Science.gov

Sample records for oriented molecular nanowires

  1. A possible oriented attachment growth mechanism for silver nanowire formation

    SciTech Connect

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companion molecular dynamics performed with the embedded atom method are in agreement with our experimental data.

  2. A possible oriented attachment growth mechanism for silver nanowire formation

    DOE PAGESBeta

    Murph, Simona E. Hunyadi; Murphy, Catherine J.; Leach, Austin; Gall, Kenneth

    2015-04-06

    Electron microscopy studies suggest that silver nanowires prepared by an approach reported earlier by us (Caswell, K. K., Bender, C. M., Murphy, C. J. Nano Lett.,2003, 3, 667–669) form through a coarsening process via an oriented attachment mechanism. Initially, silver nucleation centers were produced by chemical reduction of silver ions in boiling water, with sodium citrate and sodium hydroxide as additives in solution. These nucleation centers, with a twinned crystallographic orientation, ultimately merge into fully grown silver nanowires. This is a completely different mechanism from the seed-mediated growth approach, which has also been used to produce silver nanowires. Furthermore, companionmore » molecular dynamics performed with the embedded atom method are in agreement with our experimental data.« less

  3. Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires.

    PubMed

    Zheng, Kun; Zhang, Zhi; Hu, Yibin; Chen, Pingping; Lu, Wei; Drennan, John; Han, Xiaodong; Zou, Jin

    2016-03-01

    Understanding the electrical properties of defect-free nanowires with different structures and their responses under deformation are essential for design and applications of nanodevices and strain engineering. In this study, defect-free zinc-blende- and wurtzite-structured InAs nanowires were grown using molecular beam epitaxy, and individual nanowires with different structures and orientations were carefully selected and their electrical properties and electromechanical responses were investigated using an electrical probing system inside a transmission electron microscope. Through our careful experimental design and detailed analyses, we uncovered several extraordinary physical phenomena, such as the electromechanical characteristics are dominated by the nanowire orientation, rather than its crystal structure. Our results provide critical insights into different responses induced by deformation of InAs with different structures, which is important for nanowire-based devices. PMID:26837494

  4. Atomistic Simulations of the Size, Orientation and Temperature Dependence of Tensile Behavior in GaN Nanowires

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao; Yang, Li; Gao, Fei; Weber, William J.

    2007-07-15

    Molecular dynamics simulations with Stillinger-Weber potentials were used to study the response of wurtzite-type single crystalline GaN nanowires to a tensile strain along the axial direction. Nanowires with axial orientations along the [0001], [1 00] and [11 0] crystallographic directions, which correspond to experimentally synthesized nanowires, were studied. The results reveal that the nanowires with different axial orientations show distinctly different deformation behavior under loading. The brittle to ductile transition (BDT) was observed in the nanowires oriented along the [0001] direction and the BDT temperatures lie in the temperature range between 1500 and 1800 K. The nanowires oriented along the [11 0] direction exhibit slip in the {01 0} planes; whereas the nanowires oriented along the [1 00] direction fracture in a cleavage manner under tensile loading. It should be emphasized that multiple yield stresses were observed during different stages in the [11 0]-oriented nanowires. In general, Young's modulus of the GaN nanowires decreases with decreasing diameter of the nanowires.

  5. Oriented Mn-doped CuO nanowire arrays.

    PubMed

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-04-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO3)2 · 4H2O and Cu(NO3)2 · 3H2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future. PMID:26895391

  6. Oriented Mn-doped CuO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-04-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO3)2 · 4H2O and Cu(NO3)2 · 3H2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future.

  7. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires

    PubMed Central

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-01-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons. PMID:27113556

  8. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires.

    PubMed

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-01-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons. PMID:27113556

  9. Metallic oriented nanowires films for infrared radiation manipulation

    NASA Astrophysics Data System (ADS)

    Larciprete, Maria Cristina; Centini, Marco; Voti, Roberto Li; Bertolotti, Mario; Sibilia, Concita

    2016-04-01

    We developed a numerical method to model the infrared spectral properties of metal nanowires on a flat substrate. Homogenization techniques and the transfer matrix method for birefringent layered materials are merged together so as to obtain a simple but effective tool for tailoring and optimizing the infrared properties of the resulting system. Different in-plane orientations can be investigated, ranging from randomly to perfectly aligned nanowires. Furthermore, the model allows the introduction of an off-plane tilt of the nanowires axes, thus increasing designing options. Possible applications such as broad band infrared polarizers, polarizing beam splitter and polarization rotators are discussed.

  10. Silicon Nanowire Growth at Chosen Positions and Orientations

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.

    2009-01-01

    It is now possible to grow silicon nanowires at chosen positions and orientations by a method that involves a combination of standard microfabrication processes. Because their positions and orientations can be chosen with unprecedented precision, the nanowires can be utilized as integral parts of individually electronically addressable devices in dense arrays. Nanowires made from silicon and perhaps other semiconductors hold substantial promise for integration into highly miniaturized sensors, field-effect transistors, optoelectronic devices, and other electronic devices. Like bulk semiconductors, inorganic semiconducting nanowires are characterized by electronic energy bandgaps that render them suitable as means of modulating or controlling electronic signals through electrostatic gating, in response to incident light, or in response to molecules of interest close to their surfaces. There is now potential for fabricating arrays of uniform, individually electronically addressable nanowires tailored to specific applications. The method involves formation of metal catalytic particles at the desired positions on a substrate, followed by heating the substrate in the presence of silane gas. The figure illustrates an example in which a substrate includes a silicon dioxide surface layer that has been etched into an array of pillars and the catalytic (in this case, gold) particles have been placed on the right-facing sides of the pillars. The catalytic thermal decomposition of the silane to silicon and hydrogen causes silicon columns (the desired nanowires) to grow outward from the originally catalyzed spots on the substrate, carrying the catalytic particles at their tips. Thus, the position and orientation of each silicon nanowire is determined by the position of its originally catalyzed spot on the substrate surface, and the orientation of the nanowire is perpendicular to the substrate surface at the originally catalyzed spot.

  11. Electro-orientation and electrorotation of metal nanowires.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2013-12-01

    The physical mechanisms responsible for the electrical orientation and electrical rotation of metal nanowires suspended in an electrolyte as a function of frequency of the applied ac electric field are examined theoretically and experimentally. The alignment of a nanowire in an ac field with a fixed direction is called electro-orientation. The induced constant rotation of a nanowire in a rotating electric field is called electrorotation. In both situations, the applied electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole, and also from induced-charge electro-osmotic flow around the particle. First, we describe the dipole theory that describes electro-orientation and electrorotation of perfectly polarizable metal rods. Second, based on a slender approximation, an analytical theory that describes induced-charge electro-orientation and electrorotation of metal nanowires is provided. Finally, experimental measurements of the electro-orientation and electrorotation of metal nanowires are presented and compared with theory, providing a comprehensive study of the relative importance between induced-dipole rotation and induced-charge electro-osmotic rotation. PMID:24483568

  12. Fragment oriented molecular shapes.

    PubMed

    Hain, Ethan; Camacho, Carlos J; Koes, David Ryan

    2016-05-01

    Molecular shape is an important concept in drug design and virtual screening. Shape similarity typically uses either alignment methods, which dynamically optimize molecular poses with respect to the query molecular shape, or feature vector methods, which are computationally less demanding but less accurate. The computational cost of alignment can be reduced by pre-aligning shapes, as is done with the Volumetric-Aligned Molecular Shapes (VAMS) method. Here, we introduce and evaluate fragment oriented molecular shapes (FOMS), where shapes are aligned based on molecular fragments. FOMS enables the use of shape constraints, a novel method for precisely specifying molecular shape queries that provides the ability to perform partial shape matching and supports search algorithms that function on an interactive time scale. When evaluated using the challenging Maximum Unbiased Validation dataset, shape constraints were able to extract significantly enriched subsets of compounds for the majority of targets, and FOMS matched or exceeded the performance of both VAMS and an optimizing alignment method of shape similarity search. PMID:27085751

  13. Orientation and temperature dependence of the tensile behavior of GaN nanowires: an atomistic study

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Yang, Li; Gao, Fei; Weber, William J.

    2008-09-01

    Gallium nitride (GaN) is a high-temperature semiconductor material of considerable interest. It emits brilliant light and has been considered as a key material for the next generation of high frequency and high power transistors that are capable of operating at high temperatures. Due to its anisotropic and polar nature, GaN exhibits direction-dependent properties. Growth directions along [001], [1-10] and [110] directions have all been synthesized experimentally. In this work, molecular dynamics simulations are carried out to characterize the mechanical properties of GaN nanowires with different orientations at different temperatures. The simulation results reveal that the nanowires with different growth orientations exhibit distinct deformation behavior under tensile loading. The nanowires exhibit ductility at high deformation temperatures and brittleness at lower temperature. The brittle to ductile transition (BDT) was observed in the nanowires grown along the [001] direction. The nanowires grown along the [110] direction slip in the {010} planes, whereas the nanowires grown along the [1-10] direction fracture in a cleavage manner under tensile loading.

  14. Controllable orientation of single silver nanowire using two fiber probes

    PubMed Central

    Xu, Xiaohao; Cheng, Chang; Xin, Hongbao; Lei, Hongxiang; Li, Baojun

    2014-01-01

    We report a strategy for realizing precise orientation of single silver nanowire using two fiber probes. By launching a laser of 980 nm wavelength into the two fibers, single silver nanowire with a diameter of 600 nm and a length of 6.5 μm suspended in water was trapped and rotated by optical torque resulting from its interaction with optical fields outputted from the fiber probes. Angular orientation of the nanowire was controlled by varying the relative distance between the two fiber probes. The angular stiffness, which refers to the stability of orientation, was estimated to be on the order of 10−19 J/rad2·mW. The experiments were interpreted by theoretical analysis. PMID:24496474

  15. Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires

    SciTech Connect

    Liang, Liang; Liu, Jun; Windisch, Charles F.; Exarhos, Gregory J.; Lin, Yuehe

    2002-10-04

    Although oriented carbon nanotubes, oriented nanowires of metals, semiconductors and oxides have attracted wide attention, there have been few reports on oriented polymer nanostructures such as nanowires. In this paper we report the assembly of large arrays of oriented nanowires through controlled nucleation and growth during a stepwise electrochemical deposition process in which a large number of nuclei were first deposited on the substrate using a large current density. After the initial nucleation, the current density was reduced step by step to grow the oriented nanowires from the nucleation sites created in the first step. A very different morphology was also demonstrated by first depositing a monolayer of close-packed colloidal spheres using a similar step-wise deposition process. As a result, the polymer nanofibers grew from the spheres in a radial fashion and formed the continuous three-dimensional network of nanofibers in the film. The principles of control nucleation and growth in electrochemical deposition investigated in this paper should be applicable to other electrical conducting and electrochemical active materials, including metals and conducting oxides. We also hope the oriented electroactive polymer nanostructure will open the door for new applications, such as miniaturized biosensors.

  16. Effects of geometric structure, orientation and size on structural stability and thermal behavior of zinc oxide nanowires

    SciTech Connect

    Su, Chien-Chan; Chen, Jun-Liang

    2011-10-15

    Highlights: {yields} The structural stability, orientation effect and melting characteristic of zinc oxide (ZnO) nanowires are simulated by using the molecular dynamics with many-body tightbinding potential. {yields} The nanowire with a hexagonal cross section is more stable than that with other cross section type, namely, a rectangular, triangular, rhombohedral, octagonal, and circular cross section. {yields} The structural stability and melting temperature of a nanowire is sensitive to its diameter because of the surface energy and unfavorable coordination. -- Abstract: The structural stability, orientation effect and melting characteristic of zinc oxide (ZnO) nanowires are simulated by using the molecular dynamics with many-body tightbinding potential. The structural stability is affected by the geometric shape of the cross section of a nanowire. The nanowire with a hexagonal cross section is more stable than that with another cross section type, namely, a rectangular, triangular, rhombohedral, octagonal, and circular cross section. The structural stability and melting temperature of a nanowire is sensitive to its diameter because of the surface energy and unfavorable coordination. Remarkably, it is observed that hexagonal ZnO nanowires transform to metastable circular-type structures at temperatures lower than the melting point.

  17. Photoacoustic Characterization of Randomly Oriented Silver Nanowire Films

    NASA Astrophysics Data System (ADS)

    Li Voti, R.; Leahu, G.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.; Nefedov, I.; Anoshkin, I. V.

    2015-06-01

    In this work, the photoacoustic characterization in the UV/Vis range of randomly oriented silver nanowire films deposited onto either a quartz or polymeric substrate is presented. This study was performed for a set of films differing in both metallic nanowire dimensions, as well as metal content. Samples were prepared starting from suspensions of Ag nanowires in isopropanol (IPA) , differing in both the length and diameter of the nanowires. The obtained films were characterized by scanning electron micrography (SEM) images; thus, the metal filling factor was retrieved with MATLAB software based on a visual method. Following the morphological characterization, both spectrophotometry and the photoacoustic spectroscopy (PAS) technique were employed to investigate in detail the absorbance spectra of silver nanowire films, in order to evidence their peculiar properties in the UV/Vis spectral range. Specifically, this photothermal technique is particularly useful to investigate a film that may exhibit relevant scattering phenomena, as for metallic nanowire films. The obtained experimental results show that the choice of the metal filling factor may affect the absorbance spectra of the resulting mesh.

  18. Oriented Growth of Pb1- x Snx Te Nanowire Arrays for Integration of Flexible Infrared Detectors.

    PubMed

    Wang, Qisheng; Li, Jie; Lei, Yin; Wen, Yao; Wang, Zhenxing; Zhan, Xueying; Wang, Feng; Wang, Fengmei; Huang, Yun; Xu, Kai; He, Jun

    2016-05-01

    Assembling nanowires into highly ordered arrays is crucial for developing integration circuits. Oriented growth of mid-infrared Pb1- x Snx Te nanowire arrays on bendable mica, extending the function of existing nanowire arrays, is reported. The flexible photodetectors of these nanowire arrays show a high photoresponsivity of 276 A W(-1) (at 800 nm), which is higher than many previously reported infrared nanosensors. PMID:26990637

  19. Ultrathin inorganic molecular nanowire based on polyoxometalates.

    PubMed

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  20. Ultrathin inorganic molecular nanowire based on polyoxometalates

    PubMed Central

    Zhang, Zhenxin; Murayama, Toru; Sadakane, Masahiro; Ariga, Hiroko; Yasuda, Nobuhiro; Sakaguchi, Norihito; Asakura, Kiyotaka; Ueda, Wataru

    2015-01-01

    The development of metal oxide-based molecular wires is important for fundamental research and potential practical applications. However, examples of these materials are rare. Here we report an all-inorganic transition metal oxide molecular wire prepared by disassembly of larger crystals. The wires are comprised of molybdenum(VI) with either tellurium(IV) or selenium(IV): {(NH4)2[XMo6O21]}n (X=tellurium(IV) or selenium(IV)). The ultrathin molecular nanowires with widths of 1.2 nm grow to micrometre-scale crystals and are characterized by single-crystal X-ray analysis, Rietveld analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, thermal analysis and elemental analysis. The crystals can be disassembled into individual molecular wires through cation exchange and subsequent ultrasound treatment, as visualized by atomic force microscopy and transmission electron microscopy. The ultrathin molecular wire-based material exhibits high activity as an acid catalyst, and the band gap of the molecular wire-based crystal is tunable by heat treatment. PMID:26139011

  1. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires

    SciTech Connect

    Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R.

    2008-02-11

    Molecular beam epitaxy Ga-assisted synthesis of GaAs nanowires is demonstrated. The nucleation and growth are seen to be related to the presence of a SiO{sub 2} layer previously deposited on the GaAs wafer. The interaction of the reactive gallium with the SiO{sub 2} pinholes induces the formation of nanocraters, found to be the key for the nucleation of the nanowires. With SiO{sub 2} thicknesses up to 30 nm, nanocraters reach the underlying substrate, resulting into a preferential growth orientation of the nanowires. Possibly related to the formation of nanocraters, we observe an incubation period of 258 s before the nanowires growth is initiated.

  2. GaAs Core/SrTiO3 Shell Nanowires Grown by Molecular Beam Epitaxy.

    PubMed

    Guan, X; Becdelievre, J; Meunier, B; Benali, A; Saint-Girons, G; Bachelet, R; Regreny, P; Botella, C; Grenet, G; Blanchard, N P; Jaurand, X; Silly, M G; Sirotti, F; Chauvin, N; Gendry, M; Penuelas, J

    2016-04-13

    We have studied the growth of a SrTiO3 shell on self-catalyzed GaAs nanowires grown by vapor-liquid-solid assisted molecular beam epitaxy on Si(111) substrates. To control the growth of the SrTiO3 shell, the GaAs nanowires were protected using an arsenic capping/decapping procedure in order to prevent uncontrolled oxidation and/or contamination of the nanowire facets. Reflection high energy electron diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were performed to determine the structural, chemical, and morphological properties of the heterostructured nanowires. Using adapted oxide growth conditions, it is shown that most of the perovskite structure SrTiO3 shell appears to be oriented with respect to the GaAs lattice. These results are promising for achieving one-dimensional epitaxial semiconductor core/functional oxide shell nanostructures. PMID:27008537

  3. Chemical and molecular beam epitaxy of III-V nanowires on silicon for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Gokul

    Nanowires, due to their unique structure and carrier transport abilities, have sparked huge interest in the semiconductor industry. An array of nanometric size wires inserted between the p and n conductivity regions of a conventional solar cell or core shell type p-n junction nanowires synergized with semiconductor nanocrystals can lead to faster carrier collection, thereby improving device performance. This work investigates the growth of GaAs and InP semiconductor nanowires on silicon (111) using Chemical Beam Epitaxy (CBE) and Molecular Beam Epitaxy (MBE). Uniform gold nanoparticles acting as growth centers in the Vapor Liquid Solid mode of growth were generated by using the cheap and rapid technique called Nanosphere Lithography (NSL). Variation of the experimental parameters during NSL resulted in honeycomb and hexagonal patterns of gold nanoparticles. A high degree of selectivity was obtained for CBE grown nanowires whereas the MBE grown GaAs nanowires revealed the formation of a thick polycrystalline wetting layer at the interface. The CBE grown InP nanowires mostly maintained the honeycomb structure although they were found to be oriented contrary to the expected <111> direction. SEM analysis of GaAs nanowires grown by CBE showed that during growth, the nanowires may coalesce with each other resulting in unique structures such as bipods, tripods and multipods. High resolution TEM analysis of single GaAs nanowires revealed periodic formation of contrasting materials. Diffraction patterns recorded at these dark contrast areas confirmed the formation of hexagonal wurtzite single crystal structures interspaced with cubic zincblende single crystal structures. These nanowires can be used for photovoltaic applications or as light emitting devices. In addition, the formation of superlattices of different crystal structures can pave the way for novel quantum confined optoelectronic devices.

  4. Synthesis, Magnetic Anisotropy and Optical Properties of Preferred Oriented Zinc Ferrite Nanowire Arrays

    PubMed Central

    2010-01-01

    Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire. The optical properties show the ZnFe2O4 nanowire arrays give out 370–520 nm blue-violet light, and their UV absorption edge is around 700 nm. The estimated values of direct and indirect band gaps for the nanowires are 2.23 and 1.73 eV, respectively. PMID:20676211

  5. Relationship between orientation factor of lead zirconate titanate nanowires and dielectric permittivity of nanocomposites

    SciTech Connect

    Tang, Haixiong E-mail: hsodano@ufl.edu; Malakooti, Mohammad H.; Sodano, Henry A. E-mail: hsodano@ufl.edu

    2013-11-25

    The relationship between the orientation of lead zirconate titanate (PZT) nanowires dispersed in nanocomposites and the resulting dielectric constants are quantified. The orientation of the PZT nanowires embedded in a polymer matrix is controlled by varying the draw ratio and subsequently quantified using Herman's Orientation Factor. Consequently, it is demonstrated that the dielectric constants of nanocomposites are improved by increasing the orientation factor of the PZT nanowires. This technique is proposed to improve the dielectric constant of the nanocomposites without the need for additional filler volume fraction since the nanocomposites are utilized in a wide range of high dielectric permittivity electronic components.

  6. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.

    PubMed

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom

    2016-07-13

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. PMID:27254592

  7. Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence.

    PubMed

    Kaganer, Vladimir M; Fernández-Garrido, Sergio; Dogan, Pinar; Sabelfeld, Karl K; Brandt, Oliver

    2016-06-01

    We investigate the nucleation, growth, and coalescence of spontaneously formed GaN nanowires in molecular beam epitaxy combining the statistical analysis of scanning electron micrographs with Monte Carlo growth models. We find that (i) the nanowire density is limited by the shadowing of the substrate from the impinging fluxes by already existing nanowires, (ii) shortly after the nucleation stage, nanowire radial growth becomes negligible, and (iii) coalescence is caused by bundling of nanowires. The latter phenomenon is driven by the gain of surface energy at the expense of the elastic energy of bending and becomes energetically favorable once the nanowires exceed a certain critical length. PMID:27168127

  8. Graphene/Si-nanowire heterostructure molecular sensors

    PubMed Central

    Kim, Jungkil; Oh, Si Duk; Kim, Ju Hwan; Shin, Dong Hee; Kim, Sung; Choi, Suk-Ho

    2014-01-01

    Wafer-scale graphene/Si-nanowire (Si-NW) array heterostructures for molecular sensing have been fabricated by vertically contacting single-layer graphene with high-density Si NWs. Graphene is grown in large scale by chemical vapour deposition and Si NWs are vertically aligned by metal-assisted chemical etching of Si wafer. Graphene plays a key role in preventing tips of vertical Si NWs from being bundled, thereby making Si NWs stand on Si wafer separately from each other under graphene, a critical structural feature for the uniform Schottky-type junction between Si NWs and graphene. The molecular sensors respond very sensitively to gas molecules by showing 37 and 1280% resistance changes within 3.5/0.15 and 12/0.15 s response/recovery times under O2 and H2 exposures in air, respectively, highest performances ever reported. These results together with the sensor responses in vacuum are discussed based on the surface-transfer doping mechanism. PMID:24947403

  9. Conductive Nanowires Templated by Molecular Brushes.

    PubMed

    Raguzin, Ivan; Stamm, Manfred; Ionov, Leonid

    2015-10-21

    In this paper, we report the fabrication of conductive nanowires using polymer bottle brushes as templates. In our approach, we synthesized poly(2-dimethylamino)ethyl methacrylate methyl iodide quaternary salt brushes by two-step atom transfer radical polymerization, loaded them with palladium salt, and reduced them in order to form metallic nanowires with average lengths and widths of 300 and 20 nm, respectively. The obtained nanowires were deposited between conductive gold pads and were connected to them by sputtering of additional pads to form an electric circuit. We connected the nanowires in an electric circuit and demonstrated that the conductivity of these nanowires is around 100 S·m(-1). PMID:26418290

  10. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rueda-Fonseca, P.; Orrò, M.; Bellet-Amalric, E.; Robin, E.; Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J.

    2016-04-01

    With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.

  11. Molecular dynamics simulation on the fabrication of graphene nanoscrolls with ferromagnetic nanowire templates

    NASA Astrophysics Data System (ADS)

    Huang, Senpeng; Feng, Min; Wang, Bin; Xu, Xiaoxuan; Cao, Xuewei; Wang, Yufang

    2015-08-01

    Graphene nanoscrolls (GNSs) have attracted more and more attention both in theory and experiments for their unique and excellent fundamental properties and the wide range of potential applications. In this paper, the fabrication of GNSs with different ferromagnetic nanowire (FNW) templates has been studied by molecular dynamics (MD) method. We have presented convincing explanations on the GNS formation mechanism and a thorough analysis about the differences between varying FNWs. Moreover, a distinctive deformation behavior in the Ni nanowire oriented in [0 0 1] axis direction was observed and deeply investigated. And the influence of nanowire lengths on the fabrication of GNS is also studied. Our theoretical results will provide researchers a powerful guide and helpful assistance in designing better targeted programs in experiments.

  12. Tensile testing of Fe and FeCr nanowires using molecular dynamics simulations

    SciTech Connect

    Byggmästar, J. Granberg, F.; Kuronen, A.; Nordlund, K.; Henriksson, K. O. E.

    2015-01-07

    Using molecular dynamics, we have studied the behaviour of cylindrical [001]-oriented Fe and FeCr nanowires under uniaxial tensile strain with both an embedded atom method (EAM) and a Tersoff-like bond order potential. The mechanical properties were analysed and the deformation mechanism was studied and compared between the potentials. The effects of chromium content and size of the wire were studied. Both potentials show elongation by deformation twinning in the 〈111〉/(211) system resulting in a significantly stiffer and stronger [110]-axial nanowire. The pure iron nanowires are elastically softer than bulk iron and an addition of chromium has both a softening and weakening effect. The bond order potential shows a strong dependence on chromium concentration, while the dependence is considerably weaker for the EAM potential.

  13. Relationship between planar GaAs nanowire growth direction and substrate orientation

    NASA Astrophysics Data System (ADS)

    Dowdy, Ryan S.; Walko, Donald A.; Li, Xiuling

    2013-01-01

    Planar GaAs nanowires are epitaxially grown on GaAs substrates of various orientations, via the Au-catalyzed vapor-liquid-solid mechanism using metal organic chemical vapor deposition. The nanowire geometry and growth direction are examined using scanning electron microscopy and x-ray microdiffraction. A hypothesis relating the planar nanowire growth direction to the surface projections of <111> B crystal directions is proposed. GaAs planar nanowire growth on vicinal substrates is performed to test this hypothesis. Good agreement between the experimental results and the projection model is found.

