTA), 20x; T4 DNA ligase buffer, 10x; TAE buffer, 50x; TBE buffer, 10x; TBS (Tris-buffered saline); TCA (trichloroacetic acid), 100% (w/v); TE buffer; Terrific broth (TB); TrisCl, 1 M; TY medium, 2x; Urea loading buffer, 2x.

  13. Buffer$--An Economic Analysis Tool

    Treesearch

    Gary Bentrup

    2007-01-01

    Buffer$ is an economic spreadsheet tool for analyzing the cost-benefits of conservation buffers by resource professionals. Conservation buffers are linear strips of vegetation managed for multiple landowner and societal objectives. The Microsoft Excel based spreadsheet can calculate potential income derived from a buffer, including income from cost-share/incentive...

  14. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  15. [Chemical hazards when working with solvent glues].

    PubMed

    Domański, Wojciech; Makles, Zbigniew

    2012-01-01

    Solvent glues are used in a wide variety of industries, e.g., textile, footwear and rubber. The problem of workers' exposure to solvent vapors is rarely tackled within the area of occupational safety and health in small and medium-sized enterprises. In order to assess exposure to solvents, organic solvents emitted by glues were identified in the samples of workplace air. The concentration of acetone, benzene, cyclohexane, ethylbenzene, n-hexane, methylcyclohexane, butyl acetate and toluene were determined. The obtained results evidenced the presence of cyclohexane, ethylbenzene, ethylcyclohexane, heptane, n-hexane, o-xylene, methylcyclohexane, methylcyclopentane, butyl acetate and toluene in workplace air. The concentration of those compounds in workplace air was low, usually below 0.15 of MAC. At some workstations the presence of benzene was also observed. Occupational risk was assessed at workstations where gluing took place. It showed that the risk at those workstations was medium or low.

  16. Continuous countercurrent membrane column for the separation of solute/solvent and solvent/solvent systems

    DOEpatents

    Nerad, Bruce A.; Krantz, William B.

    1988-01-01

    A reverse osmosis membrane process or hybrid membrane - complementary separator process for producing enriched product or waste streams from concentrated and dilute feed streams for both solvent/solvent and solute/solvent systems is described.

  17. Cell buffer with built-in test

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A cell buffer with built-in testing mechanism is provided. The cell buffer provides the ability to measure voltage provided by a power cell. The testing mechanism provides the ability to test whether the cell buffer is functioning properly and thus providing an accurate voltage measurement. The testing mechanism includes a test signal-provider to provide a test signal to the cell buffer. During normal operation, the test signal is disabled and the cell buffer operates normally. During testing, the test signal is enabled and changes the output of the cell buffer in a defined way. The change in the cell buffer output can then be monitored to determine if the cell buffer is functioning correctly. Specifically, if the voltage output of the cell buffer changes in a way that corresponds to the provided test signal, then the functioning of the cell buffer is confirmed. If the voltage output of the cell buffer does not change correctly, then the cell buffer is known not to be operating correctly. Thus, the built in testing mechanism provides the ability to quickly and accurately determine if the cell buffer is operating correctly. Furthermore, the testing mechanism provides this functionality without requiring excessive device size and complexity.

  18. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  19. Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids.

    PubMed

    Tan, Ting; Zhang, Mingliang; Wan, Yiqun; Qiu, Hongdeng

    2016-01-01

    Deep eutectic solvents (DESs) were used as novel mobile phase additives to improve chromatographic separation of four quaternary alkaloids including coptisine chloride, sanguinarine, berberine chloride and chelerythrine on a C18 column. DESs as a new class of ionic liquids are renewably sourced, environmentally benign, low cost and easy to prepare. Seven DESs were obtained by mixing different hydrogen acceptors and hydrogen-bond donors. The effects of organic solvents, the concentration of DESs, the types of DESs and the pH values of the buffer solution on the separation of the analytes were investigated. The composition of acetonitrile and 1.0% deep eutectic solvents aqueous solution (pH 3.3, adjusted with hydrochloric acid) in a 32:68 (v/v) ratio was used as optimized mobile phase, with which four quaternary alkaloids were well separated. When a small amount of DESs was added in the mobile phase for the separation of alkaloids on the C18 column, noticeable improvements were distinctly observed such as decreasing peak tailing and improving resolution. The separation mechanism mediated by DESs as mobile phase additives can be attributed to combined effect of both hydrogen acceptors and hydrogen-bond donors. For example, choline chloride can effectively cover the residual silanols on silica surface and ethylene glycol can reduce the retention time of analytes. The proposed method has been applied to determine BerbC in Lanqin Chinese herbal oral solution and BerbC tablet. Utilization of DESs in mobile phase can efficiently improve separation and selectivity of analytes from complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Neurologic diagnosis and certification in persons chronically exposed to certain organic solvents in light of personal cases].

    PubMed

    Sińczuk-Walczak, H

    1995-01-01

    A clinical picture of selected cases diagnosed or suspected of chronic poisoning by organic solvents such as: Trichlorethylene (TRI), Tetrachlorethylene (PER), Carbon Disulfide (CS2) is presented. Based on examples of diagnosed neurological syndromes, some diagnostic and certification issues concerning occupational diseases of the neurological system, are analysed. An objective assessment of patients' complaints, differentiation between occupational diseases, so called idiopathic diseases of the nervous system, selection of appropropriate diagnostic methods in order to confirm or exclude these diseases belong to essential problems among those discussed.

  1. Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents

    NASA Astrophysics Data System (ADS)

    Sarwono, Rakhman; Pusfitasari, Eka Dian

    2017-01-01

    Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.

  2. Protocol for buffer space negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nessett, D.

    There are at least two ways to manage the buffer memory of a communications node. On etechnique veiws the buffer as a single resource that is to be reserved and released as a unit for a particular communication transaction. A more common approach treats the node's buffer space as a collection of resources (e.g., bytes, words, packet slots) capable of being allocated among multiple concurrent conversations. To achieve buffer space multiplexing, some sort of negotiation for buffer space must take place between source and sink nodes before a transaction can commence. Results are presented which indicate that, for an applicationmore » involving a CSMA broadcast network, buffer space multiplexing offers better performance than buffer reservation. To achieve this improvement, a simple protocol is presented that features flow-control information traveling both from source to sink as well as from sink to source. It is argued that this bidirectionality allows the sink to allocate buffer space among its active communication paths more effectively. 13 figures.« less

  3. Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Asbill-Case, Jessica R.; Deas, Michael L.

    2013-01-01

    A hydrodynamic, water temperature, and water-quality model of the Link River to Keno Dam reach of the upper Klamath River was updated to account for macrophytes and enhanced pH buffering from dissolved organic matter, ammonia, and orthophosphorus. Macrophytes had been observed in this reach by field personnel, so macrophyte field data were collected in summer and fall (June-October) 2011 to provide a dataset to guide the inclusion of macrophytes in the model. Three types of macrophytes were most common: pondweed (Potamogeton species), coontail (Ceratophyllum demersum), and common waterweed (Elodea canadensis). Pondweed was found throughout the Link River to Keno Dam reach in early summer with densities declining by mid-summer and fall. Coontail and common waterweed were more common in the lower reach near Keno Dam and were at highest density in summer. All species were most dense in shallow water (less than 2 meters deep) near shore. The highest estimated dry weight biomass for any sample during the study was 202 grams per square meter for coontail in August. Guided by field results, three macrophyte groups were incorporated into the CE-QUAL-W2 model for calendar years 2006-09. The CE-QUAL-W2 model code was adjusted to allow the user to initialize macrophyte populations spatially across the model grid. The default CE-QUAL-W2 model includes pH buffering by carbonates, but does not include pH buffering by organic matter, ammonia, or orthophosphorus. These three constituents, especially dissolved organic matter, are present in the upper Klamath River at concentrations that provide substantial pH buffering capacity. In this study, CE-QUAL-W2 was updated to include this enhanced buffering capacity in the simulation of pH. Acid dissociation constants for ammonium and phosphoric acid were taken from the literature. For dissolved organic matter, the number of organic acid groups and each group's acid dissociation constant (Ka) and site density (moles of sites per mole of

  4. Highly porous nanostructured copper foam fiber impregnated with an organic solvent for headspace liquid-phase microextraction.

