Science.gov

Sample records for oscillator strengths

  1. Oscillator strengths for OII ions

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.; Henry, J. W.

    1983-01-01

    Oscillator strengths between various doublet states of OII ions are calculated in which extensive multi-configuration wave functions are used. The lower levels for the transitions are of the 2p(3) D(2)o and 2p(3) 2po states, and the upper levels are 2p(4), 3s, and 3d states. The results, which are estimated to have errors of less than 10% for individual transitions, agree quite well with the beam foil experiments, as well as with the calculations by use of the non-closed shell many electron theory (NCMET). The agreement with the rocket measurements is also good except for the 538/581 A pair, in which the 538 A line is believed to be blend with the other stronger quartet line. However, a comparison with the recent branching ratio measurement indicates that discrepances between the present calculation and th experiment do exist for certain transistions.

  2. Oscillator strengths and collision strengths for S v

    NASA Technical Reports Server (NTRS)

    Van Wyngaarden, W. L.; Henry, R. J. W.

    1981-01-01

    Observations of the optical extreme-ultraviolet spectrum of the Jupiter planetary system during the Voyager space mission revealed bright emission lines of some sulfur ions. The spectra of the torus at the orbit of Io are likely to contain S V lines. The described investigation provides oscillator strengths and collision strengths for the first four UV lines. The collision strengths from the ground state to four other excited states are also obtained. Use is made of a two-state calculation which is checked for convergence for some transitions by employing a three-state or a four-state approximation. Target wave functions for S V are calculated so that the oscillator strengths calculated in dipole length and dipole velocity approximations agree within 5%.

  3. Observationally determined Fe II oscillator strengths

    NASA Astrophysics Data System (ADS)

    Shull, J. M.; van Steenberg, M.; Seab, C. G.

    1983-08-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  4. Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

    PubMed

    Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N

    2016-03-24

    The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing. PMID:26950828

  5. Atomic Oscillator Strengths for Stellar Atmosphere Modeling

    NASA Astrophysics Data System (ADS)

    Ruffoni, Matthew; Pickering, Juliet C.

    2015-08-01

    In order to correctly model stellar atmospheres, fundamental atomic data must be available to describe atomic lines observed in their spectra. Accurate, laboratory-measured oscillator strengths (f-values) for Fe peak elements in neutral or low-ionisation states are particularly important for determining chemical abundances.However, advances in astronomical spectroscopy in recent decades have outpaced those in laboratory astrophysics, with the latter frequently being overlooked at the planning stages of new projects. As a result, numerous big-budget astronomy projects have been, and continue to be hindered by a lack of suitable, accurately-measured reference data to permit the analysis of expensive astronomical spectra; a problem only likely to worsen in the coming decades as spectrographs at new facilities increasingly move to infrared wavelengths.At Imperial College London - and in collaboration with NIST, Wisconsin University and Lund University - we have been working with the astronomy community in an effort to provide new accurately-measured f-values for a range of projects. In particular, we have been working closely with the Gaia-ESO (GES) and SDSS-III/APOGEE surveys, both of which have discovered that many lines that would make ideal candidates for inclusion in their analyses have poorly defined f-values, or are simply absent from the database. Using high-resolution Fourier transform spectroscopy (R ~ 2,000,000) to provide atomic branching fractions, and combining these with level lifetimes measured with laser induced fluorescence, we have provided new laboratory-measured f-values for a range of Fe-peak elements, most recently including Fe I, Fe II, and V I. For strong, unblended lines, uncertainties are as low as ±0.02 dex.In this presentation, I will describe how experimental f-values are obtained in the laboratory and present our recent work for GES and APOGEE. In particular, I will also discuss the strengths and limitations of current laboratory

  6. Experimentally Measured Radiative Lifetimes and Oscillator Strengths in Neutral Vanadium

    NASA Astrophysics Data System (ADS)

    Holmes, C. E.; Pickering, J. C.; Ruffoni, M. P.; Blackwell-Whitehead, R.; Nilsson, H.; Engström, L.; Hartman, H.; Lundberg, H.; Belmonte, M. T.

    2016-06-01

    We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm‑1 and 37,518 cm‑1 and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify those measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm‑1.

  7. Oscillator strengths for ionized iron and manganese

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Pottasch, S. R.; Morton, D. C.; York, D. G.

    1974-01-01

    The observed strengths of interstellar absorption lines of Fe II and Mn II in the spectra of alpha Vir, beta Cen, pi Sco, and zeta Oph along with laboratory f values of some of these lines between 2343 and 2606 A have been used to determine curves of growth for these ions and the f-values of ten lines of Fe II and three lines of Mn II between 1055 and 1261 A. The Fe and Mn abundances are derived.

  8. Measurement of Atomic Oscillator Strength Distribution from the Excited States

    SciTech Connect

    Hussain, Shahid; Saleem, M.; Baig, M. A.

    2008-10-22

    Saturation technique has been employed to measure the oscillator strength distribution in spectra of helium lithium using an electrical discharge cell a thermionic diode ion detector respectively. The photoabsorption cross sections in the discrete or bound region (commonly known as f-values) have been determined form the Rydberg series accessed from a particular excited state calibrating it with the absolute value of the photoionization cross section measured at the ionization threshold. The extracted discrete f-values merge into the oscillator strength densities, estimated from the measured photoionization cross sections at different photon energies above the first ionization threshold. The experimental data on helium and lithium show continuity between the discrete and the continuous oscillator strengths across the ionization threshold.

  9. PREFACE: Atomic Spectra and Oscillator Strengths (ASOS9) Atomic Spectra and Oscillator Strengths (ASOS9)

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2009-05-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy by Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and Physics Department of Lund University, 7-10 August 2007, and was attended by 99 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume of Physica Scripta contains contributions from the invited presentations of the conference. For the first time, papers from the ASOS9 poster presentations have been made feely available online in a complementary volume of Journal of Physics: Conference Series. With these two volumes the character of ASOS9 is more evident, and together they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy, where both the providers and the users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, which includes fusion energy and lighting research. The oral presentations, all but one of which are presented in this volume, provided an extensive synopsis of techniques currently in use and those that are being planned. New to ASOS9 was the extent to which techniques such as cold, trapped atoms and molecules and frequency combs are

  10. Determining the Strength of an Electromagnet through Damped Oscillations

    ERIC Educational Resources Information Center

    Thompson, Michael; Leung, Chi Fan

    2011-01-01

    This article describes a project designed to extend sixth-form pupils looking to further their knowledge and skill base in physics. This project involves a quantitative analysis of the decaying amplitude of a metal plate oscillating in a strong magnetic field; the decay of the amplitude is used to make estimates of the strength of the magnetic…

  11. Oscillator strengths for a Li I 207-A laser.

    PubMed

    Nussbaumer, H

    1980-06-01

    Atomic data crucial for a proposed 207-A lithium laser have been calculated in a multiconfiguration approximation. The values obtained for the intercombination oscillator strengths ls2s2p 4 P(o)-1s2p2 2P are approximately a factor of 15 smaller than those assumed in the proposal of Harris [Opt. Lett. 5,1 (1980)]. PMID:19693180

  12. Oscillator strengths between fine structure levels of Fe xxiii

    NASA Astrophysics Data System (ADS)

    Tully, J. A.; Chidichimo, M. C.

    2001-01-01

    We tabulate theoretical line strengths, f-values and transition energies for the beryllium-like ion Fe xxiii. Transitions are between levels 2l_1 2l_2 S'L'J' and 2l_3 nl_4 SLJ with n = 2, 3, 4. The calculation uses the well known configuration interaction program CIV3 in which relativistic effects are allowed for by means of the Breit-Pauli approximation. We give a detailed comparison of our oscillator strengths with those which Chen & Ong (\\cite{Chen98}) obtained using the relativistic Dirac code GRASP2. Tables 1 to 17 are only available in electronic form at http://www.edpsciences.org

  13. Oscillator strength trends in group IVb homologous ions

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Bengtson, R. D.

    1978-01-01

    Shock tube data are used to examine the systematic f value behavior in prominent visible transition arrays (ns-np, np-(n+l)s, np-nd) for the homologous emitter sequence Si 11, Ge 11, Sn 11, and Pb 11. Regularities found for these data are compared with trends in lighter elements. Agreements and s disparities with theoretical and experimental oscillator strengths from the literature are noted.

  14. Oscillator strengths and transition probabilities for the W xlv ion

    NASA Astrophysics Data System (ADS)

    Spencer, S.; Hibbert, A.; Ramsbottom, C. A.

    2014-12-01

    In this paper we present oscillator strengths and transition probabilities for W xlv transitions between levels arising from configurations 3d104s2,4p2,4d2, 3d104k4l (k = s,p,d,f and l = p,d,f), 3d94s24l (l = p,d,f) and 3d94s4p2. The model used to calculate these contained all configurations which can be constructed from the available orbitals (up to n = 4), with either a 3d10 or 3d9 core. The calculations were performed with the configuration interaction CIV3 program with the inclusion of relativistic effects achieved through the use of the Breit-Pauli approximation. We compare our ab initio energy levels, oscillator strengths and transition rates with other experimental and theoretical values available in the literature. There is generally good agreement when only levels with 3d10 cores are considered. The literature is sparse for levels in which the 3d-subshell is opened: for the majority of the fine-structure lines considered, there is either no comparison data available or substantial differences are found. This paper also investigates how the inclusion of relativistic effects can result in a significant redistribution of the oscillator strength from the LS calculations.

  15. Oscillator strengths for Ar VII, Ca IX and Fe XV

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1986-01-01

    The excitation energies and oscillator strengths are calculated for electric-dipole-allowed and intercombination transitions between 3s2 1S, 3s3p(1,3)P0, 3p2 3P, 1D, 1S and 3s3d(1,3)D states in Ar VII, Ca IX, and Fe XV ions of the magnesium sequence. These states are represented by the fairly large configuration-interaction expansions. The calculations have been carried out in both LS and intermediate coupling schemes. The relativistic corrections have been included through the Breit-Pauli Hamiltonian. The results are compared with previous theoretical calculations and with measurements.

  16. Weighted oscillator strengths for the Xe IV spectrum

    SciTech Connect

    Raineri, M. Lagorio, C.; Padilla, S.; Gallardo, M.; Reyna Almandos, J.

    2008-01-15

    The weighted oscillator strengths, gf, of 769 previously reported classified spectral lines, and 49 new observed and also classified lines belonging to the 5s{sup 2}5p{sup 3}, 5s5p{sup 4}, 5s{sup 2}5p{sup 2}(6p + 4f), and 5s{sup 2}5p{sup 2}(5d + 6s) transitions array in Xe IV, were determined through a multiconfigurational Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-square procedure in order to improve the adjustment to experimental energy levels.

  17. Accurate oscillator strengths for interstellar ultraviolet lines of Cl I

    NASA Technical Reports Server (NTRS)

    Schectman, R. M.; Federman, S. R.; Beideck, D. J.; Ellis, D. J.

    1993-01-01

    Analyses on the abundance of interstellar chlorine rely on accurate oscillator strengths for ultraviolet transitions. Beam-foil spectroscopy was used to obtain f-values for the astrophysically important lines of Cl I at 1088, 1097, and 1347 A. In addition, the line at 1363 A was studied. Our f-values for 1088, 1097 A represent the first laboratory measurements for these lines; the values are f(1088)=0.081 +/- 0.007 (1 sigma) and f(1097) = 0.0088 +/- 0.0013 (1 sigma). These results resolve the issue regarding the relative strengths for 1088, 1097 A in favor of those suggested by astronomical measurements. For the other lines, our results of f(1347) = 0.153 +/- 0.011 (1 sigma) and f(1363) = 0.055 +/- 0.004 (1 sigma) are the most precisely measured values available. The f-values are somewhat greater than previous experimental and theoretical determinations.

  18. Photoionization cross sections and oscillator strengths of neutral cesium

    NASA Astrophysics Data System (ADS)

    Haq, S. U.; Nadeem, Ali; Nawaz, M.

    2012-11-01

    The absolute photoionization cross sections from the 6p 2P1/2 excited state of cesium at threshold and above the threshold region have been measured using the saturation absorption technique. The photoionization cross section at the ionization threshold is determined as 22.6±3.6 Mb, whereas in the region above threshold its value ranges from 22 to 20 Mb for photoelectron energies up to 0.1 eV. A comparison of the photoionization cross sections with earlier reported theoretical and experimental data have been presented and are in good agreement within the uncertainty. In addition, the oscillator strengths of the 6p 2P1/2→n d 2D3/2 (21≤n≤60) Rydberg transitions of cesium have been calibrated using the threshold value of the photoionization cross section. A complete picture of the oscillator strengths from the present work and previously reported data from n=5-60 is presented.

  19. Fe I oscillator strengths for the Gaia-ESO survey

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; Den Hartog, E. A.; Lawler, J. E.; Brewer, N. R.; Lind, K.; Nave, G.; Pickering, J. C.

