Science.gov

Sample records for organometallic reactions applications

  1. Fundamental organometallic reactions: Applications on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Rappe, A. K.

    1984-01-01

    Two of the most challenging problems of Organometallic chemistry (loosely defined) are pollution control with the large space velocities needed and nitrogen fixation, a process so capably done by nature and so relatively poorly done by man (industry). For a computational chemist these problems are on the fringe of what is possible with conventional computers (large models needed and accurate energetics required). A summary of the algorithmic modification needed to address these problems on a vector processor such as the CYBER 205 and a sketch of findings to date on deNOx catalysis and nitrogen fixation are presented.

  2. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  3. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  4. (Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989)

    SciTech Connect

    Not Available

    1989-01-01

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  5. [Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  6. Patterns in Organometallic Chemistry with Application in Organic Synthesis.

    ERIC Educational Resources Information Center

    Schwartz, Jeffrey; Labinger, Jay A.

    1980-01-01

    Of interest in this discussion of organometallic complexes are stoichiometric or catalytic reagents for organic synthesis in the complex transformations observed during synthesis for transition metal organometallic complexes. Detailed are general reaction types from which the chemistry or many transition metal organometallic complexes can be…

  7. Reactivity of Gold Complexes towards Elementary Organometallic Reactions.

    PubMed

    Joost, Maximilian; Amgoune, Abderrahmane; Bourissou, Didier

    2015-12-01

    For a while, the reactivity of gold complexes was largely dominated by their Lewis acid behavior. In contrast to the other transition metals, the elementary steps of organometallic chemistry-oxidative addition, reductive elimination, transmetallation, migratory insertion-have scarcely been studied in the case of gold or even remained unprecedented until recently. However, within the last few years, the ability of gold complexes to undergo these fundamental reactions has been unambiguously demonstrated, and the reactivity of gold complexes was shown to extend well beyond π-activation. In this Review, the main achievements described in this area are presented in a historical context. Particular emphasis is set on mechanistic studies and structure determination of key intermediates. The electronic and structural parameters delineating the reactivity of gold complexes are discussed, as well as the remaining challenges. PMID:26768342

  8. New applications of Ziegler-Natta organometallic catalysts

    SciTech Connect

    Noskova, N.H.; Sokol'skii, D.V.

    1983-05-01

    The composition of Ziegler-Natta organometallic catalysts was discussed. These catalysts were found to be a set of definite complexes, including a polynuclear cluster complex, in dynamic equilibrium with each other. New applications were found for Ziegler-Natta catalysts, specifically, use for the mild activation of alkanes, reduction of carbon monoxide, and positional isomerization of unconjugated dienes into conjugated analogs which are promising in metal complex catalysis.

  9. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    SciTech Connect

    Cahoon, James Francis

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  10. Configurationally Stable, Enantioenriched Organometallic Nucleophiles in Stereospecific Pd-Catalyzed Cross-Coupling Reactions: An Alternative Approach to Asymmetric Synthesis

    PubMed Central

    Wang, Chao-Yuan; Derosaa, Joseph

    2015-01-01

    Several research groups have recently developed methods to employ configurationally stable, enantioenriched organometallic nucleophiles in stereospecific Pd-catalyzed cross-coupling reactions. By establishing the absolute configuration of a chiral alkyltin or alkylboron nucleophile prior to its use in cross-coupling reactions, new stereogenic centers may be rapidly and reliably generated with preservation of the known initial stereochemistry. While this area of research is still in its infancy, such stereospecific cross-coupling reactions may emerge as simple, general methods to access diverse, optically active products from common enantioenriched organometallic building blocks. This minireview highlights recent progress towards the development of general, stereospecific Pd-catalyzed cross-coupling reactions using configurationally stable organometallic nucleophiles. PMID:26388985

  11. Group 9 organometallic compounds for therapeutic and bioanalytical applications.

    PubMed

    Ma, Dik-Lung; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2014-12-16

    CONSPECTUS: Compared with organic small molecules, metal complexes offer several distinct advantages as therapeutic agents or biomolecular probes. Carbon atoms are typically limited to linear, trigonal planar, or tetrahedral geometries, with a maximum of two enantiomers being formed if four different substituents are attached to a single carbon. In contrast, an octahedral metal center with six different substituents can display up to 30 different stereoisomers. While platinum- and ruthenium-based anticancer agents have attracted significant attention in the realm of inorganic medicinal chemistry over the past few decades, group 9 complexes (i.e., iridium and rhodium) have garnered increased attention in therapeutic and bioanalytical applications due to their adjustable reactivity (from kinetically liable to substitutionally inert), high water solubility, stability to air and moisture, and relative ease of synthesis. In this Account, we describe our efforts in the development of group 9 organometallic compounds of general form [M(C(∧)N)2(N(∧)N)] (where M = Ir, Rh) as therapeutic agents against distinct biomolecular targets and as luminescent probes for the construction of oligonucleotide-based assays for a diverse range of analytes. Earlier studies by researchers had focused on organometallic iridium(III) and rhodium(III) half-sandwich complexes that show promising anticancer activity, although their precise mechanisms of action still remain unknown. More recently, kinetically-inert group 9 complexes have arisen as fascinating alternatives to organic small molecules for the specific targeting of enzyme activity. Research in our laboratory has shown that cyclometalated octahedral rhodium(III) complexes were active against Janus kinase 2 (JAK2) or NEDD8-activating enzyme (NAE) activity, or against NO production leading to antivasculogenic activity in cellulo. At the same time, recent interest in the development of small molecules as modulators of protein

  12. Distinctive Reaction Pathways at Base Metals in High-Spin Organometallic Catalysts.

    PubMed

    Holland, Patrick L

    2015-06-16

    Inexpensive "base" metals are more affordable and sustainable than precious metals and also offer opportunities to discover new mechanisms for selective catalytic reactions. Base metal complexes can have high-spin electronic configurations that are rare in precious metal complexes. This Account describes some concepts relevant to high-spin organometallic complexes, focusing on our recent work with β-diketiminate complexes of iron and cobalt. Even though high-spin organometallic complexes have some unfamiliar spectroscopic properties, they can be studied using NMR spectroscopy as well as techniques that focus on the magnetism brought about by the unpaired electrons. Understanding the mechanisms of reactions using these complexes can be complicated, because complexes with a high-spin electronic configuration may need to change spin states to avoid high barriers for reaction. These spin-state changes can be rapid, and the ability of an excited spin state to "cut through" the barrier for a reaction can lead to spin acceleration. These concepts, originally developed by Poli, Shaik, Schwarz, and Harvey, are applied here to the fundamental organometallic reaction of β-hydride elimination (BHE). Experimentally validated density-functional calculations show spin acceleration in BHE using three-coordinate iron(II) and cobalt(II) complexes. A square-planar transition state is particularly beneficial for accelerating BHE when a high-spin iron(II) complex goes from an S = 2 ground state to an S = 1 transition state or when a high-spin cobalt(II) complex goes from an S = 3/2 ground state to an S = 1/2 transition state. The relative energies of the spin states can be controlled with the choice of the supporting ligand. Using an appropriate ligand, isomerization of 1-alkenes to their Z-2 isomers can be catalyzed in high yields using the cobalt(II) alkyl complexes as catalysts. Though an earlier paper attributed the regioselectivity and stereoselectivity to the preferred geometry

  13. [Development of new synthetic method using organometallic complexes and an application toward natural product synthesis].

    PubMed

    Mori, Miwako

    2005-01-01

    Recently, many organometallic complexes, such as palladium, nickel, ruthenium, titanium complexes and others, were used for synthetic organic chemistry. We have developed many novel synthetic methods using these organometallic complexes for synthetic organic chemistry. As the organometallic complexes, nickel, chromium, molybdenum, ruthenium, zirconium, titanium, and palladium complexes, were used. Furthermore, bimetallic complexes having silicon-tin and silicon-zirconium bonds were investigated. On the other hand, utilization of gases in synthetic organic chemistry has been also developed. 1 atm pressure of gases such as CO, CO(2), N(2), ethylene and acetylene, could be used and the reaction procedure is very simple, that a balloon filled with a gas is connected on the top of the flask. Using our novel synthetic methods, we have synthesized many natural products and biologically active substances, such as cephalotaxin, mesembrine, tubifoline, strychnine, stemoamide, lycopodine, pumiliotoxin C, beta-lactam, carbapenam and benzodiazepinone derivatives. PMID:15635281

  14. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  15. Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry[**

    PubMed Central

    Renny, Joseph S.; Tomasevich, Laura L.; Tallmadge, Evan H.; Collum, David B.

    2014-01-01

    Applications of the method of continuous variations—MCV or the Method of Job—to problems of interest to organometallic chemists are described. MCV provides qualitative and quantitative insights into the stoichiometries underlying association of m molecules of A and n molecules of B to form AmBn. Applications to complex ensembles probe associations that form metal clusters and aggregates. Job plots in which reaction rates are monitored provide relative stoichiometries in rate-limiting transition structures. In a specialized variant, ligand- or solvent-dependent reaction rates are dissected into contributions in both the ground states and transition states, which affords insights into the full reaction coordinate from a single Job plot. Gaps in the literature are identified and critiqued. PMID:24166797

  16. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    PubMed

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems. PMID:25310385

  17. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    SciTech Connect

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  18. NEW APPLICATIONS OF LC-MS AND LC-MS2 TOWARD UNDERSTANDING THE ENVIRONMENTAL FATE OF ORGANOMETALLICS

    EPA Science Inventory

    Over the last 40 years, many organometallic compounds have been synthesized and used in a variety of consumer, agricultural, and industrial products. Including wastewater effluents, leaching, and direct land and water applications, there are many pathways that can disperse organo...

  19. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Wu, Yung-Chien; McElwee-White, Lisa; Howard Fairbrother, D.

    2014-12-01

    Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit's properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF3, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures.

  20. Reaction of Glyconitriles with Organometallic Reagents: Access to Acyl β-C-Glycosides.

    PubMed

    Guisot, Nicolas E S; Ella Obame, Idriss; Ireddy, Prathap; Nourry, Arnaud; Saluzzo, Christine; Dujardin, Gilles; Dubreuil, Didier; Pipelier, Muriel; Guillarme, Stéphane

    2016-03-18

    A new strategy for the synthesis of acyl β-C-glycosides is described. The reactivity of glyconitriles toward organometallic reagents such as organomagnesium or organolithium derivatives was studied, affording acyl β-C-glycosides in moderate to good yields. In this study, glycal formation was efficiently prevented by deprotonating the hydroxyl group in position 2 of the glyconitriles during the process. PMID:26926714

  1. Coordination Chemistry of [Co(acac)2 ] with N-Doped Graphene: Implications for Oxygen Reduction Reaction Reactivity of Organometallic Co-O4 -N Species.

    PubMed

    Han, Jongwoo; Sa, Young Jin; Shim, Yeonjun; Choi, Min; Park, Noejung; Joo, Sang Hoon; Park, Sungjin

    2015-10-19

    Hybridization of organometallic complexes with graphene-based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [Co(II) (acac)2 ] (acac=acetylacetonate), with N-doped graphene-based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt-containing species is coordinated to heterocyclic groups in N-doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co-O4 -N structure. PMID:26331625

  2. Thermodynamic Properties of Organometallic Dihydrogen Complexes for Hydrogen Storage Applications

    NASA Astrophysics Data System (ADS)

    Abrecht, David Gregory

    appropriate ranges for hydrogen storage applications. Simulated thermodynamic values for Fe complexes were found to significantly underestimate experimental behavior, demonstrating the importance of the magnetic spin state of the molecule to hydrogen binding properties.

  3. Practical, Scalable, High-Throughput Approaches to η3-Pyranyl and η3-Pyridinyl Organometallic Enantiomeric Scaffolds Using the Achmatowicz Reaction

    PubMed Central

    Coombs, Thomas C.; Lee, Maurice D.; Wong, Heilam; Armstrong, Matthew; Cheng, Bo; Chen, Wenyong; Moretto, Alessandro F.; Liebeskind, Lanny S.

    2009-01-01

    A unified strategy for the high throughput synthesis of multigram quantities of the η3-oxopyranyl- and η3-oxopyridinylmolybdenum complexes TpMo(CO)2(η3-oxopyranyl) and TpMo(CO)2(η3-oxopyridinyl) is described (Tp = hydridotrispyrazolylborato). The strategy uses the oxa- and aza-Achmatowicz reaction for the preparation of these organometallic enantiomeric scaffolds, in both racemic and high enantiopurity versions. PMID:18171075

  4. Effects of Reaction Conditions on the Properties of Spherical Silver Powders Synthesized by Reduction of an Organometallic Compound

    NASA Astrophysics Data System (ADS)

    Chiang, Ying-Jung; Wang, Sea-Fue; Lu, Chun-An; Lin, Hong-Ching

    2014-09-01

    Silver powders were synthesized by reducing a silver organometallic compound, silver 2-ethylhexanoate, with di- n-octylamine. The effects of preparation conditions on the characteristics of the powders were investigated. Silver powders prepared from silver 2-ethylhexanoate and di- n-octylamine in the ratio 2:1 (MA21) at 150°C for 3 h had the best characteristics (average particle size 277 nm, narrow particle-size distribution, high tap density of 4.0 g/cm3), and were also obtained in high yield (98%). Use of an excessive amount of di- n-octylamine resulted in intense thermolysis and a low yield of silver powders of irregular morphology with a wide particle-size distribution. As the proportion of silver 2-ethylhexanoate was increased, the silver powders obtained had a bimodal particle-size distribution and a relatively low tap density. Silver films seemed to have high resistivity when the temperature used for synthesis of the silver powders was too low or reaction time was insufficient. The electrical resistivities of silver films prepared from MA21 powders and sintered at 300°C and 500°C for 30 min were 3.8 × 10-6 Ω cm and 2.3 × 10-6 Ω cm, respectively, close to that of bulk silver.

  5. Organometallic derivatives of furan. LX. Reactions of di-2-furyldimethylgermane under catalytic-hydrogenation conditions

    SciTech Connect

    Lukevits, E.; Ignatovich, L.M.; Yuskovets, Zh.G.; Golender, L.O.; Shimanskaya, M.V.

    1987-11-20

    In the reaction of di-2-furyldimethylgermane with hydrogen in the presence of the homogeneous metal-complex catalyst RhH(CO)(PPh/sub 3/)/sub 3/ the selective hydrogenation of one of the furan rings occurs, but over heterogeneous catalysts (Raney Ni, Rh black, Pd/C) hydrogenation and hydrogenolysis reactions occur. Di-2-furyldimethylgermane is converted into (2-furyl)dimethyl(tetrahydro-2-furyl)-germane by the catalytic transfer of hydrogen from 2-propanol and cyclohexene. On the basis of the kinetic relations and quantum-chemical calculations of the electron structures of the original and partially hydrogenated furylgermanes a stagewise scheme is proposed of the hydrogenation of the furan ring and the further hydrogenolysis of the semihydrogenated germane molecule.

  6. Application of Organometallic Catalysis to the Commercial Production of L-DOPA.

    ERIC Educational Resources Information Center

    Knowles, W. S.

    1986-01-01

    Shows how asymmetric organometallic catalysts can be used to make complex organic molecules with extremely high enantioselectivity. The molecule considered is l-3, 4-dihydroxyphenylalanine (L-DOPA), an amino acid which was found to be effective in the treatment of Parkinson's disease. (JN)

  7. Organometallic Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Alberto, Roger

    Although molecular imaging agents have to be synthesized ultimately from aqueous solutions, organometallic complexes are becoming more and more important as flexible yet kinetically stable building blocks for radiopharmaceutical drug discovery. The diversity of ligands, targets, and targeting molecules related to these complexes is an essential base for finding novel, noninvasive imaging agents to diagnose and eventually treat widespread diseases such as cancer. This review article covers the most important findings toward these objectives accomplished during the past 3-4 years. The two major available organometallic building blocks will be discussed in the beginning together with constraints for market introduction as imposed by science and industry. Since targeting radiopharmaceuticals are a major focus of current research in molecular imaging, attempts toward so-called technetium essential radiopharmaceuticals will be briefly touched in the beginning followed by the main discussion about the labeling of targeting molecules such as folic acid, nucleosides, vitamins, carbohydrates, and fatty acids. At the end, some new strategies for drug discovery will be introduced together with results from organometallic chemistry in water. The majority of the new results have been achieved with the [99mTc(OH2)3(CO)3]+ complex which will, though not exclusively, be a focus of this review.

  8. A new approach to carbon-carbon bond formation: Development of aerobic Pd-catalyzed reductive coupling reactions of organometallic reagents and styrenes

    PubMed Central

    Gligorich, Keith M.; Iwai, Yasumasa; Cummings, Sarah A.; Sigman, Matthew S.

    2009-01-01

    Alkenes are attractive starting materials for organic synthesis and the development of new selective functionalization reactions are desired. Previously, our laboratory discovered a unique Pd-catalyzed hydroalkoxylation reaction of styrenes containing a phenol. Based upon deuterium labeling experiments, a mechanism involving an aerobic alcohol oxidation coupled to alkene functionalization was proposed. These results inspired the development of a new Pd-catalyzed reductive coupling reaction of alkenes and organometallic reagents that generates a new carbon-carbon bond. Optimization of the conditions for the coupling of both organostannanes and organoboronic esters is described and the initial scope of the transformation is presented. Additionally, several mechanistic experiments are outlined and support the rationale for the development of the reaction based upon coupling alcohol oxidation to alkene functionalization. PMID:20161306

  9. Synthesis and characterization of azo-containing organometallic thin films for all optical switching applications

    NASA Astrophysics Data System (ADS)

    Gatri, R.; Fillaut, J.-L.; Mysliwiec, J.; Szukalski, A.; Bartkiewicz, S.; El-Ouazzani, H.; Guezguez, I.; Khammar, F.; Sahraoui, B.

    2012-05-01

    Novel photoresponsive materials based on azo-containing bifunctional ruthenium-acetylides have been synthesized. All optical switching based on the Optical Kerr Effect in the organometallic thin films based on ruthenium(II) acetylides containing an azobenzene moiety as a photochromic unit in the main pi-conjugated system dispersed in a poly(methyl methacrylate) matrix has been observed. The excitation beam was delivered from a picosecond laser at wavelength 532 nm while dynamics of induced sample birefringence was probed by a non-absorbed linearly polarized beam of cw He-Ne laser (632.8 nm). The influence of ruthenium part on dynamics of molecular motions has been shown.

  10. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  11. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  12. Design and synthesis of novel organometallic dyes for NiO sensitization and photo-electrochemical applications.

    PubMed

    Massin, Julien; Lyu, Siliu; Pavone, Michele; Muñoz-García, Ana B; Kauffmann, Brice; Toupance, Thierry; Chavarot-Kerlidou, Murielle; Artero, Vincent; Olivier, Céline

    2016-08-01

    Two metallo-organic dyes were synthesized and used for NiO sensitization in view of their photoelectrochemical applications. The new dyes present an original π-conjugated structure containing the [Ru(dppe)2] metal fragment with a highly delocalized allenylidene ligand on one side and a σ-alkynyl ligand bearing an electron-rich group, i.e. a thiophene or triphenylamine unit, and one or two anchoring functions on the other side. The optoelectronic, electrochemical and photoelectrochemical properties of the dyes were systematically investigated. A broad photoresponse was observed with the absorption maximum at 600 nm. The X-ray crystal structure of one precursor was obtained to elucidate the structural conformation of the organometallic complexes and theoretical calculations were performed in order to address the photophysical properties of the new dyes. These photosensitizers were further implemented in NiO-based photocathodes and tested as photocurrent generators under pertinent aqueous conditions in association with [Co(NH3)5Cl]Cl2 as an irreversible electron acceptor. The dye-sensitized photocathodes provided good photocurrent densities (40 to 60 μA cm(-2)) at neutral pH in phosphate buffer and a high stability was observed for the two dyes. PMID:27436175

  13. Advanced polymer chemistry of organometallic anions

    SciTech Connect

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-11-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes.

  14. Mechanistic study of copper-catalyzed aerobic oxidative coupling of arylboronic esters and methanol: insights into an organometallic oxidase reaction.

    PubMed

    King, Amanda E; Brunold, Thomas C; Stahl, Shannon S

    2009-04-15

    Copper-catalyzed aerobic oxidative coupling of arylboronic acid derivatives and heteroatom nucleophiles is a highly useful method for the formation of aryl-heteroatom bonds. Mechanistic studies reveal that this reaction proceeds via an "oxidase"-style mechanism. Kinetic and spectroscopic studies establish that transmetalation of the aryl group from boron to Cu(II) is the turnover-limiting step and reoxidation of the reduced catalyst by O(2) is rapid. Further mechanistic analysis implicates the involvement of an aryl-copper(III) intermediate that undergoes facile C-O bond formation. PMID:19309072

  15. High-valent organometallic copper and palladium in catalysis.

    PubMed

    Hickman, Amanda J; Sanford, Melanie S

    2012-04-12

    Copper and palladium catalysts are critically important in numerous commercial chemical processes. Improvements in the activity, selectivity and scope of these catalysts could drastically reduce the environmental impact, and increase the sustainability, of chemical reactions. One rapidly developing strategy for achieving these goals is to use 'high-valent' organometallic copper and palladium intermediates in catalysis. Here we describe recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations. PMID:22498623

  16. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  17. Selectivity in the Addition Reactions of Organometallic Reagents to Aziridine-2-carboxaldehydes: The Effects of Protecting Groups and Substitution Patterns

    PubMed Central

    Kulshrestha, Aman; Schomaker, Jennifer M.; Holmes, Daniel; Staples, Richard J.; Jackson, James E.; Borhan, Babak

    2014-01-01

    Good to excellent stereo-selectivity has been found in the addition reactions of Grignard and organo-zinc reagents to N-protected aziridine-2-carboxaldehydes. Specifically, high syn selectivity was obtained with benzyl-protected cis, tert-butyloxycar-bonyl-protected trans, and tosyl-pro-tected 2,3-disubstituted aziridine-2-car-boxaldehydes. Furthermore, rate and selectivity effects of ring substituents, temperature, solvent, and Lewis acid and base modifiers were studied. The diastereomeric preference of addition is dominated by the substrate aziri-dines’ substitution pattern and especially the electronic character and conformational preferences of the nitrogen protecting groups. To help rationalize the observed stereochemical outcomes, conformational and electronic structural analyses of a series of model systems representing the various substitution patterns have been explored by density functional calculations at the B3LYP/6–31G* level of theory with the SM8 solvation model to account for solvent effects. PMID:21928447

  18. Organometallic dimers: application to work-function reduction of conducting oxides.

    PubMed

    Giordano, Anthony J; Pulvirenti, Federico; Khan, Talha M; Fuentes-Hernandez, Canek; Moudgil, Karttikay; Delcamp, Jared H; Kippelen, Bernard; Barlow, Stephen; Marder, Seth R

    2015-02-25

    The dimers of pentamethyliridocene and ruthenium pentamethylcyclopentadienyl mesitylene, (IrCp*Cp)2 and (RuCp*mes)2, respectively, are shown here to be effective solution-processable reagents for lowering the work functions of electrode materials; this approach is compared to the use of solution-deposited films of ethoxylated poly(ethylenimine) (PEIE). The work functions of indium tin oxide (ITO), zinc oxide, and gold electrodes can be reduced to 3.3-3.4 eV by immersion in a toluene solution of (IrCp*Cp)2; these values are similar to those that can be obtained by spin-coating a thin layer of PEIE onto the electrodes. The work-function reductions achieved using (IrCp*Cp)2 are primarily attributable to the interface dipoles associated with the formation of submonolayers of IrCp*Cp(+) cations on negatively charged substrates, which in turn result from redox reactions between the dimer and the electrode. The electrical properties of C60 diodes with dimer-modified ITO cathodes are similar to those of analogous devices with PEIE-modified ITO cathodes. PMID:25685873

  19. Nuclear Reactions for Astrophysics and Other Applications

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  20. Advances in organometallic synthesis with mechanochemical methods.

    PubMed

    Rightmire, Nicholas R; Hanusa, Timothy P

    2016-02-14

    Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations. PMID:26763151

  1. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    PubMed

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  2. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-12-31

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  3. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-01-01

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  4. Five-membered metallacycles of titanium and zirconium--attractive compounds for organometallic chemistry and catalysis.

    PubMed

    Rosenthal, Uwe; Burlakov, Vladimir V; Bach, Marc A; Beweries, Torsten

    2007-05-01

    In these days a renaissance of metallacycles as an increasingly important class of organometallic compounds for synthetic and catalytic applications is evident, making such very attractive for a plethora of investigations. Titanocene and zirconocene bis(trimethylsilyl)acetylene complexes, regarded as three-membered metallacycles (1-metallacyclopropenes), present a rich chemistry towards unsaturated molecules. By elimination of the alkyne these complexes form by reaction with unsaturated compounds five-membered titana- and zirconacycles, all of which are relevant to stoichiometric and catalytic C-C coupling and cleavage reactions of unsaturated molecules. PMID:17471397

  5. Organometallic chemistry of bimetallic compounds. Progress report, January 1992--July 1995

    SciTech Connect

    Casey, C.P.

    1994-07-01

    Four main projects at the interface between organometallic chemistry and homogeneous catalysis were pursued. All were designed to give increased understanding of the mechanisms of organometallic reactions related to homogeneous and heterogeneous catalysis. In addition, a minor study involving {eta}{sup 5}-to {eta}{sup 1}-cyclopentadienyl ring slippage in catalysis was completed.

  6. Ligand Rearrangements of Organometallic Complexes inSolution

    SciTech Connect

    Shanoski, Jennifer E.

    2006-05-08

    Many chemical reactions utilize organometallic complexes as catalysts. These complexes find use in reactions as varied as bond activation, polymerization, and isomerization. This thesis outlines the construction of a new ultrafast laser system with an emphasis on the generation of tunable mid-infrared pulses, data collection, and data analysis.

  7. 2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI)

    SciTech Connect

    Dr. Emilio Bunel

    2011-07-15

    Organometallic chemistry has played and will continue to play a significant role in helping us understand the way bonds are made or broken in the presence of a transition metal complex. Current challenges range from the efficient exploitation of energy resources to the creative use of natural and artificial enzymes. Most of the new advances in the area are due to our extended understanding of processes at a molecular level due to new mechanistic studies, techniques to detect reaction intermediates and theory. The conference will bring the most recent advances in the field including nanocatalysis, surface organometallic chemistry, characterization techniques, new chemical reactivity and theoretical approaches along with applications to organic synthesis and the discovery of new materials. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Six outstanding posters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. Graduate students and postdoctoral fellows should also consider participating in the Gordon Research Seminar on Organometallic Chemistry (July 9-10, same location) which is specially designed to promote interaction and discussion between junior scientists.

  8. 2012 ORGANOMETALLIC CHEMISTRY GRC/GRS, JULY 7-13, 2012

    SciTech Connect

    Hillhouse, Gregory

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  9. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  10. Photochemical reaction dynamics

    SciTech Connect

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  11. Organometallic Chemistry. Final Progress Report

    SciTech Connect

    2003-07-14

    The Gordon Research Conference (GRC) on Organometallic Chemistry was held at Salve Regina, Newport, Rhode Island, 7/21-26/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  12. Organometallics Roundtable 2011

    SciTech Connect

    Gladysz, John A.; Ball, Zachary T.; Bertrand, Guy; Blum, Suzanne A.; Dong, Vy M.; Dorta, Reto; Hahn, F. Ekkehardt; Humphrey, Mark; Jones, William D.; Klosin, Jerzy; Manners, Ian; Marks, Tobin J.; Mayer, James M.; Rieger, Bernhard; Ritter, Joachim C.; Sattelberger, Alfred P.; Schomaker, Jennifer M.; Wing-Wah Yam, Vivian

    2012-01-09

    We are living in an era of unprecedented change in academic, industrial, and government-based research worldwide, and navigating these rough waters requires "all hands on deck". Toward this end, Organometallics has assembled a panel of seventeen experts who share their thoughts on a variety of matters of importance to our field. In constituting this panel, an attempt was made to secure representation from a number of countries and career stages, as well as from industry. We were fortunate that so many busy experts could take the time to spend with us. The following pages constitute an edited transcript of the panel discussion held on August 29, 2011, which was structured around the 10 questions summarized in the side bar and repeated below.

  13. Molecular dynamics simulation of organometallic reaction dynamics, and, Enhancing achievement in chemistry for African American students through innovations in pedagogy aligned with supporting assessment and curriculum and integrated under an alternative research paradigm

    NASA Astrophysics Data System (ADS)

    Mebane, Sheryl Dee

    Part I. Molecular dynamics simulation of organometallic reaction dynamics. To study the interplay of solute and solvent dynamics, large-scale molecular dynamics simulations were employed. Lennard-Jones and electrostatic models of potential energies from solvent-only studies were combined with solute potentials generated from ab-initio calculations. Radial distribution functions and other measures revealed the polar solvent's response to solute dynamics following CO dissociation. In future studies, the time-scale for solvent coordination will be confirmed with ultrafast spectroscopy data. Part II. Enhancing achievement in chemistry for African American students through innovations in pedagogy aligned with supporting assessment and curriculum and integrated under an alternative research paradigm. Much progress has been made in the area of research in education that focuses on teaching and learning in science. Much effort has also centered on documenting and exploring the disparity in academic achievement between underrepresented minority students and students comprising a majority in academic circles. However, few research projects have probed educational inequities in the context of mainstream science education. In order to enrich this research area and to better reach underserved learning communities, the educational experience of African American students in an ethnically and academically diverse high school science class has been examined throughout one, largely successful, academic year. The bulk of data gathered during the study was obtained through several qualitative research methods and was interpreted using research literature that offered fresh theoretical perspectives on equity that may better support effective action.

  14. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.

    PubMed

    Geiger, William E; Barrière, Frédéric

    2010-07-20

    Electrochemistry is a powerful tool for the study of oxidative electron-transfer reactions (anodic processes). Since the 1960s, the electrolytes of choice for nonaqueous electrochemistry were relatively small (heptaatomic or smaller) inorganic anions, such as perchlorate, tetrafluoroborate, or hexafluorophosphate. Owing to the similar size-to-charge ratios of these "traditional" anions, structural alterations of the electrolyte anion are not particularly valuable in effecting changes in the corresponding redox reactions. Systematic variations of supporting electrolytes were largely restricted to cathodic processes, in which interactions of anions produced in the reactions are altered by changes in electrolyte cations. A typical ladder involves going from a weakly ion-pairing tetraalkylammonium cation, [N(C(n)H(2n+1))(4)](+), with n > or = 4, to more strongly ion-pairing counterparts with n < 4, and culminating in very strongly ion-pairing alkali metal ions. A new generation of supporting electrolyte salts that incorporate a weakly coordinating anion (WCA) expands anodic applications by providing a dramatically different medium in which to generate positively charged electrolysis products. A chain of electrolyte anions is now available for the control of anodic reactions, beginning with weakly ion-pairing WCAs, progressing through the traditional anions, and culminating in halide ions. Although the electrochemical properties of a number of different WCAs have been reported, the most systematic work involves fluoro- or trifluoromethyl-substituted tetraphenylborate anions (fluoroarylborate anions). In this Account, we focus on tetrakis(perfluorophenyl)borate, [B(C(6)F(5))(4)](-), which has a significantly more positive anodic window than tetrakis[(3,5-bis(trifluoromethyl)phenyl)]borate, [BArF(24)](-), making it suitable in a larger range of anodic oxidations. These WCAs also have a characteristic of specific importance to organometallic redox processes. Many electron

  15. Overcoming the "oxidant problem": strategies to use O2 as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu).

    PubMed

    Campbell, Alison N; Stahl, Shannon S

    2012-06-19

    Oxidation reactions are key transformations in organic chemistry because they can increase chemical complexity and incorporate heteroatom substituents into carbon-based molecules. This principle is manifested in the conversion of petrochemical feedstocks into commodity chemicals and in the synthesis of fine chemicals, pharmaceuticals, and other complex organic molecules. The utility and function of these molecules correlate directly with the presence and specific placement of oxygen and nitrogen heteroatoms and other functional groups within the molecules. Methods for selective oxidation of C-H bonds have expanded significantly over the past decade, and their role in the synthesis of organic chemicals will continue to increase. Our group's contributions to this field are linked to our broader interest in the development and mechanistic understanding of aerobic oxidation reactions. Molecular oxygen (O(2)) is the ideal oxidant. Its low cost and lack of toxic byproducts make it a highly appealing reagent that can address key "green chemistry" priorities in industry. With strong economic and environmental incentives to use O(2), the commmodity chemicals industry often uses aerobic oxidation reactions. In contrast, O(2) is seldom used to prepare more-complex smaller-volume chemicals, a limitation that reflects, in part, the limited synthetic scope and utility of existing aerobic reactions. Pd-catalyzed reactions represent some of the most versatile methods for selective C-H oxidation, but they often require stoichiometric transition-metal or organic oxidants, such as Cu(II), Ag(I), or benzoquinone. This Account describes recent strategies that we have identified to use O(2) as the oxidant in these reactions. In Pd-catalyzed C-H oxidation reactions that form carbon-heteroatom bonds, the stoichiometric oxidant is often needed to promote difficult reductive elimination steps in the catalytic mechanism. To address this challenge, we have identified new ancillary ligands for

  16. Molecular switches in carbon-rich organometallic compounds: Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Costuas, Karine

    2015-01-01

    Organometallic complexes associated with an appropriate choice of ancillary ligands reveal to have a wide range of physical properties leading to promising applications when incorporated in nano-size devices. The challenge is to design innovative multifunctional compounds based on redox active carbon-rich organometallics associated with spin carriers and/or photochromic units. A multidisciplinary approach in this area has proved to be efficient in a series a systems combining carbon-rich bridging ligands and redox metallic moieties. In this domain, the role of theoretical investigations based on quantum mechanics tools have a crucial role in rationalizing and in helping designing systems possessing target properties.

  17. Molecular switches in carbon-rich organometallic compounds: Theoretical aspects

    SciTech Connect

    Costuas, Karine

    2015-01-22

    Organometallic complexes associated with an appropriate choice of ancillary ligands reveal to have a wide range of physical properties leading to promising applications when incorporated in nano-size devices. The challenge is to design innovative multifunctional compounds based on redox active carbon-rich organometallics associated with spin carriers and/or photochromic units. A multidisciplinary approach in this area has proved to be efficient in a series a systems combining carbon-rich bridging ligands and redox metallic moieties. In this domain, the role of theoretical investigations based on quantum mechanics tools have a crucial role in rationalizing and in helping designing systems possessing target properties.

  18. Synthesis and properties of novel, electroactive organometallic polymers

    SciTech Connect

    Not Available

    1987-01-01

    The object of this research is to synthesize a number of organometallic polymers based on 1,8-dimetallocenylnaphthalene (1) as a monomeric structural unit, and to examine the physical properties of these substances, especially their electrical conductance. In such polymers contiguous metallocene units are held face-to-face in a columnar array, so that conduction, in the partially oxidized material can in principal be achieved through {pi}-orbital interaction of neighboring metallocene units. The author has shown that low molecular weight polymers, based on 1 (M=Fe or Ru) can be prepared by palladium catalyzed coupling of ferrocenylzinc halides with 1,8-diiodonaphthalene, and now propose to define reaction conditions for the preparation of much higher molecular weight polymers. The synthesis of analogous polymers incorporating cobalt and nickel, through the use of cobaltocene and nickelocene in the coupling reaction, will also be examined. Other mixed metal polymeric systems, in which two transition metals alternate along the chain, may be preparable from 1,8-bis(cyclopentadienyl)naphthalene 3, recently synthesized in our laboratories. The preparation of 3 should also provide and opportunity for the synthesis of unique polymeric systems based on linear dimeric, trigonal trimeric and tetrahedral tetrameric cyclopentadienylmetal complexes. These syntheses will be examined. Finally, the application of the coupling-polymerization reaction to 1,4-dihalobenzenes will also be examined. 34 refs., 3 figs.

  19. A One-Pot Self-Assembly Reaction to Prepare a Supramolecular Palladium(II) Cyclometalated Complex: An Undergraduate Organometallic Laboratory Experiment

    ERIC Educational Resources Information Center

    Fernandez, Alberto; Lopez-Torres, Margarita; Fernandez, Jesus J.; Vazquez-Garcia, Digna; Vila, Jose M.

    2012-01-01

    A laboratory experiment for students in advanced inorganic chemistry is described. Students prepare palladium(II) cyclometalated complexes. A terdentate [C,N,O] Schiff base ligand is doubly deprotonated upon reaction with palladium(II) acetate in a self-assembly process to give a palladacycle with a characteristic tetranuclear structure. This…

  20. π-Conjugated Organometallic Isoindigo Oligomer and Polymer Chromophores: Singlet and Triplet Excited State Dynamics and Application in Polymer Solar Cells.

    PubMed

    Goswami, Subhadip; Gish, Melissa K; Wang, Jiliang; Winkel, Russell W; Papanikolas, John M; Schanze, Kirk S

    2015-12-01

    An isoindigo based π-conjugated oligomer and polymer that contain cyclometalated platinum(II) "auxochrome" units were subjected to photophysical characterization, and application of the polymer in bulk heterojunction polymer solar cells with PCBM acceptor was examined. The objective of the study was to explore the effect of the heavy metal centers on the excited state properties, in particular, intersystem crossing to a triplet (exciton) state, and further how this would influence the performance of the organometallic polymer in solar cells. The materials were characterized by electrochemistry, ground state absorption, emission, and picosecond-nanosecond transient absorption spectroscopy. Electrochemical measurements indicate that the cyclometalated units have a significant impact on the HOMO energy level of the chromophores, but little effect on the LUMO, which is consistent with localization of the LUMO on the isoindigo acceptor unit. Picosecond-nanosecond transient absorption spectroscopy reveals a transient with ∼100 ns lifetime that is assigned to a triplet excited state that is produced by intersystem crossing from a singlet state on a time scale of ∼130 ps. This is the first time that a triplet state has been observed for isoindigo π-conjugated chromophores. The performance of the polymer in bulk heterojunction solar cells was explored with PC61BM as an acceptor. The performance of the cells was optimum at a relatively high PCBM loading (1:6, polymer:PCBM), but the overall efficiency was relatively low with power conversion efficiency (PCE) of 0.22%. Atomic force microscopy of blend films reveals that the length scale of the phase separation decreases with increasing PCBM content, suggesting a reason for the increase in PCE with acceptor loading. Energetic considerations show that the triplet state in the polymer is too low in energy to undergo charge separation with PCBM. Further, due to the relatively low LUMO energy of the polymer, charge transfer

  1. ROMP Synthesis of Iron-Containing Organometallic Polymers.

    PubMed

    Dragutan, Ileana; Dragutan, Valerian; Filip, Petru; Simionescu, Bogdan C; Demonceau, Albert

    2016-01-01

    The paper overviews iron-containing polymers prepared by controlled "living" ring-opening metathesis polymerization (ROMP). Developments in the design and synthesis of this class of organometallic polymers are highlighted, pinpointing methodologies and newest trends in advanced applications of hybrid materials based on polymers functionalized with iron motifs. PMID:26861276

  2. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements. PMID:27442286

  3. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  4. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1991-01-01

    Adsorbing organometallic molecules onto the surfaces of inorganic supports such as Al{sub 2}O{sub 3}, MgCl{sub 2}, SiO{sub 2}, etc. can result in dramatic enhancements in catalytic activity. The reasons for this and the structures of the resulting surface organometallic centers are not well understood. We have addressed this problem using actinide and early transition metal complexes as model adsorbates. Characterization tools include catalytic and stoichiometric reaction chemistry, reaction kinetics and isotopic labeling, quantitative poisoning studies, model solution chemistry, and a wide array of surface-sensitive spectroscopies such as CPMAS NMR, EPR, and UV-VIS as well as titration calorimetry. These chemical and physical experiments are closely coupled to model solution chemistry to provide maximum information yield. 4 refs., 2 figs.

  5. Laser Direct Writing of Conductive Silver Film on Polyimide Surface from Decomposition of Organometallic Ink

    NASA Astrophysics Data System (ADS)

    Cai, Zhixiang; Zeng, Xiaoyan; Liu, Jianguo

    2011-03-01

    Laser direct writing of organometallic ink to manufacture silver films was investigated by using a continuous-wave, Yb-doped fiber laser beam at a wavelength of 1071 nm. The organometallic ink consisted of an organometallic silver complex and a carrier vehicle, which was prepared by reaction of silver oxide with ammonium carbamates in methanol. The organometallic silver decomposed at a laser power of 0.1 W. The electrical resistivity values of silver conductors that were fabricated at a laser power of 0.5 W were about four times that of bulk silver. The morphology and electrical properties of the silver film were observed to be controllable as a function of laser processing parameters. The fabricated silver film exhibited excellent adherence to the polyimide substrate surface according to evaluation using the peel-off testing method.

  6. Generation, Characterization, and Tunable Reactivity of Organometallic Fragments Bound to a Protein Ligand.

    PubMed

    Key, Hanna M; Clark, Douglas S; Hartwig, John F

    2015-07-01

    Organotransition metal complexes catalyze important synthetic transformations, and the development of these systems has rested on the detailed understanding of the structures and elementary reactions of discrete organometallic complexes bound to organic ligands. One strategy for the creation of new organometallic systems is to exploit the intricate and highly structured ligands found in natural metalloproteins. We report the preparation and characterization of discrete rhodium and iridium fragments bound site-specifically in a κ(2)-fashion to the protein carbonic anhydrase as a ligand. The reactions of apo human carbonic anhydrase with [Rh(nbd)2]BF4 or [M(CO)2(acac)] (M=Rh, Ir) form proteins containing Rh or Ir with organometallic ligands. A colorimetric assay was developed to quantify rapidly the metal occupancy at the native metal-binding site, and (15)N-(1)H NMR spectroscopy was used to establish the amino acids to which the metal is bound. IR spectroscopy and EXAFS revealed the presence and number of carbonyl ligands and the number total ligands, while UV-vis spectroscopy provided a signature to readily identify species that had been fully characterized. Exploiting these methods, we observed fundamental stoichiometric reactions of the artificial organometallic site of this protein, including reactions that simultaneously form and cleave metal-carbon bonds. The preparation and reactivity of these artificial organometallic proteins demonstrate the potential to study a new genre of organometallic complexes for which the rates and outcomes of organometallic reactions can be controlled by genetic manipulation of the protein scaffold. PMID:26020584

  7. Supercritical fluids: Reactions, materials and applications

    SciTech Connect

    Tumas, W.; Jacobson, G.B.; Josephsohn, N.S.; Brown, G.H.

    1999-04-09

    A number of important processes utilizing supercritical fluids have been either implemented or are emerging for extractions, separations and a wide range of cleaning applications. Supercritical fluids can be reasonable solvents yet share many of the advantages of gases including miscibility with other gases (i.e. hydrogen and oxygen), low viscosities and high diffusivities. Carbon dioxide has the further advantages of being nontoxic, nonflammable, inexpensive and currently unregulated. The use of compressed gases, either as liquids or supercritical fluids, as reaction media offers the opportunity to replace conventional hazardous solvents and also to optimize and potentially control the effect of solvent on chemical and material processing. The last several years has seen a significant growth in advances in chemical synthesis, catalytic transformations and materials synthesis and processing. The authors report on results from an exploratory program at Los Alamos National Laboratory aimed at investigating the use of dense phase fluids, particularly carbon dioxide, as reaction media for homogeneous, heterogeneous and phase-separable catalytic reactions in an effort to develop new, environmentally-friendly methods for chemical synthesis and processing. This approach offers the possibility of opening up substantially different chemical pathways, increasing selectivity at higher reaction rates, facilitating downstream separations and mitigating the need for hazardous solvents. Developing and understanding chemical and catalytic transformations in carbon dioxide could lead to greener chemistry at three levels: (1) Solvent replacement; (2) Better chemistry (e.g. higher reactivity, selectivity, less energy consumption); and (3) New chemistry (e.g. novel separations, use of COP{sub 2} as a C-1 source).

  8. Organometallic Chemistry and Catalysis in Industry.

    ERIC Educational Resources Information Center

    Parshall, George W.; Putscher, Richard E.

    1986-01-01

    Traces the growth in the industrial usage of organometallic chemistry from 1950 to 1977, pointing out that this growth involved the production of commodity chemicals. Indicates that one of the early successes of organometallic chemistry was the discovery of ethylene polymerization catalysts. (JN)

  9. Application of Polarization in Particle Reactions.

    NASA Astrophysics Data System (ADS)

    Arash, Firooz

    In this dissertation we have utilized polarization phenomena in particle reactions to study the revealing features of the reaction. First, it is shown that it is impossible to design a non-dynamical null-experiment to test the time-reversal invariant. Second, the optimal formalism representation is used to determine proton-proton elastic scattering amplitudes at 579 MeV and 800 MeV. It is shown that, despite an extensive set of data at 579 MeV, the resulting amplitudes have a four-fold ambiguity. At 800 MeV, however, we managed to obtain a unique solution. Thirdly, the polarization structure of two-body reaction in a collinear configuration is investigated, and it is demonstrated that the structure becomes much simpler than it was for the general configuration. It is shown that in a collinear reaction all observables in which only one particle is polarized vanish. The results of this study are also applicable to all models in which helicity conservation holds, since they are formally identical with collinear reactions. Fourthly, an amplitude test is conducted to search for dibaryon resonances in p-p elastic scattering and it is found that at the energies around 800 MeV there is no evidence for any singlet partial wave state resonances. There exist, however, some tantalizing subliminal evidence for ('3)F(,3) resonance. This method is also applied for pion-deutron elastic scattering to pin point the effect of a dibaryon resonance. We have also given a practical guideline to carry out a complete set of experiments toward the reconstruction of pion-deutron scattering amplitudes. Fifthly, evidence for the preeminence of one-particle-exchange mechanism is p-p elastic scattering is also examined in the 300 MeV - 6 GeV/c range. Finally, a phenomenological model is developed to explain a striking feature of p-p scattering amplitudes pertaining to the amplitudes being either purely real or purely imaginary, and having three amplitudes almost equal in magnitudes and three

  10. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  11. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  12. Mass Spectrometry Uncovers Molecular Reactivities of Coordination and Organometallic Gold(III) Drug Candidates in Competitive Experiments That Correlate with Their Biological Effects.

    PubMed

    Meier, Samuel M; Gerner, Christopher; Keppler, Bernhard K; Cinellu, Maria Agostina; Casini, Angela

    2016-05-01

    The reactivity of three cytotoxic organometallic gold(III) complexes with cyclometalated C,N,N and C,N ligands (either six- or five-membered metallacycles), as well as that of two representative gold(III) complexes with N-donor ligands, with biological nucleophiles has been studied by ESI-MS on ion trap and time-of-flight instruments. Specifically, the gold compounds were reacted with mixtures of nucleophiles containing l-histidine (imine), l-methionine (thioether), l-cysteine (thiol), l-glutamic acid (carboxylic acid), methylseleno-l-cysteine (selenoether), and in situ generated seleno-l-cysteine (selenol) to judge the preference of the gold compounds for binding to selenium-containing amino acid residues. Moreover, the gold compounds' reactivity was studied with proteins and nucleic acid building blocks. These experiments revealed profound differences between the coordination and organometallic families and even within the family of organometallics, which allowed insights to be gained into the compounds mechanisms of action. In particular, interactions with seleno-l-cysteine appear to reflect well the compounds' inhibition properties of the seleno-enzyme thioredoxin reductase and to a certain extent their antiproliferative effects in vitro. Therefore, mass spectrometry is successfully applied for linking the molecular reactivity and target preferences of metal-based drug candidates to their biological effects. Finally, this experimental setup is applicable to any other metallodrug that undergoes ligand substitution reactions and/or redox changes as part of its mechanism of action. PMID:26866307

  13. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  14. Charge exchange reactions and applications to astrophysics

    NASA Astrophysics Data System (ADS)

    Cheoun, Myung-Ki; Ha, Eunja; Kajino, T.

    2012-11-01

    Neutrino-induced reactions have been known to play important roles as the neutrino process on the nucleosynthesis in core collapsing supernovae (SNe) explosions because expected neutrino flux and energy are sufficiently high enough to excite many relevant nuclei in spite of small cross sections of the weak interaction. However, we do not have enough data for the neutrino reaction to be exploited in the network calculation. Only a sparse data in the relevant energy range is known, in specific, for 12C. Therefore we have to rely on theoretical estimation of the reaction, which has two different modes, charge current (CC) and neutral current (NC). In particular, CC reactions are closely related to charge exchange reactions (CEXRs) which are feasible in the experiment, such as, (p,n) or (n,p) reactions. These CEXRs are usually dominated by the Gamow-Teller (GT) transition in the lower energy region. In this respect, any theoretical approaches for the neutrino reaction should be investigated for the CEXR because we have and expect more useful experimental data. After confirming our models to the GT strength deduced from the CEXR, we calculated neutrino-induced reactions in the energy range below the quasielastic region for nuclei of astrophysical importance. Our calculations are carried out with the Quasi-particle Random Phase Approximation (QRPA), which successfully described the nuclear beta decays of relevant nuclei. To describe neutrino-nucleus reactions, general multipole transitions by the weak interaction are considered for CC and NC reactions. Both reactions are described in a theoretical framework. Our results are shown to well reproduce the data from CEXRs and the sparse experimental data related to the neutrino-induced reaction, and further extended for neutrino reactions on various nuclear targets. Parts of the results are reported in this talk.

  15. The direct synthesis of organic and organometallic-containing MICA-type aluminosilicates

    SciTech Connect

    Carrado, K.A.; Awaluddin, A.

