Science.gov

Sample records for oryzae catechol oxidase

  1. Crystallization and preliminary X-ray analysis of Aspergillus oryzae catechol oxidase

    PubMed Central

    Kaljunen, Heidi; Gasparetti, Chiara; Kruus, Kristiina; Rouvinen, Juha; Hakulinen, Nina

    2011-01-01

    Catechol oxidase is an enzyme that catalyzes the oxidation of o-diphenols to the corresponding o-quinones. It is a copper-containing enzyme with a binuclear copper active site. Here, the crystallization and multiple-wavelength anomalous dispersion data collection of catechol oxidase from the mould fungus Aspergillus oryzae are described. During the purification, three forms of the enzyme (39.3, 40.5 and 44.3 kDa) were obtained. A mixture of these three forms was initially crystallized and gave crystals that diffracted to 2.5 Å resolution and belonged to space group P3221, with unit-cell parameters a = b = 118.9, c = 84.5 Å, α = β = 90, γ = 120°. A preparation containing only the shorter form (39.3 kDa) produced crystals that diffracted to 2.9 Å resolution and belonged to space group P212121, with unit-cell parameters a = 51.8, b = 95.3, c = 139.5 Å, α = β = γ = 90°. PMID:21636908

  2. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    PubMed

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-01

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols. PMID:26305170

  3. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference.

    PubMed

    Solem, Even; Tuczek, Felix; Decker, Heinz

    2016-02-18

    Tyrosinases mediate the ortho-hydroxylation and two-electron oxidation of monophenols to ortho-quinones. Catechol oxidases only catalyze the oxidation of diphenols. Although it is of significant interest, the origin of the functional discrimination between tyrosinases and catechol oxidases has been unclear. Recently, it has been postulated that a glutamate and an asparagine bind and activate a conserved water molecule towards deprotonation of monophenols. Here we demonstrate for the first time that a polyphenoloxidase, which exhibits only diphenolase activity, can be transformed to a tyrosinase by mutation to introduce an asparagine. The asparagine and a conserved glutamate are necessary to properly orient the conserved water in order to abstract a proton from the monophenol. These results provide direct evidence for the crucial importance of a proton shuttle for tyrosinase activity of type 3 copper proteins, allowing a consistent understanding of their different chemical reactivities. PMID:26773413

  4. Comparative modeling of the latent form of a plant catechol oxidase using a molluskan hemocyanin structure.

    PubMed

    Gerdemann, Carsten; Eicken, Christoph; Galla, Hans Joachim; Krebs, Bernt

    2002-04-10

    The structure of the precursor form of catechol oxidase from sweet potatoes (Ipomoea batatas) has been modeled on the basis of the 3D structural data of mature catechol oxidase [Nat. Struct. Biol. 5 (1998) 1084] and of hemocyanin from giant octopus (Octopus dofleini) [J. Mol. Biol. 278 (1998) 855]. A C-terminal extension peptide is found in the cDNA sequence but not in the purified, mature form of catechol oxidase. Superimposition of the 3D structures of the native hemocyanin and catechol oxidase reveals a close relationship except for an additional C-terminal domain only found in the hemocyanin structure. As sequence alignment shows good homology this domain of the hemocyanin structure was used as a template to model the 3D structure of the C-terminal extension peptide of catechol oxidase. As hemocyanins show no or only weak catecholase activity due to this domain this indicates an inhibitory function of this extension peptide. Beside this possible shielding function for the precursor form, evidence for a function in copper-uptake also increases due to the location of three histidine residues in the model. PMID:11931976

  5. Purification and spectroscopic studies on catechol oxidase from lemon balm (Melissa officinalis).

    PubMed

    Rompel, Annette; Büldt-Karentzopoulos, Klaudia; Molitor, Christian; Krebs, Bernt

    2012-09-01

    A catechol oxidase from lemon balm (Melissa officinalis) moCO which only catalyzes the oxidation of catechols to quinones without hydroxylating tyrosine was purified. The molecular mass of the M. officinalis enzyme of 39,370 Da was obtained by MALDI mass spectrometry and the isoelectric point was determined to be 3.4. Addition of 2 eq. H(2)O(2) to the enzyme leads to oxy catechol oxidase. In the UV/Vis spectrum two new absorption bands occur at 343 nm (ε=8510 M(-1)cm(-1)) and 580 nm (ε=580 M(-1)cm(-1)) due to O(2)(2-)Cu (II) charge transfer transitions in accordance with the oxy forms of other type 3 copper proteins. The N-terminal sequence has been determined by Edman degradation to NPVQAPELDKCGTAT, exhibiting a proline at the second and sixth position conserved in other polyphenol oxidases. PMID:22727580

  6. Isozymes of Ipomoea batatas catechol oxidase differ in catalase-like activity.

    PubMed

    Gerdemann, C; Eicken, C; Magrini, A; Meyer, H E; Rompel, A; Spener, F; Krebs, B

    2001-07-01

    The amino acid sequences of two isozymes of catechol oxidase from sweet potatoes (Ipomoea batatas) were determined by Edman degradation of BrCN cleavage fragments of the native protein and by sequencing of amplified cDNA fragments. Sequence alignment and phylogenetic analysis of plant catechol oxidases revealed about 80% equidistance between the two I. batatas catechol oxidases and approximately 40--60% to catechol oxidases of other plants. When H(2)O(2) was applied as substrate the 39 kDa isozyme, but not the 40 kDa isozyme, showed catalase-like activity. The structure of the 40 kDa isozyme was modeled on the basis of the published crystal structure of the 39 kDa isozyme [T. Klabunde et al., Nat. Struct. Biol. 5 (1998) 1084]. The active site model closely resembled that of the 39 kDa isozyme determined by crystallography, except for a mutation of Thr243 (40 kDa isozyme) to Ile241 (39 kDa isozyme) close to the dimetal center. This residue difference affects the orientation of the Glu238/236 residue, which is thought to be responsible for the catalase-like activity of the 39 kDa isozyme for which a catalytic mechanism is proposed. PMID:11451442

  7. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    PubMed

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo. PMID:26976571

  8. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    PubMed Central

    Molitor, Christian; Mauracher, Stephan Gerhard

    2016-01-01

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571

  9. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis POLYAMINE OXIDASE 5

    PubMed Central

    Liu, Taibo; Wook Kim, Dong; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2014-01-01

    POLYAMINE OXIDASE 1 (OsPAO1), from rice (Oryza sativa), and POLYAMINE OXIDASE 5 (AtPAO5), from Arabidopsis (Arabidopsis thaliana), are enzymes sharing high identity at the amino acid level and with similar characteristics, such as polyamine specificity and pH preference; furthermore, both proteins localize to the cytosol. A loss-of-function Arabidopsis mutant, Atpao5–2, was hypersensitive to low doses of exogenous thermospermine but this phenotype could be rescued by introduction of the wild-type AtPAO5 gene. Introduction of OsPAO1, under the control of a constitutive promoter, into Atpao5–2 mutants also restored normal thermospermine sensitivity, allowing growth in the presence of low levels of thermospermine, along with a concomitant decrease in thermospermine content in plants. By contrast, introduction of OsPAO3, which encodes a peroxisome-localized polyamine oxidase, into Atpao5–2 plants could not rescue any of the mutant phenotypes in the presence of thermospermine. These results suggest that OsPAO1 is the functional ortholog of AtPAO5. PMID:25763711

  10. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis POLYAMINE OXIDASE 5.

    PubMed

    Liu, Taibo; Wook Kim, Dong; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2014-07-25

    POLYAMINE OXIDASE 1 (OsPAO1), from rice (Oryza sativa), and POLYAMINE OXIDASE 5 (AtPAO5), from Arabidopsis (Arabidopsis thaliana), are enzymes sharing high identity at the amino acid level and with similar characteristics, such as polyamine specificity and pH preference; furthermore, both proteins localize to the cytosol. A loss-of-function Arabidopsis mutant, Atpao5-2, was hypersensitive to low doses of exogenous thermospermine but this phenotype could be rescued by introduction of the wild-type AtPAO5 gene. Introduction of OsPAO1, under the control of a constitutive promoter, into Atpao5-2 mutants also restored normal thermospermine sensitivity, allowing growth in the presence of low levels of thermospermine, along with a concomitant decrease in thermospermine content in plants. By contrast, introduction of OsPAO3, which encodes a peroxisome-localized polyamine oxidase, into Atpao5-2 plants could not rescue any of the mutant phenotypes in the presence of thermospermine. These results suggest that OsPAO1 is the functional ortholog of AtPAO5. PMID:25061821

  11. Multipart copolyelectrolyte adhesive of the sandcastle worm, Phragmatopoma californica (Fewkes): catechol oxidase catalyzed curing through peptidyl-DOPA.

    PubMed

    Wang, Ching Shuen; Stewart, Russell J

    2013-05-13

    Tube-building sabellariid polychaetes have major impacts on the geology and ecology of shorelines worldwide. Sandcastle worms, Phragmatopoma californica (Fewkes), live along the western coast of North America. Individual sabellariid worms build tubular shells by gluing together mineral particles with a multipart polyelectrolytic adhesive. Distinct sets of oppositely charged components are packaged and stored in concentrated granules in separate cell types. Homogeneous granules contain sulfated macromolecules as counter-polyanion to polycationic Pc2 and Pc5 proteins, which become major components of the fully cured glue. Heterogeneous granules contain polyphosphoproteins, Pc3A/B, paired with divalent cations and polycationic Pc1 and Pc4 proteins. Both types of granules contain catechol oxidase that catalyzes oxidative cross-linking of L-DOPA. Co-secretion of catechol oxidase guarantees rapid and spatially homogeneous curing with limited mixing of the preassembled adhesive packets. Catechol oxidase remains active long after the glue is fully cured, perhaps providing an active cue for conspecific larval settlement. PMID:23530959

  12. Crystal structure of a plant catechol oxidase containing a dicopper center.

    PubMed

    Klabunde, T; Eicken, C; Sacchettini, J C; Krebs, B

    1998-12-01

    Catechol oxidases are ubiquitous plant enzymes containing a dinuclear copper center. In the wound-response mechanism of the plant they catalyze the oxidation of a broad range of ortho-diphenols to the corresponding o-quinones coupled with the reduction of oxygen to water. The crystal structures of the enzyme from sweet potato in the resting dicupric Cu(II)-Cu(II) state, the reduced dicuprous Cu(I)-Cu(I) form, and in complex with the inhibitor phenylthiourea were analyzed. The catalytic copper center is accommodated in a central four-helix-bundle located in a hydrophobic pocket close to the surface. Both metal binding sites are composed of three histidine ligands. His 109, ligated to the CuA site, is covalently linked to Cys 92 by an unusual thioether bond. Based on biochemical, spectroscopic and the presented structural data, a catalytical mechanism is proposed in which one of the oxygen atoms of the diphenolic substrate binds to CuB of the oxygenated enzyme. PMID:9846879

  13. The studies of FT-IR and CD spectroscopy on catechol oxidase I from tobacco

    NASA Astrophysics Data System (ADS)

    Xiao, Hourong; Xie, Yongshu; Liu, Qingliang; Xu, Xiaolong; Shi, Chunhua

    2005-10-01

    A novel copper-containing enzyme named COI (catechol oxidase I) has been isolated and purified from tobacco by extracting acetone-emerged powder with phosphate buffer, centrifugation at low temperature, ammonium sulfate fractional precipitation, and column chromatography on DEAE-sephadex (A-50), sephadex (G-75), and DEAE-celluse (DE-52). PAGE, SDS-PAGE were used to detect the enzyme purity, and to determine its molecular weight. Then the secondary structures of COI at different pH, different temperatures and different concentrations of guanidine hydrochloride (GdnHCl) were studied by the FT-IR, Fourier self-deconvolution spectra, and circular dichroism (CD). At pH 2.0, the contents of both α-helix and anti-parallel β-sheet decrease, and that of random coil increases, while β-turn is unchanged compared with the neutral condition (pH 7.0). At pH 11.0, the results indicate that the contents of α-helix, anti-parallel β-sheet and β-turn decrease, while random coil structure increases. According to the CD measurements, the relative average fractions of α-helix, anti-parallel β-sheet, β-turn/parallel β-sheet, aromatic residues and disulfide bond, and random coil/γ-turn are 41.7%, 16.7%, 23.5%, 11.3%, and 6.8% at pH 7.0, respectively, while 7.2%, 7.7%, 15.2%, 10.7%, 59.2% at pH 2.0, and 20.6%, 9.5%, 15.2%, 10.5%, 44.2% at pH 11.0. Both α-helix and random coil decrease with temperature increasing, and anti-parallel β-sheet increases at the same time. After incubated in 6 mol/L guanidine hydrochloride for 30 min, the fraction of α-helix almost disappears (only 1.1% left), while random coil/γ-turn increases to 81.8%, which coincides well with the results obtained through enzymatic activity experiment.

  14. Biochemical and spectroscopic characterization of catechol oxidase from sweet potatoes (Ipomoea batatas) containing a type-3 dicopper center.

    PubMed

    Eicken, C; Zippel, F; Büldt-Karentzopoulos, K; Krebs, B

    1998-10-01

    Two catechol oxidases have been isolated from sweet potatoes (Ipomoea batatas) and purified to homogeneity. The two isozymes have been characterized by EXAFS, EPR-, UV/Vis-spectroscopy, isoelectric focusing, and MALDI-MS and have been shown to contain a dinuclear copper center. Both are monomers with a molecular mass of 39 kDa and 40 kDa, respectively. Substrate specificity and NH2-terminal sequences have been determined. EXAFS data for the 39 kDa enzyme reveal a coordination number of four for each Cu in the resting form and suggest a Cu(II)-Cu(II) distance of 2.9 A for the native met form and 3.8 A for the oxy form. PMID:9781698

  15. Synthesis, structure and catechol-oxidase activity of copper(II) complexes of 17-hydroxy-16-(N-3-oxo-prop-1-enyl)amino steroids.

    PubMed

    Wegner, Rainer; Dubs, Manuela; Görls, Helmar; Robl, Christian; Schönecker, Bruno; Jäger, Ernst-G

    2002-09-01

    Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity. PMID:12231119

  16. Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: Synthesis, structural characterization and luminescence properties

    NASA Astrophysics Data System (ADS)

    Pal, Sukanta; Chowdhury, Biswajit; Patra, Moumita; Maji, Milan; Biswas, Bhaskar

    2015-06-01

    A new trinuclear zinc(II) complex, [Zn3(L)(NCS)2](NO3)2·CH3OH·H2O (1), of a (N,O)-donor compartmental Schiff base ligand (H2L = N,N‧-bis(3-methoxysalicylidene)-1,3-diamino-2-propanol), has been synthesized in crystalline phase. The zinc(II) complex has been characterized by elemental analysis, IR spectroscopy, UV-Vis spectroscopy, powder X-ray diffraction study (PXRD), 1H NMR, EI mass spectrometry and thermogravimetric analysis. PXRD revealed that 1 crystallizes in P - 1 space group with a = 9.218 Å, b = 10.849 Å, c = 18.339 Å, with unit cell volume is 2179.713 (Å)3. Fluorescence spectra in methanolic solution reflect that intensity of emission for 1 is much higher compared to H2L and both the compounds exhibit good fluorescence properties. The complex 1 exhibits significant catalytic activities of biological relevance, viz. catechol oxidase. In methanol, it efficiently catalyzes the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to corresponding quinone via formation of a dinuclear species as [Zn2(L)(3,5-DTBC)]. Electron Paramagnetic Resonance (EPR) experiment suggests generation of radicals in the presence of 3,5-DTBC and it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complex of redox-innocent Zn(II) ion.

  17. Ligand centered radical pathway in catechol oxidase activity with a trinuclear zinc-based model: synthesis, structural characterization and luminescence properties.

    PubMed

    Pal, Sukanta; Chowdhury, Biswajit; Patra, Moumita; Maji, Milan; Biswas, Bhaskar

    2015-06-01

    A new trinuclear zinc(II) complex, [Zn3(L)(NCS)2](NO3)2·CH3OH·H2O (1), of a (N,O)-donor compartmental Schiff base ligand (H2L=N,N'-bis(3-methoxysalicylidene)-1,3-diamino-2-propanol), has been synthesized in crystalline phase. The zinc(II) complex has been characterized by elemental analysis, IR spectroscopy, UV-Vis spectroscopy, powder X-ray diffraction study (PXRD), (1)H NMR, EI mass spectrometry and thermogravimetric analysis. PXRD revealed that 1 crystallizes in P-1 space group with a=9.218 Å, b=10.849 Å, c=18.339 Å, with unit cell volume is 2179.713(Å)(3). Fluorescence spectra in methanolic solution reflect that intensity of emission for 1 is much higher compared to H2L and both the compounds exhibit good fluorescence properties. The complex 1 exhibits significant catalytic activities of biological relevance, viz. catechol oxidase. In methanol, it efficiently catalyzes the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to corresponding quinone via formation of a dinuclear species as [Zn2(L)(3,5-DTBC)]. Electron Paramagnetic Resonance (EPR) experiment suggests generation of radicals in the presence of 3,5-DTBC and it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complex of redox-innocent Zn(II) ion. PMID:25754390

  18. Functional and molecular characterization of plastid terminal oxidase from rice (Oryza sativa).

    PubMed

    Yu, Qiuju; Feilke, Kathleen; Krieger-Liszkay, Anja; Beyer, Peter

    2014-08-01

    The plastid terminal oxidase (PTOX) is a plastohydroquinone:oxygen oxidoreductase that shares structural similarities with alternative oxidases (AOX). Multiple roles have been attributed to PTOX, such as involvement in carotene desaturation, a safety valve function, participation in the processes of chlororespiration and setting the redox poise for cyclic electron transport. We have investigated a homogenously pure MBP fusion of PTOX. The protein forms a homo-tetrameric complex containing 2 Fe per monomer and is very specific for the plastoquinone head-group. The reaction kinetics were investigated in a soluble monophasic system using chemically reduced decyl-plastoquinone (DPQ) as the model substrate and, in addition, in a biphasic (liposomal) system in which DPQ was reduced with DT-diaphorase. While PTOX did not detectably produce reactive oxygen species in the monophasic system, their formation was observed by room temperature EPR in the biphasic system in a [DPQH₂] and pH-dependent manner. This is probably the result of the higher concentration of DPQ achieved within the partial volume of the lipid bilayer and a higher Km observed with PTOX-membrane associates which is ≈47mM compared to the monophasic system where a Km of ≈74μM was determined. With liposomes and at the basic stromal pH of photosynthetically active chloroplasts, PTOX was antioxidant at low [DPQH₂] gaining prooxidant properties with increasing quinol concentrations. It is concluded that in vivo, PTOX can act as a safety valve when the steady state [PQH₂] is low while a certain amount of ROS is formed at high light intensities. PMID:24780313

  19. Synthesis, crystal structure, spectral studies, and catechol oxidase activity of trigonal bipyramidal Cu(II) complexes derived from a tetradentate diamide bisbenzimidazole ligand.

    PubMed

    Gupta, M; Mathur, P; Butcher, R J

    2001-02-26

    . Palaniandavar, M.; Pandiyan, T.; Laxminarayan, M.; Manohar, H. J. Chem. Soc., Dalton Trans. 1995, 457. Sakurai, T.; Oi, H.; Nakahara, A. Inorg. Chim. Acta 1984, 92, 131). It is therefore concluded that binding of amide carbonyl oxygen destabilizes the Cu(II) state. The complex [Cu(II)(GBHA)(NO(3))](NO(3)) could be successfully reduced by the addition of dihydroxybenzenes to the corresponding [Cu(I)(GBHA)](NO(3)). (1)H NMR of the reduced complex shows slightly broadened and shifted (1)H signals. The reduction of the Cu(II) complex presumably occurs with the corresponding 2e(-) oxidation of the quinol to quinone. Such a conversion is reminiscent of the functioning of a copper-containing catechol oxidase from sweet potatoes and the met form of the enzyme tyrosinase. PMID:11258993

  20. Monoamine Oxidase A (MAOA) and Catechol-O-Methyltransferase (COMT) Gene Polymorphisms Interact with Maternal Parenting in Association with Adolescent Reactive Aggression but not Proactive Aggression: Evidence of Differential Susceptibility.

    PubMed

    Zhang, Wenxin; Cao, Cong; Wang, Meiping; Ji, Linqin; Cao, Yanmiao

    2016-04-01

    To date, whether and how gene-environment (G × E) interactions operate differently across distinct subtypes of aggression remains untested. More recently, in contrast with the diathesis-stress hypothesis, an alternative hypothesis of differential susceptibility proposes that individuals could be differentially susceptible to environments depending on their genotypes in a "for better and for worse" manner. The current study examined interactions between monoamine oxidase A (MAOA) T941G and catechol-O-methyltransferase (COMT) Val158Met polymorphisms with maternal parenting on two types of aggression: reactive and proactive. Moreover, whether these potential G × E interactions would be consistent with the diathesis-stress versus the differential susceptibility hypothesis was tested. Within the sample of 1399 Chinese Han adolescents (47.2 % girls, M age = 12.32 years, SD = 0.50), MAOA and COMT genes both interacted with positive parenting in their associations with reactive but not proactive aggression. Adolescents with T alleles/TT homozygotes of MAOA gene or Met alleles of COMT gene exhibited more reactive aggression when exposed to low positive parenting, but less reactive aggression when exposed to high positive parenting. These findings provide the first evidence for distinct G × E interaction effects on reactive versus proactive aggression and lend further support for the differential susceptibility hypothesis. PMID:26932718

  1. Microdialysis with radiometric monitoring of L-[β-11C]DOPA to assess dopaminergic metabolism: effect of inhibitors of L-amino acid decarboxylase, monoamine oxidase, and catechol-O-methyltransferase on rat striatal dialysate.

    PubMed

    Okada, Maki; Nakao, Ryuji; Hosoi, Rie; Zhang, Ming-Rong; Fukumura, Toshimitsu; Suzuki, Kazutoshi; Inoue, Osamu

    2011-01-01

    The catecholamine, dopamine (DA), is synthesized from 3,4-dihydroxy-L-phenylalanine (L-DOPA) by aromatic L-amino acid decarboxylase (AADC). Dopamine metabolism is regulated by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). To measure dopaminergic metabolism, we used microdialysis with radiometric detection to monitor L-[β-(11)C]DOPA metabolites in the extracellular space of the rat striatum. We also evaluated the effects of AADC, MAO, and COMT inhibitors on metabolite profiles. The major early species measured after administration of L-[β-(11)C]DOPA were [(11)C]3,4-dihydroxyphenylacetic acid ([(11)C]DOPAC) and [(11)C]homovanillic acid ([(11)C]HVA) in a 1:1 ratio, which shifted toward [(11)C]HVA with time. An AADC inhibitor increased the uptake of L-[β-(11)C]DOPA and L-3-O-methyl-[(11)C]DOPA and delayed the accumulation of [(11)C]DOPAC and [(11)C]HVA. The MAO and COMT inhibitors increased the production of [(11)C]3-methoxytyramine and [(11)C]DOPAC, respectively. These results reflect the L-DOPA metabolic pathway, suggesting that this method may be useful for assessing dopaminergic metabolism. PMID:20407462

  2. Heterogeneous Oxidation of Catechol.

    PubMed

    Pillar, Elizabeth A; Zhou, Ruixin; Guzman, Marcelo I

    2015-10-15

    Natural and anthropogenic emissions of aromatic hydrocarbons from biomass burning, agro-industrial settings, and fossil fuel combustion contribute precursors to secondary aerosol formation (SOA). How these compounds are processed under humid tropospheric conditions is the focus of current attention to understand their environmental fate. This work shows how catechol thin films, a model for oxygenated aromatic hydrocarbons present in biomass burning and combustion aerosols, undergo heterogeneous oxidation at the air-solid interface under variable relative humidity (RH = 0-90%). The maximum reactive uptake coefficient of O3(g) by catechol γO3 = (7.49 ± 0.35) × 10(-6) occurs for 90% RH. Upon exposure of ca. 104-μm thick catechol films to O3(g) mixing ratios between 230 ppbv and 25 ppmv, three main reaction pathways are observed. (1) The cleavage of the 1,2 carbon-carbon bond at the air-solid interface resulting in the formation of cis,cis-muconic acid via primary ozonide and hydroperoxide intermediates. Further direct ozonolysis of cis,cis-muconic yields glyoxylic, oxalic, crotonic, and maleic acids. (2) A second pathway is evidenced by the presence of Baeyer-Villiger oxidation products including glutaconic 4-hydroxy-2-butenoic and 5-oxo-2-pentenoic acids during electrospray ionization mass spectrometry (MS) and ion chromatography MS analyses. (3) Finally, indirect oxidation by in situ produced hydroxyl radical (HO(•)) results in the generation of semiquinone radical intermediates toward the synthesis of polyhydoxylated aromatic rings such as tri-, tetra-, and penta-hydroxybenzene. Remarkably, heavier polyhydroxylated biphenyl and terphenyl products present in the extracted oxidized films result from coupling reactions of semiquinones of catechol and its polyhydroxylated rings. The direct ozonolysis of 1,2,3- and 1,2,4-trihydroxybenezene yields 2- and 3-hydroxy-cis,cis-muconic acid, respectively. The production of 2,4- or 3,4-dihdroxyhex-2-enedioic acid is

  3. Comparative Study of Substrates and Inhibitors of Azospirillum lipoferum and Pyricularia oryzae Laccases

    PubMed Central

    Faure, D.; Bouillant, M.; Bally, R.

    1995-01-01

    Azospirillum lipoferum and Pyricularia oryzae laccases were compared, using several substrates and inhibitors. Sixteen phenolic or nonphenolic compounds were found to be substrates of both fungal and bacterial laccases. In the presence of different phenol oxidase inhibitors, P. oryzae and A. lipoferum laccase activities had similar properties. PMID:16534964

  4. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism

    PubMed Central

    Sullivan, Michael L.

    2015-01-01

    Most cloned and/or characterized plant polyphenol oxidases (PPOs) have catechol oxidase activity (i.e., they oxidize o-diphenols to o-quinones) and are localized or predicted to be localized to plastids. As a class, they have broad substrate specificity and are associated with browning of produce and other plant materials. Because PPOs are often induced by wounding or pathogen attack, they are most generally believed to play important roles in plant defense responses. However, a few well-characterized PPOs appear to have very specific roles in the biosynthesis of specialized metabolites via both tyrosinase (monophenol oxidase) and catechol oxidase activities. Here we detail a few examples of these and explore the possibility that there may be many more “biosynthetic” PPOs. PMID:25642234

  5. Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum.

    PubMed

    Sutay Kocabas, Didem; Bakir, Ufuk; Phillips, Simon E V; McPherson, Michael J; Ogel, Zumrut B

    2008-06-01

    A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme were found to be 2.7 +/- 0.2 and 10.1 +/- 0.4 kcal/mol, respectively. The pure enzyme can oxidize o-diphenols such as catechol, caffeic acid, and L-DOPA in the absence of hydrogen peroxide and the highest oxidase activity is observed against catechol. No activity is detected against tyrosine and common laccase substrates such as ABTS and syringaldazine with the exception of weak activity with p-hydroquinone. Common catechol oxidase inhibitors, salicylhydroxamic acid and p-coumaric acid, inhibit the oxidase activity. Catechol oxidation activity was also detected in three other catalases tested, from Aspergillus niger, human erythrocyte, and bovine liver, suggesting that this dual catalase-phenol oxidase activity may be a common feature of catalases. PMID:18369615

  6. Spectroscopic Studies of the Catechol Dioxygenases.

    ERIC Educational Resources Information Center

    Que, Lawrence Jr.

    1985-01-01

    The catechol dioxygenases are bacterial iron-containing enzymes that catalyze the oxidative cleavage of catechols. These enzymes serve as a component of nature's mechanisms for degrading aromatic compounds in the environment. The structure and mechanistic aspects of these enzymes are described. (JN)

  7. PEM Anchorage on Titanium Using Catechol Grafting

    PubMed Central

    Marie, Hélène; Barrere, Amélie; Schoentstein, Frédérique; Chavanne, Marie-Hélène; Grosgogeat, Brigitte; Mora, Laurence

    2012-01-01

    Background This study deals with the anchorage of polyelectrolyte films onto titanium surfaces via a cathecol-based linker for biomedical applications. Methodology The following study uses a molecule functionalized with a catechol and a carboxylic acid: 3-(3,4-dihydroxyphenyl)propanoic acid. This molecule is anchored to the TiO2 substrate via the catechol while the carboxylic acid reacts with polymers bearing amine groups. By providing a film anchorage of chemisorption type, it makes possible to deposit polyelectrolytes on the surface of titanium. Principal Findings Infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), contact angle and atomic force microscopy (AFM) measurements show that the different steps of grafting have been successfully performed. Conclusions This method based on catechol anchorage of polyelectrolytes open a window towards large possibilities of clinical applications. PMID:23226262

  8. Catecholate Siderophores Protect Bacteria from Pyochelin Toxicity

    PubMed Central

    Adler, Conrado; Corbalán, Natalia S.; Seyedsayamdost, Mohammad R.; Pomares, María Fernanda; de Cristóbal, Ricardo E.; Clardy, Jon; Kolter, Roberto; Vincent, Paula A.

    2012-01-01

    Background Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition. Methods and Principal Findings Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity. Conclusions We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate

  9. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    SciTech Connect

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  10. Biochemical characteristics and thermal inhibition kinetics of polyphenol oxidase extracted from Thompson seedless grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) was isolated from Thompson seedless grape (Vitis vinifera 'Thompson Seedless') and its biochemical characteristics were studied. Optimum pH and temperature for grape PPO activity were pH 6.0 and 25 degrees C with 10 mM catechol as substrate. The enzyme was heat-stable betwee...

  11. Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes.

    PubMed Central

    Kalyanaraman, B; Felix, C C; Sealy, R C

    1985-01-01

    The characterization and identification of semiquinone radicals from catechol(amine)s and catechol estrogens by electron spin resonance spectroscopy is addressed. The use of diamagnetic metal ions, especially Mg2+ and Zn2+ ions, to detect transient semiquinone radicals in biological systems and to monitor their reactions, is discussed. A brief account of the identification and reactions of quinones is also presented. PMID:3007089

  12. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  13. Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase.

    PubMed

    Gowda, Lalitha R; Paul, Beena

    2002-03-13

    This paper reports a study on the hydroxylation of ferulic acid and tyrosine by field bean (Dolichos lablab) polyphenol oxidase, a reaction that does not take place without the addition of catechol. A lag period similar to the characteristic lag of tyrosinase activity was observed, the length of which decreased with increasing catechol concentration and increased with increasing ferulic acid concentration. The activation constant K(a) of catechol for ferulic acid hydroxylation reaction was 5 mM. The kinetic parameters of field bean polyphenol oxidase toward ferulic acid and tyrosine were evaluated in the presence of catechol. 4-Methyl catechol, L-dihydroxyphenylalanine, pyrogallol, and 2,3,4-trihydroxybenzoic acid, substrates with high binding affinity to field bean polyphenol oxidase, could stimulate this hydroxylation reaction. In contrast, diphenols such as protocatechuic acid, gallic acid, chlorogenic acid, and caffeic acid, which were not substrates for the oxidation reaction, were unable to bring about this activation. It is most likely that only o-diphenols that are substrates for the diphenolase serve as cosubstrates by donating electrons at the active site for the monophenolase activity. The reaction mechanism for this activation is consistent with that proposed for tyrosinase (Sanchez-Ferrer, A.; Rodriguez-Lopez, J. N.; Garcia-Canovas, F.; Garcia-Carmona, F. Biochim. Biophys. Acta 1995, 1247, 1-11). The presence of o-diphenols, viz. catechol, L-dihydroxyphenylalanine, and 4-methyl catechol, is also necessary for the oxidation of the diphenols, caffeic acid, and catechin to their quinones by the field bean polyphenol oxidase. This oxidation reaction occurs immediately with no lag period and does not occur without the addition of diphenol. The kinetic parameters for caffeic acid (K(m) = 0.08 mM, V(max) = 32440 u/mg) in the presence of catechol and the activation constant K(a) of catechol (4.6 mM) for this reaction were enumerated. The absence of a lag

  14. Catechol Formation and Melanization by Na+ -Dependent Azotobacter chroococcum: a Protective Mechanism for Aeroadaptation?

    PubMed Central

    Shivprasad, Shailaja; Page, William J.

    1989-01-01

    Aeroadaptive microaerophilic Azotobacter chroococcum 184 produced a cell-associated black pigment when grown at high aeration rates under nitrogen-fixing conditions. This pigment was shown to be a catechol melanin. Polyphenol oxidase activity was detected in cell extracts of cells grown for 72 h. Melanin formation was optimal in the later stages of growth, and there was no correlation between nitrogenase activity and melanization. Nitrogenase activity in strain 184 was optimal at 10% O2, and melanin formation was suppressed by O2 limitation. In the presence of charcoal, an adsorbent of toxic oxygen intermediates, and benzoic acid, a scavenger of hydroxyl radicals, melanization was inhibited. However, in the presence of copper, the intensity of pigment color increased and melanization was accelerated. Copper also eliminated catalase and peroxidase activities of the organism but still permitted aerobic growth. In the presence of low levels of iron, melanization was accelerated under high aeration rates, and under low rates of aeration, melanization was observed only at higher levels of iron. Hydroxamate-siderophore production was detectable in the presence of soluble iron under high rates of aeration but was repressed by the same levels of iron under low aeration rates. Unlike melanization and hydroxamate formation, catechol formation was observed under both low and high rates of aeration under nitrogen-fixing conditions. Catechol formation and melanization were repressed by 14 mM NH4+, at which level nitrogenase activity was also repressed. Copper reversed the repressive effect of NH4+. A role for catechol formation and melanization in aeroadaptation is proposed. PMID:16347974

  15. Nitroderivatives of catechol: from synthesis to application.

    PubMed

    Gavazov, Kiril B

    2012-03-01

    Nitroderivatives of catechol (NDCs) are reviewed with special emphasis on their complexes and applications. Binary, ternary and quaternary NDC complexes with more than 40 elements (aluminum, arsenic, boron, beryllium, calcium, cobalt, copper, iron, gallium, germanium, magnesium, manganese, molybdenum, niobium, rare earth elements, silicon, tin, strontium, technetium, thallium, titanium, uranium, vanadium, tungsten, zinc and zirconium) are discussed and the key characteristics of the developed analytical procedures - tabulated. The bibliography includes 206 references. PMID:24061167

  16. Synthesis and Evaluation of Heterocyclic Catechol Mimics as Inhibitors of Catechol-O-methyltransferase (COMT)

    PubMed Central

    2015-01-01

    3-Hydroxy-4-pyridinones and 5-hydroxy-4-pyrimidinones were identified as inhibitors of catechol-O-methyltransferase (COMT) in a high-throughput screen. These heterocyclic catechol mimics exhibit potent inhibition of the enzyme and an improved toxicity profile versus the marketed nitrocatechol inhibitors tolcapone and entacapone. Optimization of the series was aided by X-ray cocrystal structures of the novel inhibitors in complex with COMT and cofactors SAM and Mg2+. The crystal structures suggest a mechanism of inhibition for these heterocyclic inhibitors distinct from previously disclosed COMT inhibitors. PMID:25815153

  17. Analyzing autophagy in Magnaporthe oryzae.

    PubMed

    Xu, Fei; Liu, Xiao-Hong; Zhuang, Fei-Long; Zhu, Jun; Lin, Fu-Cheng

    2011-05-01

    Magnaporthe oryzae is an important plant pathogenic fungus that greatly threatens the world's food security. Both genome-wide and individual gene studies have shown that the pathogenicity of the fungus is severely dependent on the intracellular autophagy process during appressoria development. This protocol discusses a systematic methodology to discover and monitor autophagy-related (ATG) genes in M. oryzae. PMID:21317549

  18. Brain catecholamine metabolism in catechol-O-methyltransferase (COMT)-deficient mice.

    PubMed

    Huotari, Marko; Gogos, Joseph A; Karayiorgou, Maria; Koponen, Olli; Forsberg, Markus; Raasmaja, Atso; Hyttinen, Juha; Männistö, Pekka T

    2002-01-01

    Catechol-O-methyltransferase (COMT) catalyses the O-methylation of compounds having a catechol structure and its main function involves the elimination of biologically active or toxic catechols and their metabolites. By means of homologous recombination in embryonic stem cells, a strain of mice has been produced in which the gene encoding the COMT enzyme is disrupted. We report here the levels of catecholamines and their metabolites in striatal extracellular fluid in these mice as well as in homogenates from different parts of the brain, under normal conditions and after acute levodopa administration. In immunoblotting studies, COMT-knockout mice had no COMT protein in brain or kidney tissues but the amounts of catecholamine synthesizing and other metabolizing enzyme proteins were normal. Under normal conditions, COMT deficiency does not appear to affect significantly brain dopamine and noradrenaline levels in spite of relevant changes in their metabolites. This finding is consistent with previous pharmacological studies with COMT inhibitors and confirms the pivotal role of synaptic reuptake processes and monoamine oxidase-dependent metabolism in terminating the actions of catecholamines at nerve terminals. In contrast, when COMT-deficient mice are challenged with l-dihydroxyphenylalanine, they show an extensive accumulation of 3,4-dihydroxyphenylacetic acid and dihydroxyphenylglycol and even dopamine, revealing an important role for COMT under such situations. Notably, in some cases these changes appear to be Comt gene dosage-dependent, brain-region specific and sexually dimorphic. Our results may have implications for improving the treatment of Parkinson's disease and for understanding the contribution of the natural variation in COMT activity to psychiatric phenotypes. PMID:11849292

  19. DNA integrity of onion root cells under catechol influence.

    PubMed

    Petriccione, Milena; Forte, Valentina; Valente, Diego; Ciniglia, Claudia

    2013-07-01

    Catechol is a highly toxic organic pollutant, usually abundant in the waste effluents of industrial processes and agricultural activities. The environmental sources of catechol include pesticides, wood preservatives, tanning lotion, cosmetic creams, dyes, and synthetic intermediates. Genotoxicity of catechol at a concentration range 5 × 10(-1)-5 mM was evaluated by applying random amplified polymorphic DNA (RAPD) and time-lapse DNA laddering tests using onion (Allium cepa) root cells as the assay system. RAPD analysis revealed polymorphisms in the nucleotidic sequence of DNA that reflected the genotoxic potential of catechol to provoke point mutations, or deletions, or chromosomal rearrangements. Time-lapse DNA laddering test provided evidence that catechol provoked DNA necrosis and apoptosis. Acridine orange/ethidium bromide staining could distinguish apoptotic from necrotic cells in root cells of A. cepa. PMID:23307075

  20. Adsorption mechanism and valency of catechol-functionalized hyperbranched polyglycerols

    PubMed Central

    Krysiak, Stefanie; Wei, Qiang; Rischka, Klaus; Hartwig, Andreas; Haag, Rainer

    2015-01-01

    Summary Nature often serves as a model system for developing new adhesives. In aqueous environments, mussel-inspired adhesives are promising candidates. Understanding the mechanism of the extraordinarily strong adhesive bonds of the catechol group will likely aid in the development of adhesives. With this aim, we study the adhesion of catechol-based adhesives to metal oxides on the molecular level using atomic force microscopy (AFM). The comparison of single catechols (dopamine) with multiple catechols on hyperbranched polyglycerols (hPG) at various pH and dwell times allowed us to further increase our understanding. In particular, we were able to elucidate how to achieve strong bonds of different valency. It was concluded that hyperbranched polyglycerols with added catechol end groups are promising candidates for durable surface coatings. PMID:26150898

  1. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  2. Molecular detection of Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Burkholderia glumae in infected rice seeds and leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerase chain reaction (PCR) is particularly useful for plant pathogen detection. In the present study, multiplex PCR and SYBR green real-time PCR were developed to facilitate simultaneous detection of three important rice pathogens, Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Bur...

  3. Synthesis of catechol estrogens by human uterus and leiomyoma

    SciTech Connect

    Reddy, V.V.; Hanjani, P.; Rajan, R.

    1981-02-01

    Homogenates of human endometrial, myometrial and leiomyoma tissues were incubated with (2,4,6,7-/sub 3/H)-estradiol and tritiated catechol estrogens were isolated and identified. Though 2- and 4-hydroxylations were about the same in endometrium, 4-hydroxylation was two to four fold higher than 2-hydroxylation in myometrium and leiomyoma. However, endometrium showed greater capacity to form both 2- and 4-hydroxyestrogens than the other two tissues. Both 2- and 4-hydroxylations were significantly less than in myometrium. In view of the reports indicating that inhibitors of catechol 0-methyl transferase (COMT) might act as antineoplastic agents due to their interference with t-RNA methylases and since catechol estrogens inhibit COMT, the present results suggest that endogenous synthesis of catechol estrogens may play an important role in the pathophysiology of uterine leiomyoma.

  4. OryzaGenome: Genome Diversity Database of Wild Oryza Species

    PubMed Central

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype–phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. PMID:26578696

  5. Assessment of genotoxicity of catecholics using impedimetric DNA-biosensor.

    PubMed

    Ensafi, Ali A; Amini, Maryam; Rezaei, B

    2014-03-15

    The potential toxicity of catecholics is a big concern, because the catechol-derived semiquinone radical after the oxidation of catechol (CA) can donate an H-atom to generate quinone, and during this process a superoxide anion radical may be produced. Considering the fact that catecholics are highly consumed in our daily life and some drugs also contain one or more CA moieties, we speculate that CA's toxicity might not be insurmountable. Therefore, finding approaches to investigate catecholics potential toxicity is of great significance. Here in, an electrochemical protocol for direct monitoring of genotoxicity of catecholics is described. CA encapsulated on MWCNTs (CA@MWCNT) through continuous cyclic voltammetric on the surface of pencil graphite electrode (PGE). Subsequently, a DNA functionalized biosensor (DNA/CA@MWCNT/PGE) was prepared and characterized for the detection and the investigation of DNA damage induced by radicals generated from catecholics. The change in the charge transfer resistance (Rct) after the incubation of the DNA biosensor in the damaging solution for a certain time was used as an indicator for DNA damage. Incubation of DNA-modified electrode with CA solution containing Cu(II), Cr(VI) and Fe(III) has been shown to result in oxidative damage to the DNA and change in the electrochemical properties. It was found that the presence of Cu(II), Cr(VI) and Fe(III) in solution caused damage to DNA. The inhibitory effect of glutathione and plumbagin on the CA-mediated DNA damage has also been investigated using the biosensor. The minimum concentration of the metal ions for CA induced DNA damage was investigated. Recognition of suitable matrixes for CA-mediated DNA damage can be assessed using proposed DNA biosensor. Such direct monitoring of the DNA damage holds great promise for designing new biosensors with modification of the biosensor with different damaging agents. PMID:24121207

  6. Removal of arsenic compounds from spent catecholated polymer

    DOEpatents

    Fish, Richard H.

    1985-01-01

    Described is a process for removing arsenic from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic bound to it from contacting petroliferous liquid as described above and involves: a. treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10 and, b. separating the solids and liquids from each other. Preferably the regeneration treatment is in two steps wherein step (a) is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, steps (a) and (b) are repeated using a bicarbonate.

  7. Optimization of glucose oxidase production by Aspergillus niger using genetic- and process-engineering techniques.

    PubMed

    Hellmuth, K; Pluschkell, S; Jung, J K; Ruttkowski, E; Rinas, U

    1995-11-01

    Wild-type Aspergillus niger NRRL-3 was transformed with multiple copies of the glucose oxidase structural gene (god). The gene was placed under the control of the gpdA promoter of A. nidulans. For more efficient secretion the alpha-amylase signal peptide from A. oryzae was inserted in front of god. Compared to the wild type, the recombinant strain NRRL-3 (GOD3-18) produced up to four times more extracellular glucose oxidase under identical culture conditions. Addition of yeast extract (2 gl-1) to a mineral salts medium containing only glucose as carbon source increased volumetric and specific extracellular glucose oxidase activities by 130% and 50% respectively. With the same medium composition and inoculum size, volumetric and specific extracellular glucose oxidase activities increased more than ten times in bioreactor cultivations compared to shake-flask cultures. PMID:8590664

  8. Reactive oxygen species production by catechol stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-11-01

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants. Electronic supplementary information (ESI) available: Details of the synthesis of dopamine linkers and Cu NPs, peroxidase activity tests, H2O2 calibration and degradation tests for resorufin, RB and MB. See DOI: 10.1039/c3nr03563h

  9. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  10. Polyphenol oxidase from yacon roots (Smallanthus sonchifolius).

    PubMed

    Neves, Valdir Augusto; da Silva, Maraiza Aparecida

    2007-03-21

    Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C. PMID:17316020

  11. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio.

    PubMed

    Hernández-Romero, Diana; Sanchez-Amat, Antonio; Solano, Francisco

    2006-01-01

    The sequencing of the genome of Ralstonia solanacearum[Salanoubat M, Genin S, Artiguenave F, et al. (2002) Nature 415, 497-502] revealed several genes that putatively code for polyphenol oxidases (PPOs). This soil-borne pathogenic bacterium withers a wide range of plants. We detected the expression of two PPO genes (accession numbers NP_518458 and NP_519622) with high similarity to tyrosinases, both containing the six conserved histidines required to bind the pair of type-3 copper ions at the active site. Generation of null mutants in those genes by homologous recombination mutagenesis and protein purification allowed us to correlate each gene with its enzymatic activity. In contrast with all tyrosinases so far studied, the enzyme NP_518458 shows higher monophenolase than o-diphenolase activity and its initial activity does not depend on the presence of l-dopa cofactor. On the other hand, protein NP_519622 is an enzyme with a clear preference to oxidize o-diphenols and only residual monophenolase activity, behaving as a catechol oxidase. These catalytic characteristics are discussed in relation to two other characteristics apart from the six conserved histidines. One is the putative presence of a seventh histidine which interacts with the carboxy group on the substrate and controls the preference for carboxylated and decarboxylated substrates. The second is the size of the residue isosteric with the aromatic F261 reported in sweet potato catechol oxidase which acts as a gate to control accessibility to CuA at the active site. PMID:16403014

  12. Inhibition of apple polyphenol oxidase activity by sodium chlorite.

    PubMed

    Lu, Shengmin; Luo, Yaguang; Feng, Hao

    2006-05-17

    Sodium chlorite (SC) was shown to have strong efficacy both as a sanitizer to reduce microbial growth on produce and as a browning inhibitor on fresh-cut apples in previous experiments. This study was undertaken to investigate the inhibitory effect of SC on polyphenol oxidase (PPO) and the associated mechanisms. The experiment showed that SC had a strong inhibition of apple PPO. The extent of inhibition was influenced by SC concentration and pH. Inhibition was most prominent at pH 4.5, at which approximately 30% of enzyme activity was lost in the presence of 10 mM SC, followed closely by that at pH 4.0 with a 26% reduction in PPO activity. The inhibition mode was determined using Dixon and Lineweaver-Burk plots, which established SC to be a mixed inhibitor of apple PPO for the oxidation of catechol. Preincubation of PPO with 8 mM SC for 8 min caused a maximum of 46% activity reduction compared to noninhibited control. However, preincubation of SC with catechol for 8 min resulted in no additional loss of PPO activity. These findings provide further evidence that the inhibition of PPO activity by SC is due to the inhibition of the enzyme itself rather than removal of the substrate. PMID:19127746

  13. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. PMID:24176356

  14. The interplay of catechol ligands with nanoparticulate iron oxides.

    PubMed

    Yuen, Alexander K L; Hutton, Georgina A; Masters, Anthony F; Maschmeyer, Thomas

    2012-03-01

    The unique properties exhibited by nanoscale materials, coupled with the multitude of chemical surface derivatisation possibilities, enable the rational design of multifunctional nanoscopic devices. Such functional devices offer exciting new opportunities in medical research and much effort is currently invested in the area of "nanomedicine", including: multimodal imaging diagnostic tools, platforms for drug delivery and vectorisation, polyvalent, multicomponent vaccines, and composite devices for "theranostics". Here we will review the surface derivatisation of nanoparticulate oxides of iron and iron@iron-oxide core-shells. They are attractive candidates for MRI-active therapeutic platforms, being potentially less toxic than lanthanide-based materials, and amenable to functionalisation with ligands. However successful grafting of groups onto the surface of iron-based nanoparticles, thus adding functionality whilst preserving their inherent properties, is one of the most difficult challenges for creating truly useful nanodevices from them. Functionalised catechol-derived ligands have enjoyed success as agents for the masking of superparamagnetic iron-oxide particles, often so as to render them biocompatible with medium to long-term colloidal stability in the complex chemical environments of biological milieux. In this perspective, the opportunities and limitations of functionalising the surfaces of iron-oxide nanoparticles, using coatings containing a catechol-derived anchor, are analysed and discussed, including recent advances using dopamine-terminated stabilising ligands. If light-driven ligand to metal charge transfer (LMCT) processes, and pH-dependent ligand desorption, leading to nanoparticle degradation under physiologically relevant conditions can be suppressed, colloidal stability of samples can be maintained and toxicity ascribed to degradation products avoided. Modulation of the redox behaviour of iron catecholate systems through the introduction of an

  15. Brain catechol synthesis - Control by brain tyrosine concentration

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.; Larin, F.; Mostafapour, S.; Fernstrom, J. D.

    1974-01-01

    Brain catechol synthesis was estimated by measuring the rate at which brain dopa levels rose following decarboxylase inhibition. Dopa accumulation was accelerated by tyrosine administration, and decreased by treatments that lowered brain tyrosine concentrations (for example, intraperitoneal tryptophan, leucine, or parachlorophenylalanine). A low dose of phenylalanine elevated brain tyrosine without accelerating dopa synthesis. Our findings raise the possibility that nutritional and endocrine factors might influence brain catecholamine synthesis by controlling the availability of tyrosine.

  16. CHARACTERISTICS OF POLYPHENOL OXIDASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO, EC 1.14.18.1 or EC 1.10.3.1) catalyzes the oxidation of o-diphenols to o-quinones. Highly reactive o-quinones couple with phenolics and specific amino acids on proteins to form the characteristic browning products in many wounded fruits, vegetables, and leaf tissues of plant...

  17. An efficient method for visualization and growth of fluorescent Xanthomonas oryzae pv. oryzae in planta

    PubMed Central

    Han, Sang-Wook; Park, Chang-Jin; Lee, Sang-Won; Ronald, Pamela C

    2008-01-01

    Background Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight disease, is a serious pathogen of rice. Here we describe a fluorescent marker system to study virulence and pathogenicity of X. oryzae pv. oryzae. Results A fluorescent X. oryzae pv. oryzae Philippine race 6 strain expressing green fluorescent protein (GFP) (PXO99GFP) was generated using the gfp gene under the control of the neomycin promoter in the vector, pPneo-gfp. The PXO99GFPstrain displayed identical virulence and avirulence properties as the wild type control strain, PXO99. Using fluorescent microscopy, bacterial multiplication and colonization were directly observed in rice xylem vessels. Accurate and rapid determination of bacterial growth was assessed using fluoremetry and an Enzyme-Linked ImmunoSorbant Assay (ELISA). Conclusion Our results indicate that the fluorescent marker system is useful for assessing bacterial infection and monitoring bacterial multiplication in planta. PMID:18826644

  18. Immobilization of Amphiphilic Polycations by Catechol Functionality for Antimicrobial Coatings

    PubMed Central

    Han, Hua; Wu, Jianfeng; Avery, Christopher W.; Mizutani, Masato; Jiang, Xiaoming; Kamigaito, Masami; Chen, Zhan; Xi, Chuanwu; Kuroda, Kenichi

    2011-01-01

    A new strategy to prepare antimicrobial surfaces by a simple dip-coating procedure is reported. Amphiphilic polycations with different mole ratios of monomers containing dodecyl quaternary ammonium, methoxyethyl, and catechol groups were synthesized by free-radical polymerization. The polymer coatings were prepared by immersing glass slides into a polymer solution and subsequent drying and heating. The quaternary ammonium side chains endow the coatings with potent antibacterial activity, while the methoxyetyhyl side chains enable tuning the hydrophobic/hydrophilic balance and the catachol groups promote immobilization of the polymers into films. The polymer coated surfaces displayed bactericidal activity against Escherichia coli and Staphylococcus aureus in a dynamic contact assay and prevented accumulation of viable E. coli, S. aureus, and Acinetobacter baumannii for up to 96 hours. Atomic force microscopy (AFM) images of coating surfaces indicated that the surfaces exhibit virtually the same smoothness for all polymers except the most hydrophobic. The hydrophobic polymer without methoxyethyl side chains showed clear structuring into polymer domains, causing high surface roughness. Sum-frequency generation (SFG) vibrational spectroscopy characterization of the surface structures demonstrated that the dodecyl chains are predominantly localized at the surface-air interface of the coatings. SFG also showed that the phenyl groups of the catechols are oriented on the substrate surface. These results support our hypothesis that the adhesive or cross-linking functionality of catechol groups discourages leaching of polymers, allowing tuning of the amphiphilic balance by incorporating hydrophilic components into the polymer chains to gain potent biocidal activity. PMID:21391641

  19. Polyploid evolution in Oryza officinalis complex of the genus Oryza

    PubMed Central

    Wang, Baosheng; Ding, Zhuoya; Liu, Wei; Pan, Jin; Li, Changbao; Ge, Song; Zhang, Daming

    2009-01-01

    Background Polyploidization is a prominent process in plant evolution, whereas the mechanism and tempo-spatial process remained poorly understood. Oryza officinalis complex, a polyploid complex in the genus Oryza, could exemplify the issues not only for it covering a variety of ploidy levels, but also for the pantropical geographic pattern of its polyploids in Asia, Africa, Australia and Americas, in which a pivotal genome, the C-genome, witnessed all the polyploidization process. Results Tracing the C-genome evolutionary history in Oryza officinalis complex, this study revealed the genomic relationships, polyploid forming and diverging times, and diploidization process, based on phylogeny, molecular-clock analyses and fluorescent in situ hybridization using genome-specific probes. Results showed that C-genome split with B-genome at ca. 4.8 Mya, followed by a series of speciation of C-genome diploids (ca. 1.8-0.9 Mya), which then partook in successive polyploidization events, forming CCDD tetraploids in ca. 0.9 Mya, and stepwise forming BBCC tetraploids between ca. 0.3-0.6 Mya. Inter-genomic translocations between B- and C-genomes were identified in BBCC tetraploid, O. punctata. Distinct FISH (fluorescent in situ hybridization) patterns among three CCDD species were visualized by C-genome-specific probes. B-genome was modified before forming the BBCC tetraploid, O. malampuzhaensis. Conclusion C-genome, shared by all polyploid species in the complex, had experienced different evolutionary history particularly after polyploidization, e.g., inter-genomic exchange in BBCC and genomic invasion in CCDD tetraploids. It diverged from B-genome at 4.8 Mya, then participated in the tetraploid formation spanning from 0.9 to 0.3 Mya, and spread into tropics of the disjunct continents by transcontinentally long-distance dispersal, instead of vicariance, as proposed by this study, given that the continental splitting was much earlier than the C-genome species radiation. We also

  20. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    SciTech Connect

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  1. Complete Genome Sequence of the African Strain AXO1947 of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Huguet-Tapia, J. C.; Peng, Z.; Yang, B.; Yin, Z.; Liu, S.

    2016-01-01

    Xanthomonas oryzae pv. oryzae is the etiological agent of bacterial rice blight. Three distinct clades of X. oryzae pv. oryzae are known. We present the complete annotated genome of the African clade strain AXO194 using long-read single-molecule PacBio sequencing technology. The genome comprises a single chromosome of 4,674,975 bp and encodes for nine transcriptional activator-like (TAL) effectors. The approach and data presented in this announcement provide information for complex bacterial genome organization and the discovery of new virulence effectors, and they facilitate target characterization of TAL effectors. PMID:26868406

  2. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    SciTech Connect

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  3. Crystallization of carbohydrate oxidase from Microdochium nivale.

    PubMed

    Dusková, Jarmila; Dohnálek, Jan; Skálová, Tereza; Østergaard, Lars Henrik; Fuglsang, Claus Crone; Kolenko, Petr; Stepánková, Andrea; Hasek, Jindrich

    2009-06-01

    Microdochium nivale carbohydrate oxidase was produced by heterologous recombinant expression in Aspergillus oryzae, purified and crystallized. The enzyme crystallizes with varying crystal morphologies depending on the crystallization conditions. Several different crystal forms were obtained using the hanging-drop vapour-diffusion method, two of which were used for diffraction measurements. Hexagon-shaped crystals (form I) diffracted to 2.66 A resolution, with unit-cell parameters a = b = 55.7, c = 610.4 A and apparent space group P6(2)22. Analysis of the data quality showed almost perfect twinning of the crystals. Attempts to solve the structure by molecular replacement did not give satisfactory results. Recently, clusters of rod-shaped crystals (form II) were grown in a solution containing PEG MME 550. These crystals belonged to the monoclinic system C2, with unit-cell parameters a = 132.9, b = 56.6, c = 86.5 A, beta = 95.7 degrees . Data sets were collected to a resolution of 2.4 A. The structure was solved by the molecular-replacement method. Model refinement is currently in progress. PMID:19478452

  4. Crystallization of carbohydrate oxidase from Microdochium nivale

    PubMed Central

    Dušková, Jarmila; Dohnálek, Jan; Skálová, Tereza; Østergaard, Lars Henrik; Fuglsang, Claus Crone; Kolenko, Petr; Štěpánková, Andrea; Hašek, Jindřich

    2009-01-01

    Microdochium nivale carbohydrate oxidase was produced by heterologous recombinant expression in Aspergillus oryzae, purified and crystallized. The enzyme crystallizes with varying crystal morphologies depending on the crystallization conditions. Several different crystal forms were obtained using the hanging-drop vapour-diffusion method, two of which were used for diffraction measurements. Hexagon-shaped crystals (form I) diffracted to 2.66 Å resolution, with unit-cell parameters a = b = 55.7, c = 610.4 Å and apparent space group P6222. Analysis of the data quality showed almost perfect twinning of the crystals. Attempts to solve the structure by molecular replacement did not give satisfactory results. Recently, clusters of rod-shaped crystals (form II) were grown in a solution containing PEG MME 550. These crystals belonged to the monoclinic system C2, with unit-cell parameters a = 132.9, b = 56.6, c = 86.5 Å, β = 95.7°. Data sets were collected to a resolution of 2.4 Å. The structure was solved by the molecular-replacement method. Model refinement is currently in progress. PMID:19478452

  5. Rice, Japonica (Oryza sativa L.).

    PubMed

    Main, Marcy; Frame, Bronwyn; Wang, Kan

    2015-01-01

    The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events. PMID:25300839

  6. Characterization of polyphenol oxidase from Cape gooseberry (Physalis peruviana L.) fruit.

    PubMed

    Bravo, Karent; Osorio, Edison

    2016-04-15

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued, however it is a very rich source of polyphenol oxidase (PPO). In this study, Cape gooseberry PPO was isolated and biochemically characterized. The enzyme was extracted and purified using acetone and aqueous two-phase systems. The data indicated that PPO had the highest substrate affinity for chlorogenic acid, 4-methylcatechol and catechol. Chlorogenic acid was the most suitable substrate (Km=0.56±0.07 mM and Vmax=53.15±2.03 UPPO mL(-1) min(-1)). The optimal pH values were 5.5 for catechol and 4-methylcatechol and 5.0 for chlorogenic acid. Optimal temperatures were 40°C for catechol, 25°C for 4-methylcatechol and 20°C for chlorogenic acid. In inhibition tests, the most potent inhibitor was found to be ascorbic acid followed by L-cysteine and quercetin. This study shows possible treatments that can be implemented during the processing of Cape gooseberry fruits to prevent browning. PMID:26616939

  7. A homolog of an Escherichia coli phosphate-binding protein gene from Xanthomonas oryzae pv. oryzae

    NASA Technical Reports Server (NTRS)

    Hopkins, C. M.; White, F. F.; Heaton, L. A.; Guikema, J. A.; Leach, J. E.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    A Xanthomonas oryzae pv. oryzae gene with sequence similarity to an Escherichia coli phosphate-binding protein gene (phoS) produces a periplasmic protein of apparent M(r) 35,000 when expressed in E. coli. Amino terminal sequencing revealed that a signal peptide is removed during transport to the periplasm in E. coli.

  8. Molecular genetic characterization of the interaction of stem rot (Sclerotium Oryzae) and rice (Oryza Sativa).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotium oryzae is the causal agent of stem rot disease in rice, one of the most important rice diseases in California. Resistance to stem rot, derived from a wild relative of rice called Oryza rufipogon, was identified over twenty years ago and has been crossed into various California breeding li...

  9. A sensitive method for the assay of catechol amines

    PubMed Central

    Armitage, A. K.; Vane, J. R.