    PubMed

    Saraji, Mohammad; Ghani, Milad; Rezaei, Behzad; Mokhtarianpour, Maryam

    2016-10-21

    A new headspace liquid-phase microextraction technique based on using a copper foam nanostructure substrate followed by gas chromatography-flame ionization detection was developed for the determination of volatile organic compounds in water and wastewater samples. The copper foam with highly porous nanostructured walls was fabricated on the surface of a copper wire by a rapid and facile electrochemical process and used as the extractant solvent holder. Propyl benzoate was immobilized in the pores of the copper foam coating and used for the microextraction of benzene, toluene, ethylbenzene and xylenes. The experimental parameters such as the type of organic solvent, desorption temperature, desorption time, salt concentration, sample temperature, equilibrium time and extraction time, were investigated and optimized. Under the optimum conditions, the method detection limit was between 0.06 and 0.25μgL -1 . The relative standard deviation of the method for the analytes at 4-8μgL -1 concentration level ranged from 7.9 to 11%. The fiber-to-fiber reproducibility for three fibers prepared under the same condition was 9.3-12%. The enrichment factor was in the range of 615-744. Different water samples were analyzed for the evaluation of the method in real sample analysis. Relative recoveries for spiked tap, river and wastewater samples were in the range of 85-94%. Finally, the extraction efficiency of the method was compared with those of headspace single drop microextraction and headspace SPME with the commercial fibers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Improvement of activity and stability of chloroperoxidase by chemical modification

    PubMed Central

    Liu, Jian-Zhong; Wang, Min

    2007-01-01

    Background Enzymes show relative instability in solvents or at elevated temperature and lower activity in organic solvent than in water. These limit the industrial applications of enzymes. Results In order to improve the activity and stability of chloroperoxidase, chloroperoxidase was modified by citraconic anhydride, maleic anhydride or phthalic anhydride. The catalytic activities, thermostabilities and organic solvent tolerances of native and modified enzymes were compared. In aqueous buffer, modified chloroperoxidases showed similar Km values and greater catalytic efficiencies kcat/Km for both sulfoxidation and oxidation of phenol compared to native chloroperoxidase. Of these modified chloroperoxidases, citraconic anhydride-modified chloroperoxidase showed the greatest catalytic efficiency in aqueous buffer. These modifications of chloroperoxidase increased their catalytic efficiencies for sulfoxidation by 12%~26% and catalytic efficiencies for phenol oxidation by 7%~53% in aqueous buffer. However, in organic solvent (DMF), modified chloroperoxidases had lower Km values and higher catalytic efficiencies kcat/Km than native chloroperoxidase. These modifications also improved their thermostabilities by 1~2-fold and solvent tolerances of DMF. CD studies show that these modifications did not change the secondary structure of chloroperoxidase. Fluorescence spectra proved that these modifications changed the environment of tryptophan. Conclusion Chemical modification of epsilon-amino groups of lysine residues of chloroperoxidase using citraconic anhydride, maleic anhydride or phthalic anhydride is a simple and powerful method to enhance catalytic properties of enzyme. The improvements of the activity and stability of chloroperoxidase are related to side chain reorientations of aromatics upon both modifications. PMID:17511866

  6. Preparation of almost dispersant-free colloidal silica with superb dispersiblility in organic solvents and monomers

    NASA Astrophysics Data System (ADS)

    Huang, Feng-Hsi; Chang, Chao-Ching; Oyang, Tai-Yueh; Chen, Ching-Chung; Cheng, Liao-Ping

    2011-09-01

    Surface modification of silica nanoparticles synthesized by the sol-gel process was performed using coupling agents, 3-(trimethoxysilyl) propyl methacrylate (MSMA) and/or trimethyethoxylsilane (TMES). The chemical structures of the formed particles were analyzed by means of Fourier Transform Infrared Spectroscopy (FTIR) and solid-state Si-Nuclear Magnetic Resonance (Si-NMR), and the particle sizes were determined by Transmission Electron Microscopy (TEM) imaging. The latter results indicate that such surface modifications can effectively lessen the serious aggregation being common to pure silica nanoparticles. In some cases, separate particles of ca. 5-10 nm dia. could be obtained, when both MSMA and TMES were employed during the modification process. Dynamic light scattering method was adopted to examine the stability of the prepared silica sols during a long-term storage. It was found that the aggregation phenomenon can essentially be eliminated in case that the surface of silica contained sufficient amount of TMES moiety. Vacuum distillation was used to remove the volatile components such as methanol, ethanol, and water from the silica sol. The condensed product, containing 2 wt% residual solvent, appeared as a uniform transparent paste-like material, which can be dispersed in common organic solvents and monomers within a few seconds.

  7. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  8. Trace elements retained in washed nuclear fuel reprocessing solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.W.; MacMurdo, K.W.

    1979-09-01

    Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally /sup 106/Ru, /sup 129/I, /sup 3/H, /sup 235/U, and /sup 239/Pu. The /sup 129/I concentration was aboutmore » 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, /sup 129/I concentration varied from about 0.1 to 0.5 ppM. Both /sup 129/I and /sup 3/H appear to be in the organic solvent as a result of exchange with hydrogen.« less

  9. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    PubMed

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Occupational exposure to organic solvents during paint stripping and painting operations in the aeronautical industry.

    PubMed

    Vincent, R; Poirot, P; Subra, I; Rieger, B; Cicolella, A

    1994-01-01

    The exposure of workers to methylene chloride and phenol in an aeronautical workshop was measured during stripping of paint from a Boeing B 747. Methylene chloride exposure was measured during two work days by personal air sampling, while area sampling was used for phenol. During paint stripping operations, methylene chloride air concentrations ranged from 299.2 mg/m3 (83.1 ppm) to 1888.9 mg/m3 (524.7 ppm). The exposures to methylene chloride calculated for an 8-h work day ranged from 86 mg/m3 (23.9 ppm) to 1239.5 mg/m3 (344.3 ppm). In another aeronautical workshop, exposure to organic solvents, especially ethylene glycol monoethylether acetate (EGEEA), was controlled during the painting of an Airbus A 320. The external exposure to solvents and EGEEA was measured by means of individual air sampling. The estimation of internal exposure to EGEEA was made by measuring its urinary metabolite, ethoxyacetic acid (EAA). Both measurements were made during the course of 3 days. The biological samples were taken pre- and post-shift. During painting operations, methyl ethyl ketone, ethyl acetate, n-butyl alcohol, methyl isobutyl ketone, toluene, n-butyl acetate, ethylbenzene, xylenes and EGEEA were detected in working atmospheres. For these solvents, air concentrations ranged from 0.1 ppm to 69.1 ppm. EGEEA concentrations ranged from 29.2 mg/m3 (5.4 ppm) to 150.1 mg/m3 (27.8 ppm). For biological samples, the average concentrations of EAA were 108.4 mg/g creatinine in pre-shift and 139.4 mg/g creatinine in post-shift samples. Despite the fact that workers wore protective respiratory equipment during paint spraying operations, EEA urinary concentrations are high and suggest that percutaneous uptake is the main route of exposure for EGEEA.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  12. Nano porous silicon microcavity sensor for determination organic solvents and pesticide in water

    NASA Astrophysics Data System (ADS)

    Pham, Van Hoi; Van Nguyen, Thuy; Nguyen, The Anh; Pham, Van Dai; Bui, Huy

    2014-12-01

    In this paper we present a sensing method using nano-porous silicon microcavity sensor, which was developed in order to obtain simultaneous determination of two volatile substances with different solvent concentrations as well as very low pesticide concentration in water. The temperature of the solution and the velocity of the air stream flowing through the solution have been used to control the response of the sensor for different solvent solutions. We study the dependence of the cavity-resonant wavelength shift on solvent concentration, velocity of the airflow and solution temperature. The wavelength shift depends linearly on concentration and increases with solution temperature and velocity of the airflow. The dependence of the wavelength shift on the solution temperature in the measurement contains properties of the temperature dependence of the solvent vapor pressure, which characterizes each solvent. As a result, the dependence of the wavelength shift on the solution temperature discriminates between solutions of ethanol and acetone with different concentrations. This suggests a possibility for the simultaneous determination of the volatile substances and their concentrations. On the other hand, this method is able to detect the presence of atrazine pesticide by the shift of the resonant wavelength, with good sensitivity (0.3 nm pg-1 ml) and limit of detection (LOD) (0.8-1.4 pg ml-1), that we tested for concentrations in the range from 2.15 to 21.5 pg ml-1, which is the range useful for monitoring acceptable water for human consumption.