    2014-07-01

    The Gaia-ESO Public Spectroscopic Survey (GES) is conducting a large-scale study of multi-element chemical abundances of some 100 000 stars in the Milky Way with the ultimate aim of quantifying the formation history and evolution of young, mature and ancient Galactic populations. However, in preparing for the analysis of GES spectra, it has been noted that atomic oscillator strengths of important Fe I lines required to correctly model stellar line intensities are missing from the atomic data base. Here, we present new experimental oscillator strengths derived from branching fractions and level lifetimes, for 142 transitions of Fe I between 3526 and 10 864 Å, of which at least 38 are urgently needed by GES. We also assess the impact of these new data on solar spectral synthesis and demonstrate that for 36 lines that appear unblended in the Sun, Fe abundance measurements yield a small line-by-line scatter (0.08 dex) with a mean abundance of 7.44 dex in good agreement with recent publications.

  20. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  1. Lifetimes and Oscillator Strengths for Ultraviolet Transitions in Pb II

    NASA Astrophysics Data System (ADS)

    Heidarian, N.; Irving, R. E.; Ritchey, A. M.; Federman, S. R.; Ellis, D. G.; Cheng, S.; Curtis, L. J.; Furman, W. A.

    2015-05-01

    Interpreting astronomical observations of atomic ions requires knowledge of their oscillator strengths and transition rates. Also, in order to understand the atomic structure for these ions, experimental lifetimes are necessary to confirm theoretical predictions. We present the results of lifetime measurements taken with the Toledo Heavy-Ion Accelerator using beam-foil techniques on levels of astrophysical interest in Pb II producing lines of 1203.6 Å and 1433.9 Å (6 s 6p2 2D3 / 2 and 6s2 6 d 2D3 / 2 , respectively). Oscillator strengths are derived from the lifetimes, and our experimental results will be compared with theoretical calculations obtained by others as well as astronomical observations. The measurements may guide us toward understanding the relativistic effects involved in these energy levels better. This work was supported by Grant HST-AR-12123.001-A from the Space Telescope Science Institute and W.A.F. was supported by the Research Experiences for Undergraduates (REU) Program of the National Science Foundation under Award Number 1262810.

  2. New Accurate Oscillator Strengths and Electron Excitation Collision Strengths for N1

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2006-01-01

    The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N(I) lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strength over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s(sup 2)p(sup 3) (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0), 2s2p(sup 4) (sup 4)P, 2s(sup 2)2p(sup 2)3s (sup 4)P, and (sup 2)P terms and from these levels to the levels of the 2s(sup 2)2p(sup 2)3p (sup 2)S(sup 0), (sup 4)D(sup 0), (sup 4)P(sup 0), (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0),2s(sup 2)2p(sup 2)3s(sup 2)D, 2s(sup 2)2p(sup 2)4s(sup 4)P, (sup 2)P, 2s(sup 2)2p(sup 2)3d(sup 2)P, (sup 4)F,(sup 2)F,(sup 4)P, (sup 4)D, and (sup 2)D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.

  3. Generalized oscillator strengths and photoionization of alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Tiwary, S. N.; Nicolaides, C. A.

    1984-10-01

    Calculations of the continuum generalized oscillator strengths (CGOS) for ns → kp dipole transitions as a function of the momentum transfer K and the photoionization cross sections σ nl of the light alkali-metal atoms (Li, Na and K, with n = 2, 3, 4 respectively) have been performed within the framework of the first Born approximation (FBA) and the Vainshtein approximation (VPSA) employing Hartree-Fock (HF) wave functions. Also the influence of core-polarization is examined. Our present results exhibit the existence of the minimum and the maximum in the CGOS curve, the Cooper minimum in the σ nl curves of Na and K, the important role of core-polarization and finally, the dependence of the VPSA CGOS on the incident energy.

  4. Oscillator strengths of the Si II 181 nanometer resonance multiplet

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    We report Si II experimental log (gf)-values of -2.38(4) for the 180.801 nm line, of -2.18(4) for the 181.693 nm line, and of -3.29(5) for the 181.745 nm line, where the number in parentheses is the uncertainty in the last digit. The overall uncertainties (about 10 percent) include the 1 sigma random uncertainty (about 6 percent) and an estimate of the systematic uncertainty. The oscillator strengths are determined by combining branching fractions and radiative lifetimes. The branching fractions are measured using standard spectroradiometry on an optically thin source; the radiative lifetimes are measured using time-resolved laser-induced fluorescence.

  5. Oscillator Strengths of Allowed and Intercombination Transitions in Neutral Sulfur

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1998-01-01

    We have calculated oscillator strengths and transition probabilities of electric-dipole allowed and intercombination transitions from fine-structure levels of the ground 3s(sup 2)3p(sup 4) configuration to the levels belonging to configurations 3s(sup 2)3p(sup 3)4s, 3s(sup 2) 3p(sup 3)5s, 3(sup 2)3p(sup 3)3d, 3s(sup 2)3p(sup 3)4d of neutral sulfur. Extensive configuration-interaction wave functions are used to represent these levels. The relativistic corrections have been included through the Breit-Pauli Hamiltonian. The results are compared with previous theoretical calculations and with measurements.

  6. Oscillator Strengths for Fine-Structure Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1997-01-01

    Oscillator strengths and transition probabilities for transitions among the fine-structure levels of the terms belonging to the 3s(sup 2)3p(sup 2), 3s3p(sup 3), 3s(sup 2)3p3d, 3s(sup 2)3p4s, 3s(sup 2)3p4p, and 3s(sup 2)3p4d configurations of S III are calculated using extensive configuration-interaction wave functions. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the experimental values. The present results are compared with other available calculations and experiments.

  7. Atomic Oscillator Strengths by Emission Spectroscopy and Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Wiese, W. L.; Griesmann, U.; Kling, R.; Musielok, J.

    2002-11-01

    Over the last seven years, we have carried out numerous oscillator strength measurements for some light and medium heavy elements (Musielok et al. 1995, 1996, 1997, 1999, 2000; Veres & Wiese 1996; Griesmann et al. 1997; Bridges & Wiese 1998; Kling et al. 2001; Kling & Gries- mann 2000; Bridges & Wiese to be published). Most recently we have determined numerous transitions of Mu II (Kling et al. 2001; Kling & Griesmann 2000) and are now working on Cl I (Bridges & Wiese to be published). See the summary statement at the end of the text. For the emission measurements, we have applied either a high-current wall-stabilized arc (described for example, in Musielok et al. (1999)), or a high-current hollow cathode, or a Penning discharge. The latter two sources were used for branching ratio measurements from common upper 1ev- els, while the wall-stabilized arc was operated at atmospheric pressure under the condition of partial local thermodynamic equilibrium, which allows the measurement of relative transition probabilities. Absolute data were obtained by combining the emission results with lifetime data measured by other research groups, especially the University of Hannover, with which we have closely collaborated. This group uses the laser induced fluorescence (LIF) technique. Our emission spectra were recorded for the light elements with a 2 m grating spectrometer, or, for Mu II, with an FT 700 vacuum ultraviolet Fourier transform spectrometer. The radiometric calibration was carried out with a tungsten strip lamp for the visible part of the spectrum and with a deuterium lamp for the ultraviolet. All measurements were made under optically thin conditions, which was checked by doubling the path length with a focusing mirror setup. Typical uncertainties of the measured oscillator strengths are estimated to be in the range 15%-20% (one-standard deviation). However, discrepancies with advanced atomic structure theories are sometimes much larger. In Tables 1-3 and Fig. 1, we

  8. An asymptotic expression for the dipole oscillator strength for transitions of the He sequence

    NASA Technical Reports Server (NTRS)

    Khandelwal, G. S.; Khan, F.; Wilson, J. W.

    1989-01-01

    The radial integral for 1s2 1S-1s np 1P transitions of the He isoelectronic sequence is asymptotically expanded to order n exp -7 to facilitate calculations of the dipole oscillator strength for large n. The threshold differential oscillator strength values are obtained for ions up to Z = 30 within the screened hydrogenic model.

  9. Experimental oscillator strengths of highly excited levels of Mo II

    NASA Astrophysics Data System (ADS)

    Aragón, C.; Aguilera, J. A.; Ortiz, M.; Mayo-García, R.

    2016-05-01

    Measurements of 161 oscillator strengths arising from highly excited levels of Mo II are presented, 148 of which are obtained for the first time. These results extend the previous ones already published on lower excited levels of Mo II. A laser-induced plasma generated from a fused glass sample prepared from molybdenum oxide with a Mo atomic concentration of 0.1% was used to obtain the presented radiative parameters via laser-induced breakdown spectroscopy. Measurements were carried out with an electron density of (2.5 ± 0.1) · 1017 cm‑3 and an electron temperature of 14 400 ± 200 K as the plasma evolved in air at atmospheric pressure. As a consequence, an optically thin plasma and a local thermodynamic equilibrium environment were then present in the measurements. In order to put on an absolute scale the relative intensities, both the combination of branching fractions with measured lifetimes and the comparison of well-known lines using the plasma temperature were carried out. Also, the new results are compared with previously theoretical and obtained experimental values wherever possible.

  10. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  11. Oscillator strength of impurity doped quantum dots: Influence of Gaussian white noise

    NASA Astrophysics Data System (ADS)

    Pal, Suvajit; Ganguly, Jayanta; Saha, Surajit; Ghosh, Manas

    2015-10-01

    We make a rigorous analysis of profiles of oscillator strength of a doped quantum dot in the presence and absence of noise. The noise employed here is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been administered additively and multiplicatively to the system. A perpendicular magnetic field is also present and a static external electric field has been applied. Profile of OS has been minutely monitored with variation of several important quantities such as confinement energy, electric field strength, dopant location, magnetic field strength, dopant potential, noise strength, Al concentration, and mode of application of noise. The profiles are enriched with significant subtleties and often reveal enhancement and maximization of oscillator strength in the presence of noise. These observations are indeed useful in the study of linear and nonlinear optical properties of doped QD systems which bear sufficient technological importance.

  12. Oscillator Strengths of Vibrionic Excitations of Nitrogen Determined by the Dipole (γ, γ) Method

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Wei; Kang, Xu; Xu, Long-Quan; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2016-03-01

    The oscillator strengths of the valence-shell excitations of molecular nitrogen have significant applicational values in studies of the Earth's atmosphere and interstellar gases. In this work, the absolute oscillator strengths of the valence-shell excitations of molecular nitrogen in 12.3-13.4 eV were measured by the novel dipole (γ, γ) method, in which the high-resolution inelastic X-ray scattering is operated at a negligibly small momentum transfer and can simulate the photoabsorption process. Because the experimental technique used in the present work is distinctly different from those used previously, the present experimental results give an independent cross-check to previous experimental and theoretical data. The excellent coincidence of the present results with the dipole (e, e) and those that were extrapolated indicates that the present oscillator strengths can serve as benchmark data.

  13. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  14. Oscillator Strengths and Predissociation Widths for Rydberg Transitions in Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.; Sheffer, Y.; Eidelsberg, Michele; Lemaire, Jean-Louis; Fillion, Jean-Hugues; Rostas, Francois; Ruiz, J.

    2006-01-01

    CO is used as a probe of astronomical environments ranging from planetary atmospheres and comets to interstellar clouds and the envelopes surrounding stars near the end of their lives. One of the processes controlling the CO abundance and the ratio of its isotopomers is photodissociation. Accurate oscillator strengths for Rydberg transitions are needed for modeling this process. Absorption bands were analyzed by synthesizing the profiles with codes developed independently in Meudon and Toledo. Each synthetic spectrum was adjusted to match the experimental one in a non-linear least-squares fitting procedure with the band oscillator strength, the line width (instrumental and predissociation.

  15. Experimental and theoretical investigations of absolute optical oscillator strengths for valence excitations of nitric oxide

    NASA Astrophysics Data System (ADS)

    Zhu, Lin-Fan; Zhong, Zhi-Ping; Yuan, Zhen-Sheng; Zhang, Wei-Hua; Liu, Xiao-Jing; Jiang, Xi-Man; Xu, Ke-Zun; Li, Jia-Ming

    2002-11-01

    The absolute optical oscillator strength density spectra of nitric oxide in the energy region of 5.0-22.0 eV have been measured by a high-resolution fast-electron energy loss spectrometer. With the calculated results obtained by the multiscattering self-consistent-field method and channel characteristics, the strongly overlapped spectra in the energy region of 7.5-9.3 eV have been analysed and the corresponding partially vibrationally resolved optical oscillator strengths have been estimated from the experimental spectra.

  16. Level Energies, Oscillator Strengths and Lifetimes for Transitions in Pb IV

    SciTech Connect

    Colon, C.; Alonso-Medina, A.; Zanon, A.; Albeniz, J.

    2008-10-22

    Oscillator strengths for several lines of astrophysical interest arising from some configurations and some levels radiative lifetimes of Pb IV have been calculated. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. We use for the IC calculations the standard method of least square fitting of experimental energy levels by means of computer codes from Cowan. Transition Probabilities and oscillator strengths obtained, although in general agreement with the rare experimental data, do present some noticeable discrepancies that are studied in the text.

  17. Observationally determined Fe II oscillator strengths. [interstellar and quasar absorption spectra

    NASA Technical Reports Server (NTRS)

    Van Steenberg, M.; Shull, J. M.; Seab, C. G.