    1993-08-01

    Layer-silicate clay structures can provide supramolecular organization for catalysis, chiral reactions, colloid science, and electron transfer. The authors have successfully modified the experimental preparations of several different layer silicates in order to incorporate a wide variety of organic and organometallic molecules in the clay galleries. Synthesis and physical characterization of these materials are described and compared to ion-exchanged natural clay analogs. In addition, the photophysical properties of organometallic Ru(II) complexes incorporated by direct hydrothermal crystallization into synthetic clays were measured. 3 tabs, 21 refs.

  16. Immobilization of two organometallic complexes into a single cage to construct protein-based microcompartments.

    PubMed

    Maity, Basudev; Fukumori, Kazuki; Abe, Satoshi; Ueno, Takafumi

    2016-04-01

    Natural protein-based microcompartments containing multiple enzymes promote cascade reactions within cells. We use the apo-ferritin protein cage to mimic such biocompartments by immobilizing two organometallic Ir and Pd complexes into the single protein cage. Precise locations of the metals and their accumulation mechanism were studied by X-ray crystallography. PMID:27021005

  17. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1992-02-01

    The long-range goal of this project is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. The nature of the adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecular-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  18. Application of the organic on water reactions to prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2012-10-01

    The old view that prebiotic reactions in water are hampered by the low solubility of the organic compounds in water is now being revised due to the discoveries of the reactions "on water". These reactions occur in the heterogeneous system comprising of the organic compounds and water. Unexpectedly, such reactions are extremely efficient; they often give quantitative yields, and are accelerated in the presence of water as compared to the organic solvents. These "on water" reactions are not the same as the "in water" reactions, which occur in solution, and are thus homogenous. Examples of the "on water" reactions include Diels-Alder, Claisen, Passerini and Ugi reactions, among many others. Some of these reactions are multicomponent, but give a single product. We survey a selected number of the "on water" reactions, which have a potential prebiotic applications.

  19. Oxidative hemoglobin reactions: Applications to drug metabolism.

    PubMed

    Spolitak, Tatyana; Hollenberg, Paul F; Ballou, David P

    2016-06-15

    Hb is a protein with multiple functions, acting as an O2 transport protein, and having peroxidase and oxidase activities with xenobiotics that lead to substrate radicals. However, there is a lack of evidence for intermediates involved in these reactions of Hb with redox-active compounds, including those with xenobiotics such as drugs, chemical carcinogens, and sulfides. In particular, questions exist as to what intermediates participate in reactions of either metHb or oxyHb with sulfides. The studies presented here elaborate kinetics and intermediates involved in the reactions of Hb with oxidants (H2O2 and mCPBA), and they demonstrate the formation of high valent intermediates, providing insights into mechanistic issues of sulfur and drug oxidations. Overall, we propose generalized mechanisms that include peroxidatic reactions using H2O2 generated from the autooxidation of oxyHb, with involvement of substrate radicals in reactions of Hb with oxidizable drugs such as metyrapone or 2,4-dinitrophenylhydrazine and with sulfides. We identify ferryl intermediates (with a Soret band at 407 nm) in oxidative reactions with all of the above-mentioned reactions. These spectral properties are consistent with a protonated ferryl heme, such as Cpd II or Cpd ES-like species (Spolitak et al., JIB, 2006, 100, 2034-2044). Mechanism(s) of Hb oxidative reactions are discussed. PMID:27091316

  20. Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment

    PubMed Central

    Zhao, Jiangtao; Cai, Bing; Luo, Zhenlin; Dong, Yongqi; Zhang, Yi; Xu, Han; Hong, Bin; Yang, Yuanjun; Li, Liangbin; Zhang, Wenhua; Gao, Chen

    2016-01-01

    Instability of emerging perovskite organometallic halide in humidity environment is the biggest obstacle for its potential applications in solar energy harvest and electroluminescent display. Understanding the detailed decay mechanism of these materials in moisture is a critical step towards the final appropriate solutions. As a model study presented in this work, in situ synchrotron radiation x-ray diffraction was combined with microscopy and gravimetric analysis to study the degradation process of CH3NH3PbI3 in moisture, and the results reveal that: 1) intermediate monohydrated CH3NH3PbI3·H2O is detected in the degradation process of CH3NH3PbI3 and the final decomposition products are PbI2 and aqueous CH3NH3I; 2) the aqueous CH3NH3I could hardly further decompose into volatile CH3NH2, HI or I2; 3) the moisture disintegrate CH3NH3PbI3 and then alter the distribution of the decomposition products, which leads to an incompletely-reversible reaction of CH3NH3PbI3 hydrolysis and degrades the photoelectric properties. These findings further elucidate the picture of hydrolysis process of perovskite organometallic halide in humidity environment. PMID:26924112

  1. Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment

    NASA Astrophysics Data System (ADS)

    Zhao, Jiangtao; Cai, Bing; Luo, Zhenlin; Dong, Yongqi; Zhang, Yi; Xu, Han; Hong, Bin; Yang, Yuanjun; Li, Liangbin; Zhang, Wenhua; Gao, Chen

    2016-02-01

    Instability of emerging perovskite organometallic halide in humidity environment is the biggest obstacle for its potential applications in solar energy harvest and electroluminescent display. Understanding the detailed decay mechanism of these materials in moisture is a critical step towards the final appropriate solutions. As a model study presented in this work, in situ synchrotron radiation x-ray diffraction was combined with microscopy and gravimetric analysis to study the degradation process of CH3NH3PbI3 in moisture, and the results reveal that: 1) intermediate monohydrated CH3NH3PbI3·H2O is detected in the degradation process of CH3NH3PbI3 and the final decomposition products are PbI2 and aqueous CH3NH3I; 2) the aqueous CH3NH3I could hardly further decompose into volatile CH3NH2, HI or I2; 3) the moisture disintegrate CH3NH3PbI3 and then alter the distribution of the decomposition products, which leads to an incompletely-reversible reaction of CH3NH3PbI3 hydrolysis and degrades the photoelectric properties. These findings further elucidate the picture of hydrolysis process of perovskite organometallic halide in humidity environment.

  2. Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment.

    PubMed

    Zhao, Jiangtao; Cai, Bing; Luo, Zhenlin; Dong, Yongqi; Zhang, Yi; Xu, Han; Hong, Bin; Yang, Yuanjun; Li, Liangbin; Zhang, Wenhua; Gao, Chen

    2016-01-01

    Instability of emerging perovskite organometallic halide in humidity environment is the biggest obstacle for its potential applications in solar energy harvest and electroluminescent display. Understanding the detailed decay mechanism of these materials in moisture is a critical step towards the final appropriate solutions. As a model study presented in this work, in situ synchrotron radiation x-ray diffraction was combined with microscopy and gravimetric analysis to study the degradation process of CH3NH3PbI3 in moisture, and the results reveal that: 1) intermediate monohydrated CH3NH3PbI3·H2O is detected in the degradation process of CH3NH3PbI3 and the final decomposition products are PbI2 and aqueous CH3NH3I; 2) the aqueous CH3NH3I could hardly further decompose into volatile CH3NH2, HI or I2; 3) the moisture disintegrate CH3NH3PbI3 and then alter the distribution of the decomposition products, which leads to an incompletely-reversible reaction of CH3NH3PbI3 hydrolysis and degrades the photoelectric properties. These findings further elucidate the picture of hydrolysis process of perovskite organometallic halide in humidity environment. PMID:26924112

  3. Tuning exchange interactions in organometallic semiconductors

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.

    2015-09-01

    Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.

  4. Combinatorial sythesis of organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. CVD Of Thin Films From Single Organometallic Precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Barron, Andrew R.; Power, Michael B.; Macinnes, Andrew N.; Jenkins, Phillip P.

    1996-01-01

    Method of forming thin inorganic films involves chemical vapor deposition (CVD) from single organometallic precursors. No toxic constituents, minimizes impurities, and yields films having substantially uniform crystal structure and composition. Especially suitable for depositing high-quality passivating or buffer layers of GaS on GaAs semiconductor substrates. Also applicable to formation of high-quality films for purposes other than buffering or passivation, and to different materials in which another element from same group in periodic table of elements substituted for all or portion of each element in GaS/GaAs system.

  6. Atherton–Todd reaction: mechanism, scope and applications

    PubMed Central

    Le Corre, Stéphanie S; Berchel, Mathieu; Couthon-Gourvès, Hélène; Haelters, Jean-Pierre

    2014-01-01

    Summary Initially, the Atherton–Todd (AT) reaction was applied for the synthesis of phosphoramidates by reacting dialkyl phosphite with a primary amine in the presence of carbon tetrachloride. These reaction conditions were subsequently modified with the aim to optimize them and the reaction was extended to different nucleophiles. The mechanism of this reaction led to controversial reports over the past years and is adequately discussed. We also present the scope of the AT reaction. Finally, we investigate the AT reaction by means of exemplary applications, which mainly concern three topics. First, we discuss the activation of a phenol group as a phosphate which allows for subsequent transformations such as cross coupling and reduction. Next, we examine the AT reaction applied to produce fire retardant compounds. In the last section, we investigate the use of the AT reaction for the production of compounds employed for biological applications. The selected examples to illustrate the applications of the Atherton–Todd reaction mainly cover the past 15 years. PMID:24991268

  7. Application of polarization in particle reactions

    SciTech Connect

    Arash, F.

    1986-01-01

    In this dissertation polarization phenomena in particle reactions have been used to study the revealing features of the reactions. First, it is shown that it is impossible to design a non-dynamical null-experimental to test the time-reversal invariant. Second, the optimal formalism representation is used to determine proton-proton elastic scattering amplitudes at 579 MeV and 800 MeV. Thirdly, the polarization structure of two-body reaction in a collinear configuration is investigated, and it is demonstrated that the structure becomes much simpler than it was for the general configuration. Fourthly, an amplitude test is conducted to search for dibaryon resonances in p-p elastic scattering and it is found that at the energies around 800 MeV there is no evidence for any singlet partial wave state resonances. There exist, however, some tantalizing subliminal evidence for /sup 3/F/sub 3/ resonance. This method is also applied for pion-deutron elastic scattering to pin point the effect of a dibaryon resonance. Fifthly, evidence for the preeminence of one-particle-exchange mechanism is p-p elastic scattering is also examined in the 300 MeV-6 GeV/c range. Finally, a phenomenological model is developed to explain a striking feature of p-p scattering amplitudes pertaining to the amplitudes being either purely real or purely imaginary, and having three amplitudes almost equal in magnitudes and three times smaller than one amplitude in magnitude. This feature is extended to ..pi../sup +/p and k/sup +/p elastic scattering where spin flip and spin non-flip amplitudes appear to be equal in magnitude.

  8. DFT and time-resolved IR investigation of electron transfer between photogenerated 17- and 19-electron organometallic radicals

    SciTech Connect

    Cahoon, James B.; Kling, Matthias F.; Sawyer, Karma R.; Andersen, Lars K.; Harris, Charles B.

    2008-04-30

    The photochemical disproportionation mechanism of [CpW(CO){sub 3}]{sub 2} in the presence of Lewis bases PR{sub 3} was investigated on the nano- and microsecond time-scales with Step-Scan FTIR time-resolved infrared spectroscopy. 532 nm laser excitation was used to homolytically cleave the W-W bond, forming the 17-electron radicals CpW(CO){sub 3} and initiating the reaction. With the Lewis base PPh{sub 3}, disproportionation to form the ionic products CpW(CO){sub 3}PPh{sub 3}{sup +} and CpW(CO){sub 3}{sup -} was directly monitored on the microsecond time-scale. Detailed examination of the kinetics and concentration dependence of this reaction indicates that disproportionation proceeds by electron transfer from the 19-electron species CpW(CO){sub 3}PPh{sub 3} to the 17-electron species CpW(CO){sub 3}. This result is contrary to the currently accepted disproportionation mechanism which predicts electron transfer from the 19-electron species to the dimer [CpW(CO){sub 3}]{sub 2}. With the Lewis base P(OMe){sub 3} on the other hand, ligand substitution to form the product [CpW(CO){sub 2}P(OMe){sub 3}]{sub 2} is the primary reaction on the microsecond time-scale. Density Functional Theory (DFT) calculations support the experimental results and suggest that the differences in the reactivity between P(OMe){sub 3} and PPh{sub 3} are due to steric effects. The results indicate that radical-to-radical electron transfer is a previously unknown but important process for the formation of ionic products with the organometallic dimer [CpW(CO){sub 3}]{sub 2} and may also be applicable to the entire class of organometallic dimers containing a single metal-metal bond.

  9. Development and application of bond cleavage reactions in bioorthogonal chemistry.

    PubMed

    Li, Jie; Chen, Peng R

    2016-03-01

    Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research. PMID:26881764

  10. Heavy Ion Reaction Modeling for Hadrontherapy Applications

    SciTech Connect

    Cerutti, F.; Ferrari, A.; Enghardt, W.; Gadioli, E.; Mairani, A.; Parodi, K.; Sommerer, F.

    2007-10-26

    A comprehensive and reliable description of nucleus-nucleus interactions represents a crucial need in different interdisciplinary fields. In particular, hadrontherapy monitoring by means of in-beam positron emission tomography (PET) requires, in addition to measuring, the capability of calculating the activity of {beta}{sup +}-decaying nuclei produced in the irradiated tissue. For this purpose, in view of treatment monitoring at the Heidelberg Ion Therapy (HIT) facility, the transport and interaction Monte Carlo code FLUKA is a promising candidate. It is provided with the description of heavy ion reactions at intermediate and low energies by two specific event generators. In-beam PET experiments performed at GSI for a few beam-target combinations have been simulated and first comparisons between the measured and calculated {beta}{sup +}-activity are available.

  11. Nuclear reaction modeling, verification experiments, and applications

    SciTech Connect

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  12. Organometallic chemistry meets crystal engineering to give responsive crystalline materials.

    PubMed

    Bacchi, A; Pelagatti, P

    2016-01-25

    Dynamically porous crystalline materials have been obtained by engineering organometallic molecules. This feature article deals with organometallic wheel-and-axle compounds, molecules with two relatively bulky groups (wheels) connected by a linear spacer. The wheels are represented by half-sandwich Ru(ii) moieties, while the spacer can be covalent or supramolecular in character. Covalent spacers are obtained using divergent bidentate ligands connecting two [(arene)RuX2] groups. Supramolecular spacers are instead obtained by exploiting the dimerization of COOH or C(O)NH2 groups appended to N-based ligands. A careful choice of ligand functional groups and X ligands leads to the isolation of crystalline materials with remarkable host-guest properties, evidenced by the possibility of reversibly capturing/releasing volatile guests through heterogenous solid-gas reactions. Structural correlations between the crystalline arrangement of the apohost and the host-guest compounds allow us to envisage the structural path followed by the system during the exchange processes. PMID:26673552

  13. Automated building of organometallic complexes from 3D fragments.

    PubMed

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry. PMID:24998944

  14. Community College Recruitment: An Analysis of Applicant Reactions.

    ERIC Educational Resources Information Center

    Winter, Paul A.; Kjorlien, Chad L.

    The purpose of this study was to: (1) conduct an empirical examination of applicant reactions to faculty jobs described in recruitment advertisements for business faculty vacancies at community colleges; and (2) assess factors that potentially impact applicant decisions to apply for and pursue position vacancies. The results of this study have…

  15. Noninvasive Fluid Level Sensor for Organometallic Sources

    NASA Technical Reports Server (NTRS)

    Gerdes, W.

    1986-01-01

    Two ultrasonic methods available for measuring level of organometallic liquid in stainless-steel (or other homogeneous solid) container. Methods require no disassembly or weighing of container. Commercially available ultrasonic flaw detectors, some of which have digital readouts and computer interfaces, used in techniques. Both methods used in crystal growth to determine level of liquids contained in sealed, opaque containers.

  16. Organometallic Salts Generate Optical Second Harmonics

    NASA Technical Reports Server (NTRS)

    Marder, Seth R.; Perry, Joseph W.

    1991-01-01

    Series of organometallic salts exhibit large second-order dielectric susceptibilities, as evidenced by generation of second harmonics when illuminated at visible and near-infrared wavelengths. Investigations of these and related compounds continue with view toward development of materials for use as optical second-harmonic generators, electro-optical modulators, optical switches, piezoelectric sensors, and parametric crystals.

  17. Synthesis of Some "Cobaloxime" Derivatives: A Demonstration of "Umpolung" in the Reactivity of an Organometallic Complex

    NASA Astrophysics Data System (ADS)

    Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.

    1998-04-01

    This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.

  18. Aromatic Methoxylation and Hydroxylation by Organometallic High-Valent Nickel Complexes.

    PubMed

    Zhou, Wen; Schultz, Jason W; Rath, Nigam P; Mirica, Liviu M

    2015-06-24

    Herein we report the synthesis and reactivity of several organometallic Ni(III) complexes stabilized by a modified tetradentate pyridinophane ligand containing one phenyl group. A room temperature stable dicationic Ni(III)-disolvento complex was also isolated, and the presence of two available cis coordination sites in this complex offers an opportunity to probe the C-heteroatom bond formation reactivity of high-valent Ni centers. Interestingly, the Ni(III)-dihydroxide and Ni(III)-dimethoxide species can be synthesized, and they undergo aryl methoxylation and hydroxylation that is favored by addition of oxidant, which also limits the β-hydride elimination side reaction. Overall, these results provide strong evidence for the involvement of high-valent organometallic Ni species, possibly both Ni(III) and Ni(IV) species, in oxidatively induced C-heteroatom bond formation reactions. PMID:26053329

  19. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics. PMID:26196162

  20. Pincer-Type Complexes for Catalytic (De)Hydrogenation and Transfer (De)Hydrogenation Reactions: Recent Progress.

    PubMed

    Werkmeister, Svenja; Neumann, Jacob; Junge, Kathrin; Beller, Matthias

    2015-08-24

    Pincer complexes are becoming increasingly important for organometallic chemistry and organic synthesis. Since numerous applications for such catalysts have been developed in recent decades, this Minireview covers progress in their use as catalysts for (de)hydrogenation and transfer (de)hydrogenation reactions during the last four years. Aside from noble-metal-based pincer complexes, the corresponding base metal complexes are also highlighted and their applications summarized. PMID:26179375

  1. Outer-Sphere Electrophilic Fluorination of Organometallic Complexes.

    PubMed

    Milner, Lucy M; Pridmore, Natalie E; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2015-08-26

    Organofluorine chemistry plays a key role in materials science, pharmaceuticals, agrochemicals, and medical imaging. However, the formation of new carbon-fluorine bonds with controlled regiochemistry and functional group tolerance is synthetically challenging. The use of metal complexes to promote fluorination reactions is of great current interest, but even state-of-the-art approaches are limited in their substrate scope, often require activated substrates, or do not allow access to desirable functionality, such as alkenyl C(sp(2))-F or chiral C(sp(3))-F centers. Here, we report the formation of new alkenyl and alkyl C-F bonds in the coordination sphere of ruthenium via an unprecedented outer-sphere electrophilic fluorination mechanism. The organometallic species involved are derived from nonactivated substrates (pyridine and terminal alkynes), and C-F bond formation occurs with full regio- and diastereoselectivity. The fluorinated ligands that are formed are retained at the metal, which allows subsequent metal-mediated reactivity. PMID:26270894

  2. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  3. A redox-mediated chromogenic reaction and application in immunoassay.

    PubMed

    Yu, Ru-Jia; Ma, Wei; Peng, Mao-Pan; Bai, Zhi-Shan; Long, Yi-Tao

    2016-08-31

    A novel redox-mediated chromogenic reaction was demonstrated based on the reaction between HAuCl4 and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which generate various color responses from red to green in the resulting solutions. Various redox substance could be used to mediate the reaction and trigger a distinct color response. We established a sensitive hydrogen peroxide colorimetric sensor based on the redox-mediated chromogenic reaction and depicted the application both in detection of enzyme and in an immunoassay. Combining the traditional chromogenic reagent with gold nanoparticles, our assay has the advantage in short response time (within three minutes), high sensitivity (10(-12) g mL(-1) for HBsAg) and stability. PMID:27506364

  4. Organometallic Enantiomeric Scaffolding: General Access to 2-Substituted Oxa- and Azabicyclo[3.2.1]octenes via a Brønsted Acid-catalyzed [5+2] Cycloaddition Reaction

    PubMed Central

    Garnier, Ethel C.; Liebeskind, Lanny S.

    2009-01-01

    6-Substituted TpMo(CO)2(η-2,3,4-pyranyl)- and TpMo(CO)2(η-2,3,4-pyridinyl) scaffolds (Tp = hydridotrispyrazolylborato) function as reaction partners in an efficient regio- and stereocontrolled synthesis of functionalized oxa- and azabicyclo[3.2.1]octenes through a novel Brønsted acid-catalyzed [5+2] cycloaddition reaction. Excellent exo-selectivities are obtained and the reaction gives products with complete retention of enantiomeric purity when carried out with chiral, non-racemic scaffolds. The substituent at C-6 of the η3-coordinated heterocyclic scaffold not only influences [5+2] reactivity but also plays a critical role in the demetalation step directing the reaction to only one of two possible products. PMID:18479131

  5. Synthesis of Ethers via Reaction of Carbanions and Monoperoxyacetals

    PubMed Central

    2015-01-01

    Although transfer of electrophilic alkoxyl (“RO+”) from organic peroxides to organometallics offers a complement to traditional methods for etherification, application has been limited by constraints associated with peroxide reactivity and stability. We now demonstrate that readily prepared tetrahydropyranyl monoperoxyacetals react with sp3 and sp2 organolithium and organomagnesium reagents to furnish moderate to high yields of ethers. The method is successfully applied to the synthesis of alkyl, alkenyl, aryl, heteroaryl, and cyclopropyl ethers, mixed O,O-acetals, and S,S,O-orthoesters. In contrast to reactions of dialkyl and alkyl/silyl peroxides, the displacements of monoperoxyacetals provide no evidence for alkoxy radical intermediates. At the same time, the high yields observed for transfer of primary, secondary, or tertiary alkoxides, the latter involving attack on neopentyl oxygen, are inconsistent with an SN2 mechanism. Theoretical studies suggest a mechanism involving Lewis acid promoted insertion of organometallics into the O–O bond. PMID:26560686

  6. Spallation reactions: A successful interplay between modeling and applications

    NASA Astrophysics Data System (ADS)

    David, J.-C.

    2015-06-01

    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200MeV deuterons and 400MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. In the same year, R. Serber described the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a workshop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.

  7. Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis

    PubMed Central

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-01-01

    Transition metal-catalyzed cross-coupling reactions have become one of the most utilized carbon–carbon and carbon–heteroatom bond-forming reactions in chemical synthesis. More recently, nickel catalysis has been shown to participate in a wide variety of C–C bond forming reactions, most notably Negishi, Suzuki–Miyaura, Stille, Kumada, and Hiyama couplings1,2. Despite the tremendous advances in C–C fragment couplings, the ability to forge C–O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C–O bond forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. In this manuscript, we demonstrate that visible light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon–oxygen coupling reaction using abundant alcohols and aryl bromides. More significantly, we have developed a general strategy to “switch on” important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron transfer (SET) catalysts. PMID:26266976

  8. Switching on elusive organometallic mechanisms with photoredox catalysis.

    PubMed

    Terrett, Jack A; Cuthbertson, James D; Shurtleff, Valerie W; MacMillan, David W C

    2015-08-20

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to 'switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts. PMID:26266976

  9. Switching on elusive organometallic mechanisms with photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-08-01

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to `switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  10. Organometallic chemistry: A new metathesis

    NASA Astrophysics Data System (ADS)

    Hennessy, Elisabeth T.; Jacobsen, Eric N.

    2016-08-01

    Carbonyls and alkenes, two of the most common functional groups in organic chemistry, generally do not react with one another. Now, a simple Lewis acid has been shown to catalyse metathesis between alkenes and ketones in a new carbonyl olefination reaction.

  11. Organometallic chemistry of bimetallic compounds

    SciTech Connect

    Casey, C.P.

    1991-07-01

    This report consists of six sections: heterobimetallic dihydrides, early-late transition metal heterobimetallic compounds, amphiphilic carbene complexes and hydroxycarbene complexes, diiron compounds with bridging hydrocarbon ligands, diphosphine chelates with natural bite angles near 120 degrees, and synthesis and reactions of M=M compounds. (WET)

  12. Confined Synthesis of Organometallic Chains and Macrocycles by Cu-O Surface Templating.

    PubMed

    Fan, Qitang; Dai, Jingya; Wang, Tao; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa

    2016-03-22

    The bottom-up construction of low-dimensional macromolecular nanostructures directly on a surface is a promising approach for future application in molecular electronics and integrated circuit production. However, challenges still remain in controlling the formation of these nanostructures with predetermined patterns (such as linear or cyclic) or dimensions (such as the length of one-dimensional (1D) chains). Here, we demonstrate that a high degree of structural control can be achieved by employing a Cu(110)-(2×1)O nanotemplate for the confined synthesis of organometallic chains and macrocycles. This template contains ordered arrays of alternating stripes of Cu-O chains and bare Cu, the widths of which are controllable. Using scanning tunneling microscopy and low-energy electron diffraction, we show that well-defined, ordered 1D zigzag organometallic oligomeric chains with uniform lengths can be fabricated on the Cu stripes (width >5.6 nm) of the Cu(110)-(2×1)O surface. In addition, the lengths of the meta-terphenyl (MTP)-based chains can be adjusted by controlling the widths of the Cu stripes within a certain range. When reducing the widths of Cu stripes to a range of 2.6 to 5.6 nm, organometallic macrocycles including tetramer (MTP-Cu)4, hexamer (MTP-Cu)6, and octamer (MTP-Cu)8 species are formed due to the spatial confinement effect and attraction to the Cu-O chains. An overview of all formed organometallic macrocycles on the Cu stripes with different widths reveals that the origin of the formation of these macrocycles is the cis-configured organometallic dimer (MTP)2Cu3, which was observed on the extremely narrow Cu stripe with a width of 1.5 nm. PMID:26928582

  13. Base reaction optimization of redundant manipulators for space applications

    NASA Technical Reports Server (NTRS)

    Chung, C. L.; Desa, S.; Desilva, C. W.

    1988-01-01

    One of the problems associated with redundant manipulators which were proposed for space applications is that the reactions transmitted to the base of the manipulator as a result of the motion of the manipulator will cause undesirable effects on the dynamic behavior of the supporting space structure. It is therefore necessary to minimize the magnitudes of the forces and moments transmitted to the base. It is shown that kinematic redundancy can be used to solve the dynamic problem of minimizing the magnitude of the base reactions. The methodology described is applied to a four degree-of-freedom spatial manipulator with one redundant degree-of-freedom.

  14. Catalytic bismetallative multicomponent coupling reactions: scope, applications, and mechanisms

    PubMed Central

    Cho, Hee Yeon

    2014-01-01

    Catalytic reactions have played an indispensable role in organic chemistry for the last several decades. In particular, catalytic multicomponent reactions have attracted a lot of attention due to their efficiency and expediency towards complex molecule synthesis. The presence of bismetallic reagents (e.g. B–B, Si–Si, B–Si, Si–Sn, etc.) in this process renders the products enriched with various functional groups and multiple stereocenters. For this reason, catalytic bismetallative coupling is considered an effective method to generate the functional and stereochemical complexity of simple hydrocarbon substrates. This review highlights key developments of transition-metal catalyzed bismetallative reactions involving multiple π components. Specifically, it will highlight the scope, synthetic applications, and proposed mechanistic pathways of this process. PMID:24736839

  15. Organometallic Antitumour Agents with Alternative Modes of Action

    NASA Astrophysics Data System (ADS)

    Casini, Angela; Hartinger, Christian G.; Nazarov, Alexey A.; Dyson, Paul J.

    The therapeutic index of drugs that target DNA, a ubiquitous target present in nearly all cells, is low. Nevertheless, DNA has remained the primary target for medicinal chemists developing metal-based anticancer drugs, although DNA has been essentially abandoned in favour of non-genomic targets by medicinal chemists developing organic drugs. A number of organometallic drugs that target proteins/enzymes have been developed and these compounds, based on ruthenium, osmium and gold, are described in this chapter. Targets include cathepsin B, thioredoxin reductases, multidrug resistance protein (Pgp), glutathione S-transferases and kinases. It is found that compounds that inhibit these various targets are active against metastatic tumours, or tumours that are resistant to classical DNA damaging agents such as cisplatin, and therefore offer considerable potential in clinical applications.

  16. Anticancer Organometallic Osmium(II)-p-cymene Complexes.

    PubMed

    Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Clavel, Catherine M; Scopelliti, Rosario; Griffioen, Arjan W; Dyson, Paul J

    2015-09-01

    Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications. PMID:26190176

  17. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed. PMID:26609781

  18. Relativistic effects for the reaction Sg + 6 CO → Sg(CO){sub 6}: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO){sub 6}

    SciTech Connect

    Malli, Gulzari L.

    2015-02-14

    Our ab initio all-electron fully relativistic Dirac–Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO){sub 6} as −7.39 and −6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO){sub 6} are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg–C and C–O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO){sub 6} is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO){sub 6}, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO){sub 6}.

  19. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6.

    PubMed

    Malli, Gulzari L

    2015-02-14

    Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO)6 as -7.39 and -6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO)6 are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg-C and C-O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO)6 is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO)6, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO)6. PMID:25681910

  20. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6

    NASA Astrophysics Data System (ADS)

    Malli, Gulzari L.

    2015-02-01

    Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO)6 as -7.39 and -6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO)6 are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ˜0.40 eV is marginal. The Sg-C and C-O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ˜14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ˜7 kJ/mol due to relativistic effects to the mean energy of Sg(CO)6 is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO)6, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO)6.

  1. Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction.

    PubMed

    Zielinski, Witold; Kukawka, Rafal; Maciejewski, Hieronim; Smiglak, Marcin

    2016-01-01

    A group of imidazolium and pyridinium based ionic liquids has been synthetized, and their ability to dissolve and activate the catalysts used in hydrosilylation reaction of 1-octane and 1,1,1,3,5,5,5-heptamethyltrisiloxane was investigated. An organometallic catalyst as well as inorganic complexes of platinum and rhodium dissolved in ionic liquids were used, forming liquid solutions not miscible with the substrates or with the products of the reaction. The results show that application of such a simple biphasic catalytic system enables reuse of ionic liquid phase with catalysts in multiple reaction cycles reducing the costs and decreasing the amount of catalyst needed per mole of product. PMID:27563869

  2. Transuranic organometallics: The next generation

    SciTech Connect

    Zwick, B.D.; Sattelberger, A.P.; Avens, L.R.

    1990-01-01

    Neptunium and plutonium metal react cleanly with 3/2 equiv. I{sub 2} in aprotic ligating solvents, L, such as tetrahydrofuran (THF), pyridine (Py), and dimethylsulfoxide (DMSO) to give the triiodide complexes as tetrasolvates, AnI{sub 3}(L){sub 4} (An = Np, L = THF (1)); An = Pu, L = THF (2a), Py (2b), and DMSO (2c). These triiodide complexes are convenient precursors to new transuranic compounds. Reaction of the triiodide complexes 1 and 2a hexane with 3 equiv. of sodium bis(trimethylsilyl)amide give the volatile, solvate-free tris(silylamide) complexes, An(N(SiMe{sub 3}){sub 2}){sub 3} (An = Np, 3; An = Pu, 4). The silylamide complexes 3 and 4 undergo rapid reaction in hexane upon stoichiometric addition of HO-2,6-(t-C{sub 4}H{sub 9}){sub 2}C{sub 6}H{sub 3} to give the aryl oxide complexes An(O-2,6-(t-C{sub 4}H{sub 9}){sub 2}C{sub 6}H{sub 3}){sub 3} (An = Np, 5; An = Pu, 6). Preliminary investigations suggest that the aryl oxide complexes 5 and 6 react with lithium bis(trimethylsilyl)methanide, Li{sup +} CH(SiMe{sub 3}){sub 2}, in hexane to give the homoleptic alkyl complexes An(CH(SiMe{sub 3}){sub 2}){sub 3} (An = Np, 7; An = Pu, 8). The homoleptic silylamide, aryl oxide, and alkyl complexes are the first to be reported for transuranic elements. 17 refs.

  3. Reactivity of seventeen- and nineteen-valence electron complexes in organometallic chemistry

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Tyler, David R.

    1986-01-01

    A guideline to the reactivity of 17- and 19-valence electron species in organometallic chemistry is proposed which the authors believe will supersede all others. The thesis holds that the reactions of 17-electron metal radicals are associatively activated with reactions proceeding through a 19-valence electron species. The disparate reaction chemistry of the 17-electron metal radicals are unified in terms of this associative reaction pathway, and the intermediacy of 19-valence electron complexes in producing the observed products is discussed. It is suggested that related associatively activated pathways need to be considered in some reactions that are thought to occur by more conventional routes involving 16- and 18-electron intermediates. The basic reaction chemistry and electronic structures of these species are briefly discussed.

  4. Organometallic Palladium Reagents for Cysteine Bioconjugation

    PubMed Central

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-01-01

    Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579

  5. Antimicrobial Organometallic Dendrimers with Tunable Activity against Multidrug-Resistant Bacteria.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Overy, David P; Lanteigne, Martin; McQuillan, Katherine; Kerr, Russell G

    2015-11-01

    Multidrug-resistant pathogens are an increasing threat to public health. In an effort to curb the virulence of these pathogens, new antimicrobial agents are sought. Here we report a new class of antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant Gram-positive bacteria that included methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Mechanistically, these redox-active, cationic organometallic dendrimers induced oxidative stress on bacteria and also disrupted the microbial cell membrane. The minimum inhibitory concentrations, which provide a quantitative measure of the antimicrobial activity of these dendrimers, were in the low micromolar range. AlamarBlue cell viability assay also confirms the antimicrobial activity of these dendrimers. Interestingly, these dendrimers were noncytotoxic to epidermal cell lines and to mammalian red blood cells, making them potential antimicrobial platforms for topical applications. PMID:26452022

  6. Fullerenes: Synthesis, separation, characterization, reaction chemistry, and applications -- A review

    SciTech Connect

    Singh, H.; Srivastava, M.

    1995-11-01

    The recently discovered third allotrope of carbon, the fullerenes, area subject of very active research, particularly for chemists. They have a closed-cage structure, made by interlocking pentagonal and hexagonal panels, and are the only soluble form of carbon. In this review an attempt has been made to summarize ongoing fullerene research. The review covers methods of fullerene production and separation, mechanisms leading to closed-cage structure formation, structural characterization, reaction chemistry, and applications of this novel material. The emerging directions of research are also discussed.

  7. The Development and Study of Surface Bound Ruthenium Organometallic Complexes

    NASA Astrophysics Data System (ADS)

    Abbott, Geoffrey Reuben

    large way. With a better understanding of the effects of surface binding on the complexes, the study turned to possible applications, as either sensors or catalysts. Recently the bound complexes have been found to be very useful as toxic metal sensors, as the free amines left on the surface could bind toxic metal ions in close proximity leading to either a quenching or enhancement of the luminescence of the complexes, depending on the metal ion. This process was determined to be a static process, requiring the toxic metal to remain bound to the surface in order to affect the luminescence of the Ru complex. The quenching is thought to be due to a metal-centered electron-transfer reaction, in which the excited-state electron is transferred from the Ru to the toxic metal, but relaxes back to the Ru center. The enhancement of luminescence is due to the external heavy-atom effect, in which heavier atoms mixes MLCT singlet state with the triplet state through spin-orbit coupling.

  8. Applications of Multiple Reaction Monitoring to Clinical Glycomics

    PubMed Central

    Ruhaak, L. Renee; Lebrilla, Carlito B.

    2014-01-01

    Multiple reaction monitoring or MRM is widely acknowledged for its accuracy of quantitation. The applications have mostly been in the analysis of small molecules and proteins, but its utility is expanding. Protein glycosylation was recently identified as a new paradigm in biomarker discovery for health and disease. A number of recent studies have now identified differential glycosylation patterns associated with health and disease states, including aging, pregnancy, rheumatoid arthritis and different types of cancer. While the use of MRM in clinical glycomics is still in its infancy, it can likely play a role in the quantitation of protein glycosylation in the clinical setting. Here, we aim to review the current advances in the nascent application of MRM in the field of glycomics. PMID:25892741

  9. Organometallic palladium reagents for cysteine bioconjugation.

    PubMed

    Vinogradova, Ekaterina V; Zhang, Chi; Spokoyny, Alexander M; Pentelute, Bradley L; Buchwald, Stephen L

    2015-10-29

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications. PMID:26511579

  10. Organometallic palladium reagents for cysteine bioconjugation

    NASA Astrophysics Data System (ADS)

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-10-01

    Reactions based on transition metals have found wide use in organic synthesis, in particular for the functionalization of small molecules. However, there are very few reports of using transition-metal-based reactions to modify complex biomolecules, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature and mild pH) and the existence of multiple reactive functional groups found in biomolecules. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation (bioconjugation) reactions that are rapid and robust under a range of bio-compatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants and external thiol nucleophiles. The broad utility of the bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as benchtop reagents for diverse bioconjugation applications.

  11. One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions

    SciTech Connect

    Sawyer, Karma Rae

    2008-12-01

    Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

  12. Electron configuration and correlation effects in organometallic molecules from constraint density functional theory

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Interest in single organometallic molecule and that adsorbed on solid surfaces has rapidly increased because of possible novel applications. For molecules with transition metals (TMs), the d-electron configuration is an essential aspect of their electronic and magnetic properties, and correlation effects can not be excluded. Here, we investigate systematically the electron configuration and correlation effects for prototypical organometallic molecules of tridimensional metallocene (TMCp2) and planer phthalocyanine (TMPc). Calculations were carried out based on the constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method that incorporates an on-site Coulomb interaction correction + U . We find that these correlation effects play a key role in determining the ground state of the electron configuration for the organometallic molecules. The calculated ground states of TMCp2, where TM =Cr, Mn, Fe, Co, and Ni, obtained by constraint DFT with +U reproduce the experimentally determined structures of 3E2 g , 6A1 g , 1A1 g , 2E1 g , and 3A2 g , respectively. Results for the TMPc will be also presented.

  13. Reaction Mechanisms of Magnesium Potassium Phosphate Cement and its Application

    NASA Astrophysics Data System (ADS)

    Qiao, Fei

    Magnesium potassium phosphate cement (MKPC) is a kind of cementitious binder in which the chemical bond is formed via a heterogeneous acid-base reaction between dead burned magnesia powder and potassium phosphate solution at room temperature. Small amount of boron compounds can be incorporated in the cement as a setting retarder. The final reaction product of MgO-KH2PO4-H 2O ternary system is identified as magnesium potassium phosphate hexahydrate, MgKPO4·6H2O. However, the mechanisms and procedures through which this crystalline product is formed and the conditions under which the crystallization process would be influenced are not yet clear. Understanding of the reaction mechanism of the system is helpful for developing new methodologies to control the rapid reaction process and furthermore, to adjust the phase assemblage of the binder, and to enhance the macroscopic properties. This study is mainly focused on the examination of the reaction mechanism of MKPC. In addition, the formulation optimization, microstructure characterization and field application in rapid repair are also systematically studied. The chemical reactions between magnesia and potassium dihydrogen phosphate are essentially an acid-base reaction with strong heat release, the pH and temperature variation throughout the reaction process could provide useful information to disclose the different stages in the reaction. However, it would be very difficult to conduct such tests on the cement paste due to the limited water content and fast setting. In the current research, the reaction mechanism of MKPC is investigated on the diluted MKPC system through monitoring the pH and temperature development, identification of the solid phase formed, and measurement of the ionic concentration of the solution. The reaction process can be explained as follows: when magnesia and potassium phosphate powder are mixed with water, phosphate is readily dissolved, which is instantly followed by the dissociation of

  14. Non-metallocene organometallic complexes and related methods and systems

    DOEpatents

    Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.

    2010-12-07

    A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.

  15. Some Tendencies in the Literature of Organometallic Chemistry

    ERIC Educational Resources Information Center

    Haiduc, Ionel

    1972-01-01

    A survey of the number of references published annually for individual elements or groups of elements suggests that the organometallic chemistry literature is approaching a phase of slower increase. (Author/NH)

  16. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1990-02-01

    The goal of our program is to define those modes of interaction that take place between organometallic molecules and inorganic surfaces and, ultimately, to correlate various molecule-surface structures with catalytic properties.

  17. Synthesis and Migratory-Insertion Reactivity of CpMo(CO)[subscript3](CH[subscript3]): Small-Scale Organometallic Preparations Utilizing Modern Glovebox Techniques

    ERIC Educational Resources Information Center

    Whited, Matthew T.; Hofmeister, Gretchen E.

    2014-01-01

    Experiments are described for the reliable small-scale glovebox preparation of CpMo(CO)[subscript 3](CH[subscript 3]) and acetyl derivatives thereof through phosphine-induced migratory insertion. The robust syntheses introduce students to a variety of organometallic reaction mechanisms and glovebox techniques, and they are easily carried out…

  18. 'Clickable' ZnO nanocrystals: the superiority of a novel organometallic approach over the inorganic sol-gel procedure.

    PubMed

    Grala, Agnieszka; Wolska-Pietkiewicz, Małgorzata; Danowski, Wojciech; Wróbel, Zbigniew; Grzonka, Justyna; Lewiński, Janusz

    2016-05-31

    We demonstrate for the first time a highly efficient Cu(i)-catalyzed alkyne-azide cycloaddition reaction on the surface of ZnO nanocrystals with retention of their photoluminescence properties. Our comparative studies highlight the superiority of a novel self-supporting organometallic method for the preparation of brightly luminescent and well-passivated ZnO nanocrystals over the traditional sol-gel procedure. PMID:27156855

  19. Facile synthesis of one-dimensional organometallic-organic hybrid polymers based on a diphosphorus complex and flexible bipyridyl linkers.

    PubMed

    Elsayed Moussa, M; Attenberger, B; Peresypkina, E V; Fleischmann, M; Balázs, G; Scheer, M

    2016-08-21

    The selective synthesis of a series of new "ladderlike" one-dimensional organometallic-organic hybrid polymers is shown. The polymers are obtained from the reaction of the diphosphorus ligand complex [Cp2Mo2(CO)4(η(2)-P2)] with the copper salt [Cu(CH3CN)4]BF4 in the presence of flexible organic bipyridyl linkers in high selectivity. This unique behaviour is supported by DFT calculations. PMID:27444554

  20. Supported f-element organometallic complexes surface chemistry and catalysis: Technical progress report, March 15, 1987-December 28, 1987

    SciTech Connect

    Marks, T.J.; Burwell, R.L. Jr.

    1987-01-01

    The goal of this research program is to understand how the reactivity of organometallic molecules is dramatically altered by adsorption on inorganic supports such as ..gamma..-alumina, silica, magnesium chloride, etc. While the initial focus of this research concerned the catalytic properties of organoactinides adsorbed on alumina, the effort has now expanded in a number of new directions. These include new supports, new surface spectroscopic techniques, detailed studies of reaction kinetics, new metals, and new connections with solution chemistry.

  1. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis. Progress report, February 1, 1991--January 31, 1992

    SciTech Connect

    Marks, T.J.

    1992-02-01

    The long-range goal of this project is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. The nature of the adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecular-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  2. Detection of toxic organometallic complexes in wastewaters using algal assays.

    PubMed

    Wong, S L; Nakamoto, L; Wainwright, J F

    1997-05-01

    Chlorella (a unicellular green alga) and Cladophora (a filamentous alga) were used in algal assays to identify the presence and toxicity of organometallic complexes in four industrial wastewaters. Toxicities of inorganic Pb and organometallic compounds (trimethyl, tetramethyl and tetraethyl leads, cacodylic acid and Cu-picolinate) were examined, using algal cells grown in 10% BBM solution. Inorganic Pb and organometallic compounds altered the fine structure of Chlorella cells in a distinguishable manner. X-ray microanalysis revealed that organometallic compounds accumulated in the neutral lipids of Cladophora cells. By applying the above techniques to the wastewater assays, two of the four wastewaters tested were found to contain organometallic complexes. Wastewater from a chemical company contained only traces of organo-Cu, but one mining effluent contained significant quantities of organo-Cu and organo-Pb, and traces of organo-Cr and organo-Tl (thallium). These studies suggest that X-ray microanalysis of algae may be a useful tool in identifying aquatic systems contaminated with metals and organometallic compounds. PMID:9175500

  3. Spin-State Effects on the Thermal Dihydrogen Release from Solid-State [MH(η(2)-H 2)dppe2](+) (M = Fe, Ru, Os) Organometallic Complexes for Hydrogen Storage Applications.

    PubMed

    Abrecht, David G; Muñoz, Jorge A; Smith, Hillary L; Fultz, Brent

    2014-01-30

    Mössbauer spectroscopy, experimental thermodynamic measurements, and computational studies were performed to investigate the properties of molecular hydrogen binding to the organometallic fragments [MHdppe2](+) (M = Fe, Ru, Os; dppe =1,2-bis(diphenylphosphino)ethane) to form the dihydrogen complex fragments [MH(η(2)-H2)dppe2](+). Mössbauer spectroscopy showed that the dehydrogenated complex [FeHdppe2](+) adopts a geometry consistent with the triplet spin state, transitioning to a singlet state complex upon addition of the dihydrogen molecule in a manner similar to the previously studied dinitrogen complexes. From simulations, this spin transition behavior was found to be responsible for the strong binding behavior experimentally observed in the iron complex. Spin-singlet to spin-singlet transitions were found to exhibit thermodynamics consistent with the 5d > 3d > 4d binding trend observed for other transition metal dihydrogen complexes. Finally, the method for distinguishing between dihydrogen and dihydride complexes based on partial quadrupole splittings observed in Mössbauer spectra was confirmed, providing a tool for further characterization of these unique species for Mössbauer active compounds. PMID:24803973

  4. Spin-State Effects on the Thermal Dihydrogen Release from Solid-State [MH(η2-H2)dppe2]+ (M = Fe, Ru, Os) Organometallic Complexes for Hydrogen Storage Applications

    PubMed Central

    2015-01-01

    Mössbauer spectroscopy, experimental thermodynamic measurements, and computational studies were performed to investigate the properties of molecular hydrogen binding to the organometallic fragments [MHdppe2]+ (M = Fe, Ru, Os; dppe =1,2-bis(diphenylphosphino)ethane) to form the dihydrogen complex fragments [MH(η2-H2)dppe2]+. Mössbauer spectroscopy showed that the dehydrogenated complex [FeHdppe2]+ adopts a geometry consistent with the triplet spin state, transitioning to a singlet state complex upon addition of the dihydrogen molecule in a manner similar to the previously studied dinitrogen complexes. From simulations, this spin transition behavior was found to be responsible for the strong binding behavior experimentally observed in the iron complex. Spin-singlet to spin-singlet transitions were found to exhibit thermodynamics consistent with the 5d > 3d > 4d binding trend observed for other transition metal dihydrogen complexes. Finally, the method for distinguishing between dihydrogen and dihydride complexes based on partial quadrupole splittings observed in Mössbauer spectra was confirmed, providing a tool for further characterization of these unique species for Mössbauer active compounds. PMID:24803973

  5. Patients' Reactions to Local Anaesthetic Application Devices in Paediatric Dentistry.

    PubMed

    Bajrić, Elmedin; Kobasglija, Sedin; Jurić, Hrvoje

    2015-09-01

    Local anaesthesia is the most common medium for pain control in most dental treatments. Physical appearance of syringe itself can be considered as a provoking factor for the emergence of dental fear and anxiety (DFA). In this research the patient reactions to local anaesthesia application devices, as one of the main causes for DFA emergence, were inquired. The sample comprised of 120 patients, divided in three age groups, formed of 40 patients aged 8, 12 and 15 years. DFA prevalence was quantified by Children Fear Survey Schedule-Dental Subscale (CFSS-DS). Three different syringes were offered to the patients. Reasons for choosing one of the syringes were detected. Patients assigned statistically highest rank to plastic syringe. Boys chose metal and intraligamental syringe statistically more often than girls. Patients with higher CFSS-DS scores chose metal syringe as last option. None of the reasons for selection was dominant, except pain that could be caused by usage of any of the three syringes. A large number of patients did not mention any of the reasons for choosing particular syringes. Plastic syringe represented the most acceptable device for local anaesthetic application to our patients. Patients often linked pain with dental syringes. PMID:26898066

  6. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  7. Extracellular photosensitization reaction progress and effect on myocardial cell necrosis for arrhythmia treatment application

    NASA Astrophysics Data System (ADS)

    Ogawa, Emiyu; Takahashi, Mei; Ito, Arisa; Arai, Tsunenori

    2013-06-01

    We investigated detailed extracellular photosensitization reaction effect on rat myocardial cells and the photosensitization reaction progress in a well to study a new application of photodynamic therapy for arrhythmia therapy.

  8. Preparation of nanoparticles and organometallic compounds via the SMAD technique

    NASA Astrophysics Data System (ADS)

    Ponce, Audaldo A.