  14. Electrodepositing fabrication and microstructures of the Fe nanowires with a preferred orientation

    NASA Astrophysics Data System (ADS)

    Cui, Chunxiang; Yang, Wei; Sun, Jibing; Zhang, Qingjun

    2011-12-01

    Highly ordered Fe nanowire arrays with <1 1 0> preferred orientation were fabricated out successfully by direct current electrodepositing into the pores of a porous anodic aluminum oxide template. The formation mechanism of Fe nanowires was ascertained by X-ray diffraction and transmission electron microscopy. Low index surface energy of Fe nanowires was calculated by means of broken-bond model. For Fe nanowire arrays, its aspect ratio ( h/ d) of the "circular cylinder" is less than 0.75, the {1 1 0} planes have the lowest surface energy. And authors deal with a reasonable explanation for Fe nanowires growth along with <1 1 0> preferred orientation using the two-dimensional nucleation theory.

  15. Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics.

    PubMed

    Li, Yong Jun; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2016-02-01

    Nanophotonics has received broad research interest because it may provide an alternative opportunity to overcome the fundamental limitations of electronic circuits. So far, diverse photonic functions, such as light generation, modulation, and detection, have been realized based on various nano-materials. The exact structural features of these material systems, including geometric characteristics, surface morphology, and material composition, play a key role in determining the photonic functions. Therefore, rational designs and constructions of materials on both morphological and componential levels, namely nanoarchitectonics, are indispensable for any photonic device with specific functionalities. Recently, a series of nanowire heterojunctions (NWHJs), which are usually made from two or more kinds of material compositions, were constructed for novel photonic applications based on various interactions between different materials at the junctions, for instance, energy transfer, exciton-plasmon coupling, or photon-plasmon coupling. A summary of these works is necessary to get a more comprehensive understanding of the relationship between photonic functions and architectonics of NWHJs, which will be instructive for designing novel photonic devices towards integrated circuits. Here, photonic function oriented nanoarchitectonics based on recent breakthroughs in nanophotonic devices are discussed, with emphasis on the design mechanisms, fabrication strategies, and excellent performances. PMID:26488887

  16. Nanowire Oriented On-Surface Growth of Chiral Cystine Crystalline Nanosheets.

    PubMed

    Zhang, Shenxiang; Zhang, Feng; Qin, Haili; Hu, Liang; Jin, Jian

    2015-08-18

    Exploration of an effective route to achieve the controlled growth of two-dimensional (2D) molecular crystal is of scientific significance yet greatly underdeveloped due to the complexity of weak intermolecular interactions, thus leading to difficulty of inducing anisotropic 2D growth. We report here a facile nanowire oriented on-surface growth strategy for the fabrication of cystine crystalline nanosheets with finely controlled thickness (1.1, 1.9, 2.9, and 4.8 nm which correspond to one layer, two layers, three layers, and five layers of crystal cystine, respectively) and large areas (>100 μm(2)). The cystine crystalline nanosheets display chirality delivered by chiral cysteine monomers, either l-cysteine or d-cysteine. The chiral nanosheets with structural precision and chemical diversity could serve as a novel 2D platform for constructing advanced hybrid materials. PMID:26203777

  17. Electro-orientation of a metal nanowire counterbalanced by thermal torques.

    PubMed

    Arcenegui, Juan J; García-Sánchez, Pablo; Morgan, Hywel; Ramos, Antonio

    2014-06-01

    The rotational diffusion of electrically polarized metal nanowires suspended in an electrolyte is studied. The alignment of a Brownian nanowire in an ac field with a given direction is not complete due to thermal (fluctuating) torques. The orientation distribution allows us to examine the electrokinetic torques acting on the nanowire for smaller voltages than in previous deterministic experiments. In addition, the torques are obtained without recurring to the rotational friction coefficient as in dynamic deterministic experiments. The present results are in accordance with previous deterministic results of electro-orientation of metal nanowires. Nanowire rotation is originated by both the electrical torque on the induced dipole and by induced-charge electro-osmotic flow around the particle. At low frequencies of the applied ac field, induced-charge electro-osmotic orientation dominates while induced dipole torque orientation dominates at high frequencies. The angular standard deviation and the rotational rate are calculated from the measured fluctuating angle as a function of time, and good agreement with theoretical predictions is found. The experiments at high frequency indicate that the electrical torque on a nanowire near an insulating wall is reduced with respect to the bulk. PMID:25019775

  18. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey. J.; Wang, George T.

    2015-10-01

    Ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (1 1 bar 02) r-plane sapphire substrates. Dislocation free [ 11 2 bar 0 ] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar { 10 1 bar 0 } side facets, which appear due to a decrease in relative growth rate of the { 10 1 bar 0 } facets to the { 10 1 bar 1 } and { 10 1 bar 1 } facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal-organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  19. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs. PMID:27002386

  20. Synthesis, Characterization and Kinetics of Epitaxial-Oriented Silicon Nanowire Arrays on Si Substrates

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Bao, J. K.; Wan, Y. T.; Xia, W. W.; Wang, Y. W.; Sha, J.

    The fabrication of vertical-oriented, high aspect ratio silicon nanowires (SiNWs) with controllable density and length is of interest for the development of nanowire-based electronics and photovoltaic devices. Here we reported a both simple and economical method for synthesizing large-area epitaxial-oriented SiNW arrays, which was achieved on the Si (111) substrates by Au catalyzed vapor-liquid-solid mechanism using the conventional chemical vapor deposition furnace system. Their morphologies and microstructures were investigated with scanning electron microscopy and transmission electron microscopy, respectively. The results showed that most of nanowires were vertically grown on substrates, their density and length can be well controlled. As-grown SiNW is composed of a single crystalline silicon core and a thin amorphous silicon oxide coating layer. Furthermore, their growth kinetics was discussed in detail. It indicates that there are both the substrate-nanowire Si adatom surface diffusion and the slight radial growth during the upgrowth of nanowire, and besides, the migration of Au on the sidewall of nanowire was also found for such epitaxial-oriental SiNWs.

  1. Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bauer, Jan; Fleischer, Frank; Breitenstein, Otwin; Schubert, Luise; Werner, Peter; Gösele, Ulrich; Zacharias, Margit

    2007-01-01

    Single undoped Si nanowires were electrically characterized. The nanowires were grown by molecular-beam epitaxy on n+ silicon substrates and were contacted by platinum/iridium tips. I-V curves were measured and electron beam induced current investigations were performed on single nanowires. It was found that the nanowires have an apparent resistivity of 0.85Ωcm, which is much smaller than expected for undoped Si nanowires. The conductance is explained by hopping conductivity at the Si -SiO2 interface of the nanowire surface.

  2. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    PubMed Central

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  3. Atomistic Simulation of the Size and Orientation Dependences of Thermal Conductivity in GaN Nanowires

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao; Gao, Fei; Weber, William J.; Crocombette, J.-P.

    2007-04-16

    The thermal conductivity of GaN nanowires has been determined computationally, by applying nonequilibrium atomistic simulation methods using the Stillinger-Weber [Phys. Rev. B 31, 5262 (1985)] potentials. The simulation results show that the thermal conductivity of the GaN nanowires is smaller than that of a bulk crystal and increases with increasing diameter. Surface scattering of phonons and the high surface to volume ratios of the nanowires are primarily responsible for the reduced thermal conductivity and its size dependence behavior. The thermal conductivity is also found to decrease with increasing temperature, which is due to phonon-phonon interactions at high temperatures. The thermal conductivity also exhibits a dependence on axial orientation of the nanowires.

  4. Indium-doped ZnO nanowires with infrequent growth orientation, rough surfaces and low-density surface traps

    PubMed Central

    2013-01-01

    Indium-doped ZnO nanowires have been prepared by vapor transport deposition. With increasing In content, the growth orientation of the nanowires switches from [101_0] to infrequent [022_3] and the surface becomes rough. No surface-related exciton emission is observed in these nanowires. The results indicate that large surface-to-volume ratio, high free electron concentration, and low density of surface traps can be achieved simultaneously in ZnO nanowires via In doping. These unique properties make In-doped ZnO nanowire a potential material for photocatalysis application, which is demonstrated by the enhanced photocatalytic degradation of Rhodamine B. PMID:24256997

  5. Mechanical properties of irradiated nanowires - A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Figueroa, Emilio; Tramontina, Diego; Gutiérrez, Gonzalo; Bringa, Eduardo

    2015-12-01

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments.

  6. Reduced thermal conductivity of a nanoparticle decorated nanowire: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Masnoon, Ahmed Shafkat; Bipasha, Ferdaushi Alam; Morshed, A. K. M. M.

    2016-07-01

    The effect of nanoparticles decoration on the thermal conductivity of a nanowire is studied using Non Equilibrium Molecular Dynamics (NEMD) simulation. The simulation was conducted using simplified molecular model with Lennard-Jones potential. Argon-like solid was used as the material for both the nanowire and nanoparticles. Nanoparticles were placed on the surface of the nanowire and also embedded inside the structure. Non-equilibrium molecular dynamics simulation was conducted by imposing temperature gradient along the length of the nanowire and thermal conductivity of the nanowire was calculated. Nanowire without any nanoparticles was used as the baseline data. Due to presence of nanoparticles thermal conductivity of the nanowire was observed to decrease and up to 40% reduction in thermal conductivity was observed. With the increase in number of the nanoparticles, thermal conductivity was observed to decrease; however size of nanoparticles has little effect.

  7. An Ultralong, Highly Oriented Nickel-Nanowire-Array Electrode Scaffold for High-Performance Compressible Pseudocapacitors.

    PubMed

    Xu, Chao; Li, Ziheng; Yang, Cheng; Zou, Peichao; Xie, Binghe; Lin, Ziyin; Zhang, Zhexu; Li, Baohua; Kang, Feiyu; Wong, Ching-Ping

    2016-06-01

    Ultralong, highly oriented Ni nanowire arrays are used as the electrode scaffold to support metal-oxide- and conductive-polymer-based electrode materials with a high mass loading; the as-obtained asymmetric supercapacitor can be compressed by fourfold and exhibits superior energy and power densities with ultrahigh cycle stability. PMID:27062285

  8. Recent developments in nanowires for bio-applications from molecular to cellular levels.

    PubMed

    Rahong, Sakon; Yasui, Takao; Kaji, Noritada; Baba, Yoshinobu

    2016-04-01

    This review highlights the most promising applications of nanowires for bioanalytical chemistry and medical diagnostics. The materials discussed here are metal oxide and Si semiconductors, which are integrated with various microfluidic systems. Nanowire structures offer desirable advantages such as a very small diameter size with a high aspect ratio and a high surface-to-volume ratio without grain boundaries; consequently, nanowires are promising tools to study biological systems. This review starts with the integration of nanowire structures into microfluidic systems, followed by the discussion of the advantages of nanowire structures in the separation, manipulation and purification of biomolecules (DNA, RNA and proteins). Next, some representative nanowire devices are introduced for biosensors from molecular to cellular levels based on electrical and optical approaches. Finally, we conclude the review by highlighting some bio-applications for nanowires and presenting the next challenges that must be overcome to improve the capabilities of nanowire structures for biological and medical systems. PMID:26928289

  9. Rigorous theory of molecular orientational nonlinear optics

    SciTech Connect

    Kwak, Chong Hoon Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

  10. Rigorous theory of molecular orientational nonlinear optics

    NASA Astrophysics Data System (ADS)

    Kwak, Chong Hoon; Kim, Gun Yeup

    2015-01-01

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

  11. Donor wave functions delocalization in silicon nanowires: the peculiar [011] orientation.

    PubMed

    Petretto, Guido; Debernardi, Alberto; Fanciulli, Marco

    2013-10-01

    The localization of the donor electron wave function can be of key importance in various silicon applications, since for example it determines the interactions between neighboring donors. Interestingly, the physical confinement of the electrons in quasi-one-dimensional nanostructures, like silicon nanowires, noticeably affects this property. Using fully ab initio calculations, we show that the delocalization of the donor electron wave function along the axis of a nanowire is much greater in [011] oriented nanowires for phosphorus and selenium donors. We also demonstrate that its value can be controlled by applying a compressive or tensile uniaxial strain. Finally, we discuss the implications of these features from both an experimental and a theoretical point of view. PMID:23984940

  12. Magnetic and electronic properties of porphyrin-based molecular nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Wang, Wei-Wei; Zhao, Xiang

    2016-01-01

    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  13. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates.

    PubMed

    Cho, Jinhyun; Salleh, Najah; Blanco, Carlos; Yang, Sungwoo; Lee, Chul-Jin; Kim, Young-Woo; Kim, Jungsang; Liu, Jie

    2014-04-01

    This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH(-) concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH(-) concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron diffraction patterns using a transmission electron microscope (TEM). This study obviously suggests that metallic impurities incorporated into the ZnO nanocrystal seeds are one of the factors that generates the misaligned ZnO nanowires. This method also enables the use of silicon oxide substrates for the growth of vertically aligned nanowires, making ZnO nanostructures compatible with widely used silicon fabrication technology. PMID:24584438

  14. Gold nanowired: a linear (Au25)(n) polymer from Au25 molecular clusters.

    PubMed

    De Nardi, Marco; Antonello, Sabrina; Jiang, De-en; Pan, Fangfang; Rissanen, Kari; Ruzzi, Marco; Venzo, Alfonso; Zoleo, Alfonso; Maran, Flavio

    2014-08-26

    Au25(SR)18 has provided fundamental insights into the properties of clusters protected by monolayers of thiolated ligands (SR). Because of its ultrasmall core, 1 nm, Au25(SR)18 displays molecular behavior. We prepared a Au25 cluster capped by n-butanethiolates (SBu), obtained its structure by single-crystal X-ray crystallography, and studied its properties both experimentally and theoretically. Whereas in solution Au25(SBu)18(0) is a paramagnetic molecule, in the crystal it becomes a linear polymer of Au25 clusters connected via single Au-Au bonds and stabilized by proper orientation of clusters and interdigitation of ligands. At low temperature, [Au25(SBu)18(0)]n has a nonmagnetic ground state and can be described as a one-dimensional antiferromagnetic system. These findings provide a breakthrough into the properties and possible solid-state applications of molecular gold nanowires. PMID:25088331

  15. Influence of substrate orientation on the structural properties of GaAs nanowires in MOCVD

    NASA Astrophysics Data System (ADS)

    Muhammad, R.; Othaman, Z.; Wahab, Y.; Ibrahim, Z.; Sakrani, S.

    2016-04-01

    In this study, the effect of substrate orientation on the structural properties of GaAs nanowires grown by a metal organic chemical vapor deposition has been investigated. Gold colloids were used as catalyst to initiate the growth of nanowiresby the vapour-liquid-solid (VLS) mechanism. From the field-emission scanning electron microscopy (FE-SEM), the growth of the nanowires were at an elevation angle of 90°, 60°, 65° and 35° with respect to the GaAs substrate for (111)B, (311)B, (110) and (100) orientations respectively. The preferential NW growth direction is always <111>B. High-resolution transmission electron microscope (HRTEM) micrograph showed the NWs that grew on the GaAs(111)B has more structural defects when compared to others. Energy dispersive X-ray analysis (EDX) indicated the presence of Au, Ga and As. The bigger diameter NWs dominates the (111)B substrate surface.

  16. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    SciTech Connect

    Zhang, Zhi; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Lu, Zhen-Yu; Chen, Ping-Ping; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-12

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  17. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Lu, Zhen-Yu; Chen, Ping-Ping; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Shi, Sui-Xing; Lu, Wei; Zou, Jin

    2013-08-01

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  18. Ferromagnetic (Ga,Mn)As nanowires grown by Mn-assisted molecular beam epitaxy

    SciTech Connect

    Bouravleuv, Alexei; Cirlin, George; Sapega, Victor; Werner, Peter; Savin, Alexander; Lipsanen, Harri

    2013-04-14

    (Ga,Mn)As nanowires were grown by molecular beam epitaxy using Mn as a growth catalyst on GaAs(001) substrates at 485 Degree-Sign C, i.e., at intermediate temperatures higher than ones used for the growth of (Ga,Mn)As thin films, but lower than the ordinary temperatures of Au-assisted growth of GaAs nanowires. (Ga,Mn)As nanowires obtained with typical lengths between 0.8 and 4 {mu}m and diameters 50-90 nm do not have defects, such as dislocations or precipitates, except for the stacking faults lying parallel to the growth direction. The investigation of magnetic and optical properties has been carried out not only for as-grown samples with nanowires but also for peeled off nanowires from the host substrate. The results obtained demonstrate that (Ga,Mn)As nanowires exhibit ferromagnetic ordering around 70 K.

  19. Molecular dynamics study of nanojoining between axially positioned Ag nanowires

    NASA Astrophysics Data System (ADS)

    Cui, Jianlei; Theogene, Barayavuga; Wang, Xuewen; Mei, Xuesong; Wang, Wenjun; Wang, Kedian

    2016-08-01

    The miniaturization of electronics devices into nanometer scale is indispensable for next-generation semiconductor technology. Ag nanowires (Ag NWs) are considered to be the promising candidates for future electronic circuit owing to the excellent electrical and thermal properties. The nanojoining of axially positioned Ag NWs was performed by molecular dynamics simulation. Through the detailed atomic evolution during the nanojoining, the results indicate that the temperature and the distance between Ag NWs in axial direction have a great impact on nanojoining effect. When the nanojoining temperature is relatively high, the atoms are disordered and the atomic queues become to distort with strong thermodynamic properties and weak effect of metal bonds. At the relatively low temperature, the Ag NWs can be well connected with good junction quality and their own morphology, which is similar to the cold welding without fusion, while the distance between Ag NWs should be controlled for interaction and diffusion of interfacial atoms at nanowires head. When the Ag NWs are placed on Si and SiO2 substrate, because the atomic species and lattice structure of substrate material can differently affect the motions of Ag atoms through the interactive force between the atoms, the nanojoining quality of Ag NWs on Si substrate is better than that on the SiO2 substrate. So, for getting effective and reliable nanojoining without nanosolders and other materials, the temperature, distance and substrate surface should be reasonably controlled and selected, providing helpful theoretical guidance for experiment and application of nanojoining.

  20. Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams.

    PubMed

    Calahorra, Y; Shtempluck, O; Kotchetkov, V; Yaish, Y E

    2015-05-13

    Initial or residual stress plays an important role in nanoelectronics. Valley degeneracy in silicon nanowires (SiNWs) is partially lifted due to built-in stresses, and consequently, electron-phonon scattering rate is reduced and device mobility and performance are improved. In this study we use a nonlinear model describing the force-deflection relationship to extract the Young's modulus, the residual stress, and the crystallographic growth orientation of SiNW beams. Measurements were performed on suspended doubly clamped SiNWs subjected to atomic force microscopy (AFM) three-point bending constraints. The nanowires comprised different growth directions and two SiO2 sheath thicknesses, and underwent different rapid thermal annealing processes. Analysis showed that rapid thermal annealing introduces compressive strains into the SiNWs and may result in buckling of the SiNWs. Furthermore, the core-shell model together with the residual stress analysis accurately describe the Young's modulus of oxide covered SiNWs and the crystal orientation of the measured nanowires. PMID:25826449

  1. Using galvanostatic electroforming of Bi1–xSbx nanowires to control composition, crystallinity, and orientation

    DOE PAGESBeta

    Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; Hekmaty, Michelle; Lensch-Falk, Jessica L.; Erickson, Kristopher; Pillars, Jamin; Yelton, W. Graham

    2014-12-03

    When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi1–xSbx nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl3 bath, the electroformed nanowire arrays were optimized to have nanocompositionalmore » uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi0.75 Sb0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi0.70Sb0.30.« less

  2. Plasmon-enhanced tilted fiber Bragg gratings with oriented silver nanowire coatings

    NASA Astrophysics Data System (ADS)

    Renoirt, J.-M.; Debliquy, M.; Albert, J.; Ianoul, A.; Caucheteur, C.

    2014-05-01

    (TFBG) covered by silver nanowires aligned perpendicularly to the fiber axis. TBFGs are a convenient way to measure surrounding refractive index, as they provide intrinsic temperature-insensitivity and preserve the optical fiber structural integrity. With bare TFBGs, sensitivity is about 60 nm/RIU (refractive index unit) while when coated with a gold thin film, surface plasmon resonance can be excited leading to a sensitivity about 600 nm/RIU. In our case, we show that localized plasmon resonances can be excited on silver nanowires. These nanowires (100 nm diameter and about 2.5 µm length) were synthetized by polyol process (ethylene glycol reducing silver nitrate in the presence of poly (vinyl pyrrolidone and sodium chloride). The nanowires were aligned and deposited perpendicularly to the fiber axis on the gratings using the Langmuir-Blodgett technique in order to maximise the coupling between azimuthally polarized light modes and the localized plasmons. Excitation of surface plasmons at wavelengths around 1.5 µm occurred, leading to a dip in the polarization dependent losses of the grating. This dip is highly dependent of the surrounding refractive index, leading to a sensitivity of 650 nm/RIU, which is a 10-fold increase compared to bare gratings. We obtain results equal or slightly higher than those obtained using a gold layer on TFBGs. In spite of the comparable bulk refractometric sensitivity, the use of these oriented nanowire layers provide significantly higher contact surface area for biochemical analysis using bioreceptors, and benefit from stronger polarization selectivity between azimuthal and radially polarized modes.

  3. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    SciTech Connect

    Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q. E-mail: hongqi.xu@ftf.lth.se

    2015-09-07

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective

  4. Electronic structures of [001]- and [111]-oriented InSb and GaSb free-standing nanowires

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Yang, Zhihu; Chen, Keqiu; Xu, H. Q.

    2015-09-01

    We report on a theoretical study of the electronic structures of InSb and GaSb nanowires oriented along the [001] and [111] crystallographic directions. The nanowires are described by atomistic, tight-binding models, including spin-orbit interaction. The band structures and the wave functions of the nanowires are calculated by means of a Lanczos iteration algorithm. For the [001]-oriented InSb and GaSb nanowires, the systems with both square and rectangular cross sections are considered. Here, it is found that all the energy bands are doubly degenerate. Although the lowest conduction bands in these nanowires show good parabolic dispersions, the top valence bands show rich and complex structures. In particular, the topmost valence bands of the nanowires with a square cross section show a double maximum structure. In the nanowires with a rectangular cross section, this double maximum structure is suppressed, and the top valence bands gradually develop into parabolic bands as the aspect ratio of the cross section is increased. For the [111]-oriented InSb and GaSb nanowires, the systems with hexagonal cross sections are considered. It is found that all the bands at the Γ-point are again doubly degenerate. However, some of them will split into non-degenerate bands when the wave vector moves away from the Γ-point. Although the lowest conduction bands again show good parabolic dispersions, the topmost valence bands do not show the double maximum structure. Instead, they show a single maximum structure with its maximum at a wave vector slightly away from the Γ-point. The wave functions of the band states near the band gaps of the [001]- and [111]-oriented InSb and GaSb nanowires are also calculated and are presented in terms of probability distributions in the cross sections. It is found that although the probability distributions of the band states in the [001]-oriented nanowires with a rectangular cross section could be qualitatively described by one-band effective

  5. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    DOE PAGESBeta

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an ordermore » of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.« less

  6. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    SciTech Connect

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.

    2015-07-14

    In this study, ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (11¯02) r-plane sapphire substrates. Dislocation free [112¯0] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar {101¯0} side facets, which appear due to a decrease in relative growth rate of the {101¯0} facets to the {101¯1} and {101¯1} facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal–organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  7. Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding

    SciTech Connect

    Bielinski, Ashley R.; Kazyak, Eric; Schleputz, Christian M.; Jung, Hee Joon; Wood, Kevin N.; Dasgupta, Neil P.

    2015-07-14

    The ability to synthesize semiconductor nanowires with deterministic and tunable control of orientation and morphology on a wide range of substrates, while high precision and repeatability are maintained, is a challenge currently faced for the development of many nanoscale material systems. Here we show that atomic layer deposition (ALD) presents a reliable method of surface and interfacial modification to guide nanowire orientation on a variety of substrate materials and geometries, including high-aspect-ratio, three-dimensional templates. We demonstrate control of the orientation and geometric properties of hydrothermally grown single crystalline ZnO nanowires via the deposition of a ZnO seed layer by ALD. The crystallographic texture and roughness of the seed layer result in tunable preferred nanowire orientations and densities for identical hydrothermal growth conditions. The structural and chemical relationship between the ALD layers and nanowires was investigated with synchrotron X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy to elucidate the underlying mechanisms of orientation and morphology control. The resulting control parameters were utilized to produce hierarchical nanostructures with tunable properties on a wide range of substrates, including vertical micropillars, paper fibers, porous polymer membranes, and biological substrates. This illustrates the power of ALD for interfacial engineering of heterogeneous material systems at the nanoscale, to provide a highly controlled and scalable seeding method for bottom-up synthesis of integrated nanosystems.

  8. [101̅0] oriented multichannel ZnO nanowire arrays with enhanced optoelectronic device performance.