    1983-01-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  18. Oscillator strengths for Y I and Y II and the solar abundance of yttrium

    SciTech Connect

    Hannaford, P.; Lowe, R.M.; Grevesse, N.; Biemont, E.; Whaling, W.

    1982-10-15

    Oscillator strengths have been determined from measurements of radiative lifetimes and branching ratios for 154 lines of Y I and 66 lines of Y II. These data are used, together with equivalent widths measured on the Jungfraujoch solar atlas, to perform a new determination of the solar abundance of yttrium: A/sub Y/ = 2.24 +- 0.03.

  19. VizieR Online Data Catalog: Ge V and Ge VI oscillator strengths (Rauch+, 2012)

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.

    2012-08-01

    Calculated HFR oscillator strengths (log gf) and transition probabilities (gA, in 1/s) in Ge V (table2.dat) and Ge VI (table4.dat). CF is the cancellation factor as defined by Cowan (1981, 1981tass.book.....C). In columns 3 and 6, e is written for even and o for odd. (2 data files).

  20. Ultrafast zero balance of the oscillator-strength sum rule in graphene

    PubMed Central

    Kim, Jaeseok; Lim, Seong Chu; Chae, Seung Jin; Maeng, Inhee; Choi, Younghwan; Cha, Soonyoung; Lee, Young Hee; Choi, Hyunyong

    2013-01-01

    Oscillator-strength sum rule in light-induced transitions is one general form of quantum-mechanical identities. Although this sum rule is well established in equilibrium photo-physics, an experimental corroboration for the validation of the sum rule in a nonequilibrium regime has been a long-standing unexplored question. The simple band structure of graphene is an ideal system for investigating this question due to the linear Dirac-like energy dispersion. Here, we employed both ultrafast terahertz and optical spectroscopy to directly monitor the transient oscillator-strength balancing between quasi-free low-energy oscillators and high-energy Fermi-edge ones. Upon photo-excitation of hot Dirac fermions, we observed that the ultrafast depletion of high-energy oscillators precisely complements the increased terahertz absorption oscillators. Our results may provide an experimental priori to understand, for example, the intrinsic free-carrier dynamics to the high-energy photo-excitation, responsible for optoelectronic operation such as graphene-based phototransistor or solar-energy harvesting devices. PMID:24036567

  1. Accurate oscillator strengths for ultraviolet lines of Ar I - Implications for interstellar material

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Beideck, D. J.; Schectman, R. M.; York, D. G.

    1992-01-01

    Analysis of absorption from interstellar Ar I in lightly reddened lines of sight provides information on the warm and hot components of the interstellar medium near the sun. The details of the analysis are limited by the quality of the atomic data. Accurate oscillator strengths for the Ar I lines at 1048 and 1067 A and the astrophysical implications are presented. From lifetimes measured with beam-foil spectroscopy, an f-value for 1048 A of 0.257 +/- 0.013 is obtained. Through the use of a semiempirical formalism for treating singlet-triplet mixing, an oscillator strength of 0.064 +/- 0.003 is derived for 1067 A. Because of the accuracy of the results, the conclusions of York and colleagues from spectra taken with the Copernicus satellite are strengthened. In particular, for interstellar gas in the solar neighborhood, argon has a solar abundance, and the warm, neutral material is not pervasive.

  2. Oscillator strengths for transitions in C-like ions between K XIV and Mn XX

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Msezane, A. Z.

    2003-04-01

    Energy levels and oscillator strengths (transition probabilities) have been calculated for transitions among 46 fine-structure levels of the (1s2) 2s22p2, 2s2p3, 2p4, 2s22p3s, 2s22p3p and 2s22p3d configurations of C-like K XIV, Sc XVI, Ti XVII, V XVIII, Cr XIX and Mn XX using the GRASP code. Configuration interaction and relativistic effects have been included while generating the wavefunctions. Calculated values of energy levels agree within 3% with the experimentally compiled results, and the length and velocity forms of oscillator strengths agree within 20% for a majority of allowed transitions. Tables \\ref{tab4} to \\ref{tab9} are only available in electronic form at http://www.edpsciences.org

  3. Semi-empirical analysis of the fine structure and oscillator strengths for atomic strontium

    NASA Astrophysics Data System (ADS)

    Ruczkowski, J.; Elantkowska, M.; Dembczyński, J.

    2016-02-01

    As the result of our studies on the atomic structure of complex atoms we produced high quality wave functions for both even and odd systems of configurations of Sr I. These wave functions were used for the parametrization of the oscillator strengths for electric-dipole transitions, where reliable data were available. The angular coefficients of the transition matrix in pure SL coupling were calculated by means of straightforward Racah algebra. The transition matrix was transformed into the actual intermediate coupling by the fine structure wave functions. The transition integrals were treated as free parameters in the least squares fit to the gf values. This procedure allowed us to obtain the values of the transition integrals and predict the values of oscillator strengths for the transitions from odd levels in a wide spectral range.

  4. Some O I oscillator strengths and the interstellar abundance of oxygen

    NASA Technical Reports Server (NTRS)

    Zeippen, C. J.; Seaton, M. J.; Morton, D. C.

    1977-01-01

    Calculated and experimental oscillator strengths for the O I intersystem line at 1356 A and for other O I lines of interest in interstellar absorption-line studies are discussed. Attention is given to experimental f-values for the lines at 1302, 1305, and 1306 A, previous work on the f-values for the lines at 1356 and 1359 A, wave-function expansion, and calculations for permitted as well as intercombination lines. Copernicus observations of several interstellar absorption lines due to O I, C II, P II, and Ni II toward Zeta Oph are reported, equivalent widths are determined, and a curve-of-growth analysis is performed for the O I absorption lines. Oscillator strengths are recommended for the far-UV resonance lines of O I, and it is concluded that the oxygen in the interstellar H I regions toward Zeta Oph is depleted by 45% to 69%.

  5. Oscillator strengths of neutral yttrium (Y I) from hook-method measurements in a furnace

    SciTech Connect

    Cardon, B.L.; Parkinson, W.H.; Tomkins, F.S.

    1980-11-01

    Relative oscillator strengths for 33 neutral yttrium (Y I) transitions between 2723 and 4761 A have been measured by the hook method. The data have been analyzed and placed on an absolute scale by using a numerical procedure developed by Cardon, Smith, and Whaling and the published absolute lifetimes of Beer, and Andersen, Ramanujam, and Bahr. The z/sup 2/F/sup 0//sub 5/2/ level lifetime of Beer is found to be in error. The absolute lifetime of the level y/sup 2/P/sup 0//sub 3/2/ is determined to be 36 +- 4 ns. The total uncertainties in the absolute oscillator strengths are between 9% and 14%.

  6. Lifetimes and Oscillator Strengths for Ultraviolet Transitions in Sn ii

    NASA Astrophysics Data System (ADS)

    Heidarian, Negar; Irving, Richard; Federman, Steven; Ellis, David; Cheng, Song; Curtis, Larry

    2016-05-01

    In order to understand the atomic structure for atomic ions, experimental lifetimes are necessary to confirm theoretical predictions. Also, interpreting astronomical observations of atomic ions requires knowledge of their oscillator strengths and transition rates. We present the results of lifetime measurements taken with the Toledo Heavy-Ion Accelerator using beam-foil techniques on levels of interest in Sn ii producing lines at 1811.2 Å and 1699.4 Å (5 s 5p2 2D5 / 2 and 5 s 5p2 2D3 / 2 , respectively). Oscillator strengths are derived from the lifetimes, and our experimental results will be compared with our MCDHF calculations using the development version of the GRASP2K package as well as the latest calculations done by others. This work was supported by Grant HST-AR-12123.001-A from the Space Telescope Science Institute.

  7. Accurate Calculation of Oscillator Strengths for CI II Lines Using Non-orthogonal Wavefunctions

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Non-orthogonal orbitals technique in the multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities for allowed and intercombination lines in Cl II. The relativistic corrections are included through the Breit-Pauli Hamiltonian. The Cl II wave functions show strong term dependence. The non-orthogonal orbitals are used to describe the term dependence of radial functions. Large sets of spectroscopic and correlation functions are chosen to describe adequately strong interactions in the 3s(sup 2)3p(sup 3)nl (sup 3)Po, (sup 1)Po and (sup 3)Do Rydberg series and to properly account for the important correlation and relaxation effects. The length and velocity forms of oscillator strength show good agreement for most transitions. The calculated radiative lifetime for the 3s3p(sup 5) (sup 3)Po state is in good agreement with experiment.

  8. VizieR Online Data Catalog: Fe XXIII fine structure level oscillator strengths (Tully+, 2001)

    NASA Astrophysics Data System (ADS)

    Tully, J. A.; Chidichimo, M. C.

    2001-05-01

    We tabulate theoretical line strengths, f-values and transition energies for the beryllium-like ion Fe XXIII. Transitions are between levels 2l12l2S'L'J' and 2l3nl4SLJ with n = 2, 3, 4. The calculation uses the well known configuration interaction program CIV3 in which relativistic effects are allowed for by means of the Breit-Pauli approximation. We give a detailed comparison of our oscillator strengths with those which Chen & Ong (1998, Phys. Rev. A, 58, 1070) obtained using the relativistic Dirac code GRASP2. (17 data files).

  9. Minima in generalized oscillator strengths for initially excited hydrogen-like atoms

    NASA Technical Reports Server (NTRS)

    Matsuzawa, M.; Omidvar, K.; Inokuti, M.

    1976-01-01

    Generalized oscillator strengths for transitions from an initially excited state of a hydrogenic atom to final states (either discrete or continuum) have complicated structures, including minima and shoulders, as functions of the momentum transfer. Extensive calculations carried out in the present work have revealed certain systematics of these structures. Some implications of the minima to the energy dependence of the inner-shell ionization cross section of heavy atoms by proton impact are discussed.

  10. Calibration of oscillator-strength measurements for the principal-series transitions of potassium

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Shirinzadeh, B.

    1983-01-01

    Oscillator-strength measurements have been calibrated against the radiative lifetime for the 4s-4p transition of potassium. This yields a value of (8.1 + or - 0.5) times 10 to the -21 sq cm for the photoionization cross section at the series limit, and implies a value for the cross-section minimum in good quantitative agreement with that calculated by Seaton (1951).

  11. Laboratory oscillator strengths of Sc i in the near-infrared region for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pehlivan, A.; Nilsson, H.; Hartman, H.

    2015-10-01

    Context. Atomic data is crucial for astrophysical investigations. To understand the formation and evolution of stars, we need to analyse their observed spectra. Analysing a spectrum of a star requires information about the properties of atomic lines, such as wavelengths and oscillator strengths. However, atomic data of some elements are scarce, particularly in the infrared region, and this paper is part of an effort to improve the situation on near-IR atomic data. Aims: This paper investigates the spectrum of neutral scandium, Sc I, from laboratory measurements and improves the atomic data of Sc I lines in the infrared region covering lines in R, I, J, and K bands. Especially, we focus on measuring oscillator strengths for Sc I lines connecting the levels with 4p and 4s configurations. Methods: We combined experimental branching fractions with radiative lifetimes from the literature to derive oscillator strengths (f-values). Intensity-calibrated spectra with high spectral resolution were recorded with Fourier transform spectrometer from a hollow cathode discharge lamp. The spectra were used to derive accurate oscillator strengths and wavelengths for Sc I lines, with emphasis on the infrared region. Results: This project provides the first set of experimental Sc I lines in the near-infrared region for accurate spectral analysis of astronomical objects. We derived 63 log(gf) values for the lines between 5300 Å and 24 300 Å. The uncertainties in the f-values vary from 5% to 20%. The small uncertainties in our values allow for an increased accuracy in astrophysical abundance determinations.

  12. Oscillator strength measurements in samarium(II), neodymium(II) and praseodymium(II)

    NASA Astrophysics Data System (ADS)

    Li, Ruohong

    A knowledge of the abundances of lanthanide ions in stellar photospheres is valuable in astrophysics, especially for chemically peculiar stars. However, the determination of elemental abundances is often limited by inadequate knowledge of oscillator strengths. Combining independently measured values of radiative lifetimes and branching fractions is an effective and precise method to measure oscillator strengths. It avoids absolute intensity measurements, requiring a knowledge of the absolute number density of particles and absolute measurements of intensity, and furthermore decreases the systematic error greatly. In the previous work of our group, the lifetimes of Sm II, Nd II and Pr II were obtained. In this thesis work, we measured the corresponding branching fractions of these lanthanide ions using a fast-ion-beam laser-induced- fluorescence technique. The power of this technique is that ions are selectively excited by a laser, which ensures that every branch comes from a single upper level and gets rid of spectral blends. Besides, the low ion-beam density ensures that the systematic errors due to collisions and radiation trapping are negligible. Combining the branching fractions with our previously measured lifetimes, we obtained 608, 430 and 260 oscillator strength values for Sm II, Nd II and Pr II transitions, respectively, over the wavelength range 350-850 nm. These transitions originate from 69 upper levels in the range 21 655 cm -1 -29 388 cm -1 for Sm II, 46 upper levels in the range 22 697 cm -1 -29 955 cm -1 for Nd II, and 32 levels in the range 22 040 cm -1 -28 577 cm -1 for Pr II. Of the 260 measured oscillator strength values of Pr II, 183 have been determined accurately for the first time. The uncertainties arise principally from systematic uncertainties of the efficiency calibration of the optical detection system (7.1%), with smaller statistical contributions (1.5%). Comparisons are made to prior measurements.