    1964-01-01

    A strip of fundus from a rat's stomach was suspended in Krebs solution containing 5-hydroxytryptamine. Movements of the muscle were recorded by means of a frontal writing lever giving a magnification of sixteen-times. The strip relaxed when isoprenaline, adrenaline or noradrenaline was added to the organ-bath in concentrations of 0.2 to 2 ng/ml. The preparation was most sensitive to isoprenaline and least sensitive to noradrenaline. The components of a mixture of two catechol amines could be assayed by superfusing the rat stomach and a chick rectum in the same stream of fluid. PMID:14126052

  10. Purification and structural analysis of membrane-bound polyphenol oxidase from Fuji apple.

    PubMed

    Liu, Fang; Zhao, Jin-Hong; Wen, Xin; Ni, Yuan-Ying

    2015-09-15

    Membrane-bound polyphenol oxidase (mPPO) in Fuji apple (Malus domestica Borkh. cv. Red Fuji) was purified and analyzed with a nanoelectrospray ionization mass spectrometer. The three-dimensional model and binding site of mPPO to 4-methyl catechol were also studied using molecular docking. mPPO was purified 54.41-fold using temperature-induced phase partitioning technique and ion exchange chromatography. mPPO had a molecular weight of 67.3kDa. Even though a significant level of homology was observed between mPPO and the soluble polyphenol oxidase in the copper binding sequence, there was another region, rich in histidine residues, which differed in 13 amino acids. The three-dimensional structure of mPPO consisted of six α-helices, two short β-strands, and ten random coils. The putative substrate-binding pocket contained six polar or charged amino acids, His191, His221, Trp224, Trp228, Phe227, and Val190. Trp224 and Trp228 formed hydrogen bonds with 4-methyl-catechol. PMID:25863612

  11. Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong

    2007-01-01

    This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…

  12. Characterization of two brassinosteroid C-6 oxidase genes in pea.

    PubMed

    Jager, Corinne E; Symons, Gregory M; Nomura, Takahito; Yamada, Yumiko; Smith, Jennifer J; Yamaguchi, Shinjiro; Kamiya, Yuji; Weller, James L; Yokota, Takao; Reid, James B

    2007-04-01

    C-6 oxidation genes play a key role in the regulation of biologically active brassinosteroid (BR) levels in the plant. They control BR activation, which involves the C-6 oxidation of 6-deoxocastasterone (6-DeoxoCS) to castasterone (CS) and in some cases the further conversion of CS to brassinolide (BL). C-6 oxidation is controlled by the CYP85A family of cytochrome P450s, and to date, two CYP85As have been isolated in tomato (Solanum lycopersicum), two in Arabidopsis (Arabidopsis thaliana), one in rice (Oryza sativa), and one in grape (Vitis vinifera). We have now isolated two CYP85As (CYP85A1 and CYP85A6) from pea (Pisum sativum). However, unlike Arabidopsis and tomato, which both contain one BR C-6 oxidase that converts 6-DeoxoCS to CS and one BR C-6 Baeyer-Villiger oxidase that converts 6-DeoxoCS right through to BL, the two BR C-6 oxidases in pea both act principally to convert 6-DeoxoCS to CS. The isolation of these two BR C-6 oxidation genes in pea highlights the species-specific differences associated with C-6 oxidation. In addition, we have isolated a novel BR-deficient mutant, lke, which blocks the function of one of these two BR C-6 oxidases (CYP85A6). The lke mutant exhibits a phenotype intermediate between wild-type plants and previously characterized pea BR mutants (lk, lka, and lkb) and contains reduced levels of CS and increased levels of 6-DeoxoCS. To date, lke is the only mutant identified in pea that blocks the latter steps of BR biosynthesis and it will therefore provide an excellent tool to further examine the regulation of BR biosynthesis and the relative biological activities of CS and BL in pea. PMID:17322341

  13. Improved performance of protected catecholic polysiloxanes for bio-inspired wet adhesion to surface oxides

    PubMed Central

    Heo, Jinhwa; Kang, Taegon; Jang, Se Gyu; Hwang, Dong Soo; Spruell, Jason M.; Killops, Kato L.; Waite, J. Herbert; Hawker, Craig J.

    2012-01-01

    A facile synthetic strategy for introducing catecholic moieties into polymeric materials based on a readily available precursor – eugenol – and efficient chemistries – tris(pentafluorophenyl)borane catalyzed silation and thiol-ene coupling is reported. Silyl-protection is shown to be critical for the oxidative stability of catecholic moieties during synthesis and processing which allows functionalized polysiloxane derivatives to be fabricated into 3-D microstructures as well as 2-D patterned surfaces. Deprotection gives stable catechol surfaces with adhesion to a variety of oxide surfaces being precisely tuned by the level of catechol incorporation. The advantage of silyl-protection for catechol functionalized polysiloxanes is demonstrated and represents a promising and versatile new platform for underwater surface treatments. PMID:23181614

  14. Synthesis of tripodal catecholates and their immobilization on zinc oxide nanoparticles

    PubMed Central

    Klitsche, Franziska; Ramcke, Julian; Migenda, Julia; Hensel, Andreas; Vossmeyer, Tobias; Weller, Horst

    2015-01-01

    Summary A common approach to generate tailored materials and nanoparticles (NPs) is the formation of molecular monolayers by chemisorption of bifunctional anchor molecules. This approach depends critically on the choice of a suitable anchor group. Recently, bifunctional catecholates, inspired by mussel-adhesive proteins (MAPs) and bacterial siderophores, have received considerable interest as anchor groups for biomedically relevant metal surfaces and nanoparticles. We report here the synthesis of new tripodal catecholates as multivalent anchor molecules for immobilization on metal surfaces and nanoparticles. The tripodal catecholates have been conjugated to various effector molecules such as PEG, a sulfobetaine and an adamantyl group. The potential of these conjugates has been demonstrated with the immobilization of tripodal catecholates on ZnO NPs. The results confirmed a high loading of tripodal PEG-catecholates on the particles and the formation of stable PEG layers in aqueous solution. PMID:26124871

  15. Concerted actions of the catechol O-methyltransferase and the cytosolic sulfotransferase SULT1A3 in the metabolism of catecholic drugs

    PubMed Central

    Kurogi, Katsuhisa; Alazizi, Adnan; Liu, Ming-Yih; Sakakibara, Yoichi; Suiko, Masahito; Sugahara, Takuya; Liu, Ming-Cheh

    2013-01-01

    Catecholic drugs had been reported to be metabolized through conjugation reactions, particularly methylation and sulfation. Whether and how these two Phase II conjugation reactions may occur in a concerted manner, however, remained unclear. The current study was designed to investigate the methylation and/or sulfation of five catecholic drugs. Analysis of the spent media of HepG2 cells metabolically labeled with [35S]sulfate in the presence of individual catecholic drugs revealed the presence of two [35S]sulfated metabolites for dopamine, epinephrine, isoproterenol, and isoetharine, but only one [35S]sulfated metabolite for apomorphine. Further analyses using tropolone, a catechol O-methyltransferase (COMT) inhibitor, indicated that one of the two [35S]sulfated metabolites of dopamine, epinephrine, isoproterenol, and isoetharine was a doubly conjugated (methylated and sulfated) product, since its level decreased proportionately with increasing concentrations of tropolone added to the labeling media. Moreover, while the inhibition of methylation resulted in a decrease of the total amount of [35S]sulfated metabolites, sulfation appeared to be capable of compensating the suppressed methylation in the metabolism of these four catecholic drugs. A two-stage enzymatic assay showed the sequential methylation and sulfation of dopamine, epinephrine, isoproterenol, and isoetharine mediated by, respectively, the COMT and the cytosolic sulfotransferase SULT1A3. Collectively, the results from the present study implied the concerted actions of the COMT and SULT1A3 in the metabolism of catecholic drugs. PMID:22917559

  16. Mapping the conformational space accessible to catechol-O-methyltransferase.

    PubMed

    Ehler, Andreas; Benz, Jörg; Schlatter, Daniel; Rudolph, Markus G

    2014-08-01

    Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson's disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors. PMID:25084335

  17. Catechol-O-methyltransferase decreases levodopa toxicity in vitro.

    PubMed

    Offen, D; Panet, H; Galili-Mosberg, R; Melamed, E

    2001-01-01

    The purpose of this study was to examine the effects of 3-O-methylation by catechol-O-methyltransferase (COMT) on the toxicity of levodopa in neuronal cultures. High concentrations of levodopa are toxic in vitro. Therefore, there is concern that long-term treatment with levodopa in patients with Parkinson's disease might accelerate the rate of degeneration of nigrostriatal neurons. However, recent studies have suggested that, while levodopa is harmful in vitro, it may not be toxic in vivo. A possible defense mechanism is by means of metabolic shunting of levodopa excess to 3-O-methyldopa by COMT in peripheral and central nervous system tissues. In this study we examine whether the use of COMT inhibitor, which reduced the levels of 3-O-methyldopa, affect levodopa toxicity. Mice cerebellar granule neurons, PC12, and neuroblastoma cells were used, and their viability following exposure to levodopa and COMT with and without tolcapone, a COMT inhibitor, was measured by neutral red staining. Auto-oxidation of levodopa was evaluated using a spectrophotometer (690 nm). We found that 3-O-methyldopa, unlike levodopa, was not toxic to all cells examined. Addition of purified COMT to levodopa prevented its auto-oxidation and markedly attenuated its cytotoxicity in vitro. Additional tolcapone reversed the protective effect of COMT. The agent 3-O-methyldopa is not toxic to cell cultures. Catechol-O-methyltransferase attenuates toxicity of levodopa in vitro by its metabolism to nontoxic 3-O-methyldopa. PMID:11290879

  18. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  19. Evaluation of Mut(S) and Mut⁺ Pichia pastoris strains for membrane-bound catechol-O-methyltransferase biosynthesis.

    PubMed

    Pedro, A Q; Oppolzer, D; Bonifácio, M J; Maia, C J; Queiroz, J A; Passarinha, L A

    2015-04-01

    Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an enzyme that catalyzes the methylation of catechol substrates, and while structural and functional studies of its membrane-bound isoform (MBCOMT) are still hampered by low recombinant production, Pichia pastoris has been described as an attractive host for the production of correctly folded and inserted membrane proteins. Hence, in this work, MBCOMT biosynthesis was developed using P. pastoris X33 and KM71H cells in shake flasks containing a semidefined medium with different methanol concentrations. Moreover, after P. pastoris glass beads lysis, biologically and immunologically active hMBCOMT was found mainly in the solubilized membrane fraction whose kinetic parameters were identical to its correspondent native enzyme. In addition, mixed feeds of methanol and glycerol or sorbitol were also employed, and its levels quantified using liquid chromatography coupled to refractive index detection. Overall, for the first time, two P. pastoris strains with opposite phenotypes were applied for MBCOMT biosynthesis under the control of the strongly methanol-inducible alcohol oxidase (AOX) promoter. Moreover, this eukaryotic system seems to be a promising approach to deliver MBCOMT in high quantities from fermentor cultures with a lower cost-benefit due to the cheaper cultivation media coupled with the higher titers tipically achieved in biorreactors, when compared with previously reported mammallian cell cultures. PMID:25712908

  20. Crystallization of Mitochondrial Cytochrome Oxidase

    NASA Astrophysics Data System (ADS)

    Ozawa, Takayuki; Tanaka, Masashi; Wakabayashi, Takashi

    1982-12-01

    Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) was purified from beef heart mitochondria. By washing the oxidase with detergent on a hydrophobic interaction column, phospholipids were depleted to the level of 1 mol of cardiolipin per mol of heme a. Hydrophobic impurities and partially denatured oxidase were separated from the intact oxidase on an affinity column with cytochrome c as the specific ligand. The final preparation of the oxidase contained seven distinct polypeptides. The molecular weight of the oxidase was estimated to be 130,000 from its specific heme a and copper content and from the subunit composition. Crystals of the oxidase were obtained by slow removal of the detergent from the buffer in which the oxidase was dissolved. The needle-shaped crystals were 100 μ m in average length and 5 μ m in width, and they strongly polarized visible light. Electron diffraction patterns were obtained with an unstained glutaraldehyde-fixed single crystal by electron microscopy using 1,000-kV electrons. From electron micrographs and the diffraction patterns of the crystal, it was concluded that the crystal is monoclinic in the space group P21, with unit cell dimensions a = 92 angstrom, b = 84 angstrom, and c = 103 angstrom, and α =β 90 degrees, γ = 126 degrees.

  1. A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol.

    PubMed

    Mageroy, Melissa H; Tieman, Denise M; Floystad, Abbye; Taylor, Mark G; Klee, Harry J

    2012-03-01

    O-methyltransferases (OMT) are important enzymes that are responsible for the synthesis of many small molecules, which include lignin monomers, flavonoids, alkaloids, and aroma compounds. One such compound is guaiacol, a small volatile molecule with a smoky aroma that contributes to tomato flavor. Little information is known about the pathway and regulation of synthesis of guaiacol. One possible route for synthesis is via catechol methylation. We identified a tomato O-methyltransferase (CTOMT1) with homology to a Nicotiana tabacum catechol OMT. CTOMT1 was cloned from Solanum lycopersicum cv. M82 and expressed in Escherichia coli. Recombinant CTOMT1 enzyme preferentially methylated catechol, producing guaiacol. To validate the in vivo function of CTOMT1, gene expression was either decreased or increased in transgenic S. lycopersicum plants. Knockdown of CTOMT1 resulted in significantly reduced fruit guaiacol emissions. CTOMT1 overexpression resulted in slightly increased fruit guaiacol emission, which suggested that catechol availability might limit guaiacol production. To test this hypothesis, wild type (WT) and CTOMT1 that overexpress tomato pericarp discs were supplied with exogenously applied catechol. Guaiacol production increased in both WT and transgenic fruit discs, although to a much greater extent in CTOMT1 overexpressing discs. Finally, we identified S. pennellii introgression lines with increased guaiacol content and higher expression of CTOMT1. These lines also showed a trend toward lower catechol levels. Taken together, we concluded that CTOMT1 is a catechol-O-methyltransferase that produces guaiacol in tomato fruit. PMID:22103597

  2. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review.

    PubMed

    Ryu, Ji Hyun; Hong, Seonki; Lee, Haeshin

    2015-11-01

    The development of adhesive materials, such as cyanoacrylate derivatives, fibrin glues, and gelatin-based adhesives, has been an emerging topic in biomaterial science because of the many uses of these materials, including in wound healing patches, tissue sealants, and hemostatic materials. However, most bio-adhesives exhibit poor adhesion to tissue and related surfaces due to the presence of body fluid. For a decade, studies have aimed at addressing this issue by developing wet-resistant adhesives. Mussels demonstrate robust wet-resistant adhesion despite the ceaseless waves at seashores, and mussel adhesive proteins play a key role in this adhesion. Adhesive proteins located at the distal end (i.e., those that directly contact surfaces) are composed of nearly 60% of amino acids called 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine, which contain side chains of catechol, primary amines, and secondary amines, respectively. Inspired by the abundant catecholamine in mussel adhesive proteins, researchers have developed various types of polymeric mimics, such as polyethylenimine-catechol, chitosan-catechol, and other related catecholic polymers. Among them, chitosan-catechol is a promising adhesive polymer for biomedical applications. The conjugation of catechol onto chitosan dramatically increases its solubility from zero to nearly 60mg/mL (i.e., 6% w/v) in pH 7 aqueous solutions. The enhanced solubility maximizes the ability of catecholamine to behave similar to mussel adhesive proteins. Chitosan-catechol is biocompatible and exhibits excellent hemostatic ability and tissue adhesion, and thus, chitosan-catechol will be widely used in a variety of medical settings in the future. This review focuses on the various aspects of chitosan-catechol, including its (1) preparation methods, (2) physicochemical properties, and (3) current applications. PMID:26318801

  3. Genomic-associated Markers and comparative Genome Maps of Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola.

    PubMed

    Feng, Wenjie; Wang, Yi; Huang, Lisha; Feng, Chuanshun; Chu, Zhaohui; Ding, Xinhua; Yang, Long

    2015-09-01

    Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) cause two major seed quarantine diseases in rice, bacterial blight and bacterial leaf streak, respectively. Xoo and Xoc share high similarity in genomic sequence, which results in hard differentiation of the two pathogens. Genomic-associated Markers and comparative Genome Maps database (GMGM) is an integrated database providing comprehensive information including compared genome maps and full genomic-coverage molecular makers of Xoo and Xoc. This database was established based on bioinformatic analysis of complete sequenced genomes of several X. oryzae pathovars of which the similarity of the genomes was up to 91.39 %. The program was designed with a series of specific PCR primers, including 286 pairs of Xoo dominant markers, 288 pairs of Xoc dominant markers, and 288 pairs of Xoo and Xoc co-dominant markers, which were predicted to distinguish two pathovars. Test on a total of 40 donor pathogen strains using randomly selected 120 pairs of primers demonstrated that over 52.5 % of the primers were efficacious. The GMGM web portal ( http://biodb.sdau.edu.cn/gmgm/ ) will be a powerful tool that can present highly specific diagnostic markers, and it also provides information about comparative genome maps of the two pathogens for future evolution study. PMID:26093644

  4. NADPH Oxidase and Neurodegeneration

    PubMed Central

    Hernandes, Marina S; Britto, Luiz R G

    2012-01-01

    NADPH oxidase (Nox) is a unique, multi-protein, electron transport system that produces large amounts of superoxide via the reduction of molecular oxygen. Nox-derived reactive oxygen species (ROS) are known to be involved in a variety of physiological processes, including host defense and signal transduction. However, over the past decade, the involvement of (Nox)-dependent oxidative stress in the pathophysiology of several neurodegenerative diseases has been increasingly recognized. ROS produced by Nox proteins contribute to neurodegenerative diseases through distinct mechanisms, such as oxidation of DNA, proteins, lipids, amino acids and metals, in addition to activation of redox-sensitive signaling pathways. In this review, we discuss the recent literature on Nox involvement in neurodegeneration, focusing on Parkinson and Alzheimer diseases. PMID:23730256

  5. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  6. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice.

    PubMed

    Shi, Wei; Li, Caiyun; Li, Man; Zong, Xicui; Han, Dongju; Chen, Yuqing

    2016-06-01

    Xanthomonas oryzae pv. oryzae is a destructive bacterial disease of rice, and the development of an environmentally safe bactericide is urgently needed. Antimicrobial peptides, as antibacterial sources, may play important roles in bactericide development. In the present study, we found that the antimicrobial peptide melittin had the desired antibacterial activity against X. oryzae pv. oryzae. The antibacterial mechanism was investigated by examining its effects on cell membranes, energy metabolism, and nucleic acid, and protein synthesis. The antibacterial effects arose from its ability to interact with the bacterial cell wall and disrupt the cytoplasmic membrane by making holes and channels, resulting in the leakage of the cytoplasmic content. Additionally, melittin is able to permeabilize bacterial membranes and reach the cytoplasm, indicating that there are multiple mechanisms of antimicrobial action. DNA/RNA binding assay suggests that melittin may inhibit macromolecular biosynthesis by binding intracellular targets, such as DNA or RNA, and that those two modes eventually lead to bacterial cell death. Melittin can inhibit X. oryzae pv. oryzae from spreading, alleviating the disease symptoms, which indicated that melittin may have potential applications in plant protection. PMID:26948237

  7. Distribution of Xanthomonas oryzae pv. oryzae Strains Virulent to Xa21 in Korea.

    PubMed

    Lee, S W; Choi, S H; Han, S S; Lee, D G; Lee, B Y

    1999-10-01

    ABSTRACT Strains of Xanthomonas oryzae pv. oryzae that are virulent to rice lines carrying the Xa21 resistance gene were widely distributed in Korea. A total of 105 strains collected during 1987 to 1996 in Korea was characterized by pathogenicity tests and restriction fragment length polymorphism analysis of the XorII methyltransferase (xorIIM) and avrXa10 genes. Although the lesion lengths on rice line IRBB21, which carries Xa21, decreased as plant age increased, resistance and susceptibility of the plants to 31 strains were clearly differentiated at the seedling (14, 21, and 28 days old), maximum tillering, and flag leaf stages. The resistance or susceptibility of seedlings was correlated with bacterial populations within an inoculated leaf. There was a significant change in the population structure of X. oryzae pv. oryzae with regard to virulence to Xa21 over the last 10 years; this change in population was confirmed by genome analysis. Lineage I, which is avirulent to Xa21 and does not have a genomic xorIIM homolog, was the predominant lineage found between 1987 and 1989, while lineage II, which is virulent to Xa21 and contains the xorIIM homolog, was predominant in strains collected between 1994 and 1995. Our results demonstrate that introduction of Xa21 into commercial rice should be based on the regional structure of X. oryzae pv. oryzae populations and suggest that Xa21 will not be useful in Korea. PMID:18944737

  8. H-point curve isolation method for determination of catechol in complex unknown mixtures

    NASA Astrophysics Data System (ADS)

    Hasani, Masoumeh; Mohammadi, Masoumeh; Shariati-Rad, Masoud; Abdollahi, Hamid

    2012-10-01

    In this work, the combination of H-point curve isolation method (HPCIM) and H-point standard additions method (HPSAM) was used for determination of catechol in the presence of phenolic interferents. Spectrophotometric multivariate calibration data constructed by successive standard additions of an analyte in an unknown matrix was used by the method. A cumulative spectrum for interferents in sample was extracted by HPCIM and then HPSAM is used for determination of the catechol concentration by obtained cumulative interferents spectrum. The method was tested with simulated data set. The spectrum obtained from applying HPCIM to the simulated data well agrees with the cumulative spectra of the interferents. The method was applied to the determination of catechol in the presence of highly overlapping interferents in synthetic ternary mixtures using spectrophotometric data. Moreover, the proposed method was successfully used for determination of catechol in real complicated matrices of tea and urine samples. Percent recoveries were between 95.4 and 113.6.

  9. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    PubMed

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides. PMID:26250681

  10. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement

    NASA Astrophysics Data System (ADS)

    Maier, Greg P.; Rapp, Michael V.; Waite, J. Herbert; Israelachvili, Jacob N.; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (Ead ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a “one-two punch,” whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  11. Defining the Catechol-Cation Synergy for Enhanced Wet Adhesion to Mineral Surfaces.

    PubMed

    Rapp, Michael V; Maier, Greg P; Dobbs, Howard A; Higdon, Nicholas J; Waite, J Herbert; Butler, Alison; Israelachvili, Jacob N

    2016-07-27

    Mussel foot proteins (Mfps) exhibit remarkably adaptive adhesion and bridging between polar surfaces in aqueous solution despite the strong hydration barriers at the solid-liquid interface. Recently, catechols and amines-two functionalities that account for >50 mol % of the amino acid side chains in surface-priming Mfps-were shown to cooperatively displace the interfacial hydration and mediate robust adhesion between mineral surfaces. Here we demonstrate that (1) synergy between catecholic and guanidinium side chains similarly promotes adhesion, (2) increasing the ratio of cationic amines to catechols in a molecule reduces adhesion, and (3) the catechol-cation synergy is greatest when both functionalities are present within the same molecule. PMID:27415839

  12. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations.

    PubMed

    Wendt, Franziska; Näther, Christian; Tuczek, Felix

    2016-09-01

    Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-L-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed. PMID:27333775

  13. Characterization and catechole oxidase activity of a family of copper complexes coordinated by tripodal pyrazole-based ligands.

    PubMed

    Marion, R; Zaarour, M; Qachachi, N A; Saleh, N M; Justaud, F; Floner, D; Lavastre, O; Geneste, F

    2011-11-01

    A family of tripodal pyrazole-based ligands has been synthesized by a condensation reaction between 1-hydroxypyrazoles and aminoalcohols. The diversity was introduced both on the substituents of the pyrazole ring and on the side chain. The corresponding copper(II) complexes have been prepared by reaction with CuCl(2) in tetrahydrofuran. They have been characterized by EPR, UV spectroscopy and cyclic voltammetry. The absence of the half-field splitting signals in EPR suggests that the complex exists in solution as mononuclear species. The influence of substituents and side chain of the tripodal ligand on the catecholase activity of the complexes was studied. The reaction rate depends on two factors. First, the presence of an oxygen atom in the third position of the side chain should be avoided to keep the effectiveness of the reaction. Second, the electronic and steric effects of substituents on the pyrazole ring strongly affect the catalytic activity of the complex. Thus, best results were obtained with complexes containing unsubstituted pyrazole based-ligands. Kinetic investigations with the best catalyst based on the Michaelis-Menten model show that the catalytic activity of the mononuclear complex is close to that of some dicopper complexes described in literature. PMID:21946439

  14. Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis.

    PubMed

    Li, Wensheng; Xie, Dongming; Frost, J W

    2005-03-01

    The toxicity of aromatics frequently limits the yields of their microbial synthesis. For example, the 5% yield of catechol synthesized from glucose by Escherichia coli WN1/pWL1.290A under fermentor-controlled conditions reflects catechol's microbial toxicity. Use of in situ resin-based extraction to reduce catechol's concentration in culture medium and thereby its microbial toxicity during its synthesis from glucose by E. coli WN1/pWL1.290A led to a 7% yield of catechol. Interfacing microbial with chemical synthesis was then explored where glucose was microbially converted into a nontoxic intermediate followed by chemical conversion of this intermediate into catechol. Intermediates examined include 3-dehydroquinate, 3-dehydroshikimate, and protocatechuate. 3-Dehydroquinate and 3-dehydroshikimate synthesized, respectively, by E. coli QP1.1/pJY1.216A and E. coli KL3/pJY1.216A from glucose were extracted and then reacted in water heated at 290 degrees C to afford catechol in overall yields from glucose of 10% and 26%, respectively. The problematic extraction of these catechol precursors from culture medium was subsequently circumvented by high-yielding chemical dehydration of 3-dehydroquinate and 3-dehydroshikimate in culture medium followed by extraction of the resulting protocatechuate. After reaction of protocatechuate in water heated at 290 degrees C, the overall yields of catechol synthesized from glucose via chemical dehydration of 3-dehydroquinate and chemical dehydration of 3-dehydroshikimate were, respectively, 25% and 30%. Direct synthesis of protocatechuate from glucose using E. coli KL3/pWL2.46B followed by its extraction and chemical decarboxylation in water gave a 24% overall yield of catechol from glucose. In situ resin-based extraction of protocatechaute synthesized by E. coli KL3/pWL2.46B followed by chemical decarboxylation of this catechol percursor was then examined. This employment of both strategies for dealing with the microbial toxicity of

  15. [Isolation and characteristics of micromycetes--producers of neutral phenol oxidase from trophic soil with a high level of dioxins].

    PubMed

    Vasil'chenko, L G; Koroleva, O V; Stepanova, E V; Landesman, E O; Rabinovich, M L

    2000-01-01

    Samples of South Vietnamese soils intensely treated with Agent Orange defoliant were tested for the presence of fungi and actinomycetes with elevated phenol oxidase activity. As a result, fast-growing non-sporulating strain producing neutral phenol oxidases was isolated and identified as Mycelia sterilia INBI 2-26. The strain formed extracellular phenol oxidases during surface growth on liquid medium in the presence of guayacol and copper sulfate, as well as during submerged cultivation in liquid medium containing wheat bran and sugar beet pulp. Isoelectric focusing of cultural liquid has revealed two major catechol oxidases (PO1 and PO2) with pI 3.5 and 8, respectively. The enzymes were purified by ultrafiltration, ion exchange chromatography and exclusion HPLC. Both were stable between pH 3 and 8. At pH 8 and 40 degrees C they retained at least 50% of activity after incubation for 50 h. At 50 degrees C PO2 was more stable and retained 40% of activity after 50 h, whereas PO1 was inactivated in 3-6 h. The pH optimums for PO1 and PO2 towards catechol were equal to 6 and 6.5, and the Km values were 1.5 +/- 0.35 and 1.25 +/- 0.2 mM, respectively. PO1 and PO2 most optimally oxidized 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) at pH 3 with Km values 1.6 +/- 0.18 and 0.045 +/- 0.01 mM, respectively, but displayed no activity towards tyrosine. The PO2 absorbance spectrum had a peak at 600 nm, thus indicating the enzyme to be a member of the laccase family. PMID:10994189

  16. Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae.

    PubMed

    Gupta, Yogesh K; Dagdas, Yasin F; Martinez-Rocha, Ana-Lilia; Kershaw, Michael J; Littlejohn, George R; Ryder, Lauren S; Sklenar, Jan; Menke, Frank; Talbot, Nicholas J

    2015-11-01

    Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion. PMID:26566920

  17. Roseomonas oryzae sp. nov., isolated from paddy rhizosphere soil.

    PubMed

    Ramaprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2015-10-01

    A non-motile, coccus-shaped, pale-pink-pigmented bacterium, designated strain JC288T, was isolated from a paddy rhizosphere soil collected from Western Ghats, Kankumbi, Karnataka, India. Cells were found to be Gram-stain-negative, and catalase- and oxidase-positive; the major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c/C18 : 1ω6c and C18 : 1 2-OH. The predominant respiratory quinone was Q-10 and the genomic DNA G+C content was 67.5 mol%. Strain JC288T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, four unidentified aminolipids, three unidentified phospholipids, two unidentified lipids, an aminophospholipid and a glycolipid. Hydroxyspirilloxanthin was the major carotenoid of strain JC288T. 16S rRNA gene sequence comparisons indicated that strain JC288T represents a member of the genus Roseomonas within the family Acetobacteraceae of the phylum Proteobacteria. Strain JC288T shared the highest 16S rRNA gene sequence similarity with Roseomonas rhizosphaerae YW11T (97.3 %), Roseomonas aestuarii JC17T (97.1 %), Roseomonas cervicalis CIP 104027T (95.9 %) and other members of the genus Roseomonas ( < 95.5 %). The distinct genomic difference and morphological, physiological and chemotaxonomic differences from the previously described taxa support the classification of strain JC288T as a representative of a novel species of the genus Roseomonas, for which the name Roseomonas oryzae sp. nov. is proposed. The type strain is JC288T ( = KCTC 42542T = LMG 28711T). PMID:26297330

  18. Identification of catechol and hydroquinone metabolites of 4-monochlorobiphenyl.

    PubMed

    McLean, M R; Bauer, U; Amaro, A R; Robertson, L W

    1996-01-01

    Polychlorinated biphenyls (PCBs) may be metabolically activated to electrophiles, which bind to proteins and nucleic acids. One activation scheme involves the formation of reactive arene oxide intermediates during cytochrome P450-catalyzed hydroxylation. We propose a second activation pathway whereby PCB catechol and hydroquinone metabolites may be oxidized to reactive semiquinones and/or quinones. By employing 4-monochlorobiphenyl (4-MCB) as a model substrate and liver microsomes from rats treated with phenobarbital and 3-methyl-cholanthrene, five monol and three diol metabolites were identified. The major metabolite was 4-chloro-4'-monohydroxybiphenyl, followed by, in decreasing order, 4-chloro-3',4'-dihydroxybiphenyl, unknown B (a monol), 4-chloro-2',3'-dihydroxybiphenyl, 4-chloro-3'-hydroxybiphenyl, 4-chloro-2',5'-dihydroxybiphenyl, unknown A (a monol), and 4-chloro-2'-monohydroxybiphenyl. A trace of a dihydrodiol was detected by GC/MS. To elucidate the source of the diols, 4-MCB and the synthetic monol metabolites 4-chloro-2'-/-3'-/-4'-monohydroxybiphenyls were each employed as substrates in incubations with microsomes from rats treated with phenobarbital, 3-methylcholanthrene, or both inducers. The three diol metabolites were all produced from 4-MCB in incubations with microsomes from 3-methylcholanthrene-treated rats, but incubations with microsomes from phenobarbital-treated rats did not yield detectable amounts of 4-chloro-2',3'-dihydroxybiphenyl. 4-Chloro-2',3'-dihydroxybiphenyl was only found as a product of 4-chloro-2'-monohydroxybiphenyl. The 4-chloro-2',5'-dihydroxybiphenyl was found in extracts of incubations with 4-chloro-2'- and -3'-monohydroxybiphenyls, while the 4-chloro-3',4'-dihydroxybiphenyl was the only product found from 4-chloro-3'- and -4'-monohydroxybiphenyls. No other chlorinated diols were detected by GC/MS. These data suggest that the major route of biosynthesis of the diols was via a second hydroxylation step and not aromatization of

  19. The central catechol-O-methyltransferase inhibitor tolcapone increases striatal hydroxyl radical production in L-DOPA/carbidopa treated rats.

    PubMed

    Gerlach, M; Xiao, A Y; Kuhn, W; Lehnfeld, R; Waldmeier, P; Sontag, K H; Riederer, P

    2001-01-01

    Inhibition of catechol catechol-O-methyltransferase (COMT) in the brains of subjects treated with L-DOPA (L-3,4-dihydroxylphenylalanine) and an aromatic amino acid decarboxylase (AADC) inhibitor is suggested to cause an increase of L-DOPA, which might lead to oxidative damage through enhanced formation of free radicals. To investigate this hypothesis, the acute effects of two doses of the systemically administered COMT inhibitors entacapone (peripheral) and tolcapone (peripheral and central) on the extracellular formation of hydroxyl radicals in vivo following treatment with L-DOPA and the AADC inhibitor carbidopa were examined. The formation of extracellular hydroxyl radicals were determined by the measurement of 2,3-dihydroxybenzoic acid (2,3-DHBA), a reaction product of hydroxyl radicals with sodium salicylate, using microdialysis in the striatum of anesthetised rats. The COMT inhibitors were administered together with 50 mg/kg i.p. carbidopa as 5% gum arabic suspensions intraperitoneally (i.p.) at doses of 0, 1.0, and 10 mg/kg body weight to a total of 36 male HAN-Wistars rats. L-DOPA was injected i.p. 40 min after drugs of interest. Microdialysis samples were collected every 20 min for 400 min at a perfusion rate of 1 microl/min. Systemically administered 10 mg/kg tolcapone, but not entacapone, induced an increase in hydroxyl radical formation in the striatum of anesthetised rats following treatment with L-DOPA/carbidopa. The increase in hydroxyl radical formation was reflected by higher extracellular concentrations of the hydroxylate product of salicylate, 2,3-DHBA, peaking at 192% of baseline at the end of the observation period. Similar results were also found using the AUC (area under the curve) value estimated for the observation period. We conclude that the increase in hydroxyl radical formation is likely to result from an increased rate of monoamine oxidase-mediated and non-enzymatic (autoxidation) dopamine metabolism following increased central

  20. Sensitive Detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by Loop-Mediated Isothermal Amplification

    PubMed Central

    Lang, Jillian M.; Langlois, Paul; Nguyen, Marian Hanna R.; Triplett, Lindsay R.; Purdie, Laura; Holton, Timothy A.; Djikeng, Appolinaire; Vera Cruz, Casiana M.; Verdier, Valérie

    2014-01-01

    Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens. PMID:24837384

  1. Sensitive detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by loop-mediated isothermal amplification.

    PubMed

    Lang, Jillian M; Langlois, Paul; Nguyen, Marian Hanna R; Triplett, Lindsay R; Purdie, Laura; Holton, Timothy A; Djikeng, Appolinaire; Vera Cruz, Casiana M; Verdier, Valérie; Leach, Jan E

    2014-08-01

    Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 10(4) to 10(5) CFU ml(-1), while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens. PMID:24837384

  2. Analysis of the Proteins Secreted from the Oryza meyeriana Suspension-Cultured Cells Induced by Xanthomonas oryzae pv. oryzae.

    PubMed

    Chen, Xian; Dong, Yan; Yu, Chulang; Fang, XianPing; Deng, Zhiping; Yan, Chengqi; Chen, Jianping

    2016-01-01

    Oryza meyeriana, a wild species of rice from China, shows high resistance to Xanthomonas oryzae pv. oryzae (Xoo), the cause of rice bacterial blight, one of the most serious rice pathogens. To better understand the resistance mechanism, a proteomic study was conducted to identify changes in the proteins secreted in embryo cell suspension cultures in response to Xoo. After two-dimensional difference gel electrophoresis (2D-DIGE), 72 differentially expressed protein spots corresponding to 34 proteins were identified by Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry. Of the 34 proteins, 10 were up regulated and 24 down regulated. The secreted proteins identified were predicted to be involved in various biological processes, including signal transduction, defense, ROS and cell wall modification. 77% of the 34 proteins were predicted to have a signal peptide by Signal P. Quantitative Real-Time PCR showed that transcript levels of 14 secreted proteins were not well correlated with secreted protein levels. Peroxidase activity was up regulated in both O. meyriana and susceptible rice but was about three times higher in O. meyeriana. This suggests that peroxidases may play an important role in the early response to Xoo in O. meyeriana. These results not only provide a better understanding of the resistance mechanism of O. meyeriana, but have implications for studies of the interactions between other plants and their pathogens. PMID:27196123

  3. Analysis of the Proteins Secreted from the Oryza meyeriana Suspension-Cultured Cells Induced by Xanthomonas oryzae pv. oryzae

    PubMed Central

    Chen, Xian; Dong, Yan; Yu, Chulang; Fang, XianPing; Deng, Zhiping; Yan, Chengqi; Chen, Jianping

    2016-01-01

    Oryza meyeriana, a wild species of rice from China, shows high resistance to Xanthomonas oryzae pv. oryzae (Xoo), the cause of rice bacterial blight, one of the most serious rice pathogens. To better understand the resistance mechanism, a proteomic study was conducted to identify changes in the proteins secreted in embryo cell suspension cultures in response to Xoo. After two-dimensional difference gel electrophoresis (2D-DIGE), 72 differentially expressed protein spots corresponding to 34 proteins were identified by Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry. Of the 34 proteins, 10 were up regulated and 24 down regulated. The secreted proteins identified were predicted to be involved in various biological processes, including signal transduction, defense, ROS and cell wall modification. 77% of the 34 proteins were predicted to have a signal peptide by Signal P. Quantitative Real-Time PCR showed that transcript levels of 14 secreted proteins were not well correlated with secreted protein levels. Peroxidase activity was up regulated in both O. meyriana and susceptible rice but was about three times higher in O. meyeriana. This suggests that peroxidases may play an important role in the early response to Xoo in O. meyeriana. These results not only provide a better understanding of the resistance mechanism of O. meyeriana, but have implications for studies of the interactions between other plants and their pathogens. PMID:27196123

  4. Purification and characterization of polyphenol oxidase from fresh ginseng

    PubMed Central

    Kim, Jae-Joon; Kim, Woo-Yeon

    2013-01-01

    Polyphenol oxidase (PPO) was purified from fresh ginseng roots using acetone precipitation, carboxymethyl (CM)-Sepharose chromatography, and phenyl-Sepharose chromatography. Two isoenzymes (PPO 1 and PPO 2) were separated using an ion-exchange column with CM-Sepharose. PPO 1 was purified up to 13.2-fold with a 22.6% yield. PPO 2 bound to CM-Sepharose, eluted with NaCl, and was purified up to 22.5-fold with a 17.4% yield. PPO 2 was further chromatographed on phenyl-Sepharose. The molecular weight of the purified PPO 2 from fresh ginseng was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was about 40 kDa. The optimum temperature and pH were 20℃ and 7.0, respectively, using catechol as a substrate. Pyrogallol showed the highest substrate specificity. The effect of a PPO inhibitor showed that its activity increased slightly in the presence of a low concentration of citric acid. High concentrations of acidic compounds and sulfite agents significantly inhibited purified ginseng PPO 2. PMID:23717165

  5. Characterization of polyphenol oxidase activity in Ataulfo mango.

    PubMed

    Cheema, Summervir; Sommerhalter, Monika

    2015-03-15

    Crude extracts of Ataulfo exhibited polyphenol oxidase (PPO) activity with pyrogallol, 3-methylcatechol, catechol, gallic acid, and protocatechuic acid. The substrate dependent pH optima ranged from pH 5.4 to 6.4 with Michaelis-Menten constants between 0.84 ± 0.09 and 4.6 ± 0.7 mM measured in MES or phosphate buffers. The use of acetate buffers resulted in larger Michaelis-Menten constants, up to 14.62 ± 2.03 mM. Sodium ascorbate, glutathione, and kojic acid are promising inhibitors to prevent enzymatic browning in Ataulfo. PPO activity increased with ripeness and was always higher in the skin compared to the pulp. Sodium dodecyl sulphate (SDS) enhanced PPO activity, with pulp showing a stronger increase than skin. SDS-PAGE gels stained for catecholase activity showed multiple bands, with the most prominent bands at apparent molecular weights of 53, 112, and 144 kDa. PMID:25308684

  6. Sex-dependent compensated oxidative stress in the mouse liver upon deletion of catechol O-methyltransferase.

    PubMed

    Tenorio-Laranga, Jofre; Männistö, Pekka T; Karayiorgou, Maria; Gogos, Joseph A; García-Horsman, J Arturo

    2009-05-01

    Catechol-O-methyl transferase (COMT) methylates catechols, such as L-dopa and dopamine, and COMT deficient mice show dramatic shifts in the metabolite levels of catechols. Increase in catechol metabolite levels can, in principle, lead to oxidative stress but no indices of oxidative stress have been reported in COMT-knockout (KO) mice [Forsberg MM, Juvonen RO, Helisalmi P, Leppanen J, Gogos JA, Karayiorgou M, et al. Lack of increased oxidative stress in catechol-O-methyltransferase (COMT)-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 2004;370:279-89.]. Here we perform a proteomic based analysis of the livers of COMT-KO mice in search for potential compensatory mechanisms developed to cope with the effects of disrupted catechol metabolism. We found sex specific changes in proteins connected to stress response. Our results show that alterations in protein levels contribute to the homeostatic regulation in the liver of COMT deficient mice. PMID:19426692

  7. A Novel Mechanism for Adenylyl Cyclase Inhibition from the Crystal Structure of its Complex with Catechol Estrogen

    SciTech Connect

    Steegborn,C.; Litvin, T.; Hess, K.; Capper, A.; Taussig, R.; Buck, J.; Levin, L.; Wu, H.

    2005-01-01

    Catechol estrogens are steroid metabolites that elicit physiological responses through binding to a variety of cellular targets. We show here that catechol estrogens directly inhibit soluble adenylyl cyclases and the abundant trans-membrane adenylyl cyclases. Catechol estrogen inhibition is non-competitive with respect to the substrate ATP, and we solved the crystal structure of a catechol estrogen bound to a soluble adenylyl cyclase from Spirulina platensis in complex with a substrate analog. The catechol estrogen is bound to a newly identified, conserved hydrophobic patch near the active center but distinct from the ATP-binding cleft. Inhibitor binding leads to a chelating interaction between the catechol estrogen hydroxyl groups and the catalytic magnesium ion, distorting the active site and trapping the enzyme substrate complex in a non-productive conformation. This novel inhibition mechanism likely applies to other adenylyl cyclase inhibitors, and the identified ligand-binding site has important implications for the development of specific adenylyl cyclase inhibitors.

  8. Heterogeneous Reactions of Surface-Adsorbed Catechol: A Comparison of Tropospheric Aerosol Surrogates

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.; Woodill, L. A.

    2009-12-01

    Surface-adsorbed organics can alter the chemistry of tropospheric solid-air interfaces, such as aerosol and ground level surfaces, thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to investigate the subsequent reactivity of adsorbed-catechol with nitrogen dioxide and, in separate preliminary experiments, ozone. Graphite, kaolinite, and sodium halide (NaF, NaCl, NaBr) powders served as carbonaceous, mineral and sea salt aerosol surrogates, respectively. Broad OH stretching bands for adsorbed catechol shifted to lower wavenumber with peak frequencies following the trend NaBr > NaCl > NaF ≈ kaolinite, consistent with the increasing basicity of the halide anions and basic Brønsted sites on kaolinite. The dark heterogeneous reaction of NO2 with NaCl-adsorbed catechol at relative humidity (RH) <2% promoted nitration forming 4-nitrocatechol and oxidation forming 1,2-benzoquinone and the ring cleavage product muconic acid, with product yields of 88%, 8%, and 4%, respectively. 4-Nitrocatechol was the dominant product for catechol adsorbed on NaF and kaolinite, while NaBr-adsorbed catechol produced less 4-nitrocatechol and more 1,2-benzoquinone and muconic acid. For all three sodium halides, the reactions of NO2 with adsorbed catechol were orders of magnitude faster than between NO2 and each NaX substrate. 4-Nitrocatechol rates and product yields were consistent with the relative ability of each substrate to enhance the deprotonated nature of adsorbed-catechol. Increasing the relative humidity caused the rate of each product channel to decrease and also altered the product branching ratios. Most notably, 1,2-benzoquinone formation decreased significantly even at 13% RH. The dramatic

  9. Coupling in cytochrome c oxidase

    PubMed Central

    Kessler, R. J.; Blondin, G. A.; Zande, H. Vande; Haworth, R. A.; Green, D. E.

    1977-01-01

    Cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) can be resolved into an electron transfer complex (ETC) and an ionophore transfer complex (ITC). Coupling requires an interaction between the moving electron in the ETC and a moving, positively charged ionophore-cation adduct in the ITC. The duplex character of cytochrome oxidase facilitates this interaction. The ITC mediates cyclical cation transport. It can be replaced as the coupling partner by the combination of valinomycin and nigericin in the presence of K+ when cytochrome oxidase is incorporated into liposomes containing acidic phospholipids or by the combination of lipid cytochrome c and bile acids in an ITC-resolved preparation of the ETC. Respiratory control can be induced by incorporating cytochrome oxidase into vesicles of unfractionated whole mitochondrial lipid. The activity of the ITC is suppressed by such incorporation and this suppression leads to the emergence of respiratory control. The ionophoroproteins of the ITC can be extracted into organic solvents; some 50% of the total protein of cytochrome oxidase is extractable. The release of free ionophore is achieved by tryptic digestion of the ionophoroprotein. Preliminary to this release the ionophoroprotein is degraded to an ionophoropeptide. Electrogenic ionophores, as well as uncoupler, are liberated by such proteolysis. The ITC contains a set of ionophoroproteins imbedded in a matrix of phospholipid. Images PMID:198794

  10. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice

    PubMed Central

    Lee, Byoung-Moo; Park, Young-Jin; Park, Dong-Suk; Kang, Hee-Wan; Kim, Jeong-Gu; Song, Eun-Sung; Park, In-Cheol; Yoon, Ung-Han; Hahn, Jang-Ho; Koo, Bon-Sung; Lee, Gil-Bok; Kim, Hyungtae; Park, Hyun-Seok; Yoon, Kyong-Oh; Kim, Jeong-Hyun; Jung, Chol-hee; Koh, Nae-Hyung; Seo, Jeong-Sun; Go, Seung-Joo

    2005-01-01

    The nucleotide sequence was determined for the genome of Xanthomonas oryzae pathovar oryzae (Xoo) KACC10331, a bacterium that causes bacterial blight in rice (Oryza sativa L.). The genome is comprised of a single, 4 941 439 bp, circular chromosome that is G + C rich (63.7%). The genome includes 4637 open reading frames (ORFs) of which 3340 (72.0%) could be assigned putative function. Orthologs for 80% of the predicted Xoo genes were found in the previously reported X.axonopodis pv. citri (Xac) and X.campestris pv. campestris (Xcc) genomes, but 245 genes apparently specific to Xoo were identified. Xoo genes likely to be associated with pathogenesis include eight with similarity to Xanthomonas avirulence (avr) genes, a set of hypersensitive reaction and pathogenicity (hrp) genes, genes for exopolysaccharide production, and genes encoding extracellular plant cell wall-degrading enzymes. The presence of these genes provides insights into the interactions of this pathogen with its gramineous host. PMID:15673718

  11. Distribution of Xanthomonas oryzae pv. oryzae DNA modification systems in Asia.

    PubMed

    Choi, S H; Vera Cruz, C M; Leach, J E

    1998-05-01

    The presence or absence of two DNA modification systems, XorI and XorII, in 195 strains of Xanthomonas oryzae pv. oryzae collected from different major rice-growing countries of Asia was assessed. All four possible phenotypes (XorI+ XorII+, XorI+ XorII-, XorI- XorII+ and XorI- XorII-) were detected in the population at a ratio of approximately 1:2:2:2. The XorI+ XorII+ and XorI- XorII+ phenotypes were observed predominantly in strains from southeast Asia (Philippines, Malaysia, and Indonesia), whereas strains with the phenotypes XorI- XorII- and XorI+ XorII- were distributed in south Asia (India and Nepal) and northeast Asia (China, Korea, and Japan), respectively. Based on the prevalence and geographic distribution of the XorI and XorII systems, we suggest that the XorI modification system originated in northeast Asia and was later introduced to southeast Asia, while the XorII system originated in southeast Asia and moved to northeast Asia and south Asia. Genomic DNA from all tested strains of X. oryzae pv. oryzae that were resistant to digestion by endonuclease XorII or its isoschizomer PvuI also hybridized with a 7.0-kb clone that contained the XorII modification system, whereas strains that were digested by XorII or PvuI lacked DNA that hybridized with the clone. Size polymorphisms were observed in fragments that hybridized with the 7.0-kb clone. However, a single hybridization pattern generally was found in XorII+ strains within a country, indicating clonal maintenance of the XorII methyl-transferase gene locus. The locus was monomorphic for X. oryzae pv. oryzae strains from the Philippines and all strains from Indonesia and Korea. PMID:9572933

  12. Brucella abortus strain 2308 produces brucebactin, a highly efficient catecholic siderophore.

    PubMed

    González Carreró, Manuel I; Sangari, Félix J; Agüero, Jesús; García Lobo, Juan M

    2002-02-01

    Brucella abortus is known to produce 2,3-dihydroxybenzoate (2,3-DHBA) and to use this catechol as a siderophore to grow under iron-limited conditions. In this study a mutant (BAM41) is described that is deficient in siderophore production by insertion of Tn5 in the virulent B. abortus strain 2308. This mutant was unable to grow on iron-deprived medium and its growth could not be restored by addition of 2,3-DHBA. Production of catecholic compounds by both the Brucella mutant and parental strains under iron-deprivation conditions was assayed by TLC. Two catecholic substances were identified in the supernatant of the parental strain 2308. The faster migrating spot showed the same retention factor (R(f)) as that of purified 2,3-DHBA. The mutant BAM41 overproduced 2,3-DHBA, but failed to form the slower migrating catechol. This defect could only be complemented by the addition of the slow-migrating catechol from strain 2308. The genomic region containing Tn5 in BAM41 was cloned and the position of the transposon was determined by nucleotide sequencing. The sequence revealed that the insertion had occurred at a gene with homology to Escherichia coli entF, a locus involved in the late steps of the biosynthesis of the complex catecholic siderophore enterobactin. Intracellular survival and growth rates of the B. abortus wild-type and entF mutant strains in mouse-derived J774 macrophages were similar, indicating that production of this siderophore was not essential in this model of infection. It is concluded that B. abortus synthesizes a previously unknown and highly efficient catecholic siderophore, different from 2,3-DHBA, for which the name brucebactin is proposed. PMID:11832499

  13. Inhibition of tyrosine hydroxylase in rabbit mesenteric artery and vas deferens by catechol oestrogens.

    PubMed

    Panek, D U; Azzaro, A J; Stitzel, R E; Head, R J

    1987-03-01

    In the present study we have investigated the effects of oestrogens, catechol oestrogens, and catecholamines on tyrosine hydroxylase (TH) activity derived from rabbit mesenteric artery and vas deferens. Both catechol oestrogens, 2-hydroxyoestradiol (2OHE2) and 2-hydroxyoesterone (2OHE1), inhibited TH activity in mesenteric artery and vas deferens in a concentration-dependent manner with potencies that were higher than those for noradrenaline but lower than that for dopamine. When added to the reaction medium along with increasing concentrations of a pterin cofactor (200 to 1,500 mumol/l DMPH4), the catechol oestrogens (200 mumol/l) increased the apparent Km for DMPH4 without altering the maximum velocity (Vmax) of the reaction. Similar results were obtained with the addition of noradrenaline (200 mumol/l) and dopamine (120 mu/mol). Apparent Ki values obtained for the catecholamines and catechol oestrogens were within the same order of magnitude and varied from 30 mumol/l for dopamine and 2OHE2 to 183 mumol/l for 2OHE1. Oestradiol (E2) and 2-methoxyoestradiol (2MeOE2), i.e., oestrogens that do not possess a catechol moiety, exhibited only weak inhibitory effects on TH activity. At the highest concentration tested (1 mmol/l), they did not reduce enzyme activity below 58% of control values. Kinetic analysis revealed that these two oestrogens did not consistently affect either the Vmax of hydroxylation or the Km for DMPH4. It is concluded that catechol oestrogens inhibit TH activity with a potency comparable to noradrenaline and dopamine. This inhibition is by competition with the pterin cofactor. Oestrogens that to not possess a catechol moiety are not effective inhibitors of TH.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2884573

  14. Purification and characterization of polyphenol oxidase from jackfruit ( Artocarpus heterophyllus ) bulbs.

    PubMed

    Tao, Yi-Ming; Yao, Le-Yi; Qin, Qiu-Yan; Shen, Wang

    2013-12-26

    Polyphenol oxidase (PPO) from jackfruit bulb was purified through acetone precipitation, ion-exchange column, and gel filtration column. PPO was a dimer with the molecular weight of 130 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration. The Km was 8.3 and 18.2 mM using catechol and 4-methylcatechol as substrates, respectively. The optimum pH was 7.0 (catechol as the substrate) or 6.5 (4-methylcatechol as the substrate). The optimum temperature was 8 °C. The enzyme was stable below 40 °C. The activation energy (Ea) of heat inactivation was estimated to be 103.30 kJ/mol. The PPO activity was activated by Mn(2+), SDS, Tween-20, Triton X-100, citric acid, and malic acid but inhibited by K(+), Zn(2+), Mg(2+), Ca(2+), Ba(2+), cetyl trimethyl ammonium bromide (CTAB), kojic acid, tropolone, glutathione (GSH), cysteine (Cys), and ascorbic acid (AA). Cys and AA were effective to reduce browning of jackfruit bulbs during the storage at 8 °C for 15 days. PMID:24325285

  15. Immobilization of polyphenol oxidase on chitosan-SiO2 gel for removal of aqueous phenol.

    PubMed

    Shao, Jian; Ge, Huimin; Yang, Yumin

    2007-06-01

    A partially purified potato polyphenol oxidase (PPO) was immobilized in a cross-linked chitosan-SiO2 gel and used to treat phenol solutions. Under optimized conditions (formaldehyde 20 mg/ml, PPO 4 mg/ml and pH 7.0), the activity of immobilized PPO was 1370 U/g and its Km value for catechol was 12 mM at 25 degrees C. The highest activity of immobilized enzyme was at pH 7.4. Immobilization stabilized the enzyme with 73 and 58% retention of activity after 10 and 20 days, respectively, at 30 degrees C whereas most of the free enzyme was inactive after 7 days. The efficiency of removing phenol (10 mg phenol/l) by the immobilized PPO was 86%, and about 60% removal efficiency was retained after five recycles. The immobilized PPO may thus be a useful for removing phenolic compounds from industrial waste-waters. PMID:17417695

  16. Study and characterization of polyphenol oxidase from eggplant (Solanum melongena L.).

    PubMed

    Todaro, Aldo; Cavallaro, Rosalinda; Argento, Sergio; Branca, Ferdinando; Spagna, Giovanni

    2011-10-26

    In this study the catecholase and cresolase activities of eggplant polyphenol oxidase (PPO) were investigated. Enzyme activity was determined by measuring the increase in absorbance using catechol as substrate and 3-methyl-2-benzothiazolinone hydrazone (MBTH) as coupled reagent. The effects of substrate specificity, heat inactivation, temperature, pH, and inhibitors were investigated to understand the enzymatic alteration of ready-to-eat preparations. Browning of vegetables was determined through a colorimeter. Decrease of lightness (L*) and increase of color difference values (ΔE*) were correlated with tissue browning. Antibrowning agents were tested on PPO under the same conditions. The enzyme activity was strongly inhibited by 0.4 M citric acid. Under natural pH conditions, the enzyme was also inhibited by tartaric acid and acetic acid. All of the results were used to understand the best conditions for food transformation (ready-to-eat and grilled eggplant slices). PMID:21942648

  17. The structure of the lipooligosaccharide from Xanthomonas oryzae pv. Oryzae: the causal agent of the bacterial leaf blight in rice.

    PubMed

    Di Lorenzo, Flaviana; Palmigiano, Angelo; Silipo, Alba; Desaki, Yoshitake; Garozzo, Domenico; Lanzetta, Rosa; Shibuya, Naoto; Molinaro, Antonio

    2016-06-01

    The structure of the lipooligosaccharide (LOS) from the rice pathogen Xanthomonas oryzae pv. oryzae has been elucidated. The characterization of the core oligosaccharide structure was obtained by the employment of two chemical degradation protocols and by analysis of the products via NMR spectroscopy. The structure of the lipid A portion was achieved by MALDI mass spectrometry analysis on purified lipid A. The LOS from Xanthomonas oryzae pv. oryzae revealed to possess the same core structure of Xanthomonas campestris pv. campestris and interesting novel features on its lipid A domain. The evaluation of the biological activity of both LOS and isolated lipid A was also executed. PMID:27085742

  18. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    PubMed Central

    Xia, Jingbo; Zhang, Xing; Yuan, Daojun; Chen, Lingling; Webster, Jonathan; Fang, Alex Chengyu

    2013-01-01

    To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization. PMID:24371834

  19. Expression of alternative oxidase in tomato

    SciTech Connect

    Kakefuda, M.; McIntosh, L. )

    1990-05-01

    Tomato fruit ripening is characterized by an increase in ethylene biosynthesis, a burst in respiration (i.e. the climacteric), fruit softening and pigmentation. As whole tomatoes ripened from mature green to red, there was an increase in the alternative oxidase capacity. Aging pink tomato slices for 24 and 48 hrs also showed an increase of alternative oxidase and cytochrome oxidase capacities. Monoclonal antibodies prepared to the Sauromatum guttatum alternative oxidase were used to follow the appearance of alternative oxidase in tomato fruits. There is a corresponding increase in a 36kDa protein with an increase in alternative oxidase capacity. Effects of ethylene and norbornadiene on alternative oxidase capacity were also studied. We are using an alternative oxidase cDNA clone from potato to study the expression of mRNA in ripening and wounded tomatoes to determine if the gene is transcriptionally regulated.

  20. A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino benzene.

    PubMed

    Akyilmaz, Erol; Kozgus, Ozge; Türkmen, Hayati; Cetinkaya, Bekir

    2010-06-01

    A biosensor based on a partially purified polyphenol oxidase (PPO) enzyme was developed by using electropolymerization of [(2,2'-bipyridine)(chloro)(p-cymene)rutenium(II)]chloride] mediator complex and 1,2-diamino benzene (DAB) on a screen printing Pt electrode (1mm diameter). The electropolymerization was carried out at +0.7V for 45min in phosphate buffer (50mM, pH 7.0) which contained 14.0U/10mL polyphenole oxidase, 200mM DAB and 2.5mM Ru-mediator complex solutions. Measurement is based on the detection of the oxidation current of the Ru-mediator complex that related to the enzymatic reaction catalyzed by PPO at +0.65V. The phosphate buffer (50mM, pH 7.0 containing 0.1M KCl) and 30 degrees C were established as being the optimum working conditions. Under the optimum experimental conditions a linear calibration curve was obtained between 5 and 100microM catechol concentration. The detection limit of the biosensor is 2.385microM. In the characterization studies of the biosensor some parameters such as effect of Ru-mediator types on the biosensor response, substrate specificity, reproducibility and storage stability were studied. From the experiments, the average value (x), standard deviation (SD) and coefficient of variation (CV%) were found to be 48.75microM,+/-1.56microM, and 3.2% respectively for 50microM catechol standard. PMID:19783226

  1. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode.

    PubMed

    Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A

    2016-11-15

    A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples. PMID:27420383

  2. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  3. Catechol-O-methyltransferase association with hemoglobin A1c

    PubMed Central

    Hall, Kathryn T.; Jablonski, Kathleen A.; Chen, Ling; Harden, Maegan; Tolkin, Benjamin R.; Kaptchuk, Ted J.; Bray, George A.; Ridker, Paul M.; Florez, Jose C.; Chasman, Daniel I.

    2016-01-01

    Aims Catecholamines have metabolic effects on blood pressure, insulin sensitivity and blood glucose. Genetic variation in catechol-O-methyltransferase (COMT), an enzyme that degrades catecholamines, is associated with cardiometabolic risk factors and incident cardiovascular disease (CVD). Here we examined COMT effects on glycemic function and type 2 diabetes. Methods We tested whether COMT polymorphisms were associated with baseline HbA1c in the Women’s Genome Health Study (WGHS), and Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC), and with susceptibility to type 2 diabetes in WGHS, DIAbetes Genetics Replication And Meta-analysis consortium (DIAGRAM), and the Diabetes Prevention Program (DPP). Given evidence that COMT modifies some drug responses, we examined association with type 2 diabetes and randomized metformin and aspirin treatment. Results COMT rs4680 high-activity G-allele was associated with lower HbA1c in WGHS (β = −0.032% [0.012], p = 0.008) and borderline significant in MAGIC (β = −0.006% [0.003], p = 0.07). Combined COMT per val allele effects on type 2 diabetes were significant (OR = 0.98 [0.96–0.998], p = 0.03) in fixed-effects analyses across WGHS, DIAGRAM, and DPP. Similar results were obtained for 2 other COMT SNPs rs4818 and rs4633. In the DPP, the rs4680 val allele was borderline associated with lower diabetes incidence among participants randomized to metformin (HR = 0.81 [0.65–1.00], p = 0.05). Conclusions COMT rs4680 high-activity G-allele was associated with lower HbA1c and modest protection from type 2 diabetes. The directionality of COMT associations was concordant with those previously observed for cardiometabolic risk factors and CVD. PMID:27282867

  4. 21 CFR 173.130 - Carbohydrase derived from Rhizopus oryzae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Carbohydrase derived from Rhizopus oryzae. 173.130 Section 173.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES..., Phycomycetes; order, Mucorales; family, Mucoraceae; genus, Rhizopus; species, Rhizopus oryzae. (b) The...

  5. Protoporphyrinogen Oxidase-Inhibiting Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protoporphyrinogen oxidase-inhibiting herbicides (also referred to as Protox- or PPO-inhibiting herbicides) were commercialized in the 1960s and their market share reached approximately 10% (total herbicide active ingredient output) in the late 1990’s. The wide-spread adoption of glyphosate-resista...

  6. Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shunsuke; Uchiyama, Shun; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-03-01

    Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N-dodecylacrylamide (DDA) and dopamine methacrylamide (DMA). The p(DDA/DMA) nanosheets were immersed into water dispersions of SiO2, Al2O3, and WO3 nanoparticles (NPs) respectively. The results show that the adsorption properties can be altered by varying the NP type: SiO2 NP adsorption was observed only below pH = 6, at which the o-quinone form in p(DDA/DMA) nanosheets transforms into the catechol form or vice versa. However, their transition point for Al2O3 NP adsorption was found at approximately pH 10, at which the surface potential of Al2O3 NPs changes the charge polarity, indicating that the electrostatic interaction is predominant. For WO3 NPs, adsorption was observed when citric acid, which modifies the surface of WO3 NPs by complex formation, was used as a pH-controlling agent, but no adsorption was found for hydrochloric acid used as a pH controlling agent. FT-IR measurements proved that miniscule amounts of water molecules were trapped in p(DDA/DMA) nanosheets and that they acquired hydrogen bonding network formations, which might assist nanoparticle adsorption underwater and make the catechol units adjustable. The results indicate that the nanoscale spatial arrangements of catechol units in films are crucially important for the application of multimodal adsorption of oxide nanoparticles on catechol-based polymer materials.Multimodal underwater adsorption behaviour of catechol units was demonstrated by examining the adsorption of different oxide nanoparticles on nanoscale-integrated polymer nanosheets. Catechol-based polymer nanosheets were fabricated using the Langmuir-Blodgett (LB) technique with random copolymers (p(DDA/DMA)s) of N

  7. Chromate reduction by rabbit liver aldehyde oxidase

    SciTech Connect

    Banks, R.B.; Cooke, R.T. Jr.