    PubMed

    He, Dongqing; Sheng, Xia; Yang, Jie; Chen, Liping; Zhu, Kai; Feng, Xinjian

    2014-12-01

    Crystallographic orientation and microstructure of metal oxide nanomaterials have great impact on their properties and applications. Here, we report [101̅0] oriented ZnO nanowire (NW) arrays with a multichannel mesostructure. The NW has a preferential growth of low energy (101̅0) crystal plane and exhibits 2-3 orders of magnitude faster electron transport rate than that in nanoparticle (NP) films. Furthermore, the surface area of the as-prepared NW arrays is about 5 times larger than that of conventional NW arrays with similar thickness. These lead to the highest power conversion efficiency of ZnO NW array-based sensitized solar cells. We anticipate that the unique crystallographic orientation and mesostructure will endow ZnO NW arrays new properties and expand their application fields. PMID:25411922

  9. Defect-free thin InAs nanowires grown using molecular beam epitaxy.

    PubMed

    Zhang, Zhi; Chen, Ping-Ping; Lu, Wei; Zou, Jin

    2016-01-21

    In this study, we designed a simple method to achieve the growth of defect-free thin InAs nanowires with a lateral dimension well below their Bohr radius on different substrate orientations. By depositing and annealing a thin layer of Au thin film on a (100) substrate surface, we have achieved the growth of defect-free uniform-sized thin InAs nanowires. This study provides a strategy to achieve the growth of pure defect-free thin nanowires. PMID:26671780

  10. Investigation of mechanical properties of twin gold crystal nanowires under uniaxial load by molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Wei; Yang, Zai-Lin; Luo, Gang

    2016-08-01

    Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated. We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load. The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires, there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties. Project supported by the National Science and Technology Pillar Program, China (Grant No. 2015BAK17B06), the Earthquake Industry Special Science Research Foundation Project, China (Grant No. 201508026-02), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A201310), and the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province, China (Grant No. LBHQ13040).

  11. Molecular Dynamics Study on the Distributed Plasticity of Penta-twinned Silver Nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Sangryun; Ryu, Seunghwa

    2015-08-01

    The distributed plasticity of pentatwinned silver nanowires has been revealed in recent computational and experimental studies. However, the molecular dynamics (MD) simulations have not considered the imperfections seen in experiments, such as irregular surface undulations, the high aspect ratio of nanowires, and the stiffness of loading devices. In this work, we report the effect of such inherent imperfections on the distributed plasticity of penta-twinned silver nanowires in MD simulations. We find that the distributed plasticity occurs for nanowires having undulations that are less than 5% of the nanowire diameter. The elastic stress field induced by a stacking fault promotes the nucleation of successive stacking fault decahedrons (SFDs) at long distance, making it hard for necking to occur. By comparing the tensile simulation using the steered molecular dynamics (SMD) method with the tensile simulation with periodic boundary condition (PBC), we show that a sufficiently long nanowire must be used in the constant strain rate simulations with PBC, because the plastic displacement burst caused by the SFD formation induces compressive stress, promoting the removal of other SFDs. Our finding can serve as a guidance for the molecular dynamics simulation of crystalline materials with large plastic deformation, and in the design of mechanically reliable devices based on silver nanowires.

  12. The Synergic Effect of Atomic Hydrogen Adsorption and Catalyst Spreading on Ge Nanowire Growth Orientation and Kinking.

    PubMed

    Kolíbal, Miroslav; Pejchal, Tomáš; Vystavěl, Tomáš; Šikola, Tomáš

    2016-08-10

    Hydride precursors are commonly used for semiconductor nanowire growth from the vapor phase and hydrogen is quite often used as a carrier gas. Here, we used in situ scanning electron microscopy and spatially resolved Auger spectroscopy to reveal the essential role of atomic hydrogen in determining the growth direction of Ge nanowires with an Au catalyst. With hydrogen passivating nanowire sidewalls the formation of inclined facets is suppressed, which stabilizes the growth in the ⟨111⟩ direction. By contrast, without hydrogen gold diffuses out of the catalyst and decorates the nanowire sidewalls, which strongly affects the surface free energy of the system and results in the ⟨110⟩ oriented growth. The experiments with intentional nanowire kinking reveal the existence of an energetic barrier, which originates from the kinetic force needed to drive the droplet out of its optimum configuration on top of a nanowire. Our results stress the role of the catalyst material and surface chemistry in determining the nanowire growth direction and provide additional insights into a kinking mechanism, thus allowing to inhibit or to intentionally initiate spontaneous kinking. PMID:27458789

  13. Influence of substrate material, orientation, and surface termination on GaN nanowire growth

    SciTech Connect

    Schuster, Fabian Weiszer, Saskia; Hetzl, Martin; Winnerl, Andrea; Garrido, Jose A.; Stutzmann, Martin

    2014-08-07

    In this work, we investigate the fundamental role of the substrate material, surface orientation, and termination on GaN nanowire (NW) nucleation and growth. First of all, the use of a patterned a-Si/diamond substrate confirms that NW shape and dimension are mainly determined by the applied growth conditions instead of the nature of the substrate. More important is the surface orientation as it defines growth direction and epitaxial relationship towards the GaN NWs, where both (111) and (100) surfaces yield NW growth for equivalent growth conditions. (110) substrates are found to be not suited for NW growth. Finally, the surface termination of diamond is demonstrated to survive the employed growth conditions and, therefore, to affect the nucleation of nanowires and the electronic properties of the heterointerface by its surface dipoles. This difference in nucleation is exploited as an alternative approach for selective area growth without deposition of a foreign mask material, which might also be transferable to other substrates.

  14. Helix-coiled gold nanowires for molecular sensing.

    PubMed

    Chae, Weon-Sik; Kim, Eun-Mee; Yu, Hyunung; Jeon, Seokwoo; Jung, Jin-Seung

    2012-04-01

    Helix-coiled gold nanowires were fabricated by a templating route using unique composite templates consisting of anodic aluminum oxide (AAO) nanotubular membrane and confined mesoporous silica therein. A different degree of confinement energy induces a different degree of helix curvature of confined porous silica nanochannels in an AAO, which works as a hard template for the electrochemical deposition of gold, thereby rationally enabling a different degree of helix curvature of gold nano-replicas. From surface-enhanced Raman scattering experiments, we first found that helix-coiled gold nanowires show more distinctly enhanced molecule sensing efficiency than those from simple smooth gold nanowires, and gold nanowires with the narrower lateral width show more enhanced molecule sensing efficiency than those of thicker width helix nanowires. PMID:22849155

  15. Atomistic Study of the Melting Behavior of Single Crystalline Wurtzite Gallium Nitride Nanowires

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao; Gao, Fei; Weber, William J.

    2007-03-01

    Molecular dynamics (MD) simulation was used to study the melting behavior of GaN nanowires with Stillinger-Webber (SW) potential. Our results reveal that the melting of nanowires starts from the surface, and rapidly extends to the inner regions of nanowires as temperature increases. The melting temperature of GaN nanowires is lower than that of the bulk GaN, which may associate with large surfaces of nanowires. The melting temperatures increase to saturation values ~3100K and ~2900K when the diameters of nanowires are larger than 3.14 and 4.14 nm for nanowires with [100]- and [110]-oriented lateral facets, respectively.

  16. Molecularly imprinted silica-silver nanowires for tryptophan recognition

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, T.; Díaz-García, M. E.; Badía-Laíño, R.

    2014-10-01

    We report on silver nanowires (AgNWs) coated with molecularly imprinted silica (MIP SiO2) for recognition of tryptophan (Trp). The use of AgNWs as a template confers an imprinted material with adequate mechanical strength and with a capability of recognizing Trp due to its nanomorphology when compared to spherical microparticles with a similar surface-to-volume ratio. Studies on adsorption isotherms showed the MIP-SiO2-AgNWs to exhibit homogeneous affinity sites with narrow affinity distribution. This suggests that the synthesized material behaves as a 1D nanomaterial with a large area and small thickness with very similar affinity sites. Trp release from MIP-SiO2-AgNWs was demonstrated to be dominated by the diffusion rate of Trp as controlled by the specific interactions with the imprinted silica shell. Considering these results and the lack of toxicity of silica sol-gel materials, the material offers potential in the field of drug or pharmaceutical controlled delivery, but also in optoelectronic devices, electrodes and sensors.

  17. Silver as Seed-Particle Material for GaAs Nanowires--Dictating Crystal Phase and Growth Direction by Substrate Orientation.

    PubMed

    Lindberg, Caroline; Whiticar, Alexander; Dick, Kimberly A; Sköld, Niklas; Nygård, Jesper; Bolinsson, Jessica

    2016-04-13

    Here we investigate the feasibility of silver as seed-particle material to synthesize GaAs nanowires and show that both crystal phase and growth direction can be controlled by choice of substrate orientation. A (111)B substrate orientation can be used to form vertically aligned wurtzite GaAs nanowires and a (100) substrate orientation to form vertically aligned zinc blende GaAs nanowires. A 45-50% yield of vertical nanowire growth is achieved on the (100) substrate orientation without employing any type of surface modification or nucleation strategy to promote a vertical growth direction. In addition, photoluminescence measurements reveal that the photon emission from the silver seeded wurtzite GaAs nanowires is characterized by a single and narrow emission peak at 1.52 eV. PMID:26998550

  18. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials. PMID:27223050

  19. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul

    2016-07-01

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  20. Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties.

    PubMed

    Sheng, Xia; He, Dongqing; Yang, Jie; Zhu, Kai; Feng, Xinjian

    2014-01-01

    Developing high surface area nanostructured electrodes with rapid charge transport is essential for artificial photosynthesis, solar cells, photocatalysis, and energy storage devices. Substantial research efforts have been recently focused on building one-dimensional (1D) nanoblocks with fast charge transport into three-dimensional (3D) hierarchical architectures. However, except for the enlargement in surface area, there is little experimental evidence of fast electron transport in these 3D nanostructure-based solar cells. In this communication, we report single-crystal-like 3D TiO2 branched nanowire arrays consisting of 1D branch epitaxially grown from the primary trunk. These 3D branched nanoarrays not only demonstrate 71% enlargement in large surface area (compared with 1D nanowire arrays) but also exhibit fast charge transport property (comparable to that in 1D single crystal nanoarrays), leading to 52% improvement in solar conversion efficiency. The orientated 3D assembly strategy reported here can be extended to assemble other metal oxides with one or multiple components and thus represents a critical avenue toward high-performance optoelectronics. PMID:24628675

  1. Purely sonochemical route for oriented zinc oxide nanowire growth on arbitrary substrate

    NASA Astrophysics Data System (ADS)

    Nayak, Avinash P.; Katzenmeyer, Aaron M.; Kim, Ja-Yeon; Kwon, Min Ki; Gosho, Yasuhiro; Islam, M. Saif

    2010-04-01

    We report a simple sonochemical method for the seeding and synthesis of Zinc Oxide nanowire arrays that can be formed on a number of substrates that are stable in alcohol and aqueous solution. Vertically aligned ZnO NWs were synthesized from a single solution at room-ambient via ultrasonic excitation. Prior to the NW growth, a ZnO seed layer was deposited using the same system with a different solution. The optimal conditions to produce a high density of oriented wires along with their optical characteristics are presented for ZnO NWs with a significantly high growth rate compared with traditional growth techniques such as evaporation, chemical vapor deposition and sputtering. Our method promises a mass-manufacturable process for fast and inexpensive ZnO NW production for practical low cost electronics, photonics and energy conversion applications.

  2. Controllable fabrication of oriented micro/nanowire arrays of dibenzo-tetrathiafulvalene by a multiple drop-casting method

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zhao, Xiaoli; Cai, Bin; Pei, Tengfei; Tong, Yanhong; Tang, Qingxin; Liu, Yichun

    2014-01-01

    A multiple drop-casting method of growing the ultralong dibenzo-tetrathiafulvalene (DB-TTF) micro/nanowire arrays has been developed which has the success ratio as high as 94%. This method enables the arrays with a length over a few hundreds of micrometers to locate between droplets with the definite orientation. The width of the micro/nanowires is controlled via tuning the concentration of DB-TTF solution in dichloromethane. The large-scale arrays can be grown onto Si, SiO2, glass, and the flexible polyethylene terephthalate (PET) substrates. These results show the promising potential of this facile solution-based process for the growth of the high-quality organic micro/nanowires, the fabrication of high-performance and flexible devices, and the fabrication of controlled assemblies of nanoscale circuits for fundamental studies and future applications.

  3. Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bastiman, Faebian; Küpers, Hanno; Somaschini, Claudio; Geelhaar, Lutz

    2016-03-01

    For the Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy, growth temperature, As flux, and Ga flux have been systematically varied across the entire window of growth conditions that result in the formation of nanowires. A range of GaAs structures was observed, progressing from pure Ga droplets under negligible As flux through horizontal nanowires, tilted nanowires, vertical nanowires, and nanowires without droplets to crystallites as the As flux was increased. Quantitative analysis of the resulting sample morphology was performed in terms of nanowire number and volume density, number yield and volume yield of vertical nanowires, diameter, length, as well as the number and volume density of parasitic growth. The result is a growth map that comprehensively describes all nanowire and parasitic growth morphologies and hence enables growth of nanowire samples in a predictive manner. Further analysis indicates the combination of global Ga flux and growth temperature determines the total density of all objects, whereas the global As/Ga flux ratio independently determines the resultant sample morphology. Several dependencies observed here imply that all objects present on the substrate surface, i.e. both nanowires and parasitic structures, originate from Ga droplets.

  4. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-04-01

    We report on a theoretical study of the electronic structures of the [1 1 1]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic s{{p}3}{{s}\\ast} , spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C 3v double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ -point and some of these bands will split into non-degenerate bands when the wave vector k moves away from the Γ -point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π /3 -rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [1 1 1]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement.

  5. Electronic structures of [1 1 1]-oriented free-standing InAs and InP nanowires.

    PubMed

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H Q

    2016-04-01

    We report on a theoretical study of the electronic structures of the [1 1 1]-oriented, free-standing, zincblende InAs and InP nanowires with hexagonal cross sections by means of an atomistic sp(3)s*, spin-orbit interaction included, nearest-neighbor, tight-binding method. The band structures and the band state wave functions of these nanowires are calculated and the symmetry properties of the bands and band states are analyzed based on the C(3v) double point group. It is shown that all bands of these nanowires are doubly degenerate at the Γ-point and some of these bands will split into non-degenerate bands when the wave vector k moves away from the Γ-point as a manifestation of spin-splitting due to spin-orbit interaction. It is also shown that the lower conduction bands of these nanowires all show simple parabolic dispersion relations, while the top valence bands show complex dispersion relations and band crossings. The band state wave functions are presented by the spatial probability distributions and it is found that all the band states show 2π/3-rotation symmetric probability distributions. The effects of quantum confinement on the band structures of the [1 1 1]-oriented InAs and InP nanowires are also examined and an empirical formula for the description of quantization energies of the lowest conduction band and the highest valence band is presented. The formula can simply be used to estimate the enhancement of the band gaps of the nanowires at different sizes as a result of quantum confinement. PMID:26951953

  6. Free-volume hole relaxation in molecularly oriented glassy polymers

    NASA Astrophysics Data System (ADS)

    Xia, Zhiyong; Trexler, Morgana; Wu, Fei; Jean, Yan-Ching; Van Horn, J. David

    2014-02-01

    The free-volume hole relaxation in polycarbonate and poly(methyl methacrylate) with different levels of molecular orientation was studied by positron annihilation lifetime spectroscopy at variable pressures. The molecular orientation was achieved through a simple shear process performed at different temperatures and extrusion rates. It has been demonstrated that the β relaxation is largely responsible for the free-volume hole anisotropy after simple shear orientation. Upon the removal of mechanical force, the deformation of the free volume is mostly reversible at temperatures much lower than the glass transition. No strong correlation between macroscopic deformation and the free-volume hole deformation was found regardless of molecular orientation.

  7. Free-volume hole relaxation in molecularly oriented glassy polymers.

    PubMed

    Xia, Zhiyong; Trexler, Morgana; Wu, Fei; Jean, Yan-Ching; Van Horn, J David

    2014-02-01

    The free-volume hole relaxation in polycarbonate and poly(methyl methacrylate) with different levels of molecular orientation was studied by positron annihilation lifetime spectroscopy at variable pressures. The molecular orientation was achieved through a simple shear process performed at different temperatures and extrusion rates. It has been demonstrated that the β relaxation is largely responsible for the free-volume hole anisotropy after simple shear orientation. Upon the removal of mechanical force, the deformation of the free volume is mostly reversible at temperatures much lower than the glass transition. No strong correlation between macroscopic deformation and the free-volume hole deformation was found regardless of molecular orientation. PMID:25353498

  8. Structure and Mechanical Characterization of DNA i-Motif Nanowires by Molecular Dynamics Simulation

    PubMed Central

    Singh, Raghvendra Pratap; Blossey, Ralf; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm-long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual C⋅C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression, and bending deformations with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young’s and bending moduli of the nanowire, as well as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties. PMID:24359754

  9. Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sung, Po-Hsien; Wu, Cheng-Da; Fang, Te-Hua

    2012-05-01

    Single-crystal aluminium nanowires under torsion are studied using molecular dynamics simulations based on the many-body tight-binding potential. The effects of temperature, loading rate and nanowire length are evaluated in terms of atomic trajectories, potential energy, von Mises stress, a centrosymmetry parameter, torque, shear modulus and radial distribution function. Simulation results clearly show that torsional deformation begins at the surface, extends close to the two ends and finally diffuses to the middle part. The critical torsional angle which represents the beginning of plastic deformation varies with different conditions. Before the critical torsional angle is reached, the potential energy and the torque required for the deformation of a nanowire significantly increase with the torsional angle. The critical torsional angle increases with increasing nanowire length and loading rate and decreasing temperature. The torque required for the deformation decreases and the shear modulus increases with increasing nanowire length. For higher temperatures and higher loading rates, torsional buckling more easily occurs at the two ends of a nanowire, whereas it occurs towards the middle part at or below room temperature with lower loading rates. Geometry instability occurs before material instability (buckling) for a long nanowire.

  10. Tunable nanowire Wheatstone bridge for improved sensitivity in molecular recognition

    NASA Astrophysics Data System (ADS)

    Maedler, Carsten; Erramilli, Shyamsunder; House, L. J.; Hong, M. K.; Mohanty, Pritiraj

    2013-01-01

    Poor signal-to-noise ratio (SNR) is a strong limiting factor on the performance of nanowire field-effect transistor based sensing of molecules. Using an advanced measurement configuration such as a Wheatstone bridge, electrical noise, drift due to fluid dynamics, thermal fluctuations, and chemical changes of the gate oxide can be drastically reduced. Here, a miniature Wheatstone bridge has been lithographically fabricated. All four arms consist of silicon nanowires, while two of the arms are tunable by top gate electrodes to enable balancing of the bridge. We have studied the performance of the bridge for pH detection. The signal-to-noise ratio is significantly enhanced in the balanced configuration, which also helps to reduce overall drift.

  11. Semiconducting III-V nanowires with nanogaps for molecular junctions: DFT transport simulations.

    PubMed

    Kallesøe, Christian; Fürst, Joachim A; Mølhave, Kristian; Bøggild, Peter; Brandbyge, Mads

    2009-11-18

    We consider here the possibility of using III-V heterostructure nanowires as electrodes for molecular electronics instead of metal point contacts. Using ab initio electronic structure and transport calculations, we study the effect on electronic properties of placing a small molecule with thiol linking groups, benzene-di-thiol (BDT), within a nanosize gap in a III-V nanowire. Furthermore, it is investigated how surface states affect the transport through pristine III-V nanowires and through the BDT molecule situated within the nanogap. Using GaAs and GaP as III-V materials we find that the BDT molecule provides transport through the entire system comparable to the case of gold electrodes. PMID:19843997

  12. Bismuth-induced phase control of GaAs nanowires grown by molecular beam epitaxy

    SciTech Connect

    Lu, Zhenyu; Chen, Pingping E-mail: luwei@mail.sitp.ac.cn; Shi, Suixing; Yao, Luchi; Zhou, Xiaohao; Lu, Wei E-mail: luwei@mail.sitp.ac.cn; Zhang, Zhi; Zhou, Chen; Zou, Jin

    2014-10-20

    In this work, the crystal structure of GaAs nanowires grown by molecular beam epitaxy has been tailored only by bismuth without changing the growth temperature and V/III flux ratio. The introduction of bismuth can lead to the formation of zinc-blende GaAs nanowires, while the removal of bismuth changes the structure into a 4H polytypism before it turns back to the wurtzite phase eventually. The theoretical calculation shows that it is the steadiest for bismuth to adsorb on the GaAs(111){sub B} surface compared to the liquid gold catalyst surface and the interface between the gold catalyst droplet and the nanowire, and these adsorbed bismuth could decrease the diffusion length of adsorbed Ga and hence the supersaturation of Ga in the gold catalyst droplet.

  13. Detection of molecular charge dynamics through current noise in a GaAs-based nanowire FET

    NASA Astrophysics Data System (ADS)

    Inoue, Shinya; Kuroda, Ryota; Yin, Xiang; Sato, Masaki; Kasai, Seiya

    2015-04-01

    The detection of static and dynamic molecular charge states using a GaAs-based nanowire field-effect transistor (FET) was investigated. Tetraphenylporphyrin (TPP) was put on the device as target molecules. After coating TPP on the FET, the drain current clearly decreased. On the other hand, the current largely increased by 405-nm light irradiation, indicating that TPP worked as a photo-excited donor. The light irradiation on the FET also induced a Lorentzian noise component, which was superimposed onto conventional 1/f noise. These behaviors were not seen in the gateless nanowire even with TPP. The obtained results indicated that electrical interaction between TPP and the nanowire was enhanced when a metal gate existed, although the channel was protected from TPP by the gate metal. We discuss the observed behaviors on the basis of a model where only TPP in the gate periphery modulated the channel potential and the drain current.

  14. Modulating Electrical Properties of InAs Nanowires via Molecular Monolayers.

    PubMed

    Cheung, Ho-Yuen; Yip, SenPo; Han, Ning; Dong, Goufa; Fang, Ming; Yang, Zai-xing; Wang, Fengyun; Lin, Hao; Wong, Chun-Yuen; Ho, Johnny C

    2015-07-28

    In recent years, InAs nanowires have been demonstrated with the excellent electron mobility as well as highly efficient near-infrared and visible photoresponse at room temperature. However, due to the presence of a large amount of surface states that originate from the unstable native oxide, the fabricated nanowire transistors are always operated in the depletion mode with degraded electron mobility, which is not energy-efficient. In this work, instead of the conventional inorganic sulfur or alkanethiol surface passivation, we employ aromatic thiolate (ArS(-))-based molecular monolayers with controllable molecular design and electron density for the surface modification of InAs nanowires (i.e., device channels) by simple wet chemistry. More importantly, besides reliably improving the device performances by enhancing the electron mobility and the current on-off ratio through surface state passivation, the device threshold voltage (VTh) can also be modulated by varying the para-substituent of the monolayers such that the molecule bearing electron-withdrawing groups would significantly shift the VTh towards the positive region for the enhancement mode device operation, in which the effect has been quantified by density functional theory calculations. These findings reveal explicitly the efficient modulation of the InAs nanowires' electronic transport properties via ArS(-)-based molecular monolayers, which further elucidates the technological potency of this ArS(-) surface treatment for future nanoelectronic device fabrication and circuit integration. PMID:26083845

  15. Effect of molecular orientation on the elastic constants of polypropylene.

    SciTech Connect

    Kumar, S. R.; Renusch, D. P.; Grimsditch, M.; Materials Science Division; Amoco Polymers Research & Development

    2000-03-07

    The Brillouin spectroscopic measurements of elastic properties of polypropylene films fabricated by different processing techniques are described. We find that the elastic symmetry and the associated elastic constants are dependent on the molecular orientation brought about by the processing conditions used to produce the films. We have shown that Brillouin scattering techniques can successfully be used to track the molecular orientation induced by uniaxial stretching. We find a direct correspondence between the Brillouin measurements and optical birefringence measurements, illustrating that molecular orientation plays a dominant role in determining the mechanical anisotropy in these materials.

  16. Orientation, alignment, and polytype control in epitaxial growth of SiC nanowires for electronics application in harsh environments

    NASA Astrophysics Data System (ADS)

    Koshka, Yaroslav; Thirumalai, Rooban Venkatesh K. G.; Krishnan, Bharat K.; Levin, Igor; Merrett, J. Neil; Davydov, Albert V.

    2013-09-01

    SiC nanowires (NWs) are attractive building blocks for the next generation electronic devices since silicon carbide is a wide bandgap semiconductor with high electrical breakdown strength, radiation resistance, mechanical strength, thermal conductivity, chemical stability and biocompatibility. Epitaxial growth using metal-catalyst-based vapor-liquid-solid mechanism was employed for SiC NW growth in this work. 4H-SiC substrates having different crystallographic orientations were used in order to control NW alignment and polytype. A new technique based on vapor-phase delivery of the metal catalyst was developed to facilitate control of the NW density. Both 4H and 3C polytypes with a strong stacking disorder were obtained. The 4H and 3C NWs had different orientations with respect to the substrate. 4H NWs grew perpendicular to the c-plane of the substrate. The stacking faults (SFs) in these nanowires were perpendicular to the [0001] nanowire axes. All 3C NWs grew at 20° with respect to the substrate c-plane, and their projections on the c-plane corresponded to one of the six equivalent ⟨101-0⟩ crystallographic directions. All six orientations were obtained simultaneously when growing NWs on the (0001) substrate surface, while only one or two NW orientations were observed when growing NWs on any particular crystallographic plane parallel to the c-axis of the substrate. Growth on {101-0} surfaces resulted in only one NW orientation, thereby producing well-aligned NW arrays. Preliminary measurements of the NW electrical conductivity are reported utilizing two-terminal device geometry.