  13. Improved and Expanded Near-IR Oscillator Strengths for Ti I

    NASA Astrophysics Data System (ADS)

    Wood, Michael P.; Sneden, Chris; Nave, Gillian

    2016-01-01

    We report on recent work to produce an improved and expanded set of near-IR oscillator strengths for Ti I. Emission branching fractions are measured from several spectra recorded with the NIST 2-m FTS covering the region from 4000 Å to 5.5 μm. Traditionally, branching fractions are combined with level lifetimes measured using laser-induced fluorescence; however, this technique becomes problematic for near-IR oscillator strength studies. Instead, we employ thorough and robust reverse stellar analyses of the Sun and Arcturus to obtain lifetimes for new levels of interest. This work makes use of an extensive set of previously reported laboratory Ti I oscillator strengths in the visible to better understand uncertainties and check for systematic effects in the reverse stellar analyses. This method will soon be applied to other species to help address the scarcity of near-IR Fe-group atomic data and support the growing interests of the near-IR astronomical community.

  14. a Measurement of the Optical Oscillator Strengths of Noble Gas Resonance Transitions in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ligtenberg, Robert Coenraad Gerard

    We report the results of an accurate measurement of optical oscillator strengths of the prominent resonance lines of He, Ne, Ar and Kr in the vacuum ultraviolet. To measure the oscillator strength of a resonance line we make use of the absorption of the resonance radiation as it passes through the gas to a detector. The transmission of this radiation through a layer of gas of finite thickness is measured as a function of the number density of the gas. The transmission function is fitted to this data to obtain the absorption oscillator strength. The accuracy of the present measurements ranges from 2.5% to 4% and is reflected in the uncertainties presented below. The results are for He I (58.4 nm) 0.2683 +/- 0.0075 (2.8%), He I (53.7 nm) 0.0717 +/- 0.0024 (3.4%), Ne I (74.4 nm) 0.01017 +/- 0.00030 (2.9%), Ne I (73.6 nm) 0.1369 +/- 0.0035 (2.6%), Ar I (106.7 nm) 0.0616 +/- 0.0021 (3.4%), Ar I (104.8 nm) 0.2297 +/- 0.0093 (4.0%), Kr I (123.6 nm) 0.1751 +/- 0.0049 (2.8%) and Kr I (116.5 nm) 0.1496 +/- 0.0038 (2.5%).

  15. Spectro web: oscillator strength measurements of atomic absorption lines in the sun and procyon

    NASA Astrophysics Data System (ADS)

    Lobel, A.

    2008-10-01

    We update the online SpectroWeb database of spectral standard reference stars with 1178 oscillator strength values of atomic absorption lines observed in the optical spectrum of the Sun and Procyon (α CMi A). The updated line oscillator strengths are measured with best fits to the disk-integrated KPNO-FTS spectrum of the Sun observed between 4000 Å and 6800 Å using state-of-the-art detailed spectral synthesis calculations. A subset of 660 line oscillator strengths is validated with synthetic spectrum calculations of Procyon observed with ESO-UVES between 4700 Å and 6800 Å. The new log(gf)-values in SpectroWeb are improvements upon the values offered in the online Vienna Atomic Line Database (VALD). We find for neutral iron-group elements, such as Fe I, Ni I, Cr I, and Ti I, a statistically significant over-estimation of the VALD log((gf)-values for weak absorption lines with normalized central line depths below 15 %. For abundant lighter elements (e.g. Mg I and Ca I) this trend is statistically not significantly detectable, with the exception of Si I for which the log(gf)-values of 60 weak and medium-strong lines are substantially decreased to best fit the observed spectra. The newly measured log(gf)-values are available in the SpectroWeb database at http://spectra.freeshell.org, which interactively displays the observed and computed stellar spectra, together with corresponding atomic line data.

  16. Lifetimes and Oscillator Strengths for Ultraviolet Transitions in Singly Ionized Lead

    NASA Astrophysics Data System (ADS)

    Heidarian, N.; Irving, R. E.; Ritchey, A. M.; Federman, S. R.; Ellis, D. G.; Cheng, S.; Curtis, L. J.; Furman, W. A.

    2015-08-01

    We present the results of lifetime measurements made using beam-foil techniques on levels of astrophysical interest in Pb ii producing lines at 1203.6 Å (6s6p2 {}2{D}3/2) and 1433.9 Å (6{s}26d {}2{D}3/2). We also report the first detection of the Pb ii λ 1203 line in the interstellar medium (ISM) from an analysis of archival spectra acquired by the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The oscillator strengths derived from our experimental lifetimes for Pb ii λ λ 1203, 1433 are generally consistent with recent theoretical results, including our own relativistic calculations. Our analysis of high-resolution HST/STIS spectra helps to confirm the relative strengths of the Pb ii λ λ 1203, 1433 lines. However, the oscillator strength that we obtain for Pb ii λ 1433 (0.321 ± 0.034) is significantly smaller than earlier theoretical values, which have been used to study the abundance of Pb in the ISM. Our revised oscillator strength for λ 1433 yields an increase in the interstellar abundance of Pb of 0.43 dex over determinations based on the value given by Morton, indicating that the depletion of Pb onto interstellar dust grains is less severe than previously thought. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Mikulski Archive for Space Telescopes (MAST). STSci is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. Evaluation of high-level bound-bound and bound-continuum hydrogenic oscillator strengths by asymptotic expansion

    NASA Astrophysics Data System (ADS)

    Omidvar, K.; McAllister, A. M.

    1995-02-01

    An asymptotic expansion due to Menzel and Pekeris [Mon. Not. R. Astron. Soc. 96, 77 (1935); reprinted in Selected Papers on Physical Processes in Ionized Plasma, edited by D. H. Menzel (Dover, New York, 1962)] has been used to give a series expansion for the bound-bound and bound-continuum oscillator strengths. For the bound-bound transitions between the initial and final principal quantum numbers n and n', and for any n and n' considered, the oscillator strength is within 0.5% accuracy of the exact values. For the bound-continuum oscillator strength, and continuum energies ɛ<=1 Ry, the accuracy is better than 1%. For n2ɛ>>1, the method of Menzel and Pekeris is inapplicable. Using an alternative method, an expansion in terms of n and ɛ is derived that gives the oscillator strength within 1% accuracy.

  18. Conditions for zeros in the generalized oscillator strength: One-electron atom and diatomic molecule examples

    SciTech Connect

    Peek, J.M. ); Madsen, M.M. )

    1991-01-01

    Requirements for the existence of isolated zeros in the generalized oscillator strength (GOS) for one-electron atoms and molecules are considered. It is shown that in certain limits the atomic GOS cannot be zero for any value of the momentum-transfer magnitude {h bar}{ital K}{ne}0 unless it is zero for all values. A relationship between the existence of a zero and the angular momentum of the target's states is pointed out for the atomic case and a numerical example is provided. The conditions for the existence of an isolated zero for a molecular GOS are derived and, using the atom case as a model, they indicate that one is unlikely for 0{lt}{ital K}{lt}{infinity} and the internuclear separation {ital R} restricted to 0{lt}{ital R}{lt}{infinity}. Minima, or possibly zeros, in the molecular GOS occur in both experiment and theory. It is postulated here that these structures are minima and not zeros. They appear to be due to zeros in a matrix element related to the leading term of the small-{ital K} GOS expansion while higher terms remain finite. Several numerical examples are provided and the speculation is supported by the correlation of the GOS minimum as a function of {ital K} and {ital R} to a zero in the dipole oscillator strength. Attention is brought to the existence of zeros in the molecular dipole oscillator strength when a nodeless function appears in this matrix element, contrary to the atomic case, and an explanation for this difference is given.

  19. Reduced oscillator strength in the lithium atom, clusters, and the bulk

    NASA Astrophysics Data System (ADS)

    Ellert, Christoph; Schmidt, Martin; Schmitt, Christina; Haberland, Hellmut; Guet, Claude

    1999-03-01

    Absolute photoabsorption cross sections have been measured for small lithium cluster ions in the optical range and a significantly smaller oscillator strength than for sodium has been found. This reduction is reproduced in jellium type calculations only if nonlocal effects in the electron-ion interaction are included. It is shown that this reduction is an atomic property which persists throughout the cluster region and into the bulk regime, where it manifests itself as an increased effective electronic mass. The optical spectra of the closed shell clusters are in good agreement with calculations based on the nonlocal jellium model. The smallest cluster, Li+4, is well described by a quantum chemical calculation.

  20. Oscillator strength of the peptide bond {pi}* resonances at all relevant x-ray absorption edges

    SciTech Connect

    Kummer, K.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Nekipelov, S. V.; Maslyuk, V. V.; Mertig, I.; Blueher, A.; Mertig, M.; Bredow, T.

    2009-10-15

    Absolute x-ray absorption cross sections of a regular bacterial surface-layer protein deposited on a naturally oxidized silicon substrate were determined experimentally. Upon separation of the partial cross sections of the three relevant 1s absorption edges, the oscillator strengths of the 1s{yields}{pi}* excitations within the peptide-backbone unit were extracted. Comparison with results of first-principles calculations revealed their close correlation to the topology of {pi}{sub peptide}* orbitals of the peptide backbone.

  1. The International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    NASA Technical Reports Server (NTRS)

    Sugar, J.; Leckrone, D.

    1993-01-01

    This was the fourth in a series of colloquia begun at the University of Lund, Sweden in 1983 and subsequently held in Toledo, Ohio and Amsterdam, The Netherlands. The purpose of these meetings is to provide an international forum for communication between major users of atomic spectroscopic data and the providers of these data. These data include atomic wavelengths, line shapes, energy levels, lifetimes, and oscillator strengths. Speakers were selected from a wide variety of disciplines including astrophysics, laboratory plasma research, spectrochemistry, and theoretical and experimental atomic physics.

  2. Absolute oscillator strengths for 108 lines of Si I between 163 and 410 nanometers

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Griesinger, Harriet E.; Cardon, Bartley L.; Huber, Martin C. E.; Tozzi, G. P.

    1987-01-01

    Measurements of neutral silicon oscillator strengths (f-values) obtained by absorption and emission techniques have been combined using the numerical procedure of Cardon et al. (1979) to produce 108 f-values for the Si I lines between 163 and 410 nm. Beam-foil-lifetime measurements were employed to determine the absolute scale. The present measurements have uncertainties of about 0.07 dex (+ or - 16 percent) at the 1-sigma level of confidence. Good agreement is obtained between the results and previous data. The data also provide upper limits for the f-values of 22 other lines and information on the lifetimes for 36 levels in Si I.

  3. WAVELENGTHS, ENERGY LEVELS, LIFETIMES, AND WEIGHTED OSCILLATOR STRENGTHS FOR THE S VIII SPECTRUM

    SciTech Connect

    Pagan, C. J. B.; Cavalcanti, G. H.; Trigueiros, A. G.; Jupen, C.

    2011-10-01

    The weighted oscillator strengths (gf) and lifetimes for S VIII presented in this work were obtained by a multiconfigurational Hartree-Fock relativistic approach. In this calculation, the electrostatic energy parameters were optimized by a least-squares procedure in order to improve the adjustment to experimental energy levels. The values for gf and lifetimes were then calculated on the basis of these adjusted parameters. New classifications are proposed for energy levels belonging to the 4s and 4d configurations and lines related to them.

  4. Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength

    NASA Astrophysics Data System (ADS)

    Yannopapas, V.; Vitanov, N. V.

    2006-11-01

    A type of magnetic metamaterial which exhibits strong magnetic activity within and below the optical region is presented. The metamaterial consists of semiconductor nanoparticles such as CuCl or Cu2O particles. The magnetic activity is attributed to the strong oscillator strength stemming from the exciton absorption line. The magnetic permeability of the proposed metamaterial is calculated from the extended Maxwell-Garnett theory, and its validity is compared against ab initio layer multiple-scattering calculations. The proposed structure is a low-loss, subwavelength, isotropic magnetic metamaterial, and its response is robust against stacking and point disorder.

  5. Differential oscillator strengths and dipole polarizabilities for transitions of the helium sequence

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Wilson, J. W.

    1988-01-01

    The dipole radial integral for an initial discrete 1s state and a final continuum state has been calculated under the screened hydrogenic model. In this model, single-electron hydrogenic wave functions are employed, and the initial and the final states are treated by two different effective-charge parameters. Numerical values of differential oscillator strengths for transitions from 1s2 1S to the continuum for the helium sequence ions are obtained. Also calculated are the dipole polarizabilities, which are found to be in excellent agreement with the results of other authors.

  6. Atomic mean excitation energies for stopping powers from local plasma oscillator strengths

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Xu, Y. J.; Chang, C. K.; Kamaratos, E.