    The SMAD method is a versatile synthetic technique for preparation of organometallic compounds, colloids and nanostructured materials from metals and semiconductors. In this work we use this technique to prepare beta-diketonate complexes of Ba and Cu, nanoparticles of Fe-SiO and copper, and for first time nanoparticles of ionic salt-like compounds. The evaporation and cocondensation of Fe, SiO, and an organic solvent, produces nanoparticles of Fe-SiO that when heat treated and passivated, acquire a core-shell structure that protects the iron core from oxidation, preserving its magnetic properties. beta-Diketonate complexes of Ba and Cu have been prepared free of water and with a considerable purity. Moreover, a striking finding was the dependence of the reactivity of the copper particles with their size toward the formation of the beta-diketonate complex. Nanocrystalline particles of copper have been prepared, and their chemical and catalytic reactivity have been tested in the Ullman reaction and the hydrogenation of CO2 to form CH3OH. Their chemical reactivity in the Ullman reaction is proportional to their surface area, and more reactive that those found in literature, with a maximum yield of 90% biphenyl at 150°C after 6 h. for the Cu*/toluene sample. Their catalytic activity tested using nanocrystalline ZnO as a support, resulted in a maximum conversion of 80% from CO2 to CH3OH. Nanocrystalline LiF particles have been successfully prepared with surface areas of 230--520 m2/g and with crystallite size of 5--10 nm. These particles present resistance to sintering when heated from room temperature up to 200°C. These samples can be densified without crystallite growth.

  9. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  10. Development of Organometallic S6K1 Inhibitors

    PubMed Central

    2015-01-01

    Aberrant activation of S6 kinase 1 (S6K1) is found in many diseases, including diabetes, aging, and cancer. We developed ATP competitive organometallic kinase inhibitors, EM5 and FL772, which are inspired by the structure of the pan-kinase inhibitor staurosporine, to specifically inhibit S6K1 using a strategy previously used to target other kinases. Biochemical data demonstrate that EM5 and FL772 inhibit the kinase with IC50 value in the low nanomolar range at 100 μM ATP and that the more potent FL772 compound has a greater than 100-fold specificity over S6K2. The crystal structures of S6K1 bound to staurosporine, EM5, and FL772 reveal that the EM5 and FL772 inhibitors bind in the ATP binding pocket and make S6K1-specific contacts, resulting in changes to the p-loop, αC helix, and αD helix when compared to the staurosporine-bound structure. Cellular data reveal that FL772 is able to inhibit S6K phosphorylation in yeast cells. Together, these studies demonstrate that potent, selective, and cell permeable S6K1 inhibitors can be prepared and provide a scaffold for future development of S6K inhibitors with possible therapeutic applications. PMID:25356520

  11. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces.

    PubMed

    Liu, Jing; Chen, Qiwei; Xiao, Lianghong; Shang, Jian; Zhou, Xiong; Zhang, Yajie; Wang, Yongfeng; Shao, Xiang; Li, Jianlong; Chen, Wei; Xu, Guo Qin; Tang, Hao; Zhao, Dahui; Wu, Kai

    2015-06-23

    Surface reactions of 2,5-diethynyl-1,4-bis(phenylethynyl)benzene on Ag(111), Ag(110), and Ag(100) were systematically explored and scrutinized by scanning tunneling microscopy, molecular mechanics simulations, and density functional theory calculations. On Ag(111), Glaser coupling reaction became dominant, yielding one-dimensional molecular wires formed by covalent bonds. On Ag(110) and Ag(100), however, the terminal alkynes reacted with surface metal atoms, leading to one-dimensional organometallic nanostructures. Detailed experimental and theoretical analyses revealed that such a lattice dependence of the terminal alkyne reaction at surfaces originated from the matching degree between the periodicities of the produced molecular wires and the substrate lattice structures. PMID:25990647

  12. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.

    PubMed

    Horitani, Masaki; Shisler, Krista; Broderick, William E; Hutcheson, Rachel U; Duschene, Kaitlin S; Marts, Amy R; Hoffman, Brian M; Broderick, Joan B

    2016-05-13

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes. PMID:27174986

  13. Sulfur-bonded thiophenes in organometallic rhenium complexes and adsorption of isocyanides on gold

    SciTech Connect

    Robertson, M.J.

    1993-08-01

    This dissertation contains results of research conducted in two different areas: (1) organometallic synthesis and reactivity, and (2) organometallic surface chemistry. In the synthesis and reactivity studies, sulfur coordination of thiophene and benzo[b]thiophene to the metal center in organometallic rhenium complexes is examined. In the surface chemistry studies, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to analyze the adsorption of several isocyanides on the surface of gold powder. Results are compared and contrasted to known organometallic chemistry.

  14. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-01-01

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot-albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models-Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction. PMID:26927045

  15. Atom-Precise Organometallic Zinc Clusters.

    PubMed

    Banh, Hung; Dilchert, Katharina; Schulz, Christine; Gemel, Christian; Seidel, Rüdiger W; Gautier, Régis; Kahlal, Samia; Saillard, Jean-Yves; Fischer, Roland A

    2016-03-01

    The bottom-up synthesis of organometallic zinc clusters is described. The cation {[Zn10 ](Cp*)6 Me}(+) (1) is obtained by reacting [Zn2 Cp*2 ] with [FeCp2 ][BAr4 (F) ] in the presence of ZnMe2 . In the presence of suitable ligands, the high reactivity of 1 enables the controlled abstraction of single Zn units, providing access to the lower-nuclearity clusters {[Zn9 ](Cp*)6 } (2) and {[Zn8 ](Cp*)5 ((t) BuNC)3 }(+) (3). According to DFT calculations, 1 and 2 can be described as closed-shell species that are electron-deficient in terms of the Wade-Mingos rules because the apical ZnCp* units that constitute the cluster cage do not have three, but only one, frontier orbitals available for cluster bonding. Zinc behaves flexibly in building the skeletal metal-metal bonds, sometimes providing one major frontier orbital (like Group 11 metals) and sometimes providing three frontier orbitals (like Group 13 elements). PMID:26846901

  16. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  17. Organic or organometallic template mediated clay synthesis

    SciTech Connect

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1992-12-31

    A method is given for incorporating diverse varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and LiF for 2 days with an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by US patent No. 3,887,454 issued to Hickson, June 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have water-solubility, positive charge, and thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  18. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  19. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  20. Use of column V alkyls in organometallic vapor phase epitaxy (OMVPE)

    NASA Technical Reports Server (NTRS)

    Ludowise, M. J.; Cooper, C. B., III

    1982-01-01

    The use of the column V-trialkyls trimethylarsenic (TMAs) and trimethylantimony (TMSb) for the organometallic vapor phase epitaxy (OM-VPE) of III-V compound semiconductors is reviewed. A general discussion of the interaction chemistry of common Group III and Group V reactants is presented. The practical application of TMSb and TMAs for OM-VPE is demonstrated using the growth of GaSb, GaAs(1-y)Sb(y), Al(x)Ga(1-x)Sb, and Ga(1-x)In(x)As as examples.

  1. A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms.

    PubMed

    McElroy, Anne E; Barron, Mace G; Beckvar, Nancy; Driscoll, Susan B Kane; Meador, James P; Parkerton, Tom F; Preuss, Thomas G; Steevens, Jeffery A

    2011-01-01

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (Sn, Hg, and Pb) in aquatic organisms. Specific emphasis was placed on evaluating key factors that influence interpretation of critical body residue (CBR) toxicity metrics including data quality issues, lipid dynamics, choice of endpoints, processes that alter toxicokinetics and toxicodynamics, phototoxicity, species- and life stage-specific sensitivities, and biotransformation. The vast majority of data available on TRA is derived from laboratory studies of acute lethal responses to organic toxicants exhibiting baseline toxicity. Application of the TRA to various baseline toxicants as well as substances with specific modes of action via receptor-mediated processes, such as chlorinated aromatic hydrocarbons, pesticides, and organometallics is discussed, as is application of TRA concepts in field assessments of tissue residues. In contrast to media-based toxicity relationships, CBR values tend to be less variable and less influenced by factors that control bioavailability and bioaccumulation, and TRA can be used to infer mechanisms of toxic action, evaluate the toxicity of mixtures, and interpret field data on bioaccumulated toxicants. If residue-effects data are not available, body residues can be estimated, as has been done using the target lipid model for baseline toxicants, to derive critical values for risk assessment. One of the primary unresolved issues complicating TRA for organic chemicals is biotransformation. Further work on the influence of biotransformation, a better understanding of contaminant lipid interactions, and an explicit understanding of the time dependency of CBRs and receptor-mediated toxicity are all required to advance this field. Additional residue-effects data on sublethal endpoints, early life stages, and a wider range of legacy and emergent contaminants will be needed to improve the ability

  2. 2007 Inorganic Reaction Mechanisms Gordon Research Conference-February 18-23

    SciTech Connect

    Andreja Bakac Nancy Ryan Gray

    2008-01-01

    This conference focuses on kinetic, mechanistic, and thermodynamic studies of reactions that play a role in fields as diverse as catalysis, energy, bioinorganic chemistry, green chemistry, organometallics, and activation of small molecules (oxygen, nitrogen, carbon monoxide, carbon dioxide, alkanes). Participants from universities, industry, and national laboratories present results and engage in discussions of pathways, intermediates, and outcome of various reactions of inorganic, organic, coordination, organometallic, and biological species. This knowledge is essential for rational development and design of novel reactions, compounds, and catalysts.

  3. A thermochemically derived global reaction mechanism for detonation application

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Yang, J.; Sun, M.

    2012-07-01

    A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene-oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

  4. [Application analysis of adverse drug reaction terminology WHOART and MedDRA].

    PubMed

    Liu, Jing; Xie, Yan-ming; Gai, Guo-zhong; Liao, Xing

    2015-12-01

    Drug safety has always been a global focus. Discovery and accurate information acquisition of adverse drug reaction have been the most crucial concern. Terminology of adverse drug reaction makes adverse reaction medical report meaningful, standardized and accurate. This paper discussed the domestic use of the terminology WHOART and MedDRA in terms of content, structure, and application situation. It also analysed the differences between the two terminologies and discusses the future trend of application in our country PMID:27245013

  5. Jet-A reaction mechanism study for combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo

    1991-01-01

    Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel was studied. Initially, 40 reacting species and 118 elementary chemical reactions were chosen based on a literature review. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with the available shock tube data, then it is validated by comparison of calculated emissions from the plug flow reactor code with in-house flame tube data.

  6. Gamma emission in precompound reactions: 2, Numerical application

    SciTech Connect

    Herman, M.; Reffo, G.; Hoering, A. |

    1992-09-01

    The analytically obtained results of the preceding paper on capture gamma ray reactions are used for a direct numerical calculation. It turns out that this formulation allows for a parameter free description of gamma emission in precompound reactions. As an example we choose reactions induced by 14.1 MeV neutrons incident on {sup 59}CO, {sup 93}Nb and {sup 181}Ta. The individual contributions of different terms to the total cross section are discussed in detail and a comparison to experimental data is pursued.

  7. Jet-A reaction mechanism study for combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo

    1991-01-01

    Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel are studied. Initially 40 reacting species and 118 elementary chemical reactions were chosen based on the literature review of previous works. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with available shock tube data, then it is validated by comparison of calculated emissions from plug flow reactor code with in-house flame tube data.

  8. Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.

    NASA Astrophysics Data System (ADS)

    Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.

    2016-05-01

    Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.

  9. 2013 INORGANIC REACTION MECHANISMS GORDON RESEARCH CONFERENCE (MARCH 3-8, 2013 - HOTEL GALVEZ, GALVESTON TX)

    SciTech Connect

    Abu-Omar, Mahdi M.

    2012-12-08

    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  10. Clustering under the line graph transformation: application to reaction network

    PubMed Central

    Nacher, Jose C; Ueda, Nobuhisa; Yamada, Takuji; Kanehisa, Minoru; Akutsu, Tatsuya

    2004-01-01

    Background Many real networks can be understood as two complementary networks with two kind of nodes. This is the case of metabolic networks where the first network has chemical compounds as nodes and the second one has nodes as reactions. In general, the second network may be related to the first one by a technique called line graph transformation (i.e., edges in an initial network are transformed into nodes). Recently, the main topological properties of the metabolic networks have been properly described by means of a hierarchical model. While the chemical compound network has been classified as hierarchical network, a detailed study of the chemical reaction network had not been carried out. Results We have applied the line graph transformation to a hierarchical network and the degree-dependent clustering coefficient C(k) is calculated for the transformed network. C(k) indicates the probability that two nearest neighbours of a vertex of degree k are connected to each other. While C(k) follows the scaling law C(k) ~ k-1.1 for the initial hierarchical network, C(k) scales weakly as k0.08 for the transformed network. This theoretical prediction was compared with the experimental data of chemical reactions from the KEGG database finding a good agreement. Conclusions The weak scaling found for the transformed network indicates that the reaction network can be identified as a degree-independent clustering network. By using this result, the hierarchical classification of the reaction network is discussed. PMID:15617578

  11. Evaluation of charged-particle reactions for fusion applications

    SciTech Connect

    White, R.M.; Resler, D.A.; Warshaw, S.I.

    1991-01-01

    New evaluations of the total reaction cross sections for {sup 2}H(d,n){sup 3}He, {sup 2}H(d,p){sup 3}H, {sup 3}H(t,2n){sup 4}He,{sup 3}H(d,n){sup 4}He, and {sup 3}He(d,p){sup 4}He have been completed. These evaluations are based on all known published data from 1946 to 1990 and include over 1150 measured data points from 67 references. The purpose of this work is to provide a consistent and well-documented set of cross sections for use in calculations relating to fusion energy research. A new thermonuclear data file, TDF, and a library of FORTRAN subprograms to read the file have been developed. Calculated from the new evaluations, the TDF file contains information on the Maxwellian-averaged reaction rates as a function of reaction and plasma temperature and the Maxwellian-averaged average energy of the interacting particles and reaction products. Routines are included that provide thermally-broadened spectral information for the secondary reaction products. 67 refs., 18 figs.

  12. Relating ionic liquids and polyethylene glycols to green chemistry, organometallic catalysis, and materials science

    NASA Astrophysics Data System (ADS)

    Klingshirn, Marc Allen

    The field of green chemistry has grown tremendously over the past years due to stricter environmental laws regulating the amount of toxic substances that are legally allowed into the environment. The objective of this work was to incorporate ILs and PEGs into gel type matrices and utilize them as solvent alternatives in hopes of helping advance the field of green chemistry and lowering environmental burden. Here, three new gel-type materials were studied. A PEG gel-silica sol composite and an IL-PEG gel were developed. Both materials were based on a cross-linked PEG hydrogel and its response to various inorganic salts. The new materials developed exhibited the same shrink-swell characteristics as the control PEG hydrogel, while the IL-PEG gel showed similar uptakes of linear alcohols from salt solutions. Additionally, when calcined, the PEG gel-silica sol composite was found to have unique morphologies that were dependent on PEG hydrogel concentration. The third material that was developed was a silica sol gel that was synthesized utilizing 1-butyl-3-methylimidazolium chloride as a (co)solvent. All previous work reported used ILs that had structures similar to surfactants that are traditionally used in creating high surface area materials. The work here presents a fundamental study of how short chained ILs can be used to produce high surface area materials and addresses questions such as how the IL orients itself within the matrix during the sol gel process. Another facet of the work involves the incorporation of ILs and PEGS into organometallic catalytic systems, specifically the hydroesterification of styrene and the copolymerization of styrene and carbon monoxide. The ILs' non-coordinating nature allows them to stabilize catalytically active charged species in addition to allowing for ease of catalyst recycling. The application of the presented work to the field of green chemistry includes the implementation of benign, non-volatile reaction media, specifically

  13. Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Li, Chaokai; Feng, Ji; Cho, Jun-Hyung; Zhang, Zhenyu

    2016-01-01

    The exploration of topological states is of significant fundamental and practical importance in contemporary condensed matter physics, for which the extension to two-dimensional (2D) organometallic systems is particularly attractive. Using first-principles calculations, we show that a 2D hexagonal triphenyl-lead lattice composed of only main group elements is susceptible to a magnetic instability, characterized by a considerably more stable antiferromagnetic (AFM) insulating state rather than the topologically nontrivial quantum spin Hall state proposed recently. Even though this AFM phase is topologically trivial, it possesses an intricate emergent degree of freedom, defined by the product of spin and valley indices, leading to Berry curvature-induced spin and valley currents under electron or hole doping. Furthermore, such a trivial band insulator can be tuned into a topologically nontrivial matter by the application of an out-of-plane electric field, which destroys the AFM order, favoring instead ferrimagnetic spin ordering and a quantum anomalous Hall state with a nonzero topological invariant. These findings further enrich our understanding of 2D hexagonal organometallic lattices for potential applications in spintronics and valleytronics.

  14. Organometalic carbosilane polymers containing vanadium and their preparation

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Fukuda, K.

    1983-01-01

    The present invention concerns a new organometallic polymer material containing in part a vanadium-siloxane linkage (V-0-Si), which has excellent resistance to heat and oxidation and a high residue ratio after high temperature treatment in a non-oxidizing atmosphere, for example, nitrogen, argon, helium, ammonia, or hydrogen.

  15. In –Situ Spectroscopic Investigation of Immobilized Organometallic Catalysts

    SciTech Connect

    Davis, Robert, J.

    2007-11-14

    Immobilized organometallic catalysts, in principle, can give high rates and selectivities like homogeneous catalysts with the ease of separation enjoyed by heterogeneous catalysts. However, the science of immobilized organometallics has not been developed because the field lies at the interface between the homogeneous and heterogeneous catalysis communities. By assembling an interdisciplinary research team that can probe all aspects of immobilized organometallic catalyst design, the entire reacting system can be considered, where the transition metal complex, the complex-support interface and the properties of the support can all be considered simultaneously from both experimental and theoretical points of view. Researchers at Georgia Tech and the University of Virginia are studying the fundamental principles that can be used to understand and design future classes of immobilized organometallic catalysts. In the framework of the overall collaborative project with Georgia Tech, our work focused on (a) the X-ray absorption spectroscopy of an immobilized Pd-SCS-O complex (b) the mode of metal leaching from supported Pd catalysts during Heck catalysis and (c) the mode of deactivation of Jacobsen’s Co-salen catalysts during the hydrolytic kinetic resolution of terminal epoxides. Catalysts containing supported Pd pincer complexes, functionalized supports containing mercapto and amine groups, and oligomeric Co-salen catalysts were synthesized at Georgia Tech and sent to the University of Virginia. Incorporation of Pd onto several different kinds of supports (silica, mercapto-functionalized silica, zeolite Y) was performed at the University of Virginia.

  16. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  17. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  18. A "Classic Papers" Approach to Teaching Undergraduate Organometallic Chemistry

    ERIC Educational Resources Information Center

    Duncan, Andrew P.; Johnson, Adam R.

    2007-01-01

    We have structured an upper-level undergraduate course in organometallic chemistry on a selection of "classic" publications in the field. This approach offers students a richly contextual introduction to many of the fundamental tenets of the discipline. After a brief introduction to the field led by the faculty, the students themselves are…

  19. Proton transfer reaction-mass spectrometry applications in medical research.

    PubMed

    Herbig, Jens; Amann, Anton

    2009-06-01

    Gathering information about a subject's physiological and pathophysiological condition from the `smell' of breath is an idea that dates back to antiquity. This intriguing concept of non-invasive diagnosis has been revitalized by `exhaled breath analysis' in recent decades. A main driving force was the development of sensitive and versatile gas-chromatographic and mass-spectrometric instruments for trace gas analysis. Ironically, only non-smelling constituents of breath, such as O(2), CO(2), H(2), and NO have so far been included in routine clinical breath analysis. The `smell' of human breath, on the other hand, arises through a combination of volatile organic compounds (VOCs) of which several hundred have been identified to date. Most of these volatiles are systemic and are released in the gas-exchange between blood and air in the alveoli. The concentration of these compounds in the alveolar breath is related to the respective concentrations in blood. Measuring VOCs in exhaled breath allows for screening of disease markers, studying the uptake and effect of medication (pharmacokinetics), or monitoring physiological processes. There is a range of requirements for instruments for the analysis of a complex matrix, such as human breath. Mass-spectrometric techniques are particularly well suited for this task since they offer the possibility of detecting a large variety of interesting compounds. A further requirement is the ability to measure accurately in the concentration range of breath VOCs, i.e. between parts-per-trillion (pptv) and parts-per-million (ppmv) range. In the mid 1990's proton transfer reaction-mass spectrometry (PTR-MS) was developed as a powerful and promising tool for the analysis of VOCs in gaseous media. Soon thereafter these instruments became commercially available to a still growing user community and have now become standard equipment in many fields including environmental research, food and flavour science, as well as life sciences. Their

  20. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  1. Titanium-nitrogen reaction investigated for application to gettering systems

    NASA Technical Reports Server (NTRS)

    Arntzen, J. D.; Coleman, L. F.; Kyle, M. L.; Pierce, R. D.

    1968-01-01

    Titanium is one of several gettering materials available for removing nitrogen from inert gases. The reaction rate of titanium-metal sponge and nitrogen in argon-nitrogen mixtures was studied at 900 degrees C. The rate was found to depend upon the partial pressure of nitrogen in the gas phase. Mathematical relationships simulate titanium systems.

  2. Emergence of electrophilic alumination as the counterpart of established nucleophilic lithiation: an academic sojourn in organometallics with William Kaska as fellow traveler.

    PubMed

    Eisch, John J

    2015-04-21

    William Kaska pursued doctoral studies with John Eisch in mechanistic organometallic chemistry, first with organolithium reactions at St. Louis University and then at the University of Michigan with organoaluminum reactions. Thereby he revealed the change in mechanism from nucleophilic lithiation and carbolithiation to that of electrophilic alumination, carboalumination and hydroalumination of organic substrates, which reactions were previously observed by Karl Ziegler in his empirical studies of organoaluminum reactions. Our findings were the first mechanistic studies attempting to set such Ziegler chemistry on a modern theoretical basis. PMID:25820225

  3. Simplified jet fuel reaction mechanism for lean burn combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  4. Synthesis and Microstructural Investigations of Organometallic Pd(II) Thiol-Gold Nanoparticles Hybrids

    PubMed Central

    2008-01-01

    In this work the synthesis and characterization of gold nanoparticles functionalized by a novel thiol-organometallic complex containing Pd(II) centers is presented. Pd(II) thiol,trans, trans-[dithiolate-dibis(tributylphosphine)dipalladium(II)-4,4′-diethynylbiphenyl] was synthesized and linked to Au nanoparticles by the chemical reduction of a metal salt precursor. The new hybrid made of organometallic Pd(II) thiol-gold nanoparticles, shows through a single S bridge a direct link between Pd(II) and Au nanoparticles. The size-control of the Au nanoparticles (diameter range 2–10 nm) was achieved by choosing the suitable AuCl4−/thiol molar ratio. The size, strain, shape, and crystalline structure of these functionalized nanoparticles were determined by a full-pattern X-ray powder diffraction analysis, high-resolution TEM, and X-ray photoelectron spectroscopy. Photoluminescence spectroscopy measurements of the hybrid system show emission peaks at 418 and 440 nm. The hybrid was exposed to gaseous NOxwith the aim to evaluate the suitability for applications in sensor devices; XPS measurements permitted to ascertain and investigate the hybrid –gas interaction. PMID:21350592

  5. Absorption of organic compounds and organometallics on ceramic substrates for wear reduction

    SciTech Connect

    Kennedy, P.J.; Agarwala, V.S.

    1996-12-31

    The concept of employing thermally stable compounds (that is, metal oxides) as high temperature vapor phase ceramic lubricants was investigated. A major part of this study was devoted to the development of various calorimetric and tribological techniques that could be used to determine interfacial reactions between thermally stable compounds and ceramic substrates such as zirconia and alumina. This interaction is pivotal in understanding the mechanism of high temperature lubricity. The approach consisted of selecting low sublimation temperature materials and measuring their thermodynamic interactions as vapors with the ceramic substrates. The materials studied included two easily sublimable organic compounds (that is, naphthalene and salicylic acid) and several organometallics (for example, copper phthalocyanine). Thermodynamic data such as heat of adsorption, packing density, and reversibility of the adsorption were obtained on some of these compounds and were related to wear characteristics. All of these compounds provided effective lubrication at room temperature. Copper phthalocyanine was an effective lubricant at temperatures up to 400 C.

  6. Anodic Deposition of a Robust Iridium-Based Water-Oxidation Catalyst from Organometallic Precursors

    SciTech Connect

    Blakemore, James D; Schley, Nathan D; Olack, G.; Incarvito, Christopher D; Brudvig, Gary W; Crabtree, Robert H

    2011-01-01

    Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust water-oxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, principally consisting of iridium and oxygen, which is a robust and long-lived catalyst for water oxidation, when driven electrochemically. The catalyst material is generated by a simple anodic deposition from Cp*Ir aqua or hydroxo complexes in aqueous solution. This work suggests that organometallic precursors may be useful in electrodeposition of inorganic heterogeneous catalysts.

  7. Syntheses and characterization of dichlorozirconium porphyrin complexes and their novel organometallic derivatives. X-ray structure of Zr(TPP)Cl[sub 2](THF)

    SciTech Connect

    Heejoon Kim; Dongmok Whang; Kimoon Kim ); Youngkyu Do )

    1993-02-03

    The chemistry of early transition metal porphyrin complexes, especially, that of the second- and third-row metal complexes has not been developed much due in part to their high oxophilicity. The authors have been interested in exploring zirconium and hafnium porphyrin complexes because they may show a rich organometallic chemistry as zirconocene derivatives do. The key entry to the organometallic zirconium porphyrin complexes would be Zr(porphyrin)Cl[sub 2], analogous to ZrCp[sub 2]Cl[sub 2]. The dichloride complex may be converted to organometallic [sigma]-complexes such as dialkyl complexes by the reactions with alkyllithium or Grignard reagents. It may also form organometallic [tau]-complexes by replacing the two chlorides with a cyclooctatetraenyl dianion or a dicarbollide dianion. Indeed, the authors have succeeded in preparing Zr(por)Cl[sub 2] (por = OEP, TPP) and their organometallic derivatives Zr(TPP)Me[sub 2] and Zr(OEP)([eta][sup 5]-C[sub 2]B[sub 9]H[sub 11]). They have presented the preliminary results on their syntheses and characterization by spectroscopy but have been unable to grow X-ray-quality crystals of either of the organometallic complexes until recently. When they finished the structural characterization of Zr(OEP)([eta][sup 5]C[sub 2]B[sub 9]H[sub 11]) by X-ray crystallography, however, Arnold and co-workers published the synthesis and characterization of Zr(OEP)Cl[sub 2] and several organometallic complexes derived from it, including Zr(OEP)(CH[sub 2]SiMe[sub 3])[sub 2] and Zr(OEP)([eta][sup 5]-C[sub 2]B[sub 9]H[sub 11]). Here they present their results on the syntheses and characterization of Zr(por)Cl[sub 2] (por = OEP, TPP), Zr(TPP)Me[sub 2], and Zr(OEP)([eta][sup 5]-C[sub 2]B[sub 9]H[sub 11]) and the X-ray structure of Zr(TPP)Cl[sub 2](THF). 22 refs., 2 tabs.

  8. Application of the polymerase chain reaction to detect fowl adenoviruses.

    PubMed Central

    Jiang, P; Ojkic, D; Tuboly, T; Huber, P; Nagy, E

    1999-01-01

    The possibility of using the polymerase chain reaction (PCR) for the detection of fowl adenoviruses (FAdV) was tested. The optimal reaction parameters were evaluated and defined for purified genomic DNA of type 8 fowl adenovirus (FAdV-8), and then the same conditions were applied for nucleic acid extracted from infected cells. One hundred picograms of purified viral DNA, or 250 FAdV-8-infected cells, were detected by ethidium bromide staining of the PCR products in agarose gels. The sensitivity was increased to 10 pg purified viral DNA, or 25 infected cells, when the PCR products were hybridized with a specific labeled probe. Several field isolates of FAdV and the CELO virus (FAdV serotype 1) could be amplified by the same primers and conditions, but the size of the amplicons was smaller than that for the FAdV-8 PCR product. Other avian viruses and uninfected cell cultures tested negative. Images Figure 2. Figure 3. Figure 4. PMID:10369570

  9. Identification and application of Phyto-Fenton reactions.

    PubMed

    Inagaki, Yoshihiko; Cong, Vo Huu; Sakakibara, Yutaka

    2016-02-01

    The formation of hydroxyl radicals (•OHs) by aquatic plants was investigated using electron-spin-resonance (ESR) spectroscopy and fluorescence microscopy. ESR observations, using 5- (diethoxyphosphoryl)-5-methyl-pyrroline N-oxide as a trapping agent, indicated that the signals produced by aquatic plants ground with ferrous iron ions are almost identical to those produced by Fenton's reagent. In addition, fluorescence was observed in the oxidized form of aminophenyl fluorescein in the presence of ferrous ions as well as any particles of colloidal ferrihydrite, magnetite, and ferric-ion-exchanged zeolite, while no fluorescence appeared in the absence of these iron compounds. Moreover, fluorescence-microscopy observations demonstrated that fluorescence mainly occurs on the surface of aquatic plants at neutral pH in the presence of the latter three solid iron compounds, implying the occurrence of heterogeneous phyto-Fenton reactions utilizing endogenous hydrogen peroxide (H2O2) in the aquatic plants. Furthermore, batch treatments of the pollutant 17α-ethinylestradiol (EE2), using colloidal ferrihydrite iron, indicated the feasible removal of EE2 with enhanced performance, lower-or apparently no-consumption of endogenous H2O2, and no significant stress to the aquatic plants. We concluded that the treatment of environmental pollutants through •OH formations via heterogeneous phyto-Fenton reactions should be a feasible alternative to conventional wastewater and water-treatment processes. PMID:26495829

  10. Application of semiclassical methods to reaction rate theory

    SciTech Connect

    Hernandez, R.

    1993-11-01

    This work is concerned with the development of approximate methods to describe relatively large chemical systems. This effort has been divided into two primary directions: First, we have extended and applied a semiclassical transition state theory (SCTST) originally proposed by Miller to obtain microcanonical and canonical (thermal) rates for chemical reactions described by a nonseparable Hamiltonian, i.e. most reactions. Second, we have developed a method to describe the fluctuations of decay rates of individual energy states from the average RRKM rate in systems where the direct calculation of individual rates would be impossible. Combined with the semiclassical theory this latter effort has provided a direct comparison to the experimental results of Moore and coworkers. In SCTST, the Hamiltonian is expanded about the barrier and the ``good`` action-angle variables are obtained perturbatively; a WKB analysis of the effectively one-dimensional reactive direction then provides the transmission probabilities. The advantages of this local approximate treatment are that it includes tunneling effects and anharmonicity, and it systematically provides a multi-dimensional dividing surface in phase space. The SCTST thermal rate expression has been reformulated providing increased numerical efficiency (as compared to a naive Boltzmann average), an appealing link to conventional transition state theory (involving a ``prereactive`` partition function depending on the action of the reactive mode), and the ability to go beyond the perturbative approximation.

  11. The application of diagnostic equipment in the Tokamak fusion reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Bang-shuai; Chang, Jun; Gong, Xian-zu; Gan, Jia-fu; Feng, Shu-long

    2011-11-01

    This paper introduces the infrared optical system in the Tokamak fusion reaction device. In this optical system, the traditional optical structure can't meet the requirements, because the length of the infrared optical system in the Tokamak is very long. The design of optical system in the detection facility includes three parts:1.the combination of the concave aspheric mirror and flat mirror; 2.the Cassegrain system; 3.the relay group lenses. This paper describes the decrease of the modulation transfer function (MTF) when the temperature changes and how to compensate the decrease of the MTF in order to maintain the image quality in a high level. As a result, the image quality of this optical system can reach the requirements when the temperature changes.

  12. Nonlinear phenomena at geological reaction fronts with energy applications

    SciTech Connect

    Ortoleva, P.

    1989-01-01

    Interaction of aqueous fluids with the rock matrix within which they reside can yield a variety of phenomena due to the coupling of reaction transport and mechanical processes; many of these have potentially important implications for exploration and exploitation of energy and mineral resources. We investigated effects of nucleation to produce banded precipitation; Darcy-mineral dissolution coupling to produce scalloped, fingered and more complex alteration front morphologies, and diagenetic alteration in chemically complex, multi-mineralic systems. Migration of methane driven by buoyancy effects was shown to lead to cellular and temporally oscillatory flows. Sandstones at depth experiencing pressure solution display unstable compaction leading to formation of stylolites and band-like regions of augmented compaction alternating with low porosity bands with augmented overgrowth. It was shown that transfer of natural gas from shale source rock into neighboring sandstones could occur through a series of discrete pulsatile events through a cycle of fracturing and healing.

  13. Metal-organometallic polymers and frameworks derived from facially metalated arylcarboxylates

    NASA Astrophysics Data System (ADS)

    Kumalah Robinson, Sayon A.

    The interest in coordination polymers, also known as metal-organic frameworks, has risen drastically over the past 2 decades. In this time, the field has matured and given rise to a diverse range of crystalline structures possessing various functionalities. Coordination polymers are typically formed from the self assembly of metal ions which serve as nodes and organic ligands which act as bridges. By the careful selection of the organic ligand and the metal ion, the overall physical properties of the material may be tuned. In this work, the use of organometallic bridging ligands are explored using facially metalated aryl carboxylates ligands to synthesize metal-organometallic frameworks (MOMFs). Therefore, with the aim of synthesizing [CpM]+-functionalized (M = FeII, RuII; Cp = cyclopentadienyl) coordination polymers and metal organic frameworks, various [CpFe]+and [CpRu] + functionalized aryl carboxylates were synthesized and characterized. In particular, the [CpFe]+-functionalized benzoic, terephthalic and trimesic acids as well as the [CpRu]+-functionalized terephthalic acid were made. Using the [CpFe]+ complexes of the benzoic and terephthalic acid as bridging ligands, a number of 1D and 2D coordination polymers were synthesized. For instance, the reaction of [CpFe]+-functionalized benzoic acid with CdCl2 yielded the 1D chain of [Cd(benzoate)Cl 2]˙H2O whilst the reaction of [CpFe]+-functionalized terephthalic acid with Cu(NO3)2˙6H2O yielded a 2D square grid sheet. Using the [CpFe]+-functionalized terephthalic acid, a series of polymorphic, 3D metal-organometallic frameworks of the general formula [M3(terephthalate)4(mu-H2O)2(H 2O)2][NO3]2˙xsolvent (M = Co II, NiII ; solvent = EtOH, DMF, H2O) were synthesized and fully characterized. The polymorphic nature of these frameworks may be attributed to the different orientations that the [CpFe]+ moiety may adapt within the cavities in the 3D frameworks. The selectivity of the desolvated forms of the polymorphs for

  14. Organometallic nanoprobe to enhance optical response on the polycyclic aromatic hydrocarbon benzo[a]pyrene immunoassay using SERS technology.

    PubMed

    Dribek, Mohamed; Rinnert, Emmanuel; Colas, Florent; Crassous, Marie-Pierre; Thioune, Néné; David, Catalina; de la Chapelle, Marc; Compère, Chantal

    2014-08-12

    We demonstrated the use of a new organometallic nanoprobe for competitive surface-enhanced Raman scattering (SERS) immunoassay devoted to the detection of polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (BaP) in seawater. The nanoprobes are gold nanoparticles (GNPs) labeled by a Raman reporter, the 5,5'-dithiobis(succinimidyl-2-nitrobenzoate) (DSNB) and functionalized with monoclonal antibodies anti-BaP. The antibodies are bound with a high specificity to the analyte while the GNPs enhanced the Raman scattering of the DSNB. This type of immunoassay involved the grafting of BaP onto a sensing surface. Thus, NH2-terminated self-assembled monolayer is formed on the surface of gold substrate using cysteamine. Amines finally reacted with 6-formylbenzo[a]pyrene. So, this SERS detection involves four steps: (i) the nanoprobes are incubated with the sample; (ii) a drop of the mixture is then put onto the substrate; (iii) the surface is rinsed; and (iv) the surface is analyzed by Raman spectroscopy. To synthesize the nanoprobes, firstly, we prepared GNPs according to Frens' method. Then, GNPs were spontaneously labeled by the DSNB Raman reporter, thanks to a strong gold-sulfur interaction. Thereafter, BaP antibodies were cross-linked to the DSNB labeled GNPs by reaction of proteins primary amino groups with N-hydroxyl succinimide (NHS). Before use in SERS detection, their activity was controlled by surface plasmon resonance technique. The present method allows us to detect BaP at trace concentration (2 nmol/L). The results demonstrate that the proposed method has a great potential for application in the monitoring of seawater. PMID:25109469

  15. Discriminatory Questions and Applicant Reactions in the Employment Interview.

    ERIC Educational Resources Information Center

    Saks, Alan M.; And Others

    This study investigated the effects of discriminatory interview questions on applicants' perceptions and intentions toward an organization. Participants included 118 graduate business students (59 percent male), average age of 31 with more than eight years of full-time work experience. Discriminatory questions addressed handicaps, plans for…

  16. Effectiveness of various organometallics as antiwear additives in mineral oil

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with 1045 steel contacting 302 stainless steel and lubricated with various organometallics in mineral oil. Auger emission spectroscopy was used to determine the element present in the wear contact zone. The results indicate that there are organometallics which are as effective an antiwear additives as the commonly used zinc dialkyl dithiophosphate. These include dimethyl cadmium, triphenyl lead thiomethoxide, and triphenyl tin chloride. The additives were examined in concentrations to 1 weight percent. With dimethyl cadmium at concentrations of 0.5 weight percent and above, cadmium was detected in the contact zone. Coincident with the detection of cadmium, a marked decrease in the friction coefficient was observed. All additives examined reduced friction, but only the aforementioned reduced wear to a level comparable to that observed with zinc dialkyl dithiophosphate.

  17. Organo- and Organometallic-Catalytic Intramolecular [1,5]-Hydride Transfer/Cyclization Process through C(sp(3) )-H Bond Activation.

    PubMed

    Kwon, Su Jin; Kim, Dae Young

    2016-06-01

    The direct functionalization of C(sp(3) )-H bonds is one of the most synthetically powerful research areas in current organic synthesis. Organocatalytic C(sp(3) )-H bond activation reactions have recently been developed in addition to the traditional metal-catalyzed C(sp(3) )-H activation reactions. In this review, we aim to give a brief overview of organo- and organometallic internal redox cascade reactions with respect to the mechanism, the reactivity of hydrogen donors and acceptors, and the migration modes of hydrogen. PMID:27062480

  18. Controlled Variable Oxidative Doping of Individual Organometallic Nanoparticles.

    PubMed

    Feng, Ann; Cheng, Wei; Holter, Jennifer; Young, Neil; Compton, Richard G

    2016-05-10

    The charging and controlled oxidative doping of single organometallic ferrocene nanoparticles is reported in aqueous sodium tetrafluoroborate using the nano-impacts method. It is shown that ferrocene nanoparticles of approximately 105 nm diameter are essentially quantitatively oxidatively doped with the uptake of one tetrafluoroborate anion per ferrocene molecule at suitably high overpotentials. By using lower potentials, it is possible to achieve low doping levels of single nanoparticles in a controlled manner. PMID:27038252

  19. An Organometallic Future in Green and Energy Chemistry?

    SciTech Connect

    Crabtree, Robert H

    2011-01-10

    The title topic is reviewed with selected examples taken from recent work, such as: the 'hydrogen borrowing' amine alkylation by alcohols; the dehydrogenative coupling of amine and alcohol to give amide; Ru complexes as solar cell photosensitizers; Ir organometallics as water oxidation catalyst precursors and as OLED emitters; as well as recent hydrogen storage strategies involving catalytic dehydrogenation of ammonia-borane and of organic heterocycles.

  20. A Photoferroelectric Perovskite-Type Organometallic Halide with Exceptional Anisotropy of Bulk Photovoltaic Effects.

    PubMed

    Sun, Zhihua; Liu, Xitao; Khan, Tariq; Ji, Chengmin; Asghar, Muhammad Adnan; Zhao, Sangen; Li, Lina; Hong, Maochun; Luo, Junhua

    2016-05-23

    Perovskite-type ferroelectrics composed of organometallic halides are emerging as a promising alternative to conventional photovoltaic devices because of their unique photovoltaic effects (PVEs). A new layered perovskite-type photoferroelectric, bis(cyclohexylaminium) tetrabromo lead (1), is presented. The material exhibits an exceptional anisotropy of bulk PVEs. Upon photoexcitation, superior photovoltaic behaviors are created along its inorganic layers, which are composed of corner-sharing PbBr6 octahedra. Semiconducting activity with remarkable photoconductivity is achieved in the vertical direction, showing sizeable on/off current ratios (>10(4) ), which compete with the most active photovoltaic material CH3 NH3 PbI3 . In 1 the temperature-dependence of photovoltage coincides fairly well with that of polarization, confirming the dominant role of ferroelectricity in such highly anisotropic PVEs. This finding sheds light on bulk PVEs in ferroelectric materials, and promotes their application in optoelectronic devices. PMID:27088882

  1. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization.

    PubMed

    Kermagoret, Anthony; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2014-03-01

    The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials. PMID:24557131

  2. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization

    NASA Astrophysics Data System (ADS)

    Kermagoret, Anthony; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2014-03-01

    The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials.

  3. Organometallic Complexes Anchored to Conductive Carbon for Electrocatalytic Oxidation of Methane at Low Temperature.

    PubMed

    Joglekar, Madhura; Nguyen, Vinh; Pylypenko, Svitlana; Ngo, Chilan; Li, Quanning; O'Reilly, Matthew E; Gray, Tristan S; Hubbard, William A; Gunnoe, T Brent; Herring, Andrew M; Trewyn, Brian G

    2016-01-13

    Low-temperature direct methane fuel cells (DMEFCs) offer the opportunity to substantially improve the efficiency of energy production from natural gas. This study focuses on the development of well-defined platinum organometallic complexes covalently anchored to ordered mesoporous carbon (OMC) for electrochemical oxidation of methane in a proton exchange membrane fuel cell at 80 °C. A maximum normalized power of 403 μW/mg Pt was obtained, which was 5 times higher than the power obtained from a modern commercial catalyst and 2 orders of magnitude greater than that from a Pt black catalyst. The observed differences in catalytic activities for oxidation of methane are linked to the chemistry of the tethered catalysts, determined by X-ray photoelectron spectroscopy. The chemistry/activity relationships demonstrate a tangible path for the design of electrocatalytic systems for C-H bond activation that afford superior performance in DMEFC for potential commercial applications. PMID:26492385

  4. Sterically Hindered Square-Planar Nickel(II) Organometallic Complexes: Preparation, Characterization, and Substitution Behavior

    ERIC Educational Resources Information Center

    Martinez, Manuel; Muller, Guillermo; Rocamora, Merce; Rodriguez, Carlos

    2007-01-01

    The series of experiments proposed for advanced undergraduate students deal with both standard organometallic preparative methods in dry anaerobic conditions and with a kinetic study of the mechanisms operating in the substitution of square-planar complexes. The preparation of organometallic compounds is carried out by transmetallation or…

  5. New Twists and Turns for Actinide Chemistry: Organometallic Infinite Coordination Polymers of Thorium Diazide.

    PubMed

    Monreal, Marisa J; Seaman, Lani A; Goff, George S; Michalczyk, Ryszard; Morris, David E; Scott, Brian L; Kiplinger, Jaqueline L

    2016-03-01

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. PMID:26865502

  6. Organometallic Complex Formed by an Unconventional Radical S-Adenosylmethionine Enzyme.

    PubMed

    Dong, Min; Horitani, Masaki; Dzikovski, Boris; Pandelia, Maria-Eirini; Krebs, Carsten; Freed, Jack H; Hoffman, Brian M; Lin, Hening

    2016-08-10

    Pyrococcus horikoshii Dph2 (PhDph2) is an unusual radical S-adenosylmethionine (SAM) enzyme involved in the first step of diphthamide biosynthesis. It catalyzes the reaction by cleaving SAM to generate a 3-amino-3-carboxypropyl (ACP) radical. To probe the reaction mechanism, we synthesized a SAM analogue (SAMCA), in which the ACP group of SAM is replaced with a 3-carboxyallyl group. SAMCA is cleaved by PhDph2, yielding a paramagnetic (S = 1/2) species, which is assigned to a complex formed between the reaction product, α-sulfinyl-3-butenoic acid, and the [4Fe-4S] cluster. Electron-nuclear double resonance (ENDOR) measurements with (13)C and (2)H isotopically labeled SAMCA support a π-complex between the C═C double bond of α-sulfinyl-3-butenoic acid and the unique iron of the [4Fe-4S] cluster. This is the first example of a radical SAM-related [4Fe-4S](+) cluster forming an organometallic complex with an alkene, shedding additional light on the mechanism of PhDph2 and expanding our current notions for the reactivity of [4Fe-4S] clusters in radical SAM enzymes. PMID:27465315

  7. First-Principles Molecular Dynamics Studies of Organometallic Complexes and Homogeneous Catalytic Processes.

    PubMed

    Vidossich, Pietro; Lledós, Agustí; Ujaque, Gregori

    2016-06-21

    Computational chemistry is a valuable aid to complement experimental studies of organometallic systems and their reactivity. It allows probing mechanistic hypotheses and investigating molecular structures, shedding light on the behavior and properties of molecular assemblies at the atomic scale. When approaching a chemical problem, the computational chemist has to decide on the theoretical approach needed to describe electron/nuclear interactions and the composition of the model used to approximate the actual system. Both factors determine the reliability of the modeling study. The community dedicated much effort to developing and improving the performance and accuracy of theoretical approaches for electronic structure calculations, on which the description of (inter)atomic interactions rely. Here, the importance of the model system used in computational studies is highlighted through examples from our recent research focused on organometallic systems and homogeneous catalytic processes. We show how the inclusion of explicit solvent allows the characterization of molecular events that would otherwise not be accessible in reduced model systems (clusters). These include the stabilization of nascent charged fragments via microscopic solvation (notably, hydrogen bonding), transfer of charge (protons) between distant fragments mediated by solvent molecules, and solvent coordination to unsaturated metal centers. Furthermore, when weak interactions are involved, we show how conformational and solvation properties of organometallic complexes are also affected by the explicit inclusion of solvent molecules. Such extended model systems may be treated under periodic boundary conditions, thus removing the cluster/continuum (or vacuum) boundary, and require a statistical mechanics simulation technique to sample the accessible configurational space. First-principles molecular dynamics, in which atomic forces are computed from electronic structure calculations (namely, density

  8. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  9. Application of real-time polymerase chain reaction in the clinical genetic practice

    PubMed Central

    Nagy, Bálint

    2013-01-01

    The development of polymerase chain reaction revolutionized the molecular genetics and diagnostics. Technical improvements helped to make more specific and sensitive target determinations. Introduction of real-time polymerase chain reaction makes possible several applications in clinical genetics like detection of gene mutations, single nucleotide polymorphisms, deletions, measurement of gene expressions, micro ribonucleic acids, free nucleic acids and microbial genomes. Here I discuss a few examples for specific applications in prenatal clinical genetic practice. These are the detection of microbial genomes, deletions, trisomies, mutations, single nucleotide polymorphisms and free nucleic acids.

  10. Transition-Metal-Free Cross-Coupling of Indium Organometallics with Chromene and Isochroman Acetals Mediated by BF3·OEt2.

    PubMed

    Gil-Negrete, José M; Pérez Sestelo, José; Sarandeses, Luis A

    2016-09-01

    A transition-metal-free coupling of triorganoindium reagents with benzopyranyl acetals mediated by a Lewis acid has been developed. The reaction of R3In with chromene and isochroman acetals in the presence of BF3·OEt2 afforded 2-substituted chromenes and 1-substituted isochromans, respectively, in good yields. The reactions proceed with a variety of triorganoindium reagents (aryl, heteroaryl, alkynyl, alkenyl, alkyl) using only 50 mol % of the organometallic, thus demonstrating the efficiency of these species. Preliminary mechanistic studies indicate the formation of an oxocarbenium ion intermediate in the presence of the Lewis acid. PMID:27530143

  11. MCNP6 Simulation of Reactions of Interest to FRIB, Medical, and Space Applications

    NASA Astrophysics Data System (ADS)

    Mashnik, Stepan G.

    The latest production-version of the Los Alamos Monte Carlo N-Particle transport code MCNP6 has been used to simulate a variety of particle-nucleus and nucleus-nucleus reactions of academic and applied interest to research subjects at the Facility for Rare Isotope Beams (FRIB), medical isotope production, space-radiation shielding, cosmic-ray propagation, and accelerator applications, including several reactions induced by radioactive isotopes, analyzing production of both stable and radioactive residual nuclei. Here, we discuss examples of validation and verification of MCNP6 by comparing with recent neutron spectra measured at the Heavy Ion Medical Accelerator in Chiba, Japan; spectra of light fragments from several reactions measured recently at GANIL, France; INFN Laboratori Nazionali del Sud, Catania, Italy; COSY of the Jülich Research Center, Germany; and cross sections of products from several reactions measured lately at GSI, Darmstadt, Germany; ITEP, Moscow, Russia; and, LANSCE, LANL, Los Alamos, U.S.A. As a rule, MCNP6 provides quite good predictions for most of the reactions we analyzed so far, allowing us to conclude that it can be used as a reliable and useful simulation tool for various applications for FRIB, medical, and space applications involving stable and radioactive isotopes.

  12. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-01

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp2s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the 3E2 g, 2E2 g, 1A1 g, 2E1 g, and 3A2 g states, respectively. The magnetizations of the CoCp2 and NiCp2 energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  13. Tabletop Extreme Ultraviolet Spectroscopy of Element-Specific Organometallic Photophysics

    NASA Astrophysics Data System (ADS)

    Vura-Weis, Josh

    High-harmonic extreme ultraviolet (XUV) spectroscopy has the potential to provide the elemental, oxidation-state, and spin-state specificity of core-level spectroscopy with the convenience and ultrafast time resolution of tabletop laser sources. We will show that M-edge spectroscopy of first-row transition metal complexes (3p -->3d excitation) is a sensitive probe of the electronic structure of organometallic complexes in solution. Furthermore, this technique can be used to determine the relaxation dynamics of these molecules in the first few femtoseconds to nanoseconds after photoexcitation.