  17. Using galvanostatic electroforming of Bi1–xSbx nanowires to control composition, crystallinity, and orientation

    SciTech Connect

    Limmer, Steven J.; Medlin, Douglas L.; Siegal, Michael P.; Hekmaty, Michelle; Lensch-Falk, Jessica L.; Erickson, Kristopher; Pillars, Jamin; Yelton, W. Graham

    2014-12-03

    When using galvanostatic pulse deposition, we studied the factors influencing the quality of electroformed Bi1–xSbx nanowires with respect to composition, crystallinity, and preferred orientation for high thermoelectric performance. Two nonaqueous baths with different Sb salts were investigated. The Sb salts used played a major role in both crystalline quality and preferred orientations. Nanowire arrays electroformed using an SbI3 -based chemistry were polycrystalline with no preferred orientation, whereas arrays electroformed from an SbCl3-based chemistry were strongly crystallographically textured with the desired trigonal orientation for optimal thermoelectric performance. From the SbCl3 bath, the electroformed nanowire arrays were optimized to have nanocompositional uniformity, with a nearly constant composition along the nanowire length. Moreover, nanowires harvested from the center of the array had an average composition of Bi0.75 Sb0.25. However, the nanowire compositions were slightly enriched in Sb in a small region near the edges of the array, with the composition approaching Bi0.70Sb0.30.

  18. Control of liquid crystal molecular orientation using ultrasound vibration

    NASA Astrophysics Data System (ADS)

    Taniguchi, Satoki; Koyama, Daisuke; Shimizu, Yuki; Emoto, Akira; Nakamura, Kentaro; Matsukawa, Mami

    2016-03-01

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5-25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  19. Thermal transport in porous Si nanowires from approach-to-equilibrium molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Cartoixà, Xavier; Dettori, Riccardo; Melis, Claudio; Colombo, Luciano; Rurali, Riccardo

    2016-07-01

    We study thermal transport in porous Si nanowires (SiNWs) by means of approach-to-equilibrium molecular dynamics simulations. We show that the presence of pores greatly reduces the thermal conductivity, κ, of the SiNWs as long mean free path phonons are suppressed. We address explicitly the dependence of κ on different features of the pore topology—such as the porosity and the pore diameter—and on the nanowire (NW) geometry—diameter and length. We use the results of the molecular dynamics calculations to tune an effective model, which is capable of capturing the dependence of κ on porosity and NW diameter. The model illustrates the failure of Matthiessen's rule to describe the coupling between boundary and pore scattering, which we account for by the inclusion of an additional empirical term.

  20. Molecular Motor Propelled Filaments Reveal Light-Guiding in Nanowire Arrays for Enhanced Biosensing

    PubMed Central

    2013-01-01

    Semiconductor nanowire arrays offer significant potential for biosensing applications with optical read-out due to their high surface area and due to the unique optical properties of one-dimensional materials. A challenge for optical read-out of analyte-binding to the nanowires is the need to efficiently collect and detect light from a three-dimensional volume. Here we show that light from fluorophores attached along several μm long vertical Al2O3 coated gallium phosphide nanowires couples into the wires, is guided along them and emitted at the tip. This enables effective collection of light emitted by fluorescent analytes located at different focal planes along the nanowire. We unequivocally demonstrate the light-guiding effect using a novel method whereby the changes in emitted fluorescence intensity are observed when fluorescent cytoskeletal filaments are propelled by molecular motors along the wires. The findings are discussed in relation to nanobiosensor developments, other nanotechnological applications, and fundamental studies of motor function. PMID:24367994

  1. Orientational anisotropy in simulated vapor-deposited molecular glasses

    SciTech Connect

    Lyubimov, Ivan; Antony, Lucas; Walters, Diane M.; Ediger, M. D.; Rodney, David; Pablo, Juan J. de

    2015-09-07

    Enhanced kinetic stability of vapor-deposited glasses has been established for a variety of glass organic formers. Several recent reports indicate that vapor-deposited glasses can be orientationally anisotropic. In this work, we present results of extensive molecular simulations that mimic a number of features of the experimental vapor deposition process. The simulations are performed on a generic coarse-grained model and an all-atom representation of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), a small organic molecule whose vapor-deposited glasses exhibit considerable orientational anisotropy. The coarse-grained model adopted here is found to reproduce several key aspects reported in experiments. In particular, the molecular orientation of vapor-deposited glasses is observed to depend on substrate temperature during deposition. For a fixed deposition rate, the molecular orientation in the glasses changes from isotropic, at the glass transition temperature, T{sub g}, to slightly normal to the substrate at temperatures just below T{sub g}. Well below T{sub g}, molecular orientation becomes predominantly parallel to the substrate. The all-atom model is used to confirm some of the equilibrium structural features of TPD interfaces that arise above the glass transition temperature. We discuss a mechanism based on distinct orientations observed at equilibrium near the surface of the film, which get trapped within the film during the non-equilibrium process of vapor deposition.

  2. Molecular Transport Junctions Created By Self-Contacting Gapped Nanowires.

    PubMed

    Lim, Jong Kuk; Lee, One-Sun; Jang, Jae-Won; Petrosko, Sarah Hurst; Schatz, George C; Mirkin, Chad A

    2016-08-01

    Molecular transport junctions (MTJs) are important components in molecular electronic devices. However, the synthesis of MTJs remains a significant challenge, as the dimensions of the junction must be tailored for each experiment, based on the molecular lengths. A novel methodology is reported for forming MTJs, taking advantage of capillary and van der Waals forces. PMID:27364594

  3. Orientational Order of Molecular Assemblies on Inorganic Crystals

    NASA Astrophysics Data System (ADS)

    Chun, Jaehun; Saville, Dudley; Li, Je-Luen; Schniepp, Hannes; Car, Roberto; Aksay, Ilhan

    2006-03-01

    Surfactant micelles form oriented arrays on crystalline substrates such as HOPG (Highly Ordered Pyrolytic Graphite) although registration is unexpected since the template unit cell is small compared to the size of a rod-like micelle. In addition, with atomic force microscopy, we show that orientational ordering is a dynamic, multi-molecule process. Interaction energy calculations based on molecular simulations reveal that orientational energy differences on a molecular scale are too small to explain matters. However, treating the cooperative processes as a balance between van der Waals torque on a large, rod-like micellar assembly and Brownian motion shows that orientation is favored. Our study provides a physical insight on regulation of self-assembly structures at small length scale.

  4. Three-point bending analysis of doubly clamped silicon nanowire beams; Young's modulus, initial stress, and crystal orientation

    SciTech Connect

    Yaish, Y. E. Calahorra, Y.; Shtempluck, O.; Kotchetkov, V.

    2015-04-28

    A non-linear model is introduced describing the force-deflection relation of doubly clamped beams, including initial stress. Several approximations for the exact model are developed and compared, revealing the importance of considering the initial stress during 3-point bending measurements analysis. A novel approximation is found to be better than others, and both the exact model and this approximation are in perfect agreement with finite element simulations. A brief experimental example of silicon nanowires is presented in which the Young's modulus, the initial stress, and the crystallographic growth orientation are extracted by 3-point bending analysis.

  5. Coupling Molecular Beacons to Barcoded Metal Nanowires for Multiplexed, Sealed Chamber DNA Bioassays

    PubMed Central

    Stoermer, Rebecca L.; Cederquist, Kristin B.; McFarland, Sean K.; Sha, Michael Y.; Penn, Sharron G.

    2010-01-01

    We have combined molecular beacon (MB) probes with barcoded metal nanowires to enable no-wash, sealed chamber, multiplexed detection of nucleic acids. Probe design and experimental parameters important in nanowire-based MB assays are discussed. Loop regions of 24 bases and 5 base pair stem regions in the beacon probes gave optimal performance. Our results suggest that thermodynamic predictions for secondary structure stability of solution-phase MB can guide probe design for nanowire-based assays. Dengue virus-specific probes with predicted solution-phase ΔG of folding in 500 mM buffered NaCl of approximately −4 kcal/mol performed better than those with ΔG > −2 or < −6 kcal/mol. Buffered 300–500 mM NaCl was selected after comparison of several buffers previously reported for similar types of assays, and 200–500 mM NaCl was found to be the optimal ionic strength for the hybridization temperatures (25 and 50 °C) and probe designs used here. Target binding to the surface as a function of solution concentration fit a Sips isotherm with Kd = 1.7 ± 0.3 nM. The detection limit was ∼100 pM, limited by incomplete quenching. Single base mismatches could be discriminated from fully complementary targets. Oligonucleotide target sequences specific for human immunodeficiency, hepatitis C, and severe acute respiratory viruses were assayed simultaneously in a no-wash, sealed chamber, multiplexed experiment in which each of three probe sequences was attached to a different pattern of encoded nanowires. Finally, we demonstrated that probe-coated nanowires retain their selectivity and sensitivity in a triplexed assay after storage for over 3 months. PMID:17177440

  6. Numerical optimization of laser fields to control molecular orientation

    SciTech Connect

    Ben Haj-Yedder, A.; Auger, A.; Dion, C.M.; Cances, E.; Le Bris, C.; Keller, A.; Atabek, O.

    2002-12-01

    A thorough numerical illustration of an optimal control scenario dealing with the laser-induced orientation of a diatomic molecule (LiF) is presented. Special emphasis is laid on the definition of the various targets dealing with different orientation characteristics, identified in terms of maximum efficiency (i.e., molecular axis direction closest to the direction of the laser polarization vector), maximum duration (i.e., the time interval during which this orientation is maintained), or of a compromise between efficiency and duration. Excellent postpulse orientation is achieved by sudden, intense pulses. Thermal effects are also studied with an extension of the control scenarios to Boltzmann averaged orientation dynamics at T=5 K.

  7. Laser-field-free three-dimensional molecular orientation

    NASA Astrophysics Data System (ADS)

    Takei, Daisuke; Mun, Je Hoi; Minemoto, Shinichirou; Sakai, Hirofumi

    2016-07-01

    Laser-field-free three-dimensional orientation, corresponding to the complete control of spatial directions of asymmetric top molecules, is achieved with combined weak electrostatic and elliptically polarized laser fields with an 8-ns turnon and a 150-fs turnoff, which is shaped by a plasma shutter. Rotationally cold 3,4-dibromothiophene molecules are used as a sample, and their lower-lying rotational states are selected by a molecular deflector to increase the degrees of orientation. After the rapid turnoff of the pump pulse, higher degrees of orientation are maintained for 5-10 ps, which is long enough for various applications including electronic stereodynamics in molecules with femtosecond pulses.

  8. Molecular Orientation of Liquid Crystals on Topographic Nanopatterns.

    PubMed

    Ryu, Seong Ho; Yoon, Dong Ki

    2016-07-13

    Controlling the orientation of building blocks in soft matter on the substrate has been a big challenge in material sciences. We have controlled the molecular orientation of liquid crystal (LC) materials on the porous anodic aluminum oxide (AAO) film having hexagonal pore arrays on the top surface. In our method, anchoring conditions can be varied by changing the pore size (Dp) and the porosity (P). As a proof-of-concept, the orientation of smectic A (SmA) structure at different anchoring conditions was successfully controlled in a sandwich cell consisting of AAO and a glass substrate, which has not been successfully controlled by conventional methods. PMID:27322013

  9. Molecular alignment and orientation with a hybrid Raman scattering technique

    NASA Astrophysics Data System (ADS)

    Bustard, Philip J.; Lausten, R.; Sussman, Benjamin J.

    2012-11-01

    We demonstrate a scheme for the preparation of molecular alignment and angular momentum orientation using a hybrid combination of two limits of Raman scattering. First a weak, impulsive pump pulse initializes the system via the nonresonant dynamic Stark effect. Then, having overcome the influence of the vacuum fluctuations, an amplification pulse selectively enhances the initial coherences by transient stimulated Raman scattering, generating alignment and angular momentum orientation of molecular hydrogen. The amplitude and phase of the resulting coherent dynamics are experimentally probed, indicating an amplification factor of 4.5. An analytic theory is developed to model the dynamics.

  10. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave

    NASA Astrophysics Data System (ADS)

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-05-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light.

  11. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave.

    PubMed

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-01-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light. PMID:27157123

  12. Orientation-and polarization-dependent optical properties of the single Ag nanowire/glass substrate system excited by the evanescent wave

    PubMed Central

    Yang, Mu; Cai, Wei; Wang, Yingjie; Sun, Mengtao; Shang, Guangyi

    2016-01-01

    As an important plasmon one-dimensional material, orientation- and polarization-dependent properties of single Ag nanowires/glass substrate system are investigated by a powerful platform consisting of evanescent wave excitation, near-/far-field detection and a micromanipulator. In the case of the nanowire perpendicular or parallel to the incident plane and p- ors-polarized evanescent excitation respectively, optical properties of the nanowire is measured both in far-field and near-field. For the perpendicular situation, scattering light from the nanowire shows strong dependence on the polarization of incident light, and period patterns along the nanowire are observed both in the near- and far-field. The chain of dipole model is used to explain the origin of this pattern. The discrepancy of the period patterns observed in the near- and far-field is due to the different resolution of the near- and far-field detection. For the parallel case, light intensity from the output end also depends on the incident polarization. Both experimental and calculation results show that the polarization dependence effect results from the surface plasmon excitation. These results on the orientation- and polarization-dependent properties of the Ag nanowires detected by the combination of near- and far-field methods would be helpful to understand interactions of one-dimensional plasmonic nanostructures with light. PMID:27157123

  13. Molecular orientation of rhodamine dyes on surfaces of layered silicates.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2005-03-17

    Films of the layered silicates fluorohectorite (FH) and saponite (Sap) with various rhodamine dyes were prepared. The dyes with acidic as well as large hydrophobic groups in their molecule were not adsorbed on the surface of FH, which was interpreted in terms of high charge density on the surface of this silicate. All adsorbed dyes formed similar forms, such as isolated cations and H-type molecular aggregates, which were characterized by different spectral properties. Polarized ultraviolet-visible (UV-vis) spectroscopy was used for the characterization of the molecular orientation of dye chromophores on the silicate surface. The isolated dye cations and species, which absorbed light at the low energy part of the spectra, were only slightly tilted with respect to the plane of the silicate surface. The cations forming H-aggregates and absorbing light at low wavelengths were oriented in a nearly perpendicular fashion. The nearly perpendicular orientation was observed as a strong increase of dichroic ratio with film tilting. The orientation of the cations in H-aggregates depends partially on the structure of the dye molecule, namely, on the type of amino group (primary, secondary, or tertiary) in the dye molecule. The type of amino groups probably plays a role in the suitable orientation of dye cations for effective electrostatic interaction between the cations and the negatively charged siloxane surface. X-ray powder diffraction could not distinguish dye phases of dye monomers and molecular aggregates. PMID:16851539

  14. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fan, Dingxun; Li, Sen; Kang, N.; Caroff, Philippe; Wang, L. B.; Huang, Y. Q.; Deng, M. T.; Yu, C. L.; Xu, H. Q.

    2015-09-01

    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ~700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Landé g-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ~300 μeV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices.

  15. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.

    PubMed

    Fan, Dingxun; Li, Sen; Kang, N; Caroff, Philippe; Wang, L B; Huang, Y Q; Deng, M T; Yu, C L; Xu, H Q

    2015-09-28

    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ∼700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Landég-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ∼300 μeV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices. PMID:26308470

  16. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    NASA Astrophysics Data System (ADS)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  17. Molecular dynamics simulations on PGLa using NMR orientational constraints.

    PubMed

    Sternberg, Ulrich; Witter, Raiker

    2015-11-01

    NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide. PMID:26358333

  18. Molecular beam epitaxial growth of Bi{sub 2}Se{sub 3} nanowires and nanoflakes

    SciTech Connect

    Knebl, G. M. Gessler, J. R.; Kamp, M.; Höfling, S.

    2014-09-29

    Topological Insulators are in focus of immense research efforts and rapid scientific progress is obtained in that field. Bi{sub 2}Se{sub 3} has proven to be a topological insulator material that provides a large band gap and a band structure with a single Dirac cone at the Γ-point. This makes Bi{sub 2}Se{sub 3} one of the most promising three dimensional topological insulator materials. While Bi{sub 2}Se{sub 3} nanowires and nanoflakes so far were fabricated with different methods and for different purposes, we here present the first Bi{sub 2}Se{sub 3} nanowires as well as nanoflakes grown by molecular beam epitaxy. The nanostructures were nucleated on pretreated, silicon (100) wafers. Altering the growth conditions nanoflakes could be fabricated instead of nanowires; both with high crystalline quality, confirmed by scanning electron microscopy as well as transmission electron microscopy. These nanostructures have promise for spintronic devices and Majorana fermion observation in contact to superconductor materials.

  19. Self-assembling of molecular nanowires for enhancing the conducting properties of discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Park, Ji Hyun; Kim, Kyung Ho; Takanishi, Yoichi; Yamamoto, Jun; Park, Yung Woo; Kim, Youn Sang; Scalia, Giusy

    2015-08-01

    The self-organization of discotic liquid crystal molecules in columns has enormous interest for soft nanoelectronic applications. A great advantage of discotic liquid crystal is that defects can be self-annealed in contrast to typical organic materials. Through the overlap of molecular orbitals, the aromatic cores assemble into long range ordered one-dimensional structures. Very thin structured films can be obtained by spin-coating from solution and the resulting morphologies are strongly dependent on the interaction between discotics and solvent molecules. Toluene produces films formed by very long nanowires, spontaneously aligned along a common direction and over fairly large areas. These nanostructured films are a result of the interplay between liquid crystal self-organization and solvent driven assembly. The ordered nanowire structures exhibit improvement in the electrical properties compared to misaligned structures and even to pristine HAT5, deposited without the aid of solvent. In this study we show that the toluene-based deposition of discotic liquid crystals is advantageous because it allows a uniform coverage of the substrate, unlike pristine HAT5 but also thanks to the type of induced structures exhibiting one order of magnitude higher conductivity, in the aligned nanowire films, compared to bare HAT5 ones.

  20. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin; Kleine-Boymann, Matthias; Rohnke, Marcus; Mata, Maria de la; Arbiol, Jordi

    2013-09-14

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×10{sup 20} cm{sup −3} is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  1. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation

    PubMed Central

    Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380

  2. Study of processes of self-catalyzed growth of gaas crystal nanowires by molecular-beam epitaxy on modified Si (111) surfaces

    SciTech Connect

    Samsonenko, Yu. B. Cirlin, G. E.; Khrebtov, A. I.; Bouravleuv, A. D.; Polyakov, N. K.; Ulin, V. P.; Dubrovskii, V. G.; Werner, P.

    2011-04-15

    The processes of growth of self-catalyzed GaAs crystal nanowires on Si (111) surfaces modified by three different methods are studied. For the technology of production of the GaAs nanowires, molecular-beam epitaxy is used. It is found that, in the range of substrate temperatures between 610 and 630 Degree-Sign C, the surface density of nanowires and their diameter sharply increases, whereas the temperature dependence of the nanowire length exhibits a maximum at 610 Degree-Sign C. An increase in the temperature to 640 Degree-Sign C suppresses the formation of nanowires. The method that provides a means for the fabrication of purely cubic GaAs nanowires is described. A theoretical justification of the formation of the cubic phase in self-catalyzed GaAs nanowires is presented.

  3. Correction: Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials.

    PubMed

    Muñoz Rojo, Miguel; Martín, Jaime; Grauby, Stéphane; Borca-Tasciuc, Theodorian; Dilhaire, Stefan; Martin-Gonzalez, Marisol

    2015-03-01

    Correction for 'Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials' by Miguel Muñoz Rojo et al., Nanoscale, 2014, 6, 7858-7865. PMID:25668105

  4. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kasanaboina, Pavan Kumar; Ahmad, Estiak; Li, Jia; Reynolds, C. Lewis; Liu, Yang; Iyer, Shanthi

    2015-09-01

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  5. Self-catalyzed growth of dilute nitride GaAs/GaAsSbN/GaAs core-shell nanowires by molecular beam epitaxy

    SciTech Connect

    Kasanaboina, Pavan Kumar; Ahmad, Estiak; Li, Jia; Iyer, Shanthi; Reynolds, C. Lewis; Liu, Yang

    2015-09-07

    Bandgap tuning up to 1.3 μm in GaAsSb based nanowires by incorporation of dilute amount of N is reported. Highly vertical GaAs/GaAsSbN/GaAs core-shell configured nanowires were grown for different N contents on Si (111) substrates using plasma assisted molecular beam epitaxy. X-ray diffraction analysis revealed close lattice matching of GaAsSbN with GaAs. Micro-photoluminescence (μ-PL) revealed red shift as well as broadening of the spectra attesting to N incorporation in the nanowires. Replication of the 4K PL spectra for several different single nanowires compared to the corresponding nanowire array suggests good compositional homogeneity amongst the nanowires. A large red shift of the Raman spectrum and associated symmetric line shape in these nanowires have been attributed to phonon localization at point defects. Transmission electron microscopy reveals the dominance of stacking faults and twins in these nanowires. The lower strain present in these dilute nitride nanowires, as opposed to GaAsSb nanowires having the same PL emission wavelength, and the observation of room temperature PL demonstrate the advantage of the dilute nitride system offers in the nanowire configuration, providing a pathway for realizing nanoscale optoelectronic devices in the telecommunication wavelength region.

  6. Ligand Pose and Orientational Sampling in Molecular Docking

    PubMed Central

    Coleman, Ryan G.; Carchia, Michael; Sterling, Teague; Irwin, John J.; Shoichet, Brian K.

    2013-01-01

    Molecular docking remains an important tool for structure-based screening to find new ligands and chemical probes. As docking ambitions grow to include new scoring function terms, and to address ever more targets, the reliability and extendability of the orientation sampling, and the throughput of the method, become pressing. Here we explore sampling techniques that eliminate stochastic behavior in DOCK3.6, allowing us to optimize the method for regularly variable sampling of orientations. This also enabled a focused effort to optimize the code for efficiency, with a three-fold increase in the speed of the program. This, in turn, facilitated extensive testing of the method on the 102 targets, 22,805 ligands and 1,411,214 decoys of the Directory of Useful Decoys - Enhanced (DUD-E) benchmarking set, at multiple levels of sampling. Encouragingly, we observe that as sampling increases from 50 to 500 to 2000 to 5000 to 20000 molecular orientations in the binding site (and so from about 1×1010 to 4×1010 to 1×1011 to 2×1011 to 5×1011 mean atoms scored per target, since multiple conformations are sampled per orientation), the enrichment of ligands over decoys monotonically increases for most DUD-E targets. Meanwhile, including internal electrostatics in the evaluation ligand conformational energies, and restricting aromatic hydroxyls to low energy rotamers, further improved enrichment values. Several of the strategies used here to improve the efficiency of the code are broadly applicable in the field. PMID:24098414

  7. Vertically Aligned Ge Nanowires on Flexible Plastic Films Synthesized by (111)-Oriented Ge Seeded Vapor-Liquid-Solid Growth.

    PubMed

    Toko, Kaoru; Nakata, Mitsuki; Jevasuwan, Wipakorn; Fukata, Naoki; Suemasu, Takashi

    2015-08-19

    Transfer-free fabrication of vertical Ge nanowires (NWs) on a plastic substrate is demonstrated using a vapor-liquid-solid (VLS) method. The crystal quality of Ge seed layers (50 nm thickness) prepared on plastic substrates strongly influenced the VLS growth morphology, i.e., the density, uniformity, and crystal quality of Ge NWs. The metal-induced layer exchange yielded a (111)-oriented Ge seed layer at 325 °C, which allowed for the VLS growth of vertically aligned Ge NWs. The Ge NW array had almost the same quality as that formed on a bulk Ge(111) substrate. Transmission electron microscopy demonstrated that the Ge NWs were defect-free single crystals. The present investigation paves the way for advanced electronic optical devices integrated on a low-cost flexible substrate. PMID:26230716

  8. Bridging Oriented Copper Nanowire-Graphene Composites for Solution-Processable, Annealing-Free, and Air-Stable Flexible Electrodes.