    1984-01-01

    The stopping of a charged particle by isolated atoms is investigated theoretically using an 'atomic plasma' model in which atomic oscillator strengths are replaced by the plasma frequency spectrum. The plasma-frequency correction factor for individual electron motion proposed by Pines (1953) is incorporated, and atomic mean excitation energies are calculated for atoms through Sr. The results are compared in a graph with those obtained theoretically by Inokuti et al. (1978, 1981) and Dehmer et al. (1975) and with the experimental values compiled by Seltzer and Berger (1982): good agreement is shown.

  7. The depletion of pre-interstellar matter and an examination of Ni II oscillator strengths

    NASA Technical Reports Server (NTRS)

    Cardelli, J. A.

    1984-01-01

    IUE absorption-line data obtained at 110-320 nm with resolution 10-30 pm toward the B-star component of the multiple system of Alpha Sco are presented in graphs and tables and used to characterize the circumstellar shell around the M1.5 Iab component. Resonant lines of Ni II are identified at strengths in excess of 4 pm and fit to a growth curve constructed using the Fe II, Si II, and Mn II lines, and the results are found to confirm the oscillator strengths determined by Kurucz and Peytremann (1975) to within 50 percent. Shell depletions 2-20 times smaller than those for dense clouds such as the surrounding Oph complex are calculated and attributed to the formation of circumstellar dust. The implications of the results for the condensation of various elements in dense and diffuse clouds are explored.

  8. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    SciTech Connect

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  9. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation

    NASA Astrophysics Data System (ADS)

    Lestrange, Patrick J.; Egidi, Franco; Li, Xiaosong

    2015-12-01

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities.

  10. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  11. Theoretical transition probabilities, oscillator strengths, and radiative lifetimes of levels in Pb IV

    SciTech Connect

    Alonso-Medina, A.; Colon, C.; Porcher, P.

    2011-01-15

    Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d{sup 10}ns (n = 7,8), 5d{sup 10}np (n = 6,7), 5d{sup 10}nd (n = 6,7), 5d{sup 10}5f, 5d{sup 10}5g, 5d{sup 10}nh (n = 6,7,8), 5d{sup 9}6s{sup 2}, and 5d{sup 9}6s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in these calculations of the 5d{sup 10}7p and 5d{sup 10}5f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.

  12. The consequences of improperly describing oscillator strengths beyond the electric dipole approximation.

    PubMed

    Lestrange, Patrick J; Egidi, Franco; Li, Xiaosong

    2015-12-21

    The interaction between a quantum mechanical system and plane wave light is usually modeled within the electric dipole approximation. This assumes that the intensity of the incident field is constant over the length of the system and transition probabilities are described in terms of the electric dipole transition moment. For short wavelength spectroscopies, such as X-ray absorption, the electric dipole approximation often breaks down. Higher order multipoles are then included to describe transition probabilities. The square of the magnetic dipole and electric quadrupole are often included, but this results in an origin-dependent expression for the oscillator strength. The oscillator strength can be made origin-independent if all terms through the same order in the wave vector are retained. We will show the consequences and potential pitfalls of using either of these two expressions. It is shown that the origin-dependent expression may violate the Thomas-Reiche-Kuhn sum rule and the origin-independent expression can result in negative transition probabilities. PMID:26696042

  13. Extensive MultiConfiguration calculations of oscillator strengths useful for Astrophysics Applications

    NASA Astrophysics Data System (ADS)

    Cruzado, A.; Di Rocco, O. H.; Marchiano, P. E.

    2014-10-01

    The goal of this work is to obtain oscillator strengths (gf) of spectral lines of astrophysical interest. In addition, we aim to estimate the effects of the uncertainties associated with obtaining gf values in the calculation of stellar abundances. In the atmospheres of chemically peculiar stars, it is critical the accurate determination of the abundance of some chemical elements, as well as their possible variations with the time. With this in mind, we intend to analyze spectral lines observed in the spectrum of He-weak, He-strong, HgMn, and Ap stars. In this work we present some preliminary results we have obtained for XeII lines. We compare the gf values theoretically obtained, by adopting the Hartree-Fock (HF) method and the Least Square Fitting (LSF) approach, with the gf values empirically obtained. The astrophysical oscillator strengths for XeII lines obtained by Yuce et al (2011), by fitting observed spectra of xenon-overabundant stars with synthetic spectra, are considered as the empirical gf values in the present work.

  14. Moments of dipole oscillator-strength distribution for the helium sequence.

    PubMed

    Khan, F; Khandelwal, G S; Wilson, J W

    1990-08-28

    The moments S(mu) for -6 < or = mu < or = 2 and L(mu) for mu = 0, 1 and 2 are calculated for the helium sequence for atomic numbers Z up to 30 under a screened hydrogenic model. In this model, one describes the atom by single-particle hydrogenic wavefunctions and treats the initial and the final state as characterised by two different effective charge parameters Zi and Zf, respectively. An asymptotic expansion is made of the differential oscillator strength of the screened hydrogenic model. Assuming the value 287.6 for the coefficient of the term epsilon -7/2 for helium atom as given by Salpeter and Zaidi, the parameter Zf is determined for the helium sequence. This approach has resulted in values which are in reasonable agreement with the various moment values of other authors. PMID:11537754

  15. Oscillator strengths, first-order properties, and nuclear gradients for local ADC(2)

    SciTech Connect

    Schütz, Martin

    2015-06-07

    We describe theory and implementation of oscillator strengths, orbital-relaxed first-order properties, and nuclear gradients for the local algebraic diagrammatic construction scheme through second order. The formalism is derived via time-dependent linear response theory based on a second-order unitary coupled cluster model. The implementation presented here is a modification of our previously developed algorithms for Laplace transform based local time-dependent coupled cluster linear response (CC2LR); the local approximations thus are state specific and adaptive. The symmetry of the Jacobian leads to considerable simplifications relative to the local CC2LR method; as a result, a gradient evaluation is about four times less expensive. Test calculations show that in geometry optimizations, usually very similar geometries are obtained as with the local CC2LR method (provided that a second-order method is applicable). As an exemplary application, we performed geometry optimizations on the low-lying singlet states of chlorophyllide a.

  16. Fe I Oscillator Strengths for Transitions from High-lying Even-parity Levels

    NASA Astrophysics Data System (ADS)

    Den Hartog, E. A.; Ruffoni, M. P.; Lawler, J. E.; Pickering, J. C.; Lind, K.; Brewer, N. R.

    2014-12-01

    New radiative lifetimes, measured to ±5% accuracy, are reported for 31 even-parity levels of Fe I ranging from 45061 cm-1 to 56842 cm-1. These lifetimes have been measured using single-step and two-step time-resolved laser-induced fluorescence on a slow atomic beam of iron atoms. Branching fractions have been attempted for all of these levels, and completed for 20 levels. This set of levels represents an extension of the collaborative work reported in Ruffoni et al. The radiative lifetimes combined with the branching fractions yields new oscillator strengths for 203 lines of Fe I. Utilizing a 1D-LTE model of the solar photosphere, spectral syntheses for a subset of these lines which are unblended in the solar spectrum yields a mean iron abundance of langlog[ɛ(Fe)]rang = 7.45 ± 0.06.

  17. Oscillator strengths for Fe II transitions at 224.918 and 226.008 nanometers

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Mullman, K. L.; Lawler, J. E.

    1994-01-01

    We report accurate experimental absorption oscillator strengths (f-values) for transitions out of the ground level of Fe II to the Z(sup 4)D(sup 0 sub 7/2) and z(sup 4)F(sup 0 sub 9/2) levels at 224.918 and 226.008 nm (air wavelengths) to be 0.00182(14) and 0.00244(19), respectively. The number in parenthesis is the uncertainty in the last digits. These two lines are important for studying Fe abundances and grain depletions in the interstellar medium. These f-values are determined by combining emission branching fractions with radiative lifetimes. Branching fractions are measured using classical spectroradiometry on an optically thin source. Radiative lifetimes are from the literature.

  18. Fe I OSCILLATOR STRENGTHS FOR TRANSITIONS FROM HIGH-LYING EVEN-PARITY LEVELS

    SciTech Connect

    Den Hartog, E. A.; Lawler, J. E.; Brewer, N. R.; Ruffoni, M. P.; Pickering, J. C.; Lind, K.

    2015-01-01

    New radiative lifetimes, measured to ±5% accuracy, are reported for 31 even-parity levels of Fe I ranging from 45061 cm{sup –1} to 56842 cm{sup –1}. These lifetimes have been measured using single-step and two-step time-resolved laser-induced fluorescence on a slow atomic beam of iron atoms. Branching fractions have been attempted for all of these levels, and completed for 20 levels. This set of levels represents an extension of the collaborative work reported in Ruffoni et al. The radiative lifetimes combined with the branching fractions yields new oscillator strengths for 203 lines of Fe I. Utilizing a 1D-LTE model of the solar photosphere, spectral syntheses for a subset of these lines which are unblended in the solar spectrum yields a mean iron abundance of (log[ε(Fe)]) = 7.45 ± 0.06.

  19. Moments of dipole oscillator-strength distribution for the helium sequence

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Wilson, J. W.

    1990-01-01

    The moments S(mu) for mu at least -6 but no more than 2 and L(mu) for mu = 0, 1, and 2 are calculated for the helium sequence for atomic numbers (Z) up to 30 under a screened hydrogenic model. The model describes the atom by single-particle hydrogenic wave functions and treats the initial and the final state as characterized by two different effective charge parameters Zi and Zf, respectively. The differential oscillator strength of the screened hydrogenic model is asymptotically expanded. Assuming the value of 287.6 for the coefficient of the term epsilon to the -7/2 for helium atoms, the parameter Zf is determined for the helium sequence.

  20. Oscillator strengths of some Ba lines - A treatment including core-valence correlation and relativistic effects

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Jaffe, R. L.; Langhoff, S. R.; Partridge, H.; Mascarello, F. G.

    1985-01-01

    Theoretical calculations of selected excitation energies and oscillator strengths for Ba are presented that overcome the difficulties of previous theoretical treatments. A relativistic effective-core potential treatment is used to account for the relativistic core contraction, but the outermost ten electrons are treated explicitly. Core-valence correlation can be included in this procedure in a rigorous and systematic way through a configuration-interaction calculation. Insight is gained into the importance of relativistic effects by repeating many of the calculations using an all-electron nonrelativistic treatment employing an extended Slater basis set. It is found that the intensity of the intercombination line 3P1-1S0 is accurately determined by accounting for the deviation from LS coupling through spin-orbit mixing with the 1P1 state, and that deviations from the Lande interval rule provide an accurate measure of the degree of mixing.

  1. Atomic data for opacity calculations. X - Oscillator strengths and photoionisation cross sections for O III

    NASA Technical Reports Server (NTRS)

    Luo, D.; Pradhan, A. K.; Saraph, H. E.; Storey, P. J.; Yu, Yan

    1989-01-01

    Energy levels and electric dipole radiative transitions were determined for O III. The wavefunctions for the bound and continuum states were derived by solving coupled integrodifferential equations in the close-coupling approximation with the aid of two methods, the R-matrix and linear algebraic methods. Configuration interaction wavefunctions are presented for eight states of the O IV target with configurations of 2s(x)sp(y) (x + y = 3). Oscillator strengths are calculated for the transitions between, and photoionization cross sections from, bound states of O III with configurations of 2s(x)2p(y)nl (for n of not greater than 10 and l of not greater than 3).

  2. Calculated Energy Levels, Oscillator Strengths and Lifetimes in Al-like Argon

    NASA Astrophysics Data System (ADS)

    Gupta, G. P.; Msezane, A. Z.

    Excitation energies, oscillator strengths and transition probabilities for electric-dipole-allowed and inter-combination transitions among the 25 LS levels belonging to the (1s22s22p6)3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3s24s, 3s24p, 3s24d, 3s24f and 3s3p4s configurations of Ar VI are calculated using extensive configuration-interaction (CI) wave functions. From our transition probabilities we have also calculated the radiative lifetimes of doublet and quartet states of Ar VI. Our results are compared with other available theoretical calculations and the experimental data. To assess the importance of relativistic effects on our calculated values, we have also carried out calculations in the intermediate-coupling scheme. These effects are incorporated through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the experimental values. The energy splitting of 54 fine-structure levels, the oscillator strengths and transition probabilities for some strong dipole-allowed and intercombination transitions and the lifetimes of some fine-structure levels are presented and compared with available experimental and other theoretical values. Our lifetime for the 3s3p(1Po)3d(2Po) level calculated in intermediate-coupling scheme, while differing significantly from our LS value, shows excellent agreement with the experimental result of Pinnington et al. In this calculation we also predict new data for several levels where no other theoretical and experimental results are available.