  14. Growth and characterization of an organometallic tri-allylthiourea complex nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Moorthy Babu, S.

    2008-04-01

    A novel family of allylthiourea metal complexes was identified for photonic applications with allylthiourea serving as a double ligand, and II (B) group metals were chosen as a co-ordination metal. This family belongs to an island-type organometallic category. A series of optically negative nonlinear optical (NLO) crystals (ATCC, ATCB, ATMC and ATMB) have been prepared. Their SHG efficiency was an order of magnitude higher than that of the well-known organic crystal, urea. The properties of allylthiourea complex with central atom Cd were compared with the crystals with another central atom Hg. The latter has longer transparency cut-off wavelength, higher thermal stability and SHG efficiencies. These organometallic tri-allylthiourea complex crystals were grown from the aqueous solution by temperature-lowering technique. Comprehensive studies of synthesis, solubility, crystal growth and the general properties including structural, spectral, optical and thermal properties were analyzed by conducting various characterization techniques. They were synthesized in the de-ionized water and the solubilities of each material were determined by employing thermogravimetric analysis. The growth conditions were analyzed in terms of the pH value of the mother solution because it plays a vital role during the growth. Their structural properties were examined by recording the powder X-ray diffraction pattern. The crystal formation and the metal co-ordination were confirmed by the spectral analysis. The transmission spectrum of these crystals shows a wide transparent UV-vis-NIR band. The thermal behavior of these complexes was studied from the thermal studies. Their NLO efficiencies were analyzed through the Kurt'z technique.

  15. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    SciTech Connect

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  16. Quantitative assignment of reaction directionality in constraint-based models of metabolism: Application to Escherichia coli

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Nasheuer, H.P.

    2009-01-01

    Constraint based modeling is an approach for quantitative prediction of net reaction flux in genome scale biochemical networks. In vivo, the second law of thermodynamics requires that net macroscopic flux be forward, when the transformed reaction Gibbs energy is negative. We calculate the latter by using (i) group contribution estimates of metabolite species Gibbs energy, combined with (ii) experimentally measured equilibrium constants. In an application to a genome scale stoichiometric model of E. coli metabolism, iAF1260, we demonstrate that quantitative prediction of reaction directionality is increased in scope and accuracy by integration of both data sources, transformed appropriately to in vivo pH, temperature and ionic strength. Comparison of quantitative versus qualitative assignment of reaction directionality in iAF1260, assuming an accommodating reactant concentration range of 0.02 – 20 mM, revealed that quantitative assignment leads to a low false positive, but high false negative, prediction of effectively irreversible reactions. The latter is partly due to the uncertainty associated with group contribution estimates. We also uncovered evidence that the high intracellular concentration of glutamate in E. coli may be essential to direct otherwise thermodynamically unfavorable essential reactions, such as the leucine transaminase reaction, in an anabolic direction. PMID:19783351

  17. Organometallically Anisotropic Growth of Ultralong Sb2Se3 Nanowires with Highly Enhanced Photothermal Response.

    PubMed

    Chen, Guihuan; Zhou, Jun; Zuo, Jian; Yang, Qing

    2016-02-01

    Ultralong orthorhombic Sb2Se3 nanowires have been successfully fabricated via an alternative facile organometallic synthetic route from the reaction of triphenylantimony(III) with dibenzyldiselenide in oleylamine at 180-240 °C without any other additives. The formation and growth mechanism of the Sb2Se3 nanowires is intensively investigated, and it is found that the anisotropic growth of the nanowires with almost constant diameters is resulted from the synergistic effects of the intrinsic property of the orthorhombic crystal structure and the weak binding assistance of oleylamine, and the length of the nanowires can be elongated easily by increasing reaction time in the synthetic route. Moreover, the photothermal response of the Sb2Se3 nanowires is first evaluated under illumination of UV light (320-390 nm), and it is especially noted that the Sb2Se3 nanowires exhibit highly enhanced photothermal responses (more than two times the intensity) as compared to the bulk Sb2Se3. In addition, the Sb2Se3 nanowires show excellent light-to-heat performance, which is superior to that of the nanostructured titanium dioxide and silicon powder under the same conditions. PMID:26744773

  18. Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers

    SciTech Connect

    Akyildiz, Halil I.; Mousa, Moataz Bellah M.; Jur, Jesse S.

    2015-01-28

    Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI process temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-O{sub x} product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions.

  19. Elucidation of the organometallic vapor phase epitaxial growth mechanism for InP

    NASA Technical Reports Server (NTRS)

    Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B.

    1987-01-01

    A new technique for tracing the organometallic vapor epitaxial growth is reported. The pyrolysis of PH3, alone and in the presence of trimethylindium (TMIn), and of TMIn alone was studied by conducting the epitaxial growth of InP in D2 as the carrier gas, tracing growth reactions by mass spectrometric analysis of the product molecules. The TMIn alone pyrolyzes mostly homogeneously in the gas phase, while the PH3 pyrolysis is completely heterogeneous at the InP surface. Adding TMIn to PH3 results in a dramatic decrease in the pyrolysis temperature. PH3 molecules which interact with TMIn in the gas phase pyrolyze at temperatures as low as 250, and those decomposing without TMIn interaction pyrolyze at temperatures approximately 200 C higher. Similarly, the presence of PH3 lowers the TMIn pyrolysis temperature by at least 50 C. TMIn alone in D2 produces mainly CH3D molecules. For high PH3:TMIn ratios, CH4 is the only carbon-containing reaction product.

  20. Polymeric Micelle-Mediated Delivery of DNA-Targeting Organometallic Complexes for Resistant Ovarian Cancer Treatment.

    PubMed

    Duan, Xiaopin; Liu, Demin; Chan, Christina; Lin, Wenbin

    2015-08-26

    Three half-sandwich iridium and ruthenium organometallic complexes with high cytotoxicity are synthesized, and their anticancer mechanisms are elucidated. The organometallic complexes can interact with DNA through coordination or intercalation, thereby inducing apoptosis and inhibiting proliferation of resistant cancer cells. The organometallic complexes are then incorporated into polymeric micelles through the polymer-metal coordination between poly(ethylene glycol)-b-poly(glutamic acid) [PEG-b-P(Glu)] and organometallic complexes to further enhance their anticancer effects as a result of the enhanced permeability and retention effect. The micelles with particle sizes of ≈60 nm are more efficiently internalized by cancer cells than the corresponding complexes, and selectively dissociate and release organometallic anticancer agents within late endosomes and lysosomes, thereby enhancing drug delivery to the nuclei of cancer cells and facilitating their interactions with DNA. Thus, the micelles display higher antitumor activity than the organometallic complexes alone with a lack of the systemic toxicity in a mouse xenograft model of cisplatin-resistant human ovarian cancer. These results suggest that the polymeric micelles carrying anticancer organometallic complexes provide a promising platform for the treatment of resistant ovarian cancer and other hard-to-treat solid tumors. PMID:25963931

  1. Kinetics of the hydrogen abstraction OH + alkane --> H2O + alkyl reaction class: an application of the reaction class transition state theory.

    PubMed

    Huynh, Lam K; Ratkiewicz, Artur; Truong, Thanh N

    2006-01-19

    This paper presents an application of the reaction class transition state theory (RC-TST) to predict thermal rate constants for hydrogen abstraction reactions of the type OH + alkane --> HOH + alkyl. We have derived all parameters for the RC-TST method for this reaction class from rate constants of 19 representative reactions, coupling with linear energy relationships (LERs), so that rate constants for any reaction in this class can be predicted from its reaction energy calculated at either the AM1 semiempirical or BH&HLYP/cc-pVDZ level of theory. The RC-TST/LER thermal rate constants for selected reactions are in good agreement with those available in the literature. Detailed analyses of the results show that the RC-TST/LER method is an efficient method for accurately estimating rate constants for a large number of reactions in this class. Analysis of the LERs leads to the discovery of the beta-carbon radical stabilization effect that stabilizes the transition state of any reaction in this class that yields products having one or more beta-carbons, and thus leads to the lower barrier for such a reaction. PMID:16405319

  2. Organometallic Silicon-Containing Dendrimers and Their Electrochemical Applications

    NASA Astrophysics Data System (ADS)

    Cuadrado, Isabel

    Dendrimers constitute a unique class of macromolecular architectures that differs from all other synthetic macromolecules in its perfectly branched topology, which is constructed from a multifunctional central core and expands to the periphery that becomes denser with increasing generation number (see Chapter 1) [1-5]. Since the pioneering works published in the late 1970s and the mid-1980s [6-8], the design and synthesis of these tree-like, well-defined molecules, which exhibit a unique combination of chemical and physical properties, is a field which has sustained dramatic growth and has generated enthusiastic studies at the frontiers of organic, inorganic, supramolecular and polymer chemistry, and more recently in the fields of nanoscience, biotechnology and medicine [1-5, 9, 10]. Whereas the initial interest in dendrimers was focused on the synthetic and structural characterization challenges that pose their fractal geometries, nanometer sizes and monodisperse nature, in the last decade the emphasis has been placed mainly on modification of the properties of dendritic molecules by their functionalization

  3. Novel Two- and Three-Dimensional Organometallic-Organic Hybrid Materials Based on Polyphosphorus Complexes.

    PubMed

    Attenberger, Bianca; Peresypkina, Eugenia V; Scheer, Manfred

    2015-07-20

    The reaction of the silver salt Ag[Al{OC(CF3)3}4] (1) with the P2 ligand complex [Cp2Mo2(CO)4(η(2)-P2)] (2) and the organic ditopic linker trans-1,2-di(pyridine-4-yl)ethene (dpe) results in the formation of four novel organometallic-organic hybrid compounds. Depending on the reaction conditions, the two-dimensional networks [{Cp2Mo2(CO)4(μ4,η(1:1:2:2)-P2)}(μ,η(1:1)-C12H10N2)Ag]n[Al{OC(CF3)3}4]n·0.075nCH2Cl2·1.425nC6H6 (3) and [{Cp2Mo2(CO)4(μ3,η(2:2:2)-P2)}2(μ,η(1:1)-C12H10N2)3Ag2]n[Al{OC(CF3)3}4]2n·2nC7H8 (4) are accessible. The latter shows a two-dimensional (2D) → 2D interpenetration structure. Furthermore, the formation of a unique three-dimensional polymer [{Cp2Mo2(CO)4(μ4,η(1:1:2:2)-P2)}(μ,η(1:1)-C12H10N2)Ag]n[Al{OC(CF3)3}4]n·0.3nCH2Cl2 (5b) together with another 2D polymer [{Cp2Mo2(CO)4(μ4,η(1:1:2:2)-P2)}(μ,η(1:1)-C12H10N2)3Ag2]n[Al{OC(CF3)3}4]2n·0.75CH2Cl2·0.5C7H8 (5a) was observed. In three of these polymers, unprecedented organometallic nodes were realized including one, two, or even four silver cations. All products were characterized by X-ray structural analysis and classified by the structural characteristics in three different network topologies. PMID:26121218

  4. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  5. Nitrogen adduction by three coordinate group 10 organometallic cations: platinum is favoured over nickel and palladium.

    PubMed

    Woolley, Matthew J; Khairallah, George N; Donnelly, Paul S; O'Hair, Richard A J

    2011-07-30

    Previous studies have shown that highly reactive product ions formed by collision-induced dissociation (CID) of precursor ions generated via electrospray can readily react with residual solvent or drying gases, especially in ion trap mass spectrometers. Here we report on the rapid addition of nitrogen to the coordinatively unsaturated organoplatinum cation, [(phen)Pt(CH(3))](+) (phen=1,10-phenanthroline) formed via decarboxylation of the acetate complex [(phen)Pt(O(2) CCH(3))](+). This contrasts with the related coordinatively unsaturated group 10 cations: addition of nitrogen to [(phen)Pd(CH(3))](+) occurs at longer reaction times, whereas addition of nitrogen to [(phen)Ni(CH(3))](+) is virtually non-existent. To better understand these reactions, density functional theory (DFT) calculations were carried out at the B3LYP/SDD6-31+G(d) level of theory to determine the N(2)-binding energies of [(phen)M(CH(3))](+). [(phen)Pt(CH(3))](+) has a higher binding energy to N(2) (1.06 eV) than either [(phen)Ni(CH(3))](+) (0.61 eV) or [(phen)Pd(CH(3))](+) (0.66 eV), consistent with the experimental ease of addition of nitrogen to the coordinatively unsaturated organometallic complexes, [(phen)M(CH(3))](+). Finally, [(phen)M(CH(3))](+) are reactive to other background gases, forming [(phen)M(O(2))](.+) (for M=Ni) in reactions with oxygen and undergoing water addition (for M=Ni, Pd and Pt) and water addition/CH(4) elimination reactions to yield [(phen)M(OH)](+) (for M=Ni and Pt). PMID:21698691

  6. A Stopped-Flow Apparatus with Light-Scattering Detection and Its Application to Biochemical Reactions

    PubMed Central

    Riesner, Detlev; Buenemann, Hans

    1973-01-01

    A stopped-flow apparatus utilizing light-scattering for following the progress of a reaction is described. The method is applicable to all reactions that result in a significant change of the average molecular weight. It was possible due to several modifications of a conventional stopped-flow system to obtain a sensitivity comparable to that of commercial instruments for static light-scattering measurements. Experiments on three reactions are reported: association and dissociation of mercury ligands with DNA, dissociation of the dimers of DNA-dependent RNA polymerase, and complex formation of tRNASer (yeast) with the cognate aminoacyl-tRNA synthetase. The changes in the intensities of the scattered light are calculated and compared with the measured amplitudes. PMID:4577138

  7. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications.

    PubMed

    Hazer, Baki; Steinbüchel, Alexander

    2007-02-01

    A wide range of diverse polyhydroxyalkanoates, PHAs, is currently available due to the low substrate specificity of PHA synthases and subsequent modifications by chemical reactions. These polymers are promising materials for a number of different applications due to their biocompatibility and biodegradability. This review summarizes the large variability of PHAs regarding chemical structure and material properties that can be currently produced. In the first part, in vivo and in vitro biosynthesis processes for production of a large variety of different PHAs will be summarized with regard to obtaining saturated and unsaturated copolyesters and side chain functionalized polyesters, including brominated, hydroxylated, methyl-branched polyesters, and phenyl derivatives of polyesters. In the second part, established chemical modifications of PHAs will be summarized as that by means of grafting reactions and graft/block copolymerizations, as well as by chlorination, cross-linking, epoxidation, hydroxylation, and carboxylation, reactions yield further functionalized PHAs. PMID:17146652

  8. Metathesis of alkanes and related reactions.

    PubMed

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  9. The use of low energy, ion induced nuclear reactions for proton radiotherapy applications

    SciTech Connect

    Horn, K.M.; Doyle, B.; Segal, M.N.; Hamm, R.W.; Adler, R.J.; Glatstein, E.

    1995-04-01

    Medical radiotherapy has traditionally relied upon the use of external photon beams and internally implanted radioisotopes as the chief means of irradiating tumors. However, advances in accelerator technology and the exploitation of novel means of producing radiation may provide useful alternatives to some current modes of medical radiation delivery with reduced total dose to surrounding healthy tissue, reduced expense, or increased treatment accessibility. This paper will briefly overview currently established modes of radiation therapy, techniques still considered experimental but in clinical use, innovative concepts under study that may enable new forms of treatment or enhance existing ones. The potential role of low energy, ion-induced nuclear reactions in radiotherapy applications is examined specifically for the 650 keV d({sup 3}He,p){sup 4}He nuclear reaction. This examination will describe the basic physics associated with this reaction`s production of 17.4 MeV protons and the processes used to fabricate the necessary materials used in the technique. Calculations of the delivered radiation dose, heat generation, and required exposure times are presented. Experimental data are also presented validating the dose calculations. The design of small, lower cost ion accelerators, as embodied in `nested`-tandem and radio frequency quadrupole accelerators is examined, as is the potential use of high-output {sup 3}He and deuterium ion sources. Finally, potential clinical applications are discussed in terms of the advantages and disadvantages of this technique with respect to current radiotherapy methods and equipment.

  10. Applications of derivatization reactions to trace organic compounds during sample preparation based on pressurized liquid extraction.

    PubMed

    Carro, Antonia M; González, Paula; Lorenzo, Rosa A

    2013-06-28

    Pressurized liquid extraction (PLE) is an exhaustive technique used for the extraction of analytes from solid samples. Temperature, pressure, solvent type and volume, and the addition of other reagents notably influence the efficiency of the extraction. The analytical applications of this technique can be improved by coupling with appropriate derivatization reactions. The aim of this review is to discuss the recent applications of the sequential combination of PLE with derivatization and the approaches that involve simultaneous extraction and in situ derivatization. The potential of the latest developments to the trace analysis of environmental, food and biological samples is also analyzed. PMID:23714360

  11. Application of biochemical interactions in fossil fuels

    SciTech Connect

    Lin, M.S.; Premuzic, E.T.

    1994-12-31

    Certain extreme environments tolerant microorganisms interact with heavy crude oils by means of multiple biochemical reactions, asphaltenes, and bituminous materials. These reactions proceed via pathways which involve characteristic components of oils and coals such as asphaltenes, and in the chemically related constituents found in bituminous coals. These chemical components serve as markers of the interactions between microorganisms and fossil fuels. Studies in which temperature, pressure, and salinity tolerant microorganisms have been allowed to interact with different crude oils and bituminous coals, have shown that biochemically induced changes occur in the distribution of hydrocarbons and in the chemical nature of organometallic and heterocyclic compounds. Such structural chemical rearrangements have direct applications in monitoring the efficiency, the extent, and the chemical nature of the fossil fuels bioconversion. Recent developments of chemical marker applications in the monitoring of fossil fuels bioconversion will be discussed.

  12. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis. Progress report, March 15, 1988--July 14, 1989

    SciTech Connect

    Marks, T.J.

    1990-02-01

    The goal of our program is to define those modes of interaction that take place between organometallic molecules and inorganic surfaces and, ultimately, to correlate various molecule-surface structures with catalytic properties.

  13. A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms

    EPA Science Inventory

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

  14. Lower limb ice application alters ground reaction force during gait initiation

    PubMed Central

    Muniz, Thiago B.; Moraes, Renato; Guirro, Rinaldo R. J.

    2015-01-01

    BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities. PMID:25993625

  15. Flat Chern band in a two-dimensional organometallic framework.

    PubMed

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a "romance of flatland" could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology. PMID:23521279

  16. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a “romance of flatland” could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  17. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band, namely the flat chern band (FCB), has recently been proposed, in which carriers experience strong Coulomb interaction as well as topological frustration that in together spawn unprecedented topological strongly-correlated electronic states, such as high-temperature fractional quantum hall state. Despite the proposal of several theoretical lattice models, however, it remains a doubt whether such a ``romance of flatland'' could exist in a real material. Here, we present a first-principles design to realize a nearly FCB right around the Fermi level in a two-dimensional (2D) Indium-Phenylene Organometallic Framework (IPOF). Our design in addition provides a general strategy to synthesize topologically nontrivial materials in virtue of organic chemistry and nanotechnology. Supported by DOE-BES and ARL

  18. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    SciTech Connect

    Nawa, Kenji Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp{sub 2}s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the {sup 3}E{sub 2g}, {sup 2}E{sub 2g}, {sup 1}A{sub 1g}, {sup 2}E{sub 1g}, and {sup 3}A{sub 2g} states, respectively. The magnetizations of the CoCp{sub 2} and NiCp{sub 2} energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  19. Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger

    2016-02-18

    Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis. PMID:26799241

  20. Scalable Synthesis of Piperazines Enabled by Visible-Light Irradiation and Aluminum Organometallics

    PubMed Central

    Suárez-Pantiga, Samuel; Colas, Kilian; Johansson, Magnus J; Mendoza, Abraham

    2015-01-01

    The development of more active C–H oxidation catalysts has inspired a rapid, scalable, and stereoselective assembly of multifunctional piperazines through a [3+3] coupling of azomethine ylides. A combination of visible-light irradiation and aluminum organometallics is essential to promote this transformation, which introduces visible-light photochemistry of main-group organometallics and sets the basis for new and promising catalysts. PMID:26337253

  1. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  2. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  3. Organometallic Probe for the Electronics of Base-Stabilized Group 11 Metal Cations.

    PubMed

    Braunschweig, Holger; Ewing, William C; Kramer, Thomas; Mattock, James D; Vargas, Alfredo; Werner, Christine

    2015-08-24

    A number of trimetalloborides have been synthesized through the reactions of base-stabilized coinage metal chlorides with a dimanganaborylene lithium salt in the hope of using this organometallic platform to compare and evaluate the electronics of these popular coinage metal fragments. The adducts of Cu(I), Ag(I), and Au(I) ions, stabilized by tricyclohexylphosphine (PCy3), N-1,3-bis(4-methylphenyl)imidazol-2-ylidene (ITol), or 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene (CAAC), with [{Cp(CO)2Mn}2B](-) were studied spectroscopically, structurally, and computationally. The geometries of the adducts fall into two classes, one symmetric and one asymmetric, each relying on the combined characteristics of both the metal and ligand. The energetic factors proposed as the causes of the structural differences were investigated by ETS-NOCV (extended transition state-natural orbitals for chemical valence) analysis, which showed the final geometry to be controlled by the competition between the tendency of the coinage metal to adopt a higher or lower coordination number and the willingness of the cationic fragment to participate in back-bonding interactions. PMID:26178571

  4. Electromagnetic absorption and conductivity of organometallic TiOx-Py plasma compounds

    NASA Astrophysics Data System (ADS)

    González-Salgado, Francisco; Olayo, Maria Guadalupe; García-Rosales, Genoveva; Gómez, Lidia Maria; González-Torres, Maribel; Cruz, Guillermo J.

    2016-05-01

    Organometallic compounds made of titanium oxide (TiOx) and pyrrole (Py) were synthesized by plasma to combine the photoelectronic activity of TiO and Py in hybrid materials with potential use in photostimulated processes as photoelectronic devices in pollutant degradation or in solar photocollectors. The Ti precursors were based on titanium tetrapropoxide combined with Py in 1:1 mass ratio in a vacuum tubular glass reactor under resistive electrical glow discharges of water vapor plasmas. The TiOx-Py hybrid compounds with x in the 2.75-3.55 interval absorbed electromagnetic radiation in two regions with different intensities. The first and most intense one was from approximately 190 to 350 nm and the other from roughly 350 to 900 nm, which indicates that in the first interval, the TiO fraction dominates the absorption and that the activity of the second region belonged to Py segments. The electrical conductivity was in the (10-6-10-10) S/m interval with activation energy in the (0.015-2.42) eV range, depending on the reaction time and synthesis conditions.

  5. Entrapment of an organometallic complex within a metal: a concept for heterogeneous catalysis.

    PubMed

    Yosef, Itzik; Abu-Reziq, Raed; Avnir, David

    2008-09-10

    A novel family of composite materials, organically doped metals, has been recently introduced. Here, we demonstrate their use as a new platform for heterogeneous catalysis, namely the doping of a metal with a catalytic organometallic complex. Specifically, a rhodium(I) catalyst, (RhCl(COD)(Ph2P(C6H4SO3Na))), ([Rh]), was physically entrapped within silver, thus creating a new type of catalytic material: [Rh]@Ag. Several aspects were demonstrated with the development of this heterogeneous catalyst: a metal can be used as a support for heterogenizing a homogeneous catalyst; the homogeneous catalyst is stabilized by the entrapment within the metal; the products of the composite catalyst are different compared to those obtained from the homogeneous one; and the adsorption of [Rh] on the surface of Ag and its entrapment are very different processes only the latter provided appreciable catalytic activity. Thus, while homogeneous [Rh] was entirely destroyed after converting styrene to ethylbenzne at 50%, [Rh]@Ag remained active after effecting the same reaction to a yield of 85% (compared to only 7% for [Rh] adsorbed on Ag), and while homogeneous [Rh] hydrogenated diphenylacetylene to bibenzyl (and was completely deactivated after one cycle) with no trace of cis-stilbene, [Rh]@Ag afforded that compound as the main product and could be reused. PMID:18702492

  6. Time resolved infrared studies of C-H bond activation by organometallics

    SciTech Connect

    Asplund, M.C. |

    1998-06-01

    This work describes how step-scan Fourier Transform Infrared spectroscopy and visible and near infrared ultrafast lasers have been applied to the study of the photochemical activation of C-H bonds in organometallic systems, which allow for the selective breaking of C-H bonds in alkanes. The author has established the photochemical mechanism of C-H activation by Tp{sup *}Rh(CO){sub 2}(Tp{sup *} = HB-Pz{sup *}{sub 3}, Pz = 3,5-dimethylpyrazolyl) in alkane solution. The initially formed monocarbonyl forms a weak solvent complex, which undergoes a change in Tp{sup *} ligand connectivity. The final C-H bond breaking step occurs at different time scales depending on the structure of the alkane. In linear solvents, the time scale is <50 ns and cyclic alkanes is {approximately}200 ps. The reactivity of the Tp{sup *}Rh(CO){sub 2} system has also been studied in aromatic solvents. Here the reaction proceeds through two different pathways, with very different time scales. The first proceeds in a manner analogous to alkanes and takes <50 ns. The second proceeds through a Rh-C-C complex, and takes place on a time scale of 1.8 {micro}s.

  7. Development of ultrafast photochromic organometallics and photoinduced linkage isomerization of arene chromium carbonyl derivatives.

    PubMed

    To, Tung T; Heilweil, Edwin J; Duke, Charles B; Ruddick, Kristie R; Webster, Charles Edwin; Burkey, Theodore J

    2009-03-26

    We review recent studies of processes relevant to photoinduced linkage isomerization of organometallic systems with the goal of preparing organometallics with an efficient and ultrafast photochromic response. The organometallic system thus corresponds to two linkage isomers with different electronic environments that are responsible for different optical properties. Much of this work has focused on examining processes following irradiation of cyclopentadienyl manganese tricarbonyl derivatives (compounds 3-21) including solvent coordination, thermal relaxation, solvent displacement by tethered functional groups (chelation), dissociation of tethered functional groups, and linkage isomerization. A new platform is investigated for obtaining a photochromic response in new experiments with arene chromium dicarbonyl complexes. A photochromic response is observed for arene chromium dicarbonyl complexes with tethered pyridine and olefin functional groups based on light-driven linkage isomerization on the nanosecond time scale. Irradiation at 532 nm of 23 ([Cr{eta(6)-C(6)H(5)CH(2-Py-kappaN)CH(2)CH=CH(2)}(CO)(2)]) (Py = pyridine) results in the isomerization to 22 ([Cr{eta(6)-C(6)H(5)CH(2-Py)CH(2)-eta(2)-CH=CH(2)}(CO)(2)]), and 355 nm irradiation isomerizes 22 to 23. The ultrafast linkage isomerization has been investigated at room temperature in n-heptane solution on the picosecond to microsecond time scale with UV- or visible-pump and IR-probe transient absorption spectroscopy by comparing the dynamics with model compounds containing only a tethered pyridine. Irradiation of 24 ([Cr{eta(6)-C(6)H(5)(CH(2))(3)(2-Py)}(CO)(3)]) and 25 ([Cr{eta(6)-C(6)H(5)(CH(2))(2)(2-Py)}(CO)(3)]) at 289 nm induces CO loss to immediately yield a Cr-heptane solvent coordinated intermediate of the unsaturated Cr fragment, which then converts to the kappaN(1)-pyridine chelate within 200 and 100 ns, respectively. Irradiation of 26 ([Cr{eta(6)-C(6)H(5)CH(2)(2-Py)}(CO)(3)]) also induces CO loss to

  8. Statistical theory of light-nucleus reactions and application to the 9Be (p,xn) reaction

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojun; Zhang, Jingshang

    2016-01-01

    A statistical theory of light nucleus reactions (STLN) is proposed to describe both neutron and light charged particle induced nuclear reactions with 1 p -shell light nuclei involved. The dynamics of STLN is described by the unified Hauser-Feshbach and exciton model, in which the angular momentum and parity conservations are strictly considered in equilibrium and pre-equilibrium processes. The Coulomb barriers of the incoming and outgoing charged particles, which significantly influence the open channels of the reaction, can be reasonably considered in the incident channel and different outgoing channels. In kinematics, the recoiling effects in various emission processes are strictly taken into account. The analytical double-differential cross sections of the reaction products in sequential and simultaneous emission processes are obtained in terms of the new integral formula proposed in our recent paper [Phys. Rev. C 92, 061601(R) (2015), 10.1103/PhysRevC.92.061601]. Taking the 9Be(p ,x n ) reaction as an example, we calculate the double-differential cross sections of outgoing neutrons and charged particles using the punf code in the frame of STLN. The existing experimental double-differential cross sections of neutrons at Ep=18 MeV can be remarkably well reproduced, which indicates that the punf code is a powerful tool to set up "file-6" in the reaction data library for light charged particle induced nuclear reactions with 1 p -shell light nuclei involved.

  9. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures

    SciTech Connect

    Fan, Qitang; Wang, Tao; Zhu, Junfa; Liu, Liming; Zhao, Jin; Gottfried, J. Michael

    2015-03-14

    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ∼140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C–Br bonds and formation of C–Cu–C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.

  10. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures

    NASA Astrophysics Data System (ADS)

    Fan, Qitang; Wang, Tao; Liu, Liming; Zhao, Jin; Zhu, Junfa; Gottfried, J. Michael

    2015-03-01

    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ˜140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C-Br bonds and formation of C-Cu-C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.

  11. Application of a Particle Method to the Advection-Diffusion-Reaction Equation

    NASA Astrophysics Data System (ADS)

    Paster, A.; Bolster, D.; Benson, D. A.

    2012-12-01

    -known phenomena of incomplete mixing (Ovchinnikov-Zeldovich segregation). The numerical results of the particle-tracking simulations are compared to an approximate analytical solution and the late time discrepancy is explained. We also study, for a two dimensional system, how shear flow effects the reaction rate. We do so since shear flow is the simplest form of a spatially variable advection. For the shear flow system, we find that shear flow leads to better mixing of the system on one hand, and a surprising one dimensional segregation at late times, on the other hand. This is in contrast with zero-advection two-dimensional system, where the late time behavior is characterized by the formation of two-dimensional islands. References (Manuscripts in submission): Paster A., D. Bolster and D.A. Benson. Connecting the dots: application of a particle method to the diffusion-reaction equation. Submitted to Advances in Water Resources. Paster A., D. Bolster and D.A. Benson. Particle Tracking and the Diffusion-Reaction Equation. Submitted to Water Resources Research.

  12. Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films

    NASA Technical Reports Server (NTRS)

    Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1993-01-01

    A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

  13. Transition metal mediated [(11) C]carbonylation reactions: recent advances and applications.

    PubMed

    Kealey, Steven; Gee, Antony; Miller, Philip W

    2014-04-01

    [(11) C]Carbon monoxide is undoubtedly a highly versatile radiolabelling synthon with many potential applications for the synthesis of positron emission tomography (PET) tracer molecules and functional groups, but why has it not found more applications in the PET radiolabelling arena? Today, (11) CO radiolabelling is still primarily viewed as a niche area; however, there are signs that this is beginning to change as some of the technical and chemistry challenges of producing, handling and reacting (11) CO are overcome. This mini review covers the more recent developments of (11) CO-labelling chemistry and is focused on palladium and rhodium-mediated carbonylation reactions that are growing in importance and finding wider application for carbon-11 PET radiotracer development. PMID:24425679

  14. A broadly applicable and practical oligomeric (salen) Co catalyst for enantioselective epoxide ring-opening reactions

    PubMed Central

    White, David E.; Tadross, Pamela M.; Lu, Zhe

    2014-01-01

    The (salen) Co catalyst (4a) can be prepared as a mixture of cyclic oligomers in a short, chromatography-free synthesis from inexpensive, commercially available precursors. This catalyst displays remarkable enhancements in reactivity and enantioselectivity relative to monomeric and other multimeric (salen) Co catalysts in a wide variety of enantioselective epoxide ring-opening reactions. The application of catalyst 4a is illustrated in the kinetic resolution of terminal epoxides by nucleophilic ring-opening with water, phenols, and primary alcohols; the desymmetrization of meso epoxides by addition of water and carbamates; and the desymmetrization of oxetanes by intramolecular ring opening with alcohols and phenols. The favorable solubility properties of complex 4a under the catalytic conditions facilitated mechanistic studies, allowing elucidation of the basis for the beneficial effect of oligomerization. Finally, a catalyst selection guide is provided to delineate the specific advantages of oligomeric catalyst 4a relative to (salen) Co monomer 1 for each reaction class. PMID:25045188

  15. High-Valent Organometallic Copper and Palladium in Catalysis

    PubMed Central

    Hickman, Amanda J.; Sanford, Melanie S.

    2015-01-01

    Preface Copper and palladium catalysts are critically important for numerous commercial chemical processes. Improvements in the activity, selectivity, and scope of these catalysts have the potential to dramatically reduce the environmental impact and increase the sustainability of chemical reactions. One rapidly emerging strategy to achieve these goals is to exploit “high-valent” copper and palladium intermediates in catalysis. This review describes exciting recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations. PMID:22498623

  16. Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes

    PubMed Central

    Hu, Hao; Yang, Weitao

    2013-01-01

    Determining the free energies and mechanisms of chemical reactions in solution and enzymes is a major challenge. For such complex reaction processes, combined quantum mechanics/molecular mechanics (QM/MM) method is the most effective simulation method to provide an accurate and efficient theoretical description of the molecular system. The computational costs of ab initio QM methods, however, have limited the application of ab initio QM/MM methods. Recent advances in ab initio QM/MM methods allowed the accurate simulation of the free energies for reactions in solution and in enzymes and thus paved the way for broader application of the ab initio QM/MM methods. We review here the theoretical developments and applications of the ab initio QM/MM methods, focusing on the determination of reaction path and the free energies of the reaction processes in solution and enzymes. PMID:24146439

  17. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    SciTech Connect

    Casey, Charles P

    2012-11-14

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton from an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to

  18. Imparting Catalyst-Control upon Classical Palladium-Catalyzed Alkenyl C–H Bond Functionalization Reactions

    PubMed Central

    Sigman, Matthew S.; Werner, Erik W.

    2011-01-01

    Conspectus The functional group transformations carried out by the palladium-catalyzed Wacker and Heck reactions are radically different, but they are both alkenyl C-H bond functionalization reactions that have found extensive use in organic synthesis. The synthetic community depends heavily on these important reactions, but selectivity issues arising from control by the substrate, rather than control by the catalyst, have prevented the realization of their full potential. Because of important similarities in the respective selectivity-determining nucleopalladation and β-hydride elimination steps of these processes, we posit that the mechanistic insight garnered through the development of one of these catalytic reactions may be applied to the other. In this Account, we detail our efforts to develop catalyst-controlled variants of both the Wacker oxidation and the Heck reaction to address synthetic limitations and provide mechanistic insight into the underlying organometallic processes of these reactions. In contrast to previous reports, we discovered that electrophilic palladium catalysts with non-coordinating counterions allowed for the use of a Lewis basic ligand to efficiently promote TBHP-mediated Wacker oxidation reactions of styrenes. This discovery led to the mechanistically guided development of a Wacker reaction catalyzed by a palladium complex with a bidentate ligand. This ligation may prohibit coordination of allylic heteroatoms, thereby allowing for the application of the Wacker oxidation to substrates that were poorly behaved under classical conditions. Likewise, we unexpectedly discovered that electrophilic Pd-σ-alkyl intermediates are capable of distinguishing between electronically inequivalent C–H bonds during β-hydride elimination. As a result, we have developed E-styrenyl selective oxidative Heck reactions of previously unsuccessful electronically non-biased alkene substrates using arylboronic acid derivatives. The mechanistic insight gained

  19. Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.

    PubMed

    Brüggemann, O

    2001-08-01

    Molecular imprinting is a way of creating polymers bearing artificial receptors. It allows the fabrication of highly selective plastics by polymerizing monomers in the presence of a template. This technique primarily had been developed for the generation of biomimetic materials to be used in chromatographic separation, in extraction approaches and in sensors and assays. Beyond these applications, in the past few years molecular imprinting has become a tool for producing new kinds of catalysts. For catalytic applications, the template must be chosen, so that it is structurally comparable with the transition state (a transition state analogue, TSA) of a reaction, or with the product or substrate. The advantage of using these polymeric catalysts is obvious: the backbone withstands more aggressive conditions than a bio material could ever survive. Results are presented showing the applicability of a molecularly imprinted catalyst in different kinds of chemical reactors. It is demonstrated that the catalysts can be utilized not only in batch but also in continuously driven reactors and that their performance can be improved by means of chemical reaction engineering. PMID:11429307

  20. Pd-N-Heterocyclic Carbene (NHC) Organic Silica: Synthesis and Application in Carbon-Carbon Coupling Reactions

    EPA Science Inventory

    The first Pd-N-heterocyclic carbene (NHC) complex in the form of organic silica was prepared using sol-gel method and its application in Heck and Suzuki reaction were demonstrated. These C-C coupling reactions proceeded efficiently under the influence of microwave irradiation, wi...

  1. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications.

    PubMed

    Zhang, Shaoguang; Zhang, Wen-Xiong; Xi, Zhenfeng

    2015-07-21

    Semibullvalene (SBV) and its aza analogue 2,6-diazasemibullvalene (NSBV) are theoretically interesting and experimentally challenging organic molecules because of four unique features: highly strained ring systems, intramolecular skeletal rearrangement, extremely rapid degenerate (aza-)Cope rearrangement, and the predicted existence of neutral homoaromatic delocalized structures. SBV has received much attention in the past 50 years. In contrast, after NSBV was predicted in 1971 and the first in situ synthesis was realized in 1982, no progress on NSBV chemistry was made until our results in 2012. We have been interested in the reaction chemistry of 1,4-dilithio-1,3-butadienes (dilithio reagents for short), especially for their applications in the synthesis of SBV and NSBV, because (i) the cyclodimerization of dilithio reagents could provide the potential eight-carbon skeleton of SBV from four-carbon butadiene units and (ii) the insertion reaction of dilithio reagents with C≡N bonds of two nitriles could provide a 6C + 2N skeleton that might be a good precursor for the synthesis of NSBV. Therefore, we initiated a journey into the synthesis and reaction chemistry of SBV and NSBV starting from dilithio reagents that has been ongoing since 2006. In this Account, we outline mainly our recent achievements in the synthesis, structural characterization, reaction chemistry, synthetic application, and theoretical/computational analysis of NSBV. Two efficient strategies for the synthesis of NSBV from dilithio reagents and nitriles via oxidant-induced C-N bond formation are described. Structural investigations of NSBV, including X-ray crystal structure analysis, determination of the activation barrier for the aza-Cope rearrangement, and theoretical analysis, show that the localized structure of NSBV is the predominant form and that the homoaromatic delocalized structure exists as a minor component in the equilibrium. We also discuss the reaction chemistry and synthetic

  2. 103Rh NMR spectroscopy and its application to rhodium chemistry.

    PubMed

    Ernsting, Jan Meine; Gaemers, Sander; Elsevier, Cornelis J

    2004-09-01

    Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided. PMID:15307053

  3. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α)14C reaction

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Spitaleri, C.; Tang, X. D.; Guardo, G. L.; Lamia, L.; Cherubini, S.; Bucher, B.; Burjan, V.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; Lamm, L.; La Cognata, M.; Li, C.; Ma, C.; Mrazek, J.; Mukhamedzhanov, A. M.; Notani, M.; O'Brien, S.; Pizzone, R. G.; Rapisarda, G. G.; Roberson, D.; Sergi, M. L.; Tan, W.; Thompson, I. J.; Wiescher, M.

    2014-03-01

    The reaction 17O(n, α)14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  4. Sample treatment in chromatography-based speciation of organometallic pollutants.

    PubMed

    Gómez-Riza, J L; Morales, E; Giráldez, I; Sánchez-Rodas, D; Velasco, A

    2001-12-14

    Speciation analysis is nowadays performed routinely in many laboratories to control the quality of the environment, food and health. Chemical speciation analyses generally include the study of different oxidation state of elements or individual organometallic compounds. The determination of the different chemical forms of elements is still an analytical challenge, since they are often unstable and concentrations in different matrices of interest are in the microg l(-1) or even in the ng l(-1) range (e.g., estuarine waters) or ng g(-1) in sediments and biological tissues. For this reason, sensitive and selective analytical atomic techniques are being used as available detectors for speciation, generally coupled with chromatography for the time-resolved introduction of analytes into the atomic spectrometer. The complexity of these instrumental couplings has a straightforward consequence on the duration of the analysis, but sample preparation to separate and transfer the chemical species present in the sample into a solution to be accepted readily by a chromatographic column is the more critical step of total analysis, and demands considerable operator skills and time cost. Traditionally, liquid-liquid extraction has been employed for sample treatment with serious disadvantages, such as consumption, disposal and long-term exposure to organic solvent. In addition, they are usually cumbersome and time-consuming. Therefore, the introduction of new reagents such as sodium tetraethylborate for the simultaneous derivatization of several elements has been proposed. Other possibilities are based in the implementation of techniques for efficient and accelerated isolation of species from the sample matrix. This is the case for microwave-assisted extraction, solid-phase extraction and microextraction, supercritical fluid extraction or pressurized liquid extraction, which offer new possibilities in species treatment, and the advantages of a drastic reduction of the extraction

  5. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  6. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    SciTech Connect

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  7. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    SciTech Connect

    Jung, J; Yoon, D; Shin, H; Kim, M; Suh, T

    2015-06-15

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show that the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  8. InAsBi alloys grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Huang, K. T.; Chiu, C. T.; Cohen, R. M.; Stringfellow, G. B.

    1993-11-01

    InAsBi is a III/V alloy with potential application for detectors in the 8-12 μm region of the spectrum. Growth of InAs 1- xBi x, with x ≤ 0.054, at 350°C by atmospheric pressure organometallic vapor phase epitaxy has been made possible by using a new combination of precursors, ethyldimethylindium (EDMIn), tertiarybutylarsine (TBAs) and trimethylbismuth (TMBi). Results were obtained using a V/III ratio between 21 and 22. With these conditions, a Bi distribution coefficient of 1.746 was measured. X-ray diffraction verifies that Bi incorporates substitutionally into the zincblende structure. For x < 0.045, it was possible to suppress whisker formation and obtain excellent surface morphology. Measurement of photoluminescence for x ≤ 0.037 indicates good crystal quality. The measured rate of change of bandgap with Bi concentration, d Eg/d x = -55 meV/%Bi, indicates that a 77 K bandgap energy of E = 0.10 eV should be reached with an alloy composition of InAs 0.94Bi 0.06.

  9. Study of surface relief gratings on azo organometallic films in picosecond regime.

    PubMed

    Luc, J; Bouchouit, K; Czaplicki, R; Fillaut, J-L; Sahraoui, B

    2008-09-29

    Materials for optical data storage and optical information processing must exhibit good holographic properties. Many materials for these applications have been already proposed. Here we describe a grating inscription process characterized by short inscription time and long-time stability. A series of ruthenium-acetylide organometallic complexes containing an azobenzene fragment were synthesized. Photo-induced gratings were produced by short pulse (16 ps, 532 nm) laser irradiation. The surface relief gratings formed at the same time were observed by atomic force microscope. In this work, we highlight the short inscription times brought into play as well as the good temporal stability of these gratings stored at room temperature. We study the influence of the polarization states and the light intensity of writing beams on the dynamics of the surface relief gratings formation and we compare these results with those of a known representative of azobenzene derivative (Disperse Red 1). Lastly, we show that it is possible to write two-dimensional surface relief gratings. PMID:18825202

  10. The Reactivity of Thymine and Thymidine 5,6-Epoxides with Organometallic Reagents - A Route to Thymidine (6-4) Photoproduct Analogues.

    PubMed

    Wrigstedt, Pauli; Kavakka, Jari; Heikkinen, Sami; Nieger, Martin; Räisänen, Minna; Repo, Timo

    2016-05-01

    This report describes an efficient procedure for the generation and isolation of various thymine and thymidine 5,6-epoxides from the corresponding trans-5,6-bromohydrins by reaction with triethylamine. The quantitative isolation of the epoxides, accomplished by solvent precipitation of triethylamine hydrobromide, enabled their regiospecific ring-opening at C6 position by organometallic nucleophiles. The reaction was amenable to a broad range of alkyl, aryl, alkenyl, and alkynyl organomagnesium, -zinc, -aluminum, or -boron reagents, although the reactivity was strongly affected by the electronic effects of N3 protecting group. Additionally, the reaction featured excellent cis-diastereoselectivity providing access to C6-carbon-functionalized dihydrothymidine cis-alcohols, which are synthetic derivatives of UV-induced DNA lesions, namely, thymidine (6-4) photoproducts. PMID:27080560

  11. Bienzymatic Sequential Reaction on Microgel Particles and Their Cofactor Dependent Applications.

    PubMed

    Dubey, Nidhi C; Tripathi, Bijay P; Müller, Martin; Stamm, Manfred; Ionov, Leonid

    2016-05-01

    We report, the preparation and characterization of bioconjugates, wherein enzymes pyruvate kinase (Pk) and l-lactic dehydrogenase (Ldh) were covalently bound to poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgel support using glutaraldehyde (GA) as the cross-linker. The effects of different arrangements of enzymes on the microgels were investigated for the enzymatic behavior and to obtain maximum Pk-Ldh sequential reaction. The dual enzyme bioconjugates prepared by simultaneous addition of both the enzymes immobilized on the same microgel particles (PL), and PiLi, that is, dual enzyme bioconjugate obtained by combining single-enzyme bioconjugates (immobilized pyruvate kinase (Pi) and immobilized lactate dehydrogenase (Li)), were used to study the effect of the assembly of dual enzymes systems on the microgels. The kinetic parameters (Km, kcat), reaction parameters (temperature, pH), stability (thermal and storage), and cofactor dependent applications were studied for the dual enzymes conjugates. The kinetic results indicated an improved turn over number (kcat) for PL, while the kcat and catalytic efficiency was significantly decreased in case of PiLi. For cofactor dependent application, in which the ability of ADP monitoring and ATP synthesis by the conjugates were studied, the activity of PL was found to be nearly 2-fold better than that of PiLi. These results indicated that the influence of spacing between the enzymes is an important factor in optimization of multienzyme immobilization on the support. PMID:27010819

  12. Effect of mineral reactions on the hydraulic properties of unsaturated soils: Model development and application

    NASA Astrophysics Data System (ADS)

    Wissmeier, L.; Barry, D. A.

    2009-08-01

    The selective radius shift model was used to relate changes in mineral volume due to precipitation/dissolution reactions to changes in hydraulic properties affecting flow in porous media. The model accounts for (i) precipitation/dissolution taking place only in the water-filled part of the pore space and further that (ii) the amount of mineral precipitation/dissolution within a pore depends on the local pore volume. The pore bundle concept was used to connect pore-scale changes to macroscopic soil hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and, consequently, in the effective porosity. In a time step of the numerical model, mineral reactions lead to a discontinuous pore-size distribution because only the water-filled pores are affected. The pore-size distribution is converted back to a soil moisture characteristic function to which a new water retention curve is fitted under physically plausible constraints. The model equations were derived for the commonly used van Genuchten/Mualem hydraulic properties. Together with a mixed-form solution of Richards' equation for aqueous phase flow, the model was implemented into the geochemical modelling framework PHREEQC, thereby making available PHREEQC's comprehensive geochemical reactions. Example applications include kinetic halite dissolution and calcite precipitation as a consequence of cation exchange. These applications showed marked changes in the soil's hydraulic properties due to mineral precipitation/dissolution and the dependency of these changes on water contents. The simulations also revealed the strong influence of the degree of saturation on the development of the saturated hydraulic conductivity through its quadratic dependency on the van Genuchten parameter α. Furthermore, it was shown that the unsaturated hydraulic conductivity at fixed reduced water content can even increase during precipitation due to changes in the pore-size distribution.

  13. Introducing deep eutectic solvents to polar organometallic chemistry: chemoselective addition of organolithium and Grignard reagents to ketones in air.

    PubMed

    Vidal, Cristian; García-Álvarez, Joaquín; Hernán-Gómez, Alberto; Kennedy, Alan R; Hevia, Eva

    2014-06-01

    Despite their enormous synthetic relevance, the use of polar organolithium and Grignard reagents is greatly limited by their requirements of low temperatures in order to control their reactivity as well as the need of dry organic solvents and inert atmosphere protocols to avoid their fast decomposition. Breaking new ground on the applications of these commodity organometallics in synthesis under more environmentally friendly conditions, this work introduces deep eutetic solvents (DESs) as a green alternative media to carry out chemoselective additions of ketones in air at room temperature. Comparing their reactivities in DES with those observed in pure water suggest that a kinetic activation of the alkylating reagents is taking place, favoring nucleophilic addition over the competitive hydrolysis, which can be rationalized through formation of halide-rich magnesiate or lithiate species. PMID:24771680

  14. MALDI-TOFMS analysis of coordination and organometallic complexes: a nic(h)e area to work in.

    PubMed

    Wyatt, Mark F

    2011-07-01

    A mini-review of the characterisation of metal-containing compounds by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is presented. Organometallic and coordination compounds have many varied applications, most notably in industrial catalytic processes and also in the electronics and healthcare sectors. In general, the compounds discussed, be they small or large molecules, have a high percentage metal content, rather than simply containing 'a metal atom'. A brief history of the field is given, but the main scope over the last 5 years is covered in some detail. How MALDI-TOFMS compliments electrospray for metal-containing compounds is highlighted. Perspectives on recent advances, such as solvent-free and air/moisture-sensitive sample preparation, and potential future challenges and developments, such as nanomaterials and metallodrug/metallometabolite imaging, are given. PMID:21744419

  15. Studies of Gilbert magnetization damping in NiFe/organometallic trihalide perovskite bilayers investigated by broadband ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Groesbeck, Matthew; Sun, Dali; McLaughlin, Ryan; Zhang, Chuang; Liu, Haoliang; Vardeny, Zeev Valy

    Organo-metallic trihalide perovskites (OTP) have recently been suggested as promising candidates for spintronics applications, motivated by the presence of strong spin-orbit coupling, and recent studies of spin dynamics in CH3NH3PbI3. To help elucidate the spin transport properties in these materials, we have studied the Gilbert magnetization damping parameter in NiFe ferromagnetic films related to spin-pumping into adjacent OTP layers under ferromagnetic resonance (FMR) excitation conditions, using a broadband FMR detection system. We found an increase of the damping parameter associated with spin-pumping into the OTP. The obtained thickness-dependent results are compared to those of NiFe/Cu and NiFe/Pt bilayer structures, where spin transport characteristics are well-known. Research sponsored by the DOE, Office of Science, Grant DE-SC0014579.