    PubMed

    Zhang, Wang; Yin, Zhenxing; Chun, Alvin; Yoo, Jeeyoung; Kim, Youn Sang; Piao, Yuanzhe

    2016-01-27

    One-dimensional flexible metallic nanowires (NWs) are of considerable interest for next-generation wearable devices. The unavoidable challenge for a wearable electrode is the assurance of high conductivity, flexibility, and durability with economically feasible materials and simple manufacturing processes. Here, we use a straightforward solvothermal method to prepare a flexible conductive material that contains reduced graphene oxide (RGO) nanosheets bridging oriented copper NWs. The GO-assistance route can successfully meet the criteria listed above and help the composite films maintain high conductivity and durable flexibility without any extra treatment, such as annealing or acid processes. The composite film exhibits a high electrical performance (0.808 Ω·sq(-1)) without considerable change over 30 days under ambient conditions. Moreover, the Cu NW-RGO composites can be deposited on polyester cloth as a lightweight wearable electrode with high durability and simple processability and are very promising for a wide variety of electronic devices. PMID:26720592

  9. Chloroaluminum phthalocyanine thin films: chemical reaction and molecular orientation.

    PubMed

    Latteyer, Florian; Peisert, Heiko; Uihlein, Johannes; Basova, Tamara; Nagel, Peter; Merz, Michael; Schuppler, Stefan; Chassé, Thomas

    2013-05-01

    The chemical transformation of the polar chloroaluminum phthalocyanine, AlClPc, to μ-(oxo)bis(phthalocyaninato)aluminum(III), (PcAl)2O, in thin films on indium tin oxide is studied and its influence on the molecular orientation is discussed. The studies were conducted using complementary spectroscopic techniques: Raman spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, density functional theory calculations were performed in order to identify specific vibrations and to monitor the product formation. The thin films of AlClPc were annealed in controlled environmental conditions to obtain (PcAl)2O. It is shown that the chemical transformation in the thin films can proceed only in the presence of water. The influence of the reaction and the annealing on the molecular orientation was studied with Raman spectroscopy and NEXAFS spectroscopy in total electron yield and partial electron yield modes. The comparison of the results obtained from these techniques allows the determination of the molecular orientation of the film as a function of the probing depth. PMID:23494276

  10. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control.

    PubMed

    Nuzaihan M N, M; Hashim, U; Md Arshad, M K; Kasjoo, S R; Rahman, S F A; Ruslinda, A R; Fathil, M F M; Adzhri, R; Shahimin, M M

    2016-09-15

    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances. PMID:27107147

  11. Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials.

    PubMed

    Rojo, Miguel Muñoz; Martín, Jaime; Grauby, Stéphane; Borca-Tasciuc, Theodorian; Dilhaire, Stefan; Martin-Gonzalez, Marisol

    2014-07-21

    To date, there is no experimental characterization of thermal conductivity of semiconductor polymeric individual nanowires embedded in a matrix. This work reports on scanning thermal microscopy measurements in a 3ω configuration to determine how the thermal conductivity of individual nanowires made of a model conjugated polymer (P3HT) is modified when decreasing their diameters. We observe a reduction of thermal conductivity, from λNW = 2.29 ± 0.15 W K(-1) m(-1) to λNW = 0.5 ± 0.24 W K(-1) m(-1), when the diameter of nanowires is reduced from 350 nm to 120 nm, which correlates with the polymer crystal orientation measured by WAXS. Through this work, the foundations for future polymer thermal transport engineering are presented. PMID:24933655

  12. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations. PMID:20050692

  13. Faunus: An object oriented framework for molecular simulation

    PubMed Central

    Lund, Mikael; Trulsson, Martin; Persson, Björn

    2008-01-01

    Background We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual. Results We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction. Conclusion C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. PMID:18241331

  14. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Brubaker, Matt D.; Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A.; Bright, Victor M.

    2011-09-01

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  15. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology

    NASA Astrophysics Data System (ADS)

    Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong

    2014-05-01

    Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective

  16. Nanowire array chips for molecular typing of rare trafficking leukocytes with application to neurodegenerative pathology

    NASA Astrophysics Data System (ADS)

    Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong

    2014-05-01

    Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective

  17. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    SciTech Connect

    Heo, Junseok; Bhattacharya, Pallab; Zhou, Zifan; Guo, Wei; Ooi, Boon S.

    2013-10-28

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In{sub 0.3}Ga{sub 0.7}N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In{sub 0.3}Ga{sub 0.7}N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively.

  18. Aligned platinum nanowire networks from surface-oriented lipid cubic phase templates

    NASA Astrophysics Data System (ADS)

    Richardson, S. J.; Burton, M. R.; Staniec, P. A.; Nandhakumar, I. S.; Terrill, N. J.; Elliott, J. M.; Squires, A. M.

    2016-01-01

    Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker platinum films are grown, they also show increased orientational disorder. These results suggest that polydomain QII samples display a region of uniaxial orientation at the lipid/substrate interface up to approximately 2.8 +/- 0.3 μm away from the solid surface. Our approach gives previously unavailable information on the arrangement of cubic phases at solid interfaces, which is important for many applications of QII phases. Most significantly, we have produced a previously unreported class of oriented nanomaterial, with potential applications including metamaterials and lithographic masks.Mesoporous metal structures featuring a bicontinuous cubic morphology have a wide range of potential applications and novel opto-electronic properties, often orientation-dependent. We describe the production of nanostructured metal films 1-2 microns thick featuring 3D-periodic `single diamond' morphology that show high out-of-plane alignment, with the (111) plane oriented parallel to the substrate. These are produced by electrodeposition of platinum through a lipid cubic phase (QII) template. Further investigation into the mechanism for the orientation revealed the surprising result that the QII template, which is tens of microns thick, is polydomain with no overall orientation. When thicker

  19. Molecular Dynamics Simulations of the Thermal Conductivities of Group IV Bulk Materials and Nanowires

    NASA Astrophysics Data System (ADS)

    Reed, John; Williamson, Andrew; Galli, Giulia

    2006-03-01

    We present the results of equilibrium molecular dynamics simulations of the thermal conductivities of bulk C, Si, Ge, and SiC using the Green-Kubo formalism. We use an empirical interatomic potential developed by Tersoff [1] and investigate the effects of modifications to this potential suggested by Porter et al [2]. We also investigate the effects of choosing a symmetric versus nonsymmetric definition of the local heat. A generalization of this approach to study the dependence of the thermal conductivity of SiGe nanowires on their size and composition will also be presented. [1] J. Tersoff, PRB 39 (8), 5566-5568 [2] L. Porter, J. Li, S. Yip, J. Nuc. Matl. 246 (1997) 53-59 This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  20. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  1. Growth of Inclined GaAs Nanowires by Molecular Beam Epitaxy: Theory and Experiment

    PubMed Central

    2010-01-01

    The growth of inclined GaAs nanowires (NWs) during molecular beam epitaxy (MBE) on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found that 20° inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550°C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies. PMID:21076695

  2. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    SciTech Connect

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-30

    Epitaxial silicon nanowires (NWs) of short heights ({approx}280 nm) on Si <111> substrate were grown and doped in situ with boron on a concentration range of 10{sup 15}-10{sup 19} cm{sup -3} by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (10{sup 15} cm{sup -3}) and medium doped (3x10{sup 16} and 1x10{sup 17} cm{sup -3}) NWs were heavily depleted by the surface states while the high doped (10{sup 18} and 10{sup 19} cm{sup -3}) ones showed volume conductivities expected for the corresponding intended doping levels.

  3. Self-Assembly and Horizontal Orientation Growth of VO2 Nanowires

    PubMed Central

    Cheng, Chun; Guo, Hua; Amini, Abbas; Liu, Kai; Fu, Deyi; Zou, Jian; Song, Haisheng

    2014-01-01

    Single-crystalline vanadium dioxide (VO2) nanostructures have attracted an intense research interest recently because of their unique single-domain metal-insulator phase transition property. Synthesis of these nanostructures in the past was limited in density, alignment, or single-crystallinity. The assembly of VO2 nanowires (NWs) is desirable for a “bottom-up” approach to the engineering of intricate structures using nanoscale building blocks. Here, we report the successful synthesis of horizontally aligned VO2 NWs with a dense growth mode in the [1-100]quartz direction of a polished x-cut quartz surface using a simple vapor transport method. Our strategy of controlled growth of VO2 NWs promisingly paves the way for designing novel metal-insulator transition devices based on VO2 NWs. PMID:24965899

  4. Enhanced Rates of Photoinduced Molecular Orientation in a Series of Molecular Glassy Thin Films.

    PubMed

    Snell, Kristen E; Hou, Renjie; Ishow, Eléna; Lagugné-Labarthet, François

    2015-07-01

    Photoinduced orientation in a series of molecular glasses made of small push-pull azo derivatives is dynamically investigated for the first time. Birefringence measurements at 632.8 nm are conducted with a temporal resolution of 100 ms to probe the fast rate of the azo orientation induced under polarized light and its temporal stability over several consecutive cycles. To better evaluate the influence of the azo chemical substituents and their electronic properties on the orientation of the whole molecule, a series of push-pull azo derivatives involving a triphenylaminoazo core substituted with distinct electron-withdrawing moieties is studied. All resulting thin films are probed using polarization modulation infrared spectroscopy that yields dynamical linear dichroism measurements during a cycle of orientation followed by relaxation. We show here in particular that the orientation rates of small molecule-based azo materials are systematically increased up to 7-fold compared to those of a reference polymer counterpart. For specific compounds, the percentage of remnant orientation is also higher, which makes these materials of great interest and promising alternatives to azobenzene-containing polymers for a variety of applications requiring a fast response and absolute control over the molecular weight. PMID:26072966

  5. Bandgap tuning of GaAs/GaAsSb core-shell nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kasanaboina, Pavan Kumar; Krishna Ojha, Sai; Sami, Shifat Us; Reynolds, C. Lewis, Jr.; Liu, Yang; Iyer, Shanthi

    2015-10-01

    Semiconductor nanowires have been identified as a viable technology for next-generation infrared (IR) photodetectors with improved detectivity and detection across a range of energies as well as for novel single-photon detection in quantum networking. The GaAsSb materials system is especially promising in the 1.3-1.55 μm spectral range. In this work we present band-gap tuning up to 1.3 μm in GaAs/GaAsSb core-shell nanowires, by varying the Sb content using Ga-assisted molecular beam epitaxy. An increase in Sb content leads to strain accumulation in shell manifesting in rough surface morphology, multifaceted growths, curved nanowires, and deterioration in the microstructural and optical quality of the nanowires. The presence of multiple PL peaks for Sb compositions ≥12 at.% and degradation in the nanowire quality as attested by broadening of Raman and x-ray diffraction peaks reveal compositional instability in the nanowires. Transmission electron microscope (TEM) images show the presence of stacking faults and twins. Based on photoluminescence (PL) peak energies and their excitation power dependence behavior, an energy-band diagram for GaAs/GaAsSb core-shell nanowires is proposed. Optical transitions are dominated by type II transitions at lower Sb compositions and a combination of type I and type II transitions for compositions ≥12 at.%. Type I optical transitions as low as 0.93 eV (1.3 μm) from the GaAsSb for Sb composition of 26 at.% have been observed. The PL spectrum of a single nanowire is replicated in the ensemble nanowires, demonstrating good compositional homogeneity of the latter. A double-shell configuration for passivation of deleterious surface states leads to significant enhancement in the PL intensity resulting in the observation of room temperature emission, which provides significant potential for further improvement with important implications for nanostructured optoelectronic devices operating in the near-infrared regime.

  6. Redox-Active Molecular Nanowire Flash Memory for High-Endurance and High-Density Nonvolatile Memory Applications.

    PubMed

    Zhu, Hao; Pookpanratana, Sujitra J; Bonevich, John E; Natoli, Sean N; Hacker, Christina A; Ren, Tong; Suehle, John S; Richter, Curt A; Li, Qiliang

    2015-12-16

    In this work, high-performance top-gated nanowire molecular flash memory has been fabricated with redox-active molecules. Different molecules with one and two redox centers have been tested. The flash memory has clean solid/molecule and dielectric interfaces, due to the pristine molecular self-assembly and the nanowire device self-alignment fabrication process. The memory cells exhibit discrete charged states at small gate voltages. Such multi-bit memory in one cell is favorable for high-density storage. These memory devices exhibit fast speed, low power, long memory retention, and exceptionally good endurance (>10(9) cycles). The excellent characteristics are derived from the intrinsic charge-storage properties of the protected redox-active molecules. Such multi-bit molecular flash memory is very attractive for high-endurance and high-density on-chip memory applications in future portable electronics. PMID:26600234

  7. A Molecular Switch for the Orientation of Epithelial Cell Polarization

    PubMed Central

    Bryant, David M.; Roignot, Julie; Datta, Anirban; Overeem, Arend W.; Kim, Minji; Yu, Wei; Peng, Xiao; Eastburn, Dennis J.; Ewald, Andrew J.; Werb, Zena; Mostov, Keith E.

    2014-01-01

    SUMMARY The formation of epithelial tissues containing lumens requires not only the apical-basolateral polarization of cells, but also the coordinated orientation of this polarity such that the apical surfaces of neighboring cells all point toward the central lumen. Defects in extracellular matrix (ECM) signaling lead to inverted polarity so that the apical surfaces face the surrounding ECM. We report a molecular switch mechanism controlling polarity orientation. ECM signals through a β1-integrin/FAK/p190RhoGAP complex to down-regulate a RhoA/ROCK/Ezrin pathway at the ECM interface. PKCβII phosphorylates the apical identity-promoting Podocalyxin/NHERF1/Ezrin complex, removing Podocalyxin from the ECM-abutting cell surface and initiating its transcytosis to an apical membrane initiation site for lumen formation. Inhibition of this switch mechanism results in the retention of Podocalyxin at the ECM interface and the development instead of collective front-rear polarization and motility. Thus, ECM-derived signals control the morphogenesis of epithelial tissues by controlling the collective orientation of epithelial polarization. PMID:25307480

  8. Molecular dynamics simulation overcoming the finite size effects of thermal conductivity of bulk silicon and silicon nanowires

    NASA Astrophysics Data System (ADS)

    Hou, Chaofeng; Xu, Ji; Ge, Wei; Li, Jinghai

    2016-05-01

    Nonequilibrium molecular dynamics simulation has been a powerful tool for studying the thermophysical properties of bulk silicon and silicon nanowires. Nevertheless, usually limited by the capacity and capability of computational resources, the traditional longitudinal and transverse simulation sizes are evidently restricted in a narrow range much less than the experimental scales, which seriously hinders the exploration of the thermal properties. In this research, based on a powerful and efficient molecular dynamics (MD) simulation method, the computation of thermal conductivity beyond the known Casimir size limits is realized. The longitudinal dimensions of the simulations significantly exceed the micrometer scale. More importantly, the lateral characteristic sizes are much larger than 10 nanometers, explicitly comparable with the silicon nanowires fabricated and measured experimentally, whereas the traditional simulation size is several nanometers. The powerful virtual experimental measurement provided in our simulations achieves the direct prediction of the thermal conductivity of bulk silicon and real-scale silicon nanowires, and delineates the complete longitudinal size dependence of their thermal conductivities, especially at the elusive mesoscopic scale. Furthermore, the presented measurement paves an exciting and promising way to explore in depth the thermophysical properties of other bulk covalent solids and their low-dimensional structures, such as nanowires and nanosheets.

  9. Orientational disorder: A key to understand polarity of molecular crystals

    NASA Astrophysics Data System (ADS)

    Hulliger, J.; Brahimi, K.; Burgener, M.; Dulcevscaia, G.

    2014-12-01

    Polarity of molecular crystals is understood here as a result of 180° orientational disorder of asymmetrical building blocks. Symmetry arguments based on (i) a single rotational degree of freedom, (ii) the finite size of crystals and (iii) interactions in between asymmetrical molecules lead to the conclusion that such crystals should express a bi-polar (∞/∞m) average state of zero polarity. This basic property of molecular crystals is exemplified by forming solid solutions of 4-iodo-4‧-nitro-biphenyl (INBP) and symmetrical bi-phenyls (BP: A-π-A, D-π-D; A: acceptor; D: donor). Monte Carlo simulations based on a layer-by-layer growth model predict a reversal of the bi-polar state of pure INBP by forming a solid solution of (INBP)1-x(D-π-D)x. In the case of the addition of A-π-A reversal as found for pure INBP is promoted, i.e. needs less growth steps (layers) to be accomplished. Real crystals representing solid solutions were grown from 2-butanon solutions using symmetrical BPs. Scanning pyroelectric microscopy confirmed the qualitative behavior seen in Monte Carlo simulations. These findings represent an experimentum crucis supporting the general validity of the theory of stochastic polarity formation applied to single component or solid solution molecular crystals.

  10. Influence of Molecular Shape on Molecular Orientation and Stability of Vapor-Deposited Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Walters, Diane M.; Johnson, Noah D.; Ediger, M. D.

    Physical vapor deposition is commonly used to prepare active layers in organic electronics. Recently, it has been shown that molecular orientation and packing can be tuned by changing the substrate temperature during deposition, while still producing macroscopically homogeneous films. These amorphous materials can be highly anisotropic when prepared with low substrate temperatures, and they can exhibit exceptional kinetic stability; films retain their favorable packing when heated to high temperatures. Here, we study the influence of molecular shape on molecular orientation and stability. We investigate disc-shaped molecules, such as TCTA and m-MTDATA, nearly spherical molecules, such as Alq3, and linear molecules covering a broad range of aspect ratios, such as p-TTP and BSB-Cz. Disc-shaped molecules have preferential horizontal orientation when deposited at low substrate temperatures, and their orientation can be tuned by changing the substrate temperature. Alq3 forms stable, amorphous films that are optically isotropic when vapor deposited over a broad range of substrate temperatures. This work may guide the choice of material and deposition conditions for vapor-deposited films used in organic electronics and allow for more efficient devices to be fabricated.

  11. Length dependence of carbon-doped BN nanowires: A-D Rectification and a route to potential molecular devices

    NASA Astrophysics Data System (ADS)

    Qiu, M.; Liew, K. M.

    2013-02-01

    Based on the first-principles approach, electronic transport properties of different lengths of carbon-doped boron-nitrogen nanowires, capped with two thiols as end groups connected to Au electrodes surfaces, are investigated. The results show that rectifying performance and negative differential resistance (NDR) behaviors can be enhanced obviously by increasing the length. Analysis of Mülliken population, transmission spectra, evolutions of frontier orbitals and molecular projected self-consistent Hamiltonian of molecular orbital indicate that electronic transmission strength, charge transfer and distributions of molecular states change are the intrinsic origin of these rectifying performances and NDR behaviors.

  12. Molecularly Oriented Polymeric Thin Films for Space Applications

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C.; Stoakley, Diane M.; St.Clair, Anne K.

    1997-01-01

    The increased commitment from NASA and private industry to the exploration of outer space and the use of orbital instrumentation to monitor the earth has focused attention on organic polymeric materials for a variety of applications in space. Some polymeric materials have exhibited short-term (3-5 yr) space environmental durability; however, future spacecraft are being designed with lifetimes projected to be 10-30 years. This gives rise to concern that material property change brought about during operation may result in unpredicted spacecraft performance. Because of their inherent toughness and flexibility, low density, thermal stability, radiation resistance and mechanical strength, aromatic polyimides have excellent potential use as advanced materials on large space structures. Also, there exists a need for high temperature (200-300 C) stable, flexible polymeric films that have high optical transparency in the 300-600nm range of the electromagnetic spectrum. Polymers suitable for these space applications were fabricated and characterized. Additionally, these polymers were molecularly oriented to further enhance their dimensional stability, stiffness, elongation and strength. Both unoriented and oriented polymeric thin films were also cryogenically treated to temperatures below -184 C to show their stability in cold environments and determine any changes in material properties.

  13. TOPICAL REVIEW: DNA nanowire fabrication

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Cheng, Chuanding; Gonela, Ravikanth; Suryanarayanan, Shivashankar; Anabathula, Sathish; Dai, Kun; Haynie, Donald T.

    2006-01-01

    Deoxyribonucleic acid (DNA) has been a key building block in nanotechnology since the earliest work on what is now called DNA-templated self-assembly (Alivisatos et al 1996 Nature 382 609; Mirkin et al 1996 Nature 382 607; Braun et al 1998 Nature 391 775). A range of different nanoparticles and nanoclusters have been assembled on single DNA molecules for a variety of purposes (Braun et al 1998 Nature 391 775; Richter et al 2001 Appl. Phys. Lett. 78 536; Park et al 2002 Science 295 1503; Mirkin 2000 Inorg. Chem. 39 2258; Keren et al 2003 Science 302 1380). Electrically conductive silver (Braun et al 1998 Nature 391 775) and palladium (Richter et al 2001 Appl. Phys. Lett. 78 536) nanowires, for example, have been fabricated by DNA templating for the development of interconnection of nanoelectric elements, and field effect transistors have been built by assembly of a single carbon nanotube and DNA-templated nanowires (Keren et al 2003 Science 302 1380). DNA is well suited for nanowire assembly because of its size, well organized structure, and exquisite molecular-recognition-ability-specific base pairing. This property has been used to detect nucleic acids (Park et al 2002 Science 295 1503) and anthrax (Mirkin 2000 Inorg. Chem. 39 2258) with high sensitivity and specificity. Molecular recognition can also be used to localize nanowires in electronics. Various methods, for example molecular combing, electrophoretic stretching, and hydrodynamic stretching, have been developed to orient DNA molecules on a solid support. This review focuses on methods used to manipulate and metallize DNA in nanowire fabrication. A novel approach based on a single-stranded DNA template and molecular recognition is also discussed.

  14. Optical properties of single ZnTe nanowires grown at low temperature

    SciTech Connect

    Artioli, A.; Stepanov, P.; Den Hertog, M.; Bougerol, C.; Genuist, Y.; Donatini, F.; André, R.; Nogues, G.; Tatarenko, S.; Ferrand, D.; Cibert, J.; Inst NEEL, CNRS, F-38042 Grenoble ; Rueda-Fonseca, P.; Inst NEEL, CNRS, F-38042 Grenoble; INAC, CEA and Université de Grenoble, 17 rue des Martyrs, 38054 Grenoble ; Bellet-Amalric, E.; Kheng, K.

    2013-11-25

    Optically active gold-catalyzed ZnTe nanowires have been grown by molecular beam epitaxy, on a ZnTe(111) buffer layer, at low temperature (350 °C) under Te rich conditions, and at ultra-low density (from 1 to 5 nanowires per μm{sup 2}). The crystalline structure is zinc blende as identified by transmission electron microscopy. All nanowires are tapered and the majority of them are <111> oriented. Low temperature micro-photoluminescence and cathodoluminescence experiments have been performed on single nanowires. We observe a narrow emission line with a blue-shift of 2 or 3 meV with respect to the exciton energy in bulk ZnTe. This shift is attributed to the strain induced by a 5 nm-thick oxide layer covering the nanowires, and this assumption is supported by a quantitative estimation of the strain in the nanowires.

  15. Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Wu, Chung-Chin

    2016-03-01

    The size effect on the cold-welding mechanism and mechanical properties of Au nanowires (NWs) in head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, radial distribution function, and weld strength ratio. Simulation results show that during the cold-welding process, a few disordered atoms/defects in the jointing area rearrange themselves and transform into a face-centered cubic crystalline structure. With an increase in contact between the two NWs, dislocations gradually form on the (111) slip plane and then on a twin plane, leading to an increase in the lateral deformation of 4-nm-wide NWs. The effect of structural instability increases with decreasing NW width, making the alignment of the two NWs more difficult. The elongation ability of the welded NWs increases with increasing NW width. Smaller NWs have better weld strength.

  16. Molecular dynamics simulation of joining process of Ag-Au nanowires and mechanical properties of the hybrid nanojoint

    SciTech Connect

    Ding, Su; Tian, Yanhong Jiang, Zhi; He, Xiaobin

    2015-05-15

    The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD) simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

  17. Lithographically patterned nanowire electrodeposition.

    PubMed

    Menke, E J; Thompson, M A; Xiang, C; Yang, L C; Penner, R M

    2006-11-01

    Nanowire fabrication methods can be classified either as 'top down', involving photo- or electron-beam lithography, or 'bottom up', involving the synthesis of nanowires from molecular precursors. Lithographically patterned nanowire electrodeposition (LPNE) combines attributes of photolithography with the versatility of bottom-up electrochemical synthesis. Photolithography defines the position of a sacrificial nickel nanoband electrode, which is recessed into a horizontal trench. This trench acts as a 'nanoform' to define the thickness of an incipient nanowire during its electrodeposition. The electrodeposition duration determines the width of the nanowire. Removal of the photoresist and nickel exposes a polycrystalline nanowire--composed of gold, platinum or palladium--characterized by thickness and width that can be independently controlled down to 18 and 40 nm, respectively. Metal nanowires prepared by LPNE may have applications in chemical sensing and optical signal processing, and as interconnects in nanoelectronic devices. PMID:17057701

  18. SHG microscopy excited by polarization controlled beam for three-dimensional molecular orientation measurement

    NASA Astrophysics Data System (ADS)

    Yoshiki, K.; Hashimoto, M.; Araki, T.

    2006-08-01

    We have developed a second-harmonic-generation (SGH) microscope to observe the three-dimensional molecular orientation with three-dimensional high spatial resolution using a polarization mode converter. The mode converter consists of a parallel-aligned nematic-liquid-crystal spatial-light-modulator (PAL-SLM) and quarter-waveplates, and converts a incident linearly polarized beam to orthogonal linearly polarized beams or radially polarized beam. We combined the mode converter with SHG microscope to obtain the local information of the three-dimensional molecular orientation. We demonstrated the detection of three-dimensional molecular orientation of collagen fiber in human Achilles' tendon. For high precision three-dimensional molecular orientation measurement, we propose a technique to calibrate the dependence of SHG detection efficiencies on molecular orientation using a liposome.

  19. Epitaxial self-assembly of binary molecular components into branched nanowire heterostructures for photonic applications.