  3. Interband optical transition energy and oscillator strength in a lead based CdSe quantum dot quantum well heterostructure

    SciTech Connect

    Saravanamoorthy, S. N.; Peter, A. John

    2015-06-24

    Binding energies of the exciton and the interband optical transition energies are studied in a CdSe/Pb{sub 1-x}Cd{sub x}Se/CdSe spherical quantum dot-quantum well nanostructure taking into account the geometrical confinement effect. The core and shell are taken as the same material. The initial and final states of energy and the overlap integrals of electron and hole wave functions are determined by the oscillator strength. The oscillator strength and the radiative transition life time with the dot radius are investigated for various Cd alloy content in the core and shell materials.

  4. Rational Improvement of Molar Absorptivity Guided by Oscillator Strength: A Case Study with Furoindolizine‐Based Core Skeleton

    PubMed Central

    Lee, Youngjun; Jo, Ala

    2015-01-01

    Abstract The rational improvement of photophysical properties can be highly valuable for the discovery of novel organic fluorophores. Using our new design strategy guided by the oscillator strength, we developed a series of full‐color‐tunable furoindolizine analogs with improved molar absorptivity through the fusion of a furan ring into the indolizine‐based Seoul fluorophore. The excellent correlation between the computable values (oscillator strength and theoretical S0–S1 energy gap) and photophysical properties (molar absorptivity and emission wavelength) confirmed the effectualness of our design strategy. PMID:26563569

  5. New method for determining relative oscillator strengths of atoms through combined absorption and emission measurements - Application to titanium /Ti I/

    NASA Technical Reports Server (NTRS)

    Cardon, B. L.; Smith, P. L.; Whaling, W.

    1979-01-01

    The paper introduces a procedure that combines measurements of absorption and emission by atoms to obtain relative oscillator strengths that are independent of temperature determination in the sources and of assumptions regarding local thermodynamic equilibrium. The experimental observations are formed into sets of transitions and required to satisfy defined ratios. The procedure is illustrated with the published data of Whaling et al. and Smith and Kuehne for 16 transitions in Ti I. It is shown that the relative oscillator strengths resulting from this procedure have calculated uncertainties between 5 and 17% (about 95% confidence level). Evidence is presented to suggest that these uncertainties have been overestimated.

  6. Energy levels, oscillator strengths, and radiative rates for Si-like Zn XVII, Ga XVIII, Ge XIX, and As XX

    SciTech Connect

    Abou El-Maaref, A.; Allam, S.H.; El-Sherbini, Th.M.

    2014-01-15

    The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p and 3s{sup 2}3p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated. -- Highlights: •We have calculated the fine-structure energy levels of Si-like Zn, Ga, Ge and As. •The calculations are performed using the configuration interaction method (CIV3). •We have calculated the oscillator strengths, line strengths and transition rates. •The wavelengths of the transitions are listed in this article. •We also have made comparisons between our data and other calculations.

  7. Laboratory astrophysics under the ultraviolet, visible, and gravitational astrophysics research program: Oscillator strengths for ultraviolet atomic transitions

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.

    1992-01-01

    The conditions within astrophysical environments can be derived from observational data on atomic and molecular lines. For instance, the density and temperature of the gas are obtained from relative populations among energy levels. Information on populations comes about only when the correspondence between line strength and abundance is well determined. The conversion from line strength to abundance involves knowledge of meanlives and oscillator strengths. For many ultraviolet atomic transitions, unfortunately, the necessary data are either relatively imprecise or not available. Because of the need for more and better atomic oscillator strengths, our program was initiated. Through beam-foil spectroscopy, meanlives of ultraviolet atomic transitions are studied. In this technique, a nearly isotopically pure ion beam of the desired element is accelerated. The beam passes through a thin carbon foil (2 mg/cu cm), where neutralization, ionization, and excitation take place. The dominant process depends on the energy of the beam. Upon exiting the foil, the decay of excited states is monitored via single-photon-counting techniques. The resulting decay curve yields a meanlife. The oscillator strength is easily obtained from the meanlife when no other decay channels are presented. When other channels are present, additional measurements or theoretical calculations are performed in order to extract an oscillator strength. During the past year, three atomic systems have been studied experimentally and/or theoretically; they are Ar, I, Cl I, and N II. The results for the first two are important for studies of interstellar space, while the work on N II bears on processes occurring in planetary atmospheres.

  8. Unified calculation of generalized oscillator strength of argon ranging from bound to continuum states

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Jin, Rui; Zeng, De-Ling; Han, Xiao-Ying; Yan, Jun; Li, Jia-Ming

    2015-11-01

    The electron and photon scattering data of an atom are crucial for many scientific fields, including plasma physics, astrophysics, and so on. For high enough but nonrelativistic incident energies, the first Born approximation is applicable for calculating these data, in which the key physics quantity is the generalized oscillator strength (GOS). In high-energy electron impact excitation processes, atoms will be excited into various excited states including strongly perturbed Rydberg and adjacent continuum states. How to calculate these quantities of a nontrivial many-electron atom rapidly and accurately is still a great challenge. Based on our eigenchannel R -matrix method R -eigen, we further extend it to calculate the GOS of a whole channel in an atom, which includes all Rydberg and adjacent continuum states. The Jπ=1- states of argon are chosen as an illustrating example. The calculation results are in good agreement with the available benchmark absolute experimental measurements. The calculated eigenchannel GOS matrix elements are smooth functions of the excitation energy and momentum transfer. From such smooth eigenchannel GOS matrix elements, we can obtain the GOS of any specific excited state through multichannel quantum defect theory, e.g., infinite Rydberg (including a strongly perturbed one), autoionization, and continuum states.

  9. An unexpectedly low oscillator strength as the origin of the Fe XVII emission problem

    NASA Astrophysics Data System (ADS)

    Bernitt, S.; Brown, G. V.; Rudolph, J. K.; Steinbrügge, R.; Graf, A.; Leutenegger, M.; Epp, S. W.; Eberle, S.; Kubiček, K.; Mäckel, V.; Simon, M. C.; Träbert, E.; Magee, E. W.; Beilmann, C.; Hell, N.; Schippers, S.; Müller, A.; Kahn, S. M.; Surzhykov, A.; Harman, Z.; Keitel, C. H.; Clementson, J.; Porter, F. S.; Schlotter, W.; Turner, J. J.; Ullrich, J.; Beiersdorfer, P.; López-Urrutia, J. R. Crespo

    2012-12-01

    Highly charged iron (Fe16+, here referred to as Fe XVII) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 ångströms. The Fe XVII spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe XVII line is generally weaker than predicted. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.

  10. Vacuum ultraviolet electron impact excitation of the styrene molecule: cross sections and oscillator strengths

    NASA Astrophysics Data System (ADS)

    Boechat-Roberty, H. M.; Lucas, C. A.; Lopes, M. C. A.; Rocco, M. L. M.; de Souza, G. G. B.

    2009-05-01

    The vacuum ultraviolet electronic excitation of the styrene molecule has been studied in the 0-50 eV energy range, using angle-resolved electron-energy-loss spectroscopy at an incident energy of 1 keV. Intense new features have been observed at 10.3, 11.8, 13.7 and 17.1 eV. They were tentatively assigned to high-energy transitions originating from σ electrons or to double excitations involving π electrons. The absolute generalized oscillator strengths and absolute inelastic differential cross sections have been determined for the band centred at 5.3 eV, associated with the 2,3 1A'<--1 1A' transitions. The absolute elastic differential cross section has also been determined over an angular range of 2.5°-22.0°. The valence photoabsorption spectrum of styrene, derived from the electron-energy-loss spectrum, is compared to a previously measured benzene spectrum in the 3-45 eV energy range.

  11. Confinement and correlation effects in the Xe-C{sub 60} generalized oscillator strengths

    SciTech Connect

    Amusia, M. Ya.; Chernysheva, L. V.; Dolmatov, V. K.

    2011-12-15

    The impact of both confinement and electron correlation on generalized oscillator strengths (GOS's) of endohedral atoms, A-C{sub 60}, is theoretically studied choosing the Xe-C{sub 60} 4d, 5s, and 5p fast electron impact ionization as the case study. Calculations are performed in the transferred to the atom energy region beyond the 4d threshold, {omega}=75-175 eV. The calculation methodology combines the plane-wave Born approximation, Hartree-Fock approximation, and random-phase approximation with exchange in the presence of the C{sub 60} confinement. The confinement is modeled by a spherical {delta}-function-like potential as well as by a square well potential to evaluate the effect of the finite thickness of the C{sub 60} cage on the Xe-C{sub 60} GOS's. Dramatic distortion of the 4d, 5p, and 5s GOS's by the confinement is demonstrated, compared to the free atom. Considerable contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are revealed, in some instances. The vitality of accounting for electron correlation in calculation of the Xe-C{sub 60} 5s and 5p GOS's is shown.

  12. Trends in correlation and confinement impacts on the e-Xe@C60 generalized oscillator strengths

    NASA Astrophysics Data System (ADS)

    Dolmatov, Valeriy; Amusia, Miron; Chernysheva, Larissa

    2012-06-01

    The response of endohedral Xe@C60 to fast electron impact ionization is theoretically studied by calculating its 4d, 5s and 5p generalized oscillators strengths (GOS). The calculation methodology combines the plane wave Born approximation, single-electron Hartree-Fock approximation, and multi-electron random phase approximation with exchange, all in the presence of the C60 confinement. The confinement is accounted for in the framework of both a spherical δ-potential [1] and square-well-potential [2] models to evaluate the effect of the finite thickness of the C60 cage on said GOS's. Impressive confinement brought impact on the latter is revealed. Vitality of accounting for electron correlation in calculations of the Xe@C60 5s and 5p GOS's is demonstrated. Trends in contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are unraveled. We challenge experimentalists to conduct corresponding measurements.[4pt] [1] M.Ya. Amusia, A. S. Baltenkov, and B. G. Krakov, Phys. Lett. A, 243, 99 (1998).[0pt] [2] V. K. Dolmatov, Adv. Quant. Chem. 58, 13 (2009).

  13. Confinement and correlation effects in the Xe@C60 generalized oscillator strengths

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernysheva, L. V.; Dolmatov, V. K.

    2011-12-01

    The impact of both confinement and electron correlation on generalized oscillator strengths (GOS's) of endohedral atoms, A@C60, is theoretically studied choosing the Xe@C60 4d, 5s, and 5p fast electron impact ionization as the case study. Calculations are performed in the transferred to the atom energy region beyond the 4d threshold, ω=75-175 eV. The calculation methodology combines the plane-wave Born approximation, Hartree-Fock approximation, and random-phase approximation with exchange in the presence of the C60 confinement. The confinement is modeled by a spherical δ-function-like potential as well as by a square well potential to evaluate the effect of the finite thickness of the C60 cage on the Xe@C60 GOS's. Dramatic distortion of the 4d, 5p, and 5s GOS's by the confinement is demonstrated, compared to the free atom. Considerable contributions of multipolar transitions beyond dipole transitions in the calculated GOS's are revealed, in some instances. The vitality of accounting for electron correlation in calculation of the Xe@C60 5s and 5p GOS's is shown.

  14. Oscillator strengths for high-excitation Ti II from laboratory measurements and calculations

    NASA Astrophysics Data System (ADS)

    Lundberg, H.; Hartman, H.; Engström, L.; Nilsson, H.; Persson, A.; Palmeri, P.; Quinet, P.; Fivet, V.; Malcheva, G.; Blagoev, K.

    2016-07-01

    This work reports new experimental radiative lifetimes of six 3d2(3F)5s levels in singly ionized titanium, with an energy around 63 000 cm-1 and four 3d2(3F)4p odd parity levels where we confirm previous investigations. Combining the new 5s lifetimes with branching fractions measured previously by Pickering et al., we report 57 experimental log gf values for transitions from the 5s levels. The lifetime measurements are performed using time-resolved laser-induced fluorescence on ions produced by laser ablation. One- and two-step photon excitation is employed to reach the 4p and 5s levels, respectively. Theoretical calculations of the radiative lifetimes of the measured levels as well as of oscillator strengths for 3336 transitions from these levels are reported. The calculations are carried out by a pseudo-relativistic Hartree-Fock method taking into account core-polarization effects. The theoretical results are in a good agreement with the experiments and are needed for accurate abundance determinations in astronomical objects.

  15. Lifetimes and Oscillator Strengths for Ultraviolet Transitions in P II, Cl II and Cl III

    NASA Technical Reports Server (NTRS)

    Cheng, S.; Federman, S. R.; Schectman, R. M.; Brown, M.; Irving, R. E.; Fritts, M. C.; Gibson, N. D.

    2006-01-01

    Oscillator strengths for transitions in P II, Cl II and Cl III are derived from lifetimes and branching factions measured with beam-foil techniques. The focus is on the multiplets with a prominent interstellar line at 1153 A in P II which is seen in spectra of hot stars, and the lines at 1071 A in Cl II and 1011 A in Cl III whose lines are seen in spectra of diffuse interstellar clouds and the Io torus acquired with the Far Ultraviolet Spectroscopic Explorer. These data represent the first complete set of experimental f-values for the lines in the multiplets. Our results for P II (lambda)1153 agree well with Curtis semi-empirical predictions, as well as the large scale computations by Hibbert and by Tayal. The data for Cl II (lambda)1071 also agree very well with the most recent theoretical effort and with Morton s newest recommendations. For Cl III, however, our f-values are significantly larger than those given by Morton; instead, they are more consistent with recent large-scale theoretical calculations. Extensive tests provide confirmation that LS coupling rules apply to the transitions for the multiplets in Cl II and Cl III.