  13. Buffers more than buffering agent: introducing a new class of stabilizers for the protein BSA.

    PubMed

    Gupta, Bhupender S; Taha, Mohamed; Lee, Ming-Jer

    2015-01-14

    In this study, we have analyzed the influence of four biological buffers on the thermal stability of bovine serum albumin (BSA) using dynamic light scattering (DLS). The investigated buffers include 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 4-(2-hydroxyethyl)-1-piperazine-propanesulfonic acid (EPPS), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid sodium salt (HEPES-Na), and 4-morpholinepropanesulfonic acid sodium salt (MOPS-Na). These buffers behave as a potential stabilizer for the native structure of BSA against thermal denaturation. The stabilization tendency follows the order of MOPS-Na > HEPES-Na > HEPES ≫ EPPS. To obtain an insight into the role of hydration layers and peptide backbone in the stabilization of BSA by these buffers, we have also explored the phase transition of a thermoresponsive polymer, poly(N-isopropylacrylamide (PNIPAM)), a model compound for protein, in aqueous solutions of HEPES, EPPS, HEPES-Na, and MOPS-Na buffers at different concentrations. It was found that the lower critical solution temperatures (LCST) of PNIPAM in the aqueous buffer solutions substantially decrease with increase in buffer concentration. The mechanism of interactions between these buffers and protein BSA was probed by various techniques, including UV-visible, fluorescence, and FTIR. The results of this series of studies reveal that the interactions are mainly governed by the influence of the buffers on the hydration layers surrounding the protein. We have also explored the possible binding sites of BSA with these buffers using a molecular docking technique. Moreover, the activities of an industrially important enzyme α-chymotrypsin (α-CT) in 0.05 M, 0.5 M, and 1.0 M of HEPES, EPPS, HEPES-Na, and MOPS-Na buffer solutions were analyzed at pH = 8.0 and T = 25 °C. Interestingly, the activities of α-CT were found to be enhanced in the aqueous solutions of these investigated buffers. Based upon the Jones-Dole viscosity parameters, the

  14. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  15. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  16. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  17. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  18. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following table for solvent blends for which you do not have test data or manufacturer's... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  19. Influence of solvents on the conformation of benzoin

    NASA Astrophysics Data System (ADS)

    Pawełka, Z.; Czarnik-Matusewicz, B.; Zeegers-Huyskens, Th.

    2010-01-01

    The conformation of benzoin in several organic solvents is investigated by infrared spectrometry and dipolometry. The frequencies, intensities, and band shapes of the ν(OH), ν(C dbnd O), and aromatic ring vibrations indicate that in solvents of low proton acceptor ability, the cis conformer with intramolecular OH···O hydrogen bonding is preserved. In solvents of large proton acceptor ability there is equilibrium between the cis and trans conformers. The dipole moments are less sensitive to conformational changes, but indicate the same trends. The results are discussed as a function of the specific solvation of the O atoms or OH groups of benzoin.

  20. Influence of solvents on the conformation of benzoin.

    PubMed

    Pawełka, Z; Czarnik-Matusewicz, B; Zeegers-Huyskens, Th

    2010-01-01

    The conformation of benzoin in several organic solvents is investigated by infrared spectrometry and dipolometry. The frequencies, intensities, and band shapes of the nu(OH), nu(C=O), and aromatic ring vibrations indicate that in solvents of low proton acceptor ability, the cis conformer with intramolecular OH...O hydrogen bonding is preserved. In solvents of large proton acceptor ability there is equilibrium between the cis and trans conformers. The dipole moments are less sensitive to conformational changes, but indicate the same trends. The results are discussed as a function of the specific solvation of the O atoms or OH groups of benzoin. Copyright 2009 Elsevier B.V. All rights reserved.

  1. WASTE TREATABILITY TESTS OF SPENT SOLVENT AND OTHER ORGANIC WASTEWATERS

    EPA Science Inventory

    Some commercial and industrial facilities treat RCRA spent solvent wastewaters by steam stripping, carbon adsorption, and/or biological processes. Thirteen facilities were visited by EPA's Office of Research and Development (ORD) from June 1985 to September 1986, to conduct sampl...

  2. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  3. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.

    PubMed

    Bao, Rong-Rong; Zhang, Cheng-Yi; Zhang, Xiu-Juan; Ou, Xue-Mei; Lee, Chun-Sing; Jie, Jian-Sheng; Zhang, Xiao-Hong

    2013-06-26

    The controlled growth and alignment of one-dimensional organic nanostructures at well-defined locations considerably hinders the integration of nanostructures for electronic and optoelectronic applications. Here, we demonstrate a simple process to achieve the growth, alignment, and hierarchical patterning of organic nanowires on substrates with controlled patterns of surface wettability. The first-level pattern is confined by the substrate patterns of wettability. Organic nanostructures are preferentially grown on solvent wettable regions. The second-level pattern is the patterning of aligned organic nanowires deposited by controlling the shape and movement of the solution contact lines during evaporation on the wettable regions. This process is controlled by the cover-hat-controlled method or vertical evaportation method. Therefore, various new patterns of organic nanostructures can be obtained by combing these two levels of patterns. This simple method proves to be a general approach that can be applied to other organic nanostructure systems. Using the as-prepared patterned nanowire arrays, an optoelectronic device (photodetector) is easily fabricated. Hence, the proposed simple, large-scale, low-cost method of preparing patterns of highly ordered organic nanostructures has high potential applications in various electronic and optoelectronic devices.

  4. Electro-driven extraction of inorganic anions from water samples and water miscible organic solvents and analysis by ion chromatography.

    PubMed

    Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila

    2014-09-01

    A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  6. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  7. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  8. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fraction values in the following table for solvent blends for which you do not have test data or... spirits 64742-89-6 0.15 Toluene. 14. Low aromatic white spirit 64742-82-1 0 None. 15. Mineral spirits...

  9. ORGANIC SYNTHESES IN SOLVENT-FREE AND AQUEOUS MEDIA USING MICROWAVES

    EPA Science Inventory

    A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of recyclable mineral supports such as alumina, silica, clay, or 'doped' surfaces is presented which is applicable to a wide range of cleavage, condensation, cycl...

  10. COSOLVENCY AND SOPRTION OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    Sorption of hydrophobic organic chemicals (HOCs) by two soils was measured from mixed solvents containing water plus completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs). The utility of the log-linear cosolvency model for predicting HOC sor...

  11. k(+)-buffer: An Efficient, Memory-Friendly and Dynamic k-buffer Framework.

    PubMed

    Vasilakis, Andreas-Alexandros; Papaioannou, Georgios; Fudos, Ioannis

    2015-06-01

    Depth-sorted fragment determination is fundamental for a host of image-based techniques which simulates complex rendering effects. It is also a challenging task in terms of time and space required when rasterizing scenes with high depth complexity. When low graphics memory requirements are of utmost importance, k-buffer can objectively be considered as the most preferred framework which advantageously ensures the correct depth order on a subset of all generated fragments. Although various alternatives have been introduced to partially or completely alleviate the noticeable quality artifacts produced by the initial k-buffer algorithm in the expense of memory increase or performance downgrade, appropriate tools to automatically and dynamically compute the most suitable value of k are still missing. To this end, we introduce k(+)-buffer, a fast framework that accurately simulates the behavior of k-buffer in a single rendering pass. Two memory-bounded data structures: (i) the max-array and (ii) the max-heap are developed on the GPU to concurrently maintain the k-foremost fragments per pixel by exploring pixel synchronization and fragment culling. Memory-friendly strategies are further introduced to dynamically (a) lessen the wasteful memory allocation of individual pixels with low depth complexity frequencies, (b) minimize the allocated size of k-buffer according to different application goals and hardware limitations via a straightforward depth histogram analysis and (c) manage local GPU cache with a fixed-memory depth-sorting mechanism. Finally, an extensive experimental evaluation is provided demonstrating the advantages of our work over all prior k-buffer variants in terms of memory usage, performance cost and image quality.

  12. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  13. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  14. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine equivalent...

  15. Method for filtering solvent and tar sand mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelterborn, J. C.; Stone, R. A.

    1985-09-03

    A method for filtering spent tar sands from a bitumen and organic solvent solution comprises separating the solution into two streams wherein the bulk of the coarser spent tar sand is in a first stream and has an average particle size of about 10 to about 100 mesh and the bulk of the finer spent tar sand is in a second stream; producing a filter cake by filtering the coarser spent tar sand from the first stream; and filtering the finer spent tar sand from the second stream with the filter cake. The method is particularly useful for filtering solutionsmore » of bitumen extracted from bitumen containing diatomite, spent diatomite and organic solvent.« less

  16. Corrosion in low dielectric constant Si-O based thin films: Buffer concentration effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, F. W.; Lane, M. W., E-mail: mlane@ehc.edu; Gates, S. M.