    1986-05-29

    Chromate was reduced during the oxidation of 1-methylnicotinamide chlorine by partially purified rabbit liver aldehyde oxidase. In addition to l-methylnicotinamide, several other electron donor substrates for aldehyde oxidase were able to support the enzymatic chromate reduction. The reduction required the presence of both enzyme and the electron donor substrate. The rate of the chromate reduction was retarded by inhibitors or aldehyde oxidase but was not affected by substrates or inhibitors of xanthine oxidase. These results are consistent with the involvement of aldehyde oxidase in the reduction of chromate by rabbit liver cytosolic enzyme preparations.

  8. Role of the FeoB Protein and Siderophore in Promoting Virulence of Xanthomonas oryzae pv. oryzae on Rice▿

    PubMed Central

    Pandey, Alok; Sonti, Ramesh V.

    2010-01-01

    Xanthomonas oryzae pv. oryzae causes bacterial blight, a serious disease of rice. Our analysis revealed that the X. oryzae pv. oryzae genome encodes genes responsible for iron uptake through FeoB (homolog of the major bacterial ferrous iron transporter) and a siderophore. A mutation in the X. oryzae pv. oryzae feoB gene causes severe virulence deficiency, growth deficiency in iron-limiting medium, and constitutive production of a siderophore. We identified an iron regulated xss gene cluster, in which xssABCDE (Xanthomonas siderophore synthesis) and xsuA (Xanthomonas siderophore utilization) genes encode proteins involved in biosynthesis and utilization of X. oryzae pv. oryzae siderophore. Mutations in the xssA, xssB, and xssE genes cause siderophore deficiency and growth restriction under iron-limiting conditions but are virulence proficient. An xsuA mutant displayed impairment in utilization of native siderophore, suggesting that XsuA acts as a specific receptor for a ferric-siderophore complex. Histochemical and fluorimetric assays with gusA fusions indicate that, during in planta growth, the feoB gene is expressed and that the xss operon is not expressed. This study represents the first report describing a role for feoB in virulence of any plant-pathogenic bacterium and the first functional characterization of a siderophore-biosynthetic gene cluster in any xanthomonad. PMID:20382771

  9. The effect of catechol on human peripheral blood mononuclear cells (in vitro study).

    PubMed

    Bukowska, Bożena; Michałowicz, Jaromir; Marczak, Agnieszka

    2015-01-01

    Catechol also known as pyrocatechol or 1,2-dihydroxybenzene is formed endogenously in the organism from neurotransmitters including adrenaline, noradrenaline, and dopamine. It is also a metabolite of many drugs like DOPA, isoproterenol or aspirin and it is also formed in the environment during transformation of various xenobiotics. We evaluated in vitro the effect of catechol on the structure and function of human peripheral blood mononuclear cells (PBMCs). The cells were incubated with xenobiotic at concentration range from 2 to 500μg/mL for 1h. Human blood mononuclear cells were obtained from leucocyte-platelet buffy coat taken from healthy donors in the Blood Bank of Łódź, Poland. Using flow cytometry we have evaluated necrotic, apoptotic and morphological changes in PBMCs incubated with catechol. Moreover, we have estimated changes in reactive oxygen species (ROS) formation, protein carbonylation and lipid peroxidation in the cells studied. The compound studied provoked necrotic (from 250μg/mL), apoptotic (from 100μg/mL), and morphological changes (from 250μg/mL) in the incubated cells. We have also noted that catechol decreased H2DCF oxidation at 2 and 10μg/mL but at higher concentrations of 250 and 500μg/mL it caused statistically significant increase in the oxidation of this probe. We also observed an increase in lipid peroxidation (from 250μg/mL) and protein carbonylation (from 50μg/mL) of PBMCs. It was observed that catechol only at high concentrations was capable of inducing changes in PBMCs. The obtained results clearly showed that catechol may induce change in PBMCs only in the caste of poisoning with this compound. PMID:25528409

  10. A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol

    PubMed Central

    2010-01-01

    Background Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes. Results We have optimized a process for bio-catalytic production of 3-substituted catechols viz. 3-nitrocatechol (3-NC) and 3-methylcatechol (3-MC) at pilot scale. Amongst the screened strains, two strains viz. Pseudomonas putida strain (F1) and recombinant Escherichia coli expression clone (pDTG602) harboring first two genes of toluene degradation pathway were found to accumulate 3-NC and 3-MC respectively. Various parameters such as amount of nutrients, pH, temperature, substrate concentration, aeration, inoculums size, culture volume, toxicity of substrate and product, down stream extraction, single step and two-step biotransformation were optimized at laboratory scale to obtain high yields of 3-substituted catechols. Subsequently, pilot scale studies were performed in 2.5 liter bioreactor. The rate of product accumulation at pilot scale significantly increased up to ~90-95% with time and high yields of 3-NC (10 mM) and 3-MC (12 mM) were obtained. Conclusion The biocatalytic production of 3-substituted catechols viz. 3-NC and 3-MC depend on some crucial parameters to obtain maximum yields of the product at pilot scale. The process optimized for production of 3-substituted catechols by using the organisms P. putida (F1) and recombinant E. coli expression clone (pDTG602) may be useful for industrial application. PMID:20587073

  11. Unexpected formation of a novel pyridinium-containing catecholate ligand and its manganese(III) complex.

    PubMed

    Sheriff, Tippu S; Watkinson, Michael; Motevalli, Majid; Lesin, Jocelyne F

    2010-01-01

    Nucleophilic aromatic substitution of tetrachloro-o-benzoquinone by pyridine and reduction of the o-quinone to the catechol by hydroxylamine forms 1,2-dihydroxy-3,5,6-trichlorobenzene-4-pyridinium chloride. This compound reacts with manganese(II) acetate in air to form chlorobis(3,5,6-trichlorobenzene 4-pyridinium catecholate)manganese(III), which represents the first complex of this ligand class to be structurally characterized by X-ray diffraction; this complex is active in the catalytic reduction of dioxygen to hydrogen peroxide under ambient conditions and turnover frequencies (TOFs) >10,000 h(-1) can be obtained. PMID:20023930

  12. Au nanoparticles and graphene quantum dots co-modified glassy carbon electrode for catechol sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan; He, Dawei; Wang, Yongsheng; Hu, Yin; Fu, Chen

    2016-03-01

    In this letter, the gold nanoparticles and graphene quantum dots were applied to the modification of glassy carbon electrode for the detection of catechol. The synergist cooperation between gold nanoparticles and graphene quantum dots can increase specific surface area and enhance electronic and catalytic properties of glassy carbon electrode. The detection limit of catechol is 0.869 μmol/L, demonstrating the superior detection efficiency of the gold nanoparticles and graphene quantum dots co-modified glassy carbon electrode as a new sensing platform.

  13. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus.

    PubMed

    Ryder, Lauren S; Dagdas, Yasin F; Mentlak, Thomas A; Kershaw, Michael J; Thornton, Christopher R; Schuster, Martin; Chen, Jisheng; Wang, Zonghua; Talbot, Nicholas J

    2013-02-19

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2-NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics. PMID:23382235

  14. Urate oxidase: primary structure and evolutionary implications.

    PubMed Central

    Wu, X W; Lee, C C; Muzny, D M; Caskey, C T

    1989-01-01

    Urate oxidase, or uricase (EC 1.7.3.3), is a peroxisomal enzyme that catalyzes the oxidation of uric acid to allantoin in most mammals. In humans and certain other primates, however, the enzyme has been lost by some unknown mechanism. To identify the molecular basis for this loss, urate oxidase cDNA clones were isolated from pig, mouse, and baboon, and their DNA sequences were determined. The mouse urate oxidase open reading frame encodes a 303-amino acid polypeptide, while the pig and baboon urate oxidase cDNAs encode a 304-amino acid polypeptide due to a single codon deletion/insertion event. The authenticity of this single additional codon was confirmed by sequencing the mouse and pig genomic copies of the gene. The urate oxidase sequence contains a domain similar to the type 2 copper binding motif found in other copper binding proteins, suggesting that the copper ion in urate oxidase is coordinated as a type 2 structure. Based upon a comparison of the NH2-terminal peptide and deduced sequences, we propose that the maturation of pig urate oxidase involves the posttranslational cleavage of a six-amino acid peptide. Two nonsense mutations were found in the human urate oxidase gene, which confirms, at the molecular level, that the urate oxidase gene in humans is nonfunctional. The sequence comparisons favor the hypothesis that the loss of urate oxidase in humans is due to a sudden mutational event rather than a progressive mutational process. Images PMID:2594778

  15. The purification and properties of a ribonucleoenzyme, o-diphenol oxidase, from potatoes.

    PubMed

    Balasingam, K; Ferdinand, W

    1970-06-01

    1. o-Diphenol oxidase was isolated from potato tubers by a new approach that avoids the browning due to autoxidation. 2. There are at least three forms of the enzyme, of different molecular weights. The major form, of highest molecular weight, was separated from the others in good yield and with high specific activity by gel filtration through Bio-Gel P-300. 3. The major form is homogeneous by disc electrophoresis but regenerates small amounts of the species of lower molecular weight, as shown by rechromatography on Bio-Gel P-300. 4. There is an equal amount of RNA and protein by weight in the fully active enzyme. The RNA cannot be removed without loss of activity, and is not attacked by ribonuclease. 5. The pH optimum of the enzyme is at pH5.0 when assayed with 4-methylcatechol as substrate. It is ten times more active with this substrate than with chlorogenic acid or catechol. The enzyme is fully active in 4m-urea. 6. A minimal molecular weight of 36000 is indicated by copper content and amino acid analysis of the protein component of the enzyme. 7. The protein contains five half-cystinyl residues per 36000 daltons, a value similar to that found in o-diphenol oxidase from mushrooms. It also contains tyrosine residues although, when pure, it does not turn brown by autoxidation. PMID:4990583

  16. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOEpatents

    Fish, R.H.

    1987-04-21

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20 to 100 C with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  17. Removal of arsenic, vanadium and/or nickel compounds from spent catecholated polymer

    DOEpatents

    Fish, Richard H.

    1987-01-01

    Described is a process for removing arsenic, vanadium, and/or nickel from petroliferous derived liquids by contacting said liquid at an elevated temperature with a divinylbenzene-crosslinked polystyrene having catechol ligands anchored thereon. For vanadium and nickel removal an amine, preferably a diamine is included. Also, described is a process for regenerating spent catecholated polystyrene by removal of the arsenic, vanadium, and/or nickel bound to it from contacting petroliferous liquid as described above and involves: treating the spent polymer containing any vanadium and/or nickel with an aqueous acid to achieve an acid pH; and, separating the solids from the liquid; and then treating said spent catecholated polystyrene, at a temperature in the range of about 20.degree. to 100.degree. C. with an aqueous solution of at least one carbonate and/or bicarbonate of ammonium, alkali and alkaline earth metals, said solution having a pH between about 8 and 10; and, separating the solids and liquids from each other. Preferably the regeneration treatment of arsenic containing catecholated polymer is in two steps wherein the first step is carried out with an aqueous alcoholic carbonate solution containing lower alkyl alcohol, and, the steps are repeated using a bicarbonate.

  18. Role of Catecholate Siderophores in Gram-Negative Bacterial Colonization of the Mouse Gut

    PubMed Central

    Pi, Hualiang; Jones, Shari A.; Mercer, Lynn E.; Meador, Jessica P.; Caughron, Joyce E.; Jordan, Lorne; Newton, Salete M.; Conway, Tyrrell; Klebba, Phillip E.

    2012-01-01

    We investigated the importance of the production of catecholate siderophores, and the utilization of their iron (III) complexes, to colonization of the mouse intestinal tract by Escherichia coli. First, a ΔtonB strain was completely unable to colonize mice. Next, we compared wild type E. coli MG1655 to its derivatives carrying site-directed mutations of genes for enterobactin synthesis (ΔentA::Cm; strain CAT0), ferric catecholate transport (Δfiu, ΔfepA, Δcir, ΔfecA::Cm; CAT4), or both (Δfiu, ΔfepA, ΔfecA, Δcir, ΔentA::Cm; CAT40) during colonization of the mouse gut. Competitions between wild type and mutant strains over a 2-week period in vivo showed impairment of all the genetically engineered bacteria relative to MG1655. CAT0, CAT4 and CAT40 colonized mice 101-, 105-, and 102-fold less efficiently, respectively, than MG1655. Unexpectedly, the additional inability of CAT40 to synthesize enterobactin resulted in a 1000-fold better colonization efficiency relative to CAT4. Analyses of gut mucus showed that CAT4 hyperexcreted enterobactin in vivo, effectively rendering the catecholate transport-deficient strain iron-starved. The results demonstrate that, contrary to prior reports, iron acquisition via catecholate siderophores plays a fundamental role in bacterial colonization of the murine intestinal tract. PMID:23209633

  19. Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces.

    PubMed

    Das, Priyadip; Reches, Meital

    2016-08-18

    Catechol (1,2-dihydroxy benzene) moieties are being widely used today in new adhesive technologies. Understanding their mechanism of action is therefore of high importance for developing their applications in materials science. This paper describes a single-molecule study of the interactions between catechol-related amino acid residues and a well-defined titanium dioxide (TiO2) surface. It is the first quantified measurement of the adhesion of these residues with a well-defined TiO2 surface. Single-molecule force spectroscopy measurements with AFM determined the role of different substitutions of the catechol moiety on the aromatic ring in the adhesion to the surface. These results shed light on the nature of interactions between these residues and inorganic metal oxide surfaces. This information is important for the design and fabrication of catechol-based materials such as hydrogels, coatings, and composites. Specifically, the interaction with TiO2 is important for the development of solar cells. PMID:27503417

  20. Catechol-O-methyltransferase: a method for autoradiographic visualization of isozymes in cellogel

    SciTech Connect

    Brahe, C.; Crosti, N.; Meera Khan, P.; Serra, A.

    1984-02-01

    An electrophoretic procedure for separating the molecular forms of catechol-O-methyltransferase in cellulose acetate gel is described; the zones of enzyme activity were revealed by autoradiography. The electrophoretic patterns of the enzyme in several tissues and cell lines derived from four different species are presented.

  1. Glucosylation of Catechol with the GTFA Glucansucrase Enzyme from Lactobacillus reuteri and Sucrose as Donor Substrate.

    PubMed

    te Poele, Evelien M; Grijpstra, Pieter; van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-04-20

    Lactic acid bacteria use glucansucrase enzymes for synthesis of gluco-oligosaccharides and polysaccharides (α-glucans) from sucrose. Depending on the glucansucrase enzyme, specific α-glucosidic linkages are introduced. GTFA-ΔN (N-terminally truncated glucosyltransferase A) is a glucansucrase enzyme of Lactobacillus reuteri 121 that synthesizes the reuteran polysaccharide with (α1 → 4) and (α1 → 6) glycosidic linkages. Glucansucrases also catalyze glucosylation of various alternative acceptor substrates. At present it is unclear whether the linkage specificity of these enzymes is the same in oligo/polysaccharide synthesis and in glucosylation of alternative acceptor substrates. Our results show that GTFA-ΔN glucosylates catechol into products with up to at least 5 glucosyl units attached. These catechol glucosides were isolated and structurally characterized using 1D/2D (1)H NMR spectroscopy. They contained 1 to 5 glucose units with different (α1 → 4) and (α1 → 6) glycosidic linkage combinations. Interestingly, a branched catechol glucoside was also formed along with a catechol glucoside with 2 successive (α1 → 6) glycosidic linkages, products that are absent when only sucrose is used as both glycosyl donor and acceptor substrate. PMID:26898769

  2. Salicylate and catechol levels are maintained in nahG transgenic poplar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic profiling was used to investigate the molecular phenotypes of transgenic Populus tremula x P. alba bybrids expressing the nahG transgene, a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol. Despite the efficacy of this transgenic approach to reducing...

  3. Association of Catechol-O-Methyltransferase (COMT) Polymorphism and Academic Achievement in a Chinese Cohort

    ERIC Educational Resources Information Center

    Yeh, Ting-Kuang; Chang, Chun-Yen; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Ming-Yeh

    2009-01-01

    Catechol-O-methyltransferase (COMT) is a methylation enzyme that catalyzes the degradation pathway and inactivation of dopamine. It is accepted widely as being involved in the modulation of dopaminergic physiology and prefrontal cortex (PFC) function. The COMT Val158Met polymorphism is associated with variation in COMT activity. COMT 158Met allele…

  4. Ectopic expression of rice Xa21 overcomes developmentally controlled resistance to Xanthomonas oryzae pv. oryzae

    PubMed Central

    Park, Chang-Jin; Lee, Sang-Won; Chern, Mawsheng; Sharma, Rita; Canlas, Patrick E.; Song, Min-Young; Jeon, Jong-Seong; Ronald, Pamela C.

    2010-01-01

    Recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) activates the innate immune response. The rice PRR, XA21, confers robust resistance at adult stages to most strains of the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Seedlings are still easily infected by Xoo, causing severe yield losses. Here we report that Xa21 is induced by Xoo infection and that ectopic expression of Xa21 confers resistance at three leaf stage (three-week-old), overcoming the developmental limitation of XA21-mediated resistance. Ectopic expression of Xa21 also up-regulates a larger set of defense-related genes as compared to Xa21 driven by the native promoter. These results indicate that altered regulation of Xa21 expression is useful for developing enhanced resistance to Xoo at multiple developmental stages. PMID:21076626

  5. Exploring excited states of Pt(II) diimine catecholates for photoinduced charge separation.

    PubMed

    Scattergood, Paul A; Jesus, Patricia; Adams, Harry; Delor, Milan; Sazanovich, Igor V; Burrows, Hugh D; Serpa, Carlos; Weinstein, Julia A

    2015-07-14

    The intense absorption in the red part of the visible range, and the presence of a lowest charge-transfer excited state, render Platinum(II) diimine catecholates potentially promising candidates for light-driven applications. Here, we test their potential as sensitisers in dye-sensitised solar cells and apply, for the first time, the sensitive method of photoacoustic calorimetry (PAC) to determine the efficiency of electron injection in the semiconductor from a photoexcited Pt(II) complex. Pt(II) catecholates containing 2,2′-bipyridine-4,4′-di-carboxylic acid (dcbpy) have been prepared from their parent iso-propyl ester derivatives, complexes of 2,2′-bipyridine-4,4′-di-C(O)OiPr, (COOiPr)2bpy, and their photophysical and electrochemical properties studied. Modifying diimine Pt(II) catecholates with carboxylic acid functionality has allowed for the anchoring of these complexes to thin film TiO2, where steric bulk of the complexes (3,5-di(t)Bu-catechol vs. catechol) has been found to significantly influence the extent of monolayer surface coverage. Dye-sensitised solar cells using Pt(dcbpy)((t)Bu2Cat), 1a, and Pt(dcbpy)(pCat), 2a, as sensitisers, have been assembled, and photovoltaic measurements performed. The observed low, 0.02–0.07%, device efficiency of such DSSCs is attributed at least in part to the short excited state lifetime of the sensitisers, inherent to this class of complexes. The lifetime of the charge-transfer ML/LLCT excited state in Pt((COO(I)Pr)2bpy)(3,5-di-(t)Bu-catechol) was determined as 250 ps by picosecond time-resolved infrared spectroscopy, TRIR. The measured increase in device efficiency for 2a over 1a is consistent with a similar increase in the quantum yield of charge separation (where the complex acts as a donor and the semiconductor as an acceptor) determined by PAC, and is also proportional to the increased surface loading achieved with 2a. It is concluded that the relative efficiency of devices sensitised with these particular

  6. Silicon-Induced Systemic Defense Responses in Perennial Ryegrass Against Infection by Magnaporthe oryzae.

    PubMed

    Rahman, Alamgir; Wallis, Christopher M; Uddin, Wakar

    2015-06-01

    Sustainable integrated disease management for gray leaf spot of perennial ryegrass may involve use of plant defense elicitors with compatible traditional fungicides to reduce disease incidence and severity. Silicon (Si) has previously been identified as a potential inducer or modulator of plant defenses against different fungal pathogens. To this end, perennial ryegrass was inoculated with the causal agent of gray leaf spot, Magnaporthe oryzae, when grown in soil that was nonamended or amended with three different levels of calcium silicate (1, 5, or 10 metric tons [t]/ha). When applied at a rate of 5 t/ha, calcium silicate was found to significantly suppress gray leaf spot in perennial ryegrass, including a significant reduction of disease incidence (39.5%) and disease severity (47.3%). Additional studies observed nonpenetrated papillae or cell-wall appositions harboring callose, phenolic autofluorogens, and lignin-associated polyphenolic compounds in grass grown in the Si-amended soil. Regarding defense-associated enzyme levels, only following infection did grass grown in Si-amended soil exhibit greater activities of peroxidase and polyphenol oxidase than equivalent inoculated control plants. Also following infection with M. oryzae, grass levels of several phenolic acids, including chlorogenic acid and flavonoids, and relative expression levels of genes encoding phenylalanine ammonia lyase (PALa and PALb) and lipoxygenase (LOXa) significantly increased in Si-amended plants compared with that of nonamended control plants. These results suggest that Si-mediated increase of host defense responses to fungal pathogens in perennial ryegrass has a great potential to be part of an effective integrated disease management strategy against gray leaf spot development. PMID:25738553

  7. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

    PubMed

    Pillar, Elizabeth A; Camm, Robert C; Guzman, Marcelo I

    2014-12-16

    Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air-water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv-6.0 ppmv O3(g) with microdroplets containing [catechol] = 1-150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon-carbon bond at the air-water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon. PMID:25423038

  8. Condensed-phase versus gas-phase ozonolysis of catechol: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Barnum, Timothy J.; Medeiros, Nicholas; Hinrichs, Ryan Z.

    2012-08-01

    Anthropogenic emissions of volatile aromatic compounds contribute to the formation of secondary organic aerosols (SOA), especially in urban environments. Aromatic SOA precursors typically require oxidation by hydroxyl radicals, although recent work suggests that ozonolysis of 1,2-benzenediols produces SOA in high yields. We employed attenuated total reflectance and transmission infrared spectroscopy to investigate the heterogeneous ozonolysis of catechol thin films. Formation of the dominant condensed-phase product muconic acid was highly dependent on relative humidity (RH) with few products detected below 40% RH and a maximum reactive uptake coefficient of γ = (5.6 ± 0.5) × 10-5 measured at 81.2% RH. We also performed quantum chemical calculations mapping out several reaction pathways for the homogeneous ozonolysis of gaseous catechol. 1,3-cycloaddition transition states were rate limiting with the most favorable activation energies at 45.4 and 47.1 kJ mol-1 [CCSD(T)/6-311++G(d,p)] corresponding to addition across and adjacent to the diol Cdbnd C, respectively. Gas-phase rate constants, calculated using transition state theory, were six orders of magnitude slower than experimental values. In contrast, a calculated activation energy was lower for the ozonolysis of a catechol•H2O complex, which serves as a first-approximation for modeling the ozonolysis of condensed-phase catechol. These combined results suggests that homogeneous ozonolysis of catechol may not be important for the formation of secondary organic aerosols but that ozonolysis of surface-adsorbed catechol may contribute to SOA growth.

  9. Effects of Metal Oxides on a Fungal Laccase Activity and Catechol Transformation

    NASA Astrophysics Data System (ADS)

    Ahn, M.; Dec, J.; Bollag, J.

    2003-12-01

    The transformation of naturally occurring phenols to humic polymers is generally catalyzed by various phenoloxidases commonly present in soil. Some poorly crystalline metal oxides and hydroxides may also participate in these reactions. In this study, catechol (0.1 M) was incubated with a fungal laccase (950 unit/mL) in the presence of poorly crystalline minerals (ferrihydrite; 50 mg/mL: birnessite; 1 mg/mL: aluminum hydroxide; 50 mg/mL) to examine the interaction between these soil components under field conditions. Birnessite had an inhibitory effect on the laccase-mediated transformation of catechol (by up to 40%). Enzyme inhibition was possibly caused by the rapid production of humic-like polymers by birnessite. An additional inhibitory effect was caused by Manganese ion released from birnessite as it oxidized catechol (up to 70% loss in enzyme activity). In contrast to birnessite, aluminum hydroxide had an additive effect on the disappearance of catechol despite the rapid adsorption of the enzyme by this mineral (Xm=6.18μ g/mg). Apparently, the adsorbed laccase retained some enzyme activity. Ferrihydrite also had an additive effect on catechol transformation. However, as compared to aluminum hydroxide, ferrihydrite adsorbed less laccase (Xm=0.89μ g/mg) and more humic-like polymers. Unlike birnessite, aluminum hydroxide and ferrihydrite released negligible amounts of metal ions. In conclusion, under field conditions, phenoloxidase activity may be diminished by the presence of birnessite, but the presence of either ferrihydrite or aluminum hydroxide is less likely to inhibit enzyme activity, and may even enhance substrate transformation.

  10. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.

    PubMed

    Sawahata, T; Neal, R A

    1983-03-01

    Hepatic microsomal biotransformation of phenol to hydroquinone and catechol has been investigated with special reference to the covalent binding to microsomal protein of reactive metabolites formed during microsomal metabolism of phenol. Incubation of [14C]phenol with microsomes from phenobarbital-treated rat liver in the presence of an NADPH-generating system resulted in the formation of hydroquinone and catechol in the ratio of 20:1. No significant formation of 1,2,4-benzenetriol was observed. The biotransformation of phenol to both hydroquinone and catechol required NADPH and molecular oxygen. NADH was much less effective than NADPH as an electron donor and exhibited no significant synergistic effect when used together with NADPH. The biotransformation was inhibited by typical cytochrome P-450 inhibitors such as carbon monoxide, SKF 525-A, and metyrapone. These results indicated the involvement of cytochrome P-450 in the microsomal hydroxylation of phenol at both the ortho- and para-positions. Covalent binding of radioactivity to microsomal protein was observed when [14C]phenol was incubated with rat liver microsomes in the presence of an NADPH-generating system. The covalent binding was also found to require NADPH and molecular oxygen. Inclusion of cytochrome P-450 inhibitors in the incubation mixture resulted in a decrease in the covalent binding. These results indicated that at least one step in the metabolic activation of phenol to the metabolites responsible for covalent binding to microsomal protein was mediated by cytochrome P-450. Inclusion of N-acetylcysteine in the incubation mixture resulted in the complete inhibition of the covalent binding of radioactivity derived from [14C]phenol to microsomal protein, and there was a concomitant formation of N-acetylcysteine adducts of hydroquinone and catechol. These results indicated that hydroquinone and catechol were both precursors to reactive metabolites responsible for the covalent binding. PMID:6835203

  11. Growth of Actinobacillus pleuropneumoniae is promoted by exogenous hydroxamate and catechol siderophores.

    PubMed Central

    Diarra, M S; Dolence, J A; Dolence, E K; Darwish, I; Miller, M J; Malouin, F; Jacques, M

    1996-01-01

    Siderophores bind ferric ions and are involved in receptor-specific iron transport into bacteria. Six types of siderophores were tested against strains representing the 12 different serotypes of Actinobacillus pleuropneumoniae. Ferrichrome and bis-catechol-based siderophores showed strong growth-promoting activities for A. pleuropneumoniae in a disk diffusion assay. Most strains of A. pleuropneumoniae tested were able to use ferrichrome (21 of 22 or 95%), ferrichrome A (20 of 22 or 90%), and lysine-based bis-catechol (20 of 22 or 90%), while growth of 36% (8 of 22) was promoted by a synthetic hydroxamate, N5-acetyl-N5-hydroxy-L-ornithine tripeptide. A. pleuropneumoniae serotype 1 (strain FMV 87-682) and serotype 5 (strain 2245) exhibited a distinct yellow halo around colonies on Chrome Azurol S agar plates, suggesting that both strains can produce an iron chelator (siderophore) in response to iron stress. The siderophore was found to be neither a phenolate nor a hydroxamate by the chemical tests of Arnow and Csaky, respectively. This is the first report demonstrating the production of an iron chelator and the use of exogenous siderophores by A. pleuropneumoniae. A spermidine-based bis-catechol siderophore conjugated to a carbacephalosporin was shown to inhibit growth of A. pleuropneumoniae. A siderophore-antibiotic-resistant strain was isolated and shown to have lost the ability to use ferrichrome, synthetic hydroxamate, or catechol-based siderophores when grown under conditions of iron restriction. This observation indicated that a common iron uptake pathway, or a common intermediate, for hydroxamate- and catechol-based siderophores may exist in A. pleuropneumoniae. PMID:8975614

  12. Incorporation of copper into lysyl oxidase.

    PubMed

    Kosonen, T; Uriu-Hare, J Y; Clegg, M S; Keen, C L; Rucker, R B

    1997-10-01

    Lysyl oxidase is a copper-dependent enzyme involved in extracellular processing of collagens and elastin. Although it is known that copper is essential for the functional activity of the enzyme, there is little information on the incorporation of copper. In the present study we examined the insertion of copper into lysyl oxidase using 67Cu in cell-free transcription/translation assays and in normal skin fibroblast culture systems. When a full-length lysyl oxidase cDNA was used as a template for transcription/translation reactions in vitro, unprocessed prolysyl oxidase appeared to bind copper. To examine further the post-translational incorporation of copper into lysyl oxidase, confluent skin fibroblasts were incubated with inhibitors of protein synthesis (cycloheximide, 10 microg/ml), glycosylation (tunicamycin, 10 microg/ml), protein secretion (brefeldin A, 10 microg/ml) and prolysyl oxidase processing (procollagen C-peptidase inhibitor, 2.5 microg/ml) together with 300 microCi of carrier-free 67Cu. It was observed that protein synthesis was a prerequisite for copper incorporation, but inhibition of glycosylation by tunicamycin did not affect the secretion of 67Cu as lysyl oxidase. Brefeldin A inhibited the secretion of 67Ci-labelled lysyl oxidase by 46%, but the intracellular incorporation of copper into lysyl oxidase was not affected. In addition, the inhibition of the extracellular proteolytic processing of prolysyl oxidase to lysyl oxidase had minimal effects on the secretion of protein-bound 67Cu. Our results indicate that, similar to caeruloplasmin processing [Sato and Gitlin (1991) J. Biol. Chem. 266, 5128-5134], copper is inserted into prolysyl oxidase independently of glycosylation. PMID:9355764

  13. Arsenite Oxidase Also Functions as an Antimonite Oxidase

    PubMed Central

    Wang, Qian; Warelow, Thomas P.; Kang, Yoon-Suk; Romano, Christine; Osborne, Thomas H.; Lehr, Corinne R.; Bothner, Brian; McDermott, Timothy R.

    2015-01-01

    Arsenic and antimony are toxic metalloids and are considered priority environmental pollutants by the U.S. Environmental Protection Agency. Significant advances have been made in understanding microbe-arsenic interactions and how they influence arsenic redox speciation in the environment. However, even the most basic features of how and why a microorganism detects and reacts to antimony remain poorly understood. Previous work with Agrobacterium tumefaciens strain 5A concluded that oxidation of antimonite [Sb(III)] and arsenite [As(III)] required different biochemical pathways. Here, we show with in vivo experiments that a mutation in aioA [encoding the large subunit of As(III) oxidase] reduces the ability to oxidize Sb(III) by approximately one-third relative to the ability of the wild type. Further, in vitro studies with the purified As(III) oxidase from Rhizobium sp. strain NT-26 (AioA shares 94% amino acid sequence identity with AioA of A. tumefaciens) provide direct evidence of Sb(III) oxidation but also show a significantly decreased Vmax compared to that of As(III) oxidation. The aioBA genes encoding As(III) oxidase are induced by As(III) but not by Sb(III), whereas arsR gene expression is induced by both As(III) and Sb(III), suggesting that detection and transcriptional responses for As(III) and Sb(III) differ. While Sb(III) and As(III) are similar with respect to cellular extrusion (ArsB or Acr3) and interaction with ArsR, they differ in the regulatory mechanisms that control the expression of genes encoding the different Ars or Aio activities. In summary, this study documents an enzymatic basis for microbial Sb(III) oxidation, although additional Sb(III) oxidation activity also is apparent in this bacterium. PMID:25576601

  14. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.

    PubMed

    Li, Huipin; Zhao, Mouming; Su, Guowan; Lin, Lianzhu; Wang, Yong

    2016-06-15

    This is the first report on the ability of soy sauce to effectively reduce the serum uric acid levels and xanthine oxidase (XOD) activities of hyperuricemic rats. Soy sauce was partitioned sequentially into ethyl acetate and water fractions. The ethyl acetate fraction with strong XOD inhibition effect was purified further. On the basis of xanthine oxidase inhibitory (XOI) activity-guided purification, nine compounds including 3,4-dihydroxy ethyl cinnamate, diisobutyl terephthalate, harman, daidzein, flazin, catechol, thymine, genistein, and uracil were obtained. It was the first time that 3,4-dihydroxy ethyl cinnamate and diisobutyl terephthalate had been identified from soy sauce. Flazin with hydroxymethyl furan ketone group at C-1 and carboxyl at C-3 exhibited the strongest XOI activity (IC50 = 0.51 ± 0.05 mM). According to fluorescence quenching and molecular docking experiments, flazin could enter into the catalytic center of XOD to interact with Lys1045, Gln1194, and Arg912 mainly by hydrophobic forces and hydrogen bonds. Flazin, catechol, and genistein not only were potent XOD inhibitors but also held certain antioxidant activities. According to ADME (absorption, distribution, metabolism, and excretion) simulation in silico, flazin had good oral bioavailability in vivo. PMID:27181598

  15. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae.

    PubMed Central

    Berka, R M; Schneider, P; Golightly, E J; Brown, S H; Madden, M; Brown, K M; Halkier, T; Mondorf, K; Xu, F

    1997-01-01

    A genomic DNA segment encoding an extracellular laccase was isolated from the thermophilic fungus Myceliophthora thermophila, and the nucleotide sequence of this gene was determined. The deduced amino acid sequence of M. thermophila laccase (MtL) shows homology to laccases from diverse fungal genera. A vector containing the M. thermophila laccase coding region, under transcriptional control of an Aspergillus oryzae alpha-amylase gene promoter and terminator, was constructed for heterologous expression in A. oryzae. The recombinant laccase expressed in A. oryzae was purified to electrophoretic homogeneity by anion-exchange chromatography. Amino-terminal sequence data suggests that MtL is synthesized as a preproenzyme. The molecular mass was estimated to be approximately 100 to 140 kDa by gel filtration on Sephacryl S-300 and to be 85 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Carbohydrate analysis revealed that MtL contains 40 to 60% glycosylation. The laccase shows an absorbance spectrum that is typical of blue copper oxidases, with maxima at 276 and 589 nm, and contains 3.9 copper atoms per subunit. With syringaldazine as a substrate, MtL has optimal activity at pH 6.5 and retains nearly 100% of its activity when incubated at 60 degrees C for 20 min. This is the first report of the cloning and heterologous expression of a thermostable laccase. PMID:9251203

  16. Improving Pharmaceutical Protein Production in Oryza sativa

    PubMed Central

    Kuo, Yu-Chieh; Tan, Chia-Chun; Ku, Jung-Ting; Hsu, Wei-Cho; Su, Sung-Chieh; Lu, Chung-An; Huang, Li-Fen

    2013-01-01

    Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed. PMID:23615467

  17. Effects of Active-Site Modification and Quaternary Structure on the Regioselectivity of Catechol-O-Methyltransferase.

    PubMed

    Law, Brian J C; Bennett, Matthew R; Thompson, Mark L; Levy, Colin; Shepherd, Sarah A; Leys, David; Micklefield, Jason

    2016-02-18

    Catechol-O-methyltransferase (COMT), an important therapeutic target in the treatment of Parkinson's disease, is also being developed for biocatalytic processes, including vanillin production, although lack of regioselectivity has precluded its more widespread application. By using structural and mechanistic information, regiocomplementary COMT variants were engineered that deliver either meta- or para-methylated catechols. X-ray crystallography further revealed how the active-site residues and quaternary structure govern regioselectivity. Finally, analogues of AdoMet are accepted by the regiocomplementary COMT mutants and can be used to prepare alkylated catechols, including ethyl vanillin. PMID:26797714

  18. Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by Magnaporthe oryzae[OPEN

    PubMed Central

    Kershaw, Michael J.

    2015-01-01

    Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion. PMID:26566920

  19. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast.

    PubMed

    Sha, Yuexia; Wang, Qi; Li, Yan

    2016-01-01

    Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 10(6) CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B. subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents. PMID:27536521

  20. Studies on the Mechanism of Aldehyde Oxidase and Xanthine Oxidase

    PubMed Central

    Alfaro, Joshua F.

    2009-01-01

    DFT calculations support a concerted mechanism for xanthine oxidase and aldehyde oxidase hydride displacement from the sp2 carbon of 6-substituted 4-quinazolinones. The variations in transition state structure show that C-O bond formation is nearly complete in the transition state and the transition state changes are anti-Hammond with the C-H and C-O bond lengths being more product-like for the faster reactions. The C-O bond length in the transition state is around 90% formed. However, the C-H bond is only about 80% broken. This leads to a very tetrahedral transition state with an O-C-N angle of 109 degrees. Thus, while the mechanism is concerted, the anti-bonding orbital of the C-H bond that is broken is not directly attacked by the nucleophile and instead hydride displacement occurs after almost complete tetrahedral transition state formation. In support of this the C=N bond is lengthened in the transition state indicating that attack on the electrophilic carbon occurs by addition to the C=N bond with negative charge increasing on the nitrogen. Differences in experimental reaction rates are accurately reproduced by these calculations, and tend to support this mechanism. PMID:18998731

  1. Studies on the mechanism of aldehyde oxidase and xanthine oxidase.

    PubMed

    Alfaro, Joshua F; Jones, Jeffrey P

    2008-12-01

    DFT calculations support a concerted mechanism for xanthine oxidase and aldehyde oxidase hydride displacement from the sp(2) carbon of 6-substituted 4-quinazolinones. The variations in transition state structure show that C-O bond formation is nearly complete in the transition state and the transition state changes are anti-Hammond with the C-H and C-O bond lengths being more product-like for the faster reactions. The C-O bond length in the transition state is around 90% formed. However, the C-H bond is only about 80% broken. This leads to a very tetrahedral transition state with an O-C-N angle of 109 degrees. Thus, while the mechanism is concerted, the antibonding orbital of the C-H bond that is broken is not directly attacked by the nucleophile and instead hydride displacement occurs after almost complete tetrahedral transition state formation. In support of this the C=N bond is lengthened in the transition state indicating that attack on the electrophilic carbon occurs by addition to the C=N bond with negative charge increasing on the nitrogen. Differences in experimental reaction rates are accurately reproduced by these calculations and tend to support this mechanism. PMID:18998731

  2. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  3. Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.

    PubMed

    Haruta, Miyoshi; Pedersen, Jens A.; Constabel, C. Peter

    2001-08-01

    The biochemical anti-herbivore defense of trembling aspen (Populus tremuloides Michx.) was investigated in a molecular analysis of polyphenol oxidase (PPO; EC 1.10.3.2). A PPO cDNA was isolated from a trembling aspen wounded leaf cDNA library and its nucleotide sequence determined. Southern analysis indicated the presence of two PPO genes in the trembling aspen genome. Expression of PPO was found to be induced after herbivory by forest tent caterpillar, by wounding, and by methyl jasmonate treatment. Wound induction was systemic, and occurred in unwounded leaves on wounded plants. This pattern of expression is consistent with a role of this enzyme in insect defense. A search for potential PPO substrates in ethanolic aspen leaf extracts using electron spin resonance (ESR) found no pre-existing diphenolic compounds. However, following a brief delay and several additions of oxygen, an ESR signal specific for catechol was detected. The source of this catechol was most likely the aspen phenolic glycosides tremulacin or salicortin which decomposed during ESR experiments. This was subsequently confirmed in experiments using pure salicortin. PMID:11473716

  4. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery.

    PubMed

    Xu, Jinke; Strandman, Satu; Zhu, Julian X X; Barralet, Jake; Cerruti, Marta

    2015-01-01

    Drug administration via buccal mucosa is an attractive drug delivery strategy due to good patient compliance, prolonged localized drug effect, and avoidance of gastrointestinal drug metabolism and first-pass elimination. Buccal drug delivery systems need to maintain an intimate contact with the mucosa lining in the wet conditions of the oral cavity for long enough to allow drug release and absorption. For decades, mucoadhesive polymers such as chitosan (CS) and its derivatives have been explored to achieve this. In this study, inspired by the excellent wet adhesion of marine mussel adhesive protein, we developed a buccal drug delivery system using a novel catechol-functionalized CS (Cat-CS) hydrogel. We covalently bonded catechol functional groups to the backbone of CS, and crosslinked the polymer with a non-toxic crosslinker genipin (GP). We achieved two degrees of catechol conjugation (9% and 19%), forming Cat9-CS/GP and Cat19-CS/GP hydrogels, respectively. We confirmed covalent bond formation during the catechol functionalization and GP crosslinking during the gel formation. The gelation time and the mechanical properties of Cat-CS hydrogels are similar to those of CS only hydrogels. Catechol groups significantly enhanced mucoadhesion in vitro (7 out of the 10 Cat19-CS hydrogels were still in contact with porcine mucosal membrane after 6 h, whereas all of the CS hydrogels lost contact after 1.5 h). The new hydrogel systems sustained the release of lidocaine for about 3 h. In-vivo, we compared buccal patches made of Cat19-CS/GP and CS/GP adhered to rabbit buccal mucosa. We were able to detect lidocaine in the rabbit's serum at concentration about 1 ng/ml only from the Cat19-CS patch, most likely due to the intimate contact provided by mucoadhesive Cat19-CS/GP systems. No inflammation was observed on the buccal tissue in contact with any of the patches tested. These results show that the proposed catechol-modified CS hydrogel is a promising mucoadhesive and

  5. Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae

    SciTech Connect

    Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee; Sonti, Ramesh V.; Sankaranarayanan, Rajan

    2007-08-01

    The crystallization and preliminary crystallographic studies of LipA, a lipase/esterase secreted by X. oryzae pv. oryzae during its infection of rice plants, are reported. Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant–microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positive tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 Å and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 Å, β = 90.8°. Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 Å, β = 92.6° and diffract to 1.86 Å. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms.

  6. Measurement of haplotypic variation in Xanthomonas oryzae pv. oryzae within a single field by rep-PCR and RFLP analyses

    SciTech Connect

    Vera Cruz, C.M.; Leach, J.E.; Ardales, E.Y.; Talag, J.

    1996-12-01

    The haplotypic variation of Xanthomonas oryzae pv. oryzae in a farmer;s field that had endemic bacterial blight in the Philippines was evaluated at a single time. The genomic structure of the field population was analyzed by repetitive sequence-based polymerase chain reaction with oligonucleotide primers corresponding to interspersed repeated sequences in prokaryotic genomes and restriction fragment length polymorphism (RFLP) with the insertion sequence IS1113. The techniques and specific probes and primers were selected because they grouped consistently into the same lineages a set of 30 selected X. oryzae pv. oryzae strains that represented the four distinct RFLP lineages found in the Philippines did. Strains (155) were systematically collected from a field planted to rice cv. Sinandomeng, which is susceptible to the indigenous pathogen population. Two of the four Philippine lineages, B and C, which included race 2 and races 3 and 9, respectively, were detected in the field. Lineage C was the predominant population (74.8%). The haplotypic diversities of 10 of the 25 blocks were significantly greater than the total haplotypic diversity of the collection in the entire field; however, between individual blocks the haplotypic diversities were not significantly different. Haplo-types from both lineages were distributed randomly across the field. Analysis of genetic diversity at the microgeographic scale provided insights into the finer scale of variation of X. oryzae pv. oryzae, which are useful in designing experiments to study effects of host resistance on the population structure of the bacterial blight pathogen. 46 refs., 4 figs., 2 tabs.

  7. Immunological comparison of sulfite oxidase

    SciTech Connect

    Pollock, V.; Barber, M.J. )

    1991-03-11

    Polyclonal antibodies (rabbit), elicited against FPLC-purified chicken and rat liver sulfite oxidase (SO), have been examined for inhibition and binding to purified chicken (C), rat (R), bovine (B), alligator (A) and shark (S) liver enzymes. Anti-CSO IgG cross-reacted with all five enzymes, with varying affinities, in the order CSO=ASO{gt}RSO{gt}BSO{gt}SSO. Anti-ROS IgG also cross-reacted with all five enzymes in the order RSO{gt}CSO=ASO{gt}BSO{gt}SSO. Anti-CSO IgG inhibited sulfite:cyt. c reductase (S:CR), sulfite:ferricyanide reductase (S:FR) and sulfite:dichlorophenolindophenol reductase (S:DR) activities of CSO to different extents (S:CR{gt}S:FR=S:DR). Similar differential inhibition was found for anti-ROS IgG and RSO S:CR, S:FR and S:DR activities. Anti-CSO IgG inhibited S:CR activities in the order CSO=ASO{much gt}SSO{gt}BSO. RSO was uninhibited. For anti-RSO IgG the inhibition order was RSO{gt}SSO{gt}BSO{gt}ASO. CSO was uninhibited. Anti-CSO and RSO IgGs partially inhibited Chlorella nitrate reductase (NR). Minor cross-reactivity was found for xanthine oxidase. Common antigenic determinants for all five SO's and NR are indicated.

  8. Mitochondrial Cytochrome c Oxidase Deficiency

    PubMed Central

    Rak, Malgorzata; Bénit, Paule; Chrétien, Dominique; Bouchereau, Juliette; Schiff, Manuel; El-Khoury, Riyad; Tzagoloff, Alexander; Rustin, Pierre

    2016-01-01

    As with other mitochondrial respiratory chain components, marked clinical and genetic heterogeneity is observed in patients with a cytochrome c oxidase deficiency. This constitutes a considerable diagnostic challenge and raises a number of puzzling questions. So far, pathological mutations have been reported in more than 30 genes, in both mitochondrial and nuclear DNA, affecting either structural subunits of the enzyme or proteins involved in its biogenesis. In this review, we discuss the possible causes of the discrepancy between the spectacular advances made in the identification of the molecular bases of cytochrome oxidase deficiency and the lack of any efficient treatment in diseases resulting from such deficiencies. This brings back many unsolved questions related to the frequent delay of clinical manifestation, variable course and severity, and tissue-involvement often associated with these diseases. In this context, we stress the importance to study different models of these diseases, but also discuss the limitations encountered in most available disease models. In the future, with the possible exception of replacement therapy using genes, cells or organs, a better understanding of underlying mechanism(s) of these mitochondrial diseases is presumably required to develop efficient therapy. PMID:26846578

  9. Studies on Polyphenol Content, Activities and Isozymes of Polyphenol Oxidase and Peroxidase During Air-Curing in Three Tobacco Types 1

    PubMed Central

    Sheen, S. J.; Calvert, J.

    1969-01-01

    The change in polyphenol content in the primed leaves of burley, flue-cured, and Turkish tobaccos during air-curing was related to the activities and isozymes of polyphenol oxidase and peroxidase. The quantity of chlorogenic acid was rapidly reduced during the first week of curing. The decrease in rutin content during curing was less significant, especially when the concentration of chlorogenic acid was high in leaf tissues. This result was further confirmed by in vitro assays with partially purified tobacco polyphenol oxidase. The polyphenol oxidase activity did not differ at any stage of curing in the 3 tobaccos. When the activity was measured by the oxidation of 3,4-dihydroxyphenylalanine it rose rapidly during the first day of curing and then decreased sharply so that in the fully cured leaf only 15% activity remained. The increase in activity was not observed when chlorogenic acid was used as the substrate. A similar level of peroxidase activity was found in the 3 tobaccos before curing. Peroxidase activities increased rapidly during the first 24 hr of curing, declined thereafter, and remained highest in the flue-cured tobacco, less in the Turkish line, and least in the burley at the end of curing process. By polyacrylamide gel block electrophoresis, 10 peroxidase isozyme bands, 2 cationic and 8 anionic, appeared identical in all 3 tobaccos. When catechol replaced benzidine-2 HCl as the electron donor, 1 cationic and 2 anionic peroxidase isozymes did not form. Of interest is that the same 10 peroxidase isozyme bands also exhibited polyphenol oxidase activities when treated with 3,4-dihydroxyphenylalanine or chlorogenic acid. Results suggest that in the crude tobacco leaf extract the peroxidase and polyphenol oxidase may associate as protein complexes, and peroxidase isozymes may differ in electron-donor requirements. Isozyme patterns for both oxidases at various curing intervals differed only quantitatively. Images PMID:16657046

  10. In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1

    PubMed Central

    2010-01-01

    Background Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc). Results Changes in gene expression of the African Xoo strain MAI1 in the susceptible rice cultivar Nipponbare were profiled, using an SSH Xoo DNA microarray. Microarray hybridization was performed comparing bacteria recovered from plant tissues at 1, 3, and 6 days after inoculation (dai) with bacteria grown in vitro. A total of 710 bacterial genes were found to be differentially expressed, with 407 up-regulated and 303 down-regulated. Expression profiling indicated that less than 20% of the 710 bacterial transcripts were induced in the first 24 h after inoculation, whereas 63% were differentially expressed at 6 dai. The 710 differentially expressed genes were one-end sequenced. 535 sequences were obtained from which 147 non-redundant sequences were identified. Differentially expressed genes were related to metabolism, secretion and transport, pathogen adherence to plant tissues, plant cell-wall degradation, IS elements, and virulence. In addition, various other genes encoding proteins with unknown function or showing no similarity to other proteins were also induced. The Xoo MAI1 non-redundant set of sequences was compared against several X. oryzae genomes, revealing a specific group of genes that was present only in MAI1. Numerous IS elements were also found to be differentially expressed. Quantitative real-time PCR confirmed 86% of the identified profile on a set of 14 genes selected according to the microarray analysis. Conclusions This is the first report to compare the expression of Xoo genes in planta across different time points during infection. This work shows that as-yet-unidentified and

  11. pH-dependent cross-linking of catechols through oxidation via Fe(3+) and potential implications for mussel adhesion.

    PubMed

    Fullenkamp, Dominic E; Barrett, Devin G; Miller, Dusty R; Kurutz, Josh W; Messersmith, Phillip B

    2014-01-01

    The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe(3+), found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe(3+) to Fe(2+). In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe(3+) can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion. PMID:25243062

  12. Surface charge-transfer complex formation of catechol on titanium(IV) oxide and the application to bio-sensing.

    PubMed

    Murata, Yusuke; Hori, Hiroshige; Taga, Atsushi; Tada, Hiroaki

    2015-11-15

    Adsorption properties of 2-hydroxyphenol (catechol) on TiO2 particles has been studied at 298K. The adsorption proceeds from the aqueous solution with the Langmuir type behavior. Diffuse reflectance infrared spectra of the catechol-adsorbed TiO2 suggested that catechol is adsorbed on TiO2 solution via the chelation to the surface Ti ions. The adsorption induces a strong absorption in the whole visible region, of which intensity increases with an increase in the adsorption amount. Photoelectrochemical experiments and molecular orbital calculations indicate that the absorption stems from the charge-transfer (CT) transition from the HOMO of catechol to the conduction band of TiO2. Time courses for the adsorption of catechol on mesoporous TiO2 nanocrystalline film-coated glass was traced by measuring the change in the absorbance of the CT band, and analyzed on the basis of the Langmuir model. This study would present a new simple technique for sensing of important biomolecules bearing the catechol moiety. PMID:26247381

  13. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR

    SciTech Connect

    Mesarch, M.B.; Nakatsu, C.H.; Nies, L.

    2000-02-01

    Benzene, toluene, xylenes, phenol, naphthalene, and biphenyl are among a group of compounds that have at least one reported pathway for biodegradation involving catechol 2,3-dioxygenase enzymes. Thus, detection of the corresponding catechol 2,3-dioxygenase genes can serve as a basis for identifying and quantifying bacteria that have these catabolic abilities. Primes that can successfully amplify a 238-bp catechol 2,3-dioxygenase gene fragment from eight different bacteria are described. The identities of the amplicons were confirmed by hybridization with a 238-bp catechol 2,3-dioxygenase probe. The detection limit was 10{sup 2} to 10{sup 3} gene copies, which was lowered to 10{sup 0} to 10{sup 1} gene copies of hybridization. Using the dioxygenase-specific primers, an increase in catechol 2,3-dioxygenase genes was detected in petroleum-amended soils. The dioxygenase genes were enumerated by competitive quantitative PCR and a 163-bp competitor that was amplified using the same primers. Target and competitor sequences had identical amplification kinetics. Potential PCR inhibitors that could coextract with DNA, nonamplifying DNA, soil factors (humics), and soil pollutants (toluene) did not impact enumeration. Therefore, this technique can be used to accurately and reproducibly quantify catechol 2,3-dioxygenase genes in complex environments such as petroleum-contaminated soil. Direct, non-cultivation-based molecular techniques for detecting and enumerating microbial pollutant-biodegrading genes in environmental samples are powerful tools for monitoring bioremediation and developing field evidence in support of natural attenuation.

  14. pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion

    PubMed Central

    Fullenkamp, Dominic E.; Barrett, Devin G.; Miller, Dusty R.; Kurutz, Josh W.; Messersmith, Phillip B.

    2014-01-01

    The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe3+, found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe3+ to Fe2+. In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe3+ can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion. PMID:25243062

  15. Catechols and 3-hydroxypyridones as inhibitors of the DNA repair complex ERCC1-XPF.

    PubMed

    Chapman, Timothy M; Gillen, Kevin J; Wallace, Claire; Lee, Maximillian T; Bakrania, Preeti; Khurana, Puneet; Coombs, Peter J; Stennett, Laura; Fox, Simon; Bureau, Emilie A; Brownlees, Janet; Melton, David W; Saxty, Barbara

    2015-10-01

    Catechol-based inhibitors of ERCC1-XPF endonuclease activity were identified from a high-throughput screen. Exploration of the structure-activity relationships within this series yielded compound 13, which displayed an ERCC1-XPF IC50 of 0.6 μM, high selectivity against FEN-1 and DNase I and activity in nucleotide excision repair, cisplatin enhancement and γH2AX assays in A375 melanoma cells. Screening of fragments as potential alternatives to the catechol group revealed that 3-hydroxypyridones are able to inhibit ERCC1-XPF with high ligand efficiency, and elaboration of the hit gave compounds 36 and 37 which showed promising ERCC1-XPF IC50 values of <10 μM. PMID:26318993

  16. Catechol-O-methyltransferase: characteristics, polymorphisms and role in breast cancer

    PubMed Central

    Yager, James D.

    2013-01-01

    Catechol estrogens are carcinogenic, probably because of their estrogenicity and potential for further oxidative metabolism to reactive quinones. Estrogenic quinones cause oxidative DNA damage as well as form mutagenic depurinating adenine and guanine adducts. O-Methylation by catechol-O-methyltransferase (COMT) blocks their estrogenicity and prevents their oxidation to quinones. A single gene encodes both membrane bound (MB) and soluble (S) forms of COMT. The COMT gene contains 34 single nucleotide polymorphisms (SNPs). The valine108 (S-COMT)/158 (MB-COMT) SNP encodes a low activity form of COMT and has been widely studied as a putative risk factor for breast cancer, with inconsistent results. Investigations of two other SNPs in the promoter of MB-COMT that may affect its expression have also provided mixed results. Future studies on the role of COMT in breast cancer should incorporate measurement of biomarkers that reflect COMT activity and its protective effects. PMID:23734165

  17. Regiocomplementary O-Methylation of Catechols by Using Three-Enzyme Cascades.

    PubMed

    Siegrist, Jutta; Aschwanden, Simon; Mordhorst, Silja; Thöny-Meyer, Linda; Richter, Michael; Andexer, Jennifer N

    2015-12-01

    S-Adenosylmethionine (SAM)-dependent enzymes have great potential for selective alkylation processes. In this study we investigated the regiocomplementary O-methylation of catechols. Enzymatic methylation is often hampered by the need for a stoichiometric supply of SAM and the inhibitory effect of the SAM-derived byproduct on most methyltransferases. To counteract these issues we set up an enzyme cascade. Firstly, SAM was generated from l-methionine and ATP by use of an archaeal methionine adenosyltransferase. Secondly, 4-O-methylation of the substrates dopamine and dihydrocaffeic acid was achieved by use of SafC from the saframycin biosynthesis pathway in 40-70 % yield and high selectivity. The regiocomplementary 3-O-methylation was catalysed by catechol O-methyltransferase from rat. Thirdly, the beneficial influence of a nucleosidase on the overall conversion was demonstrated. The results of this study are important milestones on the pathway to catalytic SAM-dependent alkylation processes. PMID:26437744

  18. Theoretical calculations of a compound formed by Fe(+3) and tris(catechol).

    PubMed

    Kara, İzzet; Kara, Yeşim; Öztürk Kiraz, Aslı; Mammadov, Ramazan

    2015-10-01

    Phenolic compounds generally have special smell, easily soluble in water, organic solvents (alcohols, esters, chloroform, ethyl acetate), in aqueous solutions of bases, colorless or colorful, crystalline and amorphous materials. Phenols form colorful complexes when they form compounds with heavy metals. In this study, the structural properties of a compound formed by catechol and Fe(+3) are investigated theoretically. The electronic and thermodynamic properties of the complex were also investigated in gas phase and organic solvents at B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) basis set. The formation of Fe-tris(catechol) complex compound is exothermic, and it is difficult to obtain the complex as the temperature increases. The observed and calculated FT-IR and geometric parameters spectra are in good agreement with empirical. PMID:25983060

  19. Selective chromatographic fractionation of catechol estrogens on anion exchangers in borate form.

    PubMed

    Fotsis, T; Heikkinen, R

    1983-03-01

    The borate form of anion exchangers has been investigated for its utility in the field of estrogen analysis. The borate form of a weak (DEAE-Sephadex A-25) and a strong (QAE-Sephadex A-25) anion exchanger was easily prepared by appropriate washing of the gels, without the need of time consuming immobilization techniques. Estrogens with vicinal cis-hydroxyls were strongly retained in both gels through formation of borate complexes and readily separated from estrogens not possessing such groups. Moreover, borate complex formation with the labile o-dihydroxyphenyl moiety of catechol estrogens fully protected them from decomposition during chromatography. Quantitative recovery of catechol estrogens was thereby obtained without use of antioxidants. The borate form of QAE-Sephadex A-25 was capable, in addition, of separating estrogens not possessing vicinal cis-hydroxyls from the corresponding neutral steroids. PMID:6298506

  20. New Hybrid Properties of TiO2 Nanoparticles Surface Modified With Catecholate Type Ligands

    NASA Astrophysics Data System (ADS)

    Janković, Ivana A.; Šaponjić, Zoran V.; Džunuzović, Enis S.; Nedeljković, Jovan M.

    2010-01-01

    Surface modification of nanocrystalline TiO2 particles (45 Å) with bidentate benzene derivatives (catechol, pyrogallol, and gallic acid) was found to alter optical properties of nanoparticles. The formation of the inner-sphere charge-transfer complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites. The binding structures were investigated by using FTIR spectroscopy. The investigated ligands have the optimal geometry for chelating surface Ti atoms, resulting in ring coordination complexes (catecholate type of binuclear bidentate binding-bridging) thus restoring in six-coordinated octahedral geometry of surface Ti atoms. From the Benesi-Hildebrand plot, the stability constants at pH 2 of the order 103 M-1 have been determined.

  1. Crystallization and preliminary X-ray diffraction studies of a catechol-O-methyltransferase/inhibitor complex

    SciTech Connect

    Rodrigues, M. L.; Bonifácio, M. J.; Soares-da-Silva, P.; Carrondo, M. A.; Archer, M.

    2005-01-01

    Catechol-O-methyltransferase has been co-crystallized with a novel inhibitor, which has potential therapeutic application in the Parkinson’s disease therapy. Inhibitors of the enzyme catechol-O-methyltransferase (COMT) are used as co-adjuvants in the therapy of Parkinson’s disease. A recombinant form of the soluble cytosolic COMT from rat has been co-crystallized with a new potent inhibitor, BIA 8-176 [(3,4-dihydroxy-2-nitrophenyl)phenylmethanone], by the vapour-diffusion method using PEG 6K as precipitant. Crystals diffract to 1.6 Å resolution on a synchrotron-radiation source and belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 52.77, b = 79.63, c = 61.54 Å, β = 91.14°.

  2. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase

    PubMed Central

    Patra, Niladri; Ioannidis, Efthymios I.

    2016-01-01

    Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21–22 kcal/mol, in good agreement with experiment (18–19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are

  3. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase.

    PubMed

    Patra, Niladri; Ioannidis, Efthymios I; Kulik, Heather J

    2016-01-01

    Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21-22 kcal/mol, in good agreement with experiment (18-19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are

  4. Catechol-initiated polyethers: multifunctional hydrophilic ligands for PEGylation and functionalization of metal oxide nanoparticles.

    PubMed

    Wilms, Valerie S; Bauer, Heiko; Tonhauser, Christine; Schilmann, Anna-Maria; Müller, Marc-Christian; Tremel, Wolfgang; Frey, Holger

    2013-01-14

    Bifunctional CA-PEG (catechol-poly(ethylene glycol)) and multifunctional CA-PEG-PGA/PEVGE (poly(glycidyl amine)/poly(ethylene glycol vinyl glycidyl ether)) ligands for the functionalization and solubilization of nanoparticles are introduced. Tunable polymers with polydispersities <1.25 and molecular weights in the range 500-7700 g mol(-1) containing a catechol moiety for conjugation to metal oxide nanoparticles were prepared. The functional PEG ligands were synthesized starting from the acetonide-protected catechol initiator 2,2-dimethyl-1,3-benzodioxole-5-propanol (CA-OH) for oxyanionic polymerization. CA-OH was used both for homopolymerization of ethylene oxide (EO) as well as copolymerization with functional epoxides N,N-diallyl glycidyl amine (DAGA), releasing primary amino groups and ethylene glycol vinyl glycidyl ether (EVGE), exhibiting a double bond for click-type reactions, to generate CA-PEG and CA-PEG-PGA/PEVGE. We demonstrate the potential of the functional ligands by binding to MnO nanoparticles, rendering the PEGylated nanoparticles highly stable in aqueous environment. Furthermore, addressability of the functional groups has been proven, for example, by coupling with fluoresceine isothiocyanate (FITC), to allow for optical monitoring of the nanoparticle fate in biological systems. PMID:23210706

  5. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    NASA Astrophysics Data System (ADS)

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-12-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.