  16. Oscillator strengths for high-excitation Ti II from laboratory measurements and calculations

    NASA Astrophysics Data System (ADS)

    Lundberg, H.; Hartman, H.; Engström, L.; Nilsson, H.; Persson, A.; Palmeri, P.; Quinet, P.; Fivet, V.; Malcheva, G.; Blagoev, K.

    2016-04-01

    This work reports new experimental radiative lifetimes of six 3d2(3F)5s levels in singly ionized titanium, with an energy around 63000 cm-1 and four 3d2(3F)4p odd parity levels where we confirm previous investigations. Combining the new 5s lifetimes with branching fractions measured previously by Pickering et al. [Astrophys Journal Suppl Ser 132, 403 (2001)], we report 57 experimental log gf values for transitions from the 5s levels. The lifetime measurements are performed using time-resolved laser-induced fluorescence on ions produced by laser ablation. One- and two-step photon excitation is employed to reach the 4p and 5s levels, respectively. Theoretical calculations of the radiative lifetimes of the measured levels as well as of oscillator strengths for 3336 transitions from these levels are reported. The calculations are carried out by a pseudo-relativistic Hartree-Fock method taking into account core polarization effects. The theoretical results are in a good agreement with the experiments and are needed for accurate abundance determinations in astronomical objects.

  17. Photoionization Energies and Oscillator Strengths of Helium and Helium-like Ions

    SciTech Connect

    Faye, N.A.B.; Ndao, A.S.; Konte, A.; Biaye, M.; Wague, A.

    2005-10-17

    We first studied the resonant photoionization of helium-like ions, such as C4+, N5+, and O6+, and determined the wave functions, the excitation energies, and the partial and total widths of the autoionizing states of these ions lying under the n = 3 thresholds of the residual ion. For more detailed analysis of the theory, and a better comprehension of the internal dynamics of atomic resonances and electronic phenomena of correlation, we extended these calculations to other helium-like ions, under higher thresholds (n = 4 and 5) of the hydrogen ions H-, and of Li+, C4+, N5+, and O6+. We were also interested in oscillator strengths. These parameters are important for interpreting the spectra and diagnosing astrophysical and laboratory plasmas, as well as for analyzing the spectra coming from space and determining the composition and relative abundance from the various elements of the stellar and interstellar environment. We sought a better comprehension of the coupling between autoionizing and continuum states and of the phenomena of electronic correlations. We used the method of diagonalization that has been used below the n = 2 threshold of the residual ion. The results are important for astrophysicists and physicists studying matter-radiation interaction and for the invention of new laser systems. We also measured laser-induced chlorophyll fluorescence (LICF) emission spectra of the leaves of some tropical plants using a compact fiber-optic fluorosensor with a continuous-wave violet diode laser as the exciting source and an integrated digital spectrometer to analyze the state of stress of the plants.

  18. Quadratic Zeeman effect in hydrogen Rydberg states: Rigorous error estimates for energy eigenvalues, energy eigenfunctions, and oscillator strengths

    SciTech Connect

    Falsaperla, P.; Fonte, G. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I-95129 Catania )

    1994-10-01

    A variational method, based on some results due to T. Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], and previously discussed is here applied to the hydrogen atom in uniform magnetic fields of tesla in order to calculate, with a rigorous error estimate, energy eigenvalues, energy eigenfunctions, and oscillator strengths relative to Rydberg states up to just below the field-free ionization threshold. Making use of a basis (parabolic Sturmian basis) with a size varying from 990 up to 5050, we obtain, over the energy range of [minus]190 to [minus]24 cm[sup [minus]1], all of the eigenvalues and a good part of the oscillator strengths with a remarkable accuracy. This, however, decreases with increasing excitation energy and, thus, above [similar to][minus]24 cm[sup [minus]1], we obtain results of good accuracy only for eigenvalues ranging up to [similar to][minus]12 cm[sup [minus]1].

  19. Absolute optical oscillator strengths for the electronic excitation of atoms at high resolution: Experimental methods and measurements for helium

    SciTech Connect

    Chan, W.F.; Cooper, G.; Brion, C.E. )

    1991-07-01

    An alternative method is described for the measurement of absolute optical oscillator strengths (cross sections) for electronic excitation of free atoms and molecules throughout the discrete region of the valence-shell spectrum at high energy resolution (full width at half maximum of 0.048 eV). The technique, utilizing the virtual-photon field of a fast electron inelastically scattered at negligible momentum transfer, avoids many of the difficulties associated with the various direct optical techniques that have traditionally been used for absolute optical oscillator strength measurements. The method is also free of the bandwidth (line saturation) effects that can seriously limit the accuracy of photoabsorption cross-section measurements for discrete transitions of narrow linewidth obtained using the Beer-Lambert law ({ital I}{sub 0}/{ital I}=exp({ital nl}{sigma}{sub {ital p}})). Since the line-saturation effects are not widely appreciated and are only usually considered in the context of peak heights, a detailed analysis of this problem is presented, with consideration of the integrated cross section (oscillator strength) over the profile of each discrete peak.

  20. The realization of the dipole (γ, γ) method and its application to determine the absolute optical oscillator strengths of helium

    PubMed Central

    Xu, Long-Quan; Liu, Ya-Wei; Kang, Xu; Ni, Dong-Dong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Zhu, Lin-Fan

    2015-01-01

    The dipole (γ, γ) method, which is the inelastic x-ray scattering operated at a negligibly small momentum transfer, is proposed and realized to determine the absolute optical oscillator strengths of the vanlence-shell excitations of atoms and molecules. Compared with the conventionally used photoabsorption method, this new method is free from the line saturation effect, which can seriously limit the accuracies of the measured photoabsorption cross sections for discrete transitions with narrow natural linewidths. Furthermore, the Bethe-Born conversion factor of the dipole (γ, γ) method varies much more slowly with the excitation energy than does that of the dipole (e, e) method. Absolute optical oscillator strengths for the excitations of 1s2 → 1 snp(n = 3 − 7) of atomic helium have been determined using the high-resolution dipole (γ, γ) method, and the excellent agreement of the present measurements with both those measured by the dipole (e, e) method and the previous theoretical calculations indicates that the dipole (γ, γ) method is a powerful tool to measure the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. PMID:26678298

  1. Wavelengths and oscillator strengths of Xe II from the UVES spectra of four HgMn stars

    NASA Astrophysics Data System (ADS)

    Yüce, K.; Castelli, F.; Hubrig, S.

    2011-04-01

    Aims: In spite of large overabundances of Xe ii observed in numerous mercury-manganese (HgMn) stars, Xe ii oscillator strengths are only available for a very limited number of transitions. As a consequence, several unidentified lines in the spectra of HgMn stars could be due to Xe ii. In addition, some predicted Xe ii lines are redshifted by about 0.1 Å from stellar unidentified lines, raising the question about the wavelength accuracy of the Xe ii line data available in the literature. For these reasons we investigated the Xe ii lines lying in the 3900-4521 Å, 4769-7542 Å, and 7660-8000 Å spectral ranges of four well-studied HgMn stars. Methods: We compared the Xe ii wavelengths listed in the NIST database with the position of the lines observed in the high-resolution UVES spectrum of the xenon-overabundant, slowly rotating HgMn star HR 6000, and we modified them when needed. We derived astrophysical oscillator strengths for all the Xe ii observed lines and compared them with the literature values, when available. We checked the stellar atomic data derived from HR 6000 by using them to compute synthetic spectra for three other xenon-overabundant, slowly rotating HgMn stars, HD 71066, 46 Aql, and HD 175640. In this framework, we performed a complete abundance analysis of HD 71066, while we relied on our previous works for the other stars. Results: We find that all the lines with wavelengths related to the 6d and 7s energy levels have a corresponding unidentified spectral line, blueshifted by the same quantity of about 0.1 Å in all the four stars, so that we identified these lines as coming from Xe ii and modified their NIST wavelength value according to the observed stellar value. We find that the Xe ii stellar oscillator strengths may differ from one star to another from 0.0 dex to 0.3 dex. We adopted the average of the oscillator strengths derived from the four stars as final astrophysical oscillator strength.

  2. Excitation energies, oscillator strengths and lifetimes in Mg-like vanadium

    NASA Astrophysics Data System (ADS)

    Gupta, G. P.; Msezane, A. Z.

    2013-08-01

    Excitation energies from the ground state for 86 fine-structure levels as well as oscillator strengths and radiative decay rates for all fine-structure transitions among the levels of the terms (1s22s22p6)3s2(1S), 3s3p(1,3Po), 3s3d(1,3D), 3s4s(1,3S), 3s4p(1,3Po), 3s4d(1,3D), 3s4f(1,3Fo), 3p2(1S, 3P, 1D), 3p3d(1,3Po, 1,3Do, 1,3Fo), 3p4s(1,3Po), 3p4p(1,3S, 1,3P, 1,3D), 3p4d(1,3Po, 1,3Do, 1,3Fo), 3p4f(1,3D, 1,3F, 1,3G) and 3d2(1S, 3P, 1D,3F,1G) of V XII are calculated using extensive configuration-interaction wave functions obtained with the configuration-interaction version 3 computer code of Hibbert. The important relativistic effects in intermediate coupling are included through the Breit-Pauli approximation. In order to keep our calculated energy splittings as close as possible to the corresponding experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The mixing among several fine-structure levels is found to be very strong. Our fine-tuned excitation energies, including their ordering, are in excellent agreement (better than 0.25%) with the available experimental results. From our calculated radiative decay rates, we have also calculated the radiative lifetimes of fine-structure levels. Generally, our calculated data for the excitation energies and radiative decay rates are found to agree reasonably well with other available calculations. However, significant differences between our calculated lifetimes and those from the calculation of Froese Fischer et al (2006 At. Data Nucl. Data Tables 92 607) for a few fine-structure levels, mainly those belonging to the 3p4d configuration, are noted and discussed. Also, our calculated lifetime for the longer-lived level 3s3p(3P1) is found to be in excellent agreement with the corresponding value of Curtis (1991 Phys. Scr. 43 137). ) for all 1108 transitions in V XII are available with the first author ().

  3. SO_2 Absorption Cross Sections and N_2 VUV Oscillator Strengths for Planetary Atmosphere Studies

    NASA Astrophysics Data System (ADS)

    Smith, Peter L.; Stark, G.; Rufus, J.; Pickering, J. C.; Cox, G.; Huber, K. P.

    1998-09-01

    The determination of the chemical composition of the atmosphere of Io from Hubble Space Telescope observations in the 190-220 nm wavelength region requires knowledge of the photoabsorption cross sections of SO_2 at temperatures ranging from about 110 K to 300 K. We are engaged in a laboratory program to measure SO_2 absorption cross sections with very high resolving power (lambda /delta lambda =~ 450,000) and at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements, with lambda /delta lambda =~ 100,000, have been unable to resolve the very congested SO_2 spectrum, and, thus, to elucidate the temperature dependence of the cross sections. Our measurements are being performed at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We will present our recently completed room temperature measurements of SO_2 cross sections in the 190-220 nm region and plans for extending these to ~ 195 K. Analyses of Voyager VUV occultation measurements of the N_2-rich atmospheres of Titan and Triton have been hampered by the lack of fundamental spectroscopic data for N_2, in particular, by the lack of reliable f-values and line widths for electronic bands of N_2 in the 80-100 nm wavelength region. We are continuing our program of measurements of band oscillator strengths for the many (approximately 100) N_2 bands between 80 and 100 nm. We report new f-values, derived from data obtained at the Photon Factory (Tsukuba, Japan) synchrotron radiation facility with lambda /delta lambda =~ 130,000, of 37 bands in the 80-86 nm region and 21 bands in the 90-95 nm region. We have also begun the compilation of a searchable archive of N_2 data on the World Wide Web; see http://cfa-www.harvard. edu/amp/data/n2/n2home.html. The archive, covering the spectroscopy of N_2 between 80 and 100 nm, will include published and unpublished (14) N_2, (14) N(15) N, and (15) N_2 line lists and spectroscopic identifications, excited state energy

  4. Oscillator strengths and transition probabilities for allowed and forbidden transitions in Fe XIX

    SciTech Connect

    Nahar, Sultana N.