    2014-05-15

    Organosilicate glass (OSG) is often used as an interlayer dielectric (ILD) in high performance integrated circuits. OSG is a brittle material and prone to stress-corrosion cracking reminiscent of that observed in bulk glasses. Of particular concern are chemical-mechanical planarization techniques and wet cleans involving solvents commonly encountered in microelectronics fabrication where the organosilicate film is exposed to aqueous environments. Previous work has focused on the effect of pH, surfactant, and peroxide concentration on the subcritical crack growth of these films. However, little or no attention has focused on the effect of the conjugate acid/base concentration in a buffer. Accordingly, thismore » work examines the “strength” of the buffer solution in both acidic and basic environments. The concentration of the buffer components is varied keeping the ratio of acid/base and therefore pH constant. In addition, the pH was varied by altering the acid/base ratio to ascertain any additional effect of pH. Corrosion tests were conducted with double-cantilever beam fracture mechanics specimens and fracture paths were verified with ATR-FTIR. Shifts in the threshold fracture energy, the lowest energy required for bond rupture in the given environment, G{sub TH}, were found to shift to lower values as the concentration of the base in the buffer increased. This effect was found to be much larger than the effect of the hydroxide ion concentration in unbuffered solutions. The results are rationalized in terms of the salient chemical bond breaking process occurring at the crack tip and modeled in terms of the chemical potential of the reactive species.« less

  17. The development of substitute inks and controls for reducing workplace concentrations of organic solvent vapors in a vinyl shower curtain printing plant.

    PubMed

    Piltingsrud, Harley V; Zimmer, Anthony T; Rourke, Aaron B

    2003-08-01

    During the summer of 1994, football players at a practice field reported noxious odors in the area. Ohio Environmental Protection Agency (OEPA) investigations of industries surrounding the field included a printing facility producing vinyl shower curtains with screen-printed designs. Though not the source of the odor, they were discharging volatile organic compounds directly to the environs in violation of OEPA regulations. To achieve compliance they installed a catalytic oxidizer for treating discharged air. Due to high equipment costs, the capacity of the installed catalytic oxidizer resulted in a substantial reduction in discharged air flow rates and increased solvent vapor concentrations within the workplace. Vapor levels caused worker discomfort, prompting a request for assistance from the Ohio Bureau of Workers Compensation. The vapor concentrations were found to exceed NIOSH, OSHA, and ACGIH acceptable exposure levels. The workers were then required to wear organic vapor removing respirators full-time while printing as a temporary protective measure. The company requested NIOSH assistance in finding methods to reduce solvent vapor concentrations. NIOSH studies included the identification of the sources and relative magnitude of solvent emissions from the printing process, the design of controls for the emissions, and the development of substitute inks using non-photochemically reactive solvents. The new ink system and controls allowed OEPA removal of the requirement for the treatment of discharged air and substantial increases in dilution ventilation. Increased ventilation would permit reduction in worker exposures to less than 1/3 mixture TLV levels and removal of requirements for respirator usage. This solution was the result of a comprehensive review of all facets of the problem, including OEPA regulations. It also required cooperative work between the company and federal, state, and local governmental agencies.

  18. Mechanisms of buffer therapy resistance

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Cornnell, Heather H.; Ribeiro, Maria C.; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J.

    2014-01-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. PMID:24862761

  19. Solvent-Free Synthesis of Zeolites: Mechanism and Utility.

    PubMed

    Wu, Qinming; Meng, Xiangju; Gao, Xionghou; Xiao, Feng-Shou

    2018-05-08

    Zeolites have been extensively studied for years in different areas of chemical industry, such as shape selective catalysis, ion-exchange, and gas adsorption and separation. Generally, zeolites are prepared from solvothermal synthesis in the presence of a large amounts of solvents such as water and alcohols in sealed autoclaves under autogenous pressure. Water has been regarded as essential to synthesize zeolites for fast mass transfer of reactants, but it occupies a large space in autoclaves, which greatly reduces the yield of zeolite products. Furthermore, polluted wastes and relatively high pressure due to the presence of water solvent in the synthesis also leads to environmental and safety issues. Recently, inspired by great benefits of solvent-free synthesis, including the environmental concerns, energy consumption, safety, and economic cost, researchers continually challenge the rationale of the solvent and reconsider the age-old question "Do we actually need solvents at all in zeolite synthesis?" In this Account, we briefly summarize our efforts to rationally synthesize zeolites via a solvent-free route. Our research demonstrates that a series of silica, aluminosilicate, and aluminophosphate-based zeolites can be successfully prepared by mixing, grinding, and heating starting solid materials under solvent-free conditions. Combining an organotemplate-free synthesis with a solvent-free approach maximizes the advantages resulting in a more sustainable synthetic route, which avoids using toxic and costly organic templates and the formation of harmful gases by calcination of organic templates at high temperature. Furthermore, new insights into the solvent-free crystallization process of zeolites have been provided by modern techniques such as NMR and UV-Raman spectroscopy, which should be helpful in designing new zeolite structures and developing novel routes for synthesis of zeolites. The role of water and the vital intermediates during the crystallization of

  20. Experiment on the treatment of waste extraction solvent from the molybdenum-99 process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien

    2013-07-01

    In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from themore » waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)« less

  1. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    DOEpatents

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  2. How does the trans-cis photoisomerization of azobenzene take place in organic solvents?

    PubMed

    Tiberio, Giustiniano; Muccioli, Luca; Berardi, Roberto; Zannoni, Claudio

    2010-04-06

    The trans-cis photoisomerization of azobenzene-containing materials is key to a number of photomechanical applications, but the actual conversion mechanism in condensed phases is still largely unknown. Herein, we study the n, pi* isomerization in a vacuum and in various solvents via a modified molecular dynamics simulation adopting an ab initio torsion-inversion force field in the ground and excited states, while allowing for electronic transitions and a stochastic decay to the fundamental state. We determine the trans-cis photoisomerization quantum yield and decay times in various solvents (n-hexane, anisole, toluene, ethanol, and ethylene glycol), and obtain results comparable with experimental ones where available. A profound difference between the isomerization mechanism in vacuum and in solution is found, with the often neglected mixed torsional-inversion pathway being the most important in solvents.

  3. Effect of Solvent Choice on the Self-Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair.

    PubMed

    Mayans, Enric; Ballano, Gema; Sendros, Javier; Font-Bardia, Merçè; Campos, J Lourdes; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2017-07-19

    A diphenylalanine (FF) amphiphile blocked at the C terminus with a benzyl ester (OBzl) and stabilized at the N terminus with a trifluoroacetate (TFA) anion was synthetized and characterized. Aggregation of peptide molecules was studied by considering a peptide solution in an organic solvent and adding pure water, a KCl solution, or another organic solvent as co-solvent. The choice of the organic solvent and co-solvent and the solvent/co-solvent ratio allowed the mixture to be tuned by modulating the polarity, the ionic strength, and the peptide concentration. Differences in the properties of the media used to dissolve the peptides resulted in the formation of different self-assembled microstructures (e.g. fibers, branched-like structures, plates, and spherulites). Furthermore, crystals of TFA⋅FF-OBzl were obtained from the aqueous peptide solutions for X-ray diffraction analysis. The results revealed a hydrophilic core constituted by carboxylate (from TFA), ester, and amide groups, and the core was found to be surrounded by a hydrophobic crown with ten aromatic rings. This segregated organization explains the assemblies observed in the different solvent mixtures as a function of the environmental polarity, ionic strength, and peptide concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Entry into and Release of Solvents by Escherichia coli in an Organic-Aqueous Two-Liquid-Phase System and Substrate Specificity of the AcrAB-TolC Solvent-Extruding Pump

    PubMed Central

    Tsukagoshi, Norihiko; Aono, Rikizo

    2000-01-01

    Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log POW of the solvent, where POW is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of ΔacrAB and/or ΔtolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log POW = 5.5). The ΔtolC mutant was more sensitive to nonane than the ΔacrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log POW higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The ΔtolC mutant accumulated n-nonane or decane (log POW = 6.0) more abundantly than the parent or the ΔacrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log POW in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane. PMID:10940021

  5. DEMONSTRATION BULLETIN: TERRA KLEEN SOLVENT EXTRACTION TECHNOLOGY - TERRA-KLEEN RESPONSE GROUP, INC.

    EPA Science Inventory

    The Terra-Kleen Solvent Extraction Technology was developed by Terra-Kleen Response Group, Inc., to remove polychlorinated biphenyls (PCB) and other organic constituents from contaminated soil. This batch process system uses a proprietary solvent at ambient temperatures to treat ...