  6. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium.

    PubMed

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-01-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe(3+), Fe(2+), Cu(2+) and Al(3+) and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation. PMID:26621792

  7. Absence of reactive intermediates in the formation of catechol estrogens by rat liver microsomes.

    PubMed

    Jellinck, P H; Hahn, E F; Fishman, J

    1986-06-15

    Release of 3H2O from regiospecifically labeled estradiol was measured during 2-hydroxylation of this estrogen by rat liver microsomes. The amount of tritium remaining in the isolated catechol estrogen was also determined. Virtually all the tritium was removed from C-2 during the reaction confirming the absence of an NIH shift. About 20% of the tritium at C-1 was also lost without any such change occurring at C-4 or C-6,7 of the steroid molecule. These findings provide evidence for the formation of an arene oxide or o-semiquinone intermediate during the conversion of estradiol to 2-hydroxyestradiol. No indication of adduct formation at either C-1 or C-4 during this biotransformation was obtained although the 2-hydroxylated product was able to react with a nucleophile such as glutathione. The different regiospecificity of tritium loss in the generation of catechol estrogens and in their subsequent reaction leads to the important conclusion that the reactive intermediates in the two processes must be different. The possible role of catechol estrogens in neoplastic transformation is discussed. PMID:3011797

  8. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    PubMed Central

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-01-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0–30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation. PMID:26621792

  9. RRM analysis of protoporphyrinogen oxidase.

    PubMed

    Sauren, M; Pirogova, E; Cosic, I

    2004-12-01

    Enzymes are crucial in accelerating metabolic reactions in living organisms. Protoporphyrinogen oxidase (PpOI) is an enzyme that catalyses the production of protoporphyrin IX (PpIX), a protein used in a cancer treatment known as photodynamic therapy (PDT). In this study, a structure-function analysis of PpOI was carried out using the Resonant Recognition Model (RRM), a physico-mathematical approach for analysis of proteins interactions. This method is based on the finding that the distribution of delocalised electron energies along the protein plays a crucial role in determining the protein's biological activity. Two digital signal processing (DSP) methods were used: Fourier Transform (FT) and Continuous Wavelet Transform (CWT). Here we have determined the characteristic frequencies and the "hot spot" amino acids, and predicted the location of proteins' active site(s). Several proteins that potentially belong to the PpOI functional group were also analysed to distinguish their viability in this role. PMID:15712584

  10. Trichoderma harzianum: a biocontrol agent against Bipolaris oryzae.

    PubMed

    Abdel-Fattah, Gamal M; Shabana, Yasser M; Ismail, Adel E; Rashad, Younes Mohamed

    2007-08-01

    Rice brown spot, caused by Bipolaris oryzae, can be a serious disease causing a considerable yield loss. Trichoderma harzianum is an effective biocontrol agent for a number of plant fungal diseases. Thus, this research was carried out to investigate the mechanisms of action by which T. harzianum antagonizes Bipolaris oryzae in vitro, and the efficacy of spray application of a spore suspension of T. harzianum for control of rice brown spot disease under field conditions. In vitro, the antagonistic behavior of T. harzianum resulted in the overgrowth of B. oryzae by T. harzianum, while the antifungal metabolites of T. harzianum completely prevented the linear growth of B. oryzae. Light and scanning electron microscope (SEM) observations showed no evidence that mycoparasitism contributed to the aggressive nature of the tested isolate of T. harzianum against B. oryzae. Under field conditions, spraying of a spore suspension of T. harzianum at 10(8)spore ml(-1) significantly reduced the disease severity (DS) and disease incidence (DI) on the plant leaves, and also significantly increased the grain yield, total grain carbohydrate, and protein, and led to a significant increase in the total photosynthetic pigments (chlorophyll a and b and carotenoids) in rice leaves. PMID:17592758

  11. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    NASA Astrophysics Data System (ADS)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  12. Crosstalk between mitochondria and NADPH oxidases

    PubMed Central

    Dikalov, Sergey

    2011-01-01

    Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interaction between main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of crosstalk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain condition may stimulate NADPH oxidases. This crosstalk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions. PMID:21777669

  13. Deciphering the Role of Tyrosine Sulfation in Xanthomonas oryzae pv. oryzae Using Shotgun Proteomic Analysis

    PubMed Central

    Park, Hye-Jee; Park, Chang-Jin; Bae, Nahee; Han, Sang-Wook

    2016-01-01

    A bacterial tyrosine sulfotransferase, RaxST, is required for activation of rice XA21-mediated immunity, and it catalyzes sulfation of tyrosine residues of Omp1X and RaxX in Xanthomonas oryzae pv. oryzae, a causal agent of bacterial blight in rice. Although RaxST is biochemically well-characterized, biological functions of tyrosine sulfation have not been fully elucidated. We compared protein expression patterns between the wildtype and a raxST knockout mutant using shotgun proteomic analysis. Forty nine proteins displayed a more than 1.5-fold difference in their expression between the wildtype and the mutant strains. Clusters of orthologous groups analysis revealed that proteins involved in cell motility were most abundant, and phenotypic observation also showed that the twitching motility of the mutant was dramatically changed. These results indicate that tyrosine sulfation by RaxST is essential for Xoo movement, and they provide new insights into the biological roles of RaxST in cellular processes. PMID:27298602

  14. Cloning and characterization of filamentous temperature-sensitive protein Z from Xanthomonas oryzae pv. Oryzae.

    PubMed

    Dai, Leng; Huang, Yunhong; Chen, Yang; Long, Zhong-Er

    2016-01-01

    The ftsZ gene from Xanthomonas oryzae pv. Oryzae was amplified by PCR with the specific primers, and the recombinant plasmid pET-22b-ftsZ was constructed successfully. The FtsZ with a 6× His tag was overexpressed in a soluble form in Escherichia coli BL21 and purified through a Ni-NTA agarose column. The purified recombinant FtsZ showed a single band on SDS-PAGE with an apparent molecular mass of about 44 kDa, and confirmed by western blotting analysis. The optimum temperature for GTPase activity of the recombined FtsZ was 50 °C, and the optimum pH was 7.0. The recombinant FtsZ showed good stability and retained >95 % activity at 50 °C for 240 min. The GTPase activity followed Michaelis-Menten kinetics with the KM of 1.750 mM and the Vmax of 0.155 nmol Pi/min/nmol FtsZ respectively. PMID:27026842

  15. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice.

    PubMed

    Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392

  16. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    PubMed

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings. PMID:26530963

  17. Genetic Analysis and Molecular Identification of Virulence in Xanthomonas oryzae pv. oryzae Isolates

    PubMed Central

    Onasanya, Amos; Onasanya, R. O.; Ojo, Abiodun A.; Adewale, B. O.

    2013-01-01

    Bacterial leaf blight (BLB) of rice is a very destructive disease worldwide and is caused by Xanthomonas oryzae pv. oryzae (Xoo). The aim of the present study was to examine if the Xoo virulence pathotypes obtained using phenotypic pathotyping could be confirmed using molecular approach. After screening of 60 Operon primers with genomic DNA of two Xoo isolates (virulent pathotype, Vr, and mildly virulent pathotype, MVr), 12 Operon primers that gave reproducible and useful genetic information were selected and used to analyze 50 Xoo isolates from 7 West African countries. Genetic analysis revealed two major Xoo virulence genotypes (Mta and Mtb) with Mta having two subgroups (Mta1 and Mta2). Mta1 (Vr1) subgroup genotype has occurrence in six countries and Mta2 (Vr2) in three countries while Mtb genotype characterized mildly virulence (MVr) Xoo isolates present in five countries. The study revealed possible linkage and correlation between phenotypic pathotyping and molecular typing of Xoo virulence. Xoo virulence genotypes were known to exist within country and there was evidence of Xoo pathogen migration between countries. Durable resistance rice cultivars would need to overcome both Mta and Mtb Xoo virulence genotypes in order to survive after their deployment into different rice ecologies in West Africa. PMID:27335673

  18. Role of DetR in defence is critical for virulence of Xanthomonas oryzae pv. oryzae.

    PubMed

    Nguyen, Minh-Phuong; Park, Jongchan; Cho, Man-Ho; Lee, Sang-Won

    2016-05-01

    Like other bacteria, Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight disease in rice, possesses intracellular signalling systems, known as two-component regulatory systems (TCSs), which regulate pathogenesis and biological processes. Completion of the genome sequences of three Xoo strains has facilitated the functional study of genes, including those of TCSs, but the biological functions of most Xoo TCSs have not yet been uncovered. To identify TCSs involved in Xoo pathogenesis, we generated knockout strains lacking response regulators (RRs, a cytoplasmic signalling component of the TCS) and examined the virulence of the RR knockout strains. This study presents a knockout strain (detR(-) ) lacking the PXO_04659 gene which shows dramatically reduced virulence relative to the wild-type. Our studies to elucidate detR function in Xoo pathogenesis revealed a reduction in extracellular polysaccharide (EPS), intolerance to reactive oxygen species (ROS) and deregulation of iron homeostasis in the detR(-) strain. Moreover, gene expression of regulatory factors, including other RRs and transcription factors (TFs), was altered in the absence of DetR protein, as determined by reverse transcription-polymerase chain reaction (RT-PCR) and/or real-time quantitative RT-PCR analyses. All evidence leads to the conclusion that DetR is essential for Xoo virulence through the regulation of the Xoo defence system including EPS synthesis, ROS detoxification and iron homeostasis, solely or cooperatively with other regulatory factors. PMID:26315668

  19. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice

    PubMed Central

    Su, Jianmei; Zou, Xia; Huang, Liangbo; Bai, Tenglong; Liu, Shu; Yuan, Meng; Chou, Shan-Ho; He, Ya-Wen; Wang, Haihong; He, Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice blight disease as well as a serious phytopathogen worldwide. It is also one of the model organisms for studying bacteria-plant interactions. Current progress in bacterial signal transduction pathways has identified cyclic di-GMP as a major second messenger molecule in controlling Xanthomonas pathogenicity. However, it still remains largely unclear how c-di-GMP regulates the secretion of bacterial virulence factors in Xoo. In this study, we focused on the important roles played by DgcA (XOO3988), one of our previously identified diguanylate cyclases in Xoo, through further investigating the phenotypes of several dgcA-related mutants, namely, the dgcA-knockout mutant ΔdgcA, the dgcA overexpression strain OdgcA, the dgcA complemented strain CdgcA and the wild-type strain. The results showed that dgcA negatively affected virulence, EPS production, bacterial autoaggregation and motility, but positively triggered biofilm formation via modulating the intracellular c-di-GMP levels. RNA-seq data further identified 349 differentially expressed genes controlled by DgcA, providing a foundation for a more solid understanding of the signal transduction pathways in Xoo. Collectively, the present study highlights DgcA as a major regulator of Xoo virulence, and can serve as a potential target for preventing rice blight diseases. PMID:27193392

  20. Evaluation of antioxidant, lipid, and protein fractions of accessions of Oryza Species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Oryza has given rise to rice (Oryza sativa L.), a major source of food for much of the human population. The Oryza genus is small, including only 23 species, but it is remarkably diverse in terms of its ecological adaptation. This diversity may not only be restricted to ecological characte...

  1. First Report of Wheat Blast Caused by Magnaporthe oryzae Pathotype Triticum in Bangladesh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat blast or ‘brusone’, caused by the ascomycetous fungus Magnaporthe oryzae B.C. Couch (synonym Pyricularia oryzae Cavara), was first identified in 1985 in Brazil. M. oryzae is composed of a range of morphologically identical but genetically different host-specific pathotypes that are specialized...

  2. Identification and QTL mapping of blast resistance in wild Oryza species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf blast disease of rice (Oryza sativa L.) caused by Magnaporthe oryzae B. Couch is one of the most devastating rice fungal diseases worldwide. Wild relatives of rice (Oryza spp.) may contain novel genes for biotic and abiotic stress resistance lost during domestication. A collection of 67 wild ...

  3. First report of wheat blast caused by magnaporthe oryzae pathotype triticum in Bangladesh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat blast or ‘brusone’, caused by the ascomycetous fungus Magnaporthe oryzae B.C. Couch (synonym Pyricularia oryzae Cavara), was first identified in 1985 in Brazil. M. oryzae is composed of a range of morphologically identical but genetically different host-specific pathotypes that are specialized...

  4. Structural Insights into Sulfite Oxidase Deficiency

    SciTech Connect

    Karakas,E.; Wilson, H.; Graf, T.; Xiang, S.; Jaramillo-Busquets, S.; Rajagopalan, K.; Kisker, C.

    2005-01-01

    Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.

  5. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.

    PubMed

    Tam, Le Thi; Eymann, Christine; Albrecht, Dirk; Sietmann, Rabea; Schauer, Frieder; Hecker, Michael; Antelmann, Haike

    2006-08-01

    Aromatic organic compounds that are present in the environment can have toxic effects or provide carbon sources for bacteria. We report here the global response of Bacillus subtilis 168 to phenol and catechol using proteome and transcriptome analyses. Phenol induced the HrcA, sigmaB and CtsR heat-shock regulons as well as the Spx disulfide stress regulon. Catechol caused the activation of the HrcA and CtsR heat-shock regulons and a thiol-specific oxidative stress response involving the Spx, PerR and FurR regulons but no induction of the sigmaB regulon. The most surprising result was that several catabolite-controlled genes are derepressed by catechol, even if glucose is taken up under these conditions. This derepression of the carbon catabolite control was dependent on the glucose concentration in the medium, as glucose excess increased the derepression of the CcpA-dependent lichenin utilization licBCAH operon and the ribose metabolism rbsRKDACB operon by catechol. Growth and viability experiments with catechol as sole carbon source suggested that B. subtilis is not able to utilize catechol as a carbon-energy source. In addition, the microarray results revealed the very strong induction of the yfiDE operon by catechol of which the yfiE gene shares similarities to glyoxalases/bleomycin resistance proteins/extradiol dioxygenases. Using recombinant His6-YfiE(Bs) we demonstrate that YfiE shows catechol-2,3-dioxygenase activity in the presence of catechol as the metabolite 2-hydroxymuconic semialdehyde was measured. Furthermore, both genes of the yfiDE operon are essential for the growth and viability of B. subtilis in the presence of catechol. Thus, our studies revealed that the catechol-2,3-dioxygenase YfiE is the key enzyme of a meta cleavage pathway in B. subtilis involved in the catabolism of catechol. PMID:16872404

  6. Human lysyl oxidase-like 2.

    PubMed

    Moon, Hee-Jung; Finney, Joel; Ronnebaum, Trey; Mure, Minae

    2014-12-01

    Lysyl oxidase like-2 (LOXL2) belongs to the lysyl oxidase (LOX) family, which comprises Cu(2+)- and lysine tyrosylquinone (LTQ)-dependent amine oxidases. LOXL2 is proposed to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 has also been proposed to regulate extracellular and intracellular cell signaling pathways. Dysregulation of LOXL2 has been linked to many diseases, including cancer, pro-oncogenic angiogenesis, fibrosis and heart diseases. In this review, we will give an overview of the current understandings and hypotheses regarding the molecular functions of LOXL2. PMID:25146937

  7. NADPH Oxidases and Angiotensin II Receptor Signaling

    PubMed Central

    Garrido, Abel Martin; Griendling, Kathy K.

    2010-01-01

    Over the last decade many studies have demonstrated the importance of reactive oxygen species (ROS) production by NADPH oxidases in angiotensin II (Ang II) signaling, as well as a role for ROS in the development of different diseases in which Ang II is a central component. In this review, we summarize the mechanism of activation of NADPH oxidases by Ang II and describe the molecular targets of ROS in Ang II signaling in the vasculature, kidney and brain. We also discuss the effects of genetic manipulation of NADPH oxidase function on the physiology and pathophysiology of the renin angiotensin system. PMID:19059306

  8. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae.

    PubMed

    Ward, P P; Lo, J Y; Duke, M; May, G S; Headon, D R; Conneely, O M

    1992-07-01

    We report the production of recombinant human lactoferrin in Aspergillus oryzae. Expression of human lactoferrin (hLF), a 78 kD glycoprotein, was achieved by placing the cDNA under the control of the A. oryzae alpha-amylase promoter and the 3' flanking region of the A. niger glucoamylase gene. Using this system, hLF is expressed and secreted into the growth medium at levels up to 25 mg/l. The recombinant lactoferrin is indistinguishable from human milk lactoferrin with respect to its size, immunoreactivity, and iron-binding capacity. The recombinant protein appears to be appropriately N-linked glycosylated and correctly processed at the N-terminus by the A. oryzae secretory apparatus. Lactoferrin is the largest heterologous protein and the first mammalian glycoprotein expressed in the Aspergillus system to date. Hence, this expression system appears suitable for the large-scale production and secretion of biologically active mammalian glycoproteins. PMID:1368268

  9. Impact of Aspergillus oryzae genomics on industrial production of metabolites.

    PubMed

    Abe, Keietsu; Gomi, Katusya; Hasegawa, Fumihiko; Machida, Masayuki

    2006-09-01

    Aspergillus oryzae is used extensively for the production of the traditional Japanese fermented foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste). In recent years, recombinant DNA technology has been used to enhance industrial enzyme production by A. oryzae. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of the fungus in biotechnology. Genes that have been newly discovered through genome research can be used for the production of novel valuable enzymes and chemicals, and are important for designing new industrial processes. This article describes recent progress of A . oryzae genomics and its impact on industrial production of enzymes, metabolites, and bioprocesses. PMID:16944282

  10. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal and recovery from aqueous solutions

    DOEpatents

    Fish, Richard H.

    1997-01-01

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+,Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity.

  11. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal and recovery from aqueous solutions

    DOEpatents

    Fish, R.H.

    1997-04-22

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads use determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2-6-Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion selectivity. 9 figs.

  12. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, Richard H.

    1998-01-01

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe.sup.3+ ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, Mg.sup.2+, Al.sup.3+, and Cr.sup.3+ ions at pH 1-3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe.sup.3+ (for example, Hg.sup.2+ at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe.sup.3+ Al.sup.3+ ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K.sub.m) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe.sup.3+ ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu.sup.2+, Zn.sup.2+, Mn.sup.2+, Ni.sup.2+, and Mg.sup.2+, than either PS-CATS or PS-3,3-LICAMS. However, Fe.sup.3+ ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe.sup.3+, the polymer ligand is selective for Al.sup.3+, Cu.sup.2+ or Hg.sup.2+. The changing of the cavity size from two CH.sub.2 groups to six CH.sub.2 groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect the order of metal ion

  13. Polymer-supported sulfonated catechol and linear catechol amide ligands and their use in selective metal ion removal recovery from aqueous solutions

    DOEpatents

    Fish, R.H.

    1998-11-10

    The present invention concerns the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis-catechol linear amide (PS-2-6-LICAMS) and sulfonated 3,3-linear tris-catechol amide (PS-3,3-LICAMS) ligands, which chemically bond to modified 6% crosslinked macroporous polystyrene-divinylbenzene beads (PS-DVB). These polymers are useful for the for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity shown for PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1--3. Further, the metal ion selectivity is changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). The rates of selective removal and recovery of the trivalent metal ions, e.g. Fe{sup 3+}, Al{sup 3+} ion etc. with the PS-CATS, PS-2-6-LICAMS, and PS-3,3-LICAMS polymer beads used determined are useful as well as equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies. The chelate effect for the predisposed octahedral PS-3,3-LICAMS polymer pendant ligand is the reason that this ligand has a more pronounced selectivity for Fe{sup 3+} ion in comparison to the PS-CATS polymer beads. The predisposed square planar PS-2,6-LICAMS series of polymer pendant ligands are more selective to divalent metal ions Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}, than either PS-CATS or PS-3,3-LICAMS. However, Fe{sup 3+} ion still dominates in competition with other divalent and trivalent metal ions. In the absence of Fe{sup 3+}, the polymer ligand is selective for Al{sup 3+}, Cu{sup 2+} or Hg{sup 2+}. The changing of the cavity size from two CH{sub 2} groups to six CH{sub 2} groups in the PS-2-6-LICAMS polymer pendant ligand series does not effect

  14. Bipolaris oryzae, a novel fungal opportunist causing keratitis.

    PubMed

    Wang, Luxia; Al-Hatmi, Abdullah M S; Lai, Xuwen; Peng, Lianghong; Yang, Chuanhong; Lai, Huangwen; Li, Jianxun; Meis, Jacques F; de Hoog, G Sybren; Zhuo, Chao; Chen, Min

    2016-05-01

    We report a case of mycotic keratitis caused by Bipolaris oryzae with predisposing trauma from a foreign body. The fungus was identified by sequencing the internal transcribed spacer region, translation elongation factor 1α (TEF1) gene, and partial glyceraldehyde-3-phosphate dehydrogenase (GPDH) gene, and the species identity was confirmed on the basis of its characteristic conidial phenotype. The patient was treated with surgical intervention and antifungal agents, including intravenous fluconazole (FLC), oral itraconazole, topical 0.15% amphotericin B eye drops, and 0.5% FLC eye drops. To our knowledge, this is the first report of mycotic keratitis caused by B. oryzae worldwide. PMID:26976720

  15. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    PubMed Central

    Chang, Perng-Kuang; Ehrlich, Kenneth C.; Fujii, Isao

    2009-01-01

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines what is currently known about the toxicity of CPA to animals and humans, both by itself or in combination with other mycotoxins. The review also discusses CPA biosynthesis and the genetic diversity of CPA production in A. flavus/oryzae populations. PMID:22069533

  16. Regulation of NADPH oxidases in skeletal muscle.

    PubMed

    Ferreira, Leonardo F; Laitano, Orlando

    2016-09-01

    The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of skeletal muscle ROS during contractions, participates in insulin signaling and glucose transport, and mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions. PMID:27184955

  17. Activation of Polyphenol Oxidase of Chloroplasts 1

    PubMed Central

    Tolbert, N. E.

    1973-01-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or —18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density. Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles × mg−1 chlorophyll × hr−1. Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes. Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  18. Chromium(VI) reduction by catechol(amine)s results in DNA cleavage in vitro: relevance to chromium genotoxicity.

    PubMed

    Pattison, D I; Davies, M J; Levina, A; Dixon, N E; Lay, P A

    2001-05-01

    Catechols are found extensively in nature both as essential biomolecules and as the byproducts of normal oxidative damage of amino acids and proteins. They are also present in cigarette smoke and other atmospheric pollutants. Here, the interactions of reactive species generated in Cr(VI)/catechol(amine) mixtures with plasmid DNA have been investigated to model a potential route to Cr(VI)-induced genotoxicity. Reduction of Cr(VI) by 3,4-dihydroxyphenylalanine (DOPA) (1), dopamine (2), or adrenaline (3) produces species that cause extensive DNA damage, but the products of similar reactions with catechol (4) or 4-tert-butylcatechol (5) do not damage DNA. The Cr(VI)/catechol(amine) reactions have been studied at low added H(2)O(2) concentrations, which lead to enhanced DNA cleavage with 1 and induce DNA cleavage with 4. The Cr(V) and organic intermediates generated by the reactions of Cr(VI) with 1 or 4 in the presence of H(2)O(2) were characterized by EPR spectroscopy. The detected signals were assigned to Cr(V)-catechol, Cr(V)-peroxo, and mixed Cr(V)-catechol-peroxo complexes. Oxygen consumption during the reactions of Cr(VI) with 1, 2, 4, and 5 was studied, and H(2)O(2) production was quantified. Reactions of Cr(VI) with 1 and 2, but not 4 and 5, consume considerable amounts of dissolved O(2), and give extensive H(2)O(2) production. Extents of oxygen consumption and H(2)O(2) production during the reaction of Cr(VI) with enzymatically generated 1 and N-acetyl-DOPA (from the reaction of Tyr and N-acetyl-Tyr with tyrosinase, respectively) were correlated with the DNA cleaving abilities of the products of these reactions. The reaction of Cr(VI) with enzymatically generated 1 produced significant amounts of H(2)O(2) and caused significant DNA damage, but the N-acetyl-DOPA did not. The extent of in vitro DNA damage is reduced considerably by treatment of the Cr(VI)/catechol(amine) mixtures with catalase, which shows that the DNA damage is H(2)O(2)-dependent and that the

  19. Development of analytical method for catechol compounds in mouse urine using hydrophilic interaction liquid chromatography with fluorescence detection.

    PubMed

    Kanamori, Takahiro; Isokawa, Muneki; Funatsu, Takashi; Tsunoda, Makoto

    2015-03-15

    An analytical method for catecholamines and related compounds using hydrophilic interaction liquid chromatography (HILIC) with native fluorescence detection has been developed. We found that ZIC-cHILIC with phosphorylcholine was suitable for the separation of catechol compounds with good peak shapes among six different HILIC columns (Inertsil SIL, Inertsil Amide, Inertsil Diol, TSKgel NH2-100, ZIC-HILIC, and ZIC-cHILIC). Using ZIC-cHILIC, eight catechol compounds (dopamine, epinephrine, norepinephrine, 3,4-dihydroxyphenylalanine, 3,4-dihydroxyphenylacetic acid, 3,4-dihydroxyphenylglycol, 3,4-dihydroxymandelic acid, and internal standard 3,4-dihydroxybenzylamine) were separated within 15min. The limit of detection at a signal to noise ratio of 3 was 3-28nM. An improved sensitivity was obtained as compared to that of reversed-phase liquid chromatography. This was partly attributed to the increase in the fluorescence intensity of the catechol compounds in the acetonitrile-rich mobile phase. Solid phase extraction using a monolithic silica disk-packed spin column with phenylboronate moieties, which have affinity to catechol compounds, was performed for the selective extraction of catechol compounds from mouse urine. Dopamine, epinephrine, norepinephrine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylglycol were successfully quantified in mouse urine. PMID:25682335

  20. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration

    PubMed Central

    2015-01-01

    This study reports a synthetic polymer functionalized with catechol groups as dental adhesives. We hypothesize that a catechol-functionalized polymer functions as a dental adhesive for wet dentin surfaces, potentially eliminating the complications associated with saliva contamination. We prepared a random copolymer containing catechol and methoxyethyl groups in the side chains. The mechanical and adhesive properties of the polymer to dentin surface in the presence of water and salivary components were determined. It was found that the new polymer combined with an Fe3+ additive improved bond strength of a commercial dental adhesive to artificial saliva contaminated dentin surface as compared to a control sample without the polymer. Histological analysis of the bonding structures showed no leakage pattern, probably due to the formation of Fe–catechol complexes, which reinforce the bonding structures. Cytotoxicity test showed that the polymers did not inhibit human gingival fibroblast cells proliferation. Results from this study suggest a potential to reduce failure of dental restorations due to saliva contamination using catechol-functionalized polymers as dental adhesives. PMID:26176305

  1. Fewer fluctuations, higher maximum concentration and better motor response of levodopa with catechol-O-methyltransferase inhibition.

    PubMed

    Muhlack, Siegfried; Herrmann, Lennard; Salmen, Stephan; Müller, Thomas

    2014-11-01

    Catechol-O-methyltransferase inhibitor addition to levodopa/carbidopa formulations improves motor symptoms and reduces levodopa fluctuations in patients with Parkinson's disease. Objectives were to investigate the effects of entacapone and tolcapone on plasma behaviour of levodopa, its metabolite 3-O-methyldopa and on motor impairment. 22 patients orally received levodopa/carbidopa first, then levodopa/carbidopa/entacapone and finally levodopa/carbidopa plus tolcapone within a 4.5 h interval twice. Maximum concentration, time to maximum level and bioavailability of levodopa did not differ between all conditions each with 200 mg levodopa application as a whole. Catechol-O-methyltransferase inhibition caused less fluctuations and higher baseline levels of levodopa after the first intake and less 3-O-methyldopa appearance. The maximum levodopa concentrations were higher after the second levodopa intake, particularly with catechol-O-methyltransferase inhibition. The motor response to levodopa was better with catechol-O-methyltransferase inhibition than without, tolcapone was superior to entacapone. More continuous levodopa brain delivery and lower 3-O-methyldopa bioavailability caused a better motor response during catechol-O-methyltransferase inhibition. PMID:24770794

  2. Crystallization and preliminary crystallographic analysis of the catechol 2,3-dioxygenase PheB from Bacillus stearothermophilus BR219

    SciTech Connect

    Sugimoto, Keisuke; Matsufuzi, Kazuki; Ohnuma, Hiroaki; Senda, Miki; Fukuda, Masao; Senda, Toshiya

    2006-02-01

    PheB, an extradiol-cleaving catecholic dioxygenase, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P2{sub 1}2{sub 1}2{sub 1}, and diffracts to 2.3 Å resolution. Class II extradiol-cleaving catecholic dioxygenase, a key enzyme of aromatic compound degradation in bacteria, cleaves the aromatic ring of catechol by adding two O atoms. PheB is one of the class II extradiol-cleaving catecholic dioxygenases and shows a high substrate specificity for catechol derivatives, which have one aromatic ring. In order to reveal the mechanism of the substrate specificity of PheB, PheB has been crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The space group of the obtained crystal was P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 65.5, b = 119.2, c = 158.7 Å. The crystal diffracted to 2.3 Å resolution.

  3. Heme/copper terminal oxidases

    SciTech Connect

    Ferguson-Miller, S.; Babcock, G.T.

    1996-11-01

    Spatially well-organized electron-transfer reactions in a series of membrane-bound redox proteins form the basis for energy conservation in both photosynthesis and respiration. The membrane-bound nature of the electron-transfer processes is critical, as the free energy made available in exergonic redox chemistry is used to generate transmembrane proton concentration and electrostatic potential gradients. These gradients are subsequently used to drive ATP formation, which provides the immediate energy source for constructive cellular processes. The terminal heme/copper oxidases in respiratory electron-transfer chains illustrate a number of the thermodynamic and structural principles that have driven the development of respiration. This class of enzyme reduces dioxygen to water, thus clearing the respiratory system of low-energy electrons so that sustained electron transfer and free-energy transduction can occur. By using dioxygen as the oxidizing substrate, free-energy production per electron through the chain is substantial, owing to the high reduction potential of O{sub 2} (0.815 V at pH 7). 122 refs.

  4. Identification of Genes Required for Nonhost Resistance to Xanthomonas oryzae pv. oryzae Reveals Novel Signaling Components

    PubMed Central

    Li, Wen; Xu, You-Ping; Zhang, Zhi-Xin; Cao, Wen-Yuan; Li, Fei; Zhou, Xueping; Chen, Gong-You; Cai, Xin-Zhong

    2012-01-01

    Background Nonhost resistance is a generalized, durable, broad-spectrum resistance exhibited by plant species to a wide variety of microbial pathogens. Although nonhost resistance is an attractive breeding strategy, the molecular basis of this form of resistance remains unclear for many plant-microbe pathosystems, including interactions with the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzae (Xoo). Methods and Findings Virus-induced gene silencing (VIGS) and an assay to detect the hypersensitive response (HR) were used to screen for genes required for nonhost resistance to Xoo in N. benthamiana. When infiltrated with Xoo strain YN-1, N. benthamiana plants exhibited a strong necrosis within 24 h and produced a large amount of H2O2 in the infiltrated area. Expression of HR- and defense-related genes was induced, whereas bacterial numbers dramatically decreased during necrosis. VIGS of 45 ACE (Avr/Cf-elicited) genes revealed identified seven genes required for nonhost resistance to Xoo in N. benthamiana. The seven genes encoded a calreticulin protein (ACE35), an ERF transcriptional factor (ACE43), a novel Solanaceous protein (ACE80), a hydrolase (ACE117), a peroxidase (ACE175) and two proteins with unknown function (ACE95 and ACE112). The results indicate that oxidative burst and calcium-dependent signaling pathways play an important role in nonhost resistance to Xoo. VIGS analysis further revealed that ACE35, ACE80, ACE95 and ACE175, but not the other three ACE genes, interfered with the Cf-4/Avr4-dependent HR. Conclusions/Significance N. benthamiana plants inoculated with Xoo respond by rapidly eliciting an HR and nonhost resistance. The oxidative burst and other signaling pathways are pivotal in Xoo-N. benthamiana nonhost resistance, and genes involved in this response partially overlap with those involved in Cf/Avr4-dependent HR. The seven genes required for N. benthamiana-mediated resistance to Xoo provide a basis for further dissecting the molecular

  5. The Bordetella Bfe System: Growth and Transcriptional Response to Siderophores, Catechols, and Neuroendocrine Catecholamines

    PubMed Central

    Anderson, Mark T.; Armstrong, Sandra K.

    2006-01-01

    Ferric enterobactin utilization by Bordetella bronchiseptica and Bordetella pertussis requires the BfeA outer membrane receptor. Under iron-depleted growth conditions, transcription of bfeA is activated by the BfeR regulator by a mechanism requiring the siderophore enterobactin. In this study, enterobactin-inducible bfeA transcription was shown to be TonB independent. To determine whether other siderophores or nonsiderophore catechols could be utilized by the Bfe system, various compounds were tested for the abilities to promote the growth of iron-starved B. bronchiseptica and induce bfeA transcription. The BfeA receptor transported ferric salmochelin, corynebactin, and the synthetic siderophores TRENCAM and MECAM. Salmochelin and MECAM induced bfeA transcription in iron-starved Bordetella cells, but induction by corynebactin and TRENCAM was minimal. The neuroendocrine catecholamines epinephrine, norepinephrine, and dopamine exhibited a remarkable capacity to induce transcription of bfeA. Norepinephrine treatment of B. bronchiseptica resulted in BfeR-dependent bfeA transcription, elevated BfeA receptor production, and growth stimulation. Pyrocatechol, carbidopa, and isoproterenol were similarly strong inducers of bfeA transcription, whereas tyramine and 3,4-dihydroxymandelic acid demonstrated low inducing activity. The results indicate that the inducer structure requires a catechol group for function and that the ability to induce bfeA transcription does not necessarily correlate with the ability to stimulate bacterial growth. The expanded range of catechol siderophores transported by the BfeA receptor demonstrates the potential versatility of the Bordetella Bfe iron retrieval system. The finding that catecholamine neurotransmitters activate bfeA transcription and promote growth suggests that Bordetella cells can perceive and may benefit from neuroendocrine catecholamines on the respiratory epithelium. PMID:16885441

  6. Phorbol myristate acetate and catechol as skin cocarcinogens in SENCAR mice

    SciTech Connect

    Van Duuren, B.L.; Melchionne, S.; Seidman, I.

    1986-09-01

    The enhancement of the carcinogenicity of benzo(a) pyrene (B(a)P) and ..beta..-propiolactone (BPL) by the mouse skin cocarcinogens phorbol myristate acetate (PMA) and catechol were examined in female SENCAR mice, 30 per group. The carcinogen and cocarcinogen were applied simultaneously, three times weekly for 490-560 days. B(a)P and BPL were used at constant doses of 5 and 50 ..mu..g, respectively, in all experiments. PMA was used at three doses, 2.5, 1.0, and 0.5 ..mu..g per application, and catechol was used at one dose, 2 mg per application. Control groups included animals that received carcinogen only, cocarcinogen only, acetone only, and no treatment. The carcinogenicity of B(a)P and BPL were enhanced by the cocarcinogens, particularly in terms of tumor multiplicity. For both carcinogens, the most marked cocarcinogenic effects were observed at the lowest dose of PMA used (0.5 ..mu..g per application). This observation applied for days to first tumor, animals with tumors, tumor multiplicity, and incidence of malignant skin tumors. Catechol applied alone did not induce any tumors; with PMA alone there were significant incidences of benign and malignant tumors, e.g., at a dose of only 0.5 ..mu..g per application, 15 of 30 animals had 28 tumors, 5 of which were squamous carcinomas. In two-stage carcinogenesis experiments with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and PMA as promoter, SENCAR mice showed a greater susceptibility to tumor induction when compared to ICR/Ha mice used in earlier work. This susceptibility was most notable in terms of rate of tumor appearance and tumor multiplicity.

  7. Structural insights into mechanisms for inhibiting amyloid β42 aggregation by non-catechol-type flavonoids.

    PubMed

    Hanaki, Mizuho; Murakami, Kazuma; Akagi, Ken-ichi; Irie, Kazuhiro

    2016-01-15

    The prevention of 42-mer amyloid β-protein (Aβ42) aggregation is promising for the treatment of Alzheimer's disease. We previously described the site-specific inhibitory mechanism for Aβ42 aggregation by a catechol-type flavonoid, (+)-taxifolin, targeting Lys16,28 after its autoxidation. In contrast, non-catechol-type flavonoids (morin, datiscetin, and kaempferol) inhibited Aβ42 aggregation without targeting Lys16,28 with almost similar potencies to that of (+)-taxifolin. We herein provided structural insights into their mechanisms for inhibiting Aβ42 aggregation. Physicochemical analyses revealed that their inhibition did not require autoxidation. The (1)H-(15)N SOFAST-HMQC NMR of Aβ42 in the presence of morin and datiscetin revealed the significant perturbation of chemical shifts of His13,14 and Gln15, which were close to the intermolecular β-sheet region, Gln15-Ala21. His13,14 also played a role in radical formation at Tyr10, thereby inducing the oxidation of Met35, which has been implicated in Aβ42 aggregation. These results suggest the direct interaction of morin and datiscetin with the Aβ42 monomer. Although only kaempferol was oxidatively-degraded during incubation, its degradation products as well as kaempferol itself suppressed Aβ42 aggregation. However, neither kaempferol nor its decomposed products perturbed the chemical shifts of the Aβ42 monomer. Aggregation experiments using 1,1,1,3,3,3-hexafluoro-2-propanol-treated Aβ42 demonstrated that kaempferol and its degradation products inhibited the elongation rather than nucleation phase, implying that they interacted with small aggregates of Aβ42, but not with the monomer. In contrast, morin and datiscetin inhibited both phases. The position and number of hydroxyl groups on the B-ring of non-catechol-type flavonoids could be important for their inhibitory potencies and mechanisms against Aβ42 aggregation. PMID:26719209

  8. CBS domain-containing proteins are Rhizopus oryzae ferrioxamine receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Iron-overload patients treated with deferoxamine are uniquely susceptible to mucormycosis, because Rhizopus spp. can obtain iron from ferrioxamine (deferoxamine + Fe**3+). Previously we have identified two closely related, ferrioxamine-inducible R. oryzae genes (FOB1 and FOB2) in which ...

  9. A toxic metabolite of Nigrospora oryzae (Berk and Br.) petch.

    PubMed

    Wilson, M E; Davis, N D; Diener, U L

    1986-09-01

    Nigrospora oryzae was isolated from dallisgrass (Paspalum dilatatum Poir.) collected in Auburn and from hay shipped under refrigeration to Florida. Some of these samples were eaten by cattle and horses that subsequently developed lameness. Metabolites of N. oryzae were separated by thin layer chromatography and tested for toxicity. Only one metabolite was toxic. Metabolite A showed toxicity to brine shrimp with an LD50 = 500 micrograms/ml in 8 h. It also had an antibiotic effect on Bacillus megaterium ATCC 14581 with a minimum inhibitory level of 10.1 micrograms/disc. As little as 435 micrograms of a crude methanolic extract of N. oryzae showed mild toxicity to chick embryos. The metabolite was not toxic to mice nor rats at the levels tested. Quantitative procedures developed for the determination of metabolite A showed that the maximum production occurred in yeast extract-sucrose liquid medium with an initial pH of 5-6, when incubated as a stationary culture for 28 days at 25 degrees C. It was concluded that metabolite A is a weak antibiotic rather than a mycotoxin, and was probably not associated with the symptoms of lameness observed in cattle and horses. The antibiotic is not one previously reported for N. oryzae. PMID:3095644

  10. 21 CFR 173.130 - Carbohydrase derived from Rhizopus oryzae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Carbohydrase derived from Rhizopus oryzae. 173.130 Section 173.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  11. Cyclopiazonic Acid Biosynthesis of Aspergillus flavus and Aspergillus oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines w...

  12. Fungicide sensitivity in the wild rice pathogen Bipolaris oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the occurrence of fungal brown spot, caused by Bipolaris oryzae has increased in cultivated wild rice (Zizania palustris) paddies in spite of the use of fungicides. To implement an efficient integrated disease management system, we are exploring whether field isolates have developed ...

  13. WHOLE GENOME COMPARISON OF ASPERGILLUS FLAVUS AND A. ORYZAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus is a plant and animal pathogen that also produces the potent carcinogen aflatoxin. Aspergillus oryzae is a closely related species that has been used for centuries in the food fermentation industry and is generally regarded as safe (GRAS). Whole genome sequences for these two fu...

  14. Synthesis and optimization of N-heterocyclic pyridinones as catechol-O-methyltransferase (COMT) inhibitors.

    PubMed

    Zhao, Zhijian; Harrison, Scott T; Schubert, Jeffrey W; Sanders, John M; Polsky-Fisher, Stacey; Zhang, Nanyan Rena; McLoughlin, Debra; Gibson, Christopher R; Robinson, Ronald G; Sachs, Nancy A; Kandebo, Monika; Yao, Lihang; Smith, Sean M; Hutson, Pete H; Wolkenberg, Scott E; Barrow, James C

    2016-06-15

    A series of N-heterocyclic pyridinone catechol-O-methyltransferase (COMT) inhibitors were synthesized. Physicochemical properties, including ligand lipophilic efficiency (LLE) and clogP, were used to guide compound design and attempt to improve inhibitor pharmacokinetics. Incorporation of heterocyclic central rings provided improvements in physicochemical parameters but did not significantly reduce in vitro or in vivo clearance. Nevertheless, compound 11 was identified as a potent inhibitor with sufficient in vivo exposure to significantly affect the dopamine metabolites homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC), and indicate central COMT inhibition. PMID:27133481

  15. Deuterium quadrupole coupling in methanol, salicyclic acid, catechol, resorcinol, and hydroquinonea)b)

    NASA Astrophysics Data System (ADS)

    Clymer, J. W.; Ragle, J. L.

    1982-11-01

    Deuteron NQR spectra of several model systems involving alcoholic of phenolic-OD groups are discussed. The spectra of alpha hydroquinone and its two isomers resorcinol and catechol show complex structure due to the presence of inequivalent O-DṡṡṡO hydrogen bonds. In the case of hydroquinone, this structure collapses to that characteristic of a single type of hydrogen bond in the beta- or clathrate-forming phase. An attempt is made to place the data in theoretical perspective by calculations of the deuterium field gradient in hydroxide ion, hydroxyl radical, methanol, and methanol dimer and by comparison with precise Hartree-Fock computations from the literature.

  16. Torsional Motion of the Chromophore Catechol following the Absorption of Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Young, J. D.; Staniforth, M.; Paterson, M. J.; Stavros, V. G.

    2015-06-01

    The ability to probe energy flow in molecules, following the absorption of ultraviolet light, is crucial to unraveling photophysical phenomena. Here we excite a coherent superposition of vibrational states in the first excited electronic state (S1 ) in catechol, resulting in a vibrational wave packet. The observed quantum beats, assigned to superpositions of the low-frequency, and strongly mixed, O-H torsional mode τ2 , elegantly demonstrate how changes in geometry upon photoionization from the S1 state to the ground state of the cation (D0 ) enables one to probe energy flow at the very early stages of photoexcitation in this biological chromophore.

  17. Catechol Redox Induced Formation of Metal Core-Polymer Shell Nanoparticles

    PubMed Central

    Black, Kvar C.L.; Liu, Zhongqiang; Messersmith, Phillip B.

    2011-01-01

    A novel strategy was developed to synthesize polymer-coated metal nanoparticles (NPs) through reduction of metal cations with 3,4-dihydroxyphenylalanine (DOPA)-containing polyethylene glycol (PEG) polymers. Catechol redox chemistry was used to both synthesize metal NPs and simultaneously form a cross-linked shell of PEG polymers on their surfaces. DOPA reduced gold and silver cations into neutral metal atoms, producing reactive quinones that covalently cross-linked the PEG molecules around the surface of the NP. Importantly, these PEG-functionalized metal NPs were stable in physiological ionic strengths and under centrifugation, and hold broad appeal since they absorb and scatter light in aqueous solutions. PMID:21666825

  18. Eight-coordinate stereochemistries of U(IV) catecholate and aquo complexes

    SciTech Connect

    Hay, Benjamin P.; Uddin, Jamal; Firman, Timothy K.

    2004-01-01

    An extended MM3 model has been used to identify all low energy configurations for U(IV) complexes with catecholate and aquo ligands. Both stochastic and systematic conformational analyses of[U(cat)n(OH2)8-n]4-2n complexes, n= 1 - 4, establish that 20 of the 67 possible stereochemistries are minima on the MM3 potential surface. The stable stereochemistries are reported for each stoichiometry and, where possible, the results are compared with experimental data and with the predictions from prior repulsion energy calculations.

  19. Characterization of germin-like protein with polyphenol oxidase activity from Satsuma mandarine.

    PubMed

    Cheng, Xi; Huang, Xingjian; Liu, Siyu; Tang, Mi; Hu, Wanfeng; Pan, Siyi

    2014-07-01

    Polyphenol oxidases (PPOs) catalyzing the oxygen dependent oxidation of phenols to quinones are ubiquitously distributed in plants and are assumed to be involved in plant defense against pests and pathogens. A protein with high PPO activity was identified in Satsuma mandarine, extracted with Tris-HCl buffer, purified by salt precipitation and column chromatography, and characterized by mass spectrometry as germin-like protein (GLP), which belongs to pathogenesis related protein (PR) family. In the present study, the structure and enzymatic properties of GLP were characterized using spectroscopy methods. Based on native PAGE analysis, the molecular weight of GLP was estimated to be 108 kDa and GLP was identified as a pentamer containing five subunits of 22 kDa. The optimum pH and temperature for PPO catalyzing activity of GLP was 6.5 and 65°C, respectively. Kinetic constants were 0.0365 M and 0.0196 M with the substrates catechol and pyrogallol, respectively. The structural characterization of GLP provided better insights into the regions responsible for its PPO activity. PMID:24845377

  20. Purification and partial biochemical characterization of polyphenol oxidase from mango (Mangifera indica cv. Manila).

    PubMed

    Palma-Orozco, Gisela; Marrufo-Hernández, Norma A; Sampedro, José G; Nájera, Hugo

    2014-10-01

    Polyphenol oxidase (PPO) is an enzyme widely distributed in the plant kingdom that has been detected in most fruits and vegetables. PPO was extracted and purified from Manila mango (Mangifera indica), and its biochemical properties were studied. PPO was purified 216-fold by hydrophobic interaction and ion exchange chromatography. PPO was purified to homogeneity, and the estimated PPO molecular weight (MW) by SDS-PAGE was ≈31.5 kDa. However, a MW of 65 kDa was determined by gel filtration, indicating a dimeric structure for the native PPO. The isolated PPO showed the highest affinity to pyrogallol (Km = 2.77 mM) followed by 4-methylcatechol (Km = 3.14 mM) and catechol (Km = 15.14 mM). The optimum pH for activity was 6.0. PPO was stable in the temperature range of 20-70 °C. PPO activity was completely inhibited by tropolone, ascorbic acid, sodium metabisulfite, and kojic acid at 0.1 mM. PMID:25211397

  1. Proline dehydrogenase (oxidase) in cancer.

    PubMed

    Liu, Wei; Phang, James M

    2012-01-01

    Proline dehydrogenase (oxidase, PRODH/POX), the first enzyme in the proline degradative pathway, plays a special role in tumorigenesis and tumor development. Proline metabolism catalyzed by PRODH/POX is closely linked with the tricarboxylic acid (TCA) cycle and urea cycle. The proline cycle formed by the interconversion of proline and Δ(1) -pyrroline-5-carboxylate (P5C) between mitochondria and cytosol interlocks with pentose phosphate pathway. Importantly, by catalyzing proline to P5C, PRODH/POX donates electrons into the electron transport chain to generate ROS or ATP. In earlier studies, we found that PRODH/POX functions as a tumor suppressor to initiate apoptosis, inhibit tumor growth, and block the cell cycle, all by ROS signaling. It also suppresses hypoxia inducible factor signaling by increasing α-ketoglutarate. During tumor progression, PRODH/POX is under the control of various tumor-associated factors, such as tumor suppressor p53, inflammatory factor peroxisome proliferator-activated receptor gamma (PPARγ), onco-miRNA miR-23b*, and oncogenic transcription factor c-MYC. Recent studies revealed the two-sided features of PRODH/POX-mediated regulation. Under metabolic stress such as oxygen and glucose deprivation, PRODH/POX can be induced to serve as a tumor survival factor through ATP production or ROS-induced autophagy. The paradoxical roles of PRODH/POX can be understood considering the temporal and spatial context of the tumor. Further studies will provide additional insights into this protein and on its metabolic effects in tumors, which may lead to new therapeutic strategies. PMID:22886911

  2. A novel thermostable and organic solvent-tolerant lipase from Xanthomonas oryzae pv. oryzae YB103: screening, purification and characterization.

    PubMed

    Mo, Qiurun; Liu, Aili; Guo, Hailun; Zhang, Yan; Li, Mu

    2016-03-01

    Thermostable lipases offer major biotechnological advantages over mesophilic lipases. In this study, an intracellular thermostable and organic solvent-tolerant lipase-producing strain YB103 was isolated from soil samples and identified taxonomically as Xanthomonas oryzae pv. oryzae. The lipase from X. oryzae pv. oryzae YB103 (LipXO) was purified 101.1-fold to homogeneity with a specific activity of 373.9 U/mg. The purified lipase showed excellent thermostability, exhibiting 51.1% of its residual activity after incubation for 3 days at 70 °C. The enzyme showed optimal activity at 70 °C, suggesting it is a thermostable lipase. LipXO retained 75.1-154.1% of its original activity after incubation in 20% (v/v) hydrophobic organic solvents at 70 °C for 24 h. Furthermore, LipXO displayed excellent stereoselectivity (e.e.p >99%) toward (S)-1-phenethyl alcohol in n-hexane. These unique properties of LipXO make it promising as a biocatalyst for industrial processes. PMID:26791383

  3. Novel lead compound optimization and synthesized based on the target structure of Xanthomonas oryzae pv. oryzae GlmU.

    PubMed

    Qi, Xiaojuan; Deng, Wenjun; Gao, Min; Mao, Bangqiang; Xu, Shengzhen; Chen, Changshui; Zhang, Qingye

    2015-07-01

    Bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases of rice worldwide. N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) was an attractive target for the development of antimicrobial agents. To develop novel, more potent and even more selective inhibitors of the uridyltransferase activity of Xanthomonas oryzae pv. oryzae GlmU (Xo-GlmU), three types of novel target compounds were optimized and synthesized based on the Xo-GlmU structure in this study. The biological testing results showed that all of the target compounds displayed the higher inhibition than the lead compound with the IC50 values in the 10.82-23.31 µM range, and the inhibition rates were increased by 30%-67%. The binding mode and the possible inhibitory mechanism of the target compounds in the active site were also analyzed by the molecular docking based on the uridyltransferase active site of Xo-GlmU. PMID:26071803

  4. The composition of milk xanthine oxidase

    PubMed Central

    Hart, L. I.; McGartoll, Mary A.; Chapman, Helen R.; Bray, R. C.

    1970-01-01

    The composition of milk xanthine oxidase has been reinvestigated. When the enzyme is prepared by methods that include a selective denaturation step in the presence of sodium salicylate the product is obtained very conveniently and in high yield, and is homogeneous in the ultracentrifuge and in recycling gel filtration. It has specific activity higher than previously reported preparations of the enzyme and its composition approximates closely to 2mol of FAD, 2g-atoms of Mo and 8g-atoms of Fe/mol of protein (molecular weight about 275000). In contrast, when purely conventional preparative methods are used the product is also homogeneous by the above criteria but has a lower specific activity and is generally comparable to the crystallized enzyme described previously. Such samples also contain 2mol of FAD/mol of protein but they have lower contents of Mo (e.g. 1.2g-atom/mol). Amino acid compositions for the two types of preparation are indistinguishable. These results confirm the previous conclusion that conventional methods give mixtures of xanthine oxidase with an inactive modification of the enzyme now termed `de-molybdo-xanthine oxidase', and show that salicylate can selectively denature the latter. The origin of de-molybdo-xanthine oxidase was investigated. FAD/Mo ratios show that it is present not only in enzyme purified by conventional methods but also in `milk microsomes' (Bailie & Morton, 1958) and in enzyme samples prepared without proteolytic digestion. We conclude that it is secreted by cows together with the active enzyme and we discuss its occurrence in the preparations of other workers. Studies on the milks of individual cows show that nutritional rather than genetic factors determine the relative amounts of xanthine oxidase and de-molybdo-xanthine oxidase. A second inactive modification of the enzyme, now termed `inactivated xanthine oxidase', causes variability in activity relative to E450 or to Mo content and formation of it decreases these ratios

  5. Experimental and computational evidence for the mechanism of intradiol catechol dioxygenation by non-heme iron(III) complexes.

    PubMed

    Jastrzebski, Robin; Quesne, Matthew G; Weckhuysen, Bert M; de Visser, Sam P; Bruijnincx, Pieter C A

    2014-11-24

    Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step. PMID:25322920

  6. Application of p-toluidine in chromogenic detection of catechol and protocatechuate, diphenolic intermediates in catabolism of aromatic compounds

    SciTech Connect

    Parke, D. )

    1992-08-01

    In the presence of p-toluidine and iron, protocatechuate and catechols yield color. Inclusion of p-toluidine in media facilities the screening of microbial strains for alterations affecting aromatic catabolism. Such strains include mutants affected in the expression of oxygenases and Escherichia coli colonies carrying cloned or subcloned aromatic catabolic genes which encode enzymes giving rise to protocatechuate or catechol. The diphenolic detection system can also be applied to the creation of vectors relying on insertion of cloned DNA into one of the latter marker genes.

  7. NADPH oxidases: new actors in thyroid cancer?

    PubMed

    Ameziane-El-Hassani, Rabii; Schlumberger, Martin; Dupuy, Corinne

    2016-08-01

    Hydrogen peroxide (H2O2) is a crucial substrate for thyroid peroxidase, a key enzyme involved in thyroid hormone synthesis. However, as a potent oxidant, H2O2 might also be responsible for the high level of oxidative DNA damage observed in thyroid tissues, such as DNA base lesions and strand breakages, which promote chromosomal instability and contribute to the development of tumours. Although the role of H2O2 in thyroid hormone synthesis is well established, its precise mechanisms of action in pathological processes are still under investigation. The NADPH oxidase/dual oxidase family are the only oxidoreductases whose primary function is to produce reactive oxygen species. As such, the function and expression of these enzymes are tightly regulated. Thyrocytes express dual oxidase 2, which produces most of the H2O2 for thyroid hormone synthesis. Thyrocytes also express dual oxidase 1 and NADPH oxidase 4, but the roles of these enzymes are still unknown. Here, we review the structure, expression, localization and function of these enzymes. We focus on their potential role in thyroid cancer, which is characterized by increased expression of these enzymes. PMID:27174022

  8. Pathogenesis-Related Gene Expression in Rice is Correlated with Developmentally Controlled Xa21-mediated Resistance against Xanthomonas oryzae pv. oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease resistance mediated by the resistance gene Xa21 is developmentally controlled in rice. We examined the relationship between pathogenesis related (PR) defense gene expression and Xa21-mediated developmental disease resistance induced by Xanthomonas oryzae pv. oryzae (Xoo). OsPR1a, OsPR1b, a...

  9. Bio-inspired multifunctional catecholic assembly for photo-programmable biointerface.

    PubMed

    Huang, Chun-Jen; Wang, Lin-Chuan

    2015-10-01

    This article reports a novel multifunctional mussel-inspired zwitterionic catecholic assembly to form a photoresponsive biointerface. The assembly is the combination of the antifouling sulfobetaine and photocleavable o-nitrophenyl moieties into a molecule, becoming sulfobetaine nitrodopamine (SB-nDA). We demonstrated the formation of a compact thin SB-nDA film on TiO₂ by using the pH transition approach. The film thickness, surface wettability and elemental composition were characterized using ellipsometry, contact angle goniometer, atomic force microscopy and X-ray photoelectron spectroscopy, respectively. The SB-nDA thin films can effectively resist adhesion of both Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa by more than 95% relative to bare TiO₂. Quartz crystal microbalance with dissipation (QCM-D) sensor was employed for protein fouling tests, showing the comparable antifouling property of SB-nDA with thiol- or silane-based surface ligands. More importantly, the spatiotemporal control over the bioinertness by UV irradiation has been studied with bacterial and protein adsorption. Therefore, the catecholic chemistry can be used for programmable tailoring of interfacial properties, permitting potential application in light-guided targeting for nanomedicine. PMID:26208296

  10. Escape dynamics of photoexcited electrons at catechol: TiO2(110)

    NASA Astrophysics Data System (ADS)

    Gundlach, L.; Ernstorfer, R.; Willig, F.

    2006-07-01

    Ultrafast electron escape dynamics following excitation of the interfacial charge transfer complex of catechol prepared on the rutile TiO2(110) surface was investigated with femtosecond two-photon photoemission (2PPE). Laser pulses were generated with two noncollinear optical parametric amplifiers operated simultaneously at a repetition rate of 150kHz delivering a cross-correlation function with 35fs full width at half maximum. Catechol was absorbed from the solution. The experimental data were not depending on the choice between three different solvents. Photoinduced interfacial charge transfer was instantaneous and thus the rise of the signal was controlled by the cross-correlation function. The energy distribution of the hot electrons generated at the surface was measured as 2PPE spectrum. The decay of the 2PPE signal was nonexponential with a first time constant below 10fs , a dip in the 50fs to 100fs range, and a tail lasting for picoseconds. It was attributed to the release of the electrons from the surface and their escape into the bulk of the semiconductor.

  11. Single micelle force microscopy reveals the coordination interaction between catechol and Fe33+

    NASA Astrophysics Data System (ADS)

    Li, Yiran; Cao, Yi; Wang, Wei

    Metal coordination bonds are widely found in natural adhesive, load-bearing, and protective materials, which are thought to be responsible for their high strength and toughness. However, it remains unknown how the metal-ligand complexes could give rise to such superb mechanical properties. Here, combining single molecule force spectroscopy and quantum calculation, we study the mechanical properties of individual catechol-Fe3 + complexes, the key elements accounting for the high toughness and extensibility of byssal threads of marine mussels. We find that catechol-Fe3 + complexes possess a unique combination of mechanical features, including high mechanical stability, fast reformation kinetics, and stoichiometry-dependent mechanics. Therefore, they can serve as sacrificial bonds to efficiently dissipate energy in the material, quickly recover the mechanical properties when load is released, and be responsive to environmental conditions. Our study provides the mechanistic understanding of the coordination bond-mediated mechanical properties of biogenetic materials, and could guide future rational design and regulation of the mechanical properties of synthetic materials.