    PubMed

    Kong, Qinghua; Liao, Qing; Xu, Zhenzhen; Wang, Xuedong; Yao, Jiannian; Fu, Hongbing

    2014-02-12

    We report a sequential epitaxial growth to prepare organic branched nanowire heterostructures (BNwHs) consisting of a microribbon trunk of 1,4-dimethoxy-2,5-di[4'-(cyano)styryl]benzene (COPV) with multiple nanowire branches of 2,4,5-triphenylimidazole (TPI) in a one-pot solution synthesis. The synthesis involves a seeded-growth process, where COPV microribbons are grown first as a trunk followed by a seeded-growth of TPI nanowire branches at the pregrown trunk surfaces. Selected area electron diffraction characterizations reveal that multiple hydrogen-bonding interactions between TPI and COPV components play an essential role in the epitaxial growth as a result of the structural matching between COPV and TPI crystals. A multichannel optical router was successfully realized on the basis of the passive waveguides of COPV green photoluminescence (PL) along TPI nanowire branches in a single organic BNwH. PMID:24446808

  20. Molecular relaxations, molecular orientation, and the friction characteristics of polyimide films. [wear characteristics of polymeric lubricant

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    The friction characteristics of polyimide films bonded to metallic substrates were studied from 25 to 500 C. These results were interpreted in terms of molecular orientation and thermomechanical data obtained by torsional braid analysis (TBA). A large friction transition was found to occur at 40 + or - 10 C in a dry argon atmosphere (10 ppm H2O). It was postulated that the mechanical stresses of sliding transform or reorder the molecules on the surface into a configuration conducive to easy shear, such as an extended chain. The molecular relaxation which occurs in this temperature region appears to give the molecules the necessary freedom for this reordering process to occur. The effects of velocity, reversibility, and thermal prehistory on the friction properties of polyimide were also studied.

  1. EDITORIAL: Nanowires Nanowires

    NASA Astrophysics Data System (ADS)

    Jagadish, Chennupati

    2010-02-01

    Nanowires are considered as building blocks for the next generation of electronics, photonics, sensors and energy applications. One-dimensional nanostructures offer unique opportunities to control the density of states of semiconductors, and in turn their electronic and optical properties. Nanowires allow the growth of axial heterostructures without the constraints of lattice mismatch. This provides flexibility to create heterostructures of a broad range of materials and allows integration of compound semiconductor based optoelectronic devices with silicon based microelectronics. Nanowires are widely studied and the number of papers published in the field is growing exponentially with time. Already nanowire lasers, nanowire transistors, nanowire light emitting diodes, nanowire sensors and nanowire solar cells have been demonstrated. This special issue on semiconductor nanowires features 17 invited papers from leading experts in the field. In this special issue, the synthesis and growth of semiconductor nanowires of a broad range of materials have been addressed. Both axial and radial heterostructures and their structural properties have been discussed. Electrical transport properties of nanowires have been presented, as well as optical properties and carrier dynamics in a range of nanowires and nanowire heterostructures. Devices such as nanowire lasers and nanowire sensors have also been discussed. I would like to thank the Editorial Board of the journal for suggesting this special issue and inviting me to serve as the Guest Editor. Sincere thanks are due to all the authors for their contributions to this special issue. I am grateful to the reviewers and editorial staff at Semiconductor Science and Technology and the Institute of Physics Publishing for their excellent efforts. Special thanks are due to Dr Claire Bedrock for coordinating this special issue.

  2. Etomica: an object-oriented framework for molecular simulation.

    PubMed

    Schultz, Andrew J; Kofke, David A

    2015-03-30

    We describe the design of an object-oriented library of software components that are suitable for constructing simulations of systems of interacting particles. The emphasis of the discussion is on the general design of the components and how they interact, and less on details of the programming interface or its implementation. Example code is provided as an aid to understanding object-oriented programming structures and to demonstrate how the framework is applied. PMID:25565378

  3. Substrate temperature controls molecular orientation in two-component vapor-deposited glasses.

    PubMed

    Jiang, J; Walters, D M; Zhou, D; Ediger, M D

    2016-04-01

    Vapor-deposited glasses can be anisotropic and molecular orientation is important for organic electronics applications. In organic light emitting diodes (OLEDs), for example, the orientation of dye molecules in two-component emitting layers significantly influences emission efficiency. Here we investigate how substrate temperature during vapor deposition influences the orientation of dye molecules in a model two-component system. We determine the average orientation of a linear blue light emitter 1,4-di-[4-(N,N-diphenyl)amino]styryl-benzene (DSA-Ph) in mixtures with aluminum-tris(8-hydroxyquinoline) (Alq3) by spectroscopic ellipsometry and IR dichroism. We find that molecular orientation is controlled by the ratio of the substrate temperature during deposition and the glass transition temperature of the mixture. These findings extend recent results for single component vapor-deposited glasses and suggest that, during vapor deposition, surface mobility allows partial equilibration towards orientations preferred at the free surface of the equilibrium liquid. PMID:26922903

  4. Mechanisms of two-color laser-induced field-free molecular orientation.

    PubMed

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally. PMID:23005623

  5. Nanoimprint-Induced Molecular Orientation in Semiconducting Polymer Nanostructures

    SciTech Connect

    Hlaing, H.; Ocko, B.; Lu, X.; Hofmann, T.; Yager, K.G.; Black, C.T.

    2011-09-01

    The morphology and orientation of thin films of the polymer poly-3(hexylthiophene) - important parameters influencing electronic and photovoltaic device performance - have been significantly altered through nanoimprinting with 100 nm spaced grooves. Grazing-incidence small-angle X-ray scattering studies demonstrate the excellent fidelity of the pattern transfer, while wide-angle scattering convincingly shows an imprinting-induced {pi}-{pi} reorientation and polymer backbone alignment along the imprinted grooves. Surprisingly, temperature-dependent scattering measurements indicate that the imprinted induced orientation and alignment remain intact even at temperatures where the imprinted topographical features nearly vanish.

  6. Ordered nanocolumn-array organic semiconductor thin films with controllable molecular orientation

    NASA Astrophysics Data System (ADS)

    Yang, Bingchu; Duan, Haichao; Zhou, Conghua; Gao, Yongli; Yang, Junliang

    2013-12-01

    Ordered nanocolumn-array phthalocynine semiconductor thin films with controllable molecular orientation were fabricated by combining molecular template growth (MTG) and glancing angle deposition (GLAD) techniques. The pre-deposited planar perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) molecular template layer induces phthalocynine molecules arrange with a lying-down molecular orientation, in which the π-π stacking is vertical to the substrate improving the charge transport along the vertical direction; While the GLAD technique supports the formation of nanocolumn-array thin films, supplying a much larger exposed surface area than the conventional compact thin films. The ordered nanocolumn-array thin films with controllable molecular orientation fabricated by combining MTG and GLAD techniques show the potentials to fabricate ordered bulk heterojunction for improving the performance in organic photovoltaics.

  7. Molecular orientation effect on the differential cross sections for the electron-impact double ionization of oriented water molecules

    SciTech Connect

    Champion, C.; Dal Cappello, C.; Oubaziz, D.; Aouchiche, H.; Popov, Yu. V.

    2010-03-15

    Double ionization of isolated water molecules fixed in space is here investigated in a theoretical approach based on the first Born approximation. Secondary electron angular distributions are reported for particular (e,3e) kinematical conditions and compared in terms of shape and magnitude. Strong dependence of the fivefold differential cross sections on the molecular target orientation is clearly observed in (e,3-1e) as well as (e,3e) channels. Furthermore, for the major part of the kinematics considered, we identified the different mechanisms involved in the double ionization of water molecule, namely, the direct shake-off process as well as the two-step1 process. They are both discussed and analyzed with respect to the molecular target orientation.

  8. Role of ionization in orientation dependence of molecular high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Hu, Bambi

    2009-12-01

    We investigate the orientation dependence of high-order harmonic generation (HHG) from O2 and CO2 molecules using the strong-field approximation (SFA). Our simulations reveal the important modulation of the ionization to the HHG orientation dependence, especially at larger orientation angles. By virtue of a simplified model arising from the SFA, we show that this modulation can be read from the harmonic order where the HHG spectra at different orientation angles intersect. These results give suggestions on probing the molecular structure and dynamics using HHG.

  9. Vapor deposition of a smectic liquid crystal: highly anisotropic, homogeneous glasses with tunable molecular orientation.

    PubMed

    Gómez, Jaritza; Jiang, Jing; Gujral, Ankit; Huang, Chengbin; Yu, Lian; Ediger, M D

    2016-03-01

    Physical vapor deposition (PVD) has been used to prepare glasses of itraconazole, a smectic A liquid crystal. Glasses were deposited onto subtrates at a range of temperatures (Tsubstrate) near the glass transition temperature (Tg), with Tsubstrate/Tg ranging from 0.70 to 1.02. Infrared spectroscopy and spectroscopic ellipsometry were used to characterize the molecular orientation using the orientational order parameter, Sz, and the birefringence. We find that the molecules in glasses deposited at Tsubstrate = Tg are nearly perpendicular to the substrate (Sz = +0.66) while at lower Tsubstrate molecules are nearly parallel to the substrate (Sz = -0.45). The molecular orientation depends on the temperature of the substrate during preparation, allowing layered samples with differing orientations to be readily prepared. In addition, these vapor-deposited glasses are macroscopically homogeneous and molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. Vapor deposition of liquid crystals is likely a general approach for the preparation of highly anisotropic glasses with tunable molecular orientation for use in organic electronics and optoelectronics. PMID:26875700

  10. Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation.

    PubMed

    Ayzner, Alexander L; Nordlund, Dennis; Kim, Do-Hwan; Bao, Zhenan; Toney, Michael F

    2015-01-01

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation. PMID:26263084

  11. Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation

    DOE PAGESBeta

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do -Hwan; Bao, Zhenan; Toney, Michael F.

    2014-12-04

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximatelymore » 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.« less

  12. Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation

    SciTech Connect

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do -Hwan; Bao, Zhenan; Toney, Michael F.

    2014-12-04

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.

  13. Molecular orientation of tropoelastin is determined by surface hydrophobicity.

    PubMed

    Le Brun, Anton P; Chow, John; Bax, Daniel V; Nelson, Andrew; Weiss, Anthony S; James, Michael

    2012-02-13

    Tropoelastin is the precursor of the extracellular protein elastin and is utilized in tissue engineering and implant technology by adapting the interface presented by surface-bound tropoelastin. The preferred orientation of the surface bound protein is relevant to biointerface interactions, as the C-terminus of tropoelastin is known to be a binding target for cells. Using recombinant human tropoelastin we monitored the binding of tropoelastin on hydrophilic silica and on silica made hydrophobic by depositing a self-assembled monolayer of octadecyl trichlorosilane. The layered organization of deposited tropoelastin was probed using neutron and X-ray reflectometry under aqueous and dried conditions. In a wet environment, tropoelastin retained a solution-like structure when adsorbed on silica but adopted a brush-like structure when on hydrophobized silica. The orientation of the surface-bound tropoelastin was investigated using cell binding assays and it was found that the C-terminus of tropoelastin faced the bulk solvent when bound to the hydrophobic surface, but a mixture of orientations was adopted when tropoelastin was bound to the hydrophilic surface. Drying the tropoelastin-coated surfaces irreversibly altered these protein structures for both hydrophilic and hydrophobic surfaces. PMID:22176209

  14. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization and Orientation

    SciTech Connect

    Wang, Hongfei; Velarde, Luis; Gan, Wei; Fu, Li

    2015-04-01

    Sum-frequency generation vibrational spectroscopy (SFG) can provide detailed information and understanding of molecular vibrational spectroscopy, orientational and conformational structure, and interactions of molecular surfaces and interfaces, through quantitative measurement and analysis. In this review, we present the current status and discuss the main developments on the measurement of intrinsic SFG spectral lineshape, formulations for polarization measurement and orientation analysis of the SFG-VS spectra. The main focus is to present a coherent formulation and discuss the main concepts or issues that can help to make SFG-VS a quantitative analytical and research tool in revealing the chemistry and physics of complex molecular surface and interface.

  15. Phonon thermal transport outside of local equilibrium in nanowires via molecular dynamics

    SciTech Connect

    Zhou Ya; Strachan, Alejandro

    2013-03-28

    We study thermal transport through Pt nanowires that bridge planar contacts as a function of wire length and vibrational frequency of the contacts. When phonons in the contacts have lower average frequencies than those in the wires thermal transport occurs under conditions away from local equilibrium with low-frequency phonons experiencing a higher thermal gradient than high-frequency ones. This results in a size-dependent increase in the effective thermal conductivity of the wire with decreasing vibrational frequencies of the contacts. The interfacial resistivity when heat flows from the wire to the contact is also size-dependent and has the same physical origin in the lack of full equilibration in short nanowires. We develop a model based on a 1D atomic chain that captures the salient physics of the MD results.

  16. Computer Simulation for Molecular Orientation of Vanadyl Phthalocyanine in Epitaxial Form

    NASA Astrophysics Data System (ADS)

    Tada, Hirokazu; Mashiko, Shinro

    1995-07-01

    Molecular orientation of vanadyl phthalocyanine (VOPc) adsorbed on KBr and KCl was studied by molecular mechanics simulation. A VOPc molecule with an oxygen atom oriented upward with respect to the substrate surface was found to be more stable than that oriented downward. The central vanadium atom preferred to stay on potassium cations rather than on halogen anions, which is contrary to our expectation. The lattices optimized in this study agree well with the experimental results. In the epitaxial form on KBr and KCl, the angle between the [100] axis of the substrates and the molecular axis passing through two bridge-nitrogen atoms was 39° and 45°, respectively. The dovetail molecular packing was observed on KCl, while some voids existed between molecules in the optimized packing on KBr.

  17. Universality and specificity in molecular orientation in anisotropic gels prepared by diffusion method.

    PubMed

    Maki, Yasuyuki; Furusawa, Kazuya; Yasuraoka, Sho; Okamura, Hideki; Hosoya, Natsuki; Sunaga, Mari; Dobashi, Toshiaki; Sugimoto, Yasunobu; Wakabayashi, Katsuzo

    2014-08-01

    Molecular orientation in anisotropic gels of chitosan, Curdlan and DNA obtained by dialysis of those aqueous solutions in gelation-inducing solutions was investigated. In this diffusion method (or dialysis method), the gel formation was induced by letting small molecules diffuse in or out of the polymer solutions through the surface. For the gels of DNA and chitosan, the polymer chains aligned perpendicular to the diffusion direction. The same direction of molecular orientation was observed for the Curdlan gel prepared in the dialysis cell. On the other hand, a peculiar nature was observed for the Curdlan gel prepared in the dialysis tube: the molecular orientation was perpendicular to the diffusion direction in the outermost layer of the gel, while the orientation was parallel to the diffusion direction in the inner translucent layer. The orientation parallel to the diffusion direction is attributed to a small deformation of the inner translucent layer caused by a slight shrinkage of the central region after the gel formation. At least near the surface of the gel, the molecular orientation perpendicular to the diffusion direction is a universal characteristic for the gels prepared by the diffusion method. PMID:24751255

  18. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  19. Aluminum Nanowire Arrays via Directed Assembly

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan T.; Merlo, Juan M.; Rose, Aaron H.; Calm, Yitzi M.; D'Imperio, Luke A.; Courtney, Dave T.; Shepard, Steve; Kempa, Krzysztof; Burns, Michael J.; Naughton, Michael J.

    Vertically-oriented metal nanowire arrays are rare. Here, freestanding, vertically-oriented, and lithographically-ordered Al nanowire arrays have been fabricated via directed assembly. The fabrication technique is a variation on the preparation of anodized aluminum oxide (AAO) templates, using nanoimprint lithography (NIL) to direct the formation of pores on an Al film and produce Al nanowires. Near-field scanning optical microscope (NSOM) and conventional optical microscope data of a single nanowire lying on glass and illuminated by a laser spot show evidence of surface plasmons propagating along the nanowire. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  20. StrateGene: object-oriented programming in molecular biology.

    PubMed

    Carhart, R E; Cash, H D; Moore, J F

    1988-03-01

    This paper describes some of the ways that object-oriented programming methodologies have been used to represent and manipulate biological information in a working application. When running on a Xerox 1100 series computer, StrateGene functions as a genetic engineering workstation for the management of information about cloning experiments. It represents biological molecules, enzymes, fragments, and methods as classes, subclasses, and members in a hierarchy of objects. These objects may have various attributes, which themselves can be defined and classified. The attributes and their values can be passed from the classes of objects down to the subclasses and members. The user can modify the objects and their attributes while using them. New knowledge and changes to the system can be incorporated relatively easily. The operations on the biological objects are associated with the objects themselves. This makes it easier to invoke them correctly and allows generic operations to be customized for the particular object. PMID:3164229

  1. Selective-area growth of GaN nanowires on SiO2-masked Si (111) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kruse, J. E.; Lymperakis, L.; Eftychis, S.; Adikimenakis, A.; Doundoulakis, G.; Tsagaraki, K.; Androulidaki, M.; Olziersky, A.; Dimitrakis, P.; Ioannou-Sougleridis, V.; Normand, P.; Koukoula, T.; Kehagias, Th.; Komninou, Ph.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    We analyze a method to selectively grow straight, vertical gallium nitride nanowires by plasma-assisted molecular beam epitaxy (MBE) at sites specified by a silicon oxide mask, which is thermally grown on silicon (111) substrates and patterned by electron-beam lithography and reactive-ion etching. The investigated method requires only one single molecular beam epitaxy MBE growth process, i.e., the SiO2 mask is formed on silicon instead of on a previously grown GaN or AlN buffer layer. We present a systematic and analytical study involving various mask patterns, characterization by scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy, as well as numerical simulations, to evaluate how the dimensions (window diameter and spacing) of the mask affect the distribution of the nanowires, their morphology, and alignment, as well as their photonic properties. Capabilities and limitations for this method of selective-area growth of nanowires have been identified. A window diameter less than 50 nm and a window spacing larger than 500 nm can provide single nanowire nucleation in nearly all mask windows. The results are consistent with a Ga diffusion length on the silicon dioxide surface in the order of approximately 1 μm.

  2. Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance.

    PubMed

    Yan, Mengyu; Wang, Fengchao; Han, Chunhua; Ma, Xinyu; Xu, Xu; An, Qinyou; Xu, Lin; Niu, Chaojiang; Zhao, Yunlong; Tian, Xiaocong; Hu, Ping; Wu, Hengan; Mai, Liqiang

    2013-12-01

    Graphene scrolls have been widely investigated for applications in electronics, sensors, energy storage, etc. However, graphene scrolls with tens of micrometers in length and with other materials in their cavities have not been obtained. Here nanowire templated semihollow bicontinuous graphene scroll architecture is designed and constructed through "oriented assembly" and "self-scroll" strategy. These obtained nanowire templated graphene scrolls can achieve over 30 μm in length with interior cavities between the nanowire and scroll. It is demonstrated through experiments and molecular dynamic simulations that the semihollow bicontinuous structure construction processes depend on the systemic energy, the curvature of nanowires, and the reaction time. Lithium batteries based on V3O7 nanowire templated graphene scrolls (VGSs) exhibit an optimal performance with specific capacity of 321 mAh/g at 100 mA/g and 87.3% capacity retention after 400 cycles at 2000 mA/g. The VGS also shows a high conductivity of 1056 S/m and high capacity of 162 mAh/g at a large density of 3000 mA/g with only 5 wt % graphene added which are 27 and 4.5 times as high as those of V3O7 nanowires, respectively. A supercapacitor made of MnO2 nanowire templated graphene scrolls (MGSs) also shows a high capacity of 317 F/g at 1A/g, which is over 1.5 times than that of MnO2 nanowires without graphene scrolls. These excellent energy storage capacities and cycling performance are attributed to the unique structure of the nanowire templated graphene scroll, which provides continuous electron and ion transfer channels and space for free volume expansion of nanowires during cycling. This strategy and understanding can be used to synthesize other nanowire templated graphene scroll architectures, which can be extended to other fabrication processes and fields. PMID:24219156

  3. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    SciTech Connect

    Nakasu, T. Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-10-28

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [−211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  4. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakasu, T.; Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-10-01

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [-211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  5. Tuning Open-Circuit Voltage in Organic Solar Cells with Molecular Orientation.

    PubMed

    Kitchen, Brent; Awartani, Omar; Kline, R Joseph; McAfee, Terry; Ade, Harald; O'Connor, Brendan T

    2015-06-24

    The role of molecular orientation of a polar conjugated polymer in polymer-fullerene organic photovoltaic (OPV) cells is investigated. A planar heterojunction (PHJ) OPV cell composed of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is used as a model system to isolate the effect of the interfacial orientation on the photovoltaic properties. The molecular orientation of the aggregate P3HT relative to the PCBM layer is varied from highly edge-on (conjugated ring plane perpendicular to the interface plane) to appreciably face-on (ring plane parallel to the interface). It is found that as the P3HT stacking becomes more face-on there is a positive correlation to the OPV open-circuit voltage (V(OC)), attributed to a shift in the highest occupied molecular orbital (HOMO) energy level of P3HT. In addition, the PHJ OPV cell with a broad P3HT stacking orientation distribution has a V(OC) comparable to an archetypal bulk heterojunction (BHJ) device. These results suggest that, in the BHJ OPV cell, the hole energy level in the charge transfer state is defined in part by the orientation distribution of the P3HT at the interface with PCBM. Finally, the photoresponses of the devices are also shown to have a dependence on P3HT stacking orientation. PMID:26027430

  6. Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chou, C. Y.; Torfi, A.; Pei, C.; Wang, W. I.

    2016-05-01

    In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientation presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.

  7. Effect of horizontal molecular orientation on triplet-exciton diffusion in amorphous organic films

    NASA Astrophysics Data System (ADS)

    Sawabe, T.; Takasu, I.; Yonehara, T.; Ono, T.; Yoshida, J.; Enomoto, S.; Amemiya, I.; Adachi, C.

    2012-09-01

    Triplet harvesting is a candidate technology for highly efficient and long-life white OLEDs, where green or red phosphorescent emitters are activated by the triplet-excitons diffused from blue fluorescent emitters. We examined two oxadiazole-based electron transport materials with different horizontal molecular orientation as a triplet-exciton diffusion layer (TDL) in triplet-harvesting OLEDs. The device characteristics and the transient electroluminescent analyses of the red phosphorescent emitter showed that the triplet-exciton diffusion was more effective in the highly oriented TDL. The results are ascribed to the strong orbital overlap between the oriented molecules, which provides rapid electron exchange (Dexter energy transfer) in the TDL.

  8. Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM.

    PubMed

    Lee, Subin; Im, Jiseong; Yoo, Youngdong; Bitzek, Erik; Kiener, Daniel; Richter, Gunther; Kim, Bongsoo; Oh, Sang Ho

    2014-01-01

    Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning-detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength. PMID:24398783

  9. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented. PMID:16117022

  10. Thermal conductivity of Bi{sub 2}Te{sub 3} tilted nanowires, a molecular dynamics study

    SciTech Connect

    Li, Shen Lacroix, David; Termentzidis, Konstantinos; Chaput, Laurent; Stein, Nicolas; Frantz, Cedric

    2015-06-08

    Evidence for an excellent compromise between structural stability and low thermal conductivity has been achieved with tilted Bi{sub 2}Te{sub 3} nanowires. The latter ones were recently fabricated and there is a need in modeling and characterization. The structural stability and the thermal conductivity of Bi{sub 2}Te{sub 3} nanowires along the tilted [015]* direction and along the [010] direction have been explored. For the two configurations of nanowires, the effect of the length and the cross section on the thermal conductivity is discussed. The thermal conductivity of infinite size tilted nanowire is 0.34 W/m K, significantly reduced compared to nanowire along the [010] direction (0.59 W/m K). This reveals that in Bi{sub 2}Te{sub 3} nanowires the structural anisotropy can be as important as size effects to reduce the thermal conductivity. The main reason is the reduction of the phonon mean free path which is found to be 1.7 nm in the tilted nanowires, compared to 5.3 nm for the nanowires along the [010] direction. The fact that tilted Bi{sub 2}Te{sub 3} nanowire is mechanically stable and it has extremely low thermal conductivity suggests these nanowires as a promising material for future thermoelectric generation application.

  11. Sb-induced phase control of InAsSb nanowires grown by molecular beam epitaxy.

    PubMed

    Zhuang, Q D; Anyebe, Ezekiel A; Chen, R; Liu, H; Sanchez, Ana M; Rajpalke, Mohana K; Veal, Tim D; Wang, Z M; Huang, Y Z; Sun, H D

    2015-02-11

    For the first time, we report a complete control of crystal structure in InAs(1-x)Sb(x) NWs by tuning the antimony (Sb) composition. This claim is substantiated by high-resolution transmission electron microscopy combined with photoluminescence spectroscopy. The pure InAs nanowires generally show a mixture of wurtzite (WZ) and zinc-blende (ZB) phases, where addition of a small amount of Sb (∼2-4%) led to quasi-pure WZ InAsSb NWs, while further increase of Sb (∼10%) resulted in quasi-pure ZB InAsSb NWs. This phase transition is further evidenced by photoluminescence (PL) studies, where a dominant emission associated with the coexistence of WZ and ZB phases is present in the pure InAs NWs but absent in the PL spectrum of InAs0.96Sb0.04 NWs that instead shows a band-to-band emission. We also demonstrate that the Sb addition significantly reduces the stacking fault density in the NWs. This study provides new insights on the role of Sb addition for effective control of nanowire crystal structure. PMID:25559370

  12. Orientation Dependence in Molecular Dynamics Simulations of Shocked Single Crystals

    SciTech Connect

    Germann, Timothy C.; Holian, Brad Lee; Lomdahl, Peter S.; Ravelo, Ramon

    2000-06-05

    We use multimillion-atom molecular dynamics simulations to study shock wave propagation in fcc crystals. As shown recently, shock waves along the <100> direction form intersecting stacking faults by slippage along {l_brace}111{r_brace} close-packed planes at sufficiently high shock strengths. We find even more interesting behavior of shocks propagating in other low-index directions: for the <111> case, an elastic precursor separates the shock front from the slipped (plastic) region. Shock waves along the <110> direction generate a leading solitary wave train, followed (at sufficiently high shock speeds) by an elastic precursor, and then a region of complex plastic deformation. (c) 2000 The American Physical Society.