  16. A water-soluble ruthenium glycosylated porphyrin catalyst for carbenoid transfer reactions in aqueous media with applications in bioconjugation reactions.

    PubMed

    Ho, Chi-Ming; Zhang, Jun-Long; Zhou, Cong-Ying; Chan, On-Yee; Yan, Jessie Jing; Zhang, Fu-Yi; Huang, Jie-Sheng; Che, Chi-Ming

    2010-02-17

    Water-soluble [Ru(II)(4-Glc-TPP)(CO)] (1, 4-Glc-TPP = meso-tetrakis(4-(beta-D-glucosyl)phenyl)porphyrinato dianion) is an active catalyst for the following carbenoid transfer reactions in aqueous media with good selectivities and up to 100% conversions: intermolecular cyclopropanation of styrenes (up to 76% yield), intramolecular cyclopropanation of an allylic diazoacetate (68% yield), intramolecular ammonium/sulfonium ylide formation/[2,3]-sigmatroptic rearrangement reactions (up to 91% yield), and intermolecular carbenoid insertion into N-H bonds of primary arylamines (up to 83% yield). This ruthenium glycosylated porphyrin complex can selectively catalyze alkylation of the N-terminus of peptides (8 examples) and mediate N-terminal modification of proteins (four examples) using a fluorescent-tethered diazo compound (15). A fluorescent group was conjugated to ubiquitin via 1-catalyzed alkene cyclopropanation with 15 in aqueous solution in two steps: (1) incorporation of an alkenic group by the reaction of N-hydroxysuccinimide ester 19 with ubiquitin and (2) cyclopropanation of the alkene-tethered Lys(6) ubiquitin (23) with the fluorescent-labeled diazoacetate 15 in the presence of a catalytic amount of 1. The corresponding cyclopropanation product (24) was obtained with approximately 55% conversion based on MALDI-TOF mass spectrometry. The products 23, 24, and the N-terminal modified peptides and proteins were characterized by LC-MS/MS and/or SDS-PAGE analyses. PMID:20088517

  17. New Molecular Architecture for Electrically Conducting Materials Based on Unsymmetrical Organometallic-Dithiolene Complexes

    NASA Astrophysics Data System (ADS)

    Kubo, Kazuya; Kato, Reizo

    New molecular architecture for highly conducting molecular materials was developed with use of unsymmetrical organometallic-dithiolene complexes. The new architecture has various advantages including easy modification of their molecular and electronic features. Organometallic complexes based on unsymmetrical Au(III)-dithiolene complexes [(ppy)Au(C8H4S8 or C8H4S6O2)] were prepared for new cationic components of molecular conductors. These unsymmetrical organometallic complexes can provide various cation radical salts [(ppy)Au(S-S)]2[anion][solvent] n (S-S = C8H4S8 or C8H4S6O2, anion = PF6 -, BF4 -, AsF6 -, TaF6 -, solvent = PhCl, n = 0-0.5) by constant current electrolysis of their benzonitrile or chlorobenzene solutions containing (Bu4N)(anion) as electrolyte. [(ppy)Au(C8H4S8)]2[PF6] under pressure is the first molecular metal based on the organometallic component. In this review, principle of the molecular architecture based on the unsymmetrical organometallic-dithiolene complexes and physical properties of their cation radical salts are discussed.

  18. High-sensitivity molecular organometallic resist for EUV (MORE)

    NASA Astrophysics Data System (ADS)

    Passarelli, James; Murphy, Michael; Del Re, Ryan; Sortland, Miriam; Dousharm, Levi; Vockenhuber, Michaela; Ekinci, Yasin; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-03-01

    We have developed organometallic carboxylate compounds [RnM(O2CR')2] capable of acting as negativetone EUV resists. Overall, the best and fastest resists contain antimony, are pentavalent and the carboxylate group contains a polymerizable olefin (e.g. acrylate, methacrylate or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of molecules of the type RnM(O2CR')2 where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR'). We found that the greatest predictor of sensitivity of the RnSb(O2CR')2 resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins vs. the number of non-hydrogen atoms. Linear and log plots of Emax vs. POL for a variety of molecules of the type R3Sb(O2CR')2 lend insight into the behaviour of these resists.

  19. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGESBeta

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  20. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule.

    PubMed

    Zhang, Wen-Ying; Lin, Yue-Jian; Han, Ying-Feng; Jin, Guo-Xin

    2016-08-24

    Owing to the often-similar physical and chemical properties of structural isomers of organic molecules, large efforts have been made to develop efficient strategies to isolate specific isomers. However, facile separation of regioisomeric compounds remains difficult. Here we demonstrate a universal organometallic capsule in which two silver centers are rigidly separated from each other by two tetranuclear [Rh4] pyramidal frustums, which selectively encapsulate a specific isomer from mixtures. Not only is the present heterometallic capsule suitable as a host for the encapsulation of a series of aromatic compounds, but also the receptor shows widely differing specificity for the various isomers. Direct experimental evidence is provided for the selective encapsulation of a series of para (p)-disubstituted benzene derivatives, such as p-xylene, p-dichlorobenzene, p-dibromobenzene, and p-diiodobenzene. The size and shape matching, as well as the Ag-π interactions, are the main forces governing the extent of molecular recognition. The encapsulated guest p-xylene can be released by using the solid-liquid solvent washing strategy, and the other guest molecules are easily liberated by using light stimulus. PMID:27463561

  1. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    PubMed

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  2. Coordination of dibensothiophenes and corannulenes to organometallic ruthenium (II) fragments

    SciTech Connect

    Vecchi, Paul Anthony

    2005-05-01

    This dissertation contains five papers in the format required for journal publication which describe (in part) my research accomplishments as a graduate student at Iowa State University. This work can be broadly categorized as the binding of weakly-coordinating ligands to cationic organometallic ruthenium fragments, and consists of two main areas of study. Chapters 2-4 are investigations into factors that influence the binding of dibenzothiophenes to {l_brace}Cp'Ru(CO){sub 2}{r_brace}{sup +} fragments, where Cp' = {eta}{sup 5}-C{sub 5}H{sub 5} (Cp) and {eta}{sup 5}-C{sub 5}Me{sub 5} (Cp*). Chapters 5 and 6 present the synthesis and structural characterization of complexes containing corannulene buckybowls that are {eta}{sup 6}-coordinated to {l_brace}Cp*Ru{r_brace}{sup +} fragments. The first chapter contains a brief description of the difficulty in lowering sulfur levels in diesel fuel along with a review of corannulene derivatives and their metal complexes. After the final paper is a short summary of the work herein (Chapter 7). Each chapter is independent, and all equations, schemes, figures, tables, references, and appendices in this dissertation pertain only to the chapter in which they appear.

  3. Organometallic carboxylate resists for extreme ultraviolet with high sensitivity

    NASA Astrophysics Data System (ADS)

    Passarelli, James; Murphy, Michael; Re, Ryan Del; Sortland, Miriam; Hotalen, Jodi; Dousharm, Levi; Fallica, Roberto; Ekinci, Yasin; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-10-01

    We have developed organometallic carboxylate compounds [RnM)] capable of acting as negative-tone extreme ultraviolet (EUV) resists. The most sensitive of these resists contain antimony, three R-groups and two carboxylate groups, and carboxylate groups with polymerizable olefins (e.g., acrylate, methacrylate, or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of the molecules of the type RnM) where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR‧). The sensitivity of these resists was evaluated using Emax or dose to maximum resist thickness after exposure and development. We found that the greatest predictor of sensitivity of the RnSb) resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins versus the number of nonhydrogen atoms. Linear and log plots of Emax versus POL for a variety of molecules of the type R3Sb) lend insight into the behavior of these resists.

  4. Degradation of organometallic perovskite solar cells induced by trap states

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Ji, Jun; Li, Yaoyao; Li, Guanying; Li, Meicheng; Wang, Tianyue; Wei, Dong; Cui, Peng; He, Yue; Mbengue, Joseph Michel

    2016-02-01

    The degradation of organometallic perovskite solar cells (PSCs) is the key bottleneck hampering their development, which is typically ascribed to the decomposition of perovskite (CH3NH3PbI3). In this work, the degradation of PSCs is observed to be significant, with the decrease in efficiency from 18.2% to 11.5% in ambient air for 7 days. However, no obvious decomposition or structural evolution of the perovskite was observed, except the notable degradation phenomenon of the device. The degradation of PSCs derives from deteriorated photocurrent and fill factor, which are proven to be induced by increased trap states for enlarged carrier recombination in degraded PSCs. The increased trap states in PSCs over storage time are probably induced by the increased defects at the surface of perovskite. The trap states induced degradation provides a physical insight into the degradation mechanisms of PSCs. Moreover, as the investigations were performed on real PSCs instead of individual perovskite films, the findings here present one of their actual degradation mechanisms.

  5. Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation.

    PubMed

    Simpson, Peter V; Watson, Laurance A; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G

    2016-02-12

    Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value. PMID:26797727

  6. Synthesis of Diverse Heterocyclic Scaffolds via Tandem Additions to Imine Derivatives and Ring-Forming Reactions

    PubMed Central

    Sunderhaus, James D.; Dockendorff, Chris; Martin, Stephen F.

    2009-01-01

    A novel strategy has been developed for the efficient syntheses of diverse arrays of heterocyclic compounds. The key elements of the approach comprise a Mannich-type, multicomponent coupling reaction in which functionalized amines, aromatic aldehydes, acylating agents, and π- and organometallic nucleophiles are combined to generate intermediates that are then further transformed into diverse heterocyclic scaffolds via a variety of cyclization manifolds. Significantly, many of these scaffolds bear functionality that may be exploited by further manipulation to create diverse collections of compounds having substructures found in biologically active natural products and clinically useful drugs. The practical utility of this strategy was exemplified by its application to the first, and extraordinarily concise synthesis of the isopavine alkaloid roelactamine. PMID:20625454

  7. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  8. State densities with linear momentum and their application to preequilibrium and photoabsorption reactions

    SciTech Connect

    Chadwick, M.B. ); Oblozinsky, P. . Fyzikalny Ustav)

    1991-01-01

    We discuss the concept of state densities with linear momentum and describe their application to preequilibrium reaction theory as well as nuclear photoabsorption via the quasideuteron mechanism. An exciton model is presented for particle emission in nucleon-induced reactions in which linear momentum conversion is included. The nucleon emission contributions from the first two preequilibrium stages are calculated by determining exact particle-hole state densities with a specific energy and linear momentum in a Fermi-gas model of the nucleus. Angular distributions arise naturally from our treatment and do not have to be added in an ad hoc way. The angular distributions that we obtain from the first two preequilibrium stages are identical to those found using the Kikuchi-Kawai quasifree scattering kernel. Since many preequilibrium analyses are based upon an equidistant single-particle model of the nucleus, we also determine the state densities wit linear momentum (and hence angular distributions) in such a model. A no-parameter quasideuteron model of photoabsorption is presented in which the Levinger parameter and Pauli-blocking function are determined theoretically, using state densities with linear momentum. Comparisons with data are shown, and the temperature dependence of the photoabsorption cross section is calculated. 45 refs., 6 figs.

  9. Parameter sensitivity analysis of stochastic models: application to catalytic reaction networks.

    PubMed

    Damiani, Chiara; Filisetti, Alessandro; Graudenzi, Alex; Lecca, Paola

    2013-02-01

    A general numerical methodology for parametric sensitivity analysis is proposed, which allows to determine the parameters exerting the greatest influence on the output of a stochastic computational model, especially when the knowledge about the actual value of a parameter is insufficient. An application of the procedure is performed on a model of protocell, in order to detect the kinetic rates mainly affecting the capability of a catalytic reaction network enclosed in a semi-permeable membrane to retain material from its environment and to generate a variety of molecular species within its boundaries. It is shown that the former capability is scarcely sensitive to variations in the model parameters, whereas a kinetic rate responsible for profound modifications of the latter can be identified and it depends on the specific reaction network. A faster uptaking of limited resources from the environment may have represented a significant advantage from an evolutionary point of view and this result is a first indication in order to decipher which kind of structures are more suitable to achieve a viable evolution. PMID:23246776

  10. The application of the Reaction Rate Analyser LKB 8600 as an automatic coagulometer.

    PubMed

    Andersen, I; Thorsen, S

    1977-02-01

    The application of the Reaction Rate Analyser LKB 8600 (RRA) as an automatic coagulometer is described. The RRA was slightly modified without interfering with its function as an enzyme reaction rate analyser. The endpoint of coagulation was recorded when the increase in absorbance exceeded 0.047 at lambda = 340 nm. The coagulation time was monitored by a counter with automatic print-out or by a recorder. The analytical dispersion, s(x)x, ranged between 0.01 and 0.05. Results (x, y) of the determination of the quantity of plasma coagulation factors (II + VII + X) by RRA and manually by visual recording could be expressed by y = 0.93x + 0.04, r = 0.96, n = 66 (method of Owren & Aas) or by y = 1.00x + 0.02, r = 0.98, n = 49 (Normotest). Similarly, plasma activated partial thromboplastin time (Activated Thrombofax) could be expressed by y = 0.99x + 5.00, r = 0.99, n = 23. PMID:616030

  11. Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method

    NASA Astrophysics Data System (ADS)

    Deshmukh, P. R.; Pusawale, S. N.; Shinde, N. M.; Lokhande, C. D.

    2014-07-01

    We report the synthesis of polyaniline nanofibers using the successive ionic layer adsorption and reaction (SILAR) method. The structural study shows the amorphous nature of polyaniline. The formation of polyaniline nanofibers has been revealed by scanning electron microscopy (SEM) whereas the confirmation of polyaniline material is obtained from Fourier transform infrared (FT-IR) spectroscopy. A plausible explanation illustrating the growth mechanism is presented. A maximum specific capacitance of 1078 F.g-1 at a scan rate of 5 mV.s-1 is obtained. The charge-discharge behavior shows a maximum specific power of 1.2 kW.kg-1 and specific energy of 64 Wh.kg-1. The ease of the synthesis and the interesting electrochemical properties indicate that polyaniline nanofibers are promising materials for supercapacitor applications.

  12. Alkene Cleavage Catalysed by Heme and Nonheme Enzymes: Reaction Mechanisms and Biocatalytic Applications

    PubMed Central

    Mutti, Francesco G.

    2012-01-01

    The oxidative cleavage of alkenes is classically performed by chemical methods, although they display several drawbacks. Ozonolysis requires harsh conditions (−78°C, for a safe process) and reducing reagents in a molar amount, whereas the use of poisonous heavy metals such as Cr, Os, or Ru as catalysts is additionally plagued by low yield and selectivity. Conversely, heme and nonheme enzymes can catalyse the oxidative alkene cleavage at ambient temperature and atmospheric pressure in an aqueous buffer, showing excellent chemo- and regioselectivities in certain cases. This paper focuses on the alkene cleavage catalysed by iron cofactor-dependent enzymes encompassing the reaction mechanisms (in case where it is known) and the application of these enzymes in biocatalysis. PMID:22811656

  13. Magnetic hydrophilic methacrylate-based polymer microspheres designed for polymerase chain reactions applications.

    PubMed

    Spanová, Alena; Horák, Daniel; Soudková, Eva; Rittich, Bohuslav

    2004-02-01

    Magnetic hydrophilic non-porous P(HEMA-co-EDMA), P(HEMA-co-GMA) and PGMA microspheres were prepared by dispersion (co)polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) or glycidyl methacrylate (GMA) in the presence of several kinds of magnetite. It was found that some components used in the preparation of magnetic carriers interfered with polymerase chain reaction (PCR). Influence of non-magnetic and magnetic microspheres, including magnetite nanoparticles and various components used in their synthesis, on the PCR course was thus investigated. DNA isolated from bacterial cells of Bifidobacterium longum was used in PCR evaluation of non-interfering magnetic microspheres. The method enabled verification of the incorporation of magnetite nanoparticles in the particular methacrylate-based polymer microspheres and evaluation of suitability of their application in PCR. Preferably, electrostatically stabilized colloidal magnetite (ferrofluid) should be used in the design of new magnetic methacrylate-based microspheres by dispersion polymerization. PMID:14698232

  14. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    PubMed

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-01

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated. PMID:21461443

  15. Bimodal X-ray and Infrared Imaging of an Organometallic Derivative of Praziquantel in Schistosoma mansoni.

    PubMed

    Clède, Sylvain; Cowan, Noemi; Lambert, François; Bertrand, Hélène C; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Sandt, Christophe; Trcera, Nicolas; Gasser, Gilles; Keiser, Jennifer; Policar, Clotilde

    2016-06-01

    An organometallic derivative of praziquantel was studied directly in worms by using inductively coupled plasma-mass spectrometry (ICP-MS) for quantification and synchrotron-based imaging. X-ray fluorescence (XRF) and IR absorption spectromicroscopy were used for the first time in combination to directly locate this organometallic drug candidate in schistosomes. The detection of both CO (IR) and Cr (XRF) signatures proved that the Cr(CO)3 core remained intact in the worms. Images showed a preferential accumulation at the worm's tegument, consistent with a possible targeting of the calcium channel but not excluding other biological targets inside the worm. PMID:26991635

  16. Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes

    NASA Astrophysics Data System (ADS)

    Chantzis, Agisilaos; Very, Thibaut; Daniel, Chantal; Monari, Antonio; Assfeld, Xavier

    2013-07-01

    The absorption spectrum of two ruthenium (II) organometallic complexes intercalated into DNA is studied at the quantum mechanic/molecular mechanic level. The macromolecular environment is taken into account as to include geometric, electrostatic and polarization effects that can alter the excitation energy and oscillator strength. The inclusion of DNA base pairs into the quantum mechanic partition allows us for the first time to clearly evidence the presence of charge transfer excited states involving an electron withdraw from DNA base pairs to the organometallic complex.

  17. Catalytic C-O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers.

    PubMed

    Nichols, Jason M; Bishop, Lee M; Bergman, Robert G; Ellman, Jonathan A

    2010-09-15

    A ruthenium-catalyzed, redox neutral C-O bond cleavage of 2-aryloxy-1-arylethanols was developed that yields cleavage products in 62-98% isolated yield. This reaction is applicable to breaking the key ethereal bond found in lignin-related polymers. The bond transformation proceeds by a tandem dehydrogenation/reductive ether cleavage. Initial mechanistic investigations indicate that the ether cleavage is most likely an organometallic C-O activation. A catalytic depolymerization of a lignin-related polymer quantitatively yields the corresponding monomer with no added reagent. PMID:20731348

  18. Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines.

    PubMed

    Dai, Wei; Jiang, Xiao-Li; Tao, Ji-Yu; Shi, Feng

    2016-01-01

    The first application of 3-methyl-2-vinylindoles in catalytic asymmetric Povarov reactions has been established via the three-component reactions of 3-methyl-2-vinylindoles, aldehydes, and anilines in the presence of chiral phosphoric acid, providing easy access to chiral indole-derived tetrahydroquinolines with three contiguous stereogenic centers at high yields (up to 99%) and with excellent diastereo- and enantioselectivities (all >95:5 dr, up to 96% ee). This mode of catalytic asymmetric three-component reaction offers a step-economic and atom-economic strategy for accessing enantioenriched indole-derived tetrahydroquinolines with structural diversity and complexity. PMID:26652222

  19. Aryl formate as bifunctional reagent: applications in palladium-catalyzed carbonylative coupling reactions using in situ generated CO.

    PubMed

    Li, Haoquan; Neumann, Helfried; Beller, Matthias; Wu, Xiao-Feng

    2014-03-17

    After decades of development, carbonylation reactions have become one of the most powerful tools in modern organic synthesis. However, the requirement of CO gas limits the applications of such reactions. Reported herein is a versatile and practical protocol for carbonylative reactions which rely on the cooperation of phenyl formate and nonaflate, and the generation of CO in situ. This protocol has a high functionalgroup tolerance and could be applied in carbonylations with C, N, and, O nucleophiles. The corresponding amides, alkynones, furanones, and aryl benzoates were synthesized in good yields. PMID:24677435

  20. Applications of constant denaturant capillary electrophoresis/high-fidelity polymerase chain reaction to human genetic analysis.

    PubMed

    Li-Sucholeiki, X C; Khrapko, K; André, P C; Marcelino, L A; Karger, B L; Thilly, W G

    1999-06-01

    Constant denaturant capillary electrophoresis (CDCE) permits high-resolution separation of single-base variations occurring in an approximately 100 bp isomelting DNA sequence based on their differential melting temperatures. By coupling CDCE for highly efficient enrichment of mutants with high-fidelity polymerase chain reaction (hifi PCR), we have developed an analytical approach to detecting point mutations at frequencies equal to or greater than 10(-6) in human genomic DNA. In this article, we present several applications of this approach in human genetic studies. We have measured the point mutational spectra of a 100 bp mitochondrial DNA sequence in human tissues and cultured cells. The observations have led to the conclusion that the primary causes of mutation in human mitochondrial DNA are spontaneous in origin. In the course of studying the mitochondrial somatic mutations, we have also identified several nuclear pseudogenes homologous to the analyzed mitochondrial DNA fragment. Recently, through developments of the means to isolate the desired target sequences from bulk genomic DNA and to increase the loading capacity of CDCE, we have extended the CDCE/hifi PCR approach to study a chemically induced mutational spectrum in a single-copy nuclear sequence. Future applications of the CDCE/hifi PCR approach to human genetic analysis include studies of somatic mitochondrial mutations with respect to aging, measurement of mutational spectra of nuclear genes in healthy human tissues and population screening for disease-associated single nucleotide polymorphisms (SNPs) in large pooled samples. PMID:10380762

  1. Synthesis and evaluation of new polynuclear organometallic Ru(II), Rh(III) and Ir(III) pyridyl ester complexes as in vitro antiparasitic and antitumor agents.

    PubMed

    Chellan, Prinessa; Land, Kirkwood M; Shokar, Ajit; Au, Aaron; An, Seung Hwan; Taylor, Dale; Smith, Peter J; Riedel, Tina; Dyson, Paul J; Chibale, Kelly; Smith, Gregory S

    2014-01-14

    New polynuclear organometallic Platinum Group Metal (PGM) complexes containing di- and tripyridyl ester ligands have been synthesised and characterised using analytical and spectroscopic techniques including (1)H, (13)C NMR and infrared spectroscopy. Reaction of these polypyridyl ester ligands with either [Ru(p-cymene)Cl2]2, [Rh(C5Me5)Cl2]2 or [Ir(C5Me5)Cl2]2 dimers yielded the corresponding di- or trinuclear organometallic complexes. The polyaromatic ester ligands act as monodentate donors to each metal centre and this coordination mode was confirmed upon elucidation of the molecular structures for two of the dinuclear complexes. The di- and trinuclear PGM complexes synthesized were evaluated for inhibitory effects on the human protozoal parasites Plasmodium falciparum strain NF54 (chloroquine sensitive), Trichomonas vaginalis strain G3 and the human ovarian cancer cell lines, A2780 (cisplatin-sensitive) and A2780cisR (cisplatin-resistant) cell lines. All of the complexes were observed to have moderate to high antiplasmodial activities and the compounds with the best activities were evaluated for their ability to inhibit formation of synthetic hemozoin in a cell free medium. The in vitro antitumor evaluation of these complexes revealed that the trinuclear pyridyl ester complexes demonstrated moderate activities against the two tumor cell lines and were also less toxic to model non-tumorous cells. PMID:24121555

  2. Plasmonic Properties of Bimetallic Nanostructures and Their Applications in Hydrogen Sensing and Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Jiang, Ruibin

    Noble metal nanocrystals have attracted great interest from a wide range of research fields because of their intriguing properties endowed by their localized surface plasmon resonances, which are the collective oscillations of free electrons. Under resonant excitation, metal nanostructures exhibit very large scattering and absorption cross sections and large near-field enhancement. These extraordinary properties can be used in different applications, such as plasmonic sensing and imaging, plasmon-controlled optics, photothermal therapy, photocatalysis, solar cells, and so on. Gold and Silver nanocrystals have plasmon resonances in the visible and near-infrared regions. However, gold and silver are not suitable for some applications. For example, they are generally inactive for catalyzing chemical reactions. The integration of plasmonic metals with other metals can offer superior or new physical/chemical properties. In this thesis, I prepared Au/Ag and Au/Pd bimetallic nanostructures and studied their plasmonic properties and applications in hydrogen sensing and photocatalysis. Seeds have a crucial importance in the synthesis of bimetallic nanostructures. I therefore first studied the roles of the crystalline structure and shape of seeds on the overgrowth of bimetallic nanostructures. The overgrowth of silver and palladium on single crystalline Au nanorods, multicrystalline Au nanorods, and nanobipyramids were studied under the same conditions for each metal. The growths of silver and palladium on single crystalline Au nanorods gave cuboidal nanostructures, while rod-shaped nanostructures were obtained from the growths of silver and palladium on multicrystalline Au nanorods and nanobipyramids. Moreover, the growths of silver and palladium on multicrystalline Au nanobipyramids started at the stepped side facets, while the growths started at the twin boundaries on multicrystalline Au nanorods. These results unambiguously indicate that the crystalline structure of

  3. Effect of Mineral Reactions on the Hydraulic Properties of Unsaturated Soils: Model Development and Application

    NASA Astrophysics Data System (ADS)

    Wissmeier, L. C.; Barry, D. A.

    2008-12-01

    Precipitation/dissolution induces changes in the pore radii of water-filled pores, and, consequently, affects flow in porous media. The selective radius shift model was developed to relate changes in mineral volume due to precipitation/dissolution reactions to changes in hydraulic properties of unsaturated soils. The model considers the dependency of the amount of mineral precipitation/dissolution within a pore on the local pore volume. Furthermore, it accounts for precipitation/dissolution taking place only in the water-filled part of the pore space. The pore bundle concept was used to relate the pore-scale process of dissolution/precipitation to changes in macroscopic soil hydraulic properties. In the numerical model, the finite change in mineral volume at a discrete time step leads to a discontinuous pore-size distribution, because only the water-filled pores are affected. This pore-size distribution is converted back to a discontinuous soil moisture characteristic to which, at every time step, a new water retention curve is fitted under physically plausible constraints. The model equations were derived for the commonly used van Genuchten/Mualem hydraulic properties. Together with the selective radius shift model a head-based solution of Richards' equation for aqueous phase flow was implemented into the geochemical modelling framework PHREEQC, thereby making available PHREEQC's comprehensive geochemical reactions. The model was applied to kinetic halite dissolution and calcite precipitation as a consequence of cation exchange in a variety of unsaturated flow situations. The applications showed marked changes in the soil's hydraulic properties due to mineral precipitation/dissolution and the dependency of these changes on the water content. Furthermore, it was shown that the unsaturated hydraulic conductivity at fixed reduced water content can even increase during precipitation due to changes in the pore-size distribution.

  4. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    EPA Science Inventory

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  5. Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes.

    PubMed

    Leonidova, Anna; Pierroz, Vanessa; Rubbiani, Riccardo; Heier, Jakob; Ferrari, Stefano; Gasser, Gilles

    2014-03-21

    Over the recent years, several Re(I) organometallic compounds have been shown to be toxic to various cancer cell lines. However, these compounds lacked sufficient selectivity towards cancer tissues to be used as novel chemotherapeutic agents. In this study, we probe the potential of two known N,N-bis(quinolinoyl) Re(I) tricarbonyl complex derivatives, namely Re(I) tricarbonyl [N,N-bis(quinolin-2-ylmethyl)amino]-4-butane-1-amine (Re-NH₂) and Re(I) tricarbonyl [N,N-bis(quinolin-2-ylmethyl)amino]-5-valeric acid (Re-COOH), as photodynamic therapy (PDT) photosensitizers. Re-NH₂ and Re-COOH proved to be excellent singlet oxygen generators in a lipophilic environment with quantum yields of about 75%. Furthermore, we envisaged to improve the selectivity of Re-COOH via conjugation to two types of peptides, namely a nuclear localization signal (NLS) and a derivative of the neuropeptide bombesin, to form Re-NLS and Re-Bombesin, respectively. Fluorescent microscopy on cervical cancer cells (HeLa) showed that the conjugation of Re-COOH to NLS significantly enhanced the compound's accumulation into the cell nucleus and more specifically into its nucleoli. Importantly, in view of PDT applications, the cytotoxicity of the Re complexes and their bioconjugates increased significantly upon light irradiation. In particular, Re-Bombesin was found to be at least 20-fold more toxic after light irradiation. DNA photo-cleavage studies demonstrated that all compounds damaged DNA via singlet oxygen and, to a minor extent, superoxide production. PMID:23982882

  6. New organic and organometallic salts for second-order nonlinear optics

    NASA Technical Reports Server (NTRS)

    Marder, Seth R.; Perry, Joseph W.; Tiemann, Bruce G.; Schaefer, William P.; Groves, Paul C.

    1989-01-01

    A series of organometallic and organic salts, in which the cation has been designed to have a large molecular hyperpolarizability, has been prepared. Variation of the counterion (anion) in many cases leads to materials with large powder second harmonic generation (SHG) efficiencies, the highest of which is roughly 2000 times that of a urea reference.

  7. 40 CFR 721.10414 - Polycyclic polyamine diester organometallic compound (generic) (P-10-358).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polycyclic polyamine diester organometallic compound (generic) (P-10-358). 721.10414 Section 721.10414 Protection of Environment ENVIRONMENTAL... compound (generic) (P-10-358). (a) Chemical substance and significant new uses subject to reporting....

  8. 40 CFR 721.10414 - Polycyclic polyamine diester organometallic compound (generic) (P-10-358).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polycyclic polyamine diester organometallic compound (generic) (P-10-358). 721.10414 Section 721.10414 Protection of Environment ENVIRONMENTAL... compound (generic) (P-10-358). (a) Chemical substance and significant new uses subject to reporting....

  9. 40 CFR 721.10414 - Polycyclic polyamine diester organometallic compound (generic) (P-10-358).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polycyclic polyamine diester organometallic compound (generic) (P-10-358). 721.10414 Section 721.10414 Protection of Environment ENVIRONMENTAL... compound (generic) (P-10-358). (a) Chemical substance and significant new uses subject to reporting....

  10. Organometallic macromolecules with piano stool coordination repeating units: chain configuration and stimulated solution behaviour.

    PubMed

    Cao, Kai; Ward, Jonathan; Amos, Ryan C; Jeong, Moon Gon; Kim, Kyoung Taek; Gauthier, Mario; Foucher, Daniel; Wang, Xiaosong

    2014-09-11

    Theoretical calculations illustrate that organometallic macromolecules with piano stool coordination repeating units (Fe-acyl complex) adopt linear chain configuration with a P-Fe-C backbone surrounded by aromatic groups. The macromolecules show molecular weight-dependent and temperature stimulated solution behaviour in DMSO. PMID:25036387

  11. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    ERIC Educational Resources Information Center

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  12. Highly selective electrocatalytic dehydrogenation at low applied potential catalyzed by an Ir organometallic complex.

    PubMed

    Bonitatibus, Peter J; Rainka, Matthew P; Peters, Andrea J; Simone, Davide L; Doherty, Mark D

    2013-11-21

    A homogeneous organometallic Ir complex was shown to catalyze the electro-oxidation of 4-methoxybenzyl alcohol to p-anisaldehyde at a very low applied potential with remarkably high selectivity and Faradaic efficiency. In the chemical catalysis, when stoichiometric oxidant and anionic base were used to separately accept electrons and protons, aldehyde selectivity was in agreement with electrolysis results. PMID:24091876

  13. Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications

    NASA Astrophysics Data System (ADS)

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Medina, Henry; Lin, Shih-Ming; Shih, Yu-Chuan; Chen, Yu-Ze; Liang, Jenq-Horng; Chueh, Yu-Lun

    2014-10-01

    Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications. Graphene synthesised on silicon carbide (SiC) has shown outstanding mobility and has been successfully used to develop ultra-high frequency transistors; however, this fabrication method is limited due to the use of costly ultra-high vacuum (UHV) equipment that can reach temperatures over 1500 °C. Here, we show a simple and novel approach to synthesise graphene on SiC substrates that greatly reduces the temperature and vacuum requirements and allows the use of equipment commonly used in the semiconductor processing industry. In this work, we used plasma treatment followed by annealing in order to obtain large-scale graphene films from bulk SiC. After exposure to N2 plasma, the annealing process promotes the reaction of nitrogen ions with Si and the simultaneous condensation of C on the surface of SiC. Eventually, a uniform, large-scale, n-type graphene film with remarkable transport behaviour on the SiC wafer is achieved. Furthermore, graphene field effect transistors (FETs) with high carrier mobilities on SiC were also demonstrated in this study.Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films

  14. Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications.

    PubMed

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Medina, Henry; Lin, Shih-Ming; Shih, Yu-Chuan; Chen, Yu-Ze; Liang, Jenq-Horng; Chueh, Yu-Lun

    2014-11-21

    Graphene, a two-dimensional material with honeycomb arrays of carbon atoms, has shown outstanding physical properties that make it a promising candidate material for a variety of electronic applications. To date, several issues related to the material synthesis and device fabrication need to be overcome. Despite the fact that large-area graphene films synthesised by chemical vapour deposition (CVD) can be grown with relatively few defects, the required transfer process creates wrinkles and polymer residues that greatly reduce its performance in device applications. Graphene synthesised on silicon carbide (SiC) has shown outstanding mobility and has been successfully used to develop ultra-high frequency transistors; however, this fabrication method is limited due to the use of costly ultra-high vacuum (UHV) equipment that can reach temperatures over 1500 °C. Here, we show a simple and novel approach to synthesise graphene on SiC substrates that greatly reduces the temperature and vacuum requirements and allows the use of equipment commonly used in the semiconductor processing industry. In this work, we used plasma treatment followed by annealing in order to obtain large-scale graphene films from bulk SiC. After exposure to N2 plasma, the annealing process promotes the reaction of nitrogen ions with Si and the simultaneous condensation of C on the surface of SiC. Eventually, a uniform, large-scale, n-type graphene film with remarkable transport behaviour on the SiC wafer is achieved. Furthermore, graphene field effect transistors (FETs) with high carrier mobilities on SiC were also demonstrated in this study. PMID:25307846

  15. The Application of Copper/Iron Cocatalysis in Cross-Coupling Reactions.

    PubMed

    Mao, Jincheng; Yan, Hong; Rong, Guangwei; He, Yue; Zhang, Guoqi

    2016-06-01

    For conventional cross-couplings in organic chemistry, precious metal (such as Pd or Rh) complexes have been the preferable choices as catalysts. However, their high cost, toxicity, and potential contamination of products limit their massive applications on some occasions, particularly in the pharmaceutical industry, where close monitoring of the metal contamination of products is required. Therefore, the use of metals that are less expensive and less toxic than Pd or Rh can be greatly advantageous and earth abundant metal (such Fe or Cu) catalysts have shown promise for replacing the precious metals. Interestingly, a certain copper catalyst combined with an iron catalyst displays higher catalytic efficiency than itself in various coupling reactions. Notably, ligand-free conditions make such protocols more useful and practical in many cases. In this account, we summarize the recent progress made in this increasingly attractive topic by describing successful examples, including our own work in the literature, regarding effective copper/iron cocatalysis. In addition, a few examples involving a magnetic and readily recyclable CuFe2 O4 nanoparticle cocatalyst are also included. PMID:27027733

  16. Mechanisms of Propidium Monoazide Inhibition of Polymerase Chain Reaction and implications for Propidium Monoazide Applications

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Darrach, H.; Ponce, A.; McFarland, E.; Laymon, C.; Fingland, N. K.

    2015-12-01

    PMA-qPCR is a laboratory technique that can be used to identify viable microbes by employing the use of propidium monoazide (PMA), a DNA-intercalating dye, and quantitative polymerase chain reaction (qPCR). The current model of PMA-qPCR operates under the assumption that PMA is only capable of entering membrane-compromised cells, where it irreversibly cross-links to DNA and makes it unavailable for amplification via qPCR. However, the exact mechanism behind PMA's entry into the cell and its interaction with genetic material is not well understood. To better understand PMA's capabilities, we have examined the effect PMA has on enzyme binding and processivity using endonucleases and exonucleases. Our results suggest that the current model behind PMA-qPCR inhibition is incomplete, in that rather than precipitating the entirety of the DNA, PMA also inhibits enzyme binding and/or processivity in soluble DNA. These results have important implications for studying the viable community of microorganisms in various applications, such as environmental monitoring, planetary protection and bioburden assessment, and biohazard detection.

  17. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen.

    PubMed

    Marković, Marijana; Jović, Milica; Stanković, Dalibor; Kovačević, Vesna; Roglić, Goran; Gojgić-Cvijović, Gordana; Manojlović, Dragan

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe(2+)). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC-MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. PMID:25466684

  18. Applications of Click Chemistry Reactions to the Synthesis of Functional Materials

    NASA Astrophysics Data System (ADS)

    Accurso, Adrian A.

    This body of work focuses on the production of functional materials using the most reliable carbon-hetoratom bond-forming processes available, which are widely termed "click chemistry" reactions in the literature. This focus on function is enabled by a basis in synthetic chemistry, and where appropriate, brings in techniques from the related fields of materials science and biology to address current needs in those areas. Chapter 1 concerns the in situ production of azide and alkyne-based click chemistry adhesive polymers. Screening of a library of multivalent azides and alkynes was accomplished on a custom-built highthroughput instrument and followed up on a lap-shear testing apparatus. The conductivity of composites made of the adhesive was also explored according to standard methods. The second and third chapters explore the synthesis and function of a family of related [3.3.1]-bicyclononane dichlorides, which we have termed "WCL" electrophiles, and their potential applications for surface functionalization, the synthesis of polycations, and candidate membrane disruptive compounds. The rates of consumption of dichlorides and hydrolysis of model compounds were also explored using NMR, GC-MS, and HPLC-based methods.

  19. Application of Theories, Principles and Methods of Adult Learning for Managers to Improve Workplace Reactions to Learning, Knowledge and Performance

    ERIC Educational Resources Information Center

    Steier, E. Joseph, III

    2010-01-01

    The objective of this dissertation was to explore the concept that knowledge and application of theories, principles and methods of adult learning to teaching may be a core management competency needed for companies to improve employee reaction to learning, knowledge transfer and behavior as well as engagement, retention and profitability.…

  20. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    PubMed

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. PMID:25154312

  1. Effective reaction at a fluid–solid interface: Applications to biotransformation in porous media

    SciTech Connect

    Wood, Brian D.; Radakovich, Karen; Golfier, Fabrice

    2007-06-01

    In this work we develop, via volume averaging, the macroscale transport equation for a reactive chemical species undergoing a heterogeneous reaction with Michaelis–Menton type kinetics. We describe the closure problem required to predict the effective macroscale reaction rate from the microscale geometry and the chemical, physical, and microbial properties. The effective rate of reaction predicted from the closure problem is compared with the reaction rate with that is obtained by direct numerical simulation at the microscale. This comparison shows that the macroscale description of the reaction process is generally valid when the coefficient of variation of the concentration field is small compared with unity. Our results are subsequently used to interpret laboratory data for the enzymatic transformation of p-nitrophenyl phosphate hexahydrate. In particular, we provide some interpretation of the observed effect of porewater velocity on the effective reaction rate.

  2. Organometallic Nanostructures of 1,4-DIBROMO-2,5-DIIODOBENZENE by Metal Ions Construction on Hopg Surface

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Zhongping; Leng, Xinli; Lu, Yan; Liu, Xiaoqing; Wang, Li

    2016-03-01

    Different organometallic nanostructures on highly oriented pyrolytic graphite (HOPG) have been synthesized by different metal ions coordinating with 1,4-Dibromo-2,5-diiodobenzene (C6H2Br2I2). Scanning tunneling microscopy (STM) images directly demonstrated the transformation of the nanostructure from self-assembled nanostructures formed by C6H2Br2I2 through halogen bond into organometallic network, formed by the dehalogenated C6H2Br2I2 molecules covalent bonded with metal ions. Moreover, by varying the concentrations of C6H2Br2I2 molecules or valence states of metal ions, organometallic structures with different shapes and sizes have been fabricated, which illustrates that the concentrations and valence states of the metal ions play important roles in the organometallic nanostructures.

  3. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    SciTech Connect

    Wang Ning; Scheid, Werner; Wu Xizhen; Liu Min; Li Zhuxia

    2006-10-15

    The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  4. Combining Organometallic Reagents, the Sulfur Dioxide Surrogate DABSO, and Amines: A One-Pot Preparation of Sulfonamides, Amenable to Array Synthesis**

    PubMed Central

    Deeming, Alex S; Russell, Claire J; Willis, Michael C

    2015-01-01

    We describe a method for the synthesis of sulfonamides through the combination of an organometallic reagent, a sulfur dioxide equivalent, and an aqueous solution of an amine under oxidative conditions (bleach). This simple reaction protocol avoids the need to employ sulfonyl chloride substrates, thus removing the limitation imposed by the commercial availability of these reagents. The resultant method allows access to new chemical space, and is also tolerant of the polar functional groups needed to impart favorable physiochemical properties required for medicinal chemistry and agrochemistry. The developed chemistry is employed in the synthesis of a targeted 70 compound array, prepared using automated methods. The array achieved a 93 % success rate for compounds prepared. Calculated molecular weights, lipophilicities, and polar surface areas are presented, demonstrating the utility of the method for delivering sulfonamides with drug-like properties. PMID:25431118

  5. Combining organometallic reagents, the sulfur dioxide surrogate DABSO, and amines: a one-pot preparation of sulfonamides, amenable to array synthesis.

    PubMed

    Deeming, Alex S; Russell, Claire J; Willis, Michael C

    2015-01-19

    We describe a method for the synthesis of sulfonamides through the combination of an organometallic reagent, a sulfur dioxide equivalent, and an aqueous solution of an amine under oxidative conditions (bleach). This simple reaction protocol avoids the need to employ sulfonyl chloride substrates, thus removing the limitation imposed by the commercial availability of these reagents. The resultant method allows access to new chemical space, and is also tolerant of the polar functional groups needed to impart favorable physiochemical properties required for medicinal chemistry and agrochemistry. The developed chemistry is employed in the synthesis of a targeted 70 compound array, prepared using automated methods. The array achieved a 93% success rate for compounds prepared. Calculated molecular weights, lipophilicities, and polar surface areas are presented, demonstrating the utility of the method for delivering sulfonamides with drug-like properties. PMID:25431118

  6. Computer-controlled system for the study of oxidase reactions: application to the peroxidase-oxidase oscillator.

    PubMed

    McDonald, Andrew G; Tipton, Keith F

    2010-12-16

    An apparatus for the study of bisubstrate oxidase reactions at maintained steady-state substrate concentrations is described, and its specific application to the peroxidase-oxidase biochemical oscillator is reported. Instrument control and data acquisition are provided by custom software written in LabVIEW. The software allows measurement, recording, and control of dissolved oxygen through a Clark-type oxygen electrode, reaction monitoring by a UV/vis spectrophotometer, and controlled substrate delivery by a syringe infusion pump. For peroxidase from horseradish, the optimal pH for oscillatory behavior was found to be in the range 4.5-5.5. PMID:21049952

  7. Alumina-supported bimetallics of palladium alloyed with germanium, tin, lead, or antimony from organometallic precursors I. Preparation and characterization

    SciTech Connect

    Aduriz, H.R.; Bodnariuk, P. , Bahia Blanca ); Coq, B.; Figueras, F. )

    1989-09-01

    Bimetallic PdSn, PdSb, PdPb, and PdGe on alumina catalysts with a low metal content have been prepared using either chloride or organometallic precursors. For the catalysts obtained from chloride precursors no interaction was observed between the two metals, and the catalysts behaved like pure Pd/Al{sub 2}O{sub 3}. In contrast, the reactions of (C{sub 4}H{sub 9}){sub 4}Sn, (C{sub 4}H{sub 9}){sub 4}Pb, (C{sub 4}H{sub 9}){sub 4}Ge, or (C{sub 4}H{sub 9}){sub 3}Sb in n-heptane solution with reduced Pd/Al{sub 2}O{sub 3} catalyst yielded a supported alloy. The interaction between metallic palladium and the organic modifier is highly selective and leads to the formation of a well-tailored bimetallic catalyst. When these final solids are reduced at 573 or 773 K, the second metal locates preferentially at the outer layer of the bimetallic aggregates. After reduction at 773 K large metallic aggregates are obtained (particle size 15 nm), and the formation of {beta}-palladium hydride, which can be formed with pure palladium catalysts, is suppressed by the addition of a small amount of the second metal. The specific activity of the palladium surface atoms for isoprene hydrogenation is then lowered, and the selectivity increased.

  8. Application of a locally optimized control theory to pump dump laser-driven chemical reactions

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Y.; Yahata, Y.; Kono, H.; Fujimura, Y.

    1998-05-01

    A locally optimized control theory is developed. This theory is applied to pump-dump laser-driven chemical reactions via an electronically excited state. The results show that the theory can design the pulse shapes for chemical reactions with high quantum yields in strong laser intensity regimes in which perturbative treatments break down.

  9. Application of the balancing holes on the turbine stage discs with higher root reaction

    NASA Astrophysics Data System (ADS)

    Mrózek, Lukáš; Tajč, Ladislav; Hoznedl, Michal; Miczán, Martin

    2016-03-01

    The influence of the flow area of balancing holes in the discs of a steam turbine on its thermodynamic efficiency is examined for turbine stages operating in the increased root reaction regime. The interstage seal flooding with steam is modelled. The impact is given on stage reaction changes, on mass flow adjustments, and on overpressure operating in the rotor disc.

  10. Nuclear Reactions: Studying Peaceful Applications in the Middle and Secondary School.

    ERIC Educational Resources Information Center

    Szymanski Sunal, Cynthia; Sunal, Dennis W.

    1999-01-01

    Asserts that students must learn about nuclear fission and fusion in the social studies curriculum to help them develop a foundation for considering the social issues associated with the everyday use of nuclear reactions. Gives background on the two types of reactions and provides three lessons for middle and secondary classrooms. (CMK)

  11. Field application of polymerase chain reaction diagnosis and strain typing of Trypanosoma cruzi in Bolivian triatomines.

    PubMed

    Breniere, S F; Bosseno, M F; Telleria, J; Carrasco, R; Vargas, F; Yaksic, N; Noireau, F

    1995-08-01

    A new approach for direct identification and characterization of Trypanosoma cruzi stocks in biological samples was tested for field applicability on an extensive sample of feces collected from triatomine vectors from four different species found in Bolivia. The first step of the technique is polymerase chain reaction (PCR) amplification of the hypervariable region of kinetoplast DNA minicircles of T. cruzi parasites. In this report, 345 fecal samples were analyzed and the PCR results were compared with microscopic examination. For Triatoma infestans, the principal Bolivian vector, both techniques were in concordance 85.3% of the time. For the three other species, Rhodnius pictipes, Eratyrus mucronatus, and Triatoma sordida, the fecal samples were all negative by microscopic examination whereas PCR results showed several T. cruzi-infected insects in each species. The second step of the procedure is the characterization of the T. cruzi clones by means of hybridization of the PCR products with clone-specific probes generated by the PCR. We used two probes corresponding to major clones circulating in high frequency in Bolivia (as shown by previous population genetic studies using isoenzyme characterization). We obtained four primary results: 1) we confirm the importance of two major clones in Bolivia in two distinct regions; 2) we report high rates of mixed infections (multiple clones in a single vector) in Triatoma infestans, up to 22% and 35% in Cochabamba and La Paz departments, respectively; 3) the results favor the absence of interaction between different clones; and 4) we find, for the first time, evidence of the major clones circulating in three species of triatomines that are known as mainly sylvatic species.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7677221

  12. Carbon–heteroatom bond formation catalysed by organometallic complexes

    PubMed Central

    Hartwig, John F.

    2010-01-01

    At one time the synthetic chemist’s last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been supported by the discovery of new elementary reactions that occur at metal–heteroatom bonds and by the identification of factors that control these reactions. Together, these findings have led to new synthetic processes that are in daily use and have formed a foundation for the development of processes that are likely to be central to synthetic chemistry in the future. PMID:18800130

  13. Formation of FePt nanoparticles by organometallic synthesis

    SciTech Connect

    Bagaria, H. G.; Johnson, D. T.; Srivastava, C.; Thompson, G. B.; Shamsuzzoha, M.; Nikles, D. E.