  12. Influence of catechol-O-methyltransferase (COMT) genotypes on the prognosis of canine mammary tumors.

    PubMed

    Dias Pereira, P; Lopes, C C; Matos, A J F; Pinto, D; Gärtner, F; Lopes, C; Medeiros, R

    2009-11-01

    Catechol-O-methyltransferase (COMT) is an important enzyme involved in inactivation of catechol estrogens, which are metabolites with carcinogenic properties. Some investigations in human breast cancer associate a genetic polymorphism in the COMT gene (COMT val158met) with an increased risk and poor clinical progression of the disease. In dogs, there are 2 recognized single nucleotide polymorphisms in the COMT gene (COMTG216A and COMTG482A); however, their influence on the outcome of mammary neoplasms has never been investigated. The purpose of this study is to investigate the influence of COMT in the clinical progression of canine mammary tumors, namely in recurrence, metastasis and survival by testing 2 SNPs (G216A and G482A), and 2 genotypes of the COMT gene. A case series was conducted analyzing genomic DNA samples by polymerase chain reaction-restriction fragment length polymorphism from 80 bitches with mammary tumors. Animals were submitted to an active follow-up study for a period of 24 months after surgery. We observed that bitches carrying both genetic variations simultaneously are more likely to develop recurrence of mammary lesions. Our results demonstrate a possible role for COMT genotypes in the outcome of mammary neoplasms in the dog. Identifying a genetic factor predictive of recurrence may be useful in selecting the most effective surgical approach for canine mammary neoplasms. PMID:19605895

  13. Degradation of Phenolic Compounds and Ring Cleavage of Catechol by Phanerochaete chrysosporium

    PubMed Central

    Leatham, Gary F.; Crawford, R. L.; Kirk, T. Kent

    1983-01-01

    POL-88, a mutant of the white-rot fungus Phanerochaete chrysosporium, was selected for diminished phenol-oxidizing enzyme activity. A wide variety of phenolic compounds were degraded by ligninolytic cultures of this mutant. With several o-diphenolic substrates, degradation intermediates were produced that had UV spectra consistent with muconic acids. Extensive spectrophotometric and polarographic assays failed to detect classical ring-cleaving dioxygenases in cell homogenates or in extracts from ligninolytic cultures. Even so, a sensitive carrier-trapping assay showed that intact cultures degraded [U-14C]catechol to [14C]muconic acid, establishing the presence of a system capable of 1,2-intradiol fission. Significant accumulation of [14C]muconic acid into carrier occurred only when evolution of 14CO2 from [14C]catechol was inhibited by treating cultures with excess nutrient nitrogen (e.g., l-glutamic acid) or with cycloheximide. l-Glutamic acid is known from past work to repress the ligninolytic system in P. chrysosporium and to mimic the effect of cycloheximide. The results here indicate, therefore, that the enzyme system responsible for degrading ring-cleavage products to CO2 turns over faster than does the system responsible for ring cleavage. PMID:16346340

  14. Inhibitors of catechol-O-methyltransferase in the treatment of neurological disorders.

    PubMed

    Jatana, Nidhi; Apoorva, N; Malik, Sonika; Sharma, Aditya; Latha, Narayanan

    2013-01-01

    Catechol-O-methyltransferase (COMT) is the enzyme which catalyzes the transfer of a methyl group from S-adenosylmethionine to catechols and catecholamines, like the neurotransmitters dopamine, epinephrine and norepinephrine. COMT has implications in many neurological and psychiatric disorders like schizophrenia, Parkinson's disease (PD), bipolar disorders, etc. and therefore, it serves as an important drug target. Since its characterization in 1957, many inhibitors were designed where the first generation inhibitors were found to be highly toxic, short acting and had poor bioavailability. Currently, two of the second generation inhibitors, tolcapone and entacapone have been used for treatment of PD but are associated with various dopaminergic and gastro-intestinal side-effects. There have been several approaches for the design of novel COMT inhibitors with a good and safe therapeutic profile. The focus of this article is to review the current knowledge on COMT and the role of COMT inhibitors in the treatment of neurological disorders. The inhibitors have been classified into six different classes based on the structural framework. A historical overview of the discovery and development of COMT inhibitors is presented with a special emphasis on new generation of inhibitors till date. PMID:24450388

  15. Characterization of catechol-thioether-induced apoptosis in human SH-SY5Y neuroblastoma cells.

    PubMed

    Mosca, Luciana; Tempera, Italo; Lendaro, Eugenio; Di Francesco, Laura; d'Erme, Maria

    2008-03-01

    Recent work has highlighted the involvement of a dopamine derivative, 5-S-cysteinyl-dopamine (CysDA), in neurodegeneration and apoptotic cell death. In this paper we study in further detail the apoptotic process activated by this catechol-thioether derivative of dopamine in SH-SY5Y neuroblastoma cells. CysDA activates a cascade of events by an initial perturbation of Calcium homeostasis in the cell. Cell treatment with the catechol-thioether induces an immediate rise in intracellular Ca(2+) concentration, as demonstrated by a shift in the indo-1 dye emission spectrum, and a sustained high calcium concentration at long times of incubation. Fluorescence microscopy data show that the treatment of cells induces mitochondrial transmembrane potential depolarization, a clear evidence of the onset of apoptotic process. Programmed cell death activation is also demonstrated by cytochrome c release from the mitochondria, by an increased activity of both caspase-8 and -9 and by the poly(ADP-ribose)polymerase (PARP-1) cleavage, yielding the typical 86 kDa fragment due to caspase-3 activity. Overall, our data support the hypothesis that CysDA may induce apoptotic death in neuronal cells, via an initial perturbation of calcium homeostasis in the cytosol. PMID:17929313

  16. Human catechol-O-methyltransferase: Cloning and expression of the membrane-associated form

    SciTech Connect

    Bertocci, B.; Miggiano, V.; Da Prada, M.; Dembic, Z.; Lahm, H.W.; Malherbe, P. )

    1991-02-15

    A cDNA clone for human catechol-O-methyltransferase was isolated from a human hepatoma cell line (Hep G2) cDNA library by hybridization screening with a porcine cDNA probe. The cDNA clone was sequenced and found to have an insert of 1226 nucleotides. The deduced primary structure of hCOMT is composed of 271 amino acid residues with the predicted molecular mass of 30 kDa. At its N terminus it has a hydrophobic segment of 21 amino acid residues that may be responsible for insertion of hCOMT into the endoplasmic reticulum membrane. The primary structure of hCOMT exhibits high homology to the porcine partial cDNA sequence (93%). The deduced amino acid sequence contains two tryptic peptide sequences (T-22, T-33) found in porcine liver catechol-O-methyltransferase (CEMT). The coding region of hCOMT cDNA was placed under the control of the cytomegalovirus promoter to transfect human kidney 293 cells. The recombinant hCOMT was shown by immunoblot analysis to be mainly associated with the membrane fraction. RNA blot analysis revealed one COMT mRNA transcript of 1.4 kilobases in Hep G2 poly(A){sup +} RNA.

  17. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols

    SciTech Connect

    Bartels, I.; Knackmuss, H.J.; Reineke, W.

    1984-03-01

    The inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-chloro- and 3-fluorocatechol and the iron-chelating agent Tiron (catechol-3,5-disulfonate) was studied. Whereas inactivation by Tiron is an oxygen-independent and mostly reversible process, inactivation by the 3-halocatechols was only observed in the presence of oxygen and was largely irreversible. The rate constants for inactivation (K/sub 2/) were 1.62 x 10/sup -3/ sec/sup -1/ for 3-chlorocatechol and 2.38 x 10/sup -3/ sec/sup -1/ for 3-fluorocatechol. The inhibitor constants (K/sub i/) were 23 ..mu..M for 3-chlorocatechol and 17 ..mu..M for 3-fluorocatechol. The kinetic data for 3-fluorocatechol could only be obtained in the presence of 2-mercaptoethanol. Besides inactivated enzyme, some 2-hydroxyhexa-2,4-dienoic acid as the actual suicide product of meta-cleavage. A side product of 3-fluorocatechol cleavage is a yellow compound with the spectral characteristics of a 2-hydroxy-6-oxohexa-2,4-dienoci acid indicating 1,6-cleavage. Rates of inactivation by 3-fluorocatechol were reduced in the presence of superoxide dismutase, catalase, formate, and mannitol, which implies that superoxide anion, hydrogen peroxide, and hydroxyl radical exhibit additional inactivation. 64 references.

  18. Mechanics of metal-catecholate complexes: the roles of coordination state and metal types.

    PubMed

    Xu, Zhiping

    2013-01-01

    There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799

  19. Inhibition of catechol estrogen formation in rat liver microsomes by hormonal steroids and related compounds.

    PubMed

    Quail, J A; Newcombe, A M; Jellinck, P H

    1988-10-01

    The inhibitory action of a number of different hormonal steroids and related compounds on the 2-hydroxylation of estradiol by male rat liver microsomes was examined by a radiometric assay. Progesterone, Diethylstilbestrol, testosterone and 4-androstenedione were found to be the most potent of the compounds tested but inhibition was also observed with other steroids and a group of androgen analogs which are aromatization inhibitors. The kinetic constant Ki for those steroids which gave linear double reciprocal plots when added to [2-3H]estradiol was determined and the products from [14C]estradiol in the presence of the inhibitors were examined by TLC and autoradiography. The addition of steroids with a 17-hydroxyl group such as testosterone or dihydroequilin resulted in the formation of mainly 2-hydroxyestradiol with smaller amounts of other metabolites while those with a reducible ketonic group such as progesterone, 4-androstenedione, equilin or equilenin gave rise to considerable amounts of estrone in addition to the catechol estrogens. Further purification of the liver microsomes did not alter this effect. The possible role of progesterone and the catechol estrogens in the control of estrogen hydroxylation in liver as well as other aspects of steroid interaction are discussed. PMID:2845195

  20. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Li, Dawei; Li, Guohui; Luo, Lei; Ullah, Naseeb; Wei, Qufu; Huang, Fenglin

    2015-02-01

    A novel laccase biosensor based on a new composite of laccase-gold nanoparticles (Au NPs)-crosslinked zein ultrafine fibers (CZUF) has been fabricated for catechol determination in real solution samples. Firstly, crosslinked zein ultrafine fibers containing gold nanoparticles (A-CZUF) were prepared by combining electrospinning and one-step reduction method using poly(ethyleneimine) (PEI) as reducing and crosslinking agent. A smooth morphology and relative average distribution of A-CZUF were depicted by scanning electron microscope (SEM) and transmission electron microscopy (TEM). The Fourier transform infrared spectroscopy (FT-IR) analysis indicated that PEI molecules attached to the surface of the zein ultrafine fibers via the reaction of functional groups between PEI and glyoxal. The results obtained from ultraviolet visible spectroscopy (UV-vis spectroscopy), X-ray diffraction (XRD) and thermal gravimetric analysis (TGA) for A-CZUF confirmed the existence of Au NPS coated on the surface of CZUF. Square wave voltammetry (SWV) and cyclic voltammetry (CV) were used to detect the electrochemical performance of the proposed biosensor. The results demonstrated that this biosensor possessed a high sensitive detection to catechol, which was attributed to the direct electron transfer (DET) facilitated by Au NPs and high catalytic ability obtained from laccase. In addition, the proposed biosensor exhibited good reproducibility, stability and selectivity.

  1. Identification and Characterization of Integron-Mediated Antibiotic Resistance in the Phytopathogen Xanthomonas oryzae pv. oryzae

    PubMed Central

    Zhou, Ming-guo

    2013-01-01

    Four streptomycin-resistant isolates of Xanthomonas oryzae pv. oryzae (YNA7-1, YNA10-2, YNA11-2, and YNA12-2) were examined via PCR amplification for the presence of class 1, class 2, and class 3 integrons and aadA1 and aadA2 genes, which confer resistance to streptomycin and spectinomycin. The class 1 integrase gene intI1 and the aminoglycoside adenylyltransferase gene aadA1 were identified in all four resistant isolates but not in 25 sensitive isolates. PCR amplifications showed that 7790-bp, 7162-bp, 7790-bp, and 7240-bp resistance integrons with transposition gene modules (tni module) in 3′ conserved segments existed in YNA7-1, YNA10-2, YNA11-2, and YNA12-2, respectively. Subsequent analysis of sequences indicated that the integrons of YNA7-1 and YNA11-2 carried three gene cassettes in the order |aacA3|arr3|aadA1|. The integron of YNA10-2 carried only |arr3|aadA1| gene cassettes. The integron of YNA12-2 lacked a 550-bp sequence including part of intI1 but it still carried |aacA3|arr3|aadA1| gene cassettes. The analysis of inactive mutants and complementation tests confirmed that the aacA3 gene conferred resistance to tobramycin, kanamycin, gentamicin and netilmicin; the arr3 gene conferred resistance to rifampicin; and the aadA1 gene conferred resistance to streptomycin and spectinomycin. The resistance phenotypes of the four isolates corresponded with their resistance gene cassettes, except that YNA7-1 and YNA12-2 did not show rifampicin resistance. Sequence comparison revealed that no gene cassette array in GenBank was in the same order as in the integrons of the four resistant isolates in this study and the aadA1, which was identical in the four resistant isolates, showed 99% identity with aadA1 sequences in GenBank. The result of a stability test showed that the resistance phenotype, the aadA1 gene, and the intI1 gene were completely stable in YNA7-1 and YNA12-2 but unstable in YNA10-2 and YNA11-2. To our knowledge, this is the first report of resistance

  2. CYTOCHROME OXIDASE IN NORMAL AND REGENERATING NEURONS

    PubMed Central

    Howe, Howard A.; Mellors, Robert C.

    1945-01-01

    Manometric determinations of cytochrome oxidase activity were carried out on grey matter from the thalamus and anterior horn of cats and monkeys under various experimental conditions. The thalamus of the cat was studied following the degeneration of virtually all the thalamic neurons secondary to decortication. In comparing the deneuronated thalamus with the normal one, it was found that approximately 34 per cent of the cytochrome oxidase activity was contributed by the neurons and the balance by neuroglia and mesodermal tissues which on the operated side remained comparable to that of the normal side. Total activity of the normal thalamus averaged 5.52 units per mg. of dry weight where I unit is defined as the amount of cytochrome oxidase required to produce a net oxygen consumption of 10 c.mm. per hour under the specified conditions of the experiment. The grey matter of the anterior horns of the spinal cord was isolated by a special technique and its cytochrome oxidase activity was compared with anterior horns in which motoneurons had been stimulated to regenerative activity by section of peripheral nerves. Each animal was studied in relation to an anterior horn which was normal and one in which only the functional state of the motoneurons had been changed. Average normal levels of 2.23 units were found for cat anterior horn and 0.69 units for the monkey. Reductions of cytochrome oxidase activity in the range of 22 to 23 per cent were observed for both cat and monkey following nerve section. In the latter the time sequence was carefully studied in relation to the cytological cycle known as chromatolysis and a virus refractory state previously described by us. It was found that maximal reduction of cytochrome oxidase activity coincided with maximal refractoriness of the cells to poliomyelitis virus (30 to 70 days following nerve section). Neither of these states could be correlated in time with maximal chromatolysis (10 to 15 days). PMID:19871471

  3. Microbacterium oryzae sp. nov., an actinobacterium isolated from rice field soil.

    PubMed

    Kumari, Prabla; Bandyopadhyay, Saumya; Das, Subrata K

    2013-07-01

    A novel aerobic soil actinobacterium (strain MB10(T)) belonging to the genus Microbacterium was isolated from rice field soil samples collected from Jagatpur, Orissa, India. Cells were Gram-stain positive, short rod-shaped and motile. The strain was oxidase-negative and catalase-positive. Heterotrophic growth was observed at pH 5.0-11.0 and at 16-37 °C; optimum growth was observed at 28 °C and pH 7.0-9.0. The DNA G+C content was 71.6 mol%. Predominant cellular fatty acids of strain MB10(T) were iso-C14 : 0, anteiso-C15 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. Cell wall sugars were galactose, glucose and rhamnose. The major isoprenoid quinones were MK-9 (10 %), MK-10 (43 %) and MK-11 (36 %). The peptidoglycan represents the peptidoglycan type B2β. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipid and unknown glycolipids. 16S rRNA gene sequence identity revealed the strain MB10(T) clustered within the radiation of the genus Microbacterium and showed 99.2 % similarity with Microbacterium barkeri DSM 20145(T). However, DNA-DNA similarity study was 37.0 % with Microbacterium barkeri DSM 20145(T), the nearest phylogenetic relative. On the basis of phenotypic and chemotaxonomic properties, 16S rRNA gene sequence analysis and DNA-DNA reassociation studies, it is proposed that strain MB10(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium oryzae sp. nov. is proposed; the type strain is MB10(T) ( = JCM 16837(T) = DSM 23396(T)). PMID:23203624

  4. Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: synthesis, magnetic properties and catechol oxidase activity.

    PubMed

    Singha Mahapatra, Tufan; Basak, Dipmalya; Chand, Santanu; Lengyel, Jeff; Shatruk, Michael; Bertolasi, Valerio; Ray, Debashis

    2016-09-14

    Unique dependence on the nature of metal salt and reaction conditions for coordination assembly reactions of varying architecture and nuclearity have been identified in V-shaped [Co3L4] and planar disc-like [Co7L6] compounds: [CoL2(μ-L)2(μ-OH2)2(CF3CO2)2] (1) and [Co(μ-L)6(μ-OMe)6]Cl2 (2) (HL = 2-{(3-ethoxypropylimino)methyl}-6-methoxyphenol). At room temperature varying reaction conditions, cobalt-ligand ratios and use of different bases allowed unique types of coordination self-assembly. The synthetic marvel lies in the nature of aggregation with respect to the two unrelated cores in 1 and 2. Complex 1 assumes a V-shaped arrangement bound to L(-), water and a trifluoroacetate anion, while 2 grows around a central Co(II) ion surrounded by a {Co} hexagon bound to methoxide and L(-). Magnetic measurements revealed that the intermetallic interactions are antiferromagnetic in nature in the case of complex 1 and ferromagnetic in the case of 2 involving high spin cobalt(ii) ions with stabilization of the high-spin ground state in the latter case. In MeCN solutions complexes 1 and 2 showed catalytic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBCH2) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in air. The kinetic study in MeCN revealed that with respect to the catalytic turnover number (kcat) 2 is more effective than 1 for oxidation of 3,5-DTBCH2. PMID:27510847

  5. ERECTA contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis.

    PubMed

    Takahashi, Toshiharu; Shibuya, Haruki; Ishikawa, Atsushi

    2016-07-01

    ERECTA controls both developmental processes and disease resistance in Arabidopsis. We investigated the function of ERECTA in non-host resistance to Magnaporthe oryzae in Arabidopsis. In the pen2 er mutant, penetration resistance and post-penetration resistance to M. oryzae were compromised. These results suggest that ERECTA is involved in both penetration and post-penetration resistance to M. oryzae in Arabidopsis. PMID:26924213

  6. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT

    EPA Science Inventory

    Rainbow trout (Oncorhynchus mykiss) liver microsomes were used to study the rate of ring-hydroxylation of phenol PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultra...

  7. RATE AND CAPACITY OF HEPATIC MICROSOMAL RING HYDROXYLATION OF PHENOL TO HYDROQUINONE AND CATECHOL IN RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    EPA Science Inventory

    Rainbow trout liver microsomes were used to study the rate of ring-hydroxylation of phenol (PH) by directly measuring the production of hydroquinone (HQ), the primary metabolite, and catechol (CAT), a secondary metabolite. An HPLC method with integrated ultroviolet (UV) and elect...

  8. VISCOSITY AND BINDER COMPOSITION EFFECTS ON TYROSINASE-BASED CARBON PASTE ELECTRODE FOR DETECTION OF PHENOL AND CATECHOL

    EPA Science Inventory

    The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wid...

  9. A smartphone-based colorimetric reader coupled with a remote server for rapid on-site catechols analysis.

    PubMed

    Wang, Yun; Li, Yuanyuan; Bao, Xu; Han, Juan; Xia, Jinchen; Tian, Xiaoyu; Ni, Liang

    2016-11-01

    The search of a practical method to analyze cis-diol-containing compounds outside laboratory settings remains a substantial scientific challenge. Herein, a smartphone-based colorimetric reader was coupled with a remote server for rapid on-site analysis of catechols. A smallest-scale 2×2 colorimetric sensor array composed of pH indicators and phenylboronic acid was configured. The array was able to distinguish 13 catechols at 6 serial concentrations, through simultaneous treatment via principal component analysis, hierarchical cluster analysis, and linear discriminant analysis. After both the discriminatory power of the array and the prediction ability of the partial least squares quantitative models were proved to be predominant, the smartphone was coupled to the remote server. All the ΔRGB data were uploaded to the remote server wherein linear discriminant analysis and partial least squares processing modules were established to provide qualitative discrimination and quantitative calculation, respectively, of the analytes in real time. The applicability of this novel method to a real-life scenario was confirmed by the on-site analysis of various catechols from a water sample of the Yangtze River; the feedback result in the smartphone showed the method was able to identify the catechols with 100% accuracy and predict the concentrations to within 0.706-2.240 standard deviation. PMID:27591604

  10. Susceptibility of Pseudomonas aeruginosa to catechol-substituted cephalosporin is unrelated to the pyochelin-Fe transporter FptA.

    PubMed

    Hoegy, Françoise; Gwynn, Michael N; Schalk, Isabelle J

    2010-05-01

    Previously it has been postulated that the pyochelin-Fe outer membrane transporter, FptA, is involved in the uptake of catechol-substituted cephalosporins in Pseudomonas aeruginosa. Iron uptake and antibacterial activity studies on different mutants showed clearly that FptA is unable to bind and transport these antibiotics. PMID:19777323

  11. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice.

    PubMed

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  12. Aspergillus oryzae nrtA affects kojic acid production.

    PubMed

    Sano, Motoaki

    2016-09-01

    We analyzed the role of the nitrate transporter-encoding gene (nrtA) of Aspergillus oryzae by gene disruption. Southern hybridization analysis indicated that homologous recombination occurred at the resident nrtA locus. Real-time PCR showed that the nrtA gene was strongly inducible by NaNO3. The nrtA disruptant did not exhibit normal growth when nitrate was available as the sole nitrogen source. These results indicate that NrtA is essential for nitrate uptake in A. oryzae. Kojic acid (KA) production was inhibited by the addition of a small amount of sodium nitrate. The nrtA-disrupted strain was deficient in the uptake of nitrate. As a result, KA production in this strain was not considerably affected by the presence of nitrate. PMID:27108780

  13. Niclosamide inhibits leaf blight caused by Xanthomonas oryzae in rice

    PubMed Central

    Kim, Sung-Il; Song, Jong Tae; Jeong, Jin-Yong; Seo, Hak Soo

    2016-01-01

    Rice leaf blight, which is caused by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), results in huge losses in grain yield. Here, we show that Xoo-induced rice leaf blight is effectively controlled by niclosamide, an oral antihelminthic drug and molluscicide, which also functions as an anti-tumor agent. Niclosamide directly inhibited the growth of the three Xoo strains PXO99, 10208 and K3a. Niclosamide moved long distances from the site of local application to distant rice tissues. Niclosamide also increased the levels of salicylate and induced the expression of defense-related genes such as OsPR1 and OsWRKY45, which suppressed Xoo-induced leaf wilting. Niclosamide had no detrimental effects on vegetative/reproductive growth and yield. These combined results indicate that niclosamide can be used to block bacterial leaf blight in rice with no negative side effects. PMID:26879887

  14. Coupled redox transformations of catechol and cerium at the surface of a cerium(III) phosphate mineral

    NASA Astrophysics Data System (ADS)

    Cervini-Silva, Javiera; Gilbert, Benjamin; Fakra, Sirine; Friedlich, Stephan; Banfield, Jillian

    2008-05-01

    Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca5(PO4)3.(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO4·H2O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic-anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce3+ ions oxidizing to CeO2. Reaction product analysis shows the formation of CO2, polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M4,5 and C-K absorption edges on reacted CePO4·H2O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO4·H2O and O2 but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new π∗ resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the σ∗ region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent

  15. Crystal structures of human 108V and 108M catechol O-methyltransferase

    SciTech Connect

    Rutherford, K.; Le Trong, I.; Stenkamp, R.E.; Parson, W.W.

    2008-08-01

    Catechol O-methyltransferase (COMT) plays important roles in the metabolism of catecholamine neurotransmitters and catechol estrogens. The development of COMT inhibitors for use in the treatment of Parkinson's disease has been aided by crystallographic structures of the rat enzyme. However, the human and rat proteins have significantly different substrate specificities. Additionally, human COMT contains a common valine-methionine polymorphism at position 108. The methionine protein is less stable than the valine polymorph, resulting in decreased enzyme activity and protein levels in vivo. Here we describe the crystal structures of the 108V and 108M variants of the soluble form of human COMT bound with S-adenosylmethionine (SAM) and a substrate analog, 3,5-dinitrocatechol. The polymorphic residue 108 is located in the {alpha}5-{beta}3 loop, buried in a hydrophobic pocket {approx}16 {angstrom} from the SAM-binding site. The 108V and 108M structures are very similar overall [RMSD of C{sup {alpha}} atoms between two structures (C{sup {alpha}} RMSD) = 0.2 {angstrom}], and the active-site residues are superposable, in accord with the observation that SAM stabilizes 108M COMT. However, the methionine side chain is packed more tightly within the polymorphic site and, consequently, interacts more closely with residues A22 ({alpha}2) and R78 ({alpha}4) than does valine. These interactions of the larger methionine result in a 0.7-{angstrom} displacement in the backbone structure near residue 108, which propagates along {alpha}1 and {alpha}5 toward the SAM-binding site. Although the overall secondary structures of the human and rat proteins are very similar (C{sup {alpha}} RMSD = 0.4 {angstrom}), several nonconserved residues are present in the SAM-(I89M, I91M, C95Y) and catechol- (C173V, R201M, E202K) binding sites. The human protein also contains three additional solvent-exposed cysteine residues (C95, C173, C188) that may contribute to intermolecular disulfide bond

  16. Neuronal effects of 4-t-Butylcatechol: A model for catechol-containing antioxidants

    SciTech Connect

    Lo, Y.-C. Liu Yuxin; Lin, Y.-C.; Shih, Y.-T.; Liu, C.-M.; Burka, Leo T.

    2008-04-15

    Many herbal medicines and dietary supplements sold as aids to improve memory or treat neurodegenerative diseases or have other favorable effects on the CNS contain a catechol or similar 1,2-dihydroxy aromatic moiety in their structure. As an approach to isolate and examine the neuroprotective properties of catechols, a simple catechol 4-t-Butylcatechol (TBC) has been used as a model. In this study, we investigated the effects of TBC on lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity by using the in vitro model of coculture murine microglial-like cell line HAPI with the neuronal-like human neuroblastoma cell line SH-SY5Y. We also examined the effects of TBC on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. TBC at concentrations from 0.1-10 {mu}M had no toxic effect on HAPI cells and SH-SY5Y cells, and it inhibited LPS (100 ng/ml)-induced increases of superoxide, intracellular ROS, gp91{sup Phox}, iNOS and a decrease of HO-1 in HAPI cells. Under coculture condition, TBC significantly reduced LPS-activated microglia-induced dopaminergic SH-SY5Y cells death. Moreover, TBC (0.1-10 {mu}M) inhibited 6-OHDA-induced increases of intracellular ROS, iNOS, nNOS, and a decrease of mitochondria membrane potential, and cell death in SH-SY5Y cells. However, the neurotoxic effects of TBC (100 {mu}M) on SH-SY5Y cells were also observed including the decrease in mitochondria membrane potential and the increase in COX-2 expression and cell death. TBC-induced SH-SY5Y cell death was attenuated by pretreatment with NS-398, a selective COX-2 inhibitor. In conclusion, this study suggests that TBC might possess protective effects on inflammation- and oxidative stress-related neurodegenerative disorders. However, the high concentration of TBC might be toxic, at least in part, for increasing COX-2 expression.

  17. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  18. Oxidative stress, NADPH oxidases, and arteries.

    PubMed

    Sun, Qi-An; Runge, Marschall S; Madamanchi, Nageswara R

    2016-05-10

    Atherosclerosis and its major complications - myocardial infarction and stroke - remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD. PMID:25649240

  19. The substrate tolerance of alcohol oxidases.

    PubMed

    Pickl, Mathias; Fuchs, Michael; Glueck, Silvia M; Faber, Kurt

    2015-08-01

    Alcohols are a rich source of compounds from renewable sources, but they have to be activated in order to allow the modification of their carbon backbone. The latter can be achieved via oxidation to the corresponding aldehydes or ketones. As an alternative to (thermodynamically disfavoured) nicotinamide-dependent alcohol dehydrogenases, alcohol oxidases make use of molecular oxygen but their application is under-represented in synthetic biotransformations. In this review, the mechanism of copper-containing and flavoprotein alcohol oxidases is discussed in view of their ability to accept electronically activated or non-activated alcohols and their propensity towards over-oxidation of aldehydes yielding carboxylic acids. In order to facilitate the selection of the optimal enzyme for a given biocatalytic application, the substrate tolerance of alcohol oxidases is compiled and discussed: Substrates are classified into groups (non-activated prim- and sec-alcohols; activated allylic, cinnamic and benzylic alcohols; hydroxy acids; sugar alcohols; nucleotide alcohols; sterols) together with suitable alcohol oxidases, their microbial source, relative activities and (stereo)selectivities. PMID:26153139

  20. Iron starvation induces apoptosis in Rhizopus oryzae in vitro.

    PubMed

    Shirazi, Fazal; Kontoyiannis, Dimitrios P; Ibrahim, Ashraf S

    2015-01-01

    Mortality associated with mucormycosis remains high despite current antifungals. Iron-starvation strategies have been shown to have promising activity against Mucorales. We hypothesized that iron starvation enhances apoptosis in Rhizopus oryzae. Apoptosis was characterized in R. oryzae transformed with RNAi plasmid targeting FTR1 expression (iron permease mutant) or empty plasmid grown in iron rich (0.125% FeCl3) and iron depleted media (YNB+1mM ferrozine and 1 mM ascorbic acid). Increased apoptosis was observed with dihydrorhodamine-123 and rhodamine-123 staining in the iron starved mutant FTR1 when compared to empty plasmid, followed by increased extracellular ATP levels. In addition, DNA fragmentation and metacaspase activity were prominent in FTR1. In contrast, Rhizopus strains grown in iron-rich medium displayed minimal apoptosis. Our results demonstrate a metacaspase dependent apoptotic process in iron deprived condition and further support the role of iron starvation strategies as an adjunct treatment for mucormycosis, a mechanism by which iron starvation affects R. oryzae. PMID:25830548

  1. A novel non-thermostable deuterolysin from Aspergillus oryzae.

    PubMed

    Maeda, Hiroshi; Katase, Toru; Sakai, Daisuke; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Abe, Keietsu; Yamagata, Youhei

    2016-09-01

    Three putative deuterolysin (EC 3.4.24.29) genes (deuA, deuB, and deuC) were found in the Aspergillus oryzae genome database ( http://www.bio.nite.go.jp/dogan/project/view/AO ). One of these genes, deuA, was corresponding to NpII gene, previously reported. DeuA and DeuB were overexpressed by recombinant A. oryzae and were purified. The degradation profiles against protein substrates of both enzymes were similar, but DeuB showed wider substrate specificity against peptidyl MCA-substrates compared with DeuA. Enzymatic profiles of DeuB except for thermostability also resembled those of DeuA. DeuB was inactivated by heat treatment above 80° C, different from thermostable DeuA. Transcription analysis in wild type A. oryzae showed only deuB was expressed in liquid culture, and the addition of the proteinous substrate upregulated the transcription. Furthermore, the NaNO3 addition seems to eliminate the effect of proteinous substrate for the transcription of deuB. PMID:27050120

  2. Reduction of aflatoxins by Rhizopus oryzae and Trichoderma reesei.

    PubMed

    Hackbart, H C S; Machado, A R; Christ-Ribeiro, A; Prietto, L; Badiale-Furlong, E

    2014-08-01

    This study evaluated the ability of the microorganisms Rhizopus oryzae (CCT7560) and Trichoderma reesei (QM9414), producers of generally recognized as safe (GRAS) enzymes, to reduce the level of aflatoxins B1, B2, G1, G2, and M1. The variables considered to the screening were the initial number of spores in the inoculum and the culture time. The culture was conducted in contaminated 4 % potato dextrose agar (PDA) medium, and the residual mycotoxins were determined every 24 h by HPLC-FL. The fungus R. oryzae has reduced aflatoxins B1, B2, and G1 in the 96 h and aflatoxins M1 and G2 in the range of 120 h of culture by approximately 100 %. The fungus T. reesei has reduced aflatoxins B1, B2, and M1 in the 96 h and aflatoxin G1 in the range of 120 h of culture by approximately 100 %. The highest reduction occurred in the middle of R. oryzae culture. PMID:24925827

  3. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.

    PubMed

    Yin, DeLu Tyler; Urresti, Saioa; Lafond, Mickael; Johnston, Esther M; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H; Davies, Gideon J; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  4. Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family

    PubMed Central

    Yin, DeLu (Tyler); Urresti, Saioa; Lafond, Mickael; Johnston, Esther M.; Derikvand, Fatemeh; Ciano, Luisa; Berrin, Jean-Guy; Henrissat, Bernard; Walton, Paul H.; Davies, Gideon J.; Brumer, Harry

    2015-01-01

    Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure–function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications. PMID:26680532

  5. Characterization of Rice NADPH Oxidase Genes and Their Expression under Various Environmental Conditions

    PubMed Central

    Wang, Gang-Feng; Li, Wen-Qiang; Li, Wen-Yan; Wu, Guo-Li; Zhou, Cong-Yi; Chen, Kun-Ming

    2013-01-01

    Plasma membrane NADPH oxidases (Noxs) are key producers of reactive oxygen species under both normal and stress conditions in plants. We demonstrate that at least eleven genes in the genome of rice (Oryza sativa L.) were predicted to encode Nox proteins, including nine genes (OsNox1–9) that encode typical Noxs and two that encode ancient Nox forms (ferric reduction oxidase 1 and 7, OsFRO1 and OsFRO7). Phylogenetic analysis divided the Noxs from nine plant species into six subfamilies, with rice Nox genes distributed among subfamilies I to V. Gene expression analysis using semi-quantitative RT-PCR and real-time qRT-PCR indicated that the expression of rice Nox genes depends on organs and environmental conditions. Exogenous calcium strongly stimulated the expression of OsNox3, OsNox5, OsNox7, and OsNox8, but depressed the expression of OsFRO1. Drought stress substantially upregulated the expression of OsNox1–3, OsNox5, OsNox9, and OsFRO1, but downregulated OsNox6. High temperature upregulated OsNox5–9, but significantly downregulated OsNox1–3 and OsFRO1. NaCl treatment increased the expression of OsNox2, OsNox8, OsFRO1, and OsFRO7, but decreased that of OsNox1, OsNox3, OsNox5, and OsNox6. These results suggest that the expression profiles of rice Nox genes have unique stress-response characteristics, reflecting their related but distinct functions in response to different environmental stresses. PMID:23629674

  6. A two-electron shell game: Intermediates of the extradiol-cleaving catechol dioxygenases

    PubMed Central

    Fielding, Andrew J.

    2014-01-01

    Extradiol catechol ring-cleaving dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase (HPCD) are summarized with the objective of showing how Nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active site metals, introducing active site amino acid substituted variants, and using substrates with different electron donating capacities. While each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic and computational analysis of the various intermediates shed light on how catalytic efficiency can be achieved. PMID:24615282

  7. An electrochemically aminated glassy carbon electrode for simultaneous determination of hydroquinone and catechol.

    PubMed

    Wang, Xiuyun; Xi, Min; Guo, Mengmeng; Sheng, Fangmeng; Xiao, Guang; Wu, Shuo; Uchiyama, Shunichi; Matsuura, Hiroaki

    2016-02-01

    In this contribution, a very simple and reliable strategy based on the easy modification of a glassy carbon electrode (GCE) by pre-electrolyzing GCE in ammonium carbamate aqueous solution was employed for the simultaneous determination of hydroquinone (HQ) and catechol (CC). Compared with bare GCE, the incorporation of nitrogen into the GCE surface structure improved the electrocatalytic properties of GCE towards the electro-oxidation of HQ and CC. The nitrogen-introduced GCE (N-GCE) was evaluated for the simultaneous detection of HQ and CC and the linear ranges for HQ and CC were both from 5 to 260 μM. Their detection limits were both evaluated to be 0.2 μM (S/N = 3). The present method was applied for the determination of HQ and CC in real river water samples with recoveries of 95.0-102.1%. In addition, a possible detection mechanism of HQ and CC was discussed. PMID:26613194

  8. Enhanced biological denitrification in the cyclic rotating bed reactor with catechol as carbon source.

    PubMed

    Moussavi, Gholamreza; Jafari, Seyed Javad; Yaghmaeian, Kamyar

    2015-08-01

    The performance of CRBR in denitrification with catechol carbon source is presented. The influence of inlet nitrate concentration, hydraulic retention time (HRT), media filling ratio and rotational speed of media on the performance of CRBR was investigated. The bioreactor could denitrify over 95% of the nitrate at an inlet concentration up to 1000 mg NO3(-)/L and a short HRT as low as 18 h. The optimum media filling ratio at which the maximum denitrification was achieved in the CRBR was 30% and the contribution of media at this condition was around 36%. The optimum ratio of media filling at which the maximum denitrification was 20 rpm and the contribution of rotational speed under this condition was around 17%. According to the findings, the CRBR is a high rate bioreactor and thus serves as an appropriate technology for denitrification of wastewaters containing a high concentration of nitrate and toxic organic compounds. PMID:25898088

  9. Toughening elastomers using mussel-inspired catechol-metal coordination complexes

    NASA Astrophysics Data System (ADS)

    Filippidi, Emmanouela; Christiani, Thomas; Valentine, Megan; Waite, J. Herbert; Israelachvili, Jacob; Ahn, Kollbe

    Amorphous, covalently-linked elastomers possess excellent reversible extensibility and high failure strain compared to other materials. However, by nature, the large deformability compromises the Young's modulus and the toughness of the elastomer to low values (< 2MPa) and imparts brittle fracture. We employ the mussel-inspired strategy of iron-catechol coordination bonding creating dynamic, reversible cross-links in addition to permanent chemical cross-links in an elastomer used in ambient, dry conditions. This simple additional energy dissipative mechanism results in increased modulus and toughness without affecting the network extensibility, which is based on the covalent network. Control of the chain relaxation time scales can be further tuned using the dynamic bonds, imparting mechanical rate dependent properties to the bulk material. The quantitative understanding of the time scales associated with the chain motion versus the metal coordination may provide another simple and independent control parameter in elastomeric material design.

  10. A two-electron-shell game: intermediates of the extradiol-cleaving catechol dioxygenases.

    PubMed

    Fielding, Andrew J; Lipscomb, John D; Que, Lawrence

    2014-06-01

    Extradiol-cleaving catechol dioxygenases function by binding both the organic substrate and O2 at a divalent metal center in the active site. They have proven to be a particularly versatile group of enzymes with which to study the O2 activation process. Here, recent studies of homoprotocatechuate 2,3-dioxygenase are summarized, showing how nature can utilize the enzyme structure and the properties of the metal and the substrate to select among many possible chemical paths to achieve both specificity and efficiency. Possible intermediates in the mechanism have been trapped by swapping active-site metals, introducing active-site amino acid substituted variants, and using substrates with different electron-donating capacities. Although each of these intermediates could form part of a viable reaction pathway, kinetic measurements significantly limit the likely candidates. Structural, kinetic, spectroscopic, and computational analyses of the various intermediates shed light on how catalytic efficiency can be achieved. PMID:24615282

  11. Seawater-Assisted Self-Healing of Catechol Polymers via Hydrogen Bonding and Coordination Interactions.

    PubMed

    Li, Jincai; Ejima, Hirotaka; Yoshie, Naoko

    2016-07-27

    It is highly desirable to prevent crack formation in polymeric materials at an early stage and to extend their lifespan, particularly when repairs to these materials would be difficult for humans. Here, we designed and synthesized catechol-functionalized polymers that can self-heal in seawater through hydrogen bonding and coordination. These bioinspired acrylate polymers are originally viscous materials, but after coordination with environmentally safe, common metal cations in seawater, namely, Ca(2+) and Mg(2+), the mechanical properties of the polymers were greatly enhanced from viscous to tough, hard materials. Reduced swelling in seawater compared with deionized water owing to the higher osmotic pressure resulted in greater toughness (∼5 MPa) and self-healing efficiencies (∼80%). PMID:27377859

  12. The thiG Gene Is Required for Full Virulence of Xanthomonas oryzae pv. oryzae by Preventing Cell Aggregation

    PubMed Central

    Yu, Xiaoyue; Liang, Xiaoyu; Liu, Kexue; Dong, Wenxia; Wang, Jianxin; Zhou, Ming-guo

    2015-01-01

    Bacterial blight of rice is an important serious bacterial diseases of rice in many rice-growing regions, caused by Xanthomonas oryzae pv. oryzae (Xoo). The thiG gene from Xoo strain ZJ173, which is involved with thiazole moiety production in the thiamine biosynthesis pathway, is highly conserved among the members of Xanthomonas. The thiG deletion mutant displayed impaired virulence and growth in thiamine-free medium but maintained its normal growth rate in the rice tissues, indicating that the thiG gene is involved in Xoo virulence. Compared to the wild type strain, the formation of cell-cell aggregates was affected in thiG deletion mutants. Although biofilm formation was promoted, motility and migration in rice leaves were repressed in the thiG mutants, and therefore limited the expansion of pathogen infection in rice. Quorum sensing and extracellular substance are two key factors that contribute to the formation of cell-cell aggregates. Our study found that in the thiG mutant the expression of two genes, rpfC and rpfG, which form a two-component regulatory signal system involved in the regulation of biofilm formation by a second messenger cyclic di-GMP is down-regulated. In addition, our study showed that xanthan production was not affected but the expression of some genes associated with xanthan biosynthesis, like gumD, gumE, gumH and gumM, were up-regulated in thiG mutants. Taken together, these findings are the first to demonstrate the role of the thiazole biosynthsis gene, thiG, in virulence and the formation of aggregates in Xanthomonas oryzae pv. oryzae. PMID:26222282

  13. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase

    PubMed Central

    Horvath, R. S.

    1970-01-01

    Co-metabolism of 3-methylcatechol, 4-chlorocatechol and 3,5-dichlorocatechol by an Achromobacter sp. was shown to result in the accumulation of 2-hydroxy-3-methylmuconic semialdehyde, 4-chloro-2-hydroxymuconic semialdehyde and 3,5-dichloro-2-hydroxymuconic semialdehyde respectively. Formation of these products indicated that cleavage of the aromatic nucleus of the substituted catechols was accomplished by a new meta-cleaving enzyme, catechol 1,6-oxygenase. This enzyme was equally active on both chloro- and methyl-substituted catechols. PMID:5492853

  14. Antiplatelet Effect of Catechol Is Related to Inhibition of Cyclooxygenase, Reactive Oxygen Species, ERK/p38 Signaling and Thromboxane A2 Production

    PubMed Central

    Wang, Tong-Mei; Lin, Bor-Ru; Yeung, Sin-Yuet; Yeh, Chien-Yang; Cheng, Ru-Hsiu; Jeng, Jiiang-Huei

    2014-01-01

    Catechol (benzenediol) is present in plant-derived products, such as vegetables, fruits, coffee, tea, wine, areca nut and cigarette smoke. Because platelet dysfunction is a risk factor of cardiovascular diseases, including stroke, atherosclerosis and myocardial infarction, the purpose of this study was to evaluate the anti-platelet and anti-inflammatory effect of catechol and its mechanisms. The effects of catechol on cyclooxygenase (COX) activity, arachidonic acid (AA)-induced aggregation, thromboxane B2 (TXB2) production, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production and extracellular signal-regulated kinase (ERK)/p38 phosphorylation were determined in rabbit platelets. In addition, its effect on IL-1β-induced prostaglandin E2 (PGE2) production by fibroblasts was determined. The ex vivo effect of catechol on platelet aggregation was also measured. Catechol (5-25 µM) suppressed AA-induced platelet aggregation and inhibited TXB2 production at concentrations of 0.5–5 µM; however, it showed little cytotoxicity and did not alter U46619-induced platelet aggregation. Catechol (10–50 µM) suppressed COX-1 activity by 29–44% and COX-2 activity by 29–50%. It also inhibited IL-1β-induced PGE2 production, but not COX-2 expression of fibroblasts. Moreover, catechol (1–10 µM) attenuated AA-induced ROS production in platelets and phorbol myristate acetate (PMA)-induced ROS production in human polymorphonuclear leukocytes. Exposure of platelets to catechol decreased AA-induced ERK and p38 phosphorylation. Finally, intravenous administration of catechol (2.5–5 µmole/mouse) attenuated ex vivo AA-induced platelet aggregation. These results suggest that catechol exhibited anti-platelet and anti-inflammatory effects, which were mediated by inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation. The anti-platelet effect of catechol was confirmed by ex vivo analysis. Exposure to catechol may affect platelet

  15. Transcriptome-Based Identification of Differently Expressed Genes from Xanthomonas oryzae pv. oryzae Strains Exhibiting Different Virulence in Rice Varieties.

    PubMed

    Noh, Tae-Hwan; Song, Eun-Sung; Kim, Hong-Il; Kang, Mi-Hyung; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice (Oryza sativa L.). In this study, we investigated the genome-wide transcription patterns of two Xoo strains (KACC10331 and HB1009), which showed different virulence patterns against eight rice cultivars, including IRBB21 (carrying Xa21). In total, 743 genes showed a significant change (p-value < 0.001 in t-tests) in their mRNA expression levels in the HB1009 (K3a race) strain compared with the Xoo KACC10331 strain (K1 race). Among them, four remarkably enriched GO terms, DNA binding, transposition, cellular nitrogen compound metabolic process, and cellular macromolecule metabolic process, were identified in the upregulated genes. In addition, the expression of 44 genes was considerably higher (log2 fold changes > 2) in the HB1009 (K3a race) strain than in the Xoo KACC10331 (K1 race) strain. Furthermore, 13 and 12 genes involved in hypersensitive response and pathogenicity (hrp) and two-component regulatory systems (TCSs), respectively, were upregulated in the HB1009 (K3a race) strain compared with the Xoo KACC10331 (K1 race) strain, which we determined using either quantitative real-time PCR analysis or next-generation RNA sequencing. These results will be helpful to improve our understanding of Xoo and to gain a better insight into the Xoo-rice interactions. PMID:26907259

  16. Transcriptome-Based Identification of Differently Expressed Genes from Xanthomonas oryzae pv. oryzae Strains Exhibiting Different Virulence in Rice Varieties

    PubMed Central

    Noh, Tae-Hwan; Song, Eun-Sung; Kim, Hong-Il; Kang, Mi-Hyung; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB) in rice (Oryza sativa L.). In this study, we investigated the genome-wide transcription patterns of two Xoo strains (KACC10331 and HB1009), which showed different virulence patterns against eight rice cultivars, including IRBB21 (carrying Xa21). In total, 743 genes showed a significant change (p-value < 0.001 in t-tests) in their mRNA expression levels in the HB1009 (K3a race) strain compared with the Xoo KACC10331 strain (K1 race). Among them, four remarkably enriched GO terms, DNA binding, transposition, cellular nitrogen compound metabolic process, and cellular macromolecule metabolic process, were identified in the upregulated genes. In addition, the expression of 44 genes was considerably higher (log2 fold changes > 2) in the HB1009 (K3a race) strain than in the Xoo KACC10331 (K1 race) strain. Furthermore, 13 and 12 genes involved in hypersensitive response and pathogenicity (hrp) and two-component regulatory systems (TCSs), respectively, were upregulated in the HB1009 (K3a race) strain compared with the Xoo KACC10331 (K1 race) strain, which we determined using either quantitative real-time PCR analysis or next-generation RNA sequencing. These results will be helpful to improve our understanding of Xoo and to gain a better insight into the Xoo–rice interactions. PMID:26907259

  17. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice ( Oryza sativa) using microsatellite markers.

    PubMed

    Brondani, C.; Rangel, N.; Brondani, V.; Ferreira, E.

    2002-05-01

    Rice ( Oryza sativa) cultivar development currently faces the task of overcoming yield plateaus, which is difficult due to the narrow genetic base of breeding programs. Oryza glumaepatula is a diploid wild relative of cultivated rice, native to Central and South America, and is therefore a potential source of alleles of agronomic importance to rice breeding programs. We studied 11 agronomic traits in BC(2)F(2) families of the interspecific cross Oryza sativa x O. glumaepatula. Transgressive lines which are almost isogenic to the elite recurrent O. sativa parent were identified for most of these traits. Quantitative trait locus (QTL) analysis was performed by single-point and interval mapping using a molecular map based on 157 microsatellite and STS markers. Marker regions accounting for 14.5 to 72.9% of a phenotypic variation trait were identified in 9 of the 12 rice chromosomes. Positive QTL effects from O. glumaepatula were observed in chromosomal regions associated with tillering and panicle-number traits. PMID:12582630

  18. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria

    SciTech Connect

    Elthon, T.E.; Nickels, R.L.; McIntosh, L. )

    1989-04-01

    The higher plant mitochondrial electron transport chain contains, in addition to the cytochrome chain which terminates with cytochrome oxidase, an alternative pathway that terminates with an alternative oxidase. The alternative oxidase of Sauromatum guttatum Schott has recently been identified as a cluster of proteins with apparent M{sub r} of 37, 36, and 35 kilodaltons (kD). Monoclonal antibodies have now been prepared to these proteins and designated as AOA (binding all three proteins of the alternative oxidase cluster), AOU (binding the upper or 37 kD protein), and AOL (binding the lower or 36 and 35 kD proteins). All three antibodies bind to their respective alternative oxidase proteins whether the proteins are in their native or denatured states. AOA and AOU inhibit alternative oxidase activity around 49%, whereas AOL inhibits activity only 14%. When coupled individually to Sepharose 4B, all three monoclonal resins were capable of retaining the entire cluster of alternative oxidase proteins, suggesting that these proteins are physically associated in some manner. The monoclonals were capable of binding similar mitochondrial proteins in a number of thermogenic and nonthermogenic species, indicating that they will be useful in characterizing and purifying the alternative oxidase of different systems. The ability of the monoclonal-Sepharose 4B resins to retain the cluster of previously identified alternative oxidase proteins, along with the inhibition of alternative oxidase activity by these monoclonals, supports the role of these proteins in constituting the alternative oxidase.

  19. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.

    PubMed

    Zhang, Yunhong; Yin, Heng; Zhao, Xiaoming; Wang, Wenxia; Du, Yuguang; He, Ailing; Sun, Kegang

    2014-11-26

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg/L) induced the expression of auxin-related gene (OsYUCCA1, OsYUCCA5, OsIAA11 and OsPIN1) in rice (Oryza sativa L.) tissues to accelerate auxin biosynthesis and transport, and reduced indole-3-acetic acid (IAA) oxidase activity in rice roots. These changes resulted in the increase of 37.8% in IAA concentration in rice roots, thereby inducing the expression of root development-related genes, promoting root growth in a dose-dependent manner, which were inhibited by auxin transport inhibitor 2,3,5-triiodo benzoic acid (TIBA) and calcium-chelating agent ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA). AOS also induced calcium signaling generation in rice roots. Those results indicated that auxin mediated AOS regulation of root development, and calcium signaling may act mainly in the upstream of auxin in the regulation of AOS on rice root development. PMID:25256506

  20. Combination Patterns of Major R Genes Determine the Level of Resistance to the M. oryzae in Rice (Oryza sativa L.)

    PubMed Central

    Yu, Ling; Pan, Cunhong; Li, Yuhong; Zhang, Xiaoxiang; Liu, Guangqing; Dai, Zhengyuan; Pan, Xuebiao; Li, Aihong

    2015-01-01

    Rice blast caused by Magnaporthe oryzae is the most devastating disease of rice and poses a serious threat to world food security. In this study, the distribution and effectiveness of 18 R genes in 277 accessions were investigated based on pathogenicity assays and molecular markers. The results showed that most of the accessions exhibited some degree of resistance (resistance frequency, RF >50%). Accordingly, most of the accessions were observed to harbor two or more R genes, and the number of R genes harbored in accessions was significantly positively correlated with RF. Some R genes were demonstrated to be specifically distributed in the genomes of rice sub-species, such as Pigm, Pi9, Pi5 and Pi1, which were only detected in indica-type accessions, and Pik and Piz, which were just harbored in japonica-type accessions. By analyzing the relationship between R genes and RF using a multiple stepwise regression model, the R genes Pid3, Pi5, Pi9, Pi54, Pigm and Pit were found to show the main effects against M. oryzae in indica-type accessions, while Pita, Pb1, Pik, Pizt and Pia were indicated to exhibit the main effects against M. oryzae in japonica-type accessions. Principal component analysis (PCA) and cluster analysis revealed that combination patterns of major R genes were the main factors determining the resistance of rice varieties to M. oryzae, such as ‘Pi9+Pi54’, ‘Pid3+Pigm’, ‘Pi5+Pid3+Pigm’, ‘Pi5+Pi54+Pid3+Pigm’, ‘Pi5+Pid3’ and ‘Pi5+Pit+Pid3’ in indica-type accessions and ‘Pik+Pib’, ‘Pik+Pita’, ‘Pik+Pb1’, ‘Pizt+Pia’ and ‘Pizt+Pita’ in japonica-type accessions, which were able to confer effective resistance against M. oryzae. The above results provide good theoretical support for the rational utilization of combinations of major R genes in developing rice cultivars with broad-spectrum resistance. PMID:26030358

  1. Aspergillus oryzae NRRL 35191 from coffee, a non-toxigenic endophyte with the ability to synthesize kojic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus oryzae was isolated as an endophyte from coffee leaves and found to produce kojic acid in culture. When inoculated in cacao seedlings (Theobroma cacao L.), A. oryzae grew endophytically and synthesize kojic acid in planta. Cacao seedlings inoculated with A. oryzae produced higher levels...

  2. In situ generation of hydrogen peroxide by carbohydrate oxidase and cellobiose dehydrogenase for bleaching purposes.

    PubMed

    Pricelius, Sina; Ludwig, Roland; Lant, Neil J; Haltrich, Dietmar; Guebitz, Georg M

    2011-02-01

    The carbohydrate oxidase from Microdochium nivale (CAOX), heterologously expressed in Aspergillus oryzae, and cellobiose dehydrogenase from Myriococcum thermophilum (MtCDH), were assessed for their ability to generate bleaching species at a pH suitable for liquid detergents. The substrate specificities of CAOX and MtCDH were analyzed on a large variety of soluble and insoluble substrates, using oxygen as an electron receptor. Even insoluble substrates like cellulose were oxidized from both CAOX and MtCDH, but only MtCDH produced H₂O₂ on cotton as the sole substrate. To enhance the amount of cello-oligosaccharides formed from cotton as substrates for CAOX and MtCDH, various cellulases were used in combination with MtCDH or CAOX, leading to a 10-fold increase in H₂O₂. As model substrates for colored stains, the degradation of pure anthocyanins and stain removal of blueberry stains by CAOX and MtCDH was examined in the absence and presence of a horseradish peroxidase. Both enzymes were able to produce an amount of H₂O₂ sufficient to decolorize the pure anthocyanins within 2 h and showed significant cleaning benefits on the stains. PMID:21298807

  3. Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production.

    PubMed

    Hama, Shinji; Tamalampudi, Sriappareddy; Suzuki, Yuya; Yoshida, Ayumi; Fukuda, Hideki; Kondo, Akihiko

    2008-12-01

    In this paper, we provide the first report of utilizing recombinant fungal whole cells in enzymatic biodiesel production. Aspergillus oryzae, transformed with a heterologous lipase-encoding gene from Fusarium heterosporum, produced fully processed and active forms of recombinant F. heterosporum lipase (FHL). Cell immobilization within porous biomass support particles enabled the convenient usage of FHL-producing A. oryzae as a whole-cell biocatalyst for lipase-catalyzed methanolysis. The addition of 5% water to the reaction mixture was effective in both preventing the lipase inactivation by methanol and facilitating the acyl migration in partial glycerides, resulting in the final methyl ester content of 94% even in the tenth batch cycle. A comparative study showed that FHL-producing A. oryzae attained a higher final methyl ester content and higher lipase stability than Rhizopus oryzae, the previously developed whole-cell biocatalyst. Although both FHL and R. oryzae lipase exhibit 1,3-regiospecificity towards triglyceride, R. oryzae accumulated a much higher amount of sn-2 isomers of partial glycerides, whereas FHL-producing A. oryzae maintained a low level of the sn-2 isomers. This is probably because FHL efficiently facilitates the acyl migration from the sn-2 to the sn-1(3) position in partial glycerides. These findings indicate that the newly developed FHL-producing A. oryzae is an effective whole-cell biocatalyst for enzymatic biodiesel production. PMID:18795281

  4. Oryza rufipogon as a source of yield improvement in cultivated rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oryza rufipogon is a wild relative of the cultivated species, Oryza sativa, and has been found to possess genes associated with yield improvement and resistance to biotic and abiotic stresses. We have been exploring the use of O. rufipogon as a genetic resource for yield improvement in the USA rice ...

  5. Instability of the Magnaporthe oryzae Avirulence gene AVR-Pita alters virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avirulence gene AVR-Pita of Magnaporthe oryzae determines the efficacy of the resistance gene Pi-ta in rice. The structures of the AVR-Pita alleles in 39 US isolates of M. oryzae were analyzed using polymerase chain reaction. A series of allele-specific primers were developed from the AVR-Pita...

  6. High Affinity Iron Permease is Required for Virulence of Rhizopus oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizopus oryzae is the most common cause of mucormycosis. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to develop mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iro...

  7. Characterization of field isolates of Magnaporthe oryzae with mating type, DNA fingerprinting, and pathogenicity assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the harmful nature of the rice blast fungus, Magnaporthe oryzae, it is beneficial to characterize field isolates to help aid in the deployment of resistance (R) genes in rice. In the present study, 190 field isolates of M. oryzae, collected from rice fields of Yunnan province in China, were a...

  8. Alternatively spliced transcripts of Pi-ta blast resistance gene in Oryza sativa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene in rice (Oryza sativa L.) confers resistance to races of Magnaporthe oryzae containing its cognate avirulence gene AVR-Pita. Pi-ta is a single-copy gene belonging to the nucleotide-binding site leucine-rich repeat (NBS-LRR) class of plant resistance (R) genes. In the present study, w...

  9. Resistance among U.S. wheat Triticum aestivum cultivars to the wheat pathotype of Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnaporthe oryzae is the causal agent of blast on several graminaceous plants. The M. oryzae population causing wheat blast has not been found outside South America. U.S. wheat production is at risk to this pathogen if introduced and established. Proactive testing of US wheat cultivars for their re...

  10. Rubisco activity is associated with photosynthetic thermotolerance in a wild rice (Oryza meridionalis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oryza meridionalis is a wild species of rice, endemic to tropical Australia. It shares a significant genome homology with the common domesticated rice Oryza sativa. Exploiting the fact that the two species are highly related but O. meridionalis has superior heat tolerance, experiments were undertake...

  11. Exploring the use of Oryza species to enhance the lipid fraction of cultivated rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past few several years, efforts to collect rice germplasm were broadened to collect more widely from the Oryza genepool. The Oryza genus includes only 23 species, but it is remarkably diverse in-terms of its ecological adaptation. This diversity may not only be restricted to ecological charac...

  12. Xylooligosaccharide production by Aspergillus oryzae 13 immobilized on a nonwoven fabric.

    PubMed

    Tokuda, H; Sato, K; Nakanishi, K

    1998-04-01

    Immobilized mycelia were screened for xylooligosaccharide production from xylan, and 20 strains of Aspergillus oryzae were selected. For its high activity and operational stability of xylooligosaccharides formation, immobilized A. oryzae 13 was selected for further examination. Batch production of xylooligosaccharides from xylan by the immobilized mycelia was repeated a total of 4 times. PMID:9614714

  13. New insights into Oryza genome evolution: high gene colinearity and differential retrotransposon amplification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genomic region (~247kb) from an FF genome, wild Oryza species, O. brachyantha L., was sequenced and compared to the orthologous region (~450 kb) from AA genome rice, O. sativa L. ssp japonica ¬ the first such comparison reported between cultivated Oryza and a distantly related wild species. Among ...

  14. Identification, Biochemical Characterization, and Evolution of the Rhizopus oryzae 99-880 Polygalacturonase Gene Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A search of the recently sequenced Rhizopus oryzae strain 99-880 genome database uncovered 18 putative polygalacturonase genes with 2 genes being identical and only 1 with similarity to a previously reported R. oryzae polygalacturonase gene. The 17 different genes share 50% to greater than 90% iden...

  15. Surface modification of anatase nanoparticles with fused ring catecholate type ligands: a combined DFT and experimental study of optical properties

    NASA Astrophysics Data System (ADS)

    Savić, Tatjana D.; Janković, Ivana A.; Šaponjić, Zoran V.; Čomor, Mirjana I.; Veljković, Dušan Ž.; Zarić, Snežana D.; Nedeljković, Jovan M.

    2012-02-01

    Surface modification of nanocrystalline TiO2 particles (45 Å) with catecholate-type ligands consisting of an extended aromatic ring system, i.e., 2,3-dihydroxynaphthalene and anthrarobin, was found to alter the optical properties of the nanoparticles in a similar way to modification with catechol. The formation of inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and the reduction of the band gap upon the increase of the electron delocalization on the inclusion of additional rings. The binding structures were investigated by FTIR spectroscopy. The investigated ligands have the optimal geometry for binding to surface Ti atoms, resulting in ring coordination complexes of catecholate type (binuclear bidentate binding-bridging) thus restoring the six-coordinated octahedral geometry of surface Ti atoms. From the Benesi-Hildebrand plot, stability constants in methanol/water = 90/10 solutions at pH 2 of the order 103 M-1 have been determined. Quantum chemical calculations on model systems using density functional theory (DFT) were performed to obtain vibrational frequencies of charge transfer complexes, and the calculated values were compared with the experimental data.Surface modification of nanocrystalline TiO2 particles (45 Å) with catecholate-type ligands consisting of an extended aromatic ring system, i.e., 2,3-dihydroxynaphthalene and anthrarobin, was found to alter the optical properties of the nanoparticles in a similar way to modification with catechol. The formation of inner-sphere charge-transfer (CT) complexes results in a red shift of the semiconductor absorption compared to unmodified nanocrystallites and the reduction of the band gap upon the increase of the electron delocalization on the inclusion of additional rings. The binding structures were investigated by FTIR spectroscopy. The investigated ligands have the optimal geometry for binding to surface Ti atoms

  16. NADPH oxidases in the arbuscular mycorrhizal symbiosis.

    PubMed

    Belmondo, Simone; Calcagno, Cristina; Genre, Andrea; Puppo, Alain; Pauly, Nicolas; Lanfranco, Luisa

    2016-04-01

    Plant NADPH oxidases are the major source of reactive oxygen species (ROS) that plays key roles as both signal and stressor in several plant processes, including defense responses against pathogens. ROS accumulation in root cells during arbuscular mycorrhiza (AM) development has raised the interest in understanding how ROS-mediated defense programs are modulated during the establishment of this mutualistic interaction. We have recently analyzed the expression pattern of 5 NADPH oxidase (also called RBOH) encoding genes in Medicago truncatula, showing that only one of them (MtRbohE) is specifically upregulated in arbuscule-containing cells. In line with this result, RNAi silencing of MtRbohE generated a strong alteration in root colonization, with a significant reduction in the number of arbusculated cells. On this basis, we propose that MtRBOHE-mediated ROS production plays a crucial role in the intracellular accommodation of arbuscules. PMID:27018627

  17. Human copper-dependent amine oxidases.

    PubMed

    Finney, Joel; Moon, Hee-Jung; Ronnebaum, Trey; Lantz, Mason; Mure, Minae

    2014-03-15

    Copper amine oxidases (CAOs) are a class of enzymes that contain Cu(2+) and a tyrosine-derived quinone cofactor, catalyze the conversion of a primary amine functional group to an aldehyde, and generate hydrogen peroxide and ammonia as byproducts. These enzymes can be classified into two non-homologous families: 2,4,5-trihydroxyphenylalanine quinone (TPQ)-dependent CAOs and the lysine tyrosylquinone (LTQ)-dependent lysyl oxidase (LOX) family of proteins. In this review, we will focus on recent developments in the field of research concerning human CAOs and the LOX family of proteins. The aberrant expression of these enzymes is linked to inflammation, fibrosis, tumor metastasis/invasion and other diseases. Consequently, there is a critical need to understand the functions of these proteins at the molecular level, so that strategies targeting these enzymes can be developed to combat human diseases. PMID:24407025

  18. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte

    PubMed Central

    Xu, Xi-Hui; Su, Zhen-Zhu; Wang, Chen; Kubicek, Christian P.; Feng, Xiao-Xiao; Mao, Li-Juan; Wang, Jia-Ying; Chen, Chen; Lin, Fu-Cheng; Zhang, Chu-Long

    2014-01-01

    The fungus Harpophora oryzae is a close relative of the pathogen Magnaporthe oryzae and a beneficial endosymbiont of wild rice. Here, we show that H. oryzae evolved from a pathogenic ancestor. The overall genomic structures of H. and M. oryzae were found to be similar. However, during interactions with rice, the expression of 11.7% of all genes showed opposing trends in the two fungi, suggesting differences in gene regulation. Moreover, infection patterns, triggering of host defense responses, signal transduction and nutritional preferences exhibited remarkable differentiation between the two fungi. In addition, the H. oryzae genome was found to contain thousands of loci of transposon-like elements, which led to the disruption of 929 genes. Our results indicate that the gain or loss of orphan genes, DNA duplications, gene family expansions and the frequent translocation of transposon-like elements have been important factors in the evolution of this endosymbiont from a pathogenic ancestor. PMID:25048173

  19. Suppression of Rice Blast by Preinoculation with Avirulent Pyricularia oryzae and the Nonrice Pathogen Bipolaris sorokiniana.