  13. Molecular orientation of silane at the surface of colloidal silica.

    PubMed

    Söderholm, K J; Shang, S W

    1993-06-01

    The objective of this study was to investigate the silica-silane bond formation present at the filler interface of dental composites. Diffuse reflectance infrared Fourier transform spectroscopy was used, and the spectra of pyrogenic silica (Cab-O-Sil) treated with different concentrations of gamma-methacryloxypropyltrimethoxysilane (MPS) were analyzed. The outcome of the study suggested that the gamma-methacryloxypropyltrimethoxysilane (MPS) molecules oriented parallel to the colloidal silica surface (Cab-O-Sil) and formed two types of bonds. One of these bonds was a siloxane bridge formed by a condensation reaction between the silanol groups of both the silica surface and the hydrolyzed silane. Water formed during this reaction and soon became recaptured by the silanol groups of the silica surface. These water molecules were not available for additional hydrolyzation reactions of the unhydrolyzed silane under the experimental conditions. The intensity of the isolated OH-groups decreased because of this reaction. Simultaneous with the condensation reaction, the carbonyl group of the MPS molecule formed hydrogen bonds. This hydrogen bond formation resulted in a peak shift of the carbonyl band from 1718-1720 cm-1 to 1700-1702 cm-1. This hydrogen bond formation also occurred with the isolated OH-groups. After consumption of the isolated OH-groups, no additional surface reaction occurred because no further OH-groups were available for additional condensation reactions or hydrogen bond formation. The findings suggest that the amount of silane needed for filler treatment depends on the number of isolated OH-groups available on the filler surface. PMID:8388415

  14. Vacuum sublimed α ,ω-dihexylsexithiophene thin films: Correlating electronic structure and molecular orientation

    NASA Astrophysics Data System (ADS)

    Duhm, S.; Salzmann, I.; Koch, N.; Fukagawa, H.; Kataoka, T.; Hosoumi, S.; Nebashi, K.; Kera, S.; Ueno, N.

    2008-08-01

    In order to correlate the molecular orientation of organic thin films with charge injection barriers at organic/metal interfaces, the electronic structure and molecular orientation of vacuum sublimed thin films of α ,ω-dihexylsexithiophene (DH6T) on the substrates Ag(111), highly oriented pyrolytic graphite (HOPG), and tetratetracontane (TTC) precovered Ag(111) were investigated. Results from metastable atom electron spectroscopy, ultraviolet photoelectron spectroscopy, and x-ray diffraction were used to derive growth models (including molecular orientation and conformation) of DH6T on the different substrates. On Ag(111), DH6T exhibits a transition from lying molecules in the monolayer/bilayer range to almost standing upright molecules in multilayers. This is accompanied by a shift of the molecular energy levels to a lower binding energy by 0.65 eV with respect to the vacuum level. The unit cell of standing DH6T on lying DH6T on Ag(111) is estimated to be similar to the DH6T bulk phase. On HOPG, DH6T grows in the bulk phase with lying orientation, starting already from the monolayer coverage. DH6T on TTC precovered Ag(111) grows in an almost lying orientation and a conformation that allows a strong overlap of the hexyl chains of DH6T with the alkyl chains of TTC. In all cases, the electronic structure and, particulary, the ionization energy of DH6T is dependent on the orientation of DH6T, i.e., lying DH6T has higher ionization energy than standing DH6T.

  15. Far field emission profile of pure wurtzite InP nanowires

    SciTech Connect

    Bulgarini, Gabriele Reimer, Michael E.; Zwiller, Val; Dalacu, Dan; Poole, Philip J.; Lapointe, Jean

    2014-11-10

    We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to the nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.

  16. The role of the crystal orientation (c-axis) on switching field distribution and the magnetic domain configuration in electrodeposited hcp Co–Pt nanowires

    NASA Astrophysics Data System (ADS)

    Shahid Arshad, Muhammad; Proenca, Mariana P.; Trafela, Spela; Neu, Volker; Wolff, Ulrike; Stienen, Sven; Vazquez, Manuel; Kobe, Spomenka; Žužek Rožman, Kristina

    2016-05-01

    In this report, Co–Pt nanowires (NWs) were produced via potentiostatic electrodeposition into commonly used commercial ordered-alumina and disordered-polycarbonate membranes with similar pore diameters (≈200 nm). The pore diameter of the membranes and the deposition conditions were chosen such that the Co–Pt NWs fabricated into both membranes had a hexagonal close packed (hcp) crystal structure with a crystallographic texturing of the c-axis in the direction perpendicular to the NWs’ long axis; this effect was more pronounced in the alumina membranes. Due to the local fluctuation in electrodeposition conditions (pore diameter, pore shape), we have found a small variation in the c-axis orientations in the plane perpendicular to the NWs’ long axis. Magnetic characterizations suggested that there is uniaxial anisotropy perpendicular to the Co–Pt NWs’ long axis and the small variation in the orientation of the hcp c-axis plays an important role in the switching-field distribution and the magnetic domain structure of the Co–Pt NWs. First order reversal curves (FORCs) revealed week magnetostatic interactions between Co–Pt NWs, thus suggesting that the different pore alignments are not influencing much the magnetic properties in both membranes. The micromagnetic simulation revealed that the transverse-stripe (TS) and longitudinal stripe (LS) domains are energetically most favorable structures in such NWs. This study accentuates the influence of the crystal orientation (c-axis) of the high-anisotropy materials on their functional magnetic properties and thus is of great importance for the fabrication of nanodevices based on such NWs.

  17. Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Park, Chan Eon

    2016-03-01

    In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as DR3TSBDT that contain the alkylthio group and DR3TBDTT that does not. The improved performance of the DR3TBDTT-based devices, particularly in the photocurrent and the fill factor, was attributed to the large population of donor compound crystallites with a favorable face-on orientation along the perpendicular direction. This orientation resulted in efficient charge transport and a reduction in charge recombination. These findings underscore the great potential of small-molecule solar cells and suggest that even higher efficiencies can be achieved through materials development and molecular orientation control.In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as DR3TSBDT that contain the alkylthio group and DR3TBDTT that does not

  18. Control of molecular orientation in TTF TCNQ co-evaporated films by applying an electric field

    NASA Astrophysics Data System (ADS)

    Kato, N. A.; Fujimura, M.; Kuniyoshi, S.; Kudo, K.; Hara, M.; Tanaka, K.

    1998-06-01

    We have investigated the effect of an electric field on the molecular orientation of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) co-evaporated films, using an optical microscope, a scanning tunnelling microscope and X-ray diffraction. It is found that with an electric field applied TTF-TCNQ grows with the b-axis parallel to the electric field.

  19. Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors

    PubMed Central

    Walters, Diane M.; Lyubimov, Ivan; de Pablo, Juan J.; Ediger, M. D.

    2015-01-01

    Physical vapor deposition is commonly used to prepare organic glasses that serve as the active layers in light-emitting diodes, photovoltaics, and other devices. Recent work has shown that orienting the molecules in such organic semiconductors can significantly enhance device performance. We apply a high-throughput characterization scheme to investigate the effect of the substrate temperature (Tsubstrate) on glasses of three organic molecules used as semiconductors. The optical and material properties are evaluated with spectroscopic ellipsometry. We find that molecular orientation in these glasses is continuously tunable and controlled by Tsubstrate/Tg, where Tg is the glass transition temperature. All three molecules can produce highly anisotropic glasses; the dependence of molecular orientation upon substrate temperature is remarkably similar and nearly independent of molecular length. All three compounds form “stable glasses” with high density and thermal stability, and have properties similar to stable glasses prepared from model glass formers. Simulations reproduce the experimental trends and explain molecular orientation in the deposited glasses in terms of the surface properties of the equilibrium liquid. By showing that organic semiconductors form stable glasses, these results provide an avenue for systematic performance optimization of active layers in organic electronics. PMID:25831545

  20. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  1. Nanoextruded NbTi superconductor nanowires investigated using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Hsin; Hsu, Quang-Cherng; Wu, Cheng-Da

    2016-04-01

    The effects of extrusion temperature, extrusion ratio, and workpiece size on the extrusion process of NbTi alloy nanowires (workpieces) are studied using the modified embedded atom method potential. The results are discussed in terms of atomic trajectories, potential energy, extrusion force, and stress. Simulation results show that the workpiece atoms near the ram lose their structural order when the extrusion process begins. The number of disordered atoms gradually increases with increasing ram displacement in order to relax the increasing pressure from the ram. The extrusion force and potential energy increase with increasing temperature. The effect of extrusion ratio dominates the extrusion force once the workpiece atoms start entering the mold opening. A large extrusion force is required for large workpieces with a small extrusion ratio; however, a small workpiece with a large extrusion ratio could lead to high peaks and a large oscillation in the force curve.

  2. Conditions for high yield of selective-area epitaxy InAs nanowires on SiO x /Si(111) substrates.

    PubMed

    Robson, M T; Dubrovskii, V G; LaPierre, R R

    2015-11-20

    Experimental data and a model are presented which define the boundary values of V/III flux ratio and growth temperature for droplet-assisted nucleation of InAs semiconductor nanowires in selective-area epitaxy on SiO(x)/Si (111) substrates by molecular beam epitaxy. Within these boundaries, the substrate receives a balanced flux of group III and V materials allowing the growth of vertically oriented nanowires as compared to the formation of droplets or crystallites. PMID:26508403

  3. Controlled fabrication of DNA molecular templates for the deposition and electrical measurement of 1D metal nanowires

    NASA Astrophysics Data System (ADS)

    Barreda, Jorge; Hu, Longqian; Yu, Liuqi; Wang, Zhibin; Xia, Junfei; Guan, Jingjiao; Xiong, Peng; Guan's group Team; Xiong's group Team

    Stretched DNA nanowires (NWs) offer a convenient substrate for the fabrication and measurement of 1D metal NWs of width down to nm.So far the fabrication of the DNA templates has replied on somewhat random self-assembly processes. Here we demonstrate a process with high degree of control over the length, spacing, diameter , and orientation of the metal NWs: A one-step dewetting of a DNA solution on a PDMS stamp with an array of micropillars with well-defined pitch yields DNA NWs suspended across the micropillars along a chosen direction. The DNA NWs are then transferred via micro-contact printing onto a Si/SiO2/SiNx substrate with a lithographically fabricated trench defined by an opening in the SiNx layer and undercut in the SiO2 layer. The template with DNA NWs stretched across the trench is placed in a high-vacuum evaporator for metal deposition, resulting in a metal NW of width defined by the diameter of the DNA template (<10 nm) and length determined by the width of the trench. Quasi-four terminal I-V measurements are performed in situ with incremental metal deposition. Concomitant with a transition from strongly nonlinear IV to Ohmic behavior with increasing thickness, the NW resistance is observed to decrease exponentially.

  4. Coaxial nanowire resonant tunneling diodes from non-polar AlN/GaN on silicon

    NASA Astrophysics Data System (ADS)

    Carnevale, S. D.; Marginean, C.; Phillips, P. J.; Kent, T. F.; Sarwar, A. T. M. G.; Mills, M. J.; Myers, R. C.

    2012-04-01

    Resonant tunneling diodes are formed using AlN/GaN core-shell nanowire heterostructures grown by plasma assisted molecular beam epitaxy on n-Si(111) substrates. By using a coaxial geometry, these devices take advantage of non-polar (m-plane) nanowire sidewalls. Device modeling predicts non-polar orientation should enhance resonant tunneling compared to a polar structure, and that AlN double barriers will lead to higher peak-to-valley current ratios compared to AlGaN barriers. Electrical measurements of ensembles of nanowires show negative differential resistance appearing only at cryogenic temperature. Individual nanowire measurements show negative differential resistance at room temperature with peak current density of 5 × 105 A/cm2.

  5. Chemical vapor deposition graphene as structural template to control interfacial molecular orientation of chloroaluminium phthalocyanine

    NASA Astrophysics Data System (ADS)

    Ying Mao, Hong; Wang, Rui; Wang, Yu; Chao Niu, Tian; Qiang Zhong, Jian; Yang Huang, Ming; Chen Qi, Dong; Ping Loh, Kian; Thye Shen Wee, Andrew; Chen, Wei

    2011-08-01

    Chemical vapor deposition (CVD) graphene has been used as an effective structural template to manipulate molecular orientation of organic thin film of chloroaluminium phthalocyanine (ClAlPc) on indium tin oxide (ITO) electrode. As revealed by in-situ near-edge x-ray adsorption fine structure measurement, ClAlPc molecules on the CVD graphene modified ITO electrode adopt a well-aligned lying-down configuration with their molecular π-plane nearly parallel to the electrode surface, in contrast to the random orientation of ClAlPc molecules on the bare ITO electrode. This lying-down configuration results in an optimized stacking of the molecular π-plane perpendicular to the electrode surface and hence facilitates efficient charge transport along this direction.

  6. Structural characterization of nanowires and nanowire arrays

    NASA Astrophysics Data System (ADS)

    Becker, Catherine Rose

    Nanowires, which have diameter less than a few hundred nanometers and high aspect ratios, may have the same properties as their corresponding bulk materials, or may exhibit unique properties due to their confined dimensions and increased surface to volume ratios. They are a popular field of technological investigation in applications that depend on the transport of charge carriers, because of expectations that microcircuit miniaturization will lead to the next boom in the electronics industry. In this work, the high spatial resolution afforded by transmission electron microscopy (TEM) is used to study nanowires formed by electrochemical deposition into porous alumina templates. The goal is to determine the effect of the synthesis and subsequent processing on the microstructure and crystallinity of the wires. A thorough understanding of the microstructural features of a material is vital for optimizing its performance in a desired application. Two material systems were studied in this work. The first is bismuth telluride (Bi 2Te3), which is used in thermoelectric applications. The second is metallic copper, the electrochemical deposition of which is of interest for interconnects in semiconductor devices. The first part of this work utilized TEM to obtain a thorough characterization of the microstructural features of individual Bi2Te3 nanowires following release from the templates. As deposited, the nanowires are fine grained and exhibit significant lattice strain. Annealing increases the grain size and dislocations are created to accommodate the lattice strain. The degree of these microstructural changes depends on the thermal treatment. However, no differences were seen in the nanowire microstructure as a function of the synthetic parameters. The second part of this work utilized a modified dark field TEM technique in order to obtain a spatially resolved, semi-quantitative understanding of the evolution of preferred orientation as a function of the electrochemical

  7. Role of molecular orientational anisotropy in the chiral resolution of enantiomers in adsorbed overlayers.

    PubMed

    Szabelski, Paweł; Woszczyk, Aleksandra

    2012-07-31

    Separation of chiral molecules using achiral inputs is an interesting alternative to traditional techniques based on the chiral recognition mechanism. In this article we propose a lattice gas Monte Carlo model of two-dimensional chiral segregation induced by breaking of molecular orientational symmetry. Simulations were performed on a square lattice for rigid chain molecules composed of four and five identical segments. Mirror-image flat chain conformations resulting in different enantiomeric pairs were considered for each probe molecule. The enantiomers were assumed to interact via short-ranged segment-segment interaction potential limited to nearest neighbors on the lattice. We considered two qualitatively different situations in which (1) the molecules were allowed to rotate on the surface and adopt any of the four planar orientations and (2) the rotation was blocked, so that only one planar orientation was possible. The results obtained for the racemic overlayers showed clearly that the orientational symmetry breaking can induce spontaneous segregation of the enantiomers into large enantiopure domains. However, this effect was observed only for molecules with sufficiently long linear fragment. In the case of kinked bulky molecules a mixed assembly was formed, demonstrating the role of molecular shape in the orientationally biased segregation of enantiomers in adsorbed films. The insights from this study can be useful in developing strategies for 2D chiral separations in which external directional fields are used. PMID:22747234

  8. Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells.

    PubMed

    Kim, Yu Jin; Park, Chan Eon

    2016-03-31

    In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as that contain the alkylthio group and that does not. The improved performance of the -based devices, particularly in the photocurrent and the fill factor, was attributed to the large population of donor compound crystallites with a favorable face-on orientation along the perpendicular direction. This orientation resulted in efficient charge transport and a reduction in charge recombination. These findings underscore the great potential of small-molecule solar cells and suggest that even higher efficiencies can be achieved through materials development and molecular orientation control. PMID:26987868

  9. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells. PMID:22889019

  10. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy.

    PubMed

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A

    2016-01-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance. PMID:27619423

  11. Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth

    PubMed Central

    Yang, Junliang; Yim, Sanggyu; Jones, Tim S.

    2015-01-01

    We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D ≤ 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents α = 0.71 ± 0.12, β = 0.36 ± 0.03, and 1/z = 0.39 ± 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals. PMID:25801646

  12. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K.; Korona, K. P.

    2015-12-14

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 10{sup 2} and the leakage current of about 10{sup −4} A/cm{sup 2} at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ∼2 nm thick SiN{sub x} layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 10{sup 15 }cm{sup −3}. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiN{sub x} interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  13. Molecular dynamic simulation of stress evolution analysis in Cu nanowire under ultra-high strain-rate simple tension

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Ching; Pen, Dar-Jen; Chen, Jiun-Nan

    2014-04-01

    This study analyses the behaviour of atoms associated with the propagation of stress waves in Cu nanowires (NWs) during uniaxial tensile deformation using molecular dynamic simulation. Maximum local stress (MLS) and virial stress (VS) methods are adopted to express dynamic stress in ⟨100⟩ Cu NWs under tension. Simulation results indicated that the VS method enhances the averaging effect at ultra-high strain rates (above 1010 s-1), leading to serious undervaluation of yield stress. However, the MLS method provides superior prediction results for the dynamic mechanical responses of NWs under tension at the ultra-high strain rate than does the VS. At a strain rate of 7 × 1010 s-1, the double-peak stress phenomenon was observed in the stress-strain curve using the MLS method. The response time (Trs) to wave propagation, observed at an ultra-high strain rate, is responsible for the accumulation of the elastic stress that is applied at the beginning of tensile loading in a short period, producing the first stress peak. Following plastic deformation, the encounter of the wavefronts with the reduced tensile stress causes the fully constructive interference effect in the middle of the tensile NWs, producing the second stress peak. The results explain the dynamic mechanical behaviour of NWs, contributing to future applications of subsonic manufacturing.

  14. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Korona, K. P.; Sobanska, M.; Klosek, K.

    2015-12-01

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 102 and the leakage current of about 10-4 A/cm2 at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ˜2 nm thick SiNx layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 1015 cm-3. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiNx interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  15. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  16. Anisotropic Molecular Orientation of Poly [4, 4'-oxydiphenylene- 1, 2, 3, 4-cyclobutanetetracarboximide] Films Irradiated by Linearly Polarized UV Light

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kenji; Usami, Kiyoaki; Araya, Takeshi; Ushioda, Sukekatsu

    1999-12-01

    We have investigated the anisotropic molecular orientation of poly [4, 4'-oxydiphenylene-1, 2, 3, 4-cyclobutanetetracarboximide] (CBDA-ODA) films induced by irradiation with linearly polarized ultraviolet light (LPUVL). The molecular orientation was monitored by measuring the polarized infrared (IR) absorption spectra of a 10-nm-thick film. The anisotropy of the molecular orientation exceeded that of a rubbed film with the same film thickness. From the LPUVL exposure dependence of IR absorption we found that preferential cleavage occurs to the cyclobutane ring in the polyimide backbone structure oriented parallel to the polarization direction of LPUVL. Then the orientation of the cleaved polyimide molecule is randomized. We conclude that the large anisotropy of the LPUVL-exposed film is caused by the anisotropic cleavage of the cyclobutane rings and the orientational randomization of the cleaved polyimide molecules.

  17. Self-assembly and separation of nematic colloids through photo-patterned molecular orientation

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui; Guo, Yubing; Conklin, Christopher; Viñals, Jorge; Shiyanovskii, Sergij; Wei, Qi-Huo; Lavrentovich, Oleg; Oleg D. Lavrentovich Team; Jorge Viñals Collaboration

    Design and control of particles self-assembly is an important theme in colloidal science. Dispersions of colloids in a nematic liquid crystal (LC) show a diversity of self-assembled structures guided by long-range interactions. Here we describe a versatile approach to control colloidal structures through surface-patterned molecular orientation and dynamic processes of LC-enabled electrokinetics (LCEK). In presence of the electric field, the surface-imprinted pattern of molecular orientation triggers LCEK flows which transport the colloidal aggregates to specified locations. The aggregation is directed by the director gradients. Colloids that differ in surface anchoring or shape are guided into different areas of the cell, thus being sorted. The dynamic approach to control colloidal systems through LCEK in cells with patterned director field opens the opportunities in the microfluidic and lab on a chip applications. This work was supported by NSF grants DMR-1507637 , DMS-1434185 and CMMI-1436565.

  18. Dynamics of Molecular Orientation Observed Using Angle Resolved Photoemission Spectroscopy during Deposition of Pentacene on Graphite.

    PubMed

    Park, Sang Han; Kwon, Soonnam

    2016-04-19

    A real-time method to observe both the structural and the electronic configuration of an organic molecule during deposition is reported for the model system of pentacene on graphite. Structural phase transition of the thin films as a function of coverage is monitored by using in situ angle resolved photoemission spectroscopy (ARPES) results to observe the change of the electronic configuration at the same time. A photoemission theory that uses independent atomic center approximations is introduced to identify the molecular orientation from the ARPES technique. This study provides a practical insight into interpreting ARPES data regarding dynamic changes of molecular orientation during initial growth of molecules on a well-defined surface. PMID:26999332

  19. High-Throughput Analysis of Molecular Orientation on Surfaces by NEXAFS Imaging of Curved Sample Arrays

    PubMed Central

    Baio, Joe E.; Jaye, Cherno; Fischer, Daniel A.; Weidner, Tobias

    2015-01-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy provides detailed information about the orientation and alignment of thin films. NEXAFS is a synchrotron-based technique—the availability of beam-time per user is typically limited to no more than a few weeks per year. The limited availability is currently a true barrier for using NEXAFS in combinatorial studies of molecular alignment. We have recently demonstrated how large area full field NEXAFS imaging allows users to pursue combinatorial studies of surface chemistry. Now we report an extension of this approach which allows the acquisition of orientation information from a single NEXAFS image. An array with 80 elements (samples), containing eight series of different surface modifications, was mounted on a curved substrate allowing the collection of NEXAFS spectra with a range of orientations with respect to the X-ray beam. Images collected from this array show how hyperspectral NEXAFS data collected from curved surfaces can be used for high-throughput molecular orientation analysis. PMID:25046426

  20. Controlling Nanostructures by Templated Templates: Inheriting Molecular Orientation in Binary Heterostructures.

    PubMed

    Breuer, Tobias; Witte, Gregor

    2015-09-16

    Precise preparation strategies are required to fabricate molecular nanostructures of specific arrangement. In bottom-up approaches, where nanostructures are gradually formed by piecing together individual parts to the final structure, the self-ordering mechanisms of the involved structures are utilized. In order to achieve the desired structures regarding morphology, grain size, and orientation of the individual moieties, templates can be applied, which influence the formation process of subsequent structures. However, this strategy is of limited use for complex architectures because the templates only influence the structure formation at the interface between the template and the first compound. Here, we discuss the implementation of so-called templated templates and analyze to what extent orientations of the initial layers are inherited in the top layers of another compound to enable structural control in binary heterostructures. For that purpose, we prepared crystalline templates of the organic semiconductors pentacene and perfluoropentacene in different exclusive orientations. We observe that for templates of both individual materials the molecular orientation is inherited in the top layers of the respective counterpart. This behavior is also observed for various other molecules, indicating the robustness of this approach. PMID:26305339

  1. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  2. Extended orientational correlation study for molecular liquids containing distorted tetrahedral molecules: application to methylene halides.