  6. Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability.

    PubMed

    You, Longzhen; Liu, Bin; Liu, Tao; Fan, Bingbing; Cai, Yunhao; Guo, Lin; Sun, Yanming

    2017-04-12

    Tungsten oxide as an alternative to conventional acidic PEDOT:PSS has attracted much attention in organic solar cells (OSCs). However, the vacuum-processed WO 3 layer and high-temperature sol-gel hydrolyzed WO X are incompatible with large-scale manufacturing of OSCs. Here, we report for the first time that a specific tungsten oxide WO 2.72 (W 18 O 49 ) nanowire can function well as the anode buffer layer. The nw-WO 2.72 film exhibits a high optical transparency. The power conversion efficiency (PCE) of OSCs based on three typical polymer active layers PTB7:PC 71 BM, PTB7-Th:PC 71 BM, and PDBT-T1:PC 71 BM with nw-WO 2.72 layer were improved significantly from 7.27 to 8.23%, from 8.44 to 9.30%, and from 8.45 to 9.09%, respectively compared to devices with PEDOT:PSS. Moreover, the photovoltaic performance of OSCs based on small molecule p-DTS(FBTTh 2 ) 2 :PC 71 BM active layer was also enhanced with the incorporation of nw-WO 2.72 . The enhanced performance is mainly attributed to the improved short-circuit current density (J sc ), which benefits from the oxygen vacancies and the surface apophyses for better charge extraction. Furthermore, OSCs based on nw-WO 2.72 show obviously improved ambient stability compared to devices with PEDOT:PSS layer. The results suggest that nw-WO 2.72 is a promising candidate for the anode buffer layer materials in organic solar cells.

  7. Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates

    DOEpatents

    Paranthaman, Mariappan; Goyal, Amit; Kroeger, Donald M.; List, III, Frederic A.

    2002-01-01

    Buffer layer architectures are epitaxially deposited on biaxially-textured rolled-Ni and/or Cu substrates for high current conductors, and more particularly buffer layer architectures such as MgO/Ag/Pt/Ni, MgO/Ag/Pd/Ni, MgO/Ag/Ni, MgO/Ag/Pd/Cu, MgO/Ag/Pt/Cu, and MgO/Ag/Cu. Techniques used to deposit these buffer layers include electron beam evaporation, thermal evaporation, rf magnetron sputtering, pulsed laser deposition, metal-organic chemical vapor deposition (MOCVD), combustion CVD, and spray pyrolysis.

  8. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  9. Solvent-dependent gating motions of an extremophilic lipase from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Quentin R.; Nellas, Ricky B.; Shen, Tongye

    2012-07-25

    Understanding how organic solvent-stable proteins can function in anhydrous and often complex solutions is essential for the study of the interaction of protein and molecular immiscible interfaces and the design of efficient industrial enzymes in nonaqueous solvents. Using an extremophilic lipase from Pseudomonas aeruginosa as an example, we investigated the conformational dynamics of an organic solvent-tolerant enzyme in complex solvent milieux. Four 100-ns molecular dynamics simulations of the lipase were performed in solvent systems: water, hexane, and two mixtures of hexane and water, 5% and 95% (w/w) hexane. Our results show a solvent-dependent structural change of the protein, especially inmore » the region that regulates the admission of the substrate. We observed that the lipase is much less flexible in hexane than in aqueous solution or at the immiscible interface. Quantified by the size of the accessible channel, the lipase in water has a closed-gate conformation and no access to the active site, while in the hexane-containing systems, the lipase is at various degrees of open-gate state, with the immiscible interface setup being in the widely open conformation ensembles. Furthermore, the composition of explicit solvents in the access channel showed a significant influence on the conformational dynamics of the protein. Interestingly, the slowest step (bottleneck) of the hexane-induced conformational switch seems to be correlated with the slow dehydration dynamics of the channel.« less

  10. Mechanisms of buffer therapy resistance.

    PubMed

    Bailey, Kate M; Wojtkowiak, Jonathan W; Cornnell, Heather H; Ribeiro, Maria C; Balagurunathan, Yoganand; Hashim, Arig Ibrahim; Gillies, Robert J

    2014-04-01

    Many studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used. B16-F10 (murine melanoma), LL/2 (murine lung) and HCT116 (human colon) tumors are resistant to treatment with lysine buffer therapy, whereas metastasis is potently inhibited by lysine buffers in MDA-MB-231 (human breast) and PC3M (human prostate) tumors. In the current work, we confirmed that sensitive cells utilized a pH-dependent mechanism for successful metastasis supported by a highly glycolytic phenotype that acidifies the local tumor microenvironment resulting in morphological changes. In contrast, buffer-resistant cell lines exhibited a pH-independent metastatic mechanism involving constitutive secretion of matrix degrading proteases without elevated glycolysis. These results have identified two distinct mechanisms of experimental metastasis, one of which is pH-dependent (buffer therapy sensitive cells) and one which is pH-independent (buffer therapy resistant cells). Further characterization of these models has potential for therapeutic benefit. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  11. Assessment of central auditory processing in a group of workers exposed to solvents.

    PubMed

    Fuente, Adrian; McPherson, Bradley; Muñoz, Verónica; Pablo Espina, Juan

    2006-12-01

    Despite having normal hearing thresholds and speech recognition thresholds, results for central auditory tests were abnormal in a group of workers exposed to solvents. Workers exposed to solvents may have difficulties in everyday listening situations that are not related to a decrement in hearing thresholds. A central auditory processing disorder may underlie these difficulties. To study central auditory processing abilities in a group of workers occupationally exposed to a mix of organic solvents. Ten workers exposed to a mix of organic solvents and 10 matched non-exposed workers were studied. The test battery comprised pure-tone audiometry, tympanometry, acoustic reflex measurement, acoustic reflex decay, dichotic digit, pitch pattern sequence, masking level difference, filtered speech, random gap detection and hearing-in-noise tests. All the workers presented normal hearing thresholds and no signs of middle ear abnormalities. Workers exposed to solvents had lower results in comparison with the control group and previously reported normative data, in the majority of the tests.

  12. Free flow cell electrophoresis using zwitterionic buffer

    NASA Technical Reports Server (NTRS)

    Rodkey, R. Scott

    1990-01-01

    Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.

  13. Solvents and Parkinson disease: A systematic review of toxicological and epidemiological evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, Edward A., E-mail: e.lock@ljmu.ac.uk; Zhang, Jing; Checkoway, Harvey

    2013-02-01

    Parkinson disease (PD) is a debilitating neurodegenerative motor disorder, with its motor symptoms largely attributable to loss of dopaminergic neurons in the substantia nigra. The causes of PD remain poorly understood, although environmental toxicants may play etiologic roles. Solvents are widespread neurotoxicants present in the workplace and ambient environment. Case reports of parkinsonism, including PD, have been associated with exposures to various solvents, most notably trichloroethylene (TCE). Animal toxicology studies have been conducted on various organic solvents, with some, including TCE, demonstrating potential for inducing nigral system damage. However, a confirmed animal model of solvent-induced PD has not been developed.more » Numerous epidemiologic studies have investigated potential links between solvents and PD, yielding mostly null or weak associations. An exception is a recent study of twins indicating possible etiologic relations with TCE and other chlorinated solvents, although findings were based on small numbers, and dose–response gradients were not observed. At present, there is no consistent evidence from either the toxicological or epidemiologic perspective that any specific solvent or class of solvents is a cause of PD. Future toxicological research that addresses mechanisms of nigral damage from TCE and its metabolites, with exposure routes and doses relevant to human exposures, is recommended. Improvements in epidemiologic research, especially with regard to quantitative characterization of long-term exposures to specific solvents, are needed to advance scientific knowledge on this topic. -- Highlights: ► The potential for organic solvents to cause Parkinson's disease has been reviewed. ► Twins study suggests etiologic relations with chlorinated solvents and Parkinson's. ► Animal studies with TCE showed potential to cause damage to dopaminergic neurons. ► Need to determine if effects in animals are relevant to human

  14. [Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil].