    PubMed

    Manandhar, H K; Lyngs Jørgensen, H J; Mathur, S B; Smedegaard-Petersen, V

    1998-07-01

    ABSTRACT Avirulent isolates of Pyricularia oryzae and isolates of Bipolaris sorokiniana, a nonrice pathogen, were used to suppress rice blast caused by P. oryzae. In greenhouse experiments, both fungi substantially reduced leaf blast when applied 24 h or more before the pathogen. B. sorokiniana, but not avirulent isolates of P. oryzae, systemically reduced disease in leaf 5 when applied to whole plants at the four-leaf stage. In field experiments, both fungi were able to reduce neck blast significantly. No increase in grain yield was obtained by using avirulent isolates of P. oryzae, whereas five sprays with B. sorokiniana from seedling to heading stages increased the grain yield in two of three experiments conducted at two locations in Nepal. The significant increase in yield was observed under high inoculum pressure of P. oryzae. Induced resistance is suggested to be involved in the suppression of disease. PMID:18944948

  20. RNA-mediated gene silencing in the phytopathogenic fungus Bipolaris oryzae.

    PubMed

    Moriwaki, Akihiro; Ueno, Makoto; Arase, Sakae; Kihara, Junichi

    2007-04-01

    The Ascomycetous fungus Bipolaris oryzae is the causal agent of brown leaf spot disease in rice and is a model for studying photomorphogenetic responses by near-UV radiation. Targeted gene disruption (knockout) for functional analysis of photomorphogenesis-related genes in B. oryzae can be achieved by homologous recombination with low efficiency. Here, the applicability of RNA silencing (knockdown) as a tool for targeting endogenous genes in B. oryzae is reported. A polyketide synthase gene (PKS1), involved in fungal DHN melanin biosynthesis pathways, was targeted by gene silencing as a marker. The silencing vector encoding hairpin RNA of the PKS1 fragment was constructed in a two-step PCR-based cloning, and introduced into the B. oryzae genomic DNA. Silencing of the PKS1 gene resulted in albino phenotypes and reduction of PKS1 mRNA expression. These results demonstrate the applicability of targeted gene silencing as a useful reverse-genetics approach in B. oryzae. PMID:17227462

  1. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  2. INCREASED XANTHINE OXIDASE IN THE SKIN OF PREECLAMPTIC WOMEN

    PubMed Central

    Bainbridge, Shannon A.; Deng, Jau-Shyong; Roberts, James M.

    2010-01-01

    Xanthine oxioreductase is the holoenzyme responsible for terminal purine catabolism. Under conditions of metabolic stress or heightened pro-inflammatory cytokine production this enzyme is preferentially in it’s oxidized form, xanthine oxidase, with catalytic action that generates uric acid and the free radical superoxide. As preeclampsia is characterized by heightened inflammation, oxidative stress and hyperuricemia it has been proposed that xanthine oxidase plays a pivotal role in this hypertensive disorder of pregnancy. We sought to determine whether xanthine oxidase protein content was higher in maternal tissue of preeclamptic mothers, compared to healthy pregnant controls, using immunohistochemical analysis of skin biopsies. We further compared xanthine oxidase immunoreactivity in skin biopsies from preeclamptic women and patients with several inflammatory conditions. In preeclamptic women, intense xanthine oxidase immunoreactivity was present within the epidermis. By contrast, only very faint xanthine oxidase staining was observed in skin biopsies from healthy pregnant controls. Further, a role for inflammation in the increase of xanthine oxidase was suggested by similar findings of heightened xanthine oxidase immunoreactivity in the skin biopsies from non-pregnant individuals diagnosed with conditions of systemic inflammation. The finding of increased xanthine oxidase in maternal tissue, most likely as the result of heightened maternal inflammation, suggest maternal xanthine oxidase as a source of free radical and uric acid generation in preeclampsia. PMID:19196876

  3. Simultaneous determination of etoposide and its catechol metabolite in the plasma of pediatric patients by liquid chromatography/tandem mass spectrometry.

    PubMed

    Pang, S; Zheng, N; Felix, C A; Scavuzzo, J; Boston, R; Blair, I A

    2001-07-01

    The anticancer drug etoposide is associated with leukemias with MLL gene translocations and other translocations as a treatment complication. The genotype of cytochrome P450 3A4 (CYP3A4), which converts etoposide to its catechol metabolite, influences the risk. In order to perform pharmacokinetic studies aimed at further elucidation of the translocation mechanism, we have developed and validated a liquid chromatography/electrospray/tandem mass spectrometry assay for the simultaneous analysis of etoposide and its catechol metabolite in human plasma. The etoposide analog teniposide was used as the internal standard. Liquid chromatography was performed on a YMC ODS-AQ column. Simultaneous determination of etoposide and its catechol metabolite was achieved using a small volume of plasma, so that the method is suitable for pediatric patients. The limits of detection were 200 ng ml(-1) etoposide and 10 ng ml(-1) catechol metabolite in human plasma and 25 ng ml(-1) etoposide and 2.5 ng ml(-1) catechol metabolite in protein-free plasma, respectively. Acceptable precision and accuracy were obtained for concentrations in the calibration curve ranges 0.2--100 microg ml(-1) etoposide and 10--5000 ng ml(-1) catechol metabolite in human plasma. Acceptable precision and accuracy for protein-free human plasma in the range 25--15 000 ng ml(-1) etoposide and 2.5--1500 ng ml(-1) etoposide catechol were also achieved. This method was selective and sensitive enough for the simultaneous quantitation of etoposide and its catechol as a total and protein-free fraction in small plasma volumes from pediatric cancer patients receiving etoposide chemotherapy. A pharmacokinetic model has been developed for future studies in large populations. PMID:11473400

  4. The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions.

    PubMed

    Subramoni, Sujatha; Pandey, Alok; Vishnu Priya, M R; Patel, Hitendra Kumar; Sonti, Ramesh V

    2012-09-01

    Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, produces siderophores only under iron-limiting conditions. We screened 15 400 mTn5-induced mutants of X. oryzae pv. oryzae and isolated 27 mutants that produced siderophores even under iron-replete conditions. We found that the mTn5 insertions in 25 of these mutants were in or close to six genes. Mutants with insertions in five of these genes [colS, XOO1806 (a conserved hypothetical protein), acnB, prpR and prpB] exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. Insertions in a sixth gene, XOO0007 (a conserved hypothetical protein), were found to affect the ability to grow on iron-limiting medium, but did not affect the virulence. Targeted gene disruptants for colR (encoding the predicted cognate regulatory protein for ColS) also exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. colR and colS mutants were defective in the elicitation of hypersensitive response symptoms on the nonhost tomato. In addition, colR and colS mutants induced a rice basal defence response, suggesting that they are compromised in the suppression of host innate immunity. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that a functional ColRS system is required for the optimal expression of several genes encoding components of the type 3 secretion system (T3SS) of X. oryzae pv. oryzae. Our results demonstrate the role of several novel genes, including colR/colS, in the promotion of growth on iron-limiting medium and the virulence of X. oryzae pv. oryzae. PMID:22257308

  5. Monocyte-mediated damage to Rhizopus oryzae hyphae in vitro.

    PubMed Central

    Diamond, R D; Haudenschild, C C; Erickson, N F

    1982-01-01

    Clinicopathological correlations from human cases and experimental animal studies suggest that neutrophils are critical components of the host response to mucormycosis but that other cellular defense mechanisms appear to be important as well. Since our previous studies demonstrated that Rhizopus oryzae hyphae which are too large to be ingested completely can be damaged and probably killed by human neutrophils, we studied the antihyphal activity of human monocytes. As with neutrophils, light and electron microscopic studies indicated that monocytes attached to hyphae and appeared to destroy them in the absence of serum. As judged by our previously described assay for the leukocyte-induced inhibition of [14C]uracil uptake by hyphae, quantitative damage to hyphae by monocytes was 40.8 +/- 2.2% in 54 experiments. Neither attachment to nor damage of hyphae by monocytes was augmented by the presence of 10% human serum. As with neutrophils, monocyte-mediated damage of R. oryzae was significantly decreased by some inhibitors of oxidative metabolism and scavengers of the potentially microbicidal oxidative leukocyte products, which included 10(-4)M sodium azide, 10 (-3) M sodium cyanide, catalase, 10(-3) M histidine, 10(-3) M tryptophan, and 10(-4) M 1,4-diazobicyclo[2.2.2]octane but not superoxide dismutase, 1.4 X 10(-2) M dimethyl sulfoxide, and 4.0 X 10(-1) M mannitol. Moreover, monocytes from three patients with chronic granulomatous disease failed to damage hyphae at all. In contrast to our previous data for neutrophils, polyanions (10(-5) M polyaspartic or polyglutamic acid) did not inhibit monocyte-mediated hyphal damage. Thus, monocytes can damage and probably kill R. oryzae hyphae by oxidative mechanisms and so may be involved in host defense mechanisms against mucormycosis. Images PMID:7141693

  6. Polymorphic minisatellites in the mitochondrial DNAs of Oryza and Brassica.

    PubMed

    Honma, Yujiro; Yoshida, Yu; Terachi, Toru; Toriyama, Kinya; Mikami, Tetsuo; Kubo, Tomohiko

    2011-08-01

    Polymorphic analyses of angiosperm mitochondrial DNA are rare in comparison with chloroplast DNA, because few target sequences in angiosperm mitochondrial DNA are known. Minisatellites, a tandem array of repeated sequences with a repeat unit of 10 to ~100 bp, are popular target sequences of animal mitochondria, but Beta vulgaris is the only known angiosperm species for which such an analysis has been conducted. From this lack of information, it was uncertain as to whether polymorphic minisatellites existed in other angiosperm species. Ten plant mitochondrial DNAs were found to contain minisatellite-like repeated sequences, most of which were located in intergenic regions but a few occurred in gene coding and intronic regions. Oryza and Brassica accessions were selected as models for the investigation of minisatellite polymorphism because substantial systematic information existed. PCR analysis of 42 Oryza accessions revealed length polymorphisms in four of the five minisatellites. The mitochondrial haplotypes of the 16 Oryza accessions with chromosomal complement (genome) types of CC, BBCC and CCDD were identical but were clearly distinguished from BB-genome accessions, a result consistent with the notion that the cytoplasmic donor parent of the amphidiploid species might be the CC-genome species. Twenty-nine accessions of six major cultivated species of Brassica were classified into five mitochondrial haplotypes based on two polymorphic minisatellites out of six loci. The haplotypes of Brassica juncea and Brassica carinata accessions were identical to Brassica rapa and Brassica nigra accessions, respectively. The haplotypes of Brassica napus accessions were heterogeneous and unique, results that were consistent with previous studies. PMID:21562713

  7. The DNA gyrase inhibitors, nalidixic acid and oxolinic acid, prevent iron-mediated repression of catechol siderophore synthesis in Azotobacter vinelandii.

    PubMed

    Page, W J; Patrick, J

    1988-01-01

    Low concentrations of nalidixic acid and oxolinic acid that were just inhibitory to Azotobacter vinelandii growth promoted the production of the catechol siderophores azotochelin and aminochelin, in the presence of normally repressive concentrations of Fe3+. There was a limited effect on the pyoverdin siderophore, azotobactin, where low concentrations of Fe3+ were rendered less repressive, but the repression by higher concentrations of Fe3+ was normal. These drugs did not induce high-molecular-mass iron-repressible outer-membrane proteins and similar effects on the regulation of catechol siderophore synthesis were not produced by novobiocin, coumermycin, or ethidium bromide. The timing of nalidixic acid and Fe3+ addition to iron-limited cells was critical. Nalidixic acid had to be added before iron-repression of catechol siderophore synthesis and before the onset of iron-sufficient growth. Continued production of the catechol siderophores, however, was not due to interference with normal iron uptake. These data indicated that nalidixic acid prevented normal iron-repression of catechol siderophore synthesis but could not reverse iron repression once it had occurred. The possible roles of DNA gyrase activity in the regulation of catechol siderophore synthesis is discussed. PMID:2856355

  8. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae.

    PubMed

    Wang, Xing-Yu; Zhou, Lian; Yang, Jun; Ji, Guang-Hai; He, Ya-Wen

    2016-03-01

    Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis. PMID:26667598

  9. Enhancement of fill factor in air-processed inverted organic solar cells using self-assembled monolayer of fullerene catechol

    NASA Astrophysics Data System (ADS)

    Jeon, Il; Ogumi, Keisuke; Nakagawa, Takafumi; Matsuo, Yutaka

    2016-08-01

    [60]Fullerene catechol self-assembled monolayers were prepared and applied to inverted organic solar cells by an immersion method, and their energy conversion properties were measured. By introducing fullerenes at the surface, we improved the hole-blocking capability of electron-transporting metal oxide, as shown by the fill factor enhancement. The fullerene catechol-treated TiO x -containing device gave a power conversion efficiency (PCE) of 2.81% with a fill factor of 0.56 while the non treated device gave a PCE of 2.46% with a fill factor of 0.49. The solar cell efficiency improved by 13% compared with the non treated reference device.

  10. Oxidovanadium catechol complexes: radical versus non-radical states and redox series.

    PubMed

    Kundu, Suman; Maity, Suvendu; Weyhermüller, Thomas; Ghosh, Prasanta

    2013-07-01

    A new family of oxidovanadium complexes, [(L1(R))(VO)(L(R(')))] (R = H, R' = H, 1; R = H, R' = -CMe3, 2; R = H, R' = Me, 3; R = -CMe3, R' = H, 4 and R = -CMe3, R' = -CMe3, 5), incorporating tridentate L1(R)H ligands (L1(R)H = 2,4-di-R-6-{(2-(pyridin-2-yl)hydrazono)methyl}phenol) and substituted catechols (L(R('))H2) was substantiated. The V-Ophenolato (cis to V═O), V-OCAT (cis to V═O) and V-OCAT (trans to V═O) lengths span the ranges, 1.894(2)-1.910(2), 1.868(2)-1.887(2), and 2.120(2)-2.180(2) Å. The metrical oxidation states (MOS) of the catechols in 1-5 are fractional and vary from -1.43 to -1.60. The (51)V isotropic chemical shifts of solids and solutions of 1-5 are deshielded ((51)V CP MAS: -19.8 to +248.6; DMSO-d6: +173.9 to +414.55 ppm). The closed shell singlet (CSS) solutions of 1-5 are unstable due to open shell singlet (OSS) perturbations. The ground electronic states of 1-5 are defined by the resonance contribution of the catecholates (L(R('))CAT(2-)) and L(R('))SQ(-•) coordinated to the [VO](3+) and [VO](2+) ions. 1-5 are reversibly reducible by one electron at -(0.58-0.87) V, referenced vs ferrocenium/ferrocene, to VO(2+) complexes, [(L1(R-))(VO(2+))(L(R('))CAT(2-))](-) [1-5](-). 1-5 display another quasi-reversible or irreversible reduction wave at -(0.80-1.32) V due to the formation of hydrazone anion radical (L1(R2-•)) complexes, [(L1(R2-•))(VO(2+))(L(R('))CAT(2-))](2-), [1-5](2-), with S = 1 authenticated by the unrestricted density functional theory (DFT) calculations on 1(2-) and 3(2-) ions. Frozen glasses electron paramagnetic resonance (EPR) spectra of [1-5](-) ions [e.g., for 2, g|| = 1.948, g⊥ = 1.979, A|| = 164, A⊥ = 60] affirmed that [1-5](-) ions are the [VO](2+) complexes of L(R')CAT(2-). Spectro-electrochemical measurements and time-dependent DFT (TD DFT) calculations on 1, 3, 1(-), 3(-), and 1(2-) disclosed that the near infrared (NIR) absorption bands of 1-5 at 800 nm are due to the CSS-OSS metal to ligand charge

  11. Comparison of kinetic properties of amine oxidases from sainfoin and lentil and immunochemical characterization of copper/quinoprotein amine oxidases.

    PubMed

    Zajoncová, L; Frébort, I; Luhová, L; Sebela, M; Galuszka, P; Pec, P

    1999-01-01

    Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed. PMID:10092944

  12. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    PubMed

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. PMID:26751827

  13. Different recombinant forms of polyphenol oxidase A, a laccase from Marinomonas mediterranea.

    PubMed

    Tonin, Fabio; Rosini, Elena; Piubelli, Luciano; Sanchez-Amat, Antonio; Pollegioni, Loredano

    2016-07-01

    Polyphenol oxidase from the marine bacterium Marinomonas mediterranea (MmPPOA) is a membrane-bound, blue, multi-copper laccase of 695 residues. It possesses peculiar properties that distinguish it from known laccases, such as a broad substrate specificity (common to tyrosinases) and a high redox potential. In order to push the biotechnological application of this laccase, the full-length enzyme was overexpressed in Escherichia coli cells with and without a C-terminal His-tag. The previous form, named rMmPPOA-695-His, was purified to homogeneity by HiTrap chelating chromatography following solubilization by 1% SDS in the lysis buffer with an overall yield of ≈1 mg/L fermentation broth and a specific activity of 1.34 U/mg protein on 2,6-dimethoxyphenol as substrate. A truncated enzyme form lacking 58 residues at the N-terminus encompassing the putative membrane binding region, namely rMmPPOA-637-His, was successfully expressed in E. coli as soluble protein and was purified by using the same procedure set-up as for the full-length enzyme. Elimination of the N-terminal sequence decreased the specific activity 15-fold (which was partially restored in the presence of 1 M NaCl) and altered the secondary and tertiary structures and the pH dependence of optimal stability. The recombinant rMmPPOA-695-His showed kinetic properties on catechol higher than for known laccases, a very high thermal stability, and a strong resistance to NaCl, DMSO, and Tween-80, all properties that are required for specific, targeted industrial applications. PMID:27050199

  14. Pathological changes in platelet histamine oxidases in atopic eczema

    PubMed Central

    Ionescu, Gruia

    1993-01-01

    Increased plasma histamine levels were associated with significantly lowered diamine and type B monoamine oxidase activities in platelet-rich plasma of atopic eczema (AE) patients. The diamine oxidase has almost normal cofactor levels (pyridoxal phosphate and Cu2+) but the cofactor levels for type B monoamine oxidase (flavin adenine dinucleotide and Fe2+) are lowered. The biogenic amines putrescine, cadaverine, spermidine, spermine, tyramine and serotonin in the sera, as well as dopamine and epinephrine in EDTA-plasma were found to be normal. It is unlikely, therefore, that these amines are responsible for the decreased activities of monoamine and diamine oxidase in these patients. The most likely causative factors for the inhibition of the diamine oxidase are nicotine, alcohol, food additives and other environmental chemicals, or perhaps a genetic defect of the diamine oxidase. PMID:18475554

  15. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    PubMed

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface. PMID:27183273

  16. Effect of phosphate on heterogeneous Fenton oxidation of catechol by nano-Fe₃O₄ Inhibitor or stabilizer?

    PubMed

    Yang, Xiaofang; He, Jie; Sun, Zhongxi; Holmgren, Allan; Wang, Dongsheng

    2016-01-01

    The effect of phosphate on adsorption and oxidation of catechol, 1,2-dihydroxybenzene, in a heterogeneous Fenton system was investigated. In situ attenuated total reflectance infrared spectroscopy (ATR-FTIR) was used to monitor the surface speciation at the nano-Fe3O4 catalyst surface. The presence of phosphate decreased the removal rate of catechol and the abatement of dissolved organic compounds, as well as the decomposition of H2O2. This effect of phosphate was mainly due to its strong reaction with surface sites on the iron oxide catalyst. At neutral and acid pH, phosphate could displace the adsorbed catechol from the surface of catalyst and also could compete for surface sites with H2O2. In situ IR spectra indicated the formation of iron phosphate precipitation at the catalyst surface. The iron phosphate surface species may affect the amount of iron atoms taking part in the catalytic decomposition of H2O2 and formation of hydroxyl radicals, and inhibit the catalytic ability of Fe3O4 catalyst. Therefore, phosphate ions worked as stabilizer and inhibitor in a heterogeneous Fenton reaction at the same time, in effect leading to an increase in oxidation efficiency in this study. However, before use of phosphate as pH buffer or H2O2 stabilizer in a heterogeneous Fenton system, the possible inhibitory effect of phosphate on the actual removal of organic pollutants should be fully considered. PMID:26899646

  17. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

    NASA Astrophysics Data System (ADS)

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing

    2014-06-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M-1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis-Menten kinetics and the apparent Michaelis-Menten \\left( K_{M}^{app} \\right) was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor.

  18. Evidence for Biotrophic Lifestyle and Biocontrol Potential of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease

    PubMed Central

    Su, Zhen-Zhu; Mao, Li-Juan; Li, Na; Feng, Xiao-Xiao; Yuan, Zhi-Lin; Wang, Li-Wei; Lin, Fu-Cheng; Zhang, Chu-Long

    2013-01-01

    The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast. PMID:23637814

  19. Gravity Responsive NADH Oxidase of the Plasma Membrane

    NASA Technical Reports Server (NTRS)

    Morre, D. James (Inventor)

    2002-01-01

    A method and apparatus for sensing gravity using an NADH oxidase of the plasma membrane which has been found to respond to unit gravity and low centrifugal g forces. The oxidation rate of NADH supplied to the NADH oxidase is measured and translated to represent the relative gravitational force exerted on the protein. The NADH oxidase of the plasma membrane may be obtained from plant or animal sources or may be produced recombinantly.

  20. Metabolism of benzene and phenol by a reconstituted purified phenobarbital induced rat liver mixed function oxidase system

    SciTech Connect

    Griffiths, J.C.

    1986-01-01

    Cytochrome P-450 and the electron-donor, NADPH-cytochrome c reductase were isolated from phenobarbital induced rat liver microsomes. Both benzene and its primary metabolite phenol, were substrates for the reconstituted purified phenobarbital induced rat liver mixed function oxidase system. Benzene was metabolized to phenol and the polyhydroxylated metabolites; catechol, hydroquinone and 1,2,4 benzenetriol. Benzene elicited a Type I spectral change upon its interaction with the cytochrome P-450 while phenol's interaction with the cytochrome P-450 produced a reverse Type I spectra. The formation of phenol showed a pH optimum of 7.0 compared with 6.6-6.8 for the production of the polyhyrdoxylated metabolites. Cytochrome P-450 inhibitors, such as metyrapone and SKF 525A, diminished the production of phenol from benzene but not the production of the polyhydroxylated metabolites from phenol. The radical trapping agents, DMSO, KTBA and mannitol, decreased the recovery of polyhydroxylated metabolites, from /sup 14/C-labeled benzene and/or phenol. As KTBA and DMSO interacted with OH. There was a concomitant release of ethylene and methane, which was measured. Desferrioxamine, an iron-chelator and catalase also depressed the recovery of polyhydroxylated metabolites. In summary, benzene and phenol were both substrates for this reconstituted purified enzyme system, but they differed in binding to cytochrome P-450, pH optima and mode of hydroxylation.

  1. The conformational state of polyphenol oxidase from field bean (Dolichos lablab) upon SDS and acid-pH activation.

    PubMed

    Kanade, Santosh R; Paul, Beena; Rao, A G Appu; Gowda, Lalitha R

    2006-05-01

    Field bean (Dolichos lablab) contains a single isoform of PPO (polyphenol oxidase)--a type III copper protein that catalyses the o-hydroxylation of monophenols and oxidation of o-diphenols using molecular oxygen--and is a homotetramer with a molecular mass of 120 kDa. The enzyme is activated manyfold either in the presence of the anionic detergent SDS below its critical micellar concentration or on exposure to acid-pH. The enhancement of kcat upon activation is accompanied by a marked shift in the pH optimum for the oxidation of t-butyl catechol from 4.5 to 6.0, an increased sensitivity to tropolone, altered susceptibility to proteolytic degradation and decreased thermostability. The Stokes radius of the native enzyme is found to increase from 49.1+/-2 to 75.9+/-0.6 A (1 A=0.1 nm). The activation by SDS and acid-pH results in a localized conformational change that is anchored around the catalytic site of PPO that alters the microenvironment of an essential glutamic residue. Chemical modification of field bean and sweet potato PPO with 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide followed by kinetic analysis leads to the conclusion that both the enzymes possess a core carboxylate essential to activity. This enhanced catalytic efficiency of PPO, considered as an inducible defence oxidative enzyme, is vital to the physiological defence strategy adapted by plants to insect herbivory and pathogen attack. PMID:16393141

  2. Concentration dependent effects of commonly used pesticides on activation versus inhibition of the quince (Cydonia Oblonga) polyphenol oxidase.

    PubMed

    Fattouch, Sami; Raboudi-Fattouch, Faten; Ponce, José Vicente Gil; Forment, Josep Vicent; Lukovic, Dunja; Marzouki, Nejib; Vidal, Daniel Ramón

    2010-03-01

    Polyphenol oxidase (PPO) catalyzes the oxidation of o-diphenols to their respective quinones which undergo autopolymerization and form dark pigments. The interaction of PPO with various substrates and effectors remains the focus of intensive investigations due to the enzyme's key role in pigments biosynthesis including animal melanogenesis and fruit/fungi enzymatic browning. In this study, the effect of a range of commonly used pesticides on the enzyme activity has been evaluated using the purified quince (Cydonia oblonga Miller) PPO. The biochemical analysis showed that, in the presence of high pesticide concentrations, the enzyme was competitively inhibited, particularly with benomyl, carbaryl, deltamethrine and parathion methyl for which inhibition constants (K(i)) were 8.3, 5.7, 12 and 4 microM, respectively. At lower pesticide concentrations (2-10 microM), however, the catecholase activity was significantly activated (p<0.01), suggesting a homotropic behavior of these chemical compounds. Furthermore, the use of in silico structure-based analyses, known as computational docking, highlighted the nature of the PPO-pesticides interactions and confirmed the in vitro observations. Catechol substrate and parathion methyl inhibitor showed lower total energy scores of -120.06 and -117.4 3 kcal mol(-1), indicating that these ligands had higher PPO-binding affinities. The obtained data bring to light new pesticide functional features of great interest in the medicinal, agro-chemical and environmental circles. PMID:20060877

  3. Direct spectrophotometric assay of monooxygenase and oxidase activities of mushroom tyrosinase in the presence of synthetic and natural substrates.

    PubMed

    Haghbeen, Kamahldin; Wue Tan, Eng

    2003-01-01

    Alternative substrates were synthesized to allow direct and continuous spectrophotometric assay of both monooxygenase (cresolase) and oxidase (catecholase) activities of mushroom tyrosinase (MT). Using diazo derivatives of phenol, 4-[(4-methoxybenzo)azo]-phenol, 4-[(4-methylphenyl)azo]-phenol, 4-(phenylazo)-phenol, and 4-[(4-hydroxyphenyl)azo]-benzenesulfonamide, and diazo derivatives of catechol 4-[(4-methylbenzo)azo]-1,2-benzenediol, 4-(phenylazo)-1,2-benzenediol, and 4-[(4-sulfonamido)azo]-1,2 benzenediol (SACat), as substrates allows measurement of the rates of the corresponding enzymatic reactions through recording of the depletion rates of substrates at their lambda(max)(s) with the least interference of the intermediates' or products' absorption. Parallel attempts using natural compounds, p-coumaric acid and caffeic acid, as substrates for assaying both activities of MT were comparable approaches. Based on the ensuing data, the electronic effect of the substituent on the substrate activity and the affinity of the enzyme for the substrate are reviewed. Kinetic parameters extracted from the corresponding Lineweaver-Burk plots and advantages of these substrates over the previously used substrates in similar assays of tyrosinases are also presented. PMID:12479831

  4. An overview on alcohol oxidases and their potential applications.

    PubMed

    Goswami, Pranab; Chinnadayyala, Soma Sekhar R; Chakraborty, Mitun; Kumar, Adepu Kiran; Kakoti, Ankana

    2013-05-01

    Alcohol oxidases (Alcohol: O₂ Oxidoreductase; EC 1.1.3.x) are flavoenzymes that catalyze the oxidation of alcohols to the corresponding carbonyl compounds with a concomitant release of hydrogen peroxide. Based on substrate specificity, alcohol oxidases may be categorized broadly into four different groups namely, (a) short chain alcohol oxidase (SCAO), (b) long chain alcohol oxidase (LCAO), (c) aromatic alcohol oxidase (AAO), and (d) secondary alcohol oxidase (SAO). The sources reported for these enzymes are mostly limited to bacteria, yeast, fungi, plant, insect, and mollusks. However, the quantum of reports for each category of enzymes considerably varies across these sources. The enzymes belonging to SCAO and LCAO are intracellular in nature, whereas AAO and SAO are mostly secreted to the medium. SCAO and LCAO are invariably reported as multimeric proteins with very high holoenzyme molecular masses, but the molecular characteristics of these enzymes are yet to be clearly elucidated. One of the striking features of the alcohol oxidases that make them distinct from the widely known alcohol dehydrogenase is the avidly bound cofactor to the redox center of these enzymes that obviate the need to supplement cofactor during the catalytic reaction. These flavin-based redox enzymes have gained enormous importance in the development of various industrial processes and products primarily for developing biosensors and production of various industrially useful carbonyl compounds. The present review provides an overview on alcohol oxidases from different categories focusing research on these oxidases during the last decade along with their potential industrial applications. PMID:23525937

  5. Xanthine oxidase status in ethanol-intoxicated rat liver.

    PubMed

    Abbondanza, A; Battelli, M G; Soffritti, M; Cessi, C

    1989-12-01

    The status of xanthine oxidase in ethanol-induced liver injury has been investigated in the rat, by acute and chronic ethanol treatments. A 38% increase of the enzyme O-form was observed after repeated ethanol administration. Chronic intoxication caused a significant decrease of total xanthine oxidase activity after both prolonged ethanol feeding and life span ethanol ingestion. The intermediate D/O-form of xanthine oxidase (that can act either as an oxidase or as a dehydrogenase, being able to react with O2 as well as with NAD+ as electron acceptor) increased 5.5-fold after prolonged ethanol feeding. PMID:2690670

  6. The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice.

    PubMed

    Wang, Xiang; Zhang, Mao-Mao; Wang, Ya-Jing; Gao, Yin-Tao; Li, Ri; Wang, Gang-Feng; Li, Wen-Qiang; Liu, Wen-Ting; Chen, Kun-Ming

    2016-04-01

    Plasma membrane NADPH oxidases are major producers of reactive oxygen species (ROS) in plant cells under normal growth and stress conditions. In the present study the total activity of rice NADPH oxidases and the transcription of OsRbohA, which encodes an Oryza sativa plasma membrane NADPH oxidase, were stimulated by drought. OsRbohA was expressed in all tissues examined throughout development. Its mRNA was upregulated by a number of factors, including heat, drought, salt, oxidative stress and methyl jasmonate treatment. Compared with wild-type (WT), the OsRbohA-knockout mutant osrbohA exhibited upregulated expression of other respiratory burst oxidase homolog genes and multiple abnormal agronomic traits, including reduced biomass, low germination rate and decreased pollen viability and seed fertility. However, OsRbohA-overexpressing transgenic plants showed no differences in these traits compared with WT. Although osrbohA leaves and roots produced more ROS than WT, the mutant had lesser intracellular ROS. In contrast, OsRbohA-overexpressing transgenic plants exhibited higher ROS production at the intracellular level and in tissues. Ablation of OsRbohA impaired the tolerance of plants to various water stresses, whereas its overexpression enhanced the tolerance. In addition, a number of genes related to energy supply, substrate transport, stress response and transcriptional regulation were differentially expressed in osrbohA plants even under normal growth conditions, suggesting that OsRbohA has fundamental and broad functions in rice. These results indicate that OsRbohA-mediated processes are governed by complex signaling pathways that function during the developmental regulation and drought-stress response in rice. PMID:26400148

  7. WRKY transcription factor genes in wild rice Oryza nivara.

    PubMed

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  8. Some studies of alpha-amylase production using Aspergillus oryzae.

    PubMed

    Esfahanibolandbalaie, Z; Rostami, K; Mirdamadi, S S

    2008-11-15

    The extracellular alpha-amylase production by Aspergillus oryzae was studied in submerged fermentation using an Adlof-Kuhner orbital shaker. The effect of initial pH values in the range of 4 to 7.5 on enzyme production was investigated and initial pH medium of 6.2 +/- 0.1 resulted in enhanced alpha-amylase production. The effect of carbon and nitrogen source and composition was examined and it has been observed that corn starch concentration of 15 g L(-1) has sound effect on enzyme production. The medium containing corn starch, sodium nitrate resulted in considerable higher enzyme production. Further, the yeast extract of 2.5 g L(-1) in the medium produced higher enzyme in view to other organic nitrogen sources. The effect of temperature on alpha-amylase production from 20 to 40 degrees C has been studied and at 35 +/- 1 degrees C higher alpha-amylase has been obtained. The effect of shaker's speed on alpha-amylase production from 50 to 200 rpm was investigated. And at about 180 rpm higher enzyme production has been observed. In the present study, it has been found that glucose has repressing effect on a-amylase production using A. oryzae PTCC5164. PMID:19260332

  9. Toward understanding of rice innate immunity against Magnaporthe oryzae.

    PubMed

    Azizi, P; Rafii, M Y; Abdullah, S N A; Nejat, N; Maziah, M; Hanafi, M M; Latif, M A; Sahebi, M

    2016-01-01

    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice. PMID:25198435

  10. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  11. Transcriptional response of P. pastoris in fed-batch cultivations to Rhizopus oryzae lipase production reveals UPR induction

    PubMed Central

    Resina, David; Bollók, Mónika; Khatri, Narendar K; Valero, Francisco; Neubauer, Peter; Ferrer, Pau

    2007-01-01

    Background The analysis of transcriptional levels of the genes involved in protein synthesis and secretion is a key factor to understand the host organism's responses to recombinant protein production, as well as their interaction with the cultivation conditions. Novel techniques such as the sandwich hybridization allow monitoring quantitatively the dynamic changes of specific RNAs. In this study, the transcriptional levels of some genes related to the unfolded protein response (UPR) and central metabolism of Pichia pastoris were analysed during batch and fed-batch cultivations using an X-33-derived strain expressing a Rhizopus oryzae lipase under control of the formaldehyde dehydrogenase promoter (FLD1), namely the alcohol oxidase gene AOX1, the formaldehyde dehydrogenase FLD1, the protein disulfide isomerase PDI, the KAR2 gene coding for the BiP chaperone, the 26S rRNA and the R. oryzae lipase gene ROL. Results The transcriptional levels of the selected set of genes were first analysed in P. pastoris cells growing in shake flask cultures containing different carbon and nitrogen sources combinations, glycerol + ammonium, methanol + methylamine and sorbitol + methylamine. The transcriptional levels of the AOX1 and FLD1 genes were coherent with the known regulatory mechanism of C1 substrates in P. pastoris, whereas ROL induction lead to the up-regulation of KAR2 and PDI transcriptional levels, thus suggesting that ROL overexpression triggers the UPR. This was further confirmed in fed-batch cultivations performed at different growth rates. Transcriptional levels of the analysed set of genes were generally higher at higher growth rates. Nevertheless, when ROL was overexpressed in a strain having the UPR constitutively activated, significantly lower relative induction levels of these marker genes were detected. Conclusion The bead-based sandwich hybridization assay has shown its potential as a reliable instrument for quantification of specific mRNA species in P

  12. Catechol--an oviposition stimulant for cigarette beetle in roasted coffee beans.

    PubMed

    Nagasawa, Atsuhiko; Kamada, Yuji; Kosaka, Yuji; Arakida, Naohiro; Hori, Masatoshi

    2014-05-01

    The cigarette beetle, Lasioderma serricorne, is a serious global pest that preys on stored food products. Larvae of the beetle cannot grow on roasted coffee beans or dried black or green tea leaves, although they oviposit on such products. We investigated oviposition by the beetles on MeOH extracts of the above products. The number of eggs laid increased with an increase in dose of each extract, indicating that chemical factors stimulate oviposition by the beetles. This was especially true for \\ coffee bean extracts, which elicited high numbers of eggs even at a low dose (0.1 g bean equivalent/ml) compared to other extracts. Coffee beans were extracted in hexane, chloroform, 1-butanol, MeOH, and 20% MeOH in water. The number of eggs laid was higher on filter papers treated with chloroform, 1-butanol, MeOH, and 20% MeOH in water extracts than on control (solvent alone) papers. The chloroform extract was fractionated by silica-gel column chromatography. Nine compounds were identified by gas chromatography/mass spectrometry from an active fraction. Of these compounds, only a significant ovipositional response to catechol was observed. PMID:24752858

  13. Molecular orbital studies on the structure-activity relationships of catechol O-methyltransferase inhibitors.

    PubMed

    Shinagawa, Y

    1992-02-01

    Quantum chemical studies were applied to analyze the activities of catechol O-methyltransferase (COMT) inhibitors. Molecular orbital calculations of inhibitor molecules were made by semi-empirical molecular orbital calculations, CNDO/2 (complete neglect of differential overlap) methods. Regression analysis among theoretical reaction indices based on the frontier electron theory and COMT inhibitory activities were carried out. The COMT inhibitory actions of two series of inhibitors, a series of 1,5-substituted 3,4-dihydroxy benzenes and a series of substituted 3-hydroxy-4-methoxy benzenes, were investigated. The resulting regression equations contain two common reaction indices as regression variables: the electron density on the oxygen atom of the hydroxyl group and the super-delocalizability on the 5th carbon atom of the benzene ring. These two atomic positions are considered to play an important role in the interaction of these inhibitors with COMT. The hydroxyl of atomic position 3 is probably indispensable to the COMT inhibitory action by these inhibitors. PMID:1507526

  14. Gender effect of catechol-O-methyltransferase Val158Met polymorphism on suicidal behavior.

    PubMed

    Lee, Hwa-Young; Kim, Yong-Ku

    2011-01-01

    Genetic factors and catecholaminergic dysfunction have been suggested as the etiology of suicide. The catechol-O-methyltransferase (COMT) 158Val/Met polymorphism affects COMT activity; that is, the alleles encoding Val and Met are associated with relatively high and relatively low COMT activity, respectively. We aimed to identify the role of the COMT Val158Met polymorphism in suicidal attempt behavior. The COMT 158Val/Met polymorphisms were analyzed in 197 suicide attempters (male/female: 70/127), 170 control subjects (male/female: 85/85). All subjects were ethnic Korean. The Lethality Suicide Attempt Rating Scale (LSARS) and risk-rescue rating (RRR) system were explored. For the male subjects, there was a significant difference in genotype distributions and allele frequencies between control subjects and suicide attempters. That is, Val/Val genotype and Val carriers were more frequent in suicide attempters than in control subjects. For the female subjects, however, no significant difference was shown in genotype distributions and allele frequencies between control subjects and suicide attempters. There were no significant differences in LSARS and RRR according to the genotypes. The distribution of the COMT 158Val/Met polymorphism showed a biologically meaningful difference between control subjects and suicide attempters among the male subjects although selection bias should be considered. PMID:21304229

  15. Catechol-O-methyltransferase val158met Polymorphism Interacts with Sex to Affect Face Recognition Ability

    PubMed Central

    Lamb, Yvette N.; McKay, Nicole S.; Singh, Shrimal S.; Waldie, Karen E.; Kirk, Ian J.

    2016-01-01

    The catechol-O-methyltransferase (COMT) val158met polymorphism affects the breakdown of synaptic dopamine. Consequently, this polymorphism has been associated with a variety of neurophysiological and behavioral outcomes. Some of the effects have been found to be sex-specific and it appears estrogen may act to down-regulate the activity of the COMT enzyme. The dopaminergic system has been implicated in face recognition, a form of cognition for which a female advantage has typically been reported. This study aimed to investigate potential joint effects of sex and COMT genotype on face recognition. A sample of 142 university students was genotyped and assessed using the Faces I subtest of the Wechsler Memory Scale – Third Edition (WMS-III). A significant two-way interaction between sex and COMT genotype on face recognition performance was found. Of the male participants, COMT val homozygotes and heterozygotes had significantly lower scores than met homozygotes. Scores did not differ between genotypes for female participants. While male val homozygotes had significantly lower scores than female val homozygotes, no sex differences were observed in the heterozygotes and met homozygotes. This study contributes to the accumulating literature documenting sex-specific effects of the COMT polymorphism by demonstrating a COMT-sex interaction for face recognition, and is consistent with a role for dopamine in face recognition. PMID:27445927

  16. Catechol-O-methyltransferase (COMT) gene modulates private self-consciousness and self-flexibility.

    PubMed

    Wang, Bei; Ru, Wenzhao; Yang, Xing; Yang, Lu; Fang, Pengpeng; Zhu, Xu; Shen, Guomin; Gao, Xiaocai; Gong, Pingyuan

    2016-08-01

    Dopamine levels in the brain influence human consciousness. Inspired by the role of Catechol-O-methyltransferase (COMT) in inactivating dopamine in the brain, we investigated to what extent COMT could modulate individual's self-consciousness dispositions and self-consistency by genotyping the COMT Val158Met (rs4680) polymorphism and measuring self-consciousness and self-consistency and congruence in a college student population. The results indicated that COMT Val158Met polymorphism significantly modulated the private self-consciousness. The individuals with Val/Val genotype, corresponding to lower dopamine levels in the brain, were more likely to be aware of their feelings and beliefs. The results also indicated that this polymorphism modulated one's self-flexibility. The individuals with Val/Val genotype showed higher levels of stereotype in self-concept compared with those with Met/Met genotype. These findings suggest that COMT is a predictor of the individual differences in self-consciousness and self-flexibility. PMID:27522491

  17. Naphthalene- and perylenediimides with hydroquinones, catechols, boronic esters and imines in the core.

    PubMed

    Fin, Andrea; Petkova, Irina; Doval, David Alonso; Sakai, Naomi; Vauthey, Eric; Matile, Stefan

    2011-12-21

    The green-fluorescent protein of the jellyfish operates with the most powerful phenolate donors in the push-pull fluorophore. To nevertheless achieve red fluorescence with the same architecture, sea anemone and corals apply oxidative imination, a process that accounts for the chemistry of vision as well. The objective of this study was to apply these lessons from nature to one of the most compact family of panchromatic fluorophores, i.e. core-substituted naphthalenediimides (cNDIs). We report straightforward synthetic access to hydroxylated cNDI and cPDI cores by palladium-catalyzed cleavage of allyloxy substituents. With hydroxylated cNDIs but not cPDIs in water-containing media, excited-state intramolecular proton transfer yields a second bathochromic emission. Deprotonation of hydroquinone, catechol and boronic ester cores provides access to an impressive panchromism up to the NIR frontier at 640 nm. With cNDIs, oxidative imination gives red shifts up to 638 nm, whereas the expanded cPDIs already absorb at 754 nm upon deprotonation of hydroquinone cores. The practical usefulness of hydroquinone cNDIs is exemplified by ratiometric sensing of the purity of DMF with the "naked eye" at a sensitivity far beyond the "naked nose". We conclude that the panchromatic hypersensitivity toward the environment of the new cNDIs is ideal for pattern generation in differential sensing arrays. PMID:21879124

  18. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries.

    PubMed

    Wang, Hao; Wu, Junjie; Cai, Chao; Guo, Jing; Fan, Haosen; Zhu, Caizhen; Dong, Haixia; Zhao, Ning; Xu, Jian

    2014-04-23

    Inspired by the remarkable adhesion of mussel, dopamine, a mimicking adhesive molecule, has been widely used for surface modification of various materials ranging from organic to inorganic. However, dopamine and its derivatives are expensive which impede their application in large scale. Herein, we replaced dopamine with low-cost catechol and polyamine (only 8% of the cost of dopamine), which could be polymerized in an alkaline solution and deposited on the surfaces of various materials. By using this cheap and simple modification method, polypropylene (PP) separator could be transformed from hydrophobic to hydrophilic, while the pore structure and mechanical property of the separator remained intact. The uptake of electrolyte increased from 80% to 270% after the hydrophilic modification. Electrochemical studies demonstrated that battery with the modified PP separator had a better Coulombic efficiency (80.9% to 85.3%) during the first cycle at a current density of 0.1 C, while the discharging current density increased to 15 C and the discharge capacity increased by 1.4 times compared to the battery using the bare PP separator. Additionally, the modification allowed excellent stability during manifold cycles. This study provides new insights into utilizing low-cost chemicals to mimic the mussel adhesion and has potential practical application in many fields. PMID:24684271

  19. Catechol-O-Methyltransferase val158met Polymorphism Predicts Placebo Effect in Irritable Bowel Syndrome

    PubMed Central

    Hall, Kathryn T.; Lembo, Anthony J.; Kirsch, Irving; Ziogas, Dimitrios C.; Douaiher, Jeffrey; Jensen, Karin B.; Conboy, Lisa A.; Kelley, John M.; Kokkotou, Efi; Kaptchuk, Ted J.

    2012-01-01

    Identifying patients who are potential placebo responders has major implications for clinical practice and trial design. Catechol-O-methyltransferase (COMT), an important enzyme in dopamine catabolism plays a key role in processes associated with the placebo effect such as reward, pain, memory and learning. We hypothesized that the COMT functional val158met polymorphism, was a predictor of placebo effects and tested our hypothesis in a subset of 104 patients from a previously reported randomized controlled trial in irritable bowel syndrome (IBS). The three treatment arms from this study were: no-treatment (“waitlist”), placebo treatment alone (“limited”) and, placebo treatment “augmented” with a supportive patient-health care provider interaction. The primary outcome measure was change from baseline in IBS-Symptom Severity Scale (IBS-SSS) after three weeks of treatment. In a regression model, the number of methionine alleles in COMT val158met was linearly related to placebo response as measured by changes in IBS-SSS (p = .035). The strongest placebo response occurred in met/met homozygotes treated in the augmented placebo arm. A smaller met/met associated effect was observed with limited placebo treatment and there was no effect in the waitlist control. These data support our hypothesis that the COMT val158met polymorphism is a potential biomarker of placebo response. PMID:23110189

  20. The role of catechol-O-methyltransferase in reward processing and addiction.

    PubMed

    Tunbridge, E M; Huber, A; Farrell, S M; Stumpenhorst, K; Harrison, P J; Walton, M E

    2012-05-01

    Catechol-O-methyltransferase (COMT) catabolises dopamine and is important for regulating dopamine levels in the prefrontal cortex. Consistent with its regulation of prefrontal cortex dopamine, COMT modulates working memory and executive function; however, its significance for other cognitive domains, and in other brain regions, remains relatively unexplored. One such example is reward processing, for which dopamine is a critical mediator, and in which the striatum and corticostriatal circuitry are implicated. Here, we discuss emerging data which links COMT to reward processing, review what is known of the underlying neural substrates, and consider whether COMT is a good therapeutic target for treating addiction. Although a limited number of studies have investigated COMT and reward processing, common findings are beginning to emerge. COMT appears to modulate cortical and striatal activation during both reward anticipation and delivery, and to impact on reward-related learning and its underlying neural circuitry. COMT has been studied as a candidate gene for numerous reward-related phenotypes and there is some preliminary evidence linking it with certain aspects of addiction. However, additional studies are required before these associations can be considered robust. It is premature to consider COMT a good therapeutic target for addiction, but this hypothesis should be revisited as further information emerges. In particular, it will be critical to reveal the precise neurobiological mechanisms underlying links between COMT and reward processing, and the extent to which these relate to the putative associations with addiction. PMID:22483300

  1. Bio-inspired catechol chemistry for electrophoretic nanotechnology of oxide films.

    PubMed

    Wang, Y; Zhitomirsky, I

    2012-08-15

    Bio-inspired chemical approach has been developed for the surface modification and electrophoretic deposition of manganese dioxide and zirconia nanoparticles, prepared by chemical precipitation methods. Caffeic acid, trans-cinnamic acid, p-coumaric acid, and 2,4-dihydroxycinnamic acid were investigated for the surface modification of the nanoparticles. The influence of the structure of the organic molecules on their adsorption on the oxide nanoparticles has been investigated. The mechanism of caffeic acid adsorption was similar to that of natural catecholic amino acid, L-3,4-dihydroxyphenylalanine. The use of caffeic acid allowed for agglomerate-free synthesis, efficient dispersion, charging, electrophoretic deposition and co-deposition of manganese dioxide and zirconia nanoparticles. The deposition yield data, coupled with the results of thermogravimetric analysis, X-ray diffraction analysis, and Fourier transform infrared spectroscopy, showed that surface chemistry, rather than the crystal structure, determined the adsorption behavior. Electron microscopy and energy dispersive spectroscopy investigations showed the formation of nanostructured oxide films and composites. The deposit composition can be varied. PMID:22652591

  2. Characterization of NF-kB-mediated inhibition of catechol-O-methyltransferase

    PubMed Central

    Tchivileva, Inna E; Nackley, Andrea G; Qian, Li; Wentworth, Sean; Conrad, Matthew; Diatchenko, Luda B

    2009-01-01

    Background Catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, has recently been implicated in the modulation of pain. Specifically, low COMT activity is associated with heightened pain perception and development of musculoskeletal pain in humans as well as increased experimental pain sensitivity in rodents. Results We report that the proinflammatory cytokine tumor necrosis factor α (TNFα) downregulates COMT mRNA and protein in astrocytes. Examination of the distal COMT promoter (P2-COMT) reveals a putative binding site for nuclear factor κB (NF-κB), the pivotal regulator of inflammation and the target of TNFα. Cell culture assays and functional deletion analyses of the cloned P2-COMT promoter demonstrate that TNFα inhibits P2-COMT activity in astrocytes by inducing NF-κB complex recruitment to the specific κB binding site. Conclusion Collectively, our findings provide the first evidence for NF-κB-mediated inhibition of COMT expression in the central nervous system, suggesting that COMT contributes to the pathogenesis of inflammatory pain states. PMID:19291302

  3. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome.

    PubMed

    Hall, Kathryn T; Lembo, Anthony J; Kirsch, Irving; Ziogas, Dimitrios C; Douaiher, Jeffrey; Jensen, Karin B; Conboy, Lisa A; Kelley, John M; Kokkotou, Efi; Kaptchuk, Ted J

    2012-01-01

    Identifying patients who are potential placebo responders has major implications for clinical practice and trial design. Catechol-O-methyltransferase (COMT), an important enzyme in dopamine catabolism plays a key role in processes associated with the placebo effect such as reward, pain, memory and learning. We hypothesized that the COMT functional val158met polymorphism, was a predictor of placebo effects and tested our hypothesis in a subset of 104 patients from a previously reported randomized controlled trial in irritable bowel syndrome (IBS). The three treatment arms from this study were: no-treatment ("waitlist"), placebo treatment alone ("limited") and, placebo treatment "augmented" with a supportive patient-health care provider interaction. The primary outcome measure was change from baseline in IBS-Symptom Severity Scale (IBS-SSS) after three weeks of treatment. In a regression model, the number of methionine alleles in COMT val158met was linearly related to placebo response as measured by changes in IBS-SSS (p = .035). The strongest placebo response occurred in met/met homozygotes treated in the augmented placebo arm. A smaller met/met associated effect was observed with limited placebo treatment and there was no effect in the waitlist control. These data support our hypothesis that the COMT val158met polymorphism is a potential biomarker of placebo response. PMID:23110189

  4. Salvianolic acid B as a substrate and weak catechol-O-methyltransferase inhibitor in rats.

    PubMed

    Qi, Qu; Cao, Lijuan; Li, Feiyan; Wang, Hong; Liu, Huiying; Hao, Haiping; Hao, Kun

    2015-01-01

    1. The aim of this study was to investigate the biotransformation of salvianolic acid B (SAB) by catechol-O-methyltransferase (COMT) and its interaction with levodopa (l-DOPA) methylation in rats. 2. The enzyme kinetics of SAB were studied after incubation with rat COMT. The in vivo SAB and 3-monomethyl-SAB (3-MMS) levels were determined after a single dose of tolcapone with or without SAB administration. For l-DOPA, the effect of SAB inhibition on l-DOPA methylation was studied in vitro. The l-DOPA and 3-O-methyldopa (3-OMD) levels were determined after single and multiple doses of SAB with or without l-DOPA administration. 3. After incubation, we found that SAB was methylated mainly by rat liver and kidney COMT. Tolcapone strongly inhibited the formation of 3-MMS in vitro and in vivo, without any change in the plasma concentration of SAB. Moreover, tolcapone significantly increased the cumulative bile excretion of SAB from 3% to 40% in the rat. SAB inhibited the methylation of l-DOPA with an IC50 value of 2.08 μM in vitro. In vivo, a single intravenous dose of SAB decreased the plasma concentration of 3-OMD, with no obvious effect on the pharmacokinetics of l-DOPA. Multiple doses of SAB given to rats also decreased the plasma concentration of 3-OMD, while SAB increased the plasma concentration of l-DOPA. PMID:25869243

  5. Catechol-o-methyltransferase genotype and childhood trauma may interact to impact schizotypal personality traits.

    PubMed

    Savitz, Jonathan; van der Merwe, Lize; Newman, Timothy K; Stein, Dan J; Ramesar, Raj

    2010-05-01

    We attempt to identify gene by childhood abuse interactions which predispose to the development of schizotypal traits in a familial bipolar disorder (BD) sample. Self-report measures of schizotypal personality traits (Schizotypal Personality Scale) and childhood maltreatment (Childhood Trauma Questionnaire) were administered to 222 participants from 44 families with BD. Variants of catechol-o-methyltransferase (COMT) and four other dopamine pathway-related genes: DRD4, DRD2,MAOA, and SLC6A3, were typed. BD type I (BD I) subjects scored significantly higher than their unaffected relatives on the Schizotypal Personality Scale. The val allele of the Val158 Met polymorphism of the COMT gene was associated with increased schizotypal personality trait scores in individuals exposed to higher levels of self-reported childhood trauma (p < 0.05). There was no direct effect of the val158met polymorphism on schizotypal personality traits. Further, no passive correlation between COMT genotype and childhood trauma was found. We raise the possibility that genetically-driven variation in COMT may interact with childhood trauma to contribute to the risk of developing schizotypal personality traits. PMID:20033274

  6. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior.

    PubMed

    Gogos, J A; Morgan, M; Luine, V; Santha, M; Ogawa, S; Pfaff, D; Karayiorgou, M

    1998-08-18

    Catechol-O-methyltransferase (COMT) is one of the major mammalian enzymes involved in the metabolic degradation of catecholamines and is considered a candidate for several psychiatric disorders and symptoms, including the psychopathology associated with the 22q11 microdeletion syndrome. By means of homologous recombination in embryonic stem cells, a strain of mice in which the gene encoding the COMT enzyme has been disrupted was produced. The basal concentrations of brain catecholamines were measured in the striatum, frontal cortex, and hypothalamus of adult male and female mutants. Locomotor activity, anxiety-like behaviors, sensorimotor gating, and aggressive behavior also were analyzed. Mutant mice demonstrated sexually dimorphic and region-specific changes of dopamine levels, notably in the frontal cortex. In addition, homozygous COMT-deficient female (but not male) mice displayed impairment in emotional reactivity in the dark/light exploratory model of anxiety. Furthermore, heterozygous COMT-deficient male mice exhibited increased aggressive behavior. Our results provide conclusive evidence for an important sex- and region-specific contribution of COMT in the maintenance of steady-state levels of catecholamines in the brain and suggest a role for COMT in some aspects of emotional and social behavior in mice. PMID:9707588

  7. Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols.

    PubMed

    Nappi, A J; Vass, E

    1998-09-16

    The differing effects of O-methylated catecholamines and their dihydroxyphenyl precursors on the production of *OH were quantified using a previously established specific salicylate hydroxylation assay in conjunction with a sensitive electrochemical detection system. The production of *OH by the Fenton reaction was diminished significantly by O-methylated catecholamines (O-methyldopa, O-methyldopamine, O-methyltyrosine, and N-acetyl-O-methyldopamine), whereas radical production was augmented by dihydroxyphenyls (DOPA, dopamine, and N-acetyldopamine), including those with methylated side chains (N-methyldopamine and alpha-methyldopa). Monohydroxyphenyls such as octopamine, tyramine, tyrosine, and alpha-methyltyrosine had little or no effect on radical production. These data show that a methyl group positioned on the side chain of a catecholamine does not alter its pro-oxidant behavior, while a methyl group positioned on the aromatic ring renders the catecholamine sterically or kinetically unfavorable for coordination with transition metals, thus preventing the promotion of Fenton chemistry. These results highlight the importance of O-methylation in forming catechols that are less reactive than their dihydroxyphenyl precursors. Thus, factors regulating the methylation of brain catecholamines may play a crucial role in mediating neuronal integrity during aging and in the pathogenesis of certain neurodegenerative disorders. Competitive side-chain methylation reactions may sustain or perpetuate some dihydroxyphenyls, creating an oxidatively less favorable environment for cells than would result from compounds formed by O-methylation. PMID:9813302

  8. Schistosome and liver fluke derived catechol-estrogens and helminth associated cancers

    PubMed Central

    Correia da Costa, José M.; Vale, Nuno; Gouveia, Maria J.; Botelho, Mónica C.; Sripa, Banchob; Santos, Lúcio L.; Santos, Júlio H.; Rinaldi, Gabriel; Brindley, Paul J.

    2014-01-01

    Infection with helminth parasites remains a persistent public health problem in developing countries. Three of these pathogens, the liver flukes Clonorchis sinensis, Opisthorchis viverrini and the blood fluke Schistosoma haematobium, are of particular concern due to their classification as Group 1 carcinogens: infection with these worms is carcinogenic. Using liquid chromatography-mass spectrometry (LC-MS/MS) approaches, we identified steroid hormone like (e.g., oxysterol-like, catechol estrogen quinone-like, etc.) metabolites and related DNA-adducts, apparently of parasite origin, in developmental stages including eggs of S. haematobium, in urine of people with urogenital schistosomiasis, and in the adult stage of O. viverrini. Since these kinds of sterol derivatives are metabolized to active quinones that can modify DNA, which in other contexts can lead to breast and other cancers, helminth parasite associated sterols might induce tumor-like phenotypes in the target cells susceptible to helminth parasite associated cancers, i.e., urothelial cells of the bladder in the case of urogenital schistosomiasis and the bile duct epithelia or cholangiocytes, in the case of O. viverrini and C. sinensis. Indeed we postulate that helminth induced cancers originate from parasite estrogen-host epithelial/urothelial cell chromosomal DNA adducts, and here we review recent findings that support this conjecture. PMID:25566326

  9. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms

    PubMed Central

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222

  10. Catechol-O-Methyltransferase Gene Polymorphisms in Specific Obsessive-Compulsive Disorder Patients' Subgroups.

    PubMed

    Melo-Felippe, Fernanda Brito; de Salles Andrade, Juliana Braga; Giori, Isabele Gomes; Vieira-Fonseca, Tamiris; Fontenelle, Leonardo Franklin; Kohlrausch, Fabiana Barzotti

    2016-01-01

    Pharmacological data and animal models support the hypothesis that the dopaminergic (DA) system is implicated in obsessive-compulsive disorder (OCD). Therefore, this case-control study assessed whether genetics variations in catechol-O-methyltransferase gene (COMT) could influence susceptibility to OCD and OCD features in a Brazilian sample. A sample of 199 patients with OCD and 200 healthy individuals was genotyped for -287A > G (rs2075507) and Val158Met (rs4680) single nucleotide polymorphisms (SNPs) by TaqMan(®) or restriction mapping. We observed a statistically significant predominance of the Met low-activity allele in the male patient group as compared to the male healthy control group. The -287A > G polymorphism's genotypes and alleles were significantly overrepresented among male individuals with ordering and female subjects with washing symptoms. We also found female hoarders to exhibit a significant higher frequency of the low activity Met/Met genotype of Val158Met polymorphism compared to female patients who did not express this dimension. Our data suggest an influence of COMT polymorphisms on OCD and OCD patients' features, such as gender, and ordering, washing, and hoarding symptom dimensions. Further studies to confirm the clinical importance of COMT SNPs in OCD are warranted. PMID:26687156

  11. Synthesis, Characterization, and Preliminary Investigation of Cell Interaction of Magnetic Nanoparticles with Catechol-Containing Shells

    SciTech Connect

    Wagner, Kerstin; Seemann, Thomas; Wyrwa, Ralf; Schnabelrauch, Matthias; Clement, Joachim H.; Mueller, Robert; Nietzsche, Sandor

    2010-12-02

    Superparamagnetic iron oxide cores were synthesized by co-precipitation of Fe(II) and Fe(III) salts and subsequently stabilized by coating with different catechols (levodopa, dopamine, hydrocaffeic acid, dopamine-containing carboxymethyl dextran) known to act as high-affinity, bidentate ligands for Fe(III). The prepared stable magnetic fluids were characterized with regard to their chemical composition (content of iron and shell material, Fe(II)/Fe(III) ratio) and their physical properties (size, surface charge, magnetic parameters). The nanoparticles showed no or only slight cytotoxic effects within 1 and 4 days of incubation with 3T3 fibroblast cells. Preliminary experiments were performed to study the interaction of the prepared nanoparticles with human MCF-7 breast cancer cells and leukocytes. An intense interaction of the MCF-7 cells with these particles was found whereas the leukocytes showed a lower tendency of interaction. Based on these finding, the novel magnetic nanoparticles possess the potential for use in depletion of tumor cells from peripheral blood.