    2007-05-15

    Our interest in determining the mechanism of FePt nanoparticle formation has led to this study of the evolution of particle size and composition during synthesis. FePt nanoparticles were prepared by the simultaneous reduction of platinum acetylacetonate and thermal decomposition of iron pentacarbonyl. During the course of the reaction, samples were removed and the particle structure, size, and composition were determined using x-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy-energy dispersive x-ray spectrometry. Early in the reaction the particles were Pt rich (greater than 95 at. % Pt) and as the reaction proceeded the Fe content increased to the target of 50%. The particle diameter increased from 3.1 to 4.6 nm during the reaction. Energy dispersive x-ray spectrometry measurements of individual particle compositions using a high resolution TEM showed a broad distribution of particle compositions with a standard deviation greater than 15% of the average composition.

  14. Atomic decomposition of conceptual DFT descriptors: application to proton transfer reactions.

    PubMed

    Inostroza-Rivera, Ricardo; Yahia-Ouahmed, Meziane; Tognetti, Vincent; Joubert, Laurent; Herrera, Bárbara; Toro-Labbé, Alejandro

    2015-07-21

    In this study, we present an atomic decomposition, in principle exact, at any point on a given reaction path, of the molecular energy, reaction force and reaction flux, which is based on Bader's atoms-in-molecules theory and on Pendás' interacting quantum atoms scheme. This decomposition enables the assessment of the importance and the contribution of each atom or molecular group to these global properties, and may cast the light on the physical factors governing bond formation or bond breaking. The potential use of this partition is finally illustrated by proton transfers in model biological systems. PMID:26089126

  15. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion

    PubMed Central

    Thain, Peter K.; Bleakley, Christopher M.; Mitchell, Andrew C. S.

    2015-01-01

    Context Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. Objective To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Design Randomized controlled clinical trial. Setting University of Hertfordshire human performance laboratory. Patients or Other Participants A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Intervention(s) Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Main Outcome Measure(s) Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. Results We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Conclusions Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is

  16. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  17. Organo-niobate Ionic Liquids: Synthesis, Characterization and Application as Acid Catalyst in Pechmann Reactions

    PubMed Central

    Soares, Valerio C. D.; Alves, Melquizedeque B.; Souza, Ernesto R.; Pinto, Ivana O.; Rubim, Joel C.; Andrade, Carlos Kleber Z.; Suarez, Paulo A. Z.

    2007-01-01

    The combinations of 1-butyl-3-methylimidazolium chloride with NbCl5 yielded ionic mixtures with different melting point temperatures and acidity depending on the niobium molar fraction. The mixtures were characterized by thermal (DSC) and spectroscopic (FT-IR and 1H NMR) analysis. The Pechmann reactions of different phenols with ethylacetoacetate, producing coumarins, was used as model to evaluate the catalytic behavior of these mixtures as acid Lewis catalyst. These reactions were carried out using acidic mixtures of 60 mol%.

  18. Writing nanopatterns with electrochemical oxidation on redox responsive organometallic multilayers by AFM

    NASA Astrophysics Data System (ADS)

    Song, Jing; Hempenius, Mark A.; Jing Chung, Hong; Julius Vancso, G.

    2015-05-01

    Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to structure generation. The influence of applied bias potential, tip velocity, and multilayer thickness on the pattern height and width were investigated.Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to structure generation. The influence of applied bias potential, tip velocity, and multilayer thickness on the pattern height and width were investigated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01206f

  19. Energy and chemicals from the selective electrooxidation of renewable diols by organometallic fuel cells.

    PubMed

    Bellini, Marco; Bevilacqua, Manuela; Filippi, Jonathan; Lavacchi, Alessandro; Marchionni, Andrea; Miller, Hamish A; Oberhauser, Werner; Vizza, Francesco; Annen, Samuel P; Grützmacher, H

    2014-09-01

    Organometallic fuel cells catalyze the selective electrooxidation of renewable diols, simultaneously providing high power densities and chemicals of industrial importance. It is shown that the unique organometallic complex [Rh(OTf)(trop2NH)(PPh3)] employed as molecular active site in an anode of an OMFC selectively oxidizes a number of renewable diols, such as ethylene glycol , 1,2-propanediol (1,2-P), 1,3-propanediol (1,3-P), and 1,4-butanediol (1,4-B) to their corresponding mono-carboxylates. The electrochemical performance of this molecular catalyst is discussed, with the aim to achieve cogeneration of electricity and valuable chemicals in a highly selective electrooxidation from diol precursors. PMID:25082272

  20. Skin rash on site of application of Dashanga Lepa (polyherbal formulation): A rare and unexpected drug reaction

    PubMed Central

    Ajanal, Manjunath; Kadam, Avinash; Nayak, Shradda U.

    2012-01-01

    Dashanga Lepa is a polyherbal preparation of Ayurveda, used to treat many skin ailments and rheumatoid arthritis. However, its toxicological property has not been reported so far. We report a rare case of cutaneous adverse reaction in the form of skin rash following the application of Dashanga Lepa. A 42-year-old female patient with a Pittakaphalaprakruthi (constitution) developed skin rashes, soon after the application of Dashanga Lepa over the applied area, which disappeared after stopping the suspected drug and starting treatment with Shatadhauta ghritha. The patient was again treated with the same formulation after a span of a month, which led to the reappearance of a similar type of rash. The temporal relationship, positive dechallenge, and rechallenge are strong associations between the event and formulation. No such reaction was noticed by any other patient with the suspected medicine. PMID:23284219

  1. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei

    NASA Astrophysics Data System (ADS)

    Raimondi, Francesco; Hupin, Guillaume; Navrátil, Petr; Quaglioni, Sofia

    2016-05-01

    Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Ab initio approaches have been successfully applied to describe the 3H (d ,n )4He and 3He(d ,p )4He fusion processes. Purpose: An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d ,p ) reactions to processes with light p -shell nuclei. As a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d ,p )8Li transfer reaction based on a two-body Hamiltonian. Methods: We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. Results: The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d -7Li and p -8Li particle-decay channels determines some features of the 9Be spectrum above the d +7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Conclusions: Deuteron stripping reactions with p -shell targets can now be computed ab initio, but calculations are very demanding. A quantitative description of the 7Li(d ,p )8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.

  2. Applicability of PM3 to transphosphorylation reaction path: Toward designing a minimal ribozyme

    NASA Technical Reports Server (NTRS)

    Manchester, John I.; Shibata, Masayuki; Setlik, Robert F.; Ornstein, Rick L.; Rein, Robert

    1993-01-01

    A growing body of evidence shows that RNA can catalyze many of the reactions necessary both for replication of genetic material and the possible transition into the modern protein-based world. However, contemporary ribozymes are too large to have self-assembled from a prebiotic oligonucleotide pool. Still, it is likely that the major features of the earliest ribozymes have been preserved as molecular fossils in the catalytic RNA of today. Therefore, the search for a minimal ribozyme has been aimed at finding the necessary structural features of a modern ribozyme (Beaudry and Joyce, 1990). Both a three-dimensional model and quantum chemical calculations are required to quantitatively determine the effects of structural features of the ribozyme on the reaction it catalyzes. Using this model, quantum chemical calculations must be performed to determine quantitatively the effects of structural features on catalysis. Previous studies of the reaction path have been conducted at the ab initio level, but these methods are limited to small models due to enormous computational requirements. Semiempirical methods have been applied to large systems in the past; however, the accuracy of these methods depends largely on a simple model of the ribozyme-catalyzed reaction, or hydrolysis of phosphoric acid. We find that the results are qualitatively similar to ab initio results using large basis sets. Therefore, PM3 is suitable for studying the reaction path of the ribozyme-catalyzed reaction.

  3. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    PubMed

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA

  4. Regioselective nucleophilic addition of organometallic reagents to 3-geminal bis(silyl) N-acyl pyridinium.

    PubMed

    Wu, Ya; Li, Linjie; Li, Hongze; Gao, Lu; Xie, Hengmu; Zhang, Zhigao; Su, Zhishan; Hu, Changwei; Song, Zhenlei

    2014-04-01

    A regioselective nucleophilic addition to 3-geminal bis(silyl) N-acyl pyridinium has been described. Geminal bis(silane) shows contrasting roles that lead to different regioselectivities for the addition of different nucleophiles: its steric effect dominates to favor 1,6-addition of alkyl, vinyl, and aryl organometallic reagents; its directing effect dominates to favor 1,2-addition of less sterically demanding alkynyl Grignard reagents. PMID:24666415

  5. Molecular tectonics: heterometallic coordination networks based on a Pt(II) organometallic metallatecton.

    PubMed

    Zigon, Nicolas; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-08-28

    Combinations of a neutral organometallic tecton based on a square planar Pt(ii) complex bearing two triphenylphosphine groups and two 4-ethynylpyridyl coordinating moieties in trans positions, with various metal halides (MX2, M = Co(ii), Ni(ii), Cd(ii), X = Cl(-) or Br(-)) lead to the formation of 2D grid type heterobimetallic coordination networks in the crystalline phase. PMID:26204438

  6. Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs.

    PubMed

    Zatsikha, Yuriy V; Maligaspe, Eranda; Purchel, Anatolii A; Didukh, Natalia O; Wang, Yefeng; Kovtun, Yuriy P; Blank, David A; Nemykin, Victor N

    2015-08-17

    Stepwise modification of the methyl groups at the α positions of BODIPY 1 was used for preparation of a series of mono- (2, 4, and 6) and diferrocene (3) substituted donor-acceptor dyads in which the organometallic substituents are fully conjugated with the BODIPY π system. All donor-acceptor complexes have strong absorption in the NIR region and quenched steady-state fluorescence, which can be partially restored upon oxidation of organometallic group(s). X-ray crystallography of complexes 2-4 and 6 confirms the nearly coplanar arrangement of the ferrocene groups and the BODIPY π system. Redox properties of the target systems were studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the first oxidation process in all dyads is ferrocene centered, while the separation between the first and the second ferrocene-centered oxidation potentials in diferrocenyl-containing dyad 3 is ∼150 mV. The density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were used to investigate the electronic structure as well as explain the UV-vis and redox properties of organometallic compounds 2-4 and 6. TDDFT calculations allow for assignment of the charge-transfer and π → π* transitions in the target compounds. The excited state dynamics of the parent BODIPY 1 and dyads 2-4 and 6 were investigated using time-resolved transient spectroscopy. In all organometallic dyads 2-4 and 6 the initially excited state is rapidly quenched by electron transfer from the ferrocene ligand. The lifetime of the charge-separated state was found to be between 136 and 260 ps and demonstrates a systematic dependence on the electronic structure and geometry of BODIPYs 2-4 and 6. PMID:26220063

  7. Enhancement of Selectivity of an Organometallic Anticancer Agent by Redox Modulation.

    PubMed

    Romero-Canelón, Isolda; Mos, Magdalena; Sadler, Peter J

    2015-10-01

    Combination with redox modulators can potentiate the anticancer activity and maximize the selectivity of organometallic complexes with redox-based mechanisms of action. We show that nontoxic doses of l-buthionine sulfoximine increase the selectivity of organo-Os complex FY26 for human ovarian cancer cells versus normal lung fibroblasts to 63-fold. This increase is not due to changes in the mechanism of action of FY26 but to the decreased response of cancer cells to oxidative stress. PMID:26397305

  8. Progress toward cascade cells made by OM-VPE. [organometallic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Borden, P. G.; Larue, R. A.; Ludowise, M. J.

    1982-01-01

    Organometallic Vapor Phase Epitaxy (COM-VPE) was used to make a sophisticated monolithic cascade cell, with a peak AMO efficiency of 16.6%, not corrected for 14% grid coverage. The cell has 9 epitaxial layers. The top cell is 1.35 microns thick with a 0.1 micron thich emitter. Both cells are heteroface n-p structures. The cascade cell uses metal interconnects. Details of growth and processing are described.

  9. Organometallic Polymer Coatings for Geothermal-Fluid-Sprayed Air-Cooled Condensers: Preprint

    SciTech Connect

    Gawlik, K.; Sugama, T.; Jung, D.

    2002-08-01

    Researchers are developing polymer-based coating systems to reduce scaling and corrosion of air-cooled condensers that use a geothermal fluid spray for heat transfer augmentation. These coating systems act as barriers to corrosion to protect aluminum fins and steel tubing; they are formulated to resist the strong attachment of scale. Field tests have been done to determine the corrosion and scaling issues related to brine spraying and a promising organometallic polymer has been evaluated in salt spray tests.

  10. Enhancement of Selectivity of an Organometallic Anticancer Agent by Redox Modulation

    PubMed Central

    2015-01-01

    Combination with redox modulators can potentiate the anticancer activity and maximize the selectivity of organometallic complexes with redox-based mechanisms of action. We show that nontoxic doses of l-buthionine sulfoximine increase the selectivity of organo-Os complex FY26 for human ovarian cancer cells versus normal lung fibroblasts to 63-fold. This increase is not due to changes in the mechanism of action of FY26 but to the decreased response of cancer cells to oxidative stress. PMID:26397305

  11. Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD)

    NASA Astrophysics Data System (ADS)

    Salvage, Karen M.; Yeh, Gour-Tsyh

    1998-08-01

    This paper presents the conceptual and mathematical development of the numerical model titled BIOKEMOD, and verification simulations performed using the model. BIOKEMOD is a general computer model for simulation of geochemical and microbiological reactions in batch aqueous solutions. BIOKEMOD may be coupled with hydrologic transport codes for simulation of chemically and biologically reactive transport. The chemical systems simulated may include any mixture of kinetic and equilibrium reactions. The pH, pe, and ionic strength may be specified or simulated. Chemical processes included are aqueous complexation, adsorption, ion-exchange and precipitation/dissolution. Microbiological reactions address growth of biomass and degradation of chemicals by microbial metabolism of substrates, nutrients, and electron acceptors. Inhibition or facilitation of growth due to the presence of specific chemicals and a lag period for microbial acclimation to new substrates may be simulated if significant in the system of interest. Chemical reactions controlled by equilibrium are solved using the law of mass action relating the thermodynamic equilibrium constant to the activities of the products and reactants. Kinetic chemical reactions are solved using reaction rate equations based on collision theory. Microbiologically mediated reactions for substrate removal and biomass growth are assumed to follow Monod kinetics modified for the potentially limiting effects of substrate, nutrient, and electron acceptor availability. BIOKEMOD solves the ordinary differential and algebraic equations of mixed geochemical and biogeochemical reactions using the Newton-Raphson method with full matrix pivoting. Simulations may be either steady state or transient. Input to the program includes the stoichiometry and parameters describing the relevant chemical and microbiological reactions, initial conditions, and sources/sinks for each chemical species. Output includes the chemical and biomass concentrations

  12. Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications.

    PubMed

    Leemhuis, Hans; Pijning, Tjaard; Dobruchowska, Justyna M; van Leeuwen, Sander S; Kralj, Slavko; Dijkstra, Bauke W; Dijkhuizen, Lubbert

    2013-01-20

    Glucansucrases are extracellular enzymes that synthesize a wide variety of α-glucan polymers and oligosaccharides, such as dextran. These carbohydrates have found numerous applications in food and health industries, and can be used as pure compounds or even be produced in situ by generally regarded as safe (GRAS) lactic acid bacteria in food applications. Research in the recent years has resulted in big steps forward in the understanding and exploitation of the biocatalytic potential of glucansucrases. This paper provides an overview of glucansucrase enzymes, their recently elucidated crystal structures, their reaction and product specificity, and the structural analysis and applications of α-glucan polymers. Furthermore, we discuss key developments in the understanding of α-glucan polymer formation based on the recently elucidated three-dimensional structures of glucansucrase proteins. Finally we discuss the (potential) applications of α-glucans produced by lactic acid bacteria in food and health related industries. PMID:22796091

  13. Amphiphilic nanocapsules entangled with organometallic coordination polymers for controlled cargo release.

    PubMed

    Liang, Guodong; Ni, Huan; Bao, Suping; Zhu, Fangming; Gao, Haiyang; Wu, Qing; Tang, Ben Zhong

    2014-06-01

    A class of new amphiphilic nanocapsules entangled with organometallic coordination polymers has been developed for the first time. Poly(2-(N,N-dimethyl amino)ethyl methacrylate)-b-polystyrene capped with β-cyclodextrin (β-CD) (CD-PDMAEMA-b-PS) is first synthesized using sequent RAFT polymerization of styrene and 2-(N,N-dimethyl amino)ethyl methacrylate with xanthate modified β-CD as chain transfer agent. The end group of β-CD is allowed to include 4,4'-bipyridine through host-guest inclusion to yield PDMAEMA-b-PS terminated with an inclusion complex of β-CD and bipyridine (bpy-PDMAEMA-b-PS), which is then used as surfactant to prepare emulsion droplets in toluene/water mixture. Upon addition of Ni(II), bipyridine coordinates with Ni(II) to form coordination polymers in the periphery of emulsion droplets, affording amphiphilic capsules entangled with organometallic coordination polymers, as confirmed by GPC, (1)H NMR, SEM, TEM, DLS, and so on. The organometallic coordination polymer capsules are capable of encapsulating organic cargoes. Interestingly, encapsulated cargoes can be extracted from the capsules without damaging the capsules. Such capsules are potential candidates for encapsulating and controlled release of organic cargoes. PMID:24828951

  14. Solution phase and membrane immobilized iron-based free radical reactions: Fundamentals and applications for water treatment

    NASA Astrophysics Data System (ADS)

    Lewis, Scott Romak

    Membrane-based separation processes have been used extensively for drinking water purification, wastewater treatment, and numerous other applications. Reactive membranes synthesized through functionalization of the membrane pores offer enhanced reactivity due to increased surface area at the polymer-solution interface and low diffusion limitations. Oxidative techniques utilizing free radicals have proven effective for both the destruction of toxic organics and non-environmental applications. Most previous work focuses on reactions in the homogeneous phase; however, the immobilization of reactants in membrane pores offers several advantages. The use of polyanions immobilized in a membrane or chelates in solution prevents ferric hydroxide precipitation at near-neutral pH, a common limitation of iron(Fe(II/III))-catalyzed hydrogen peroxide (H 2O2) decomposition. The objectives of this research are to develop a membrane-based platform for the generation of free radicals, degrade toxic organic compounds using this and similar solution-based reactions, degrade toxic organic compounds in droplet form, quantify hydroxyl radical production in these reactions, and develop kinetic models for both processes. In this study, a functionalized membrane containing poly(acrylic acid) (PAA) was used to immobilize iron ions and conduct free radical reactions by permeating H2O2 through the membrane. The membrane's responsive behavior to pH and divalent cations was investigated and modeled. The conversion of Fe(II) to Fe(III) in the membrane and its effect on the decomposition of hydrogen peroxide were monitored and used to develop kinetic models for predicting H2O2 decomposition in these systems. The rate of hydroxyl radical production, and hence contaminant degradation can be varied by changing the residence time, H2O2 concentration, and/or iron loading. Using these membrane-immobilized systems, successful removal of toxic organic compounds, such as pentachlorophenol (PCP), from water

  15. Organometallic photovoltaics: a new and versatile approach for harvesting solar energy using conjugated polymetallaynes.

    PubMed

    Wong, Wai-Yeung; Ho, Cheuk-Lam

    2010-09-21

    Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device

  16. Organometallic chemistry of bimetallic compounds. Final progress report

    SciTech Connect

    Casey, C.P.

    1991-07-01

    This report consists of six sections: heterobimetallic dihydrides, early-late transition metal heterobimetallic compounds, amphiphilic carbene complexes and hydroxycarbene complexes, diiron compounds with bridging hydrocarbon ligands, diphosphine chelates with natural bite angles near 120 degrees, and synthesis and reactions of M=M compounds. (WET)

  17. Molecular Models of Ruthenium(II) Organometallic Complexes

    ERIC Educational Resources Information Center

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  18. A novel application of DDQ as electrophile in the Nenitzescu reaction.

    PubMed

    Kucklaender, U; Bollig, R; Frank, W; Gratz, A; Jose, J

    2011-04-15

    Reaction of 2,3-dichloro-5,6-dicyano-benzoquinone (DDQ) with secondary enaminones yields surprisingly 2-aza-spiro[4,5]decatrienes. The reaction occurs via cyclisation of the primary Michael-adduct with the nitrile group. Reaction of DDQ with tertiary and also certain secondary enamines leads to 3-amino-benzo[b]furan derivatives. This is formed not by Michael-addition, but via geminate radical ion pair formation with subsequent generation of an oxygen-carbon bond to yield benzofurans. The new products are investigated with regards to inhibition of purified human proteinkinase CK2 and their general cytostatic activity. It turned out, that the most active compound is the 3-amino-5-hydroxy-benzofuran derivative 11s with an IC(50) value of 0,2μM for CK2. PMID:21459578

  19. Investigation and application of multiple reactions between molybdoniobium heteropoly acid and di- or trimethylthionines

    SciTech Connect

    Mirzoyam, F.B.; Karapetyan, A.A.

    1986-03-01

    This paper presents the results of the study and use of reactions of molybdoniobic acid (MNA) with di- and trimethylthiones (DMT and TMT, respectively). It was found that light absorption of acetone solutions of the products of outer-sphere interaction between MNA and DMT or TMT enabled the determination of optimum acidity for MNA formation. Reaction between TMT and MNA gives two different compounds containing two and five associated dye cations, different in molar extinction coefficient and optimum reaction acidity (pH 0.05-0.25 and 0.35-0.90). Formation of the 6th and 8th molybdenum series with an identical composition of the outer sphere is shown. A highly sensitive photometric method for determining niobium has been developed.

  20. Conjugate addition-enantioselective protonation reactions.

    PubMed

    Phelan, James P; Ellman, Jonathan A

    2016-01-01

    The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals. PMID:27559372

  1. Conjugate addition–enantioselective protonation reactions

    PubMed Central

    Phelan, James P

    2016-01-01

    Summary The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals. PMID:27559372

  2. Exploring reaction pathways with transition path and umbrella sampling: Application to methyl maltoside

    NASA Astrophysics Data System (ADS)

    Dimelow, Richard J.; Bryce, Richard A.; Masters, Andrew J.; Hillier, Ian H.; Burton, Neil A.

    2006-03-01

    The transition path sampling (TPS) method is a powerful approach to study chemical reactions or transitional properties on complex potential energy landscapes. One of the main advantages of the method over potential of mean force methods is that reaction rates can be directly accessed without knowledge of the exact reaction coordinate. We have investigated the complementary nature of these two differing approaches, comparing transition path sampling with the weighted histogram analysis method to study a conformational change in a small model system. In this case study, the transition paths for a transition between two rotational conformers of a model disaccharide molecule, methyl β-D-maltoside, were compared with a free energy surface constrained by the two commonly used glycosidic (ϕ,ψ) torsional angles. The TPS method revealed a reaction channel that was not apparent from the potential of mean force method, and the suitability of ϕ and ψ as reaction coordinates to describe the isomerization in vacuo was confirmed by examination of the transition path ensemble. Using both transition state theory and transition path sampling methods, the transition rate was estimated. We have estimated a characteristic time between transitions of approximately 160 ns for this rare isomerization event between the two conformations of the carbohydrate. We conclude that transition path sampling can extract subtle information about the dynamics not apparent from the potential of mean force method. However, in calculating the reaction rate, the transition path sampling method required 27.5 times the computational effort than was needed by the potential of mean force method.

  3. Benzannulation via the Reaction of Ynamides and Vinylketenes. Application to the Synthesis of Highly Substituted Indoles

    PubMed Central

    Lam, Tin Yiu; Wang, Yu-Pu

    2013-01-01

    A two-stage “tandem strategy” for the synthesis of indoles with a high level of substitution on the six-membered ring is described. Benzannulation based on the reaction of cyclobutenones with ynamides proceeds via a cascade of four pericyclic reactions to produce multiply substituted aniline derivatives in which the position ortho to the nitrogen can bear a wide range of functionalized substituents. In the second stage of the tandem strategy, highly substituted indoles are generated via acid-, base-, and palladium-catalyzed cyclization and annulation processes. PMID:23952525

  4. Application of an atmospheric pressure sampling mass spectrometer to chlorination reactions

    NASA Technical Reports Server (NTRS)

    Jacobson, N. S.

    1986-01-01

    An atmospheric pressure mass spectrometric sampling system, based on a free jet expansion was used to study certain M-Cl-O reactions at high temperatures. The apparatus enables the volatile species from a 1-atm chemical process to be directly identified with a mass spectrometer which operates at approx. 10 to the minus 8th power torr. Studies for both pure metals and alloys are discussed. It is shown that this mass spectrometer system aids in identifying the volatile species, and provides fundamental information on the reaction mechanism.

  5. Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis

    NASA Astrophysics Data System (ADS)

    Polyakov, Igor V.; Grigorenko, Bella L.; Moskovsky, Alexander A.; Pentkovski, Vladimir M.; Nemukhin, Alexander V.

    2013-01-01

    We apply computational methods aiming to approach a full quantum mechanical treatment of chemical reactions in proteins. A combination of the quantum mechanical - molecular mechanical methodology for geometry optimization and the fragment molecular orbital approach for energy calculations is examined for an example of acetylcholinesterase catalysis. The codes based on the GAMESS(US) package operational on the 'RSC Tornado' computational cluster are applied to determine that the energy of the reaction intermediate upon hydrolysis of acetylcholine is lower than that of the enzyme-substrate complex. This conclusion is consistent with the experiments and it is free from the empirical force field contributions.

  6. [Hypersensitive reaction after application of heparin with activation heparin induced trombocytopenia in initiation of intermittent haemodialysis].

    PubMed

    Masopust, Jan; Charvát, Jiří; Mokrá, Dana; Hloch, Ondřej; Háša, Jan

    2015-03-01

    Our report describes the case of patient with hypersensitive reaction regularly arising early after initiation of haemodialysis. This characteristic reaction with pletoric face coloration, bronchospasm, increase of blood pressure, anxiety and decrease of blood oxygen saturation at the consequence and central cyanosis was regularly present without dependence on type of dialysis membrane, drug premedication or prophylactic flushing haemodialysis system by isotonic natrium chloride solution. Low platelet value and trouble-free haemodialysis realized without heparin showed real cause of patients problem. Resolution of this state was regional citrate anticoagulation during intermitent haemodialysis. PMID:25873123

  7. Application of a Sequential Reaction Model to PANS and Aldehyde Measurements in Two Urban Areas

    SciTech Connect

    Roberts, James M.; Stroud, C.; Jobson, B Tom T.; Trainer, Michael; Hereid, D.; Williams, E. J.; Fehsenfeld, Fred C.; Brune, W. H.; Martinez, M.; Harder, H.

    2001-12-15

    Measurements of peroxycarboxylic nitric anhydrides (= PAN, PPN, MPAN) and aldehydes (acetaldehyde, propanal, and methacrolein) were made at Nashville, Tennessee, in 1999 and Houston, Texas, in 2000. The data were interpreted with a sequential reaction model that included reaction of aldehydes with hydroxl radical and formation or loss of PANs mediated by peroxyacyl radicals. The comparison of the measured ratios with those predicted by the model showed disagreement for PAN/acetaldehyde and PPN/propanal in Nashville but agreement in Houston. These features are consistent with the relative importance of isoprene to PAN formation at each site.

  8. Diffusion and reaction of pollutants in stratus clouds: application to nocturnal acid formation in plumes

    SciTech Connect

    Seigneur, C.; Saxena, P.; Mirabella, V.A.

    1985-09-01

    A mathematical model is presented that describes the transport, turbulent diffusion, and chemical reactions of air pollutants in stratus clouds. The chemical kinetic mechanism treats 97 gaseous, heterogeneous, and aqueous reactions between 54 species. The dispersion and night-time chemistry of a power plant plume in a stratus cloud is simulated. The contributions of various chemical pathways to the formation of sulfate and nitrate, the differences between plume and background concentrations, and the effect of reduced primary emissions on secondary pollutants are discussed. Calculated sulfate and nitrate concentrations are commensurate with measured atmospheric concentrations.

  9. Development and Applications of Transesterification Reactions Catalyzed by N-Heterocyclic Olefins.

    PubMed

    Blümel, Marcus; Noy, Janina-Miriam; Enders, Dieter; Stenzel, Martina H; Nguyen, Thanh V

    2016-05-01

    A novel method to utilize N-heterocyclic olefins (NHOs), the alkylidene derivatives of N-heterocycic carbenes, as organocatalysts to promote transesterification reactions has been developed. Because of their strong Brønsted/Lewis basicity, NHOs can enhance the nucleophilicity of alcohols for their acylation reactions with carboxylic esters. This transformation can be employed in industrially relevant processes such as the production of biodiesel, the depolymerization of polyethylene terephthalate (PET) from plastic bottles for recycling purposes, and the ring-opening polymerization of cyclic esters to form biodegradable polymers such as polylactide (PLA) and polycaprolactone (PCL). PMID:27115463

  10. Investigation and analytical application of the sulphide-hypobromite chemiluminescence reaction.

    PubMed

    Teckentrup, J; Klockow, D

    1981-09-01

    The results of an investigation of the sensitized and non-sensitized chemiluminescence reaction between sulphide and hypobromite in alkaline solution are presented. The reaction can be used for the determination of traces of sulphide at concentrations above 5 x 10(-8)M. For this purpose a special flow system is employed which includes coulometric generation of reagent, and photon-counting. The flow system can also be combined with a special microdistillation apparatus, making it possible to analyse impregnated filters such as are used for the collection of hydrogen sulphide from ambient air. PMID:18962976

  11. Liquid chromatography with amperometric reaction detection involving electrogenerated reagents: applications with in-situ generated bromine.

    PubMed

    King, W P; Kissinger, P T

    1980-09-01

    We describe the use of electrogenerated reactants for continuous on-line reaction detection with thin-layer hydrodynamic amperometry. The reagent is introduced into the liquid-chromatographic column effluent at a constant rate by using controlled-current electrochemistry. After the effluent passes through a short reaction coil, the reagent concentration is monitored at the detector. Reaction of eluted compounds with bromine is signalled by changes in the current detected. The direct electrochemical control of the reagent concentration allows changes to be made, even during the course of obtaining a chromatogram. Depending on the specific reagent or reaction, the reagent is supplied either by addition of a second stream or by direct generation in the mobile phase. The latter configuration provides sufficient baseline stability to permit detection of the uptake of as little as 10 pmol of reagent bromine. The technique has been used to detect nanograms of underivatized fatty acids, prostaglandins, and phenols after separation by reversed-phase liquid chromatography. PMID:7408178

  12. Angular momenta correlation in kinematically constrained reactions. II. Application to the B + OH BO + H system

    NASA Astrophysics Data System (ADS)

    Alberti, Margarita; Gimenez, Xavier; Aguilar, Antonio; Gonzalez Urena, Angel

    Extensive quasi-classical trajectory (QCT) calculations have been carried out to study the disposal of both rotational and orbital angular momentum in the B + OH BO + H reaction. The potential energy surface (PES) of this reaction shows two minima associated with the HOB and HBO configurations. In addition, two distinct PESs were used each having a different geometrical structure of the HOB intermediate: bent for surface 1 and linear for surface 2. For the title reaction the product angular momentum disposal shows significant deviations from the kinematic limit expected for a heavy + heavy-light (HH L) reaction. The analysis of the product angular momenta distribution clearly indicates a correlation with the topology of the PES used. It was found that while the insertion mechanism associated with PES1 (HOB bent intermediate) favours a significant disposal into product rotational and orbital momenta, little disposal into both momenta is obtained for reactive trajectories occurring through the collinear HOB intermediate of PES2, for which BO is highly stretched. A simple modification of the conventional kinematic expressions, aimed at incorporating the effect of the dynamics into the angular momenta transfer, is proposed and tested. Modified expressions give results strongly consistent with those obtained from QCT calculations.

  13. Reduced-Dimensionality Semiclassical Transition State Theory: Application to Hydrogen Atom Abstraction and Exchange Reactions of Hydrocarbons.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2015-12-17

    Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems. PMID:26090556

  14. Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.; Kelly, Thomas G.; Meng, Qinghe; Chen, Jingguang G.

    2012-09-01

    Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their "Pt-like" properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.

  15. Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.; Kelly, Thomas G.; Meng, Qinghe; Chen, Jingguang G.

    2012-09-01

    Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their “Pt-like” properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.

  16. Measurement of 55Fe(n ,p ) cross sections by the surrogate-reaction method for fusion technology applications

    NASA Astrophysics Data System (ADS)

    Pandey, Bhawna; Desai, V. V.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.; Mirgule, E. T.; Santra, S.; Mahata, K.; Makawana, R.; Abhangi, M.; Basu, T. K.; Rao, C. V. S.; Jakhar, S.; Vala, S.; Sarkar, B.; Agrawal, H. M.; Kaur, G.; Prajapati, P. M.; Pal, Asim; Sarkar, D.; Kundu, A.

    2016-02-01

    We have measured the proton decay probabilities of the *56Fe and *47Ti compound systems which are populated by the transfer reactions 52Cr(6Li,d ) *56Fe (surrogate of n +55Fe→*56Fe→p +55Mn ) and 45Sc(6Li,α ) *47Ti (surrogate of n +46Ti→47Ti*→p +46Sc ) reactions, respectively. The 55Fe(n ,p ) cross sections were then obtained in the equivalent neutron energy range of 7.9 to 20.1 MeV within the framework of the surrogate-reaction method. The measured results were compared with predictions of the empire-3.2.3 statistical model code and various recent evaluated data libraries. The experimental cross-section data on 55Fe(n ,p ) are in reasonable agreement with EAF-2010, while the TENDL-2014 and ROSFOND-2010 data show some discrepancies. This study demonstrates the possibility of determining neutron-induced charged particle emission cross sections for unstable radionuclides relevant to fusion technology applications by the surrogate-reaction method.

  17. Nuclear reactions induced by deuterons and their applicability to skin tumor treatment through BNCT

    NASA Astrophysics Data System (ADS)

    Burlon, A. A.; Roldán, T. del V.; Kreiner, A. J.; Minsky, D. M.; Valda, A. A.

    2008-11-01

    In this work the D(d,n) 3He and 9Be(d,n) 10B reactions have been studied in a low-energy regime as neutron sources for skin tumor treatment in the frame of accelerator-based BNCT (AB-BNCT). The total neutron production and the energy and angular distributions for each reaction at different bombarding energies and for the thick targets considered (TiD 2, Be) have been determined using the available data in the literature. From this information, a feasibility study has been performed by means of MCNP simulations. The thermal, epithermal and fast neutron fluxes and doses at skin tumor positions (loaded with 40 ppm 10B) which are located on a whole-body human phantom have been simulated for different D 2O moderator depths. The best-case performance shows that a high tumor control probability (TCP) of 99% corresponding to a weighted dose in tumor of 40 Gy can be reached at the tumor position keeping the weighted dose in healthy tissue below 12.5 Gy, by means of the 9Be(d,n) 10B reaction at 1.1 MeV for a deuteron current of 20 mA and a 30 cm D 2O moderator in 52 min. The availability of low-energy neutrons in the 9Be(d,n) 10B reaction from the population of excited levels between 5.1 to 5.2 MeV in 10B and the convenience of a thin beryllium target are discussed. As a complement concerning alternatives to the Li(metal) + p reaction, the neutron yield of refractory lithium compounds (LiH, Li 3N and Li 2O) were calculated and compared with a Li metal target.

  18. The role of the substrate structure in the on-surface synthesis of organometallic and covalent oligophenylene chains.

    PubMed

    Dai, Jingya; Fan, Qitang; Wang, Tao; Kuttner, Julian; Hilt, Gerhard; Gottfried, J Michael; Zhu, Junfa

    2016-07-27

    The influences of the substrate structure on the formation of one-dimensional organometallic and covalent oligomers on a Cu(110) surface were studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED) in ultrahigh vacuum (UHV). Vapor deposition of submonolayer 4,4''-dibromo-meta-terphenyl (DMTP) onto a Cu(110) surface at 300 K leads to scission of C-Br bonds and the formation of organometallic chains (cis/trans and all-trans) connected by C-Cu-C bonds. Larger islands (120 × 120 nm(2)) of all-trans zigzag organometallic chains as sole products were obtained by the deposition of DMTP onto Cu(110) held at 383 K. The domains are oriented along two directions with an angle of ±13° relative to the [0 0 1] direction due to the two-fold symmetry of the Cu(110) surface lattice. This study reveals at a sub-molecular level that the organometallic chains firstly lose copper atoms and then undergo C-C coupling into oligophenylene chains at a substrate temperature around 417 K. Annealing the large islands of organometallic chains at 458 K results in the formation of completely C-C covalently bonded zigzag oligophenylene chains. The zigzag angle of 125° slightly deviates from the ideal value of 120°. This is attributed to a stretching of the zigzag oligophenylene chains due to substrate template effects. PMID:27411742

  19. Applications of the ETS-NOCV method in descriptions of chemical reactions.

    PubMed

    Mitoraj, Mariusz Paweł; Parafiniuk, Monika; Srebro, Monika; Handzlik, Michał; Buczek, Agnieszka; Michalak, Artur

    2011-09-01

    The present study characterizes changes in the electronic structure of reactants during chemical reactions based on the combined charge and energy decomposition scheme, ETS-NOCV (extended transition state-natural orbitals for chemical valence). Decomposition of the activation barrier, ΔE (#), into stabilizing (orbital interaction, ΔE (orb), and electrostatic, ΔE (elstat)) and destabilizing (Pauli repulsion, ΔE (Pauli), and geometry distortion energy, ΔE (dist)) factors is discussed in detail for the following reactions: (I) hydrogen cyanide to hydrogen isocyanide, HCN → CNH isomerization; (II) Diels-Alder cycloaddition of ethene to 1,3-butadiene; and two catalytic processes, i.e., (III) insertion of ethylene into the metal-alkyl bond using half-titanocene with phenyl-phenoxy ligand catalyst; and (IV) B-H bond activation catalyzed by an Ir-containing catalyst. Various reference states for fragments were applied in ETS-NOCV analysis. We found that NOCV-based deformation densities (Δρ (i)) and the corresponding energies ΔE (orb)(i) obtained from the ETS-NOCV scheme provide a very useful picture, both qualitatively and quantitatively, of electronic density reorganization along the considered reaction pathways. Decomposition of the barrier ΔE(#) into stabilizing and destabilizing contributions allowed us to conclude that the main factor responsible for the existence of positive values of ΔE (#) for all processes (I, II, III and IV) is Pauli interaction, which is the origin of steric repulsion. In addition, in the case of reactions II, III and IV, a significant degree of structural deformation of the reactants, as measured by the geometry distortion energy, plays an important role. Depending on the reaction type, stabilization of the transition state (relatively to the reactants) originating either from the orbital interaction term or from electrostatic attraction can be of vital importance. Finally, use of the ETS-NOCV method to describe catalytic

  20. Reexamining closed-form formulae for inclusive breakup: Application to deuteron- and 6Li-induced reactions

    NASA Astrophysics Data System (ADS)

    Lei, Jin; Moro, A. M.

    2015-10-01

    The problem of the calculation of inclusive breakup cross sections in nuclear reactions is reexamined. For that purpose, the post-form theory proposed by Ichimura, Austern, and Vincent [Phys. Rev. C 32, 431 (1985), 10.1103/PhysRevC.32.431] is revisited, and an alternative derivation of the nonelastic breakup part of the inclusive breakup is presented, making use of the coupled-channels optical theorem. Using the distorted-wave Born approximation (DWBA) version of this model, several applications to deuteron and 6Li reactions are presented and compared with available data. The validity of the zero-range approximation of the DWBA formula is also investigated by comparing zero-range with full finite-range calculations.

  1. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction

    PubMed Central

    Wang, Haotian; Lu, Zhiyi; Xu, Shicheng; Kong, Desheng; Cha, Judy J.; Zheng, Guangyuan; Hsu, Po-Chun; Yan, Kai; Bradshaw, David; Prinz, Fritz B.; Cui, Yi

    2013-01-01

    The ability to intercalate guest species into the van der Waals gap of 2D layered materials affords the opportunity to engineer the electronic structures for a variety of applications. Here we demonstrate the continuous tuning of layer vertically aligned MoS2 nanofilms through electrochemical intercalation of Li+ ions. By scanning the Li intercalation potential from high to low, we have gained control of multiple important material properties in a continuous manner, including tuning the oxidation state of Mo, the transition of semiconducting 2H to metallic 1T phase, and expanding the van der Waals gap until exfoliation. Using such nanofilms after different degree of Li intercalation, we show the significant improvement of the hydrogen evolution reaction activity. A strong correlation between such tunable material properties and hydrogen evolution reaction activity is established. This work provides an intriguing and effective approach on tuning electronic structures for optimizing the catalytic activity. PMID:24248362

  2. Tetrazole Photoclick Chemistry: Reinvestigating Its Suitability as a Bioorthogonal Reaction and Potential Applications.

    PubMed

    Li, Zhengqiu; Qian, Linghui; Li, Lin; Bernhammer, Jan C; Huynh, Han Vinh; Lee, Jun-Seok; Yao, Shao Q

    2016-02-01

    The bioorthogonality of tetrazole photoclick chemistry has been reassessed. Upon photolysis of a tetrazole, the highly reactive nitrile imine formed undergoes rapid nucleophilic reaction with a variety of nucleophiles present in a biological system, along with the expected cycloaddition with alkenes. The alternative use of the tetrazole photoclick reaction was thus explored: tetrazoles were incorporated into Bodipy and Acedan dyes, providing novel photo-crosslinkers with one- and two-photon fluorescence Turn-ON properties that may be developed into protein-detecting biosensors. Further introduction of these photo-activatable, fluorogenic moieties into staurosporine resulted in the corresponding probes capable of photoinduced, no-wash imaging of endogenous kinase activities in live mammalian cells. PMID:26640085

  3. Reactions with 8Li at RIBRAS (Radioactive Ion Beams in Brasil): Astrophysical and nuclear structure applications

    NASA Astrophysics Data System (ADS)

    Mendes, D. R., Jr.; Lépine-Szily, A.; Descouvemont, P.

    2012-02-01

    We present the results of the 8Li(p, α) 5He reaction of astrophysical interest, measured at the RIBRAS system. It was realized in inverse kinematics and using a thick CH2 polyethylene target. Using the thick target method the complete excitation function could be measured between Ecm = 0.2-2.5 MeV, which includes the Gamow peak energy region. The contribution of contaminating 12C(8Li,4He) 16N and 12C(7Li, 4He) 15N reactions is still under analysis. However, if the cross section is expected to be somewhat reduced, the subtraction of the contamination will not change the general feature of the excitation function.

  4. Thermonuclear breakup reactions of light nuclei. II - Gamma-ray line production and other applications

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal

    1989-01-01

    The main consequence of nuclear breakup reactions in high-temperature plasmas is shown to be to reduce the production of the gamma-ray lines, due to the breakup of these species at high temperature. Results of the emissivities of all the relevant gamma-ray lines are discussed. It is shown that the magnitude of the breakup effect on the line emissivities depends strongly on temperature, but more importantly on the plasma density and on the available time for the ion processes. Other effects considered include the production of neutrons (from the breakup of helium) and its consequences (such as the production of gamma rays from n-capture reactions and dynamical effects in accretion disk plasmas).

  5. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins

    PubMed Central

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír

    2016-01-01

    Summary Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  6. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins.

    PubMed

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír; Decker, Michael

    2016-01-01

    Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  7. Recruitment Effects: The Influence of Sex, Job Content, and Information Order on Reactions of Applicants.

    ERIC Educational Resources Information Center

    Winter, Paul A.

    This study was designed to expand extant knowledge about factors that impact the job application decisions of experienced teachers. A total of 136 experienced teachers, enrolled in graduate education courses at a large Midwestern university, role played the part of job applicants for an elementary teacher position. Participants rated four versions…

  8. An Advanced Organometallic Lab Experiment with Biological Implications: Synthesis and Characterization of Fe[subscript 2](µ-S[subscript 2])(C0)[subscript 6

    ERIC Educational Resources Information Center

    Barrett, Jacob; Spentzos, Ariana; Works, Carmen

    2015-01-01

    The organometallic complex Fe[subscript 2](µ-S[subscript 2])(CO)[subscript 6] has interesting biological implications. The concepts of bio-organometallic chemistry are rarely discussed at the undergraduate level, but this experiment can start such a conversation and, in addition, teach valuable synthetic techniques. The lab experiment takes a…

  9. Dynamic Kinetic Resolution Enabled by Intramolecular Benzoin Reaction: Synthetic Applications and Mechanistic Insights.

    PubMed

    Zhang, Guoxiang; Yang, Shuang; Zhang, Xiaoyan; Lin, Qiqiao; Das, Deb K; Liu, Jian; Fang, Xinqiang

    2016-06-29

    The highly enantio-, diastereo-, and regioselective dynamic kinetic resolution of β-ketoesters and 1,3-diketones was achieved via a chiral N-heterocyclic carbene catalyzed intramolecular cross-benzoin reaction. A variety of tetralone derivatives bearing two contiguous stereocenters and multiple functionalities were liberated in moderate to excellent yields and with high levels of stereoselectivity (>95% ee and >20:1 dr in most cases). In addition, the excellent regioselectivity control for aryl/alkyl 1,3-diketones, and the superior electronic differentiation of 1,3-diarylketones were highlighted. Moreover, a set of new mechanistic rationale that differs with the currently widely accepted understanding of intramolecular benzoin reactions was established to demonstrate the superior preference of benzoin over aldol transformation: (1) A coexistence of competitive aldol and benzoin reactions was detected, but a retro-aldol-irreversible benzoin process performs a vital role in the generation of predominant benzoin products. (2) The most essential role of an N-electron-withdrawing substituent in triazolium catalysts was revealed to be accelerating the rate of the benzoin transformation, rather than suppressing the aldol process through reducing the inherent basicity of the catalyst. PMID:27270409

  10. An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion

    NASA Technical Reports Server (NTRS)

    Jachimowski, Casimir J.

    1988-01-01

    A chemical kinetic mechanism for the combustion of hydrogen has been assembled and optimized by comparing the observed behavior as determined in shock tube and flame studies with that predicted by the mechanism. The reactions contained in the mechanism reflect the current state of knowledge of the chemistry of the hydrogen/air system, and the assigned rate coefficients are consistent with accepted values. It was determined that the mechanism is capable of satisfactorily reproducing the experimental results for a range of conditions relevant to scramjet combustion. Calculations made with the reaction mechanism for representative scramjet combustor conditions at Mach 8, 16, and 25 showed that chemical kinetic effects can be important and that combustor models which use nonequilibrium chemistry should be used in preference to models that assume equilibrium chemistry. For the conditions examined the results also showed the importance of including the HO2 chemistry in the mechanism. For Mach numbers less than 16, the studies suggest that an ignition source will most likely be required to overcome slow ignition chemistry. At Mach 25, the initial temperature and pressure was high enough that ignition was rapid and the presence of an ignition source did not significantly affect reaction rates.

  11. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    PubMed Central

    Jouffroy, Matthieu; Gramage-Doria, Rafael; Sémeril, David; Oberhauser, Werner; Toupet, Loïc

    2014-01-01

    Summary The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine) complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2. PMID:25383109

  12. Applications of SXPS for studying surface structure, reaction mechanisms and kinetics

    SciTech Connect

    Mullins, D.R.; Huntley, D.R.; Overbury, S.H.

    1994-12-31

    Soft x-ray photoelectron spectroscopy (SXPS) from the S 2p core level has been used to study adsorbate induced reconstruction, identify reaction intermediates and study reaction kinetics on the Ni(111) surface. The S 2p binding energy is affected by the nature of the surface adsorption site. It has been determined from the number of S 2p states and their relative binding energies that adsorbed S induces a reconstruction of the Ni(111) surface and that the S adsorbs in fourfold sites on terraces and in troughs. S 2p SXPS has also been used to identify adsorbed species during the thermal decomposition of methanethiol on Ni(111). CH{sub 3}SH adsorbs as CH{sub 3}S{minus} at low temperatures. Above 200 K, the CH{sub 3}S{minus} changes adsorption site and the C-S bond begins to cleave. The relative concentrations of CH{sub 3}S{minus} in the two different sites and of atomic S have been monitored as a function of temperature and initial coverage. As a result of the sensitivity and resolution available in SXPS, reaction rates and kinetic parameters have been obtained for the decomposition of benzenethiol on Ni(111) by monitoring the changes in the surface composition continuously as a function of temperature and time.