    PubMed

    Wang, Ji-Dong; Qi, Bing-Jie; Zhang, Yong-Chun; Zhang, Ai-Jun; Ning, Yun-Wang; Xu, Xian-Ju; Zhang, Hui; Ma, Hong-Bo

    2012-04-01

    Soil samples (0-80 cm) were collected from a 30-year fertilization experimental site in Xuzhou, Jiangsu Province of East China to study the variations of the pH, calcium carbonate and active calcium carbonate contents, and pH buffer capacity of sandy loam calcareous fluvor-aquic soil under different fertilization treatments. Thirty-year continuous application of different fertilizers accelerated the acidification of topsoil (0-20 cm), with the soil pH decreased by 0.41-0.70. Under different fertilization, the soil pH buffer capacity (pHBC) varied from 15.82 to 21.96 cmol x kg(-1). As compared with no fertilization, single N fertilization decreased the pHBC significantly, but N fertilization combined with organic fertilization could significantly increase the pHBC. The soil pHBC had significant positive correlations with soil calcium carbonate and active calcium carbonate contents, but less correlation with soil organic matter content and soil cation exchange capacity, suggesting that after a long-term fertilization, the sandy loam calcareous fluvor-aquic soil was still of an elementary calcium carbonate buffer system, and soil organic matter and cation exchange capacity contributed little to the buffer system. The soil calcium carbonate and active calcium carbonate contents were greater in 0-40 cm than in 40-80 cm soil layer. Comparing with soil calcium carbonate, soil active calcium carbonate was more sensitive to reflect the changes of soil physical and chemical properties, suggesting that the calcium carbonate buffer system could be further classified as soil active calcium carbonate buffer system.

  15. Solvent-free and catalyst-free chemistry: A benign pathway to sustainability

    EPA Science Inventory

    In the past decade, alternative benign organic methodologies have become an imperative part of organic syntheses and novel chemical reactions. The various new and innovative sustainable organic reactions and methodologies using no solvents or catalysts and employing alternative ...

  16. Role of Buffers in Protein Formulations.

    PubMed

    Zbacnik, Teddy J; Holcomb, Ryan E; Katayama, Derrick S; Murphy, Brian M; Payne, Robert W; Coccaro, Richard C; Evans, Gabriel J; Matsuura, James E; Henry, Charles S; Manning, Mark Cornell

    2017-03-01

    Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Enhancement of Palmarumycin C12 and C13 Production by the Endophytic Fungus Berkleasmium sp. Dzf12 in an Aqueous-Organic Solvent System.

    PubMed

    Mou, Yan; Xu, Dan; Mao, Ziling; Dong, Xuejiao; Lin, Fengke; Wang, Ali; Lai, Daowan; Zhou, Ligang; Xie, Bingyan

    2015-11-12

    The endophytic fungus Berkleasmium sp. Dzf12, isolated from Dioscorea zingiberensis, was found to produce palmarumycins C12 and C13 which possess a great variety of biological activities. Seven biocompatible water-immiscible organic solvents including n-dodecane, n-hexadecane, 1-hexadecene, liquid paraffin, dibutyl phthalate, butyl oleate and oleic acid were evaluated to improve palmarumycins C12 and C13 production in suspension culture of Berkleasmium sp. Dzf12. Among the chosen solvents both butyl oleate and liquid paraffin were the most effective to improve palmarumycins C12 and C13 production. The addition of dibutyl phthalate, butyl oleate and oleic acid to the cultures of Berkleasmium sp. Dzf12 significantly enhanced palmarumycin C12 production by adsorbing palmarumycin C12 into the organic phase. When butyl oleate was fed at 5% (v/v) in medium at the beginning of fermentation (day 0), the highest palmarumycin C12 yield (191.6 mg/L) was achieved, about a 34.87-fold increase in comparison with the control (5.3 mg/L). n-Dodecane, 1-hexadecene and liquid paraffin had a great influence on the production of palmarumycin C13. When liquid paraffin was added at 10% (v/v) in medium on day 3 of fermentation, the palmarumycin C13 yield reached a maximum value (134.1 mg/L), which was 4.35-fold that of the control (30.8 mg/L). Application of the aqueous-organic solvent system should be a simple and efficient process strategy for enhancing palmarumycin C12 and C13 production in liquid cultures of the endophytic fungus Berkleasmium sp. Dzf12.

  18. Cytosolic Ca2+ Buffers

    PubMed Central

    Schwaller, Beat

    2010-01-01

    “Ca2+ buffers,” a class of cytosolic Ca2+-binding proteins, act as modulators of short-lived intracellular Ca2+ signals; they affect both the temporal and spatial aspects of these transient increases in [Ca2+]i. Examples of Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Besides their proven Ca2+ buffer function, some might additionally have Ca2+ sensor functions. Ca2+ buffers have to be viewed as one of the components implicated in the precise regulation of Ca2+ signaling and Ca2+ homeostasis. Each cell is equipped with proteins, including Ca2+ channels, transporters, and pumps that, together with the Ca2+ buffers, shape the intracellular Ca2+ signals. All of these molecules are not only functionally coupled, but their expression is likely to be regulated in a Ca2+-dependent manner to maintain normal Ca2+ signaling, even in the absence or malfunctioning of one of the components. PMID:20943758

  19. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  20. Solvent-induced assembly of two helical Eu(III) metal-organic frameworks and fluorescence sensing activities towards nitrobenzene and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Ma, Ranran; Chen, Zhiwei; Wang, Suna; Yao, Qingxia; Li, Yunwu; Lu, Jing; Li, Dacheng; Dou, Jianmin

    2017-08-01

    Two helical Eu(III) metal-organic frameworks, namely, {[Eu(L)(DMF)(H2O)]·0.5DMF}n (1) and [Eu(L)(DEF)(H2O)]n (2) (H3L=3,5-bis(2-carboxylphenoxy)benzoic acid, DMF=N,N-dimethylformamide, DEF=N,N-diethylformamide), have been solvothermally synthesized in different solvents, respectively. Both complexes possess helical structures through the connectivity of Eu atoms and phenolic-oxygen containing branches of the flexible multicarboxylate ligand. Based on different helices, these two complexes exhibited hexagonal and tetragonal channels, respectively. Both complexes possess (3,6)-connected (4.62)2(42.610.83) topology but with different long Schlafli symbol. The solvent plays an important role in the formation of the final frameworks. Both complexes can sensitively and selectively detect nitrobenzene and Cu2+ ions.

  1. Buffer Zone Fact Sheets

    EPA Pesticide Factsheets

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  2. Spectral parameters and Hamaker constants of silicon hydride compounds and organic solvents.

    PubMed

    Masuda, Takashi; Matsuki, Yasuo; Shimoda, Tatsuya

    2009-12-15

    Cyclopentasilane (CPS) and polydihydrosilane, which consist of hydrogen and silicon only, are unique materials that can be used to produce intrinsic silicon film in a liquid process, such as spin coating or an ink-jet method. Wettability and solubility of general organic solvents including the above can be estimated by Hamaker constants, which are calculated according to the Lifshitz theory. In order to calculate a Hamaker constant by the simple spectral method (SSM), it is necessary to obtain absorption frequency and function of oscillator strength in the ultraviolet region. In this report, these physical quantities were obtained by means of an optical method. As a result of examination of the relation between molecular structures and ultraviolet absorption frequencies, which were obtained from various liquid materials, it was concluded that ultraviolet absorption frequencies became smaller as electrons were delocalized. In particular, the absorption frequencies were found to be very small for CPS and polydihydrosilane due to sigma-conjugate of their electrons. The Hamaker constants of CPS and polydihydrosilane were successfully calculated based on the obtained absorption frequency and function of oscillator strength.

  3. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems

    NASA Astrophysics Data System (ADS)

    de Wit, Rutger; Stal, Lucas J.; Lomstein, Bente Aa.; Herbert, Rodney A.; van Gemerden, Hans; Viaroli, Pierluigi; Cecherelli, Victor-Ugo; Rodríguez-Valera, Francisco; Bartoli, Marco; Giordani, Gianmarco; Azzoni, Roberta; Schaub, Bart; Welsh, David T.; Donnelly, Andrew; Cifuentes, Ana; Antón, Josefa; Finster, Kai; Nielsen, Lise B.; Pedersen, Anne-Grethe Underlien; Neubauer, Anne Turi; Colangelo, Marina A.; Heijs, Sander K.