  12. Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection

    PubMed Central

    Fu, Jiapeng; Qiao, Hui; Li, Dawei; Luo, Lei; Chen, Ke; Wei, Qufu

    2014-01-01

    The study compared the biosensing properties of laccase biosensors based on carbon nanofibers (CNFs) and copper/carbon composite nanofibers (Cu/CNFs). The two kinds of nanofibers were prepared by electrospinning and carbonization under the same conditions. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to investigate the morphologies and structures of CNFs and Cu/CNFs. The amperometric results indicated that the Cu/CNFs/laccase(Lac)/Nafion/glass carbon electrode (GCE) possessed reliable analytical performance for the detection of catechol. The sensitivity of the Cu/CNFs/Lac/Nafion/GCE reached 33.1 μA/mM, larger than that of CNFs/Lac/Nafion/GCE. Meanwhile, Cu/CNFs/Lac/Nafion/GCE had a wider linear range from 9.95 × 10−6 to 9.76 × 10−3 M and a lower detection limit of 1.18 μM than CNFs/Lac/Nafion/GCE. Moreover, it exhibited a good repeatability, reproducibility, selectivity and long-term stability, revealing that electrospun Cu/CNFs have great potential in biosensing. PMID:24561403

  13. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

    PubMed

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Bortolato, Marco

    2014-10-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood post-translational mechanisms. One post-translational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, whereas brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  14. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  15. Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae

    SciTech Connect

    Stewart, P.; Whitwam, R.E.; Tien, Ming

    1996-03-01

    A manganese peroxidase (mnp1) from Phanerochaete chrysosporium was efficiently expressed in Aspergillus oryzae. Expression was achieved by fusing the mature cDNA of mnp1 with the A. oryzae Taka amylase promoter and secretion signal. The 3{prime} untranslated region of the glucoamylase gene of Asperigillus awamori provided the terminator. The recombinant protein (rMnP) was secreted in an active form, permitting rapid detection and purification. Physical and kinetic properties of rMnP were similar to those of the native protein. The A. oryzae expression system is well suited for both mechanistic and site-directed mutagenesis studies. 34 refs., 7 figs., 1 tab.

  16. NADPH oxidase promotes neutrophil extracellular trap formation in pulmonary aspergillosis.

    PubMed

    Röhm, Marc; Grimm, Melissa J; D'Auria, Anthony C; Almyroudis, Nikolaos G; Segal, Brahm H; Urban, Constantin F

    2014-05-01

    NADPH oxidase is a crucial enzyme in antimicrobial host defense and in regulating inflammation. Chronic granulomatous disease (CGD) is an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates. Aspergillus species are ubiquitous, filamentous fungi, which can cause invasive aspergillosis, a major cause of morbidity and mortality in CGD, reflecting the critical role for NADPH oxidase in antifungal host defense. Activation of NADPH oxidase in neutrophils can be coupled to the release of proteins and chromatin that comingle in neutrophil extracellular traps (NETs), which can augment extracellular antimicrobial host defense. NETosis can be driven by NADPH oxidase-dependent and -independent pathways. We therefore undertook an analysis of whether NADPH oxidase was required for NETosis in Aspergillus fumigatus pneumonia. Oropharyngeal instillation of live Aspergillus hyphae induced neutrophilic pneumonitis in both wild-type and NADPH oxidase-deficient (p47(phox-/-)) mice which had resolved in wild-type mice by day 5 but progressed in p47(phox-/-) mice. NETs, identified by immunostaining, were observed in lungs of wild-type mice but were absent in p47(phox-/-) mice. Using bona fide NETs and nuclear chromatin decondensation as an early NETosis marker, we found that NETosis required a functional NADPH oxidase in vivo and ex vivo. In addition, NADPH oxidase increased the proportion of apoptotic neutrophils. Together, our results show that NADPH oxidase is required for pulmonary clearance of Aspergillus hyphae and generation of NETs in vivo. We speculate that dual modulation of NETosis and apoptosis by NADPH oxidase enhances antifungal host defense and promotes resolution of inflammation upon infection clearance. PMID:24549323

  17. Xanthomonas oryzae pv. oryzae requires H-NS-family protein XrvC to regulate virulence during rice infection.

    PubMed

    Liu, Yongting; Long, Juying; Shen, Dan; Song, Congfeng

    2016-05-01

    Histone-like nucleoid-structuring (H-NS) proteins, which are conserved in Gram-negative bacteria, bind DNA and act as the global transcriptional repressors. In this study, we identified and characterized the xrvC gene encoding a H-NS protein in Xathomonas oryzae pv. oryzae (Xoo) Philippines strain PXO99(A) Compared with the wild type, the xrvC-deficient mutant of PXO99(A) (named PXO99ΔxrvC) showed a reduced growth rate in both nutrient-rich and nutrient-limited media. Interestingly, PXO99ΔxrvC exhibited significantly reduced virulence on rice cultivar IRBB214, but its virulence on 31 other rice cultivars was not affected. Transcriptional analysis revealed that the expression of hrpG, hrpX and hpa1 and of 15 out of 18 tested non-TAL (transcription activator-like) effector genes was decreased significantly in the xrvC mutant compared with that in the wild type. In addition, loss of xrvC also impaired the induction of the rice susceptibility gene Os8N3 in IRBB214 by PXO99(A) Our results suggest that the xrvC gene is involved in bacterial growth, and it plays a vital role in virulence by positively regulating the expression of hrp genes and non-TAL effector genes in PXO99(A) and the susceptibility gene Os8N3 in rice. PMID:27001973

  18. The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. Oryzae in rice.

    PubMed

    Chen, Honglin; Li, Chunrong; Liu, Liping; Zhao, Jiying; Cheng, Xuzhen; Jiang, Guanghuai; Zhai, Wenxue

    2016-01-01

    Disease resistance is an important goal of crop improvement. The molecular mechanism of resistance requires further study. Here, we report the identification of a rice leaf color mutant, lc7, which is defective in chlorophyll synthesis and photosynthesis but confers resistance to Xanthomonas oryzae pv. Oryzae (Xoo). Map-based cloning revealed that lc7 encodes a mutant ferredoxin-dependent glutamate synthase1 (Fd-GOGAT1). Fd-GOGAT1 has been proposed to have great potential for improving nitrogen-use efficiency, but its function in bacterial resistance has not been reported. The lc7 mutant accumulates excessive levels of ROS (reactive oxygen species) in the leaves, causing the leaf color to become yellow after the four-leaf stage. Compared to the wild type, lc7 mutants have a broad-spectrum high resistance to seven Xoo strains. Differentially expressed genes (DEGs) and qRT-PCR analysis indicate that many defense pathways that are involved in this broad-spectrum resistance are activated in the lc7 mutant. These results suggest that Fd-GOGAT1 plays an important role in broad-spectrum bacterial blight resistance, in addition to modulating nitrogen assimilation and chloroplast development. PMID:27211925

  19. Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae.

    PubMed

    Li, Bin; Zhang, Yang; Yang, Yingzi; Qiu, Wen; Wang, Xiaoxuan; Liu, Baoping; Wang, Yanli; Sun, Guochang

    2016-11-01

    This present study deals with synthesis, characterization and antibacterial activity of chitosan/TiO2 nanocomposites. Results indicated that chitosan/TiO2 nanocomposite at the ratio of 1:5 showed the strongest inhibition in growth of rice bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, the antibacterial activity of chitosan/TiO2 nanocomposite against Xoo is significantly higher than that of the two individual components under both light and dark conditions. Regardless of the presence or absence of extracellular polymeric substances, chitosan/TiO2 nanocomposite showed strong antibacterial activity, however, the absence increased the sensitivity of Xoo to chitosan/TiO2 nanocomposite. In addition, the surface morphology and physicochemical properties of chitosan/TiO2 nanocomposite is different from the two individual components based on scanning electron microscopic observation, fourier transform infrared spectra, and X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that this synthesized chitosan/TiO2 nanocomposite is promising to be developed as a new antibacterial material. PMID:27516334

  20. The Fd-GOGAT1 mutant gene lc7 confers resistance to Xanthomonas oryzae pv. Oryzae in rice

    PubMed Central

    Chen, Honglin; Li, Chunrong; Liu, Liping; Zhao, Jiying; Cheng, Xuzhen; Jiang, Guanghuai; Zhai, Wenxue

    2016-01-01

    Disease resistance is an important goal of crop improvement. The molecular mechanism of resistance requires further study. Here, we report the identification of a rice leaf color mutant, lc7, which is defective in chlorophyll synthesis and photosynthesis but confers resistance to Xanthomonas oryzae pv. Oryzae (Xoo). Map-based cloning revealed that lc7 encodes a mutant ferredoxin-dependent glutamate synthase1 (Fd-GOGAT1). Fd-GOGAT1 has been proposed to have great potential for improving nitrogen-use efficiency, but its function in bacterial resistance has not been reported. The lc7 mutant accumulates excessive levels of ROS (reactive oxygen species) in the leaves, causing the leaf color to become yellow after the four-leaf stage. Compared to the wild type, lc7 mutants have a broad-spectrum high resistance to seven Xoo strains. Differentially expressed genes (DEGs) and qRT-PCR analysis indicate that many defense pathways that are involved in this broad-spectrum resistance are activated in the lc7 mutant. These results suggest that Fd-GOGAT1 plays an important role in broad-spectrum bacterial blight resistance, in addition to modulating nitrogen assimilation and chloroplast development. PMID:27211925

  1. Mapping of quantitative trait loci for fiber and lignin contents from an interspecific cross Oryza sativa×Oryza rufipogon *

    PubMed Central

    Xie, Jian-kun; Kong, Xiang-li; Chen, Jie; Hu, Biao-lin; Wen, Piao; Zhuang, Jie-yun; Bao, Jin-song

    2011-01-01

    Rice straw is always regarded as a by-product of rice production, but it could be a significant energy source for ruminant animals. Knowledge of the genetic variation and genetic architecture of cell wall traits will facilitate rice breeders by improving relevant traits through selective breeding and genetic engineering. The common wild rice, Oryza rufipogon Griff., which is considered to be the progenitor of Oryza sativa, has been widely utilized for the identification of genes of agronomic importance for rice genetic improvement. In the present study, the mapping of quantitative trait loci (QTLs) for acid detergent fiber (ADF), neutral detergent fiber (NDF), acid detergent lignin (ADL), and ADL/NDF ratio was carried out in two environments using a backcrossed inbred line (BIL) population derived from a cross between the recurrent parent Xieqingzao B (XB) and an accession of Dongxiang wild rice (DWR). The results indicated that all four traits tested were continuously distributed among the BILs, but many BILs showed transgressive segregation. A total of 16 QTLs were identified for the four traits, but no QTLs were in common in two environments, suggesting that environment has dramatic effects on fiber and lignin syntheses. Compared to the QTL positions for grain yield-related traits, there were no unfavorable correlations between grain yield components and cell wall traits in this population. The QTLs identified in this study are useful for the development of dual-purpose rice varieties that are high in grain yield and are also high in straw quality. PMID:21726058

  2. Xanthomonas oryzae pv. oryzae RpfE Regulates Virulence and Carbon Source Utilization without Change of the DSF Production

    PubMed Central

    Cho, Jung-Hee; Yoon, Joo-Mi; Lee, Sang-Won; Noh, Young-Hee; Cha, Jae-Soon

    2013-01-01

    It has been known that most regulation of pathogenicity factor (rpf) genes in xanthomonads regulates virulence in response to the diffusible signal factor, DSF. Although many rpf genes have been functionally characterized, the function of rpfE is still unknown. We cloned the rpfE gene from a Xanthomonas oryzae pv. oryzae (Xoo) Korean race KACC10859 and generated mutant strains to elucidate the role of RpfE with respect to the rpf system. Through experiments using the rpfE-deficient mutant strain, we found that mutation in rpfE gene in Xoo reduced virulence, swarm motility, and production of virulence factors such as cellulase and extracellular polysaccharide. Disease progress by the rpfE-deficient mutant strain was significantly slowed compared to disease progress by the wild type and the number of the rpfE-deficient mutant strain was lower than that of the wild type in the early phase of infection in the inoculated rice leaf. The rpfE mutant strain was unable to utilize sucrose or xylose as carbon sources efficiently in culture. The mutation in rpfE, however, did not affect DSF synthesis. Our results suggest that the rpfE gene regulates the virulence of Xoo under different nutrient conditions without change of DSF production. PMID:25288965

  3. Comparative Transcriptome Profiling Reveals Different Expression Patterns in Xanthomonas oryzae pv. oryzae Strains with Putative Virulence-Relevant Genes

    PubMed Central

    Zhang, Fan; Du, Zhenglin; Huang, Liyu; Cruz, Casiana Vera; Zhou, Yongli; Li, Zhikang

    2013-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice bacterial blight, which is a major rice disease in tropical Asian countries. An attempt has been made to investigate gene expression patterns of three Xoo strains on the minimal medium XOM2, PXO99 (P6) and PXO86 (P2) from the Philippines, and GD1358 (C5) from China, which exhibited different virulence in 30 rice varieties, with putative virulence factors using deep sequencing. In total, 4,781 transcripts were identified in this study, and 1,151 and 3,076 genes were differentially expressed when P6 was compared with P2 and with C5, respectively. Our results indicated that Xoo strains from different regions exhibited distinctly different expression patterns of putative virulence-relevant genes. Interestingly, 40 and 44 genes involved in chemotaxis and motility exhibited higher transcript alterations in C5 compared with P6 and P2, respectively. Most other genes associated with virulence, including exopolysaccharide (EPS) synthesis, Hrp genes and type III effectors, including Xanthomonas outer protein (Xop) effectors and transcription activator-like (TAL) effectors, were down-regulated in C5 compared with P6 and P2. The data were confirmed by real-time quantitative RT-PCR, tests of bacterial motility, and enzyme activity analysis of EPS and xylanase. These results highlight the complexity of Xoo and offer new avenues for improving our understanding of Xoo-rice interactions and the evolution of Xoo virulence. PMID:23734193

  4. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

    PubMed Central

    Peng, Zeyu; Dittmer, Neal T.; Lang, Minglin; Brummett, Lisa M.; Braun, Caroline L.; Davis, Lawrence C.; Kanost, Michael R.; Gorman, Maureen J.

    2015-01-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surpring because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  5. Cell Wall Degrading Enzyme Induced Rice Innate Immune Responses Are Suppressed by the Type 3 Secretion System Effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Sinha, Dipanwita; Gupta, Mahesh Kumar; Patel, Hitendra Kumar; Ranjan, Ashish; Sonti, Ramesh V.

    2013-01-01

    Innate immune responses are induced in plants and animals through perception of Damage Associated Molecular Patterns. These immune responses are suppressed by pathogens during infection. A number of studies have focussed on identifying functions of plant pathogenic bacteria that are involved in suppression of Pathogen Associated Molecular Pattern induced immune responses. In comparison, there is very little information on functions used by plant pathogens to suppress Damage Associated Molecular Pattern induced immune responses. Xanthomonasoryzae pv. oryzae, a gram negative bacterial pathogen of rice, secretes hydrolytic enzymes such as LipA (Lipase/Esterase) that damage rice cell walls and induce innate immune responses. Here, we show that Agrobacterium mediated transient transfer of the gene for XopN, a X. oryzae pv. oryzae type 3 secretion (T3S) system effector, results in suppression of rice innate immune responses induced by LipA. A xopN- mutant of X. oryzae pv. oryzae retains the ability to suppress these innate immune responses indicating the presence of other functionally redundant proteins. In transient transfer assays, we have assessed the ability of 15 other X. oryzae pv. oryzae T3S secreted effectors to suppress rice innate immune responses. Amongst these proteins, XopQ, XopX and XopZ are suppressors of LipA induced innate immune responses. A mutation in any one of the xopN, xopQ, xopX or xopZ genes causes partial virulence deficiency while a xopN- xopX- double mutant exhibits a greater virulence deficiency. A xopN- xopQ- xopX- xopZ- quadruple mutant of X. oryzae pv. oryzae induces callose deposition, an innate immune response, similar to a X. oryzae pv. oryzae T3S- mutant in rice leaves. Overall, these results indicate that multiple T3S secreted proteins of X. oryzae pv. oryzae can suppress cell wall damage induced rice innate immune responses. PMID:24086651

  6. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens.

    PubMed

    Rahman, Alamgir; Uddin, Wakar; Wenner, Nancy G

    2015-08-01

    The suppressive ability of several strains of cyclic lipopeptide-producing Bacillus rhizobacteria to grey leaf spot disease caused by Magnaporthe oryzae has been documented previously; however, the underlying mechanism(s) involved in the induced systemic resistance (ISR) activity in perennial ryegrass (Lolium perenne L.) remains unknown. Root-drench application of solid-phase extraction (SPE)-enriched surfactin and live cells of mutant Bacillus amyloliquefaciens strain FZB42-AK3 (produces surfactin, but not bacillomycin D and fengycin) significantly reduced disease incidence and severity on perennial ryegrass. The application of the treatments revealed a pronounced multilayered ISR defence response activation via timely and enhanced accumulation of hydrogen peroxide (H2O2), elevated cell wall/apoplastic peroxidase activity, and deposition of callose and phenolic/polyphenolic compounds underneath the fungal appressoria in naïve leaves, which was significantly more intense in treated plants than in mock-treated controls. Moreover, a hypersensitive response (HR)-type reaction and enhanced expression of LpPrx (Prx, peroxidase), LpOXO4 (OXO, oxalate oxidase), LpPAL (PAL, phenylalanine ammonia lyase), LpLOXa (LOX, lipoxygenase), LpTHb (putative defensin) and LpDEFa (DEFa, putative defensin) in perennial ryegrass were associated with SPE-enriched surfactin and live AK3 cell treatments, acting as a second layer of defence when pre-invasive defence responses failed. The results indicate that ISR activity following surfactin perception may sensitize H2O2 -mediated defence responses, thereby providing perennial ryegrass with enhanced protection against M. oryzae. PMID:25285593

  7. Effect of contraceptive steroids on monoamine oxidase activity

    PubMed Central

    Southgate, Jennifer; Collins, G. G. S.; Pryse-Davies, J.; Sandler, M.

    1969-01-01

    Cyclical variations in monoamine oxidase activity during the human menstrual cycle, specific to the endometrium and modified in women undergoing contraceptive steroid treatment, may reflect changes in hormonal environment. Treatment of rats with individual constituents of the contraceptive pill causes analogous changes: oestrogens inhibit and progestogens potentiate uterine monoamine oxidase activity. ImagesFig. 2Fig. 3

  8. Xanthine oxidase inhibitors from Garcinia esculenta twigs.

    PubMed

    Zhu, Lun-Lun; Fu, Wen-Wei; Watanabe, Shimpei; Shao, Yi-Nuo; Tan, Hong-Sheng; Zhang, Hong; Tan, Chang-Heng; Xiu, Yan-Feng; Norimoto, Hisayoshi; Xu, Hong-Xi

    2014-12-01

    The EtOAc-soluble portion of the 80 % (v/v) EtOH extract from the twigs of Garcinia esculenta exhibited strong xanthine oxidase inhibition in vitro. Bioassay-guided purification led to the isolation of 1,3,6,7-tetrahydroxyxanthone (3) and griffipavixanthone (8) as the main xanthine oxidase inhibitors, along with six additional compounds (1, 2, 4-7), including two new compounds (1 and 2). This enzyme inhibition was dose dependent with an IC50 value of approximately 1.2 µM for 3 and 6.3 µM for 8. The inhibitory activity of 3 was stronger than the control allopurinol (IC50 value: 5.3 µM). To our knowledge, compound 8 is the first bixanthone that demonstrated potent XO inhibitory activity in vitro. The structures of the new compounds were established by spectroscopic analysis, and the optical properties and absolute stereochemistry of racemic (±) esculentin A (2) were further determined by the calculation of the DP4 probability and analysis of its MTPA ester derivatives. PMID:25340468

  9. Activation of antibacterial autophagy by NADPH oxidases

    PubMed Central

    Huang, Ju; Canadien, Veronica; Lam, Grace Y.; Steinberg, Benjamin E.; Dinauer, Mary C.; Magalhaes, Marco A. O.; Glogauer, Michael; Grinstein, Sergio; Brumell, John H.

    2009-01-01

    Autophagy plays an important role in immunity to microbial pathogens. The autophagy system can target bacteria in phagosomes, promoting phagosome maturation and preventing pathogen escape into the cytosol. Recently, Toll-like receptor (TLR) signaling from phagosomes was found to initiate their targeting by the autophagy system, but the mechanism by which TLR signaling activates autophagy is unclear. Here we show that autophagy targeting of phagosomes is not exclusive to those containing TLR ligands. Engagement of either TLRs or the Fcγ receptors (FcγRs) during phagocytosis induced recruitment of the autophagy protein LC3 to phagosomes with similar kinetics. Both receptors are known to activate the NOX2 NADPH oxidase, which plays a central role in microbial killing by phagocytes through the generation of reactive oxygen species (ROS). We found that NOX2-generated ROS are necessary for LC3 recruitment to phagosomes. Antibacterial autophagy in human epithelial cells, which do not express NOX2, was also dependent on ROS generation. These data reveal a coupling of oxidative and nonoxidative killing activities of the NOX2 NADPH oxidase in phagocytes through autophagy. Furthermore, our results suggest a general role for members of the NOX family in regulating autophagy. PMID:19339495

  10. Genomic Analysis of Xanthomonas oryzae Isolates from Rice Grown in the United States Reveals Substantial Divergence from Known X. oryzae Pathovars ▿ †

    PubMed Central

    Triplett, L. R.; Hamilton, J. P.; Buell, C. R.; Tisserat, N. A.; Verdier, V.; Zink, F.; Leach, J. E.

    2011-01-01

    The species Xanthomonas oryzae is comprised of two designated pathovars, both of which cause economically significant diseases of rice in Asia and Africa. Although X. oryzae is not considered endemic in the United States, an X. oryzae-like bacterium was isolated from U.S. rice and southern cutgrass in the late 1980s. The U.S. strains were weakly pathogenic and genetically distinct from characterized X. oryzae pathovars. In the current study, a draft genome sequence from two U.S. Xanthomonas strains revealed that the U.S. strains form a novel clade within the X. oryzae species, distinct from all strains known to cause significant yield loss. Comparative genome analysis revealed several putative gene clusters specific to the U.S. strains and supported previous reports that the U.S. strains lack transcriptional activator-like (TAL) effectors. In addition to phylogenetic and comparative analyses, the genome sequence was used for designing robust U.S. strain-specific primers, demonstrating the usefulness of a draft genome sequence in the rapid development of diagnostic tools. PMID:21515727

  11. The complex roles of NADPH oxidases in fungal infection

    PubMed Central

    Hogan, Deborah; Wheeler, Robert T.

    2014-01-01

    Summary NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signaling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signaling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell. PMID:24905433

  12. Ascorbic acid and L-gulonolactone oxidase in lagomorphs.

    PubMed

    Jenness, R; Birney, E C; Ayaz, K L

    1978-01-01

    1. The activity of L-gulonolactone oxidase (EC 1.1.3.8) in the liver of eastern cottontail rabbits (Sylvilagus floridanus) is about 10-fold greater in winter than in summer. 2. L-gulonolactone oxidase activity is low and tissue ascorbate high during all seasons in snowshoe hares (Lepus americanus). 3. Liver contents of ascorbate fall to low levels in L. americanus fed on rabbit chow in the laboratory. 4. The activity of L-gulonolactone oxidase in liver of Sylvilagus and Oryctolagus is depressed by feeding high levels of L-ascorbic acid. 5. The New Zealand White breed of domestic rabbit (Oryctolagus cuniculus) has considerably higher levels of L-gulonolactone oxidase and liver ascorbate than does the Dutch breed. 6. In a wild population of Oryctolagus sampled in Australia L-gulonolactone oxidase levels were intermediate between those of the two domestic breeds and more variable than either. PMID:318384

  13. Polymer pendant ligand chemistry. 3. A biomimetic approach to selective metal ion removal and recovery from aqueous solution with polymer-supported sulfonated catechol and linear catechol amide ligands

    SciTech Connect

    Huang, Song-Ping; Li, Wei; Franz, K.J.; Albright, R.L.; Fish, R.H.

    1995-05-24

    The design of organic ligands to selectively remove and recover metal ions from aqueous solution is a new and important area of environmental inorganic chemistry. One approach to designing organic ligands for these purposes is to use biological systems as examples for selective metal ion complexation. Thus, the authors report results on the synthesis of several biomimetically important polymer-supported, sulfonated catechol (PS-CATS), sulfonated bis(catechol) linear amide (PS-2-6-LICAMS), and sulfonated 3.3-linear tris(catechol) amide (PS-3,3-LICAMS) ligands that are chemically bonded to modified 6% cross-linked macroporous polystyrene-divinylbenzene beads (PS-DVB) for selective removal and recovery of environmentally and economically important metal ions from aqueous solution, as a function of pH. The Fe{sup 3+} ion selectivity was dramatically shown for PS-CATS, PS-2-6-LICAMS and PS-3,3-LICAMS polymer beads in competition with a similar concentration of Cu{sup 2+}, Zn{sup 2+}, Mn{sup 2+}, Ni{sup 2+}, Mg{sup 2+}, Al{sup 3+}, and Cr{sup 3+} ions at pH 1-3, while metal ion selectivity could be changed at higher pH values in the absence of Fe{sup 3+} (for example, Hg{sup 2+} at pH 3). Rates of removal and recovery of the Fe{sup 3+} ion with the PS-CATS, PS-2-6LICAMS and PS-3,3-LICAMS polymer beads were also studied as well as relative equilibrium selectivity coefficient (K{sub m}) values for all metal competition studies.

  14. Effect of hydrothermal processing on antioxidant contents and capacities in pigmented rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purple and red bran rice cultivars (Oryza sativa L.) are rich sources of antioxidants including lipophilic antioxidants (vitamin E homologues and '-oryzanol), soluble phenolics (including anthocyanidins and proanthocyanidins), and cell-wall-bound phenolics. This study investigated impacts of hydroth...

  15. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus.

    PubMed

    Sakamoto, J; Koga, E; Mizuta, T; Sato, C; Noguchi, S; Sone, N

    1999-04-21

    Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a

  16. Pharmacological profile of opicapone, a thirdgeneration nitrocatechol catechol-O-methyl transferase inhibitor, in the rat

    PubMed Central

    Bonifácio, M J; Torrão, L; Loureiro, A I; Palma, P N; Wright, L C; Soares-da-Silva, P

    2015-01-01

    Background and Purpose Catechol-O-methyltransferase (COMT) is an important target in the levodopa treatment of Parkinson's disease; however, the inhibitors available have problems, and not all patients benefit from their efficacy. Opicapone was developed to overcome those limitations. In this study, opicapone's pharmacological properties were evaluated as well as its potential cytotoxic effects. Experimental Approach The pharmacodynamic effects of opicapone were explored by evaluating rat COMT activity and levodopa pharmacokinetics, in the periphery through microdialysis and in whole brain. The potential cytotoxicity risk of opicapone was explored in human hepatocytes by assessing cellular ATP content and mitochondrial membrane potential. Key Results Opicapone inhibited rat peripheral COMT with ED50 values below 1.4 mg⋅kg−1 up to 6 h post-administration. The effect was sustained over the first 8 h and by 24 h COMT had not returned to control values. A single administration of opicapone resulted in increased and sustained plasma levodopa levels with a concomitant reduction in 3-O-methyldopa from 2 h up to 24 h post-administration, while tolcapone produced significant effects only at 2 h post-administration. The effects of opicapone on brain catecholamines after levodopa administration were sustained up to 24 h post-administration. Opicapone was also the least potent compound in decreasing both the mitochondrial membrane potential and the ATP content in human primary hepatocytes after a 24 h incubation period. Conclusions and Implications Opicapone has a prolonged inhibitory effect on peripheral COMT, which extends the bioavailability of levodopa, without inducing toxicity. Thus, it exhibits some improved properties compared to the currently available COMT inhibitors. PMID:25409768

  17. Oxygen-18 incorporation studies of the metabolism of phenytoin to the catechol.

    PubMed

    Billings, R E; Fischer, L J

    1985-01-01

    Phenytoin (PHT) is metabolized primarily to 5-(4-hydroxyphenyl)-5-phenylhydantoin (4-HPPH), a 3,4-dihydrodiol metabolite (DHD), and a catechol, 5-(3,4-dihydroxyphenyl)-5-phenylhydantoin (Cat). The objective of the present studies was to determine the mechanism of Cat formation. The experiments were conducted with isolated rat hepatocytes and the 9000g supernatant fraction of mouse liver. Incubations of PHT were done under an 18O2 atmosphere and the incorporation of 18O into 4-HPPH and Cat was determined by mass spectrometry. It was found that the amount of Cat formed relative to the amount of 4-HPPH and DHD formed varied among the enzyme sources employed. However, in all cases, most of Cat formed from PHT contained two atoms of 18O. These results show that PHT is converted to Cat primarily by hydroxylation of 4-HPPH rather than by oxidation of DHD. Cat formation via DHD would add an 16O atom from hydrolysis of a 3,4-epoxide. Only 14-36% of the Cat formed contained one atom of 18O and one atom of 16O. Kinetic studies of Cat formation from 4-HPPH and DHD with rat liver subcellular fractions showed that the Vmax is higher and the Km is an order of magnitude lower with 4-HPPH than with DHD. These data suggest that DHD is only slowly converted to Cat and provide an explanation for the paucity of Cat formation via DHD when PHT is incubated with intact cells. PMID:2861989

  18. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.

    PubMed

    He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng

    2016-05-01

    Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments. PMID:27190241

  19. Effect of a natural mineral-rich water on catechol-O-methyltransferase function.

    PubMed

    Bastos, Pedro; Araújo, João Ricardo; Azevedo, Isabel; Martins, Maria João; Ribeiro, Laura

    2014-01-01

    Catechol-O-methyltransferase (COMT) is a magnesium-dependent, catecholamine-metabolizing enzyme, whose impaired activity has been positively associated with cardiovascular diseases, particularly hypertension. Consumption of some natural mineral-rich waters has been shown to exert protective effects on cardiovascular risk factors, eg. by decreasing arterial blood pressure and blood lipids. However, the molecular mechanisms underlying these effects are still poorly understood. So, the aim of this work was to investigate the effect of natural mineral-rich water ingestion upon liver and adrenal glands COMT expression and activity in Wistar Han rats. Over a seven-week period, animals had access to one of the following three drinking solutions: 1) tap water (control group; TW), 2) tap water with added Na(+) (to make the same concentration as in the MW group (TWNaCl group), or 3) natural mineral-rich water [Pedras Salgadas(®), which is very rich in bicarbonate, and with higher sodium, calcium and magnesium content than control tap water (MW group)]. COMT expression and activity were determined by RT-PCR and HPLC-ED, respectively. A higher hepatic COMT activity was found in the MW group compared with the TW and TWNaCl groups. On the other hand, adrenal gland COMT mRNA expression decreased in the MW group compared to TW group. In conclusion, the ability of natural mineral-rich waters to increase hepatic COMT activity may eventually explain the positive cardiovascular effects associated with the consumption of some natural mineral-rich waters. PMID:25560240

  20. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase.

    PubMed

    Ghattas, Nesrine; Abidi, Ferid; Galai, Said; Marzouki, M Nejib; Salah, Abderraouf Ben

    2014-07-01

    Lipase extracted from Rhizopus oryzae was immobilized in alginate gel beads. The effects of the immobilization conditions, such as, alginate concentration, CaCl2 concentration and amount of initial enzyme on retained activity (specific activity ratio of entrapped active lipase to free lipase) were investigated. The optimal conditions for lipase entrapment were determined: 2% (w/v) alginate concentration, 100mM CaCl2 and enzyme ratio of 2000IU/mL.In such conditions, immobilized lipase by inclusion in alginate showed a highest stability and activity, on olive oil hydrolysis reaction where it could be reused for 10 cycles. After 15min of hydrolysis reaction, the mass composition of monoolein, diolein and triolein were about 78%, 10% and 12%. Hydrolysis' products purification by column chromatography lead to a successful separation of reaction compounds and provide a pure fraction of monoolein which is considered as the widest used emulsifier in food and pharmaceutical industries. PMID:24755261

  1. Cloning and characterization of two flavohemoglobins from Aspergillus oryzae

    SciTech Connect

    Zhou Shengmin; Fushinobu, Shinya; Nakanishi, Yoshito; Kim, Sang-Wan; Wakagi, Takayoshi; Shoun, Hirofumi

    2009-03-27

    Two flavohemoglobin (FHb) genes, fhb1 and fhb2, were cloned from Aspergillus oryzae. The amino acid sequences of the deduced FHb1 and FHb2 showed high identity to other FHbs except for the predicted mitochondrial targeting signal in the N-terminus of FHb2. The recombinant proteins displayed absorption spectra similar to those of other FHbs. FHb1 and FHb2 were estimated to be a monomer and a dimer in solution, respectively. Both of the isozymes exhibit high NO dioxygenase (NOD) activity. FHb1 utilizes either NADH or NADPH as an electron donor, whereas FHb2 can only use NADH. These results suggest that FHb1 and FHb2 are fungal counterparts of bacterial FHbs and act as NO detoxification enzymes in the cytosol and mitochondria, respectively. This study is the first to show that a microorganism contains two isozymes of FHb and that intracellular localization of the isozymes could differ.

  2. Cultivation characteristics of immobilized Aspergillus oryzae for kojic acid production.

    PubMed

    Kwak, M Y; Rhee, J S

    1992-04-15

    Aspergillus oryzae in situ grown from spores entrapped in calcium alginate gel beads was used for the production of kojic acid. The immobilized cells in flask cultures produced kojic acid in a linear proportion while maintaining the stable metabolic activity for a prolonged production period. Kojic acid was accumulated up to a high concentration of 83 g/L, at which the kojic acid began to crystallize, and, thus, the culture had to be replaced with fresh media for the next batch culture. The overall productivities of two consecutive cultivations were higher than that of free mycelial fermentation. However, the production rate of kojic acid by the immobilized cells was suddenly decreased with the appearance of central cavernae inside the immobilized gel beads after 12 days of the third batch cultivation. PMID:18601027

  3. Identification and Characterization of ABA Receptors in Oryza sativa

    PubMed Central

    He, Yuan; Hao, Qi; Li, Wenqi; Yan, Chuangye

    2014-01-01

    Abscisic acid (ABA) is an essential phytohormone that regulates plant stress responses. ABA receptors in Arabidopsis thaliana (AtPYLs) have been extensively investigated by structural, biochemical, and in vivo studies. In contrast, relatively little is known about the ABA signal transduction cascade in rice. Besides, the diversities of AtPYLs manifest that the information accumulated in Arabidopsis cannot be simply adapted to rice. Thus, studies on rice ABA receptors are compulsory. By taking a bioinformatic approach, we identified twelve ABA receptor orthologs in Oryza sativa (japonica cultivar-group) (OsPYLs), named OsPYL1–12. We have successfully expressed and purified OsPYL1–3, 6 and 10–12 to homogeneity, tested the inhibitory effects on PP2C in Oryza sativa (OsPP2C), and measured their oligomerization states. OsPYL1–3 mainly exhibit as dimers and require ABA to inhibit PP2C’s activity. On the contrary, OsPYL6 retains in the monomer-dimer equilibrium state and OsPYL10–11 largely exist as monomers, and they all display an ABA-independent phosphatase inhibition manner. Interestingly, although OsPYL12 seems to be a dimer, it abrogates the phosphatase activity of PP2Cs in the absence of ABA. Toward a further understanding of OsPYLs on the ABA binding and PP2C inhibition, we determined the crystal structure of ABA-OsPYL2-OsPP2C06 complex. The bioinformatic, biochemical and structural analysis of ABA receptors in rice provide important foundations for designing rational ABA-analogues and breeding the stress-resistant rice for commercial agriculture. PMID:24743650

  4. SOBIR1 contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis.

    PubMed

    Takahashi, Toshiharu; Shibuya, Haruki; Ishikawa, Atsushi

    2016-08-01

    The rate of entry of Magnaporthe oryzae into Arabidopsis pen2 sobir1 plants was significantly higher than that into pen2 plants. The length of the infection hyphae in pen2 sobir1 plants was significantly longer than that in pen2 plants. These results suggest that SOBIR1 is involved in both penetration and post-penetration resistance to M. oryzae in Arabidopsis. PMID:27023441

  5. Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose

    PubMed Central

    2014-01-01

    Background Kojic acid (5-Hydroxy-2-(hydroxymethyl)-4-pyrone) is one of the major secondary metabolites in Aspergillus oryzae. It is widely used in food, pharmaceuticals, and cosmetics. The production cost, however, is too high for its use in many applications. Thus, an efficient and cost-effective kojic acid production process would be valuable. However, little is known about the complete set of genes for kojic acid production. Currently, kojic acid is produced from glucose. The efficient production of kojic acid using cellulose as an inexpensive substrate would help establish cost-effective kojic acid production. Results A kojic acid transcription factor gene over-expressing the A. oryzae strain was constructed. Three genes related to kojic acid production in this strain were transcribed in higher amounts than those found in the wild-type strain. This strain produced 26.4 g/L kojic acid from 80 g/L glucose. Furthermore, this strain was transformed with plasmid harboring 3 cellulase genes. The resultant A. oryzae strain successfully produced 0.18 g/L of kojic acid in 6 days of fermentation from the phosphoric acid swollen cellulose. Conclusions Kojic acid was produced directly from cellulose material using genetically engineered A. oryzae. Because A. oryzae has efficient protein secretion ability and secondary metabolite productivity, an A. oryzae-based cell factory could be a platform for the production of various kinds of bio-based chemicals. PMID:24885968

  6. Rapid diversification of five Oryza AA genomes associated with rice adaptation

    PubMed Central

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L.; Gao, Li-Zhi

    2014-01-01

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm. PMID:25368197

  7. Random Mutagenesis of the Aspergillus oryzae Genome Results in Fungal Antibacterial Activity.

    PubMed

    Leonard, Cory A; Brown, Stacy D; Hayman, J Russell

    2013-01-01

    Multidrug-resistant bacteria cause severe infections in hospitals and communities. Development of new drugs to combat resistant microorganisms is needed. Natural products of microbial origin are the source of most currently available antibiotics. We hypothesized that random mutagenesis of Aspergillus oryzae would result in secretion of antibacterial compounds. To address this hypothesis, we developed a screen to identify individual A. oryzae mutants that inhibit the growth of Methicillin-resistant Staphylococcus aureus (MRSA) in vitro. To randomly generate A. oryzae mutant strains, spores were treated with ethyl methanesulfonate (EMS). Over 3000 EMS-treated A. oryzae cultures were tested in the screen, and one isolate, CAL220, exhibited altered morphology and antibacterial activity. Culture supernatant from this isolate showed antibacterial activity against Methicillin-sensitive Staphylococcus aureus, MRSA, and Pseudomonas aeruginosa, but not Klebsiella pneumonia or Proteus vulgaris. The results of this study support our hypothesis and suggest that the screen used is sufficient and appropriate to detect secreted antibacterial fungal compounds resulting from mutagenesis of A. oryzae. Because the genome of A. oryzae has been sequenced and systems are available for genetic transformation of this organism, targeted as well as random mutations may be introduced to facilitate the discovery of novel antibacterial compounds using this system. PMID:23983696

  8. Rapid diversification of five Oryza AA genomes associated with rice adaptation.

    PubMed

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L; Gao, Li-Zhi

    2014-11-18

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm. PMID:25368197

  9. Effects of fly ash and Helminthosporium oryzae on growth and yield of three cultivars of rice.

    PubMed

    Singh, Lamabam P; Siddiqui, Zaki A

    2003-01-01

    A 120-day greenhouse experiment was conducted to study the effects of various fly ash concentrations (0%, 20%, 40%, 60%, 80% and 100% vol/vol) with normal field soil and Helminthosporium oryzae on the growth and yield of three cultivars (Pusa Basmati, Pant-4 and Pant-10) of rice, Oryza sativa L. Application of 20% and 40% fly ash with soil caused a significant increase in plant growth and yield of all the three cultivars. Forty percent fly ash caused a higher increase in growth and yield than did 20%. Sixty percent, 80% and 100% fly ash had an adverse effect on growth and yield of all the three cultivars, the maximum being with 100% fly ash. Inoculation of H. oryzae had an adverse effect on the growth and yield, Pant-10 suffered higher damage by H. oryzae than Pusa Basmati and Pant-4. Pant-10 also exhibited higher infected leaf area and greater disease symptoms of H. oryzae than did Pusa Basmati and Pant-4. Plants grown in 100% fly ash suffered higher reductions in growth and yield with H. oryzae than plants grown in pure soil or in 20% or 40% fly ash. In general, plant growth was best in Pusa Basmati followed by Pant-4 and Pant-10, while yield was higher in Pant-4 followed by Pant-10 and Pusa Basmati. PMID:12421012

  10. Nucleotide sequence and expression of alpha-glucosidase-encoding gene (agdA) from Aspergillus oryzae.

    PubMed

    Minetoki, T; Gomi, K; Kitamoto, K; Kumagai, C; Tamura, G

    1995-08-01

    We have isolated an alpha-glucosidase(AGL)-encoding gene (agdA) from Aspergillus oryzae by heterologous hybridization using the corresponding Aspergillus niger gene as a probe. Southern hybridization analysis showed that the agdA gene is on a 5.0-kb ScaI fragment and there is a single copy in the A. oryzae chromosome. Comparison with the A. niger agdA gene indicated that the agdA gene contains three putative introns from 52 to 59 nucleotides long, and that it encodes 985 amino acid residues. The deduced amino acid sequence of A. oryzae AGL is 78% homologous with the A. niger AGL. The high degree of homology with the amino acid sequence bordering the putative catalytic residue of a number of AGL enzymes, and this enzyme suggests that Asp492 is a catalytic residue of A. oryzae AGL. The cloned gene was functional. Transformants of A. oryzae containing multiple copies of the cloned agdA gene showed a 6-16 fold increase in AGL activity. Like the Taka-amylase A and glucoamylase genes of A. oryzae, expression of the agdA gene was induced when maltose was provided as a carbon source, but expression was not induced by glucose. This result suggested that cis-element(s) involved in maltose induction may be also present in the agdA promoter region. PMID:7549103

  11. The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility

    PubMed Central

    Yang, Fenghuan; Tian, Fang; Chen, Huamin; Hutchins, William; Yang, Ching-Hong

    2015-01-01

    The PilZ domain proteins have been demonstrated to be one of the major types of receptors mediating cyclic di-GMP (c-di-GMP) signaling pathways in several pathogenic bacteria. However, little is known about the function of PilZ domain proteins in c-di-GMP regulation of virulence in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae. Here, the roles of PilZ domain proteins PXO_00049 and PXO_02374 in c-di-GMP binding, regulation of virulence and motility, and subcellular localization were characterized in comparison with PXO_02715, identified previously as an interactor with the c-di-GMP receptor Filp to regulate virulence. The c-di-GMP binding motifs in the PilZ domains were conserved in PXO_00049 and PXO_02374 but were less well conserved in PXO_02715. PXO_00049 and PXO_02374 but not PXO_02715 proteins bound to c-di-GMP with high affinity in vitro, and the R141 and R10 residues in the PilZ domains of PXO_00049 and PXO_02374, respectively, were crucial for c-di-GMP binding. Gene deletion of PXO_00049 and PXO_02374 resulted in significant increases in virulence and hrp gene transcription, indicating their negative regulation of virulence via type III secretion system expression. All mutants showed significant changes in sliding motility but not exopolysaccharide production and biofilm formation. In trans expression of the full-length open reading frame (ORF) of each gene in the relevant mutants led to restoration of the phenotype to wild-type levels. Moreover, PXO_00049 and PXO_02374 displayed mainly multisite subcellular localizations, whereas PXO_02715 showed nonpolar distributions in the X. oryzae pv. oryzae cells. Therefore, this study demonstrated the different functions of the PilZ domain proteins in mediation of c-di-GMP regulation of virulence and motility in X. oryzae pv. oryzae. PMID:25911481

  12. Ketoglutarate Transport Protein KgtP Is Secreted through the Type III Secretion System and Contributes to Virulence in Xanthomonas oryzae pv. oryzae

    PubMed Central

    Guo, Wei; Cai, Lu-Lu; Zou, Hua-Song; Ma, Wen-Xiu; Liu, Xi-Ling; Zou, Li-Fang; Li, Yu-Rong

    2012-01-01

    The phytopathogenic prokaryote Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight (BB) of rice and utilizes a type III secretion system (T3SS) to deliver T3SS effectors into rice cells. In this report, we show that the ketoglutarate transport protein (KgtP) is secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99A and localizes to the host cell membrane for α-ketoglutaric acid export. kgtP contained an imperfect PIP box (plant-inducible promoter) in the promoter region and was positively regulated by HrpX and HrpG. A kgtP deletion mutant was impaired in bacterial virulence and growth in planta; furthermore, the mutant showed reduced growth in minimal media containing α-ketoglutaric acid or sodium succinate as the sole carbon source. The reduced virulence and the deficiency in α-ketoglutaric acid utilization by the kgtP mutant were restored to wild-type levels by the presence of kgtP in trans. The expression of OsIDH, which is responsible for the synthesis of α-ketoglutaric acid in rice, was enhanced when KgtP was present in the pathogen. To our knowledge, this is the first report demonstrating that KgtP, which is regulated by HrpG and HrpX and secreted by the T3SS in Xanthomonas oryzae pv. oryzae, transports α-ketoglutaric acid when the pathogen infects rice. PMID:22685129

  13. Expression of the alternative oxidase complements cytochrome c oxidase deficiency in human cells

    PubMed Central

    Dassa, Emmanuel P; Dufour, Eric; Gonçalves, Sérgio; Paupe, Vincent; Hakkaart, Gertjan A J; Jacobs, Howard T; Rustin, Pierre

    2009-01-01

    Cytochrome c oxidase (COX) deficiency is associated with a wide spectrum of clinical conditions, ranging from early onset devastating encephalomyopathy and cardiomyopathy, to neurological diseases in adulthood and in the elderly. No method of compensating successfully for COX deficiency has been reported so far. In vitro, COX-deficient human cells require additional glucose, pyruvate and uridine for normal growth and are specifically sensitive to oxidative stress. Here, we have tested whether the expression of a mitochondrially targeted, cyanide-resistant, alternative oxidase (AOX) from Ciona intestinalis could alleviate the metabolic abnormalities of COX-deficient human cells either from a patient harbouring a COX15 pathological mutation or rendered deficient by silencing the COX10 gene using shRNA. We demonstrate that the expression of the AOX, well-tolerated by the cells, compensates for both the growth defect and the pronounced oxidant-sensitivity of COX-deficient human cells. PMID:20049701

  14. Computationally-Guided Optimization of a Docking Hit to Yield Catechol Diethers as Potent Anti-HIV Agents

    PubMed Central

    Bollini, Mariela; Domaoal, Robert A.; Thakur, Vinay V.; Gallardo-Macias, Ricardo; Spasov, Krasimir A.; Anderson, Karen S.; Jorgensen, William L.

    2011-01-01

    A 5-μM docking hit has been optimized to an extraordinarily potent (55 pM) non-nucleoside inhibitor of HIV reverse transcriptase. Use of free energy perturbation (FEP) calculations to predict relative free energies of binding aided the optimizations by identifying optimal substitution patterns for phenyl rings and a linker. The most potent resultant catechol diethers feature terminal uracil and cyanovinylphenyl groups. A halogen bond with Pro95 likely contributes to the extreme potency of compound 42. In addition, several examples are provided illustrating failures of attempted grafting of a substructure from a very active compound onto a seemingly related scaffold to improve its activity. PMID:22081993

  15. Simultaneous Detection and Estimation of Catechol, Hydroquinone, and Resorcinol in Binary and Ternary Mixtures Using Electrochemical Techniques

    PubMed Central

    Hossain, Md. Uzzal; Rahman, Md. Toufiqur; Ehsan, Md. Qamrul

    2015-01-01

    Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed with a glassy carbon electrode (GCE) modified with polyglutamic acid (PGA) on the three dihydroxybenzene isomers, catechol (CT), hydroquinone (HQ), and resorcinol (RS). At bare GCE, these isomers exhibited voltammograms with highly overlapped redox peaks that impeded their simultaneous detection in binary and ternary mixtures. On the contrary, at PGA modified GCE binary and ternary mixtures of the dihydroxybenzene isomers showed well-resolved redox peaks in both CV and DPV experiments. This resolving ability of PGA modified GCE proves its potential to be exploited as an electrochemical sensor for the simultaneous detection of these isomers. PMID:26770198

  16. In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase.

    PubMed

    Cao, Gen-Xia; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun; Wang, Guang-Li

    2016-01-01

    In this study, a simple and amplified colorimetric assay is developed for the detection of the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable oxidase mimetic of PO₄(3-)-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of 1-thio-β-d-glucose to give 1-thio-β-d-gluconic acid which spontaneously hydrolyzes to β-d-gluconic acid and H₂S; the generated H₂S instantly reacts with Cd(2+) in the presence of Na₃PO₄ to give PO₄(3-)-stabilized CdS QDs in situ. Under visible-light (λ ≥ 400 nm) stimulation, the PO₄(3-)-capped CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h⁺, (•)OH, O₂(•-) and a little H₂O₂, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO₄(3-)-capped CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a low detection limit of 6.6 μg/L. We believe the PO₄(3-)-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may find wide potential applications in biosensors. PMID:27409598

  17. Population genetic structure of Oryza rufipogon and Oryza nivara: implications for the origin of O. nivara.

    PubMed

    Liu, Rong; Zheng, Xiao-Ming; Zhou, Lian; Zhou, Hai-Fei; Ge, Song

    2015-10-01

    Ecological speciation plays a primary role in driving species divergence and adaptation. Oryza rufipogon and Oryza nivara are two incipient species at the early stage of speciation with distinct differences in morphology, life history traits and habitat preference, and therefore provide a unique model for the study of ecological speciation. However, the population genetic structure of the ancestral O. rufipogon has been controversial despite substantial study, and the origin of the derivative O. nivara remains unclear. Here, based on sequences of 10 nuclear and two chloroplast loci from 26 wild populations across the entire geographic ranges of the two species, we conducted comprehensive analyses using population genetics, phylogeography and species distribution modelling (SDM) approaches. In addition to supporting the two previously reported major subdivisions, we detected four genetically distinct groups within O. rufipogon and found no correlation between the genetic groups and either species identity or geographical regions. The SDM clearly showed substantial change in the distribution range of O. rufipogon in history, demonstrating that the repeated extinction and colonization of local populations due to multiple glacial-interglacial cycles during the Quaternary was most likely the main factor shaping the confounding population genetic structure of O. rufipogon. Moreover, we found significant differences between the two species in climate preferences, suggestive of an important role for climatic factors in the adaptation, persistence and expansion of O. nivara. Finally, based on the genetic pattern and dynamics of the O. nivara populations, we hypothesize that O. nivara might have independently originated multiple times from different O. rufipogon populations. PMID:26340227

  18. Phylogenetic analysis of Oryza rufipogon strains and their relations to Oryza sativa strains by insertion polymorphism of rice SINEs.

    PubMed

    Xu, Jian-Hong; Cheng, Chaoyang; Tsuchimoto, Suguru; Ohtsubo, Hisako; Ohtsubo, Eiichi

    2007-06-01

    Oryza rufipogon, the progenitor of the cultivated rice species Oryza sativa, is known by its wide intraspecific variation. In this study, we performed phylogenetic analyses of O. rufipogon strains and their relationships to O. sativa strains by using 26 newly identified p-SINE1 members from O. rufipogon strains, in addition to 23 members previously identified from O. sativa strains. A total of 103 strains of O. rufipogon and O. sativa were examined for the presence and absence of each of the p-SINE1 members at respective loci by PCR with a pair of primers that hybridize to the regions flanking each p-SINE1 member. A phylogenetic tree constructed on the basis of the insertion polymorphism of p-SINE1 members showed that O. rufipogon and O. sativa strains are classified into three groups. The first group consisted of O. rufipogon perennial strains mostly from China and O. sativa ssp. japonica strains, which included javanica strains forming a distinct subgroup. The second group consisted of almost all the O. rufipogon annual strains, a few O. rufipogon perennial strains and O. sativa ssp. indica strains. These groupings, in addition to other results, support the previous notion that annual O. rufipogon originated in the O. rufipogon perennial population, and that O. sativa originated polyphyletically in the O. rufipogon populations. The third group consisted of the other perennial strains and intermediate-type strains of O. rufipogon, in which the intermediate-type strains are most closely related to a hypothetical ancestor with no p-SINE1 members at the respective loci and to those belonging to the other rice species with the AA genome. This suggests that O. rufipogon perennial strains are likely to have originated from the O. rufipogon intermediate-ecotype population. PMID:17660692

  19. Expression of colSR Genes Increased in the rpf Mutants of Xanthomonas oryzae pv. oryzae KACC10859

    PubMed Central

    Noh, Young-Hee; Kim, Sun-Young; Han, Jong-Woo; Seo, Young-Su; Cha, Jae-Soon

    2014-01-01

    The rpf genes and colSXOO1207/colRXOO1208 were known to require for virulence of Xanthomonas oryzae pv. oryzae (Xoo). In Xoo KACC10331 genome, two more colS/colR genes, colSXOO3534 (raxH)/colRXOO3535 (raxR) and colSXOO3762/colRXOO3763 were annotated. The colSXOO3534/colRXOO3535 were known to control AvrXa21 activity and functions of colSXOO3762/colRXOO3763 were unknown in Xoo. To characterize the relationship between rpf and colS/colR genes, expression of colS/colR genes in Rpf mutants of Xoo were analyzed with quantitative reverse transcription PCR (qRT-PCR). Expressions of all three colS/colR genes increased in the rpfF mutant in which DSF synthesis is defective. Expression of colSXOO1207/colRXOO1208, colSXOO3534/colRXOO3535 and colSXOO3762/colRXOO3763 increased 2, 2–7, 3–13 folds respectively. Expression of colSXOO3534 and colSXOO3762 also increased 2–4 folds in the rpfG mutant in which the signal from DSF is no longer transferred to down-stream. Expression of the other colS/colR genes was not significantly changed in the rpfG mutant compared to the wild type. Since RpfF and RpfG are responsible for DSF synthesis and signal transfer from DSF to down-stream to regulate virulence gene expression, these results suggest that the DSF and DSF-mediated signal regulate negatively three colS/colR genes in Xoo. PMID:25289017

  20. Peptide mapping and amino acid sequencing of two catechol 1,2-dioxygenases (CD I1 and CD I2) from Acinetobacter lwoffii K24.

    PubMed

    Kim, S I; Ha, K S

    1997-10-31

    The partial amino acid sequences of two catechol 1,2-dioxygenases (CD I1 and CD I2) from Acinetobacter lwoffii K24 have been determined by analysis of peptides after cleavages with endopeptidase Lys-C, endopeptidase Glu-C, trypsin, and chemicals (cyanogen bromide and BNPS-skatole). They include 248 amino acid sequences (4 fragments) of CD I1 and 211 amino acid sequences (5 fragments) of CD I2. Two enzymes have more than 50% sequence homology with type I catechol 1,2-dioxygenases and less than 30% sequence homology with type II catechol 1,2-dioxygenases. Two enzymes have similar hydropathy profiles in the N-terminal region, suggesting that they have similar secondary structures. PMID:9387151

  1. NADPH Oxidases in Chronic Liver Diseases

    PubMed Central

    Jiang, Joy X.; Török, Natalie J.

    2015-01-01

    Oxidative stress is a common feature observed in a wide spectrum of chronic liver diseases including viral hepatitis, alcoholic, and nonalcoholic steatohepatitis. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are emerging as major sources of reactive oxygen species (ROS). Several major isoforms are expressed in the liver, including NOX1, NOX2, and NOX4. While the phagocytic NOX2 has been known to play an important role in Kupffer cell and neutrophil phagocytic activity and inflammation, the nonphagocytic NOX homologues are increasingly recognized as key enzymes in oxidative injury and wound healing. In this review, we will summarize the current advances in knowledge on the regulatory pathways of NOX activation, their cellular distribution, and their role in the modulation of redox signaling in liver diseases. PMID:26436133

  2. Degradation of pentachlorophenol by potato polyphenol oxidase.

    PubMed

    Hou, Mei-Fang; Tang, Xiao-Yan; Zhang, Wei-De; Liao, Lin; Wan, Hong-Fu

    2011-11-01

    In this study, polyphenol oxidase (PPO) was extracted from commercial potatoes. Degradation of pentachlorophenol by potato PPO was investigated. The experimental results show that potato PPO is more active in weak acid than in basic condition and that the optimum pH for the reaction is 5.0. The degradation of pentachlorophenol by potato PPO reaches a maximum at 298 K. After reaction for 1 h, the removal of both pentachlorophenol and total organic carbon is >70% with 6.0 units/mL potato PPO at pH 5.0 and 298 K. Pentachlorophenol can be degraded through dechlorination and ring-opening by potato PPO. The work demonstrates that pentachlorophenol can be effectively eliminated by crude potato PPO. PMID:21967325

  3. Visualization of monoamine oxidase in human brain

    SciTech Connect

    Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Pappas, N.; Shea, C.; MacGregor, R.R.; Logan, J.

    1996-12-31

    Monoamine oxidase is a flavin enzyme which exists in two subtypes, MAO A and MAO B. In human brain MAO B predominates and is largely compartmentalized in cell bodies of serotonergic neurons and glia. Regional distribution of MAO B was determined by positron computed tomography with volunteers after the administration of deuterium substituted [11C]L-deprenyl. The basal ganglia and thalamus exhibited the greatest concentrations of MAO B with intermediate levels in the frontal cortex and cingulate gyrus while lowest levels were observed in the parietal and temporal cortices and cerebellum. We observed that brain MAO B increases with are in health normal subjects, however the increases were generally smaller than those revealed with post-mortem studies.

  4. Drugs related to monoamine oxidase activity.

    PubMed

    Fišar, Zdeněk

    2016-08-01

    Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions. PMID:26944656

  5. NADPH Oxidases in Lung Health and Disease

    PubMed Central

    Bernard, Karen; Hecker, Louise; Luckhardt, Tracy R.; Cheng, Guangjie

    2014-01-01

    Abstract Significance: The evolution of the lungs and circulatory systems in vertebrates ensured the availability of molecular oxygen (O2; dioxygen) for aerobic cellular metabolism of internal organs in large animals. O2 serves as the physiologic terminal acceptor of mitochondrial electron transfer and of the NADPH oxidase (Nox) family of oxidoreductases to generate primarily water and reactive oxygen species (ROS), respectively. Recent advances: The purposeful generation of ROS by Nox family enzymes suggests important roles in normal physiology and adaptation, most notably in host defense against invading pathogens and in cellular signaling. Critical issues: However, there is emerging evidence that, in the context of chronic stress and/or aging, Nox enzymes contribute to the pathogenesis of a number of lung diseases. Future Directions: Here, we review evolving functions of Nox enzymes in normal lung physiology and emerging pathophysiologic roles in lung disease. Antioxid. Redox Signal. 20, 2838–2853. PMID:24093231

  6. Modeling dioxygen reduction at multicopper oxidase cathodes.

    PubMed

    Agbo, Peter; Heath, James R; Gray, Harry B

    2014-10-01

    We report a general kinetics model for catalytic dioxygen reduction on multicopper oxidase (MCO) cathodes. Our rate equation combines Butler-Volmer (BV) electrode kinetics and the Michaelis-Menten (MM) formalism for enzymatic catalysis, with the BV model accounting for interfacial electron transfer (ET) between the electrode surface and the MCO type 1 copper site. Extending the principles of MM kinetics to this system produced an analytical expression incorporating the effects of subsequent intramolecular ET and dioxygen binding to the trinuclear copper cluster into the cumulative model. We employed experimental electrochemical data on Thermus thermophilus laccase as benchmarks to validate our model, which we suggest will aid in the design of more efficient MCO cathodes. In addition, we demonstrate the model's utility in determining estimates for both the electronic coupling and average distance between the laccase type-1 active site and the cathode substrate. PMID:25188422

  7. Lysyl oxidase binds transforming growth factor-beta and regulates its signaling via amine oxidase activity.

    PubMed

    Atsawasuwan, Phimon; Mochida, Yoshiyuki; Katafuchi, Michitsuna; Kaku, Masaru; Fong, Keith S K; Csiszar, Katalin; Yamauchi, Mitsuo

    2008-12-01

    Lysyl oxidase (LOX), an amine oxidase critical for the initiation of collagen and elastin cross-linking, has recently been shown to regulate cellular activities possibly by modulating the functions of growth factors. In this study, we investigated the interaction between LOX and transforming growth factor-beta1 (TGF-beta1), a potent growth factor abundant in bone, the effect of LOX on TGF-beta1 signaling, and its potential mechanism. The specific binding between mature LOX and mature TGF-beta1 was demonstrated by immunoprecipitation and glutathione S-transferase pulldown assay in vitro. Both proteins were colocalized in the extracellular matrix in an osteoblastic cell culture system, and the binding complex was identified in the mineral-associated fraction of bone matrix. Furthermore, LOX suppressed TGF-beta1-induced Smad3 phosphorylation likely through its amine oxidase activity. The data indicate that LOX binds to mature TGF-beta1 and enzymatically regulates its signaling in bone and thus may play an important role in bone maintenance and remodeling. PMID:18835815

  8. Phagocyte NADPH oxidase and specific immunity.

    PubMed

    Cachat, Julien; Deffert, Christine; Hugues, Stephanie; Krause, Karl-Heinz

    2015-05-01

    The phagocyte NADPH oxidase NOX2 produces reactive oxygen species (ROS) and is a well-known player in host defence. However, there is also increasing evidence for a regulatory role of NOX2 in adaptive immunity. Deficiency in phagocyte NADPH oxidase causes chronic granulomatous disease (CGD) in humans, a condition that can also be studied in CGD mice. Clinical observations in CGD patients suggest a higher susceptibility to autoimmune diseases, in particular lupus, idiopathic thrombocytopenic purpura and rheumatoid arthritis. In mice, a strong correlation exists between a polymorphism in a NOX2 subunit and the development of autoimmune arthritis. NOX2 deficiency in mice also favours lupus development. Both CGD patients and CGD mice exhibit increased levels of immunoglobulins, including autoantibodies. Despite these phenotypes suggesting a role for NOX2 in specific immunity, mechanistic explanations for the typical increase of CGD in autoimmune disease and antibody levels are still preliminary. NOX2-dependent ROS generation is well documented for dendritic cells and B-lymphocytes. It is unclear whether T-lymphocytes produce ROS themselves or whether they are exposed to ROS derived from dendritic cells during the process of antigen presentation. ROS are signalling molecules in virtually any cell type, including T- and B-lymphocytes. However, knowledge about the impact of ROS-dependent signalling on T- and B-lymphocyte phenotype and response is still limited. ROS might contribute to Th1/Th2/Th17 cell fate decisions during T-lymphocyte activation and might enhance immunoglobulin production by B-lymphocytes. In dendritic cells, NOX2-derived ROS might be important for antigen processing and cell activation. PMID:25760962

  9. Evaluation of oxalate decarboxylase and oxalate oxidase for industrial applications.

    PubMed

    Cassland, Pierre; Sjöde, Anders; Winestrand, Sandra; Jönsson, Leif J; Nilvebrant, Nils-Olof

    2010-05-01

    Increased recirculation of process water has given rise to problems with formation of calcium oxalate incrusts (scaling) in the pulp and paper industry and in forest biorefineries. The potential in using oxalate decarboxylase from Aspergillus niger for oxalic acid removal in industrial bleaching plant filtrates containing oxalic acid was examined and compared with barley oxalate oxidase. Ten different filtrates from chemical pulping were selected for the evaluation. Oxalate decarboxylase degraded oxalic acid faster than oxalate oxidase in eight of the filtrates, while oxalate oxidase performed better in one filtrate. One of the filtrates inhibited both enzymes. The potential inhibitory effect of selected compounds on the enzymatic activity was tested. Oxalate decarboxylase was more sensitive than oxalate oxidase to hydrogen peroxide. Oxalate decarboxylase was not as sensitive to chlorate and chlorite as oxalate oxidase. Up to 4 mM chlorate ions, the highest concentration tested, had no inhibitory effect on oxalate decarboxylase. Analysis of the filtrates suggests that high concentrations of chlorate present in some of the filtrates were responsible for the higher sensitivity of oxalate oxidase in these filtrates. Oxalate decarboxylase was thus a better choice than oxalate oxidase for treatment of filtrates from chlorine dioxide bleaching. PMID:19763895

  10. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase

    SciTech Connect

    Atlow, S.C.; Bonadonna-Aparo, L.; Klibanov, A.M.