  13. Systematic analysis of palladium-graphene nanocomposites and their catalytic applications in Sonogashira reaction.

    PubMed

    Lee, Kyoung Hoon; Han, Sang-Wook; Kwon, Ki-Young; Park, Joon B

    2013-08-01

    Graphene has been modified with palladium nanoparticles (Pd NPs) to develop high performance catalysts for the Sonogashira cross coupling reaction. In this research, graphite oxide (GO) sheets exfoliated from graphite were impregnated with Pd(OAc)2 to prepare Pd(2+)/GO. Thermal treatments of the Pd(2+)/GO in H2 flow at 100°C produced Pd/graphene (Pd/G) nanocomposites. TEM images show that Pd NPs were distributed quite uniformly on the graphene sheet without obvious aggregation, and the mean size of Pd NPs was determined to be less than 2 nm in diameter. Morphological and chemical structures of the GO, Pd(2+)/GO, and Pd/G were investigated using FT-IR, XRD, XPS, and XAFS. The resulting Pd/G showed excellent catalytic efficiency in the Sonogashira reaction and offers significant advantages over inorganic supported catalysts such as simple recovery and recycling. Finally, deactivation process of the Pd/G in recycling was investigated. We believe that the remarkable reactivity of the Pd/G catalyst toward the Sonogashira reaction is attributed to the high degree of the Pd NP dispersion and thus the increased low coordination numbers of smaller Pd NPs. PMID:23673006

  14. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  15. Time resolved studies of bond activation by organometallic complexes

    SciTech Connect

    Wilkens, M J

    1998-05-01

    In 1971, Jetz and Graham discovered that the silicon-hydrogen bond in silanes could be broken under mild photochemical conditions in the presence of certain transition metal carbonyls. Such reactions fall within the class of oxidative addition. A decade later, similar reactivity was discovered in alkanes. In these cases a C-H bond in non-functionalized alkanes was broken through the oxidative addition of Cp*Ir(H){sub 2}L (Cp* = (CH{sub 3}){sub 5}C{sub 5}, L = PPh{sub 3}, Ph = C{sub 6}H{sub 5}) to form Cp*ML(R)(H) or of Cp*Ir(CO){sub 2} to form Cp*Ir(CO)(R)(H). These discoveries opened an entirely new field of research, one which naturally included mechanistic studies aimed at elucidating the various paths involved in these and related reactions. Much was learned from these experiments but they shared the disadvantage of studying under highly non-standard conditions a system which is of interest largely because of its characteristics under standard conditions. Ultrafast time-resolved IR spectroscopy provides an ideal solution to this problem; because it allows the resolution of chemical events taking place on the femto-through picosecond time scale, it is possible to study this important class of reactions under the ambient conditions which are most of interest to the practicing synthetic chemist. Certain of the molecules in question are particularly well-suited to study using the ultrafast IR spectrophotometer described in the experimental section because they contain one or more carbonyl ligands.

  16. Synthesis of Pd-N-heterocyclic carbene Pd-catalyst and its application in MW-assisted Heck and Suzuki reaction

    EPA Science Inventory

    The first Pd-N-heterocyclic carbene (NHC) complex in the form of organic silica is prepared using sol-gel method and its application in Heck and Suzuki reactions are demonstrated. These C-C coupling reactions proceeded efficiently under the influence of microwave irradiation, wit...

  17. Application of carbon dioxide towards the development of smart materials, green reaction schemes and metallic nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mohammed, Fiaz S.

    Global carbon dioxide (CO2) emissions have steadily risen over the last 50 years, with 34 billion tons of CO2 released in 2009 alone. Its potential as a greenhouse gas has negatively affected of our lives and environment by the resulting ocean acidification and climate change. To mitigate atmospheric CO2, various strategies have been implemented for CO2 separation, capture, storage and use as a chemical feedstock. The use of CO2 in various chemical industries is attractive as its non-flammable, non-toxic, and relatively inert properties have made it an inherently safer alternative to traditional organic solvents, as well as, a greener carbon feedstock. Also, the accessible critical properties, appreciable critical density, high diffusivity and tunable thermophysical properties make liquid and supercritical CO2 an attractive solvent for industrial applications. In recent years, significant progress has been made in the field of tunable solvent media by employing the reversible reaction of CO2 with amines to produce carbamates. This class of compounds possesses ionic properties that are significantly different from their amines resulting in a non-ionic to ionic switching mechanism that provides for switchable solvent properties, reversible surfactants, low molecular weight organogelators and stimuli responsive materials. The focus of this dissertation is therefore the implementation of the reversible CO2—amine reaction for the formation of smart surfaces, greener amine protection mechanisms, and cationic metallic nanoparticle synthesis. Chapter 2 of this dissertation demonstrates the reversible reaction of CO2 with amine-containing self-assembled monolayers to yield "smart" surfaces that undergo a reversible change in structure, charge, and wettability upon reaction with CO2. The formation carbamate esters are also a widely implemented mechanism for amine protection during organic synthesis. However, traditional methods of protection incur increased solvent use and

  18. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  19. Extension and application of the "enzyme test bench" for oxygen consuming enzyme reactions.

    PubMed

    Rachinskiy, Kirill; Kunze, Martin; Graf, Careen; Schultze, Hergen; Boy, Matthias; Büchs, Jochen

    2014-02-01

    Within industrial process development, powerful screening techniques are required to select the optimal biocatalyst regarding such process characteristics as cost effectiveness, turnover number or space time yield. Conventional measurement of the initial enzyme activity, which is the established high throughput screening technique, disregards the long-term stability of an enzyme. A new model based technique called "enzyme test bench" was recently presented before by our group which addresses this issue. It combines the high throughput screening approach with an extensive enzyme characterization, focusing especially on the long-term stability. The technique is based on modeling enzyme activation and deactivation as temperature dependent reactions in accordance with the Arrhenius law. Controlling these reactions by tailor made temperature profiles, the slow long-term deactivation effects are accelerated and characterizing models are parameterized. Thus, the process properties of an enzyme can be predicted and included into the screening procedure. Moreover, the optimum process temperature as function of the envisaged operation time can be found by these means. In this work, the technique is extended to the important class of oxygen consuming reactions. For this aim, a suitable assay and a defined oxygen supply were established. This extended technique was applied to characterize and to optimize a complex, multi-stage laccase-mediator system (LMS). For the variation and optimization of the enzyme to mediator to substrate ratio, experiments in microtiter plates were performed. Predictions from this high throughput characterization were compared to long-term experiments in a RAMOS device (Respiration Activity Monitoring System), a technique for on-line monitoring of the oxygen transfer rate in shake flasks. Within the limits of the model validity, the enzyme test bench predictions are in good agreement with the long-term experiments. PMID:23928872

  20. Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions.

    PubMed

    Greening, Chris; Ahmed, F Hafna; Mohamed, A Elaaf; Lee, Brendon M; Pandey, Gunjan; Warden, Andrew C; Scott, Colin; Oakeshott, John G; Taylor, Matthew C; Jackson, Colin J

    2016-06-01

    5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis. PMID:27122598

  1. Application of 7-azaisatins in enantioselective Morita–Baylis–Hillman reaction

    PubMed Central

    He, Qing; Zhan, Gu; Du, Wei

    2016-01-01

    Summary 7-Azaisatin and 7-azaoxindole skeletons are valuable building blocks in diverse biologically active substances. Here 7-azaisatins turned out to be more efficient electrophiles than the analogous isatins in the enantioselective Morita–Baylis–Hillman (MBH) reactions with maleimides using a bifunctional tertiary amine, β-isocupreidine (β-ICD), as the catalyst. This route allows a convenient approach to access multifunctional 3-hydroxy-7-aza-2-oxindoles with high enantiopurity (up to 94% ee). Other types of activated alkenes, such as acrylates and acrolein, could also be efficiently utilized. PMID:26977190

  2. The direct application of the polymerase chain reaction to DNA extracted from foods.

    PubMed

    Dickinson, J H; Kroll, R G; Grant, K A

    1995-04-01

    Two methods for the successful extraction of DNA from foods are described. The rapid lysis method uses a proteinase K buffer system to lyse cells and solubilize food samples. DNA is then precipitated using isopropanol. The second method achieves cell lysis using toluene and mutanolysin, and solubilization using guanidium thiocyanate. Following protein removal with organic solvents DNA is precipitated with isopropanol. Both methods enabled the polymerase chain reaction to be applied directly to DNA extracted from samples of cheese, coleslaw and raw chicken and allowed the direct rapid, sensitive and specific detection of Yersinia enterocolitica, Aerococcus viridans and Listeria monocytogenes in these foods. PMID:7766115

  3. Application of pyridinium salts derived of barbituric acid in Kröhnke's reaction.

    PubMed

    Prelicz, D; Kasperek, L

    1975-01-01

    A series of pyridinium salts derived of barbituric acid (BAC) was obtained, as starting substances in Kröhnke's reaction. On the example of 3-(1',3'-dimethyl-5'-isopropylbarbituryl-5')-1-acetonylene-N-pyrifinium bromide it was stated that the corresponding nitron can be formed only when in positions 1 and 3 of barbituric ring are no hydrogen atoms able to enolization. 3-(1',3'-Dimethyl-5'-isopropylbarbituryl-5')-pyruvic aldehyde (XIII) was obtained by decomposition of nitron XII. PMID:1144211

  4. High-throughput assays of leloir-glycosyltransferase reactions: The applications of rYND1 in glycotechnology.

    PubMed

    Li, Yijun; Hou, Jin; Wang, Fengshan; Sheng, Juzheng

    2016-06-10

    Glycosyltransferases (GTs) play a critical role in the enzymatic and chemoenzymatic synthesis of oligosaccharides and glycoconjugates. However, the development of these synthetic approaches has been limited by a lack of sensitive screening methods for the isolation of novel natural GTs or their active variants. Herein, we describe the results of our investigation towards the soluble expression and potential application of the Saccharomyces cerevisiae apyrase YND1. By replacing the hydrophobic transmembrane domain of YND1 with three glycine-serine repeats, this protein was successfully expressed in a soluble form in Escherichia coli. This new protein was then used to develop a two-step nucleoside diphosphate (NDP)-based Leloir-GT high-throughput assay. Purified rYND1 was initially added to a GT reaction to hydrolyze NDP to nucleoside phosphate plus inorganic phosphate, which was determined using a phosphorus molybdenum blue chromogenic reaction. Purified rYND1 was shown to have a positive effect on saccharide synthesis by eliminating the potential by-product inhibition from NDP. Most of the mono-sugar donors used for Leloir-GTs are activated by uridine diphosphate and guanosine diphosphate, which can be catalyzed by rYND1. The rYND1 is amenable to screening methods and could be applied to a wide range of Leloir-GT-catalyzed reactions, therefore representing a remarkable step forward in glycotechnology. PMID:27059478

  5. Organometallic cis-Dichlorido Ruthenium(II) Ammine Complexes

    PubMed Central

    Betanzos-Lara, Soledad; Habtemariam, Abraha; Clarkson, Guy J; Sadler, Peter J

    2011-01-01

    Bifunctional neutral half-sandwich RuII complexes of the type [(η6-arene)Ru(NH3)Cl2] where arene is p-cym (1) or bip (2) were synthesised by the reaction of N,N-dimethylbenzylamine (dmba), NH4PF6 and the corresponding RuII arene dimer, and were fully characterised. X-ray crystallographic studies of [(η6-p-cym)Ru(NH3)Cl2]·{(dmba–H)(PF6)} (1a) and [(η6-bip)Ru(NH3)Cl2] (2) show extensive H-bond interactions in the solid state, mainly involving the NH3 and the Cl ligands, as well as weak aromatic stacking interactions. The half-lives for the sequential hydrolysis of 1 and 2 determined by UV/Vis spectroscopy at 310 K ranged from a few minutes for the first aquation to ca. 45 min for the second aquation; the diaqua adducts were the predominant species at equilibrium. Arene loss during the aquation of complex 2 was observed. Upon hydrolysis, both complexes readily formed mono- and di-9-ethylguanine (9-EtG) adducts in aqueous solution at 310 K. The reaction reached equilibrium after ca. 1.8 h in the case of complex 1 and was slower but more complete for complex 2 (before the onset of arene loss at ca. 2.7 h). Complexes 1 and 2 were not cytotoxic towards A2780 human ovarian cancer cells up to the maximum concentration tested (100 μM). PMID:23956682

  6. Application of the polymerase chain reaction to the diagnosis of human toxoplasmosis.

    PubMed

    Johnson, J D; Butcher, P D; Savva, D; Holliman, R E

    1993-03-01

    Toxoplasmosis may cause significant damage to the developing fetus and is a life-threatening opportunistic infection in immunocompromised persons. Serological investigation is unreliable, while isolation of the parasite is time consuming and may lack sensitivity. We have developed a system for detecting Toxoplasma gondii based on the amplification of the P30 gene using sequential rounds of PCR and nested primers. The clinical value of this technique was assessed by the investigation of a range of tissues taken from pregnant women, fetuses, neonates, AIDS patients and organ graft recipients. The PCR assay produced more positive reactions than isolation of the parasite by means of cell culture or animal inoculation. Extended autoradiography was found to be more sensitive than stained agarose gels for detecting the PCR product. Systematic contamination of PCR reactions was avoided but it was not possible to exclude sporadic contamination in certain cases. Detection of specific DNA is of clinical value in the investigation of the pregnant woman in order to assess the risk of transplacental passage of infection and in the fetus and neonate to identify congenital toxoplasmosis. Even so, PCR findings must be interpreted with caution because of the risk of a sample being contaminated. PCR may be the investigation of choice when brain biopsy is performed on a patient with AIDS and when toxoplasmosis associated with bone marrow transplantation is suspected. PMID:8473761

  7. Preparation of palladium containing cubic mesoporous materials and their application towards catalytic hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Balasanthiran, Vagulejan

    Pd --MCM-48 materials were synthesized by modified Stober synthesis in four hours at room temperature. In this procedure using Pd(0) nanoparticles, Na2[PdCl]4 and Pd(acac)2 were used as Pd precursors and Pd containing cubic MCM-48 mesoporous materials were successfully synthesized with metal loadings 1 to ˜5% wt. These materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis spectroscopy, Physisorption, and chemisorption studies. Selected Pd-MCM-48 catalysts were employed for hydrogenation and coupling reactions. These materials provide excellent activity for regio- and chemoselective hydrogenation of olefins with a turnover frequency of 4400 mol/h. At the same time, these catalysts are very reactive for the coupling reactions such as Suzuki, Heck, etc. Pd-MCM-48 provides higher activity and selectivity compared with other reported Pd containing siliceous materials. The Pd-MCM-48 catalyst can be reused more than 10 times with minimal loss of cubic phase catalytic activity.

  8. Turing-Hopf bifurcation in the reaction-diffusion equations and its applications

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Peng, Yahong

    2016-04-01

    In this paper, we consider the Turing-Hopf bifurcation arising from the reaction-diffusion equations. It is a degenerate case and where the characteristic equation has a pair of simple purely imaginary roots and a simple zero root. First, the normal form theory for partial differential equations (PDEs) with delays developed by Faria is adopted to this degenerate case so that it can be easily applied to Turing-Hopf bifurcation. Then, we present a rigorous procedure for calculating the normal form associated with the Turing-Hopf bifurcation of PDEs. We show that the reduced dynamics associated with Turing-Hopf bifurcation is exactly the dynamics of codimension-two ordinary differential equations (ODE), which implies the ODE techniques can be employed to classify the reduced dynamics by the unfolding parameters. Finally, we apply our theoretical results to an autocatalysis model governed by reaction-diffusion equations; for such model, the dynamics in the neighbourhood of this bifurcation point can be divided into six categories, each of which is exactly demonstrated by the numerical simulations; and then according to this dynamical classification, a stable spatially inhomogeneous periodic solution has been found.

  9. Nitrogen-doped graphene prepared by a transfer doping approach for the oxygen reduction reaction application

    NASA Astrophysics Data System (ADS)

    Mo, Zaiyong; Zheng, Ruiping; Peng, Hongliang; Liang, Huagen; Liao, Shijun

    2014-01-01

    Well defined nitrogen-doped graphene (NG) is prepared by a transfer doping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by the vaporized polyaniline, and the GO is prepared by a thermal expansion method from graphite oxide. The content of doped nitrogen in the doped graphene is high up to 6.25 at% by the results of elements analysis, and oxygen content is lowered to 5.17 at%. As a non-precious metal cathode electrocatalyst, the NG catalyst exhibits excellent activity toward the oxygen reduction reaction, as well as excellent tolerance toward methanol. In 0.1 M KOH solution, its onset potential, half-wave potential and limiting current density for the oxygen reduction reaction reach 0.98 V (vs. RHE), 0.87 V (vs. RHE) and 5.38 mA cm-2, respectively, which are comparable to those of commercial 20 wt% Pt/C catalyst. The well defined graphene structure of the catalyst is revealed clearly by HRTEM and Raman spectra. It is suggested that the nitrogen-doping and large surface area of the NG sheets give the main contribution to the high ORR catalytic activity.

  10. Engineered Organometallic Polymer and Hybrid Systems Containing Nanoparticles and/or Poly(ferrocenylsilanes)

    NASA Astrophysics Data System (ADS)

    Roskov, Kristen Ekiert

    electrospun fibers, and the fibers have likewise been aligned to permit longrange orientation order at both the nanoscale and macroscale. This is an important consideration in the fabrication of devices spanning multiple size scales. The GNRs within nano/microfibers exhibit excellent alignment with their longitudinal axis parallel to the fiber axis. Optical absorbance spectroscopy measurements reveal that the longitudinal surface plasmon resonance bands of the aligned GNRs are highly anisotropic, depending on polarization angle, and that maximum absorption occurs when polarization is parallel to the fiber axis. Lastly, blends of hydrophobic and hydrophilic polymers have been prepared to control the spatial position of SPIONs within electrospun fibers on the basis of thermodynamic compatibility. In this case, TEM confirms that a core-sheath nanostructure naturally forms due to polymer-polymer phase separation and that the hydrophobic nanoparticles are sequestered in one preferred phase. Lastly, a nanocomposite fiber is created using only one entity, the organometallic polymer poly(ferrocenylsilane) (PFS)and its crystalline structure is probed alone and in the presence of SPIONs. Block copolymer cylindrical micelles of PFS-b-poly(isoprene) (PI) are crosslinked within an elastomeric matrix of poly (vinylmethoxysilane) (PVMS) and found to maintain their crystalline structure with the target application being nanowires in soft electronics.

  11. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species

    PubMed Central

    Pike, Sebastian D.; Weller, Andrew S.

    2015-01-01

    Acting as a bridge between the heterogeneous and homogeneous realms, the use of discrete, well-defined, solid-state organometallic complexes for synthesis and catalysis is a remarkably undeveloped field. Here, we present a review of this topic, focusing on describing the key transformations that can be observed at a transition-metal centre, as well as the use of well-defined organometallic complexes in the solid state as catalysts. There is a particular focus upon gas–solid reactivity/catalysis and single-crystal-to-single-crystal transformations. PMID:25666064

  12. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  13. A ferroelectric olefin-copper(I) organometallic polymer with flexible organic ligand (R)-MbVBP

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Xi; Xing, Zheng; Chen, Li-Zhuang; Han, Guang-Fan

    2015-07-01

    Hydrothermal treatment of (R)-2-methyl-1,4-bis(4-vinylbenzyl)piperazine [(R)-MbVBP] and CuCl afforded a novel olefin-copper(I) coordination compound. Introducing the flexible ligand (R)-MbVBP allowed the olefin-copper(I) organometallic compound to crystallize in a polar point group P21. The compound was ferroelectric, and its electric hysteresis loop showed a remnant polarization (Pr) of 0.13-0.32 μC cm-2 and a coercive field (Ec) of 3.5-11 kV cm-1.

  14. Simulation and testing of a vertical organometallic vapor phase epitaxy reactor

    NASA Astrophysics Data System (ADS)

    Sani, R. A.; Barmawi, M.; Mindara, J. Y.

    1998-02-01

    The purpose of the study is to design a single wafer vertical organo-metallic vapor phase epitaxy (OMVPE) reactor which gives a uniform deposition around the symmetry axis. The vertical reactor under the consideration consist of a diffuser and a system of coaxial cylinders to laminarize the flow which may lead to a uniform deposition without rotating the susceptor. The simulation shows that for a susceptor with a radius of 2.5 cm, a uniformity can be achieved in a region of a radius of 2 cm within 1% for certain operating condition. The result is compared with the experimental measurement of TiO2 deposition from TTIP.

  15. 2001 Gordon Research Conference on Organometallic Chemistry. Final progress report [agenda and attendee list

    SciTech Connect

    Burns, Carol

    2001-07-27

    The Gordon Research Conference on Organometallic Chemistry was held at Salve Regina University, Newport, Rhode Island, July 22-27, 2001. The conference had 133 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was place on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions; poster sessions were held.

  16. Organometallic vapor phase epitaxial growth of InP using new phosphorus sources

    NASA Astrophysics Data System (ADS)

    Larsen, C. A.; Chen, C. H.; Kitamura, M.; Stringfellow, G. B.; Brown, D. W.; Robertson, A. J.

    1986-06-01

    Two organophosphorus compounds, isobutylphosphine and tertiarybutylphosphine, have been investigated for their possible use as precursors in the organometallic vapor phase epitaxy process. They are the first nonhydride compounds to be used as phosphorus sources. Pyrolysis studies show that the first decomposition products are phosphine and various organic compounds. The phosphine then pyrolyzes to give phosphorus. The materials are less pyrophoric and less toxic than phosphine, and so are safer to use. The compounds have been used to grow epitaxial layers of InP on InP and GaAs substrates. The layers exhibit photoluminescence and electrical properties which are similar to those of layers grown with phosphine.

  17. Modular self-assembly, characterization, and host-guest chemistry of nanoscale organometallic architectures

    SciTech Connect

    Manna, J.; Kuehl, C.J.; Stang, P.J.; Muddiman, D.C.; Smith, R.D.

    1997-12-31

    The supramolecular synthesis and chemistry of organic macrocycles has been the focus of considerable study for over thirty years. In contrast, the chemistry of analogous inorganic and organometallic macrocycles is in it infancy; little is know about the stability, spectroscopic and physical properties, and chemistry of these species. We will report on the design of several unique supramolecular macrocycles and the characterization of these species by a range of spectroscopic techniques, including electrospray-ionization Fourier transform ion cyclotron resonance spectrometry. Preliminary data concerning the host-guest chemistry of these macrocycles will also be presented.

  18. Exceptionally large two- and three-photon absorption cross-sections by OPV organometalation.

    PubMed

    Gao, Beibei; Mazur, Leszek M; Morshedi, Mahbod; Barlow, Adam; Wang, Huan; Quintana, Cristóbal; Zhang, Chi; Samoc, Marek; Cifuentes, Marie P; Humphrey, Mark G

    2016-07-01

    Oligo(p-phenylenevinylene)s (OPVs) containing up to 8 PV units and end-functionalized by ruthenium alkynyl groups have been prepared and their nonlinear absorption properties assessed using the Z-scan technique and employing low repetition rate femtosecond pulses. Exceptionally large two-photon absorption (ca. 12 500 GM at 725 nm) and three-photon absorption cross sections (ca. 1.6 × 10(-76) cm(6) s(2) at 1100 nm) are found for the 8PV-containing example, highlighting the potential of an "organometalation" approach to NLO-efficient organic materials. PMID:27297290

  19. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  20. The solid-state synthesis of metal nanoparticles from organometallic precursors.

    PubMed

    Wostek-Wojciechowska, Dorota; Jeszka, Jeremiasz K; Amiens, Catherine; Chaudret, Bruno; Lecante, Pierre

    2005-07-01

    Nanoparticles (NPs), average size of 2-5 nm, of ruthenium, cobalt, and rhodium have been prepared by an original method, namely the solid-state decomposition under dihydrogen of an organometallic precursor either dispersed in polymer films or directly as nanocrystals. The NPs dispersion, size, and morphology are investigated by transmission electron microscopy, and their structure by wide angle X-ray scattering. Infrared spectroscopy, after adsorption of carbon monoxide on the metal NPs surfaces, evidences a nonoxidized surface of high reactivity. PMID:15914154

  1. Self-Sufficient Formaldehyde-to-Methanol Conversion by Organometallic Formaldehyde Dismutase Mimic.

    PubMed

    van der Waals, Dominic; Heim, Leo E; Vallazza, Simona; Gedig, Christian; Deska, Jan; Prechtl, Martin H G

    2016-08-01

    The catalytic networks of methylotrophic organisms, featuring redox enzymes for the activation of one-carbon moieties, can serve as great inspiration in the development of novel homogeneously catalyzed pathways for the interconversion of C1 molecules at ambient conditions. An imidazolium-tagged arene-ruthenium complex was identified as an effective functional mimic of the bacterial formaldehyde dismutase, which provides a new and highly selective route for the conversion of formaldehyde to methanol in absence of any external reducing agents. Moreover, secondary amines are reductively methylated by the organometallic dismutase mimic in a redox self-sufficient manner with formaldehyde acting both as carbon source and reducing agent. PMID:27380865

  2. Preparation of low-resistivity n-type ZnSe by organometallic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Stutius, W.

    1981-03-01

    Low-resistivity n-type ZnSe with p<0.05 W cm and n≳1017 cm-3 has been grown epitaxially on (100) GaAs substrates by a low-pressure low-temperature organometallic chemical vapor deposition process. Triethylaluminum is used as a dopant. The as-grown layers show a strong near-band-gap photoluminescence peak. The much weaker photoluminescence intensity at longer wavelength indicates that the concentration of deep centers is lower than in doped ZnSe prepared by other methods.

  3. Spectroscopic study of the reaction mechanism of buspirone interaction with iodine and tetracyanoethylene reagents and its applications.

    PubMed

    Zayed, M A; El-Habeeb, Abeer A

    2009-06-01

    The reactions between the drug buspirone (busp) in its base form and iodine amphoteric reagent (n-donor and/or sigma-acceptor) and with tetracyanoethylene as a pi-acceptor reagent (TCNE) have been studied spectrophotometrically at different reactant concentrations, time intervals, temperatures, and with different solvents and wavelengths, with the aim of selecting the conditions that give the most suitable molar extinction coefficients. This study aims chiefly to throw light on the nature of these reactions and to select the most proper conditions for spectrophotometric application of these reagents to determine this biologically active drug used in treating different diseases. The reaction mechanism involves the formation of busp-I(2) outer and inner sphere complexes. The separated busp-I(2) solid product obtained was investigated using elemental analyses, FT-IR, thermal analyses (TA) and electron ionization mass spectrometry (EI-MS) and was found to be biologically active. The reaction mechanism of busp-TCNE involves the formation of a charge transfer (CT) complex. The analytical parameters of the proposed spectrophotometric procedures were calculated. These procedures were applied in the analysis of busp in its formulations as a drug used to treat psychiatric illnesses. The values of the Sandell sensitivity, standard deviation (SD), relative standard deviation (RSD) and recovery percentage show the high sensitivity of these procedures. This study also presents a promising new busp-I(2) drug derivative that can be used more efficiently for the same purposes as its parent. It gives a clear idea about the possible metabolites and metabolic pathways of busp and its derivative that may occur in vivo. PMID:20355205

  4. The polymerase chain reaction: A stochastic model, methods of quantification, and applications to HIV. [HIV (human immunodeficiency virus)

    SciTech Connect

    Harris, O.A.

    1992-01-01

    This thesis is concerned with the development of the polymerase chain reaction (PCR) as an accurate and reliable measure of specific DNA copy number. This development is motivated by the need to quantify the number of copies of HIV in infected cells. In particular the extent of HIV infection, in terms of proviral load, can be determined by using PCR, leading to more accurate evaluation of drug treatments. The thesis is presented in four parts: (I) the assay, (II) the mathematics, (III) the models, and finally (IV) the applications. The first section includes a complete description of the assay. This section also includes descriptions of DNA structure and of cellular DNA replication. The second section contains the background material and presentation of new developments in the mathematics and statistics needed for the modeling of the assay. The assay is modeled as a branching process, and various aspects of the reaction dictate different types of branching processes. As a result, three types of processes are presented, classic Galton-Watson, generation-dependent, and population-size-dependent. These models lead to quantification procedures involving weighted linear regression and inverse prediction. In addition, new material is presented for the development of comparison methods and confidence intervals in this setting. The third section contains the actual modeling of the reaction through the three different types of branching processes mentioned. Complete characterizations of the distributions of the processes are derived for two of the models, from which new parametric statistical tests for the quantification of DNA, in particular of HIV, are developed. For the third model, simulations are used to explore the process and its moments. This model necessarily leads to a submodel reminiscent to that found in stochastic epidemics. The final section illustrates the application of methods developed to data from HIV-infected patients.

  5. Applications of Transport/Reaction Codes to Problems in Cell Modeling

    SciTech Connect

    MEANS, SHAWN A.; RINTOUL, MARK DANIEL; SHADID, JOHN N.

    2001-11-01

    We demonstrate two specific examples that show how our exiting capabilities in solving large systems of partial differential equations associated with transport/reaction systems can be easily applied to outstanding problems in computational biology. First, we examine a three-dimensional model for calcium wave propagation in a Xenopus Laevis frog egg and verify that a proposed model for the distribution of calcium release sites agrees with experimental results as a function of both space and time. Next, we create a model of the neuron's terminus based on experimental observations and show that the sodium-calcium exchanger is not the route of sodium's modulation of neurotransmitter release. These state-of-the-art simulations were performed on massively parallel platforms and required almost no modification of existing Sandia codes.

  6. Application of polymerase chain reaction to detect rearrangement of immunoglobulin heavy chain genes in lymphoproliferative disease.

    PubMed

    Khalil, S H; Siegrist, K; Akhtar, M

    1997-07-01

    As part of our routine work-up in the diagnosis of lymphoproliferative disease, we used a rapid polymerase chain reaction (PCR) assay to amplify the DNA fragments of the framework 3 (FR3) region of the immunoglobulin heavy (IgH) chain genes. The assay does not involve hybridization, nested priming, or sequencing of the amplified PCR product. It was performed on 66 specimens of B-cell lymphoproliferative disease, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, multiple myeloma, hairy cell leukemia and follicular lymphoma. Twenty-six specimens of negative controls, including acute myeloid leukemia, chronic myeloid leukemia in myeloid transformation and idiopathic thrombocytopenic purpura, were also analyzed. The assay was performed with 77% sensitivity and 100% specificity. The standard IgH chain gene rearrangement by Southern blot analysis is reserved for the remaining negative cases if clinically indicated. PMID:17353588

  7. A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Xu, Kun

    1999-01-01

    This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space and time due to the momentum and energy exchange in the course of particle collisions. At the same time, according to the chemical reaction rule one component can be changed into another component with the release of energy, where the reactant and product could have different gamma. Many numerical test cases are included in this paper, which show the robustness and accuracy of kinetic approach in the description of multicomponent reactive flows.

  8. Extremal equilibria for reaction-diffusion equations in bounded domains and applications

    NASA Astrophysics Data System (ADS)

    Rodríguez-Bernal, Aníbal; Vidal-López, Alejandro

    We show the existence of two special equilibria, the extremal ones, for a wide class of reaction-diffusion equations in bounded domains with several boundary conditions, including non-linear ones. They give bounds for the asymptotic dynamics and so for the attractor. Some results on the existence and/or uniqueness of positive solutions are also obtained. As a consequence, several well-known results on the existence and/or uniqueness of solutions for elliptic equations are revisited in a unified way obtaining, in addition, information on the dynamics of the associated parabolic problem. Finally, we ilustrate the use of the general results by applying them to the case of logistic equations. In fact, we obtain a detailed picture of the positive dynamics depending on the parameters appearing in the equation.

  9. Kinetic and Reaction Pathway Analysis in the Application of Botulinum Toxin A for Wound Healing

    PubMed Central

    Lebeda, Frank J.; Dembek, Zygmunt F.; Adler, Michael

    2012-01-01

    A relatively new approach in the treatment of specific wounds in animal models and in patients with type A botulinum toxin is the focus of this paper. The indications or conditions include traumatic wounds (experimental and clinical), surgical (incision) wounds, and wounds such as fissures and ulcers that are signs/symptoms of disease or other processes. An objective was to conduct systematic literature searches and take note of the reactions involved in the healing process and identify corresponding pharmacokinetic data. From several case reports, we developed a qualitative model of how botulinum toxin disrupts the vicious cycle of muscle spasm, pain, inflammation, decreased blood flow, and ischemia. We transformed this model into a minimal kinetic scheme for healing chronic wounds. The model helped us to estimate the rate of decline of this toxin's therapeutic effect by calculating the rate of recurrence of clinical symptoms after a wound-healing treatment with this neurotoxin. PMID:22174710

  10. Nonlinear phenomena at geological reaction fronts with energy applications. Final report

    SciTech Connect

    Ortoleva, P.

    1989-12-31

    Interaction of aqueous fluids with the rock matrix within which they reside can yield a variety of phenomena due to the coupling of reaction transport and mechanical processes; many of these have potentially important implications for exploration and exploitation of energy and mineral resources. We investigated effects of nucleation to produce banded precipitation; Darcy-mineral dissolution coupling to produce scalloped, fingered and more complex alteration front morphologies, and diagenetic alteration in chemically complex, multi-mineralic systems. Migration of methane driven by buoyancy effects was shown to lead to cellular and temporally oscillatory flows. Sandstones at depth experiencing pressure solution display unstable compaction leading to formation of stylolites and band-like regions of augmented compaction alternating with low porosity bands with augmented overgrowth. It was shown that transfer of natural gas from shale source rock into neighboring sandstones could occur through a series of discrete pulsatile events through a cycle of fracturing and healing.

  11. Principles and applications of polymerase chain reaction in medical diagnostic fields: a review

    PubMed Central

    Valones, Marcela Agne Alves; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Souza, Paulo Roberto Eleutério; de Albuquerque Tavares Carvalho, Alessandra; Crovela, Sergio

    2009-01-01

    Recent developments in molecular methods have revolutionized the detection and characterization of microorganisms in a broad range of medical diagnostic fields, including virology, mycology, parasitology, microbiology and dentistry. Among these methods, Polymerase Chain Reaction (PCR) has generated great benefits and allowed scientific advancements. PCR is an excellent technique for the rapid detection of pathogens, including those difficult to culture. Along with conventional PCR techniques, Real-Time PCR has emerged as a technological innovation and is playing an ever-increasing role in clinical diagnostics and research laboratories. Due to its capacity to generate both qualitative and quantitative results, Real-Time PCR is considered a fast and accurate platform. The aim of the present literature review is to explore the clinical usefulness and potential of both conventional PCR and Real-Time PCR assays in diverse medical fields, addressing its main uses and advances. PMID:24031310

  12. Neutrality condition and response law for nonlinear reaction-diffusion equations, with application to population genetics

    NASA Astrophysics Data System (ADS)

    Vlad, Marcel Ovidiu; Moran, Federico; Tsuchiya, Masa; Cavalli-Sforza, L. Luca; Oefner, Peter J.; Ross, John

    2002-06-01

    We study a general class of nonlinear macroscopic evolution equations with ``transport'' and ``reaction'' terms which describe the dynamics of a species of moving individuals (atoms, molecules, quasiparticles, organisms, etc.). We consider that two types of individuals exist, ``not marked'' and ``marked,'' respectively. We assume that the concentrations of both types of individuals are measurable and that they obey a neutrality condition, that is, the kinetic and transport properties of the ``not marked'' and ``marked'' individuals are identical. We suggest a response experiment, which consists in varying the fraction of ``marked'' individuals with the preservation of total fluxes, and show that the response of the system can be represented by a linear superposition law even though the underlying dynamics of the system is in general highly nonlinear. The linear response law is valid even for large perturbations and is not the result of a linearization procedure but rather a necessary consequence of the neutrality condition. First, we apply the response theorem to chemical kinetics, where the ``marked species'' is a molecule labeled with a radioactive isotope and there is no kinetic isotope effect. The susceptibility function of the response law can be related to the reaction mechanism of the process. Secondly we study the geographical distribution of the nonrecurrent, nonreversible neutral mutations of the nonrecombining portion of the Y chromosome from human populations and show that the fraction of mutants at a given point in space and time obeys a linear response law of the type introduced in this paper. The theory may be used for evaluating the geographic position and the moment in time where and when a mutation originated.

  13. Joining of silicon carbide ceramic for optical application by reaction bonded technology

    NASA Astrophysics Data System (ADS)

    Zhang, Aifang; Chen, Yichao; Chen, Zhiqiang; Liu, Hong; Fang, Jingzhong

    2010-05-01

    Silicon carbide ceramic is a prospective candidate for the next generation space telescope with a large-scale reflector. In order to reduce the cost of the fabrication of complex shaped component, the joining technology of SiC ceramic is investigated. In this work, SiC ceramic was joined by reaction bonded technology using SiC green preforms successfully. SiC green preforms were fastened together by epoxy resin and joined during the process of one-step Si infiltration. The microstructure and composition of SiC substrate ceramic and the joint is homogeneous and there have no micro-cracks or defects in the joint. The interface reaction layer become smaller and even disappears with carefully surface grinding of the SiC green preforms. The surface roughness of the joined SiC in the area of the joint is 0.95nm rms and there has no significant difference in the surface roughness of the joint area and SiC substrate ceramic. The bending strength of the joined SiC is about 300MPa and the crack occurred inside the SiC substrate but not in the joint. The most important advantage of the method is the joining of SiC ceramics was achieved via one-step Si infiltration process and the joints are homogeneous with the substrate, which is economical and effective. The mechanical and optical properties of the joined SiC can satisfy the requirement of the large-scale telescope in many astronomical instruments.

  14. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  15. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  16. A neutral organometallic fluoro complex can be a good ligand.

    PubMed

    Coue, Laurent; Cuesta, Luciano; Morales, Dolores; Halfen, Jason A; Pérez, Julio; Riera, Lucía; Riera, Víctor; Miguel, Daniel; Connelly, Neil G; Boonyuen, Supakorn

    2004-04-19

    The reaction of the complex [Mo(OTf)(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (1) (OTf = trifluoromethylsulfonate; phen = 1,10-phenanthroline) with tetrabutylammonium fluoride trihydrate afforded the fluoride complex [MoF(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)] (2). The IR spectrum and the oxidation potential of 2 reflect the fact that its metal center is more electron-rich than that of the chloro analogue [MoCl(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)]. Compound 2 reacted with 1 affording the homobinuclear complex [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](2)(mu-F)][OTf] (3), with a fluoride bridge. Compound 2 also reacts with the species generated in situ by triflate abstraction from [M(OTf)(CO)(3)('N-N')] (M = Mn, Re; 'N-N' = 2,2'-bipyridine (bipy), phen) using NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), affording the heterobinuclear complexes [[Mo(eta(3)-C(3)H(4)-Me-2)(CO)(2)(phen)](mu-F)[M(CO)(3)('N--N')

  17. Theoretical study of ethylene oligomerization by an organometallic nickel catalyst

    SciTech Connect

    Fan, L.; Krzywicki, A.; Somogyvari, A.; Ziegler, T.

    1996-06-19

    The mechanism for ethylene oligomerization by (acac)NiH has been studied using density functional theory (DFT). The transition states for chain propagation and chain termination were optimized and the related reaction barriers calculated. Several possible mechanisms were considered for the chain termination step. Chain termination by {Beta}-hydrogen elimination was found to be energetically unfavorable, and is not likely to be important. Instead, {Beta}-hydrogen transfer to the incoming ethylene unit seems to be operative. The most favorable {Beta}-hydrogen transfer pathway has two transition states. The first leads from a weak {phi}-complex between an incoming ethylene unit and (acac)NiCH{sub 2}CH{sub 2}R to an intermediate in which the two olefins C{sub 2}H{sub 4} and H{sub 2}CCHR both are strongly {pi}-complexed to the nickel hydride (acac)NiH. The second barrier takes the intermediate to another weak {pi}-complex between (acac)NiCH{sub 2}CH{sub 3} and H{sub 2}C=CHR from which the oligomer H{sub 2}C=CHR can be released and the catalyst (acac)NiCH{sub 2}CH{sub 3} regenerated. Due to the mechanism of chain termination, the actual catalyst is proposed to be (acac)NiCH{sub 2}CH{sub 2} whereas (acac)NiH serves as a precursor or precatalyst.

  18. Applications with Near-Barrier Photo-Fission Reactions in Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Hall, J. M.; McNabb, D. P.; Tuffley, M. J.; Ahmed, M. W.; Stave, S.; Weller, H. R.; Karwowski, H. J.; Tompkins, J. R.

    2010-11-01

    Homeland security programs are developing compact, linearly polarized, quasi-monoenergetic photon sources to probe containers for special nuclear material (SNM). These sources are important in national security applications within the commerce system because of the low dose compared to current bremsstrahlung-based sources used for radiography, and important safety concern. Basic radiography only offers density distributions in cargo containers and does not distinguish fissionable materials from non-fissionable, high-Z materials. One possible usage of quasi-monoenergetic sources is to look for photo-neutrons, which may be subject to lower backgrounds, especially near the barrier where photo-fission neutrons have a high energy tail relative to (g,n). For this presentation, we discuss the results of recent near-barrier photo-fission resonance measurements in uranium isotopes. We will present our study of the neutron data and discuss its viability as a signature for SNM detection applications.

  19. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches

    PubMed Central

    Wang, Wei; Chen, Li-Jun; Wang, Xu-Qing; Sun, Bin; Li, Xiaopeng; Zhang, Yanyan; Shi, Jiameng; Yu, Yihua; Zhang, Li; Liu, Minghua; Yang, Hai-Bo

    2015-01-01

    Mechanically interlocked molecules, such as catenanes, rotaxanes, and knots, have applications in information storage, switching devices, and chemical catalysis. Rotaxanes are dumbbell-shaped molecules that are threaded through a large ring, and the relative motion of the two components along each other can respond to external stimuli. Multiple rotaxane units can amplify responsiveness, and repetitively branched molecules—dendrimers—can serve as vehicles for assembly of many rotaxanes on single, monodisperse compounds. Here, we report the synthesis of higher-generation rotaxane dendrimers by a divergent approach. Linkages were introduced as spacer elements to reduce crowding and to facilitate rotaxane motion, even at the congested periphery of the compounds up to the fourth generation. The structures were characterized by 1D multinuclear (1H, 13C, and 31P) and 2D NMR spectroscopy, MALDI-TOF-MS, gel permeation chromatography (GPC), and microscopy-based methods including atomic force microscopy (AFM) and transmission electron microscopy (TEM). AFM and TEM studies of rotaxane dendrimers vs. model dendrimers show that the rotaxane units enhance the rigidity and reduce the tendency of these assemblies to collapse by self-folding. Surface functionalization of the dendrimers with ferrocenes as termini produced electrochemically active assemblies. The preparation of dendrimers with a well-defined topological structure, enhanced rigidity, and diverse functional groups opens previously unidentified avenues for the application of these materials in molecular electronics and materials science. PMID:25902491

  20. Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches.

    PubMed

    Wang, Wei; Chen, Li-Jun; Wang, Xu-Qing; Sun, Bin; Li, Xiaopeng; Zhang, Yanyan; Shi, Jiameng; Yu, Yihua; Zhang, Li; Liu, Minghua; Yang, Hai-Bo

    2015-05-01

    Mechanically interlocked molecules, such as catenanes, rotaxanes, and knots, have applications in information storage, switching devices, and chemical catalysis. Rotaxanes are dumbbell-shaped molecules that are threaded through a large ring, and the relative motion of the two components along each other can respond to external stimuli. Multiple rotaxane units can amplify responsiveness, and repetitively branched molecules--dendrimers--can serve as vehicles for assembly of many rotaxanes on single, monodisperse compounds. Here, we report the synthesis of higher-generation rotaxane dendrimers by a divergent approach. Linkages were introduced as spacer elements to reduce crowding and to facilitate rotaxane motion, even at the congested periphery of the compounds up to the fourth generation. The structures were characterized by 1D multinuclear ((1)H, (13)C, and (31)P) and 2D NMR spectroscopy, MALDI-TOF-MS, gel permeation chromatography (GPC), and microscopy-based methods including atomic force microscopy (AFM) and transmission electron microscopy (TEM). AFM and TEM studies of rotaxane dendrimers vs. model dendrimers show that the rotaxane units enhance the rigidity and reduce the tendency of these assemblies to collapse by self-folding. Surface functionalization of the dendrimers with ferrocenes as termini produced electrochemically active assemblies. The preparation of dendrimers with a well-defined topological structure, enhanced rigidity, and diverse functional groups opens previously unidentified avenues for the application of these materials in molecular electronics and materials science. PMID:25902491

  1. Pressure-driven fast reaction and recovery of peptide receptor for an electronic nose application

    NASA Astrophysics Data System (ADS)

    Yoo, Yong Kyoung; Lee, Sang-Myung; Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo; Hoon Lee, Jeong

    2014-02-01

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ˜30 Hz, compared to diffusion only (˜15 Hz for 15 h). Using a simple pressure-driven air flow of ˜50 sccm, we confirmed that a ratio of ˜70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.

  2. Pressure-driven fast reaction and recovery of peptide receptor for an electronic nose application

    SciTech Connect

    Yoo, Yong Kyoung; Lee, Sang-Myung; Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo E-mail: jhlee@kw.ac.kr; Hoon Lee, Jeong E-mail: jhlee@kw.ac.kr

    2014-02-24

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ∼30 Hz, compared to diffusion only (∼15 Hz for 15 h). Using a simple pressure-driven air flow of ∼50 sccm, we confirmed that a ratio of ∼70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.

  3. A hydrogel pen for electrochemical reaction and its applications for 3D printing

    NASA Astrophysics Data System (ADS)

    Kang, Hosuk; Hwang, Seongpil; Kwak, Juhyoun

    2014-12-01

    A hydrogel pen consisting of a microscopic pyramid containing an electrolyte offers a localized electroactive area on the nanometer scale via controlled contact of the apex with a working electrode. The hydrogel pen merges the fine control of atomic force microscopy with non-linear diffusion of an ultramicroelectrode, producing a faradaic current that depends on the small electroactive area. The theoretical and experimental investigations of the mass transport behavior within the hydrogel reveal that the steady-state current from the faradaic reaction is linearly proportional to the deformed length of the hydrogel pen by contact, i.e. signal transduction of deformation to an electrochemical signal, which enables the fine control of the electroactive area in the nanometer-scale regime. Combined with electrodeposition, localized electrochemistry of the hydrogel pen results in the ability to fabricate small sizes (110 nm in diameter), tall heights (up to 30 μm), and arbitrary structures, thereby indicating an additive process in 3 dimensions by localized electrodeposition.A hydrogel pen consisting of a microscopic pyramid containing an electrolyte offers a localized electroactive area on the nanometer scale via controlled contact of the apex with a working electrode. The hydrogel pen merges the fine control of atomic force microscopy with non-linear diffusion of an ultramicroelectrode, producing a faradaic current that depends on the small electroactive area. The theoretical and experimental investigations of the mass transport behavior within the hydrogel reveal that the steady-state current from the faradaic reaction is linearly proportional to the deformed length of the hydrogel pen by contact, i.e. signal transduction of deformation to an electrochemical signal, which enables the fine control of the electroactive area in the nanometer-scale regime. Combined with electrodeposition, localized electrochemistry of the hydrogel pen results in the ability to fabricate

  4. Modeling and Real-Time Process Monitoring of Organometallic Chemical Vapor Deposition of III-V Phosphides and Nitrides at Low and High Pressure

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.

    1999-01-01

    The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.

  5. Growth and Characterization of Hydrogenated Amorphous Silicon and Hydrogenated Amorphous Silicon Carbide with Liquid Organometallic Sources.

    NASA Astrophysics Data System (ADS)

    Gaughan, Kevin David

    The growth and characterization of hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon -carbon (rm a-rm Si _{1-X}C_{X}: H) alloys employing liquid organometallic sources are described. N -type a-Si:H films were grown using a mixture of silane and tertiarybutylphosphine (TBP-rm C_4H _9P_2) vapor in a plasma enhanced chemical vapor deposition system. Impurity levels from parts per million to about 5 at. % phosphorus have been incorporated into the film with this method. Tertiarybutylphosphine is less toxic and less pyrophoric than phosphine which is usually used in n-type doping of a-Si:H films. Optical and electronic properties were characterized by room temperature as well as temperature dependent dark conductivity, photothermal deflection spectroscopy, infrared vibrational spectroscopy, electron spin resonance, and electron microprobe analysis. The gross doping properties of a-Si:H doped with TBP are the same as those obtained with phosphine. The experimental results are compared with the predictions of several models that describe the chemical equilibrium between active dopants and deep defects. A pronounced decrease in the effects of doping, such as an increase in the activation energy of electrical conductivity and an decrease in the conductivity of the sample, were seen in heavily doped films (TBP/SiH _4> 0.5%), perhaps influenced by the increased carbon and/or phosphorus concentrations. Amorphous silicon-carbide alloys have been grown by the plasma decomposition of ditertiarybutylsilane ( rm DTBS-rm SiH_2(C _4H_9)_2). The optical bandgaps, which varied from 2.2 to 3.3 eV, are strongly dependent upon the deposition conditions. The carbon concentrations in these films varied from 60 to 95 at. %. The optical band-edge is very broad compared to that which is found in a-Si:H and this breadth is essentially independent of the deposition conditions. The plasma decomposition of admixtures of DTBS and silane has produced rm a- rm Si_{1-X

  6. Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction.

    PubMed Central

    Wilks, A F

    1989-01-01

    The pivotal role that protein-tyrosine kinases (PTKs) play in the growth regulation of eukaryotic cells is manifest in the frequent appearance of members of the PTK family as growth factor receptors or as the transforming agents of acutely transforming retroviruses. A feature common to all members of the PTK family is a highly conserved catalytic domain which is characteristic of the group as a whole and whose activity appears to be tightly regulated within the cell by other domains of the PTK. Degenerate oligonucleotide probes corresponding to two invariant amino acid sequence motifs within the catalytic domains of all PTK family members were synthesized and employed in the polymerase chain reaction (PCR) to amplify cDNA sequences between them. An M13 PCR library was produced in this way from cDNA prepared against mRNA from the murine hemopoietic cell line FDC-P1. The PCR library was then screened by DNA sequencing for PTK-related sequences. Two sequences were identified that, on the basis of sequence comparison with known PTKs, may encode representatives of a new class of PTK. Images PMID:2466296

  7. [The applications of thermostable ligase chain reaction in facilitating DNA recombination].