    2001-12-01

    "Buffer capacities" has been defined in ecology as a holistic concept (e.g., Integration of Ecosystem Theories: A Pattern, second ed. Kluwer, Dordrecht, 1997, 388pp), but we show that it can also be worked out in mechanistic studies. Our mechanistic approach highlights that "buffering capacities" can be depleted progressively, and, therefore, we make a distinction between current and potential "buffering capacities". We have applied this concept to understand the limited "local stability" in seagrass ecosystems and their vulnerability towards structural changes into macro-algal dominated communities. We explored the following processes and studied how they confer buffering capacities to the seagrass ecosystem: (i) net autotrophy is persistent in Zostera noltii meadows where plant assimilation acts as a sink for nutrients, this contrasted with the Ulva system that shifted back and forth between net autotrophy and net heterotrophy; (ii) the Z. noltii ecosystem possesses a certain albeit rather limited capacity to modify the balance between nitrogen fixation and denitrification, i.e., it was found that in situ nitrogen fixation always exceeded denitrification; (iii) the nitrogen demand of organoheterotrophic bacteria in the sediment results in nitrogen retention of N in the sediment and hence a buffer against release of nitrogen compounds from sediments, (iv) habitat diversification in seagrass meadows provides shelter for meiofauna and hence buffering against adverse conditions, (v) sedimentary iron provides a buffer against noxious sulfide (note: bacterial sulfide production is enhanced in anoxic sediment niches by increased organic matter loading). On the other hand, in the coastal system we studied, sedimentary iron appears less important as a redox-coupled buffer system against phosphate loading. This is because most inorganic phosphate is bound to calcium rather than to iron. In addition, our studies have highlighted the importance of plant-microbe interactions

  4. Discovery a novel organic solvent tolerant esterase from Salinispora arenicola CNP193 through genome mining.

    PubMed

    Fang, Yaowei; Wang, Shujun; Liu, Shu; Jiao, Yuliang

    2015-09-01

    An esterase gene, encoding a 325-amino-acid protein (SAestA), was mined form obligate marine actinomycete strain Salinispora arenicola CNP193 genome sequence. Phylogenetic analysis of the deduced amino acid sequence showed that the enzyme belonged to the family IV of lipolytic enzymes. The gene was cloned, expressed in Escherichia coli as a His-tagged protein, purified and characterized. The molecular weight of His-tagged SAestA is ∼38 kDa. SAestA-His6 was active in a temperature (5-40 °C) and pH range (7.0-11.0), and maximal activity was determined at pH 9.0 and 30 °C. The activity was severely inhibited by Hg(2+), Cu(2+), and Zn(2+). In particular, this enzyme showed remarkable stability in presence of organic solvents (25%, v/v) with log P>2.0 even after incubation for 7 days. All these characteristics suggested that SAestA may be a potential candidate for application in industrial processes in aqueous/organic media. Copyright © 2015. Published by Elsevier B.V.

  5. Synthesis of Gold Nanoparticles with Buffer-Dependent Variations of Size and Morphology in Biological Buffers.

    PubMed

    Ahmed, Syed Rahin; Oh, Sangjin; Baba, Rina; Zhou, Hongjian; Hwang, Sungu; Lee, Jaebeom; Park, Enoch Y

    2016-12-01

    The demand for biologically compatible and stable noble metal nanoparticles (NPs) has increased in recent years due to their inert nature and unique optical properties. In this article, we present 11 different synthetic methods for obtaining gold nanoparticles (Au NPs) through the use of common biological buffers. The results demonstrate that the sizes, shapes, and monodispersity of the NPs could be varied depending on the type of buffer used, as these buffers acted as both a reducing agent and a stabilizer in each synthesis. Theoretical simulations and electrochemical experiments were performed to understand the buffer-dependent variations of size and morphology exhibited by these Au NPs, which revealed that surface interactions and the electrostatic energy on the (111) surface of Au were the determining factors. The long-term stability of the synthesized NPs in buffer solution was also investigated. Most NPs synthesized using buffers showed a uniquely wide range of pH stability and excellent cell viability without the need for further modifications.

  6. Suppression of Protonated Organic Solvents in NMR Spectroscopy Using a Perfect Echo Low-Pass Filtration Pulse Sequence.

    PubMed

    Howe, Peter W A

    2018-04-03

    Proton NMR spectra are usually acquired using deuterated solvents, but in many cases it is necessary to obtain spectra on samples in protonated solvents. In these cases, the intense resonances of the protonated solvents need to be suppressed to maximize sensitivity and spectral quality. A wide range of highly effective solvent suppression methods have been developed, but additional measures are needed to suppress the 13 C satellites of the solvent. Because the satellites represent 1.1% of the original solvent signal, they remain problematic if unsuppressed. The recently proposed DISPEL pulse sequences suppress 13 C satellites extremely effectively, and this Technical Note demonstrates that combining DISPEL and presaturation results in exceptionally effective solvent suppression. An important element in the effectiveness is volume selection, which is inherent within the DISPEL sequence. Spectra acquired in protonated dimethlysulfoxide and tetrahydrofuran show that optimum results are obtained by modifying the phase cycle, cycling the pulse-field gradients, and using broadband 13 C inversion pulses to reduce the effects of radiofrequency offset and inhomogeneity.

  7. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  8. Simultaneously 'pushing' and 'pulling' graphene oxide into low-polar solvents through a designed interface.

    PubMed

    Liu, Zhen; Liu, Jingquan; Wang, Yichao; Razal, Joselito M; Francis, Paul S; Biggs, Mark J; Barrow, Colin J; Yang, Wenrong

    2018-08-03

    Dispersing graphene oxide (GO) in low-polar solvents can realize a perfect self-assembly with functional molecules and application in removal of organic impurities that only dissolve in low-polar solvents. The surface chemistry of GO plays an important role in its dispersity in these solvents. The direct transfer of hydrophilic GO into low-polar solvents, however, has remained an experimental challenge. In this study, we design an interface to transfer GO by simultaneously 'pushing and pulling' the nanosheets into low-polar solvents. Our approach is outstanding due to the ability to obtain monolayers of chemically reduced GO (CRGO) with designed surface properties in the organic phase. Using the transferred GO or CRGO dispersions, we have fabricated GO/fullerene nanocomposites and assessed the ability of CRGOs for dye adsorption. We hope our work can provide a universal approach for the phase transfer of other nanomaterials.

  9. Buffering of Ocean Export Production by Flexible Elemental Stoichiometry of Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Tanioka, Tatsuro; Matsumoto, Katsumi

    2017-10-01

    One of the most important factors that determine the ocean-atmosphere carbon partitioning is the sinking of particulate organic matter (POM) from the surface ocean to the deep ocean. The amount of carbon (C) removed from the surface ocean by this POM export production depends critically on the elemental ratio in POM of C to nitrogen (N) and phosphorus (P), two essential elements that limit productivity. Recent observations indicate that P:N:C in marine POM varies both spatially and temporally due to chemical, physical, and ecological dynamics. In a new approach to predicting a flexible P:C ratio, we developed a power law model with a stoichiometry sensitivity factor, which is able to relate P:C of POM to ambient phosphate concentration. The new factor is robust, measurable, and biogeochemically meaningful. Using the new stoichiometry sensitivity factor, we present a first-order estimate that P:C plasticity could buffer against a generally expected future reduction in global carbon export production by up to 5% under a future warming scenario compared to a fixed, Redfield P:C. Further, we demonstrate that our new stoichiometry model can be implemented successfully and easily in a global model to reproduce the large-scale P:N:C variability in the ocean.

  10. Mixed aqueous solutions as dilution media in the determination of residual solvents by static headspace gas chromatography.

    PubMed

    D'Autry, Ward; Zheng, Chao; Wolfs, Kris; Yarramraju, Sitaramaraju; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2011-06-01

    Static headspace (HS) sampling has been commonly used to test for volatile organic chemicals, usually referred to as residual solvents (RS) in pharmaceuticals. If the sample is not soluble in water, organic solvents are used. However, these seriously reduce the sensitivity in the determination of some RS. Here, mixed aqueous dilution media (a mixture of water and an organic solvent like dimethyl formamide, dimethyl sulfoxide or dimethyl acetamide) were studied as alternative media for static HS-gas chromatographic analysis. Although it has been known that mixed aqueous dilution media can often improve sensitivity for many RS, this study used a systematic approach to investigate phase volumes and the organic content in the HS sampling media. Reference solutions using 18 different class 1, 2 and 3 RS were evaluated. The effect of salt addition was also studied in this work. A significant increase in the peak area was observed for all RS using mixed aqueous dilution media, when compared with organic solvents alone. Matrix effects related to the mixed aqueous dilution media were also investigated and reported. Repeatability and linearity obtained with mixed aqueous dilution media were found to be similar to those observed with pure organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development.

    PubMed

    Hoffman, D J; Eastin, W C

    1981-09-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  12. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  13. Fabrication of 3D photonic crystals from chitosan that are responsive to organic solvents.