    1984-01-01

    A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial wastewater samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.

  11. Redox Cycling of Catechol Estrogens Generating Apurinic/Apyrimidinic Sites and 8-oxo-Deoxyguanosine via Reactive Oxygen Species Differentiates Equine and Human Estrogens

    PubMed Central

    Wang, Zhican; Chandrasena, Esala R.; Yuan, Yang; Peng, Kuan-wei; van Breemen, Richard B.; Thatcher, Gregory R. J.; Bolton, Judy L.

    2010-01-01

    Metabolic activation of estrogens to catechols and further oxidation to highly reactive o-quinones generates DNA damage including apurinic/apyrimidinic (AP) sites. 4-Hydroxyequilenin (4-OHEN) is the major catechol metabolite of equine estrogens present in estrogen replacement formulations, known to cause DNA strand breaks, oxidized bases, and stable and depurinating adducts. However, the direct formation of AP sites by 4-OHEN has not been characterized. In the present study, the induction of AP sites in vitro by 4-OHEN and the endogenous catechol estrogen metabolite, 4-hydroxyestrone (4-OHE) was examined by an aldehyde reactive probe assay. Both 4-OHEN and 4-OHE can significantly enhance the levels of AP sites in calf thymus DNA in the presence of the redox cycling agents, copper ion and NADPH. The B-ring unsaturated catechol 4-OHEN induced AP sites without added copper, whereas 4-OHE required copper. AP sites were also generated much more rapidly by 4-OHEN. For both catechol estrogens, the levels of AP sites correlated linearly with 8-oxo-dG levels, implying that depuriniation resulted from reactive oxygen species (ROS) rather than depurination of estrogen-DNA adducts. ROS modulators such as catalase which scavenges hydrogen peroxide and a Cu(I) chelator blocked the formation of AP sites. In MCF-7 breast cancer cells, 4-OHEN significantly enhanced the formation of AP sites with added NADH. In contrast, no significant induction of AP sites was detected in 4-OHE-treated cells. The greater redox activity of the equine catechol estrogen produces rapid oxidative DNA damage via ROS, which is enhanced by redox cycling agents and interestingly by NADPH-dependent quinone oxidoreductase (NQO1). PMID:20509668

  12. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  13. CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity

    PubMed Central

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  14. The terminal oxidase in the marine bacterium Pseudomonas nautica 617.

    PubMed

    Simpson, H; Denis, M; Malatesta, F

    1997-06-01

    The molecular properties of a novel membrane quinol oxidase from the marine bacterium Pseudomonas nautica 617 are presented. The protein contains 2b hemes/mole which may be distinguished by EPR spectroscopy but not by optical spectroscopy and electrochemistry. Respiration, though being cyanide insensitive, is not inhibited by carbon monoxide and oxygen reduction is carried out only half-way with production of hydrogen peroxide. The terminal oxidase represents, therefore, a unique example in the large family of terminal oxidases known up to date. PMID:9337488

  15. Identification of yeasts from clinical specimens by oxidase test.

    PubMed

    Kumar, S; Arora, B S; Mathur, M D

    2000-10-01

    A total of 100 yeasts and yeast like fungi isolates from clinical specimens were negative for oxidase production on Sabouraud dextrose agar. When grown on Columbia agar, chocolate agar, tryptose agar, Mueller-Hinton agar, brain heart infusion and a medium resembling Sabouraud's dextrose agar but with starch instead of dextrose, all the isolate of Candida albicans (55), C. guilliermondii (6), C. parapsilosis (14), C. tropicalis (6), C. pseudotropicalis (6) and Crytococcus neoformans (2) were positive for oxidase producation. Torulopsis glabrata (2), Saccharomyces cervisiae (2) and two out of seven isolates of C. krusei were negative for oxidase test. PMID:11344606

  16. Aiding and abetting roles of NOX oxidases in cellular transformation

    PubMed Central

    Block, Karen; Gorin, Yves

    2013-01-01

    NADPH oxidases of the NADPH oxidase (NOX) family are dedicated reactive oxygen species-generating enzymes that broadly and specifically regulate redox-sensitive signalling pathways that are involved in cancer development and progression. They act at specific cellular membranes and microdomains through the activation of oncogenes and the inactivation of tumour suppressor proteins. In this Review, we discuss primary targets and redox-linked signalling systems that are influenced by NOX-derived ROS, and the biological role of NOX oxidases in the aetiology of cancer. PMID:22918415

  17. Multilayered Polyelectrolyte Microcapsules: Interaction with the Enzyme Cytochrome C Oxidase

    PubMed Central

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R.; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A. M.; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties. PMID:25372607

  18. Bioavailability of phenanthrene in the presence of birnessite-mediated catechol polymers.

    PubMed

    Russo, Fabio; Rao, Maria A; Gianfreda, Liliana

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of aquatic and terrestrial environments. In soil, their fate may be affected by interactions with the soil biological community and soil colloids. This study was conducted to investigate the fate of phenanthrene (Phe), selected as a representative PAH, in simplified model systems, which simulate processes naturally occurring in soil. Phe was interacted with catechol (Cat), an orthodiphenol, and common intermediate in the microbial degradation of PAHs, and birnessite (Bir), an abiotic strong oxidative catalyst abundant in soil. Two experimental conditions were investigated: Cat (5 mM)+Bir (1 mg ml(-1))+Phe (0.05 mg ml(-1)) mixed at the same time and incubated for 24 h at 25 degrees C (Cat-Bir-Phe) and Cat+Bir incubated for 24 h at 25 degrees C before Phe addition and then incubated for a further 24 h (Cat-Bir+Phe). After incubation, the systems were analysed for residual Cat and Phe, supplied with a selected Phe-degrading mixed bacterial culture, and then the microbial degradation of Phe and the growth of cells were monitored. Complex phenomena simultaneously occurred. Cat was completely removed after a 24-h incubation with Bir, and no interference by Phe in the Bir-mediated transformation of Cat was observed. Elemental analysis and UV-Vis and Fourier transfer infrared spectra showed that Cat transformation by Bir produced soluble and insoluble polymeric aggregates involving Phe. The hydrocarbon also interacted with the surfaces of Bir either previously coated (Cat-Bir+Phe sample) or not by Cat polymers. When a Phe-degrading bacterial culture was added to the systems after Bir-mediated Cat polymerisation, a different behaviour was observed in terms of Phe consumption and bacterial growth, thus suggesting differentiated availability of Phe to the microbial cells. The hydrocarbon was completely transformed in the presence of Bir and/or Bir covered by Cat

  19. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    NASA Astrophysics Data System (ADS)

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-06-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin.

  20. Bioactive surface modification of metal oxides via catechol-bearing modular peptides: multivalent-binding, surface retention, and peptide bioactivity.

    PubMed

    Tang, Wen; Policastro, Gina M; Hua, Geng; Guo, Kai; Zhou, Jinjun; Wesdemiotis, Chrys; Doll, Gary L; Becker, Matthew L

    2014-11-19

    A series of multivalent dendrons containing a bioactive osteogenic growth peptide (OGP) domain and surface-binding catechol domains were obtained through solid phase synthesis, and their binding affinity to hydroxyapatite, TiO2, ZrO2, CeO2, Fe3O4 and gold was characterized using a quartz crystal microbalance with dissipation (QCM-d). Using the distinct difference in binding affinity of the bioconjugate to the metal oxides, TiO2-coated glass slides were selectively patterned with bioactive peptides. Cell culture studies demonstrated the bioavailability of the OGP and that OGP remained on the surface for at least 2 weeks under in vitro cell culture conditions. Bone sialoprotein (BSP) and osteocalcein (OCN) markers were upregulated 3-fold and 60-fold, respectively, relative to controls at 21 days. Similarly, 3-fold more calcium was deposited using the OGP tethered dendron compared to TiO2. These catechol-bearing dendrons provide a fast and efficient method to functionalize a wide range of inorganic materials with bioactive peptides and have the potential to be used in coating orthopaedic implants and fixation devices. PMID:25343707

  1. Construction of mussel-inspired coating via the direct reaction of catechol and polyethyleneimine for efficient heparin immobilization

    NASA Astrophysics Data System (ADS)

    Liu, Yujie; Luo, Rifang; Shen, Fangyu; Tang, Linlin; Wang, Jin; Huang, Nan

    2015-02-01

    Dopamine could self-polymerize to form the coating on various substrates and the co-existence of catechols and amines was crucial in performing such polymerization process. In this work, a mimetic approach of coating formation was carried out based on the co-polymerization of catechol (CA) and polyethyleneimine (PEI). Mussel-inspired CA/PEI coating was deposited on 316L stainless steel (SS). Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the successful coating formation. QCM measurement showed good affinity of heparin immobilization on CA/PEI coating surface ascribed to the amine groups. Herein, vascular cell-material interactions like endothelial cells (ECs) and smooth muscle cells (SMCs) were also investigated. Interestingly, CA/PEI and heparin modified coatings presented no cytotoxicity to ECs, however to a certain extent, decreased SMCs proliferation. Moreover, heparin-binding surface presented significant anti-platelet adhesion and activation properties. These results effectively suggested that the mussel-inspired CA/PEI coating might be promising when served as a platform for biomolecule immobilization.

  2. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes

    PubMed Central

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  3. Linking electrostatic effects and protein motions in enzymatic catalysis. A theoretical analysis of catechol o-methyltransferase.

    PubMed

    García-Meseguer, Rafael; Zinovjev, Kirill; Roca, Maite; Ruiz-Pernía, Javier J; Tuñón, Iñaki

    2015-01-22

    The role of protein motions in enzymatic catalysis is the subject of a hot scientific debate. We here propose the use of an explicit solvent coordinate to analyze the impact of environmental motions during the reaction process. The example analyzed here is the reaction catalyzed by catechol O-methyltransferase, a methyl transfer reaction from S-adenosylmethionine (SAM) to the nucleophilic oxygen atom of catecholate. This reaction proceeds from a charged reactant to a neutral product, and then a large electrostatic coupling with the environment could be expected. By means of a two-dimensional free energy surface, we show that a large fraction of the environmental motions needed to attain the transition state happens during the first stages of the reaction because most of the environmental motions are slower than changes in the substrate. The incorporation of the solvent coordinate in the definition of the transition state improves the transmission coefficient and the committor histogram in solution, while the changes are much less significant in the enzyme. The equilibrium solvation approach seems then to work better in the enzyme than in aqueous solution because the enzyme provides a preorganized environment where the reaction takes place. PMID:25159911

  4. Catechol-functionalized chitosan/iron oxide nanoparticle composite inspired by mussel thread coating and squid beak interfacial chemistry.

    PubMed

    Zvarec, Ondrej; Purushotham, Sreekanth; Masic, Admir; Ramanujan, Raju V; Miserez, Ali

    2013-08-27

    Biological materials offer a wide range of multifunctional and structural properties that are currently not achieved in synthetic materials. Herein we report on the synthesis and preparation of bioinspired organic/inorganic composites that mimic the key physicochemical features associated with the mechanical strengthening of both squid beaks and mussel thread coatings using chitosan as an initial template. While chitosan is a well-known biocompatible material, it suffers from key drawbacks that have limited its usage in a wider range of structural biomedical applications. First, its load-bearing capability in hydrated conditions remains poor, and second it completely dissolves at pH < 6, preventing its use in mild acidic microenvironments. In order to overcome these intrinsic limitations, a chitosan-based organic/inorganic biocomposite is prepared that mimics the interfacial chemistry of squid beaks and mussel thread coating. Chitosan was functionalized with catechol moieties in a highly controlled fashion and combined with superparamagnetic iron oxide (γ-Fe2O3) nanoparticles to give composites that represent a significant improvement in functionality of chitosan-based biomaterials. The inorganic/organic (γ-Fe2O3/catechol) interfaces are stabilized and strengthened by coordination bonding, resulting in hybrid composites with improved stability at high temperatures, physiological pH conditions, and acid/base conditions. The inclusion of superparamagnetic particles also makes the composites stimuli-responsive. PMID:23865752

  5. Tribological properties of self-assembled monolayers of catecholic imidazolium and the spin-coated films of ionic liquids.

    PubMed

    Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng

    2011-09-20

    A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. PMID:21834561

  6. Significance of the Henri-Michaelis-Menten theory in abiotic catalysis: catechol oxidation by δ-MnO 2

    NASA Astrophysics Data System (ADS)

    Naidja, A.; Huang, P. M.

    2002-05-01

    The Henri-Michaelis-Menten theory, for more than eight decades, was only restricted to homogeneous enzymatic catalysis. A mimic of an enzymatic kinetics based on the Henri-Michaelis-Menten concept was experimentally observed in heterogeneous catalysis in the present study with δ-MnO 2 as an abiotic catalyst in the oxidation of catechol (1,2-dihydroxybenzene). Using the derived linear forms of Lineweaver-Burk or Hofstee, the data show that similar to the enzyme tyrosinase, the kinetics of the catechol oxidation catalyzed by δ-MnO 2 can be described by the Henri-Michaelis-Menten equation, V0= VmaxS/( Km+ S), where Vmax is the maximum velocity and Km the concentration of the substrate ( S) corresponding to an initial velocity ( V0) half of Vmax. By analogy to the enzymatic kinetics, the parameters Vmax and Km for an heterogeneous abiotic catalysis were derived for the first time. Further, based on the concentration of the active centers of the mineral oxide, the kinetic constants kcat and kcat/ Km, respectively, representing the turnover frequency and the efficiency of the mineral catalyst, were also determined from the derived general rate equation of Briggs and Haldane. As an abiotic catalyst, δ-MnO 2 has a paramount role in the oxidation of phenolic compounds in soil, sediment and water environments. Therefore, the present observation is of fundamental and practical significance in elucidating the affinity between an abiotic catalyst and a substrate based on the Henri-Michaelis-Menten theory.

  7. The Influence of the Amide Linkage in the Fe(III) -Binding Properties of Catechol-Modified Rosamine Derivatives.

    PubMed

    Queirós, Carla; Leite, Andreia; G M Couto, Maria; Cunha-Silva, Luís; Barone, Giampaolo; de Castro, Baltazar; Rangel, Maria; M N Silva, André; M G Silva, Ana

    2015-10-26

    The two new fluorescent ligands RosCat1 and RosCat2 contain catechol receptors connected to rosamine platforms through an amide linkage and were synthesized by using microwave-assisted coupling reactions of carboxyl- or amine-substituted rosamines with the corresponding catechol units and subsequent deprotection. RosCat1 possesses a reverse amide, whereas RosCat2 has the usual oriented amide bond (HNCO vs. CONH, respectively). The ligands were characterized by means of NMR spectroscopy, mass-spectrometry, and DFT calculations and X-ray crystallography studies for RosCat1. The influence of the amide linkage on the photophysical properties of the fluorescent ligands was assessed in different solvents and showed a higher fluorescence quantum yield for RosCat1. The coordination chemistry of these ligands with a Fe(III) center has been rationalized by mass-spectrometric analysis and semiempirical calculations. Octahedral Fe(III) complexes were obtained by the chelation of three RosCat1 or RosCat2 ligands. Interestingly, the unconventional amide connectivity in RosCat1 imposes the formation of an eight-membered ring on the chelate complex through a "salicylate-type" mode of coordination. PMID:26493881

  8. Removal of Cu(II) from aqueous solution using synthetic poly(catechol-diethylenetriamine-p-phenylenediamine) particles.

    PubMed

    Liu, Qiang; Liu, Qinze; Ruan, Zining; Chang, Xiaoqing; Yao, Jinshui

    2016-07-01

    A novel poly(catechol-diethylenetriamine-pphenylenediamine)(PCEA) adsorbent was synthesized in methanol, with chelating groups supplied by catechol and diethylenetriamine, which showed a strong removal performance and efficient adsorption toward Cu(II) ions in aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Besides, factors such as adsorbent dosage, pH, initial ionic and metal concentrations, contact time, and temperature on the adsorption of Cu(II) were studied. The data revealed that the adsorption followed a pseudo-second order kinetic model and the adsorption rate was influenced by the intra-particle diffusion. Furthermore, the adsorption process followed the Langmuir isotherm model, and the maximum adsorption capacity (Qm) was 44.2mg/g at 298K in simulated wastewater. The value of ΔG (kJ/mol) and ΔH (kJ/mol) also demonstrated that the adsorption process was spontaneous and endothermic. Studies revealed that PCEA particles were powerful and stable for the removal of Cu(II) in water, and it could be directly applied to the Cu(II)-contaminated water. PMID:27057995

  9. Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes.

    PubMed

    Ku, Ming-Chun; Fang, Chieh-Ming; Cheng, Juei-Tang; Liang, Huei-Chen; Wang, Tzu-Fan; Wu, Chih-Hsing; Chen, Chiao-Chen; Tai, Jung-Hsiang; Chen, Shu-Hui

    2016-01-01

    Proteins, covalently modified by catechol estrogens (CEs), were identified recently from the blood serum of diabetic patients and referred to as estrogenized proteins. Estrogenization of circulating insulin may occur and affect its molecular functioning. Here, the chemical reactivity of CEs towards specific amino acid residues of proteins and the structural and functional changes induced by the estrogenization of insulin were studied using cyclic voltammetry, liquid chromatography-mass spectrometry, circular dichroism spectroscopy, molecular modeling, and bioassays. Our results indicate that CEs, namely, 2- and 4-hydroxyl estrogens, were thermodynamically and kinetically more reactive than the catechol moiety. Upon co-incubation, intact insulin formed a substantial number of adducts with one or multiple CEs via covalent conjugation at its Cys 7 in the A or B chain, as well as at His10 or Lys29 in the B chain. Such conjugation was coupled with the cleavage of inter-chain disulfide linkages. Estrogenization on these sites may block the receptor-binding pockets of insulin. Insulin signaling and glucose uptake levels were lower in MCF-7 cells treated with modified insulin than in cells treated with native insulin. Taken together, our findings demonstrate that insulin molecules are susceptible to active estrogenization, and that such modification may alter the action of insulin. PMID:27353345

  10. Metabolism of the endocrine disruptor pesticide-methoxychlor by human P450s: pathways involving a novel catechol metabolite.

    PubMed

    Hu, Yiding; Kupfer, David

    2002-09-01

    The metabolism of methoxychlor, a proestrogenic pesticide (endocrine disruptor), was investigated with cDNA expressed human cytochrome P450s and liver microsomes (HLM). In addition to 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M), 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M), and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M), a new metabolite was identified as 1,1,1-trichloro-2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M; previously assumed to be ring-OH-M) and as a key metabolic intermediate. A novel metabolic route was proposed involving methoxychlor O-demethylation to mono-OH-M, followed by bifurcation of the pathway, both leading to the same final product tris-OH-M: pathway a, mono-OH-M is demethylated to bis-OH-M, followed by ortho-hydroxylation forming tris-OH-M and pathway b, mono-OH-M is ortho-hydroxylated forming catechol-M that is O-demethylated forming tris-OH-M. Among the human cDNA-expressed P450s examined, CYP1A2, 2A6, 2C8, 2C9, 2C19, and 2D6 exhibited mainly O-demethylation, with CYP2C19 being the most catalytically competent. CYP3A4, 3A5, and rat 2B1 catalyzed primarily ortho-hydroxylation of mono-OH-M (CYP3A4 being catalytically the most active) but were weak in O-demethylation. CYP1A1, 1B1, 2E1, and 4A11 demonstrated little or no catalytic activity. CYP2B6 appeared unique, catalyzing effectively both O-demethylation and ortho-hydroxylation. Thus, CYP2B6 demethylated methoxychlor to mono-OH-M and ortho-hydroxylated the mono-OH-M forming catechol-M; however, 2B6 did not appreciably demethylate mono-OH-M or ortho-hydroxylate bis-OH-M, suggesting a narrow substrate specificity. CYP2C19-catalyzed demethylation of methoxychlor, mono-OH-M and catechol-M, demonstrating relatively good substrate affinity (K(m) = 0.23 - 0.41 microM). However, the 3A4 ortho-hydroxylation of mono-OH-M and bis-OH-M exhibited lower affinity, K(m) = 12 and 25 microM, respectively. Thus, a

  11. The quantitative regulation of the hrp regulator HrpX is involved in sugar-source-dependent hrp gene expression in Xanthomonas oryzae pv. oryzae.

    PubMed

    Ikawa, Yumi; Tsuge, Seiji

    2016-05-01

    In Xanthomonas oryzae pv. oryzae, the pathogen of bacterial leaf blight of rice, hrp gene expression is regulated by the key hrp regulators HrpG and HrpX. HrpG regulates hrpX and hrpA, and HrpX regulates the other hrp genes on hrpB-hrpF operons. We previously examined the expression of the HrpX-regulated hrp gene hrcU and demonstrated that hrp gene expression is highly induced in a certain nutrient-poor medium containing xylose. In the present study, we found that the induction level of HrpX-regulated hrp genes was higher in medium with xylose than in media with any other sugar sources (glucose, sucrose and fructose), but that expression of hrpG, hrpX and hrpA was independent of the sugar sources. In western blot analysis, the accumulation of HrpX was reduced in media with a sugar other than xylose, probably as a result of proteolysis, but the addition of xylose canceled this reduced accumulation of the protein. The results suggest that proteolysis of HrpX is an important hrp regulatory mechanism and that xylose specifically suppresses this proteolysis, resulting in active hrp gene expression in X. oryzae pv. oryzae. PMID:27020414

  12. The Oryza map alignment project: Construction, alignment and analysis of 12 BAC fingerprint/end sequence framework physical maps that represent the 10 genome types of genus Oryza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oryza Map Alignment Project (OMAP) provides the first comprehensive experimental system for understanding the evolution, physiology and biochemistry of a full genus in plants or animals. We have constructed twelve deep-coverage BAC libraries that are representative of both diploid and tetraploid...

  13. Natural variation of the rice blast resistance gene Pi-ta in Oryza species and its corresponding avirulence gene AVR-Pita in Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene prevents the infections of M. oryzae races containing the corresponding avirulence gene AVR-Pita in a gene-for-gene manner. Pi-ta is a putative NBS type major resistance gene, and can directly recognize the AVR-Pita putative metalloprotease in triggering effective resistance. We hav...

  14. Inhibition of plant and mammalian diamine oxidase by substrate analogues.

    PubMed

    Biegański, T; Osińska, Z; Masliński, C

    1982-04-01

    Imidazoles, aliphatic substrate analogues and the natural dipeptides, carnosine and anserine, were investigated as inhibitors of diamine oxidase from the pig kidney, human pregnancy plasma and pea seedlings. Imidazole, methylimidazoles, N-acetylimidazole, histamine and N tau-methylhistamine are relatively potent inhibitors of mammalian diamine oxidase showing no influence on plant enzymes. Anserine and carnosine are inhibitors of pig kidney and pea seedling enzymes. Ki values are 2 microM and 10 microM respectively. Investigated natural derivatives of putrescine and cadaverine have no influence on diamine oxidase of different origin. In conclusion, we present some evidence to suggest that mammalian diamine oxidase, despite a high reaction rate with putrescine, is better adapted to histamine oxidation, whereas for plant enzymes the diamines are preferred substrates. PMID:6805264

  15. [Heterogeneity of molecular forms of phenol oxidase from grape leaves].

    PubMed

    Pruidze, G N; Zaprometov, M N; Durmishidze, S V; Kintsurashvili, D F

    1983-07-01

    The substrate specificity and some kinetic properties of the monomeric (Mr = 26 000--35 000) and dimeric (Mr = 55 000--70 000) forms of phenol oxidase from vine leaves were studied. These forms possess different hydroxylating and o-diphenol oxidase activities. A kinetic analysis demonstrated that the monomeric form of the enzyme possesses a higher affinity for monophenols and can more effectively accomplish the hydroxylation reaction as compared to the dimeric one. During vine vegetation the ratio of molecular forms of phenol oxidase is altered manifesting itself in quantitative and qualitative changes of enzymatic activity. During plant maturation the dimeric fraction is predominant. The maturation process is associated with a sharp rise of the o-phenol oxidase activity, a disappearance of the hydroxylating activity and a substantial deceleration of phenol compounds production. PMID:6412775

  16. Expression, crystallization and preliminary X-ray crystallographic analysis of XometC, a cystathionine γ-lyase-like protein from Xanthomonas oryzae pv. oryzae

    SciTech Connect

    Ngo, Phuong-Thuy Ho; Kim, Jin-Kwang; Kim, Hyesoon; Jung, Junho; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Hee-Wan; Kang, Lin-Woo

    2008-08-01

    XometC, a cystathionine γ-lyase-like protein from X. oryzae pv. oryzae and an antibacterial drug-target protein against bacterial blight, was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of XometC crystals was carried out. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight of rice (Oryza sativa L.), one of the most devastating diseases of rice in most rice-growing countries. XometC, a cystathionine γ-lyase (CGL) like protein that is an antibacterial drug-target protein against Xoo, was cloned, expressed, purified and crystallized. CGL catalyzes the second step in the reverse-transsulfuration pathway, which is essential for the metabolic interconversion of the sulfur-containing amino acids cysteine and methionine. Crystals of two different shapes, plate-shaped and pyramid-shaped, diffracted to 2.9 and 3.2 Å resolution and belonged to the primitive orthogonal space group P2{sub 1}2{sub 1}2{sub 1} and the tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = 73.0, b = 144.9, c = 152.3 Å and a = b = 78.2, c = 300.7 Å, respectively. For the P2{sub 1}2{sub 1}2{sub 1} crystals, three or four monomers exist in the asymmetric unit with a corresponding V{sub M} of 3.02 or 2.26 Å{sup 3} Da{sup −1} and a solvent content of 59.3 or 45.7%. For the P4{sub 1} (or P4{sub 3}) crystals, four or five monomers exist in the asymmetric unit with a corresponding V{sub M} of 2.59 or 2.09 Å{sup 3} Da{sup −1} and a solvent content of 52.5 or 40.6%.

  17. Confirmation of a blocked amino terminus of sulfhydryl oxidase

    SciTech Connect

    Janolino, V.G.; Morrison-Rowe, S.J.; Swaisgood, H.E. )

    1990-09-01

    The isolation of sulfhydryl oxidase from bovine milk in a suitably pure form for sequencing was carried out by transient covalent affinity chromatography of diafiltered whey using cysteinylsuccinamidopropyl-glass as matrix. The glutathione-eluted proteins were separated by SDS-PAGE. By radiolabeling the affinity chromatography-purified enzyme with ({sup 14}C)iodoacetate before subjecting to SDS-PAGE, the sulfhydryl oxidase band was identified, because sulfhydryl oxidase is known to be inactivated by alkylation of one sulfhydryl group per mole. The results confirmed that sulfhydryl oxidase corresponds to the 85 ({plus minus} 5)-kDa band observed on SDS-PAGE. The protein band corresponding to radiolabeled sulfhydryl oxidase was recovered from SDS-PAGE gels by electrophoretic elution and by electroblotting on polyvinylidene difluoride membrane and subjected to gas phase sequencing. Precautions were taken during electrophoretic elution to prevent reactions that result in N-terminal blocking. Both methods of protein recovery yielded negative results when subjected to sequence analysis indicating that the N-terminus of sulfhydryl oxidase is blocked.

  18. Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis.

    PubMed

    Wiel, C; Augert, A; Vincent, D F; Gitenay, D; Vindrieux, D; Le Calvé, B; Arfi, V; Lallet-Daher, H; Reynaud, C; Treilleux, I; Bartholin, L; Lelievre, E; Bernard, D

    2013-01-01

    Cellular senescence, a stable proliferation arrest, is induced in response to various stresses. Oncogenic stress-induced senescence (OIS) results in blocked proliferation and constitutes a fail-safe program counteracting tumorigenesis. The events that enable a tumor in a benign senescent state to escape from OIS and become malignant are largely unknown. We show that lysyl oxidase activity contributes to the decision to maintain senescence. Indeed, in human epithelial cell the constitutive expression of the LOX or LOXL2 protein favored OIS escape, whereas inhibition of lysyl oxidase activity was found to stabilize OIS. The relevance of these in vitro observations is supported by in vivo findings: in a transgenic mouse model of aggressive pancreatic ductal adenocarcinoma (PDAC), increasing lysyl oxidase activity accelerates senescence escape, whereas inhibition of lysyl oxidase activity was found to stabilize senescence, delay tumorigenesis, and increase survival. Mechanistically, we show that lysyl oxidase activity favors the escape of senescence by regulating the focal-adhesion kinase. Altogether, our results demonstrate that lysyl oxidase activity participates in primary tumor growth by directly impacting the senescence stability. PMID:24113189

  19. Characterization of a novel lipolytic enzyme from Aspergillus oryzae.

    PubMed

    Koseki, Takuya; Asai, Shungo; Saito, Natsumi; Mori, Masayo; Sakaguchi, Yasuko; Ikeda, Kazutaka; Shiono, Yoshihito

    2013-06-01

    In this study, we report the characterization of a protein from Aspergillus oryzae, exhibiting sequence identity with paraben esterase from the genus Aspergillus. The coding region of 1,586 bp, including a 77-bp intron, encoded a protein of 502 amino acids. The gene without the signal peptide of 19 amino acids was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0-8.0 and 30 °C, respectively, and was stable at the pH range of 7.0-10.0 and up to 40 °C. The optimal substrate for hydrolysis by the purified recombinant protein, among a panel of α-naphthyl esters (C2-C16), was α-naphthyl butyrate (C4), with activity of 0.16 units/mg protein. The considerable hydrolytic activity of the purified recombinant enzyme toward tributyrin was determined. However, no paraben esterase activity was detected toward the ethyl, propyl, and butyl esters of 4-hydroxybenzoic acid. In addition, no activity was detected toward the methyl esters of ferulic, p-coumaric, caffeic, and sinapic acids that would indicate feruloyl esterase activity. PMID:23001008

  20. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Rahman, Hafizur; Yang, Juan; Xu, You-Ping; Munyampundu, Jean-Pierre; Cai, Xin-Zhong

    2016-01-01

    regulated the immunity triggered by flg22 and nonhost resistance to Xanthomonas oryzae pv. oryzae via repressing accumulation of reactive oxygen species probably by targeting CBP60G, EDS1, and NDR1 and involving SA pathway. PMID:26973658

  1. Phylogeny of Plant CAMTAs and Role of AtCAMTAs in Nonhost Resistance to Xanthomonas oryzae pv. oryzae

    PubMed Central

    Rahman, Hafizur; Yang, Juan; Xu, You-Ping; Munyampundu, Jean-Pierre; Cai, Xin-Zhong

    2016-01-01

    regulated the immunity triggered by flg22 and nonhost resistance to Xanthomonas oryzae pv. oryzae via repressing accumulation of reactive oxygen species probably by targeting CBP60G, EDS1, and NDR1 and involving SA pathway. PMID:26973658

  2. Pentachlorophenol sorption in nylon fiber and removal by immobilized Rhizopus oryzae ENHE.

    PubMed

    León-Santiestebán, Hugo; Meraz, Mónica; Wrobel, Kazimierz; Tomasini, Araceli

    2011-06-15

    This study describes pentachlophenol (PCP) sorption in nylon fiber in which Rhizopus oryzae ENHE was immobilized to remove the chemical compound. The experimental sorption data were analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm models using non-linear error functions to fit the experimental data to the three models. Results showed that the isotherm obtained from the data fitted the three models used. However, the g parameter from Redlich-Peterson model showed that the isotherm obtained approaches the Freundlich model. This support reached the sorption equilibrium concentration at 3mg PCPg(-1)nylon. To study PCP removal capability by R. oryzae ENHE and to eliminate the error caused by PCP sorbed by the nylon fiber during its quantification, nylon fiber at PCP equilibrium sorption concentration was used to immobilize R. oryzae ENHE. It was found that this fungus grew within nylon fiber cubes in presence or not of PCP, even when PCP caused growth inhibition. Maximum biomass accumulated into nylon cubes without PCP was of 32 mg biomass g(-1)nylon and into nylon cubes at PCP equilibrium concentration was of 18 mg g(-1)nylon. The results showed that R. oryzae ENHE immobilized into nylon fiber removed 88.6% and 92% of PCP in cultures with 12.5 and 25 mg PCPL(-1), as initial concentration, respectively. This is the first work to report that a zygomycete, such as R. oryzae ENHE, immobilized into nylon fiber kept its potential to remove PCP. PMID:21514996

  3. Analyses of Old “Prokaryotic” Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa

    PubMed Central

    Singh, Anupama; Jethva, Minesh; Singla-Pareek, Sneh L.; Pareek, Ashwani; Kushwaha, Hemant R.

    2016-01-01

    During evolution, various processes such as duplication, divergence, recombination, and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological, and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old “prokaryotic” proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s) in the two genomes. Our results suggest that with respect to their genome size, the fraction of old “prokaryotic” proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old “prokaryotic” proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old “prokaryotic” proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old “prokaryotic” proteins in Arabidopsis and Oryza sativa. PMID:27014324

  4. Mitochondrial Respiratory Pathways Inhibition in Rhizopus oryzae Potentiates Activity of Posaconazole and Itraconazole via Apoptosis

    PubMed Central

    Shirazi, Fazal; Kontoyiannis, Dimitrios P.

    2013-01-01

    The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA) and benzohydroxamate (BHAM), inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ) and itraconazole (ICZ) against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS), phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents. PMID:23696824

  5. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    PubMed

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes. PMID:23835170

  6. Autolysis of Aspergillus oryzae Mycelium and Effect on Volatile Flavor Compounds of Soy Sauce.

    PubMed

    Xu, Ning; Liu, Yaqi; Hu, Yong; Zhou, Mengzhou; Wang, Chao; Li, Dongsheng

    2016-08-01

    The autolyzed mycelia of Aspergillus oryzae are rich in proteins, nucleic acids, sugar, and other biomacromolecules, and are one of the main contributors to the flavor profile of commercially important fermented goods, including soy sauce and miso. We induced autolysis of the mycelia of A. oryzae over 1 to 10 d, and found that the maximum dissolved amounts of total protein and nucleic acid ratio accounted for 28.63% and 88.93%, respectively. The organic acid content, such as citric acid, tartaric acid, succinic acid, lactic acid, and acetic acid, initially increased and then decreased as autolysis progressed, corresponding to changes in pH levels. The main characteristic flavor compounds in soy sauce, namely, ethanol, 2-phenylethanol, and 2-methoxy-4-vinylphenol, were all detected in the autolysate. Subsequently, we tested the effect of adding mycelia of A. oryzae during the fermentation process of soy sauce for 60 d, and found that addition of 1.2‰ A. oryzae mycelia provided the richest flavor. Overall, our findings suggest that compounds found in the autolysate of A. oryzae may promote the flavor compounds of soy sauce, such as alcohols, aldehydes, phenols, and esters. PMID:27464006

  7. Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae

    PubMed Central

    2014-01-01

    Background The koji mold, Aspergillus oryzae is widely used for the production of industrial enzymes due to its particularly high protein secretion capacity and ability to perform post-translational modifications. However, systemic analysis of its secretion system is lacking, generally due to the poorly annotated proteome. Results Here we defined a functional protein secretory component list of A. oryzae using a previously reported secretory model of S. cerevisiae as scaffold. Additional secretory components were obtained by blast search with the functional components reported in other closely related fungal species such as Aspergillus nidulans and Aspergillus niger. To evaluate the defined component list, we performed transcriptome analysis on three α-amylase over-producing strains with varying levels of secretion capacities. Specifically, secretory components involved in the ER-associated processes (including components involved in the regulation of transport between ER and Golgi) were significantly up-regulated, with many of them never been identified for A. oryzae before. Furthermore, we defined a complete list of the putative A. oryzae secretome and monitored how it was affected by overproducing amylase. Conclusion In combination with the transcriptome data, the most complete secretory component list and the putative secretome, we improved the systemic understanding of the secretory machinery of A. oryzae in response to high levels of protein secretion. The roles of many newly predicted secretory components were experimentally validated and the enriched component list provides a better platform for driving more mechanistic studies of the protein secretory pathway in this industrially important fungus. PMID:24961398

  8. Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae.

    PubMed

    Huge-Jensen, B; Andreasen, F; Christensen, T; Christensen, M; Thim, L; Boel, E

    1989-09-01

    The cDNA encoding the precursor of the Rhizomucor miehei triglyceride lipase was inserted in an Aspergillus oryzae expression vector. In this vector the expression of the lipase cDNA is under control of the Aspergillus oryzae alpha-amylase gene promoter and the Aspergillus niger glucoamylase gene terminator. The recombinant plasmid was introduced into Aspergillus oryzae, and transformed colonies were selected and screened for lipase expression. Lipase-positive transformants were grown in a small fermentor, and recombinant triglyceride lipase was purified from the culture broth. The purified enzymatically active recombinant lipase (rRML) secreted from A. oryzae was shown to have the same characteristics with respect to mobility on reducing SDS-gels and amino acid composition as the native enzyme. N-terminal amino acid sequencing indicated that approximately 70% of the secreted rRML had the same N-terminal sequence as the native Rhizomucor miehei enzyme, whereas 30% of the secreted rRML was one amino acid residue shorter in the N-terminal. The recombinant lipase precursor, which has a 70 amino acid propeptide, is thus processed in and secreted from Aspergillus oryzae. We have hereby demonstrated the utility of this organism as a host for the production of recombinant triglyceride lipases. PMID:2586234

  9. Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357)

    PubMed Central

    Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj; Kildgaard, Sara; Frisvad, Jens Christian; Gotfredsen, Charlotte Held; Larsen, Thomas Ostenfeld

    2012-01-01

    Aspergillus oryzae and A. flavus are important species in industrial biotechnology and food safety and have been some of the first aspergilli to be fully genome sequenced. Bioinformatic analysis has revealed 99.5% gene homology between the two species pointing towards a large coherence in the secondary metabolite production. In this study we report on the first comparison of secondary metabolite production between the full genome sequenced strains of A. oryzae (RIB40) and A. flavus (NRRL 3357). Surprisingly, the overall chemical profiles of the two strains were mostly very different across 15 growth conditions. Contrary to previous studies we found the aflatrem precursor 13-desoxypaxilline to be a major metabolite from A. oryzae under certain growth conditions. For the first time, we additionally report A. oryzae to produce parasiticolide A and two new analogues hereof, along with four new alkaloids related to the A. flavus metabolites ditryptophenalines and miyakamides. Generally the secondary metabolite capability of A. oryzae presents several novel end products likely to result from the domestication process from A. flavus. PMID:24957367

  10. Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production.

    PubMed

    Xu, Qing; Liu, Ying; Li, Shuang; Jiang, Ling; Huang, He; Wen, Jianping

    2016-08-01

    Xylose is one of the most abundant lignocellulosic components, but it cannot be used by R. oryzae for fumaric acid production. Here, we applied high-throughput RNA sequencing to generate two transcriptional maps of R. oryzae following fermentation in glucose or xylose. The differential expression analysis showed that, genes involved in amino acid metabolism, fatty acid metabolism, and gluconeogenesis, were up-regulated in response to xylose. Moreover, we discovered the potential presence of oxidative stress in R. oryzae during xylose fermentation. To adapt to this unfavorable condition, R. oryzae displayed reduced growth and induce of a number of antioxidant enzymes, including genes involved in glutathione, trehalose synthesis, and the proteasomal pathway. These responses might divert the flow of carbon required for the accumulation of fumaric acid. Furthermore, using high-throughput RNA sequencing, we identified a large number of novel transcripts and a substantial number of genes that underwent alternative splicing. Our analysis provides remarkable insight into the mechanisms underlying xylose fermentation by R. oryzae. These results may reveal potential target genes or strategies to improve xylose fermentation. PMID:27170374

  11. Mitochondrial respiratory pathways inhibition in Rhizopus oryzae potentiates activity of posaconazole and itraconazole via apoptosis.

    PubMed

    Shirazi, Fazal; Kontoyiannis, Dimitrios P

    2013-01-01

    The incidence of mucormycosis has increased drastically in immunocompromised patients. Also the array of targets whose inhibition results in Mucorales death is limited. Recently, researchers identified mitochondria as important regulators of detoxification and virulence mechanisms in fungi. In this context, targeting the mitochondrial respiratory chain may provide a new platform for antifungal development. We hypothesized that targeting respiratory pathways potentiates triazoles activity via apoptosis. We found that simultaneous administration of antimycin A (AA) and benzohydroxamate (BHAM), inhibitors of classical and alternative mitochondrial pathways respectively, resulted in potent activity of posaconazole (PCZ) and itraconazole (ICZ) against Rhizopus oryzae. We observed cellular changes characteristic of apoptosis in R. oryzae cells treated with PCZ or ICZ in combination with AA and BHAM. The fungicidal activity of this combination against R. oryzae was correlated with intracellular reactive oxygen species accumulation (ROS), phosphatidylserine externalization, mitochondrial membrane depolarization, and increased caspase like activity. DNA fragmentation and condensation assays also revealed apoptosis of R. oryzae cells. These apoptotic features were prevented by the addition of the ROS scavenger N-acetyl-cysteine. Taken together, these findings suggest that the use of PCZ or ICZ in combination with AA and BHAM makes R. oryzae exquisitely sensitive to treatment with triazoles via apoptosis. This strategy may serve as a new model for the development of improved or novel antifungal agents. PMID:23696824

  12. Deletion of creB in Aspergillus oryzae Increases Secreted Hydrolytic Enzyme Activity

    PubMed Central

    Hunter, A. J.; Morris, T. A.; Jin, B.; Saint, C. P.

    2013-01-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes. PMID:23835170

  13. Functional elements of the promoter region of the Aspergillus oryzae glaA gene encoding glucoamylase.

    PubMed

    Hata, Y; Kitamoto, K; Gomi, K; Kumagai, C; Tamura, G

    1992-08-01

    Analysis was made of the promoter region of the Aspergillus oryzae glaA gene encoding glucoamylase. Northern blots using a glucoamylase cDNA as a probe indicated that the amount of mRNA corresponding to the glaA gene increased when expression was induced by starch or maltose. The promoter region of the glaA gene was fused to the Escherichia coli uidA gene, encoding beta-glucuronidase (GUS), and the resultant plasmid was introduced into A. oryzae. Expression of GUS protein in the A. oryzae transformants was induced by maltose, indicating that the glaA-GUS gene was regulated at the level of transcription in the presence of maltose. The nucleotide sequence 1.1 kb upstream of the glaA coding region was determined. A comparison of the nucleotide sequence of the A. oryzae glaA promoter with those of A. oryzae amyB, encoding alpha-amylase, and A. niger glaA showed two regions with similar sequences. Deletion and site-specific mutation analysis of these homologous regions indicated that both are essential for direct high-level expression when grown on maltose. PMID:1339327

  14. Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae

    NASA Astrophysics Data System (ADS)

    Ge, Mengyu; Li, Bin; Wang, Li; Tao, Zhongyun; Mao, Shengfeng; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2014-12-01

    Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) strains are closely related phenotypically and genetically, which make it difficult to differentiate between the two pathovars based on phenotypic and DNA-based methods. In this study, a fast and accurate method was developed based on the differences in MALDI-TOF MS and FTIR spectra between the two pathovars. MALDI-TOF MS analysis revealed that 9 and 10 peaks are specific to Xoo and Xoc, respectively, which can be used as biomarkers to identify and differentiate the two closely related pathovars. Furthermore, FTIR analysis showed that there is a significant difference in both the band frequencies and absorption intensity of various functional groups between the two pathovars. In particular, the 6 peaks at 3433, 2867, 1273, 1065, 983 and 951 cm-1 were specific to the Xoo strains, while one peak at 1572 cm-1 was specific to the Xoc strains. Overall, this study gives the first attempt to identify and differentiate the two pathovars of X. oryzae based on mass and FTIR spectra, which will be helpful for the early detection and prevention of the two rice diseases caused by both X. oryzae pathovars.

  15. Molecular aspects of monoamine oxidase B.

    PubMed

    Ramsay, Rona R

    2016-08-01

    Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B. PMID:26891670

  16. Origin and evolution of lysyl oxidases

    PubMed Central

    Grau-Bové, Xavier; Ruiz-Trillo, Iñaki; Rodriguez-Pascual, Fernando

    2015-01-01

    Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea – which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes. PMID:26024311

  17. Origin and evolution of lysyl oxidases.

    PubMed

    Grau-Bové, Xavier; Ruiz-Trillo, Iñaki; Rodriguez-Pascual, Fernando

    2015-01-01

    Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea - which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes. PMID:26024311

  18. MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.

    SciTech Connect

    FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.; WANG,G.J.; MACGREGOR,R.R.; DING,Y.S.

    2000-09-28

    PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and different cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.

  19. Photodynamic therapy using a protoporphyrinogen oxidase inhibitor.

    PubMed

    Fingar, V H; Wieman, T J; McMahon, K S; Haydon, P S; Halling, B P; Yuhas, D A; Winkelman, J W

    1997-10-15

    The use of endogenously created porphyrins as an alternative to photosensitizer injection for photodynamic therapy is a rapidly evolving area of study. One common method to induce porphyrin synthesis and accumulation in cells is the topical, oral, or parenteral administration of 5-aminolevulinic acid, a precursor for heme biosynthesis. Porphyrin accumulation may also be elicited by the use of enzyme inhibitors of the heme biosynthetic pathway. Groups of DBA/2 mice bearing SMT-F mammary tumors were placed on a diet containing 0-4000 ppm of a protoporphyrinogen oxidase inhibitor, FP-846. This agent blocks a critical step in porphyrin metabolism and results in elevated intracellular levels of protoporphyrin IX. Light treatment of tumors produced both initial and long-term regression that was dependent on the amount of inhibitor, the duration of inhibitor exposure to animals, and the amount of light used in PDT. Tumor regression occurred without significant destruction of normal tissues in the treatment field and without initial vascular constriction or blood flow stasis. Tumor cure in animals given 4000 ppm FP-846 in feed for 3 days and 300 J/cm2 602-670 nm light (23% cure) was similar to the response in animals given 10 mg/kg Photofrin and the same light dose (20%). PMID:9377568

  20. Analyzing the electrogenicity of cytochrome c oxidase.

    PubMed

    Kim, Ilsoo; Warshel, Arieh

    2016-07-12

    Measurements of voltage changes in response to charge separation within membrane proteins can offer fundamental information on spectroscopically "invisible" steps. For example, results from studies of voltage changes associated with electron and proton transfer in cytochrome c oxidase could, in principle, be used to discriminate between different theoretical models describing the molecular mechanism of proton pumping. Earlier analyses of data from these measurements have been based on macroscopic considerations that may not allow for exploring the actual molecular mechanisms. Here, we have used a coarse-grained model describing the relation between observed voltage changes and specific charge-transfer reactions, which includes an explicit description of the membrane, the electrolytes, and the electrodes. The results from these calculations offer mechanistic insights at the molecular level. Our main conclusion is that previously assumed mechanistic evidence that was based on electrogenic measurements is not unique. However, the ability of our calculations to obtain reliable voltage changes means that we have a tool that can be used to describe a wide range of electrogenic charge transfers in channels and transporters, by combining voltage measurements with other experiments and simulations to analyze new mechanistic proposals. PMID:27357681

  1. Molecularly "wired" cholesterol oxidase for biosensing.

    PubMed

    Leonida, Mihaela D; Aurian-Blajeni, Benedict

    2015-02-01

    The influence of several factors on the activity of cholesterol oxidase (ChOx) transiently exposed to a room temperature ionic liquid (RTIL) was studied. Presence of flavin adenine dinucleotide (FAD, prosthetic group of ChOx) during exposure to RTIL makes the procedure enzyme-friendly, while the use of RTIL (green reagent) makes it environmentally-friendly. Following exposure to RTIL and its subsequent removal, FAD becomes part of the molecular structure of the refolded protein (a molecular "wire"). This makes the procedure used here a molecular one. The factors studied were: FAD presence in RTIL during modification, water presence during exposure to RTIL, and ratio FAD:RTIL during "wiring". Performance parameters monitored were: enzyme activity before and after "wiring" (expressed as (dA/dt)/mg enzyme, and measured spectrophotometrically), peak current in an amperometric biosensor for cholesterol detection, and linearity of the biosensor response depending on cholesterol concentration. After RTIL removal, the modified enzyme (ME) retained a high percentage of the added FAD, which supplemented that of the native enzyme (functioning as a "wire" and enhancing electron transfer kinetics), and a fraction of the initial activity. Used in an amperometric biosensor, ME showed catalytic activity, linear behavior as a function of cholesterol concentration, and stability. PMID:25579496

  2. Monoamine oxidase: Radiotracer chemistry and human studies

    DOE PAGESBeta

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D.

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less

  3. Monoamine oxidase: Radiotracer chemistry and human studies

    SciTech Connect

    Fowler, Joanna S.; Logan, Jean; Shumay, Elena; Alia-Klein, Nelly; Wang, Gene-Jack; Volkow, Nora D.

    2015-03-01

    Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variables which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.

  4. An ultrafiltration assay for lysyl oxidase.

    PubMed

    Shackleton, D R; Hulmes, D J

    1990-03-01

    A modification of the original microdistillation assay for lysyl oxidase is described in which Amicon C-10 microconcentrators are used to separate, by ultrafiltration, the 3H-labeled products released from a [4,5-3H]-lysine-labeled elastin substrate. Enzyme activity is determined by scintillation counting of the ultrafiltrate, after subtraction of radioactivity released in the presence of beta-aminopropionitrile, a specific inhibitor of the enzyme. Conditions are described which optimize both the sensitivity and the efficient use of substrate. The assay shows linear inhibition of activity in up to 1 M urea; hence, as the enzyme is normally diluted in the assay, samples in 6 M urea can be assayed directly, without prior dialysis, and corrected for partial inhibition. Comparable results are obtained when enzyme activity is assayed by ultrafiltration or microdistillation. The assay is simple and convenient and, by using disposable containers throughout, it eliminates the need for time-consuming decontamination of radioactive glassware. PMID:1971160

  5. Catechol degradation on hematite/silica–gas interface as affected by gas composition and the formation of environmentally persistent free radicals

    PubMed Central

    Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan

    2016-01-01

    Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035–2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals. PMID:27079263

  6. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil

    NASA Astrophysics Data System (ADS)

    Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan

    2015-10-01

    This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil.

  7. Catechol degradation on hematite/silica-gas interface as affected by gas composition and the formation of environmentally persistent free radicals.

    PubMed

    Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan

    2016-01-01

    Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035-2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals. PMID:27079263

  8. Catechol degradation on hematite/silica–gas interface as affected by gas composition and the formation of environmentally persistent free radicals

    NASA Astrophysics Data System (ADS)

    Li, Hao; Guo, Huiying; Pan, Bo; Liao, Shaohua; Zhang, Di; Yang, Xikun; Min, Chungang; Xing, Baoshan

    2016-04-01

    Environmentally persistent free radicals (EPFRs) formed on a solid particle surface have received increasing attention because of their toxic effects. However, organic chemical fate regulated by EPFRs has rarely been investigated, and this information may provide the missing link in understanding their environmental behavior. Previous studies have suggested that the reduction of transition metals is involved in EPFRs formation. We thus hypothesize that an oxidative environment may inhibit EPFRs formation in particle-gas interface, which will consequently release free radicals and accelerate organic chemical degradation. Our result indicates that a 1% hematite coating on a silica surface inhibited catechol degradation in N2, especially at low catechol loadings on solid particles (SCT). However, under an O2 environment, catechol degradation decreased when SCT was <1 μg/mg but increased when SCT was >1 μg/mg. Stable organic free radicals were observed in the N2 system with g factors in the 2.0035–2.0050 range, suggesting the dominance of oxygen-centered free radicals. The introduction of O2 into the catechol degradation system substantially decreased the free radical signals and decreased the Fe(II) content. These results were observed in both dark and light irradiation systems, indicating the ubiquitous presence of EPFRs in regulating the fate of organic chemicals.

  9. Metabolism of Benzoic Acid by Bacteria: 3,5- Cyclohexadiene-1,2-Diol-1-Carboxylic Acid Is an Intermediate in the Formation of Catechol

    PubMed Central

    Reiner, Albey M.

    1971-01-01

    3,5-Cyclohexadiene-1,2-diol-1-carboxylic acid (1,2-dihydro-1,2-dihydroxy-benzoic acid) is converted enzymatically to catechol in cell extracts from Acinetobacter, Alcaligenes, Azotobacter, and three Pseudomonas species. This enzymatic activity is present only in cultures which have been grown in the presence of benzoic acid, and which convert benzoic acid to catechol rather than to protocatechuic acid. The reaction is assayed by the concomitant formation of reduced nicotinamide adenine dinucleotide from nicotinamide adenine dinucleotide. The conversion of [14C]benzoic acid to [14C]dihydrodihydroxybenzoic acid is demonstrated in cell extracts. A scheme for the conversion of benzoic acid to catechol in bacteria is presented, involving the formation of dihydrodihydroxybenzoic acid from benzoic acid by a dioxygenase which is unstable in cell extracts, followed by the dehydrogenation and decarboxylation of dihydrodihydroxybenzoic acid to catechol by a previously undescribed enzyme. Experiments with anthranilic acid and phthalic acid suggest that dihydrodihydroxybenzoic acid is a metabolite unique to benzoic acid metabolism. Two new methods for assaying benzoic acid dioxygenase are suggested. PMID:4399343

  10. Catechol-O-Methyltransferase "Val[superscript 158]Met" Genotype, Parenting Practices and Adolescent Alcohol Use: Testing the Differential Susceptibility Hypothesis

    ERIC Educational Resources Information Center

    Laucht, Manfred; Blomeyer, Dorothea; Buchmann, Arlette F.; Treutlein, Jens; Schmidt, Martin H.; Esser, Gunter; Jennen-Steinmetz, Christine; Rietschel, Marcella; Zimmermann, Ulrich S.; Banaschewski, Tobias

    2012-01-01

    Background: Recently, first evidence has been reported for a gene-parenting interaction (G x E) with regard to adolescent alcohol use. The present investigation set out to extend this research using the catechol-O-methyltransferase ("COMT") "Val[superscript 158]Met" polymorphism as a genetic susceptibility factor. Moreover, the current study…

  11. Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in Pseudomonas aeruginosa: an opportunity for siderophore-antibiotic conjugates development.

    PubMed

    Gasser, Véronique; Baco, Etienne; Cunrath, Olivier; August, Pamela Saint; Perraud, Quentin; Zill, Nicolas; Schleberger, Christian; Schmidt, Alexander; Paulen, Aurélie; Bumann, Dirk; Mislin, Gaëtan L A; Schalk, Isabelle J

    2016-03-01

    Previous studies have suggested that antibiotic vectorization by siderophores (iron chelators produced by bacteria) considerably increases the efficacy of such drugs. The siderophore serves as a vector: when the pathogen tries to take up iron via the siderophore, it also takes up the antibiotic. Catecholates are among the most common iron-chelating compounds used in synthetic siderophore-antibiotic conjugates. Using reverse transcription polymerase chain reaction and proteomic approaches, we showed that the presence of catecholate compounds in the medium of Pseudomonas aeruginosa led to strong activation of the transcription and expression of the outer membrane transporter PfeA, the ferri-enterobactin importer. Iron-55 uptake assays on bacteria with and without PfeA expression confirmed that catechol compounds imported iron into P. aeruginosa cells via PfeA. Uptake rates were between 0.3 × 10(3) and 2 × 10(3) Fe atoms/bacterium/min according to the used catechol siderophore in iron-restricted medium, and remained as high as 0.8 × 10(3) Fe atoms/bacterium/min for enterobactin, even in iron-rich medium. Reverse transcription polymerase chain reaction and proteomic approaches showed that in parallel to this switching on of PfeA expression, a repression of the expression of pyochelin (PCH) pathway genes (PCH being one of the two siderophores produced by P. aeruginosa for iron acquisition) was observed. PMID:26718479

  12. Cigarette smoke-induced DNA-damage: role of hydroquinone and catechol in the formation of the oxidative DNA-adduct, 8-hydroxydeoxyguanosine.

    PubMed

    Leanderson, P; Tagesson, C

    1990-01-01

    This study demonstrates the ability of cigarette smoke condensate to generate hydrogen peroxide and to hydroxylate deoxyguanosine (dG) residues in isolated DNA to 8-hydroxydeoxyguanosine (8-OHdG). Both the formation of hydrogen peroxide and that of 8-OHdG in DNA was significantly decreased when catalase or tyrosinase was added to the smoke condensates, and this also occurred when pure hydroquinone or catechol, two major constitutes in cigarette smoke, was used instead of smoke condensate. Moreover, pure hydroquinone and catechol both caused dose-dependent formation of hydrogen peroxide and 8-OHdG, and there was good correlation between the amounts of hydrogen peroxide and 8-OHdG formed. These findings suggest that (i) hydroquinone and catechol may be responsible for the ability of cigarette smoke to cause 8-OHdG formation in DNA, (ii) this oxidative DNA-damage is due to the action of hydroxyl radicals formed during dissociation of hydrogen peroxide and (iii) the hydrogen peroxide in cigarette smoke is generated via autooxidation of hydroquinone and catechol. PMID:2114224

  13. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil

    PubMed Central

    Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan

    2015-01-01

    This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil. PMID:26515132

  14. Promoter variation in the catechol-O-methyltransferase gene is associated with remission of symptoms during fluvoxamine treatment for major depression.

    PubMed

    Fukui, Naoki; Suzuki, Yutaro; Sugai, Takuro; Watanabe, Junzo; Ono, Shin; Tsuneyama, Nobuto; Someya, Toshiyuki

    2014-08-30

    We investigated the association between remission of depressive symptoms in fluvoxamine treatment and catechol-O-methyltransferase (COMT) gene. Sixteen SNPs in the COMT gene were investigated in 123 outpatients with major depression. Three single nucleotide polymorphisms located in the 5' region were associated with remission in fluvoxamine-treated outpatients with moderate to severe depression. PMID:24814141

  15. MOLECULAR MECHANISMS OF THE INSTABILITY OF AVIRULENCE GENE AVR-PITA IN RICE BLAST FUNGUS MAGNAPORTHE ORYZAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by Magnaporthe Oryzae, is one of the most serious diseases of rice worldwide. The Pi-ta gene in rice confers resistance to M. Oryzae isolates containing the corresponding avirulence gene AVR-Pita. In the southern U.S., rice cultivars containing Pi-ta have been widely utilized sinc...

  16. Characterizing virulence phenotypes among U.S. isolates of Magnaporthe oryzae using IRRI NILs, US germplasm, and NERICA lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease, caused by Magnaporthe oryzae, is a major constraint to rice production in most rice production areas, including the Southern U.S. In continued efforts to evaluate the effectiveness of resistance (R) genes, a total of 33 field and 12 U.S. reference isolates of M. oryzae were eval...

  17. Preliminary assessment of resistance among U.S. wheat cultivars to the Triticum pathotype of Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnaporthe oryzae is the causal agent of blast disease on several graminaceous plants. The M. oryzae population causing wheat blast has not been officially reported outside South America. U.S. wheat production is at risk to this pathogen if it is introduced and established. Proactive testing of U.S...

  18. rFTR1 is Required for Pathogenesis, and appears to be an Essential Gene, of Rhizopus oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Rhizopus oryzae is a multinucleated fungus responsible for the majority of cases of mucormycosis. The high affinity iron permease gene (rFTR1) is required for R. oryzae iron transport in iron-limited environments. We sought to disrupt the gene to define its role in virulence. METHODS: ...

  19. Expression profiling of common and specific defense responses of rice to Magnaporthe oryzae infection using deep sequencing technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast caused by Magnaporthe oryzae is a serious disease in rice production. Wild type Nipponbare and transgenic rice plants (carrying the Pi9 blast resistance gene) were challenged with the rice blast strain KJ201 to identify the early, mid and late host responses to M. oryzae infection at the ...

  20. Mapping two major resistance genes in an indica cultivar Zhe733 to the race IE-1K of Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) genes in rice confer resistance to races of Magnaporthe oryzae that contain the corresponding avirulence genes. The race IE-1K of M. oryzae recovered from the southern US overcomes R gene Pi-ta. The objectives of the present study were to identify new resistance sources to IE-1k an...