    PubMed

    Xiangda, Zhou; Xiao, Song; Cong, Huai; Haiyan, Sun; Hongyan, Chen; Daru, Lu

    2016-02-01

    The traditional Type Ⅱ restriction enzyme-based method is restricted by the purification steps, and therefore, cannot be applied to specific DNA assembly in chaotic system. To solve this problem, Thermostable Ligase Chain Reaction (TLCR) was introduced in the process of DNA assembly and capture. This technique combines the feature of thermostable DNA ligase and sequence specific oligo ligation template, "Helper", to achieve specific assembly of target fragments and exponential increase of products in multiple thermocyclings. Two plasmid construction experiments were carried out in order to test the feasibility and practical performance of TLCR. One was that, TLCR was used to specifically capture a 1.5 kb fragment into vector from an unpurified chaotic system which contained 7 different sizes of fragments. The results showed that the capturing accuracy was around 80%, which proved the feasibility and accuracy of using TLCR to specific assembly of DNA fragments in a complicated mixed system. In the other experiment, TLCR was used to capture two fragments (total length was 27 kb) from Hind Ⅲ digestion of Lambda genome into vector by order. The results also showed an accuracy of around 80%. As demonstrated in the results, TLCR can simplify the process of DNA recombination experiments and is suitable for the assembly of multiple and large DNA fragments. This technique can provide convenience to biological experiments. PMID:26907780

  8. Non-Toxic Dual Thrust Reaction Control Engine Development for On-Orbit APS Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Veith, Eric M.

    2003-01-01

    A non-toxic dual thrust proof-of-concept demonstration engine was successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the Next Generation Launch Technology (NGLT) program. The demonstration engine utilized the existing Kistler K-1 870 lbf LOX/Ethanol orbital maneuvering engine ( O m ) coupled with some special test equipment (STE) that enabled engine operation at 870 lbf in the primary mode and 25 lbf in the vernier mode. Ambient testing in primary mode varied mixture ratio (MR) from 1.28 to 1.71 and chamber pressure (P(c) from 110 to 181 psia, and evaluated electrical pulse widths (EPW) of 0.080, 0.100 and 0.250 seconds. Altitude testing in vernier mode explored igniter and thruster pulsing characteristics, long duration steady state operation (greater than 420 sec) and the impact of varying the percent fuel film cooling on vernier performance and chamber thermal response at low PC (4 psia). Data produced from the testing provided calibration of the performance and thermal models used in the design of the next version of the dual thrust Reaction Control Engine (RCE).

  9. Application of polymerase chain reaction for detection of Legionella pneumophila in serum samples.

    PubMed

    Alexiou-Daniel, S.; Stylianakis, A.; Papoutsi, A.; Zorbas, I.; Papa, A.; Lambropoulos, A.F.; Antoniadis, A.

    1998-03-01

    OBJECTIVE: To apply the polymerase chain reaction (PCR) to serum samples for the rapid diagnosis of Legionnaire's disease using the L5SL9 and L5SR93 primers designed to generate a 104-base-pair (bp) fragment from the 5S RNA gene of Legionella spp. The amplified product was detected by electrophoresis and by hybridization with the L5S-1-specific probe. METHODS: Single specimens of serum obtained from 24 patients with confirmed legionellosis, at different stages of their disease, were tested by PCR. Additionally, 10 serum samples from patients with no clinical symptoms of pneumonia and 10 samples from patients suffering from pneumonia caused by Mycoplasma pneumoniae, Coxiella burnetii or Chlamydia psittaci were also tested as controls in order to determine the specificity of the method. RESULTS: Of the 24 examined serum samples, the amplified products from 12 hybridized with the L5S-1 probe (sensitivity 50%). None of the negative controls was positive after PCR. No correlation was found between the day of illness and the positivity in the test. CONCLUSIONS: The PCR technique could be applied as a diagnostic tool for the rapid diagnosis of legionellosis in serum samples after modification, mainly to improve its sensitivity. PMID:11864308

  10. N-hydroxymethyl acrylamide polymer brush and its application in catalyzing coupling reaction.

    PubMed

    Fu, Zhihua; Zhang, Na; Liu, Jie; Li, Tiesheng; Xu, Wenjian; Wang, Fei; Wang, Tao; Zhai, Zhen; Liu, Linlin; Mao, Luyan; Wu, Yangjie

    2013-03-15

    Poly (N-hydroxy methyl acrylamide)-grafted silicon, glass, and quartz surfaces were successfully prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) with methyl alcohol/water mixtures as solvents and CuCl/2,2-dipyridyl as a catalyst. The modified surfaces were characterized by water contact angle, atomic force microscope (AFM), Fluorescence spectrophotometer, Low-angle X-ray diffraction (LAXRD), and X-ray Photoelectron Spectroscopy (XPS). The results showed that the homogeneous and well hydrophilic N-hydroxymethyl acrylamide polymer brushes (NHAM-brushes), which had high hydrophilic properties and the added advantage of providing 3-D coatings with higher binding capacities, were obtained successfully. Cyclopalladated arylimine functionalized polymer brushes were also obtained by reacting HAM-brushes with N,N'-Carbonyldiimidazole (CDI) and cyclopalladated arylimine. The catalyst functionalized PHAM-brushes had good catalytic activity in heterogeneous compared to homogeneous catalyst and exhibited much improved stability and recyclability over time in Suzuki cross-coupling reaction. PMID:23375806

  11. Gas-phase reaction study of disilane pyrolysis: Applications to low pressure chemical vapor deposition

    SciTech Connect

    Johannes, J.E.; Ekerdt, J.G. . Dept. of Chemical Engineering)

    1994-08-01

    The gas-phase thermal reactions during disilane decomposition at low pressure chemical vapor deposition conditions were studied from 300 to 1,000 K using resonance enhanced multiphoton ionization (REMPI) and multiphoton ionization (MPI). REMPI of gas-phase Si, mass 28, was detected from 640 to 840 K and 1 to 10 Torr, with a maximum signal intensity between 700 to 720 K. During disilane decomposition, no SiH (427.8 nm), SiH[sub 2] (494-515 nm), or SiH[sub 3] (419.0 nm) was detected. MPI of higher silanes, silenes, and silylenes were detected through mass fragments 2, 32, and 60; these species reached a maximum signal intensity 20 degrees prior to the mass-28 maximum. Modeling studies that included a detailed low pressure gas-phase kinetic scheme predict relative gas-phase partial pressures generated during disilane pyrolysis. The model predicted experimental trends in the Si partial pressure and the higher silane, silene, and silylene partial pressures.

  12. Applicability of the Ge(n,γ) Reaction for Estimating Thermal Neutron Flux

    NASA Astrophysics Data System (ADS)

    Nikolov, J.; Medić, Ž.; Jovančević, N.; Hansman, J.; Todorović, N.; Krmar, M.

    A simple experimental setup was used to measure gamma lines appearing in spectra after interactions of neutrons with Ge in the active volume of a high-purity germanium detector placed in a low-background shield. As source of neutrons a 252Cf spontaneous fission source and different thicknesses of PVC plates were used to slow down neutrons. A cadmiumenvelope was placed over the detector dipstick to identify the effect from slow and fast neutrons. Intensities of several characteristic γ-lines were measured, including intensity of the 139.9 keV γ-line from the reaction 74Ge(n,γ)75mGe, usually used for estimation of thermal neutron flux. Obtained results signify that only a part of the detected 139.9 keV γ-rays originate from thermal neutron capture. Some preliminary results indicate that in our detection setup thermal neutron capture contributes with 30% to 50% to the total intensity of the 139.9 keV γ-line, depending on the thickness of the PVC plates.

  13. Routine application of the polymerase chain reaction for detection of Mycobacterium tuberculosis in clinical samples.

    PubMed Central

    Noordhoek, G T; Kaan, J A; Mulder, S; Wilke, H; Kolk, A H

    1995-01-01

    AIM--To investigate the use of the polymerase chain reaction (PCR) in the routine laboratory for the detection of Mycobacterium tuberculosis in clinical samples. METHODS--Samples were divided and processed separately for the detection of M tuberculosis by microscopy, culture and PCR. After DNA extraction, PCR was performed with primers specific for the insertion element IS6110 and the product was analysed by agarose gel electrophoresis, Southern blotting or dot blotting and hybridisation with a digoxigenin labelled internal probe. Each sample was tested for inhibitors of Taq polymerase with the aid of an internal control. Multiple negative and positive controls were used to monitor each step of the procedure. RESULTS--The data from two laboratories, using the same operating procedures, were combined. Of 1957 specimens, 79 (4%) were culture and PCR positive, while 1839 (93.9%) were negative in both tests. Thirty specimens (1.5%) were PCR positive only and nine (0.5%) were culture positive but PCR negative. CONCLUSION--Using culture and clinical history as the gold standard, sensitivity and specificity for PCR were 92.1% and 99.8%, respectively. With elaborate precautions, PCR is a suitable and reliable method for the detection of M tuberculosis in clinical samples in a routine microbiology laboratory. Images PMID:7490312

  14. The Concentration Dependence of the (Delta)s Term in the Gibbs Free Energy Function: Application to Reversible Reactions in Biochemistry

    ERIC Educational Resources Information Center

    Gary, Ronald K.

    2004-01-01

    The concentration dependence of (delta)S term in the Gibbs free energy function is described in relation to its application to reversible reactions in biochemistry. An intuitive and non-mathematical argument for the concentration dependence of the (delta)S term in the Gibbs free energy equation is derived and the applicability of the equation to…

  15. Direct surface structuring of organometallic resists using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Acikgoz, Canet; Hempenius, Mark A.; Julius Vancso, G.; Huskens, Jurriaan

    2009-04-01

    The availability of suitable resist materials is essential for nanoimprint lithography (NIL). In this work, the application of poly(ferrocenylmethylphenylsilane) (PFMPS) as a new type of imprint resist is reported. As PFMPS contains iron and silicon in the main chain, it possesses a very high resistance to reactive ion etching. Polymer patterns formed after imprinting were transferred into silicon substrates owing to the high etch resistivity of PFMPS. The parameters for imprinting, such as polymer molar mass and initial film thickness, were investigated. A decrease in the initial film thickness facilitated the residual layer removal, as well as the pattern transfer. Only upon complete removal of the residual layer with argon plasma did pattern transfer result in aspect ratios up to 4:1 and less surface roughness.

  16. Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects.

    PubMed

    Sainuddin, Tariq; McCain, Julia; Pinto, Mitch; Yin, Huimin; Gibson, Jordan; Hetu, Marc; McFarland, Sherri A

    2016-01-01

    The purpose of the present study was to investigate the influence of π-expansive cyclometalating ligands on the photophysical and photobiological properties of organometallic Ru(II) compounds. Four compounds with increasing π conjugation on the cyclometalating ligand were prepared, and their structures were confirmed by HPLC, 1D and 2D (1)H NMR, and mass spectrometry. The properties of these compounds differed substantially from their Ru(II) polypyridyl counterparts. Namely, they were characterized by red-shifted absorption, very weak to no room temperature phosphorescence, extremely short phosphorescence state lifetimes (<10 ns), low singlet oxygen quantum yields (0.5-8%), and efficient ligand-centered fluorescence. Three of the metal complexes were very cytotoxic to cancer cells in the dark (EC50 values = 1-2 μM), in agreement with what has traditionally been observed for Ru(II) compounds derived from small C^N ligands. Surprisingly, the complex derived from the most π-expansive cyclometalating ligand exhibited no cytotoxicity in the dark (EC50 > 300 μM) but was phototoxic to cells in the nanomolar regime. Exceptionally large phototherapeutic margins, exceeding 3 orders of magnitude in some cases, were accompanied by bright ligand-centered intracellular fluorescence in cancer cells. Thus, Ru(II) organometallic systems derived from π-expansive cyclometalating ligands, such 4,9,16-triazadibenzo[a,c]napthacene (pbpn), represent the first class of potent light-responsive Ru(II) cyclometalating agents with theranostic potential. PMID:26672769

  17. Interplay between experiments and calculations for organometallic clusters and caged clusters

    NASA Astrophysics Data System (ADS)

    Nakajima, Atsushi

    2015-12-01

    Clusters consisting of 10-1000 atoms exhibit size-dependent electronic and geometric properties. In particular, composite clusters consisting of several elements and/or components provide a promising way for a bottom-up approach for designing functional advanced materials, because the functionality of the composite clusters can be optimized not only by the cluster size but also by their compositions. In the formation of composite clusters, their geometric symmetry and dimensionality are emphasized to control the physical and chemical properties, because selective and anisotropic enhancements for optical, chemical, and magnetic properties can be expected. Organometallic clusters and caged clusters are demonstrated as a representative example of designing the functionality of the composite clusters. Organometallic vanadium-benzene forms a one dimensional sandwich structure showing ferromagnetic behaviors and anomalously large HOMO-LUMO gap differences of two spin orbitals, which can be regarded as spin-filter components for cluster-based spintronic devices. Caged clusters of aluminum (Al) are well stabilized both geometrically and electronically at Al12X, behaving as a "superatom".

  18. Interplay between experiments and calculations for organometallic clusters and caged clusters

    SciTech Connect

    Nakajima, Atsushi

    2015-12-31

    Clusters consisting of 10-1000 atoms exhibit size-dependent electronic and geometric properties. In particular, composite clusters consisting of several elements and/or components provide a promising way for a bottom-up approach for designing functional advanced materials, because the functionality of the composite clusters can be optimized not only by the cluster size but also by their compositions. In the formation of composite clusters, their geometric symmetry and dimensionality are emphasized to control the physical and chemical properties, because selective and anisotropic enhancements for optical, chemical, and magnetic properties can be expected. Organometallic clusters and caged clusters are demonstrated as a representative example of designing the functionality of the composite clusters. Organometallic vanadium-benzene forms a one dimensional sandwich structure showing ferromagnetic behaviors and anomalously large HOMO-LUMO gap differences of two spin orbitals, which can be regarded as spin-filter components for cluster-based spintronic devices. Caged clusters of aluminum (Al) are well stabilized both geometrically and electronically at Al{sub 12}X, behaving as a “superatom”.

  19. Anti-leishmanial activity of heteroleptic organometallic Sb(v) compounds.

    PubMed

    Ali, Muhammad Irshad; Rauf, Muhammad Khawar; Badshah, Amin; Kumar, Ish; Forsyth, Craig M; Junk, Peter C; Kedzierski, Lukasz; Andrews, Philip C

    2013-12-28

    In seeking new drugs for the treatment of the parasitic disease Leishmaniasis, an extensive range of organometallic antimony(v) dicarboxylates of the form [SbR3(O2CR')2] have been synthesised, characterised and evaluated. The organometallic moieties (R) in the complexes vary in being Ph, tolyl (o, m or p), or benzyl. The carboxylates are predominantly substituted benzoates with some compounds incorporating acetato or cinnamato ligands. The crystal structures of [Sb(p-Tol)3(O2CC6H2-3,4,5-(OMe)3)2]·0.5PhMe and [SbPh3(m-CH3C6H4CH2CO2)2] were determined and shown to adopt a typical trigonal pyramidal geometry, being monomeric with a five coordinate Sb centre. In total, the biological activity of 26 Sb(v) compounds was assessed against the Leishmania major parasite, and also human fibroblast skin cells to give a measure of general toxicity. Of these, 11 compounds (predominantly substituted benzoates with m- or p-tolyl ligands) proved to be highly effective against the parasite amastigotes at concentrations of 0.5-3.5 μM, while being non-toxic towards the mammalian cells at levels below 25 μM, making them highly promising drug candidates. PMID:24077559

  20. Towards 9 weight percent, reversible, room temperature hydrogen adsorbents: Hydrogen saturated organometallic bucky balls

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng

    2005-03-01

    A new concept for high-capacity hydrogen absorbents is introduced by first-principles calculations. Transition metal (TM) atoms bound to fullerenes are proposed as a medium for high density, room temperature, ambient pressure storage of hydrogen. TMs bind to C60 or C48B12 by charge transfer interactions to produce stable organometallic bucky balls (OBBs) and bind to multiple dihydrogen molecules through the so-called Kubas interaction [1]. A particular scandium OBB can bind as many as eleven hydrogen atoms per TM, ten of which are bound in the form of dihydrogen molecular ligands that can be adsorbed and desorbed reversibly. In this case, the calculated binding energy is around 0.3 eV/H2, which is ideal for use on-board vehicles. The theoretical maximum retrievable H2 storage density is about 9 weight percent. This work was supported by the U.S. DOE EERE, BES/MS, and BES/CS under contract No. DEAC36-99GO10337. [1] G.J. Kubas, J. Organometallic Chem. 635, 37 (2001).

  1. Interfacial Reaction Studies Using ONIOM

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2003-01-01

    In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.

  2. Reaction of zero-valent magnesium with water: Potential applications in environmental remediation

    NASA Astrophysics Data System (ADS)

    Lee, Giehyeon; Park, Jaeseon

    2013-02-01

    This study examined the dissolution kinetics of granular zero-valent Mg (ZVMg) at pH 7 in water that was open to the atmosphere and buffered with 50 mM Na-MOPS. The oxidative dissolution of ZVMg was rapid; the initial amount of ZVMg (10-50 mg/L) dissolved completely within 200 min. The rate and extent of ZVMg dissolution was not affected by atmospheric oxygen. Although the oxidation of ZVMg is thermodynamically more feasible by dissolved oxygen or proton ions (H+), the primary oxidants are water molecules. The initial rate of ZVMg dissolution obeys first order kinetics with respect to ZVMg concentration with an observed rate constant, kMg,7 = 1.05 ± 0.06 × 10-2 min-1. Model calculations using the rate constant perfectly predict the extent of ZVMg dissolution for an extended time period at lower [Mg0]0 but underestimate at 50 mg/L [Mg0]0. The offset is likely attributed to the rapid dissolution of ZVMg particles, which could cause a substantial increase in the specific surface area. As to the reactivity of Mg-water system, we suggest that the hydrated electron (eaq-), the most powerful reducing agent, would probably be the major reactive entity under neutral and alkaline conditions. In addition, we discuss briefly the factors affecting the rate and extent of the Mg-water reaction such as background electrolytes, ZVMg impurities, surface passivation, solution pH and temperature based on literature review.

  3. Widely applicable MATLAB routines for automated analysis of saccadic reaction times.

    PubMed

    Leppänen, Jukka M; Forssman, Linda; Kaatiala, Jussi; Yrttiaho, Santeri; Wass, Sam

    2015-06-01

    Saccadic reaction time (SRT) is a widely used dependent variable in eye-tracking studies of human cognition and its disorders. SRTs are also frequently measured in studies with special populations, such as infants and young children, who are limited in their ability to follow verbal instructions and remain in a stable position over time. In this article, we describe a library of MATLAB routines (Mathworks, Natick, MA) that are designed to (1) enable completely automated implementation of SRT analysis for multiple data sets and (2) cope with the unique challenges of analyzing SRTs from eye-tracking data collected from poorly cooperating participants. The library includes preprocessing and SRT analysis routines. The preprocessing routines (i.e., moving median filter and interpolation) are designed to remove technical artifacts and missing samples from raw eye-tracking data. The SRTs are detected by a simple algorithm that identifies the last point of gaze in the area of interest, but, critically, the extracted SRTs are further subjected to a number of postanalysis verification checks to exclude values contaminated by artifacts. Example analyses of data from 5- to 11-month-old infants demonstrated that SRTs extracted with the proposed routines were in high agreement with SRTs obtained manually from video records, robust against potential sources of artifact, and exhibited moderate to high test-retest stability. We propose that the present library has wide utility in standardizing and automating SRT-based cognitive testing in various populations. The MATLAB routines are open source and can be downloaded from http://www.uta.fi/med/icl/methods.html . PMID:24788324

  4. Cerium Photosensitizers: Structure-Function Relationships and Applications in Photocatalytic Aryl Coupling Reactions.

    PubMed

    Yin, Haolin; Carroll, Patrick J; Manor, Brian C; Anna, Jessica M; Schelter, Eric J

    2016-05-11

    Two complete mixed-ligand series of luminescent Ce(III) complexes with the general formulas [(Me3Si)2NC(N(i)Pr)2]xCe(III)[N(SiMe3)2]3-x (x = 0, 1-N; x = 1, 2-N, x = 2, 3-N; x = 3, 4) and [(Me3Si)2NC(N(i)Pr)2]xCe(III)(OAr)3-x (x = 0, 1-OAr; x = 1, 2-OAr, x = 2, 3-OAr; x = 3, 4) were developed, featuring photoluminescence quantum yields up to 0.81(2) and lifetimes to 117(1) ns. Although the 4f → 5d absorptive transitions for these complexes were all found at ca. 420 nm, their emission bands exhibited large Stokes shifts with maxima occurring at 553 nm for 1-N, 518 nm for 2-N, 508 nm for 3-N, and 459 nm for 4, featuring yellow, lime-green, green, and blue light, respectively. Combined time-dependent density functional theory (TD-DFT) calculations and spectroscopic studies suggested that the long-lived (2)D excited states of these complexes corresponded to singly occupied 5dz(2) orbitals. The observed difference in the Stokes shifts was attributed to the relaxation of excited states through vibrational processes facilitated by the ligands. The photochemistry of the sterically congested complex 4 was demonstrated by C-C bond forming reaction between 4-fluoroiodobenzene and benzene through an outer sphere electron transfer pathway, which expands the capabilities of cerium photosensitizers beyond our previous results that demonstrated inner sphere halogen atom abstraction reactivity by 1-N. PMID:27058605

  5. Transporting and shielding photosensitisers by using water-soluble organometallic cages: a new strategy in drug delivery and photodynamic therapy.

    PubMed

    Therrien, Bruno

    2013-06-24

    Skin photosensitivity remains one of the main limitations in photodynamic therapy. In this Concept article a strategy to overcome this limitation is described, in which the photosensitizer is hidden inside the hydrophobic cavity of a water-soluble organometallic cage. The metallacage not only protects the photosensitizer from light, it also facilitates its delivery to cancer cells. PMID:23737435

  6. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    NASA Astrophysics Data System (ADS)

    Solovyeva, Alisa; Pavanello, Michele; Neugebauer, Johannes

    2012-05-01

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a π-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations. In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.

  7. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    SciTech Connect

    Solovyeva, Alisa; Pavanello, Michele; Neugebauer, Johannes

    2012-05-21

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations. In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.

  8. Development of a polymerase chain reaction applicable to rapid and sensitive detection of Clonorchis sinensis eggs in human stool samples.

    PubMed

    Cho, Pyo Yun; Na, Byoung-Kuk; Choi, Kyung Mi; Kim, Jin Su; Cho, Shin-Hyeong; Lee, Won-Ja; Lim, Sung-Bin; Cha, Seok Ho; Park, Yun-Kyu; Pak, Jhang Ho; Lee, Hyeong-Woo; Hong, Sung-Jong; Kim, Tong-Soo

    2013-07-01

    Microscopic examination of eggs of parasitic helminths in stool samples has been the most widely used classical diagnostic method for infections, but tiny and low numbers of eggs in stool samples often hamper diagnosis of helminthic infections with classical microscopic examination. Moreover, it is also difficult to differentiate parasite eggs by the classical method, if they have similar morphological characteristics. In this study, we developed a rapid and sensitive polymerase chain reaction (PCR)-based molecular diagnostic method for detection of Clonorchis sinensis eggs in stool samples. Nine primers were designed based on the long-terminal repeat (LTR) of C. sinensis retrotransposon1 (CsRn1) gene, and seven PCR primer sets were paired. Polymerase chain reaction with each primer pair produced specific amplicons for C. sinensis, but not for other trematodes including Metagonimus yokogawai and Paragonimus westermani. Particularly, three primer sets were able to detect 10 C. sinensis eggs and were applicable to amplify specific amplicons from DNA samples purified from stool of C. sinensis-infected patients. This PCR method could be useful for diagnosis of C. sinensis infections in human stool samples with a high level of specificity and sensitivity. PMID:23916334

  9. Kinetics of the hydrogen abstraction *CH3 + alkane --> CH4 + alkyl reaction class: an application of the reaction class transition state theory.

    PubMed

    Kungwan, Nawee; Truong, Thanh N

    2005-09-01

    Kinetics of the hydrogen abstraction reaction (*)CH(3) + CH(4) --> CH(4) + (*)CH(3) is studied by a direct dynamics method. Thermal rate constants in the temperature range of 300-2500 K are evaluated by the canonical variational transition state theory (CVT) incorporating corrections from tunneling using the multidimensional semiclassical small-curvature tunneling (SCT) method and from the hindered rotations. These results are used in conjunction with the Reaction Class Transition State Theory/Linear Energy Relationship (RC-TST/LER) to predict thermal rate constants of any reaction in the hydrogen abstraction class of (*)CH(3) + alkanes. Our analyses indicate that less than 40% systematic errors on the average exist in the predicted rate constants using the RC-TST/LER method while comparing to explicit rate calculations the differences are less than 100% or a factor of 2 on the average. PMID:16834150

  10. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ryan, Thomas W., III; Schwab, S. T.; Harlowe, W. W.

    1992-01-01

    The subject of this paper is the design of supersonic combustors which will be required in order to achieve the needed reaction rates in a reasonable sized combustor. A fuel additive approach, which is the focus of this research, is the use of pyrophorics to shorten the ignition delay time and to increase the energy density of the fuel. Pyrophoric organometallic compounds may also provide an ignition source and flame stabilization mechanism within the combustor, thus permitting use of hydrocarbon fuels in supersonic combustion systems. Triethylaluminum (TEA) and trimethylaluminum (TMA) were suggested for this application due to their high energy density and reactivity. The objective here is to provide comparative data for the ignition quality, the energy content, and the reaction rates of several different adducts of both TEA and TMA. The results of the experiments indicate the aluminum alkyls and their more stable derivatives reduce the ignition delay and total reaction time to JP-10 jet fuel. Furthermore, the temperature dependence of ignition delay and total reaction time of the blends of the adducts are significantly lower than in neat JP-10.

  11. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Astrophysics Data System (ADS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-08-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  12. Application of a reversible chemical reaction system to solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Hanseth, E. J.; Won, Y. S.; Seibowitz, L. P.

    1980-01-01

    Three distributed dish solar thermal power systems using various applications of SO2/SO3 chemical energy storage and transport technology were comparatively assessed. Each system features various roles for the chemical system: (1) energy storage only, (2) energy transport, or (3) energy transport and storage. These three systems were also compared with the dish-Stirling, using electrical transport and battery storage, and the central receiver Rankine system, with thermal storage, to determine the relative merit of plants employing a thermochemical system. As an assessment criterion, the busbar energy costs were compared. Separate but comparable solar energy cost computer codes were used for distributed receiver and central receiver systems. Calculations were performed for capacity factors ranging from 0.4 to 0.8. The results indicate that SO2/SO3 technology has the potential to be more cost effective in transporting the collected energy than in storing the energy for the storage capacity range studied (2-15 hours)

  13. Applications of Endothermic Reaction Technology to the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Glickstein, Marvin R.; Spadaccini, Louis J.

    1998-01-01

    The success of strategies for controlling emissions and enhancing performance in High Speed Research applications may be Increased by more effective utilization of the heat sink afforded by the fuel in the vehicle thermal management system. This study quantifies the potential benefits associated with the use of supercritical preheating and endothermic cracking of let fuel prior to combustion to enhance the thermal management capabilities of the propulsion systems in the High Speed Civil Transport (HSCT). A fuel-cooled thermal management system, consisting of plate-fin heat exchangers and a small auxiliary compressor, is defined for the HSCT, Integrated with the engine, and an assessment of the effect on engine performance, weight, and operating cost is performed. The analysis indicates significant savings due a projected improvement in fuel economy, and the potential for additional benefit if the cycle is modified to take full advantage of all the heat sink available in the fuel.

  14. Application of FeOCl derivatives for a secondary lithium battery. 3: Electrochemical reaction and physical state of reaction product of FeOCl with aniline in water

    SciTech Connect

    Kanamura, Kiyoshi; Sakaebe, Hikari; Fujimoto, Hiroyuki; Takehara, Zenichiro

    1995-07-01

    The reaction product of FeOCl with aniline in water was subjected to various analyses before and after its discharge and charge to determine its physical state and electrochemical reactions. From these analyses, it can be seen that there are two possible states for the reaction product before the discharge; one is a mixture of {gamma}-FeOOH and aniline derivatives (polymer or oligomer of aniline), and another is a mixture of {gamma}-FeOOH and FeOOH incorporating aniline derivatives. Atomic absorption analyses during discharge and charge cycles show that the steady-state discharge and charge processes are associated with a reversible change in lithium content in the solid matrix which change corresponds to the amount of electric charge passed. The Fourier transform infrared spectra indicate that the redox reaction of aniline derivatives (doping and undoping with anions) occurs during discharge and charge cycles. These results show that aniline derivatives exist in a different state from that of a simple mixture of the states of aniline derivatives and FeOOH.

  15. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study

    SciTech Connect

    Li, Jiangwei

    2008-01-01

    Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a

  16. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali silica reaction in concrete structures

    SciTech Connect

    Dähn, R.; Arakcheeva, A.; Schaub, Ph.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A.

    2015-12-21

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This particular high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating the sample. Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. Furthermore, it is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.

  17. The Reaction Specificity of Nanoparticles in Solution: Application to the Reaction of Nanoparticulate Iron and Iron-Bimetallic Compounds with Chlorinated Hydrocarbons and Oxyanions

    SciTech Connect

    2005-06-01

    The prospect for better remediation technologies using nanoparticles of iron, iron oxides, and iron with catalytic metals (i.e., bimetallics) has potentially transformative implications for environmental management of DOE sites across the country. Of particular interest is the potential to avoid undesirable products from the degradation of chlorinated solvents by taking advantage of the potential selectivity of nanoparticles to produce environmentally benign products from CCl{sub 4}. Chlorinated solvents are the most frequently reported subsurface contaminants across the whole DOE complex, and carbon tetrachloride (CCl{sub 4}) is the chlorinated solvent that is of greatest concern at Hanford (U. S. Department Energy 2001). In evaluating technologies that might be used at the site, a critical concern will be that CCl{sub 4} reduction usually occurs predominantly by hydrogenolysis to chloroform (CHCl{sub 3}) and methylene chloride (CH{sub 2}Cl{sub 2}), both of which are nearly as problematic as CCl{sub 4} (National Research Council, 1978). Competing reaction pathways produce the more desirable products carbon monoxide (CO) and/or formate (HCOO{sup -}), and possibly CO{sub 2}, but the proportion of reaction that occurs by these pathways is highly variable. Iron-based metallic and oxide nanoparticles have been shown to have enhanced reactivity towards a variety of chemical species, including chlorinated hydrocarbons and reducible oxyanions. Possibly of greater importance is the ability of nanoparticles to select for specific reaction products, potentially facilitating the formation of more environmentally acceptable products. The purpose of this study is to develop a fundamental understanding of the mechanism responsible for the overall particle reactivity and reaction selectivity of reactive metal and oxide nanoparticles. To achieve this objective the project involves the synthesis (using solution and vacuum synthesis methods) and characterization of well

  18. Application of multisection packing concept to sorption-enhanced steam methane reforming reaction for high-purity hydrogen production

    NASA Astrophysics Data System (ADS)

    Lee, Chan Hyun; Mun, Sungyong; Lee, Ki Bong

    2015-05-01

    Hydrogen has been gaining popularity as a new clean energy carrier, and bulk hydrogen production is achieved through the steam methane reforming (SMR) reaction. Since hydrogen produced via the SMR reaction contains large amounts of impurities such as unreacted reactants and byproducts, additional purification steps are needed to produce high-purity hydrogen. By applying the sorption-enhanced reaction (SER), in which catalytic reaction and CO2 byproduct removal are carried out simultaneously in a single reactor, high-purity hydrogen can be directly produced. Additionally, the thermodynamic limitation of conventional SMR reaction is circumvented, and the SMR reaction process becomes simplified. To improve the performance of the SER, a multisection packing concept was recently proposed. In this study, the multisection packing concept is experimentally demonstrated by applying it to a sorption-enhanced SMR (SE-SMR) reaction. The experimental results show that the SE-SMR reaction is significantly influenced by the reaction temperature, owing to the conflicting dependence of the reaction rate and the CO2 sorption uptake on the reaction temperature. Additionally, it is confirmed that more high-purity hydrogen (<10 ppm of CO) can be produced by applying the multisection packing concept to the SE-SMR reactions operated at sufficiently high temperatures where the SMR reaction is not limited by rate.

  19. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications.

    PubMed

    Kristensen, Tor E

    2015-01-01

    Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of catalytically

  20. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  1. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.

    PubMed

    Friis, Stig D; Lindhardt, Anders T; Skrydstrup, Troels

    2016-04-19

    , an array of low-pressure carbonylations were developed applying only near stoichiometric amounts of carbon monoxide. Importantly, carbon isotope variants of the CO precursors, such as (13)COgen, Sila(13)COgen, or even (14)COgen, provide a simple means for performing isotope-labeling syntheses. Finally, the COware applicability has been extended to reactions with other gases, such as hydrogen, CO2, and ethylene including their deuterium and (13)C-isotopically labeled versions where relevant. The COware system has been repeatedly demonstrated to be a valuable reactor for carrying out a wide number of transition metal-catalyzed transformations, and we believe this technology will have a significant place in many organic research laboratories. PMID:26999377

  2. Rational Design of Polynuclear Organometallic Assemblies from a Simple Heteromultifunctional Ligand.

    PubMed

    Zhang, Long; Lin, Yue-Jian; Li, Zhen-Hua; Jin, Guo-Xin

    2015-10-28

    In modern coordination chemistry, supramolecular coordination complexes take advantage of ligand design to control the shapes and sizes of such architectures. Here we describe how to utilize starting building blocks and a multifunctional ligand to rationally design and synthesize different types of discrete assemblies. Using a hydroxamate ligand featuring two pair of chelating sites together with half-sandwich iridium and rhodium fragments, we were able to construct a series multinuclear organometallic macrocycles and cages through stepwise coordination-driven self-assembly. Experimental observations, supported by computational work, show that selective coordination modes were ascribed to the significant electronic density differences of the two chelating sites, (O,O') and (N,N'). The results underline the advantages of the discrimination between soft and hard binding sites, and suggest that hydroxamic acids can be used as a versatile class of facile multifunctional scaffold for the construction of novel two-dimensional and three-dimensional architectures. PMID:26440304

  3. Performance of Density Functional Theory and Relativistic Effective Core Potential for Ru-Based Organometallic Complexes.

    PubMed

    Paranthaman, Selvarengan; Moon, Jiwon; Kim, Joonghan; Kim, Dong Eon; Kim, Tae Kyu

    2016-04-01

    Herein a performance assessment of density functionals used for calculating the structural and energetic parameters of bi- and trimetallic Ru-containing organometallic complexes has been performed. The performance of four popular relativistic effective core potentials (RECPs) has also been assessed. On the basis of the calculated results, the MN12-SX (range-separated hybrid functional) demonstrates good performance for calculating the molecular structures, while MN12-L (local functional) performs well for calculating the energetics, including that of the Ru-Ru bond breaking process. The choice of appropriate density functional is a crucial factor for calculating the energetics. The LANL08 demonstrates the lowest performance of the RECPs for calculating the molecular structures, especially the Ru-Ru bond length. PMID:26986051

  4. On-Surface Observation of the Formation of Organometallic Complex in a Supramolecular Network

    NASA Astrophysics Data System (ADS)

    Li, Yibao; Cheng, Linxiu; Liu, Chunhua; Liu, Wei; Fan, Yulan; Fan, Xiaolin; Zeng, Qingdao

    2015-06-01

    The on-surface formation of organometallic monomers or oligomers, especially in supramolecular network, attracts an extensive interest for chemists and material scientist. In this work, we have investigated metal coordination between zinc (II) phthalocyanine (ZnPc) and 1, 3-di (4-pyridyl) propane (dipy-pra) in the 2, 6, 11-tricarboxydecyloxy-3, 7, 10-triundecyloxy triphenylene (asym-TTT) supramolecular template by means of scanning tunneling microscopy (STM) on highly oriented pyrolytic graphite (HOPG) substrate under ambient conditions. The experimental results demonstrate that every two ZnPc molecules in one nano-reactor connect with each other through one dipy-pra molecule by metal-coordination interaction. In this coordinating process, the template of asym-TTT supramolecular networks plays a significant role.

  5. On-Surface Observation of the Formation of Organometallic Complex in a Supramolecular Network

    PubMed Central

    Li, Yibao; Cheng, Linxiu; Liu, Chunhua; Liu, Wei; Fan, Yulan; Fan, Xiaolin; Zeng, Qingdao

    2015-01-01

    The on-surface formation of organometallic monomers or oligomers, especially in supramolecular network, attracts an extensive interest for chemists and material scientist. In this work, we have investigated metal coordination between zinc (II) phthalocyanine (ZnPc) and 1, 3-di (4-pyridyl) propane (dipy-pra) in the 2, 6, 11-tricarboxydecyloxy-3, 7, 10-triundecyloxy triphenylene (asym-TTT) supramolecular template by means of scanning tunneling microscopy (STM) on highly oriented pyrolytic graphite (HOPG) substrate under ambient conditions. The experimental results demonstrate that every two ZnPc molecules in one nano-reactor connect with each other through one dipy-pra molecule by metal-coordination interaction. In this coordinating process, the template of asym-TTT supramolecular networks plays a significant role. PMID:26061532

  6. Lateral epitaxial overgowth of GaAs by organometallic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Gale, R. P.; Mcclelland, R. W.; Fan, J. C. C.; Bozler, C. O.

    1982-01-01

    Lateral epitaxial overgrowth of GaAs by organometallic chemical vapor deposition has been demonstrated. Pyrolytic decomposition of trimethylgallium and arsine, without the use of HCl, was used to deposit GaAs on substrates prepared by coating (110) GaAs wafers with SiO2, then using photolithography to open narrow stripes in the oxide. Lateral overgrowth was seeded by epitaxial deposits formed on the GaAs surfaces exposed by the stripe openings. The extent of lateral overgrowth was investigated as a function of stripe orientation and growth temperature. Ratios of lateral to vertical growth rates greater than five have been obtained. The lateral growth is due to surface-kinetic control for the two-dimensional growth geometry studied. A continuous epitaxial GaAs layer 3 microns thick has been grown over a patterned mask on a GaAs substrate and then cleaved from the substrate.

  7. Synthesis and characterization of nanowire coils of organometallic coordination polymers for controlled cargo release.

    PubMed

    Liang, Guodong; Ni, Huan; Bao, Suping; Zhu, Fangming; Gao, Haiyang; Wu, Qing

    2014-06-12

    Nanowire coils of organometallic coordination polymers have been synthesized for the first time by using the emulsion periphery polymerization technique. An amphiphilic triblock copolymer terminated with inclusion complex of β-cyclodextrin and 4,4'-bipyridine self-assembles into oil-in-water emulsion in a toluene/water mixture. Subsequent coordination of bipyridine with Ni(II) in periphery of emulsions results in the formation of coordination polymer nanowire coils. The nanowire coils are composed of nanowires with diameter of 2 nm. Nanowire coils exhibit enhanced thermal stability in contrast to their parent triblock copolymer. Interestingly, nanowire coils are capable of encapsulating organic cargoes. Encapsulated cargoes can be selectively extracted from nanowire coils without damaging nanowire coils. Nanowire coils are potential candidates for encapsulating and controlled release of organic cargoes. PMID:24842771

  8. On-Surface Observation of the Formation of Organometallic Complex in a Supramolecular Network.

    PubMed

    Li, Yibao; Cheng, Linxiu; Liu, Chunhua; Liu, Wei; Fan, Yulan; Fan, Xiaolin; Zeng, Qingdao

    2015-01-01

    The on-surface formation of organometallic monomers or oligomers, especially in supramolecular network, attracts an extensive interest for chemists and material scientist. In this work, we have investigated metal coordination between zinc (II) phthalocyanine (ZnPc) and 1, 3-di (4-pyridyl) propane (dipy-pra) in the 2, 6, 11-tricarboxydecyloxy-3, 7, 10-triundecyloxy triphenylene (asym-TTT) supramolecular template by means of scanning tunneling microscopy (STM) on highly oriented pyrolytic graphite (HOPG) substrate under ambient conditions. The experimental results demonstrate that every two ZnPc molecules in one nano-reactor connect with each other through one dipy-pra molecule by metal-coordination interaction. In this coordinating process, the template of asym-TTT supramolecular networks plays a significant role. PMID:26061532

  9. Quantum Monte Carlo study of charged transition-metal organometallic cluster systems

    NASA Astrophysics Data System (ADS)

    Tokar, Kamil; Derian, Rene; Stich, Ivan

    2015-03-01

    Using accurate fixed-node quantum Monte Carlo (QMC) methods we study 1D clusters formed by transition metal atoms separated by benzene molecules (TMBz), both positively and negatively charged. TMBz are among the most important π-bonded organometallics, which, however, often require charged states for experimental studies. We have performed a systematic study of ground-sate spin multiplets, ionization potentials, electron affinities, and dissociation energies of vanadium-benzene cationic and anionic half- and full-sandwiches. By comparison of QMC and DFT results, we find a very strong impact of electronic correlation on properties of these systems, such as dissociation energies, where ~1 eV energy corrections are found. In particular, the anions are unstable at the DFT level and are stabilized only at the QMC level after sophisticated optimization of the trial wavefunction. Supported by APVV-0207-11 and VEGA (2/0007/12) projects.

  10. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed. PMID:27573401

  11. Computational Estimate of the Photophysical Capabilities of Four Series of Organometallic Iron(II) Complexes.

    PubMed

    Dixon, Isabelle M; Boissard, Gauthier; Whyte, Hannah; Alary, Fabienne; Heully, Jean-Louis

    2016-06-01

    In this study, we examine a large range of organometallic iron(II) complexes with the aim of computationally identifying the most promising ones in terms of photophysical properties. These complexes combine polypyridine, bis(phosphine), and carbon-bound ligands. Density functional theory has allowed us to establish a comparative Jablonski diagram displaying the lowest singlet, triplet, and quintet states. All of the proposed FeN5C or FeN3P2C complexes unfavorably possess a lowest triplet state of metal-centered (MC) nature. Among the FeN4C2 and FeN2P2C2 series, the carbene complexes display the least favorable excited-state distribution, also having a low-lying (3)MC state. Validating our design strategy, we are now able to propose seven iron(II) complexes displaying a lowest excited state of triplet metal-to-ligand charge-transfer nature. PMID:27228301

  12. Recent progress in GaInAsSb thermophotovoltaics grown by organometallic vapor phase epitaxy

    SciTech Connect

    Wang, C.A.; Choi, H.K.; Oakley, D.C.; Charache, G.W.

    1998-06-01

    Studies on the materials development of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} alloys for thermophotovoltaic (TPV) devices are reviewed. Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} epilayers were grown lattice matched to GaSb substrates by organometallic vapor phase epitaxy (OMVPE) using all organometallic precursors including triethylgallium, trimethylindium, tertiarybutylarsine, and trimethylantimony with diethyltellurium and dimethylzinc as the n- and p-type dopants, respectively. The overall material quality of these alloys depends on growth temperature, In content, V/III ratio, substrate misorientation, and to a lesser extent, growth rate. A mirror-like surface morphology and room temperature photoluminescence (PL) are obtained for GaInAsSb layers with peak emission in the wavelength range between 2 and 2.5 {micro}m. The crystal quality improves for growth temperature decreasing from 575 to 525 C, and with decreasing In content, as based on epilayer surface morphology and low temperature PL spectra. A trend of smaller full width at half-maximum for low temperature PL spectra is observed as the growth rate is increased from 1.5 to 2.5 and 5 {micro}m/h. In general, GaInAsSb layers grown on (100) GaSb substrates with a 6{degree} toward (111)B misorientation exhibited overall better material quality than layers grown on the more standard substrate (100)2{degree} toward (110). Consistent growth of high performance lattice-matched GaInAsSb TPV devices is also demonstrated.

  13. Toward new organometallic architectures: synthesis of carbene-centered rhodium and palladium bisphosphine complexes. stability and reactivity of [PC(BIm)PRh(L)][PF6] pincers.

    PubMed

    Plikhta, Andriy; Pöthig, Alexander; Herdtweck, Eberhardt; Rieger, Bernhard

    2015-10-01

    In this article, we report the synthesis of a tridentate carbene-centered bisphosphine ligand precursor and its complexes. The developed four-step synthetic strategy of a new PC(BIm)P pincer ligand represents the derivatization of benzimidazole in the first and third positions by (diphenylphosphoryl)methylene synthone, followed by phosphine deprotection and subsequent insertion of a noncoordinating anion. The obtained ligand precursor undergoes complexation, with PdCl2 and [μ-OCH3Rh(COD)]2 smoothly forming the target organometallics [PC(BIm)PPdCl][PF6] and [PC(BIm)PRh(L)][PF6] under mild hydrogenation conditions. A more detailed study of the rhodium complexes [PC(BIm)PRh(L)][PF6] reveals significant thermal stability of the PC(BIm)PRh moiety in the solid state as well as in solution. The chemical behavior of 1,3-bis(diphenylphosphinomethylene)benzimidazol-2-ylrhodium acetonitrile hexafluorophosphate has been screened under decarbonylation, hydrogenation, and hydroboration reaction conditions. Thus, the PC(BIm)PRh(I) complex is a sufficiently stable compound, with the potential to be applied in catalysis. PMID:26390389

  14. Simple Derivation of the Hauser-Feshbach and Weisskopf-Ewing Formulae, with Application to Surrogate Reactions

    SciTech Connect

    Dietrich, F S

    2004-01-05

    The analysis of surrogate reactions, an indirect technique for determining cross sections on unstable nuclei, relies heavily on compound-nuclear reaction models. The purpose of this tutorial is to provide an introduction to the principal models, based on the Hauser-Feshbach and Weisskopf-Ewing formalisms, and to show how they are applied to surrogate reactions.

  15. Regio- and stereoselective carbometallation reactions of N-alkynylamides and sulfonamides

    PubMed Central

    Minko, Yury; Pasco, Morgane; Chechik, Helena

    2013-01-01

    Summary The carbocupration reactions of heterosubstituted alkynes allow the regio- and stereoselective formation of vinyl organometallic species. N-Alkynylamides (ynamides) are particularly useful substrates for the highly regioselective carbocupration reaction, as they lead to the stereodefined formation of vinylcopper species geminated to the amide moiety. The latter species are involved in numerous synthetically useful transformations leading to valuable building blocks in organic synthesis. Here we describe in full the results of our studies related to the carbometallation reactions of N-alkynylamides. PMID:23616793

  16. Extension of a Kinetic Approach to Chemical Reactions to Electronic Energy Levels and Reactions Involving Charged Species with Application to DSMC Simulations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2014-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for near-equilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion.

  17. Extension of a Kinetic Approach to Chemical Reactions to Electronic Energy Levels and Reactions Involving Charged Species With Application to DSMC Simulations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2013-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties are extended in the current work to include electronic energy level transitions and reactions involving charged particles. These extensions are shown to agree favorably with reported transition and reaction rates from the literature for nearequilibrium conditions. Also, the extensions are applied to the second flight of the Project FIRE flight experiment at 1634 seconds with a Knudsen number of 0.001 at an altitude of 76.4 km. In order to accomplish this, NASA's direct simulation Monte Carlo code DAC was rewritten to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced chemistry model, and to include the extensions presented in this work. The 1634 second data point was chosen for comparisons to be made in order to include a CFD solution. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid because, although near-transitional, the flow is still considered to be continuum. It is shown that the inclusion of electronic energy levels in the DSMC simulation is necessary for flows of this nature and is required for comparison to the CFD solution. The flow field solutions are also post-processed by the nonequilibrium radiation code HARA to compute the radiative portion of the heating and is then compared to the total heating measured in flight.

  18. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    PubMed

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology. PMID:18346452

  19. Simulation and Experimental Study on the Efficiency of Traveling Wave Direct Energy Conversion for Application to Aneutronic Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso; Chap, Andrew; Miley, George; Scott, John

    2013-10-01

    A study based on both Particle-in-cell (PIC) simulation and experiments is being developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC,) with the perspective of application to aneutronic fusion reaction products and space propulsion. The PIC model is investigating in detail the key TWDEC physics process by simulating the time-dependent transfer of energy from the ion beam to an electric load connected to ring-type electrodes in cylindrical symmetry. An experimental effort is in progress on a TWDEC test article at NASA, Johnson Space Center with the purpose of studying the conditions for improving the efficiency of the direct energy conversion process. Using a scaled-down ion energy source, the experiment is primarily focused on the effect of the (bunched) beam density on the efficiency and on the optimization of the electrode design. The simulation model is guiding the development of the experimental configuration and will provide details of the beam dynamics for direct comparison with experimental diagnostics. Work supported by NASA, Johnson Space Center.

  20. A wearable ground reaction force sensor system and its application to the measurement of extrinsic gait variability.

    PubMed

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko

    2010-01-01

    Wearable sensors for gait analysis are attracting wide interest. In this paper, a wearable ground reaction force (GRF) sensor system and its application to measure extrinsic gait variability are presented. To validate the GRF and centre of pressure (CoP) measurements of the sensor system and examine the effectiveness of the proposed method for gait analysis, we conducted an experimental study on seven volunteer subjects. Based on the assessment of the influence of the sensor system on natural gait, we found that no significant differences were found for almost all measured gait parameters (p-values < 0.05). As for measurement accuracy, the root mean square (RMS) differences for the two transverse components and the vertical component of the GRF were 7.2% ± 0.8% and 9.0% ± 1% of the maximum of each transverse component and 1.5% ± 0.9% of the maximum vertical component of GRF, respectively. The RMS distance between both CoP measurements was 1.4% ± 0.2% of the length of the shoe. The area of CoP distribution on the foot-plate and the average coefficient of variation of the triaxial GRF, are the introduced parameters for analysing extrinsic gait variability. Based on a statistical analysis of the results of the tests with subjects wearing the sensor system, we found that the proposed parameters changed according to walking speed and turning (p-values < 0.05). PMID:22163468