    PubMed

    Huang, Guanbo; Yin, Yibing; Pan, Zeng; Chen, Mingxi; Zhang, Lei; Liu, Yu; Zhang, Yongli; Gao, Jianping

    2014-12-08

    Inspired by photonic nanostructures in nature, such as the hair-like chaetae on the body of sea mice, inverse opal photonic crystals films were fabricated with chitosan, a kind of biomacromolecule found in nature. First, monodispersed polystyrene (PS) colloidal crystal templates with different particle sizes were prepared. The inverse opal films (IOFs) were fabricated through in situ cross-linking of the PS templates. The IOFs contain periodically ordered interconnecting pores that endow the films with photonic stop bands and structural colors, which are visible to the naked eye. The IOFs exhibit rapid reversible changes in their structural colors and reflectance peaks in response to alcohols and phenols. Possible mechanisms for the shifts in the IOF's reflectance peaks are proposed. The changes in the IOFs in response to alcohols and phenols provide a potential way to visually detect these organic solvents.

  14. Development of solvent systems with room temperature ionic liquids for the countercurrent chromatographic separation of very nonpolar lipid compounds.

    PubMed

    Müller, Marco; Englert, Michael; Earle, Martyn J; Vetter, Walter

    2017-03-10

    Solvent systems are not readily available for the separation of very nonpolar compounds by countercurrent chromatography (CCC). In this study we therefore evaluated the suitability of room temperature ionic liquids (IL) in organic solvents for the CCC separation of the extremely nonpolar lipid compounds tripalmitin (PPP) and cholesteryl stearate (CS). The four IL tested were [C 10 mim][OTf], [C 2 mim][NTf 2 ], [P66614][NTf 2 ], and [P66614][Cl]. Search for a CCC-suited solvent system started with solubility studies with fourteen organic solvents. Following this, combinations were made with one organic solvent miscible and one organic solvent immiscible with IL (147 combinations). Twenty-four initially monophasic mixtures of two organic solvents became biphasic by adding IL. Several unexpected results could be observed. For instance, n-hexane and n-heptane became biphasic with [P66614][Cl]. Further nine systems became biphasic although the IL was not miscible in any of the two components. These 33 solvent systems were investigated with regard to phase ratio, settling time, share of IL in the upper phase and last not least the K U/L values of PPP and CS, which were 8.1 and 7.7 respectively. The most promising system, n-heptane/chloroform/[C 10 mim][OTf] (3:3:1, v/v/v) allowed a partial separation of PPP and CS by CCC which was not achieved beforehand. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Establishing conservation buffers using precision information

    Treesearch

    Mike G. Dosskey; Dean E. Eisenhauer; Matthew J. Helmers

    2005-01-01

    Conservation buffers, such as filter strips and riparian forest buffers, are widely prescribed to improve and protect water quality in agricultural landscapes. These buffers intercept field runoff and retain some of its pollutant load before it reaches a waterway. A buffer typically is designed to have uniform width along a field margin and to intercept runoff that...

  16. Structure and Solvent Properties of Microemulsions

    ERIC Educational Resources Information Center

    Katz, Civia A.; Calzola, Zachary J.; Mbindyo, Jeremiah K. N.

    2008-01-01

    A microscale laboratory experiment to investigate the formation and utility of microemulsions is described. Microemulsions are technologically important fluids that can reduce the use of toxic organic solvents. In the experiment, students prepare a microemulsion and compare the solubility of sudan III dye in the microemulsion and in dodecane. They…

  17. Common stock solutions, buffers, and media.

    PubMed

    2001-05-01

    This collection of recipes describes the preparation of buffers and reagents used in Current Protocols in Pharmacology for cell culture, manipulation of neural tissue, molecular biological methods, and neurophysiological/neurochemical measurements. RECIPES: Acid, concentrated stock solutions Ammonium hydroxide, concentrated stock solution EDTA (ethylenediaminetetraacetic acid), 0.5 M (pH 8.0) Ethidium bromide staining solution Fetal bovine serum (FBS) Gel loading buffer, 6× LB medium (Luria broth) and LB plates Potassium phosphate buffer, 0.1 M Sodium phosphate buffer, 0.1 M TE (Tris/EDTA) buffer Tris⋅Cl, 1 M.

  18. In situ remediation of chlorinated solvent-contaminated groundwater using ZVI/organic carbon amendment in China: field pilot test and full-scale application.

    PubMed

    Yang, Jie; Meng, Liang; Guo, Lin

    2018-02-01

    Chlorinated solvents in groundwater pose threats to human health and the environment due to their carcinogenesis and bioaccumulation. These problems are often more severe in developing countries such as China. Thus, methods for chlorinated solvent-contaminated groundwater remediation are urgently needed. This study presents a technique of in situ remediation via the direct-push amendment injection that enhances the reductive dechlorination of chlorinated solvents in groundwater in the low-permeability aquifer. A field-based pilot test and a following real-world, full-scale application were conducted at an active manufacturing facility in Shanghai, China. The chlorinated solvents found at the clay till site included 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethylene (1,1-DCE), vinyl chloride (VC), and chloroethane (CA). A commercially available amendment (EHC ® , Peroxychem, Philadelphia, PA) combining zero-valent iron and organic carbon was used to treat the above pollutants. Pilot test results showed that direct-push EHC injection efficiently facilitated the in situ reductive remediation of groundwater contaminated with chlorinated solvents. The mean removal rates of 1,1,1-TCA, 1,1-DCA, and 1,1-DCE at 270 days post-injection were 99.6, 99.3, and 73.3%, respectively, which were obviously higher than those of VC and CA (42.3 and 37.1%, respectively). Clear decreases in oxidation-reduction potential and dissolved oxygen concentration, and increases in Fe 2+ and total organic carbon concentration, were also observed during the monitoring period. These indicate that EHC promotes the anaerobic degradation of chlorinated hydrocarbons primarily via long-term biological reductive dechlorination, with instant chemical reductive dechlorination acting as a secondary pathway. The optimal effective time of EHC injection was 0-90 days, and its radius of influence was 1.5 m. In full-scale application, the maximum concentrations of 1,1,1-TCA

  19. Microscopic relaxations in a protein sustained down to 160 K in a non-glass forming organic solvent

    DOE PAGES

    Mamontov, Eugene; O'Neil, Hugh

    2016-05-03

    In this paper, we have studied microscopic dynamics of a protein in carbon disulfide, a non-glass forming solvent, down to its freezing temperature of ca. 160 K. We have utilized quasielastic neutron scattering. A comparison of lysozyme hydrated with water and dissolved in carbon disulfide reveals a stark difference in the temperature dependence of the protein's microscopic relaxation dynamics induced by the solvent. In the case of hydration water, the common protein glass-forming solvent, the protein relaxation slows down in response to a large increase in the water viscosity on cooling down, exhibiting a well-known protein dynamical transition. The dynamicalmore » transition disappears in non-glass forming carbon disulfide, whose viscosity remains a weak function of temperature all the way down to freezing at just below 160 K. The microscopic relaxation dynamics of lysozyme dissolved in carbon disulfide is sustained down to the freezing temperature of its solvent at a rate similar to that measured at ambient temperature. Finally, our results demonstrate that protein dynamical transition is not merely solvent-assisted, but rather solvent-induced, or, more precisely, is a reflection of the temperature dependence of the solvent's glass-forming dynamics.« less

  20. Solubility behavior of lamivudine crystal forms in recrystallization solvents.

    PubMed

    Jozwiakowski, M J; Nguyen, N A; Sisco, J M; Spancake, C W

    1996-02-01

    Lamivudine can be obtained as acicular crystals (form I, 0.2 hydrate) from water or methanol and as bipyramidal crystals (form II, nonsolvated) from many nonaqueous solvents. Form II is thermodynamically favored in the solid state (higher melting point and greater density than form I) at ambient relative humidities. Solubility measurements on both forms versus solvent and temperature was used to determine whether entropy or enthalpy was the driving force for solubility. Solution calorimetry data indicated that form I is favored (less soluble) in all solvents studied on the basis of enthalpy alone. In higher alcohols and other organic solvents, form I has a larger entropy of solution than form II, which compensates for the enthalpic factors and results in physical stability for form II in these systems. The metastable crystal form solubility at 25 degrees C was estimated to be 1.2-2.3 times as high as the equilibrium solubility of the stable form, depending on the temperature, solvent, and crystal form. Binary solvent studies showed that > 18-20% water must be present in ethanol to convert the excess solid to form I at equilibrium.