    PubMed

    Pothoczki, Szilvia; Temleitner, László; Pusztai, László

    2010-04-28

    The method of Rey [Rey, J. Chem. Phys. 126, 164506 (2007)] for describing how molecules orient toward each other in systems with perfect tetrahedral molecules is extended to the case of distorted tetrahedral molecules of c(2v) symmetry by means of introducing 28 subgroups. Additionally, the original analysis developed for perfect tetrahedral molecules, based on six groups, is adapted for molecules with imperfect tetrahedral shape. Deriving orientational correlation functions have been complemented with detailed analyses of dipole-dipole correlations. This way, (up to now) the most complete structure determination can be carried out for such molecular systems. In the present work, these calculations have been applied for particle configurations resulting from reverse Monte Carlo computer modeling. These particle arrangements are fully consistent with structure factors from neutron and x-ray diffraction measurements. Here we present a complex structural study for methylene halide (chloride, bromide, and iodide) molecular liquids, as possibly the best representative examples. It has been found that the most frequent orientations of molecules are of the 2:2 type over the entire distance range in these liquids. Focusing on the short range orientation, neighboring molecules turn toward each other with there "H,Y"-"H,Y" (Y: Cl, Br, I) edges, apart from CH(2)Cl(2) where the H,H-H,Cl arrangement is the most frequent. In general, the structure of methylene chloride appears to be different from the structure of the other two liquids. PMID:20441292

  3. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    SciTech Connect

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio; Lopez Lopez, Maximo; Pulzara Mora, Alvaro; Mendez Garcia, Victor H.

    2007-02-09

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface.

  4. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  5. Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface

    PubMed Central

    Dai, Han; Ding, Ruiqiang; Li, Meicheng; Huang, Jinjer; Li, Yingfeng; Trevor, Mwenya

    2014-01-01

    Large-area Ag nanowires are ordered by spontaneous spreading of volatile droplet on a wettable solid surface. Compared with other nanowires orientation methods, radial shaped oriented Ag nanowires in a large ring region are obtained in an extremely short time. Furthermore, the radial shaped oriented Ag nanowires are transferred and aligned into one direction. Based on the hydrodynamics, the coactions among the microfluid, gravity effect and the adhesion of substrate on the orientation of the Ag nanowires are clearly revealed. This spreading method opens an efficient way for extreme economic, efficient and “green” way for commercial producing ordered nanowire arrays. PMID:25339118

  6. Long-range orientational order, local-field anisotropy, and mean molecular polarizability in liquid crystals

    SciTech Connect

    Aver'yanov, E. M.

    2009-01-15

    The problems on the relation of the mean effective molecular polarizability {gamma}-bar to the long-range orientational order of molecules (the optical anisotropy of the medium) in uniaxial and biaxial liquid crystals, the local anisotropy on mesoscopic scales, and the anisotropy of the Lorentz tensor L and the local-field tensor f are formulated and solved. It is demonstrated that the presence of the long-range orientational order of molecules in liquid crystals imposes limitations from below on the molecular polarizability {gamma}-bar, which differs for uniaxial and biaxial liquid crystals. The relation between the local anisotropy and the molecular polarizability {gamma}-bar is investigated for calamitic and discotic uniaxial liquid crystals consisting of lath- and disk-shaped molecules. These liquid crystals with identical macroscopic symmetry differ in the local anisotropy and the relationships between the components L{sub parallel} < L{sub perpendicular} , f{sub parallel} < f{sub perpendicular} (calamitic) and L{sub parallel} > L{sub perpendicular} , f{sub parallel} > f{sub perpendicular} (discotic) for an electric field oriented parallel and perpendicular to the director. The limitations from below and above on the molecular polarizability {gamma}-bar due to the anisotropy of the tensors L and f are established for liquid crystals of both types. These limitations indicate that the molecular polarizability {gamma}-bar depends on the phase state and the temperature. The factors responsible for the nonphysical consequences of the local-field models based on the approximation {gamma}-bar = const are revealed. The theoretical inferences are confirmed by the experimental data for a number of calamitic nematic liquid crystals with different values of birefringence and the discotic liquid crystal Col{sub ho}.

  7. 3-D matrix template-assisted growth of oriented oxide nanowire arrays using glancing angle pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wright, N.; Mateo-Feliciano, D.; Ostoski, A.; Mukherjee, P.; Witanachchi, S.

    Nanosphere lithography is a combination of different methods to nanofabrication. In this work nanosphere lithography is used to study the growth of Zinc Oxide Nano-columns (ZnO NCs) on different diameter Silica Nanosphere (SNS) self-assembled templates. ZnO NCs are promising building blocks for many existing and emerging optical, electrical, and piezoelectric devices, specifically, the seeded growth of other oxide materials. Recently, reports have shown a ferroelectric phase of zinc stannate (ZnSnO3) and while lead zirconium titanate oxide (PZT) has been the main material of interest in ferroelectric and piezoelectric applications, the toxicity of lead has been of great concern. The possibility of developing lead free piezoelectric materials is of great interest in the ferroelectric community. Langmuir-Blodgett method was used to construct a self-assembled monolayer of SNSs on silicon substrates. Oriented ZnO NCs were grown on top of the spheres using the glancing angle pulsed laser deposition technique. Columns were formed in a spatially ordered closed-packed hexagonal configuration. Growth of ZnO NCs was studied as function of ambient Oxygen pressure with SNS size ranging from 250-1000 nm. Cross-sectional Scanning Electron Microscopy and X-ray diffraction (XRD) were used to study the template structure. Relative aspect ratios were studied and showed tunability of column dimensions with sphere size. XRD revealed ZnO NC arrays were c-axis oriented with hexagonal wurtzite structure.

  8. Enhanced plasmonic properties of gold-catalysed semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Naumenko, Denys; Zannier, Valentina; Grillo, Vincenzo; Cassese, Damiano; Priante, Giacomo; Dal Zilio, Simone; Rubini, Silvia; Lazzarino, Marco

    2014-10-01

    A key challenge for the development of plasmonic nanodevices is their integration into active semiconducting structures. Gold-catalysed semiconductor nanowires are promising candidates for their bottom-up growth process that aligns a single gold nanoparticle at each nanowire apex. Unfortunately these show extremely poor plasmonic properties. In this work, we propose a way to enhance their plasmonic resonance up to those of ideal and isolated gold nanoparticles. A suitable purification protocol compatible with GaAs and ZnSe molecular beam epitaxy of nanowires is used to produce plasmonic active nanowires, which were used to enhance the Raman signal of pentacene and graphene oxide. Enhancement factors up to three orders of magnitude are demonstrated.A key challenge for the development of plasmonic nanodevices is their integration into active semiconducting structures. Gold-catalysed semiconductor nanowires are promising candidates for their bottom-up growth process that aligns a single gold nanoparticle at each nanowire apex. Unfortunately these show extremely poor plasmonic properties. In this work, we propose a way to enhance their plasmonic resonance up to those of ideal and isolated gold nanoparticles. A suitable purification protocol compatible with GaAs and ZnSe molecular beam epitaxy of nanowires is used to produce plasmonic active nanowires, which were used to enhance the Raman signal of pentacene and graphene oxide. Enhancement factors up to three orders of magnitude are demonstrated. Electronic supplementary information (ESI) available: SEM characterization of: (i) transferred ZnSe NWs onto the glass substrates, (ii) etched gold NPs of ZnSe NWs in Ar+ plasma, and (iii) self-catalysed GaAs NWs. Simulation of extinction spectra. Statistical characterization of plasmon-active sites at the focal plane with a length of NWs. Photoluminescence on ZnSe NWs. B3g Raman mode of pentacene as an indicator of molecule orientation. The dependence of graphene oxide Raman

  9. Nanowire Electron Scattering Spectroscopy

    NASA Technical Reports Server (NTRS)

    Hunt, Brian; Bronikowsky, Michael; Wong, Eric; VonAllmen, Paul; Oyafuso, Fablano

    2009-01-01

    Nanowire electron scattering spectroscopy (NESS) has been proposed as the basis of a class of ultra-small, ultralow-power sensors that could be used to detect and identify chemical compounds present in extremely small quantities. State-of-the-art nanowire chemical sensors have already been demonstrated to be capable of detecting a variety of compounds in femtomolar quantities. However, to date, chemically specific sensing of molecules using these sensors has required the use of chemically functionalized nanowires with receptors tailored to individual molecules of interest. While potentially effective, this functionalization requires labor-intensive treatment of many nanowires to sense a broad spectrum of molecules. In contrast, NESS would eliminate the need for chemical functionalization of nanowires and would enable the use of the same sensor to detect and identify multiple compounds. NESS is analogous to Raman spectroscopy, the main difference being that in NESS, one would utilize inelastic scattering of electrons instead of photons to determine molecular vibrational energy levels. More specifically, in NESS, one would exploit inelastic scattering of electrons by low-lying vibrational quantum states of molecules attached to a nanowire or nanotube.

  10. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua

    2016-05-01

    For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration.For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by

  11. Parity-selective enhancement of field-free molecular orientation in an intense two-color laser field

    SciTech Connect

    Yun, Hyeok; Nam, Chang Hee; Kim, Hyung Taek; Kim, Chul Min; Lee, Jongmin

    2011-12-15

    We investigated the characteristics of molecular orientation induced by a nonresonant two-color femtosecond laser field. By analyzing the rotational dynamics of asymmetric linear molecules, we revealed that the critical parameter in characterizing the molecular orientation was the hyperpolarizability of molecules that selected the excitation paths of rotational states between parity-changing and parity-conserving transitions. Especially, in the case of molecules with small hyperpolarizability, a significant enhancement of orientation was achieved at the half-rotational period, instead of the full-rotational period. This deeper understanding of the hyperpolarizability-dependent characteristics of molecular orientation in a two-color scheme can provide an effective method to achieve significantly enhanced field-free orientation for various polar molecules.

  12. Monitoring molecular orientational order in NLO push-pull based polymeric films via photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Torres-Zúñiga, V.; Castañeda-Guzmán, R.; Morales-Saavedra, O. G.; Pérez-Martínez, A. L.; Ogawa, T.

    2011-12-01

    The pulsed-laser photoacoustic-technique (PLPA) was implemented to characterize molecular orientational order and anisotropy in push-pull poled polymeric films as function of temperature and laser polarization. Traditionally, photoacoustic signals are considered to be directly proportional to the linear optical absorption in amorphous media. In this work, however, it is shown that photoacoustic signals can also be highly sensitive to the material anisotropy when convenient polarization dependent photoacoustic analyses are performed. Thus, variation of the molecular orientation in organic films, comprising rod-like polar chromophores, can be unambiguously monitored via rms-analyses performed on the amplitude of the generated opto-acoustical PLPA-signals as function of the incident laser polarization. This result can be useful for the characterization of organic-based nonlinear optical (NLO) poled films and, in general, in studies of anisotropic materials. In fact, in this work we were able to accurately determine the molecular order parameter ( ϕ) of a NLO-active spin-coated polymeric film containing optically active push-pull chromophores. These molecules, previously oriented via an electrical-poling procedure, are capable to exhibit strong second harmonic generation (SHG) effects. The PLPA-measurements were systematically compared to the linear UV-vis optical absorbance spectra while heating the poled film sample in order to monitor the thermally induced molecular disorder, so that the order parameter may be photo-acoustically evaluated via the PLPA-signals generated from the poled to the unpoled film phase. These PLPA-experiments were performed taking into account the UV-vis reference spectra for calibration and comparison purposes in the evaluation of the order parameter. A significant advantage of the PLPA-technique over commonly used optical spectral methodologies is its convenient applicability in samples exhibiting poor or null optical transmission.

  13. Transient molecular orientation and rheology in flow aligning thermotropic liquid crystalline polymers

    SciTech Connect

    Ugaz, Victor M.; Burghardt, Wesley R.; Zhou, Weijun; Kornfield, Julia A.

    2001-09-01

    Quantitative measurements of molecular orientation and rheology are reported for various transient shear flows of a nematic semiflexible copolyether. Unlike the case of lyotropic liquid crystalline polymers (LCPs), whose structure and rheology in shear are dominated by director tumbling, this material exhibits flow aligning behavior. The observed behavior is quite similar to that seen in a copolyester that we have recently studied [Ugaz and Burghardt (1998)], suggesting that flow aligning dynamics may predominate in main-chain thermotropes that incorporate significant chain flexibility. Since the flow aligning regime has received little attention in previous attempts to model the rheology of textured, polydomain LCPs, we attempt to determine whether available models are capable of predicting the orientation and stress response of this class of LCP. We first examine the predictions of the polydomain Ericksen model, an adaptation of Ericksen's transversely isotropic fluid model which accounts for the polydomain distribution of director orientation while neglecting distortional elasticity. This simple model captures a number of qualitative and quantitative features associated with the evolution of orientation and stress during shear flow inception, but cannot cope with reversing flows. To consider the possible role of distortional elasticity in the re-orientation dynamics upon reversal, we evaluate the mesoscopically averaged domain theory of Larson and Doi [Larson and Doi (1991)], which incorporates a phenomenological description of distortional elastic effects. To date, their approach to account for polydomain structure has only been applied to describe tumbling LCPs. We find that it captures the qualitative transient orientation response to flow reversals, but is less successful in describing the evolution of stresses. This is linked to the decoupling approximation adopted during the model's development. Finally, a modified polydomain Ericksen model is introduced

  14. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  15. Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF

    DOE PAGESBeta

    Ostadhossein, Alireza; Cubuk, Ekin D.; Tritsaris, Georgios A.; Kaxiras, Efthimios; Zhang, Sulin; Adri C. T. van Duin

    2014-12-18

    Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. In this research, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations showmore » that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si–Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous–crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ~4.2:1. In conclusion, our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation.« less

  16. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE PAGESBeta

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; et al

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaNmore » to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.« less

  17. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.

    PubMed

    Ostadhossein, Alireza; Cubuk, Ekin D; Tritsaris, Georgios A; Kaxiras, Efthimios; Zhang, Sulin; van Duin, Adri C T

    2015-02-01

    Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. Herein, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations show that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si-Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous-crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ∼4.2 : 1. Our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation. PMID:25559797

  18. Structural and optical properties of InGaN--GaN nanowire heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Limbach, F.; Gotschke, T.; Stoica, T.; Calarco, R.; Sutter, E.; Ciston, J.; Cusco, R.; Artus, L.; Kremling, S.; Hofling, S.; Worschech, L.; Grutzmacher, D.

    2011-01-01

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, μ-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  19. Stress effects on the initial lithiation of crystalline silicon nanowires: Reactive molecular dynamics simulations using ReaxFF

    SciTech Connect

    Ostadhossein, Alireza; Cubuk, Ekin D.; Tritsaris, Georgios A.; Kaxiras, Efthimios; Zhang, Sulin; Adri C. T. van Duin

    2014-12-18

    Silicon (Si) has been recognized as a promising anode material for the next-generation high-capacity lithium (Li)-ion batteries because of its high theoretical energy density. Recent in situ transmission electron microscopy (TEM) revealed that the electrochemical lithiation of crystalline Si nanowires (c-SiNWs) proceeds by the migration of the interface between the lithiated Si (LixSi) shell and the pristine unlithiated core, accompanied by solid-state amorphization. The underlying atomic mechanisms of Li insertion into c-Si remain poorly understood. In this research, we perform molecular dynamics (MD) simulations using the reactive force field (ReaxFF) to characterize the lithiation process of c-SiNWs. Our calculations show that ReaxFF can accurately reproduce the energy barriers of Li migration from DFT calculations in both crystalline (c-Si) and amorphous Si (a-Si). The ReaxFF-based MD simulations reveal that Li insertion into interlayer spacing between two adjacent (111) planes results in the peeling-off of the (111) facets and subsequent amorphization, in agreement with experimental observations. We find that breaking of the Si–Si bonds between (111)-bilayers requires a rather high local Li concentration, which explains the atomically sharp amorphous–crystalline interface (ACI). Our stress analysis shows that lithiation induces compressive stress at the ACI layer, causing retardation or even the stagnation of the reaction front, also in good agreement with TEM observations. Lithiation at high temperatures (e.g. 1200 K) shows that Li insertion into c-SiNW results in an amorphous to crystalline phase transformation at Li : Si composition of ~4.2:1. In conclusion, our modeling results provide a comprehensive picture of the effects of reaction and diffusion-induced stress on the interfacial dynamics and mechanical degradation of SiNW anodes under chemo-mechanical lithiation.

  20. Two-step fabrication of self-catalyzed Ga-based semiconductor nanowires on Si by molecular-beam epitaxy.

    PubMed

    Yu, Xuezhe; Li, Lixia; Wang, Hailong; Xiao, Jiaxing; Shen, Chao; Pan, Dong; Zhao, Jianhua

    2016-05-19

    For the epitaxial growth of Ga-based III-V semiconductor nanowires (NWs) on Si, Ga droplets could provide a clean and compatible solution in contrast to the common Au catalyst. However, the use of Ga droplets is rather limited except for that in Ga-catalyzed GaAs NW studies in a relatively narrow growth temperature (Ts) window around 620 °C on Si. In this paper, we have investigated the two-step growth of Ga-catalyzed III-V NWs on Si (111) substrates by molecular-beam epitaxy. First, by optimizing the surface oxide, vertically aligned GaAs NWs with a high yield are obtained at Ts = 620 °C. Then a two-temperature procedure is adopted to preserve Ga droplets at lower Ts, which leads to an extension of Ts down to 500 °C for GaAs NWs. Based on this procedure, systematic morphological and structural studies for Ga-catalyzed GaAs NWs in the largest Ts range could be presented. Then within the same growth scheme, for the first time, we demonstrate Ga-catalyzed GaAs/GaSb heterostructure NWs. These GaSb NWs are axially grown on the GaAs NW sections and are pure zinc-blende single crystals. Compositional measurements confirm that the catalyst particles indeed mainly consist of Ga and GaSb sections are of high purity but with a minor composition of As. In the end, we present GaAsSb NW growth with a tunable Sb composition. Our results provide useful information for the controllable synthesis of multi-compositional Ga-catalyzed III-V semiconductor NWs on Si for heterogeneous integration. PMID:27194599

  1. Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(ii) centres.

    PubMed

    Bowen, Alice M; Jones, Michael W; Lovett, Janet E; Gaule, Thembanikosi G; McPherson, Michael J; Dilworth, Jonathan R; Timmel, Christiane R; Harmer, Jeffrey R

    2016-02-17

    Orientation-selective DEER (Double Electron-Electron Resonance) measurements were conducted on a series of rigid and flexible molecules containing Cu(ii) ions. A system with two rigidly held Cu(ii) ions was afforded by the protein homo-dimer of copper amine oxidase from Arthrobacter globiformis. This system provided experimental DEER data between two Cu(ii) ions with a well-defined distance and relative orientation to assess the accuracy of the methodology. Evaluation of orientation-selective DEER (os DEER) on systems with limited flexibility was probed using a series of porphyrin-based Cu(ii)-nitroxide and Cu(ii)-Cu(ii) model systems of well-defined lengths synthesized for this project. Density functional theory was employed to generate molecular models of the conformers for each porphyrin-based Cu(ii) dimer studied. Excellent agreement was found between DEER traces simulated using these computed conformers and the experimental data. The performance of different parameterised structural models in simulating the experimental DEER data was also investigated. The results of this analysis demonstrate the degree to which the DEER data define the relative orientation of the two Cu(ii) ions and highlight the need to choose a parameterised model that captures the essential features of the flexibility (rotational freedom) of the system being studied. PMID:26837391

  2. Magneto-transport properties of InAs nanowires laterally-grown by selective area molecular beam epitaxy on GaAs (110) masked substrates

    SciTech Connect

    Akabori, M.; Yamada, S.

    2013-12-04

    We prepared InAs nanowires (NWs) by lateral growth on GaAs (110) masked substrates in molecular beam epitaxy. We measured magneto-transport properties of the InAs NWs. In spite of parallel-NW multi-channels, we observed fluctuating magneto-conductance. From the fluctuation, we evaluated phase coherence length as a function of measurement temperature, and found decrease in the length with increase in the temperature. We also evaluate phase coherence length as a function of gate voltage.

  3. Direct laser fabrication of nanowires on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    Periodic nanowires are observed from (001) orientation of Si and GaAs when the surfaces are irradiated interferentially by high power laser pulses. These nanowires are self-assembled and can be strain-free while their period is consistent with interference period. The nanowire morphologies are studied by atomic force microscopy. The observed period between nanowires depends on the wavelengths used and interference angle. The nanowire width increases with laser intensity. The narrowest nanowires observed have the width smaller than 20 nm, which is more than 10 times smaller than the interference period.

  4. Tensile and compressive mechanical behavior of twinned silicon carbide nanowires

    SciTech Connect

    Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

    2010-04-01

    Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strains. The critical strain of the twinned nanowires can be enhanced by twin-stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are just stretched before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for the thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of the twinned SiC nanowires exhibits two differently failure modes, depending on the length and diameter of the nanowires, i.e. shell buckling for short length nanowires and columnar buckling for longer length nanowires.

  5. Bond orientation properties in lipid molecules of membranes: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rabinovich, Alexander L.; Lyubartsev, Alexander P.

    2014-05-01

    Atomistic molecular dynamics simulations have been carried out for 16 different fully hydrated phosphatidylcholine lipid bilayers, having 16 or 18 carbon atoms in fully saturated sn - 1 chain and from 18 to 22 carbon atoms in sn - 2 chain with different degree of unsaturation, with the purpose to investigate the effect of unsaturation on physical properties of lipid bilayers. Special attention has been paid to profiles of C-C and C-H bond order parameters of lipid molecules and the orientational fluctuations of these bond vectors. It was shown that the study of anisotropy degree of bond orientations probability distributions allows distinguishing extended regions with different types of angular fluctuations of bonds in a membrane formed by lipid molecules with unsaturated chains.

  6. Highly sensitive and doubly orientated selective molecularly imprinted electrochemical sensor for Cu(2.).

    PubMed

    Li, Jianping; Zhang, Lianming; Wei, Ge; Zhang, Yun; Zeng, Ying

    2015-07-15

    Studies on molecularly imprinted electrochemical sensors for metal ions determination have been widely reported. However, the sensitivity and selectivity of the sensors needs to be improved urgently. In the current work, a novel molecularly imprinted electrochemical sensor was originally developed for selective determination of ultratrace Cu(2+) by combining the metal-ligand chelate orientated recognition with enzyme amplification effect. The detection relied on a competition reaction between Cu(2+)-glycine (Cu-Gly) and horse radish peroxidase (HRP)-labeled Cu-Gly on the imprinted polymer membrane modified electrode. The sensitivity of this sensor was promoted by enzyme amplification. Selectivity was improved by the double-specificity derived from ligand-to-metal ion and metal-ligand chelate orientated recognition of 3D imprinted cavities. This technique was quantitatively sensitive to Cu(2+) concentrations ranging from 0.5nmol/L to 30nmol/L, with a detection limit of 42.4pmol/L. which was lower than those in most of the reported methods. The allowable amounts of interference ions were higher when it compared to other common molecularly imprinted sensors. Moreover, the results of assaying several real samples have proven its feasibility for practical applications. PMID:25771304

  7. Nanoscale manipulation of Ge nanowires by ion hammering

    SciTech Connect

    Picraux, Samuel T; Romano, Lucia; Rudawski, Nicholas G; Holzworth, Monta R; Jones, Kevin S; Choi, S G

    2009-01-01

    Nanowires generated considerable interest as nanoscale interconnects and as active components of both electronic and electromechanical devices. However, in many cases, manipulation and modification of nanowires are required to realize their full potential. It is essential, for instance, to control the orientation and positioning of nanowires in some specific applications. This work demonstrates a simple method to reversibly control the shape and the orientation of Ge nanowires by using ion beams. Initially, crystalline nanowires were partially amorphized by 30 keY Ga+-implantation. After amorphization, viscous flow and plastic deformation occurred due to the ion hammering effect, causing the nanowires to bend toward the beam direction. The bending was reversed multiple times by ion-implanting the opposite side of the nanowires, resulting in straightening of the nanowires and subsequent bending in the opposite direction. This ion hammering effect demonstrates the detailed manipulation of nanoscale structures is possible through the use of ion irradiation.

  8. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement

    SciTech Connect

    Dahms, Sven O. Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E.

    2013-02-01

    A new approach is presented that allows the efficient localization and orientation of heavy-atom cluster compounds used in experimental phasing by a molecular replacement procedure. This permits the calculation of meaningful phases up to the highest resolution of the diffraction data. Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome.

  9. Manganese oxide nanowires, films, and membranes and methods of making

    SciTech Connect

    Suib, Steven Lawrence; Yuan, Jikang

    2011-02-15

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.

  10. Embedded Nanowire Network Growth and Node Device Fabrication for GaAs-Based High-Density Hexagonal Binary Decision Diagram Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Tamura, Takahiro; Tamai, Isao; Kasai, Seiya; Sato, Taketomo; Hasegawa, Hideki; Hashizume, Tamotsu

    2006-04-01

    The basic feasibility of constructing hexagonal binary decision diagram (BDD) quantum circuits on GaAs-based selectively grown (SG) nanowires was investigated from viewpoints of electrical connections through embedded nanowires and electrical uniformity of devices formed on nanowires. For this, <\\bar{1}10>- and < 510>-oriented nanowires and hexagonal network structures combining these nanowires were formed on (001) GaAs substrates by selective molecular beam epitaxy (MBE) growth. The width and vertical position of the nanowires could be controlled by growth conditions for both <\\bar{1}10>- and < 510>-directions. By current-voltage (I-V) measurements, good electrical connection was confirmed at the node point where vertical alignment of embedded GaAs nanowire pieces was found to be important. SG quantum wire (QWR) switches formed on the nanowires showed good gate control over a wide temperature range with clear conductance quantization at low temperatures. Good device uniformities were obtained on the test chips, providing a good prospect for future integration. BDD node devices using SG QWR switches showed clear path switching characteristics. Estimated power-delay product values were very small, confirming the feasibility of ultra low-power operation of future circuits.