    2011-07-15

    An extensive set of oscillator strengths, line strengths, and radiative decay rates for the allowed and forbidden transitions in Fe XIX is presented. They correspond to 1626 fine structure levels of total angular momenta 0{<=}J{<=}8 of even and odd parities with 2{<=}n{<=}10, 0{<=}l{<=}9, 0{<=}L{<=}10, and (2S+1)=1, 3, 5. In contrast, the compiled table of the National Institute for Standards and Technology (NIST) lists only 63 observed levels. A total of 289,291 electric dipole allowed transitions are presented. They were obtained in the close coupling approximation using the relativistic Breit-Pauli R-matrix method. The wavefunction expansion included 15 levels of the configurations 2s{sup 2}2p{sup 3}, 2s2p{sup 4}, and 2p{sup 5} of the Fe XX core. The calculated fine structure levels are assigned with spectroscopic identifications using quantum defect analysis. Comparison with the observed energies shows very good agreement, the largest difference being less than 4%. The transitions also compare well with the compiled data by NIST and recent calculations. The forbidden transitions of the electric quadrupole and octupole, and magnetic dipole and quadrupole, type are presented for the 379 levels of the configurations 2s{sup 2}2p{sup 4}, 2s2p{sup 5}, 2p{sup 6}, 2s{sup 2}2p{sup 3}3s, 2s{sup 2}2p{sup 3}3p, 2s{sup 2}2p{sup 3}3d, 2s{sup 2}2p{sup 3}4s, 2s{sup 2}2p{sup 3}4p, 2s{sup 2}2p{sup 3}4d, 2s{sup 2}2p{sup 3}4f, 2s2p{sup 4}3s, 2s2p{sup 4}3p, 2s2p{sup 4}3d, 2s2p{sup 4}4s, 2s2p{sup 4}4p, and 2s{sup 2}2p{sup 2}3s{sup 2} of Fe XIX. They correspond to a total of 66,619 transitions. These results have been obtained from relativistic Breit-Pauli atomic structure calculations using the program SUPERSTRUCTURE. The forbidden transition probabilities show very good agreement with those compiled by NIST. - Highlights: {yields} Presents the most complete (n up to 10) set of transitions for Fe XIX. {yields} Considers both allowed and forbidden transitions. {yields} Large number

  5. FOREWORD: 4th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Leckrone, David S.; Sugar, Jack

    1993-01-01

    In 1983 the Atomic Spectroscopy Group at the University of Lund organized a conference at Lund the purpose of which was to establish a dialogue between scientists whose research made use of basic atomic data, and scientists whose research produced such data. The data in question include complete descriptions of atomic and ionic spectra, accurate transition wavelengths and relative intensities, energy levels, lifetimes, oscillator strengths, line shapes, and nuclear effects (hyperfine structure and isotope shifts). The "consumers" in urgent need of new or improved atomic data included astrophysicsts, laboratory plasma physicists, and spectrochemists. The synergism between these specialists and the theoretical and experimental atomic physicists resulted in a highly successful meeting, attended by approximately 70 people. The rapid advances foreseen at that time in all of these areas of observational, experimental and theoretical science stimulated planning for a second conference on this subject in 1986 at the University of Toledo, and subsequently a third meeting was held at the Royal Netherlands Academy of Arts and Sciences in Amsterdam in 1989. Again attendance at the latter two meetings totaled approximately 70 researchers. The participants in Amsterdam agreed to re-convene at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, in 1992, maintaining the frequency of these conferences at one every three years. The present Topical Issue of Physica Scripta consists of 31 invited reviews given at the Gaithersburg meeting. Extended abstracts of 63 poster papers from the meeting are being published in NIST Special Publication SP850. Approximately 170 scientists attended the Gaithersburg conference, representing a substantial growth in the size of meetings in this series. One session of the conference was devoted to an informal workshop, at which any participant could give a brief oral statement about his or her most immediate data need

  6. Asymptotic behavior of apparent generalized oscillator strengths for optically forbidden transitions in rare-gas atoms

    SciTech Connect

    Suzuki, T. Y.; Suzuki, H.; Ohtani, S.; Takayanagi, T.; Okada, K.

    2007-03-15

    Apparent generalized oscillator strengths (apparent GOS's) have been measured for three types of optically forbidden transitions in rare-gas atoms as functions of the squared momentum transfer K{sup 2} at small K{sup 2} range ({<=}0.4 a.u.). The apparent GOS's were deduced from the differential cross sections for excitation, which were measured by means of the electron energy-loss spectroscopy. Electron impact energies were 100, 300, and 500 eV, and the scattering angles were from 0.8 degree sign to 10 degree sign . In the case where the first Born approximation does not hold, the apparent GOS as a function of K{sup 2} (the apparent GOS function) shows characteristic dependence on the electron collision energy according to the character of the transition. In the present observation, for the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p{sup '}[1/2]{sub 0} transitions, the specific behavior has been observed in the apparent GOS functions characteristic of that for the {sup 1}S{sub 0}{yields}{sup 1}S{sub 0} type transition, in which the term symbols of the initial and the final states do not change. For the np{sup 6} {sup 1}S{sub 0}{yields}np{sup 5}(n+1)p[5/2]{sub 2,3}; [3/2]{sub 1,2} transitions, a certain new type of deviations from the first Born approximation, which is interpreted to be characteristic of the {sup 1}S{sub 0}{yields}{sup 1}D{sub 2} type transition, have been observed in the apparent GOS functions with some modifications depending on respective atomic species. For the 5p{sup 6} {sup 1}S{sub 0}{yields}5p{sup 5}5d [7/2]{sub 3}; [5/2]{sub 3} transitions in Xe, it is observed that the apparent GOS curves have no impact energy dependence for impact energies from 100 eV to 500 eV, which suggests that the first Born approximation is valid for such low impact energies and the curves agree with the Bethe-GOS. It is found that the GOS's varies in proportional to K{sup 4} at small K{sup 2} region ({<=}0.1 a.u.), which suggests that the octupole moment is

  7. Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations

    PubMed Central

    Chambers, Jordan D.; Bethwaite, Blair; Diamond, Neil T.; Peachey, Tom; Abramson, David; Petrou, Steve; Thomas, Evan A.

    2012-01-01

    Gamma oscillations are thought to be critical for a number of behavioral functions, they occur in many regions of the brain and through a variety of mechanisms. Fast repetitive bursting (FRB) neurons in layer 2 of the cortex are able to drive gamma oscillations over long periods of time. Even though the oscillation is driven by FRB neurons, strong feedback within the rest of the cortex must modulate properties of the oscillation such as frequency and power. We used a highly detailed model of the cortex to determine how a cohort of 33 parameters controlling synaptic drive might modulate gamma oscillation properties. We were interested in determining not just the effects of parameters individually, but we also wanted to reveal interactions between parameters beyond additive effects. To prevent a combinatorial explosion in parameter combinations that might need to be simulated, we used a fractional factorial design (FFD) that estimated the effects of individual parameters and two parameter interactions. This experiment required only 4096 model runs. We found that the largest effects on both gamma power and frequency came from a complex interaction between efficacy of synaptic connections from layer 2 inhibitory neurons to layer 2 excitatory neurons and the parameter for the reciprocal connection. As well as the effect of the individual parameters determining synaptic efficacy, there was an interaction between these parameters beyond the additive effects of the parameters alone. The magnitude of this effect was similar to that of the individual parameters, predicting that it is physiologically important in setting gamma oscillation properties. PMID:22837747

  8. Ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and ionic radii of element Uus (Z = 117) and astatine.

    PubMed

    Chang, Zhiwei; Li, Jiguang; Dong, Chenzhong

    2010-12-30

    Multiconfiguration Dirac-Fock (MCDF) method was employed to calculate the first five ionization potentials, electron affinities, resonance excitation energies, oscillator strengths, and radii for the element Uus and its homologue At. Main valence correlation effects were taken into account. The Breit interaction and QED effects were also estimated. The uncertainties of calculated IPs, EAs, and IR for Uus and At were reduced through an extrapolation procedure. The good consistency with available experimental and other theoretical values demonstrates the validity of the present results. These theoretical data therefore can be used to predict some unknown physicochemical properties of element Uus, Astatine, and their compounds. PMID:21141866

  9. Effective oscillator strength distributions of spherically symmetric atoms for calculating polarizabilities and long-range atom–atom interactions

    SciTech Connect

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, M.W.J.

    2015-01-15

    Effective oscillator strength distributions are systematically generated and tabulated for the alkali atoms, the alkaline-earth atoms, the alkaline-earth ions, the rare gases and some miscellaneous atoms. These effective distributions are used to compute the dipole, quadrupole and octupole static polarizabilities, and are then applied to the calculation of the dynamic polarizabilities at imaginary frequencies. These polarizabilities can be used to determine the long-range C{sub 6}, C{sub 8} and C{sub 10} atom–atom interactions for the dimers formed from any of these atoms and ions, and we present tables covering all of these combinations.

  10. On the difference in oscillator strengths of inner shell excitations in noble gases and their alkali neighbors

    SciTech Connect

    Amusia, M.Y.; Baltenkov, A.S.; Zhuravleva, G.I.

    1995-08-01

    It is demonstrated that the oscillator strength of resonant inner-shell excitation in a noble gas atom is considerably smaller than that in its alkali neighbor because in the latter case the effective charge acting upon excited electron is much bigger. With increase of the excitation`s principal quantum number the difference between line intensities in noble gases and their alkali neighbors rapidly disappears. The calculations are performed in the Hartree-Fock approximation and with inclusion of rearrangement effects due to inner vacancy creation and its Auger decay. A paper has been submitted for publication.

  11. VizieR Online Data Catalog: FeI oscillator strengths for Gaia-ESO (Ruffoni+, 2014)

    NASA Astrophysics Data System (ADS)

    Ruffoni, M. P.; den Hartog, E. A.; Lawler, J. E.; Brewer, N. R.; Lind, K.; Nave, G.; Pickering, J. C.

    2014-10-01

    The Gaia-ESO Public Spectroscopic Survey (GES) is conducting a large-scale study of multi-element chemical abundances of some 100000 stars in the Milky Way with the ultimate aim of quantifying the formation history and evolution of young, mature and ancient Galactic populations. However, in preparing for the analysis of GES spectra, it has been noted that atomic oscillator strengths of important FeI lines required to correctly model stellar line intensities are missing from the atomic data base. Here, we present new experimental oscillator strengths derived from branching fractions and level lifetimes, for 142 transitions of FeI between 3526 and 10864Å, of which at least 38 are urgently needed by GES. We also assess the impact of these new data on solar spectral synthesis and demonstrate that for 36 lines that appear unblended in the Sun, Fe abundance measurements yield a small line-by-line scatter (0.08dex) with a mean abundance of 7.44dex in good agreement with recent publications. (3 data files).

  12. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    NASA Astrophysics Data System (ADS)

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S. H.

    2014-05-01

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s23p4, 3s3p5, 3s23p33d, 3s23p34s, 3s23p34p, and 3s23p34d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit-Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin-orbit, spin-other-orbit, and spin-spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications.

  13. Registration of weak ULF/ELF oscillations of the surface electric field strength

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. I.; Vyazilov, A. E.; Ivanov, V. N.; Kemaev, R. V.; Korovin, V. Ya.; Melyashinskii, A. V.; Pamukhin, K. V.; Panov, V. N.; Shvyrev, Yu. N.

    2016-07-01

    Measurements of the atmospheric electric field strength made by an electrostatic fluxmeter with a unique threshold sensitivity for such devices (6 × 10-2-10-3 V m-1 Hz-1/2 in the 10-3-25 Hz frequency range) and wide dynamic (120 dB) and spectral (0-25 Hz) ranges, are presented. The device parameters make it possible to observe the electric component of global electromagnetic Schumann resonances and long-period fluctuations in the atmospheric electric field strength.

  14. Oscillator strengths of Cr I lines lying between 200 and 541 nm from hook-method and absorption measurements in a furnace

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Sandeman, R. J.

    1977-01-01

    Measurements of 148 oscillator strengths of neutral chromium transitions were made on Cr vapor in a high-temperature furnace by the hook and absorption methods for strong and weak lines, respectively. With the aid of a 5D-z 5F0 multiplet, the product of the oscillator strengths of the lines of this multiplet with the column densities of their respective lower levels could be determined, and by using estimated oscillator strengths for these lines, all data could be put on a common relative scale. This scale was altered so that the results were matched with relative emission intensities. Results are compared with other authors' results. A correction to the hook method constant was also determined.

  15. Significant Redistribution of Ce 4d Oscillator Strength Observed in Photoionization of Endohedral Ce-C{sub 82}{sup +} Ions

    SciTech Connect

    Mueller, A.; Schippers, S.; Habibi, M.; Esteves, D.; Wang, J. C.; Phaneuf, R. A.; Kilcoyne, A. L. D.; Aguilar, A.; Dunsch, L.

    2008-09-26

    Mass-selected beams of atomic Ce{sup q+} ions (q=2, 3, 4), of C{sub 82}{sup +} and of endohedral Ce-C{sub 82}{sup +} ions were employed to study photoionization of free and encaged cerium atoms. The Ce 4d inner-shell contributions to single and double ionization of the endohedral Ce-C{sub 82}{sup +} fullerene have been extracted from the data and compared with expectations based on theory and the experiments with atomic Ce ions. Dramatic reduction and redistribution of the ionization contributions to 4d photoabsorption is observed. More than half of the Ce 4d oscillator strength appears to be diverted to the additional decay channels opened by the fullerene cage surrounding the Ce atom.

  16. VizieR Online Data Catalog: A-values & oscillator strength of O-like ions (Landi+, 2005)

    NASA Astrophysics Data System (ADS)

    Landi, O.

    2005-04-01

    In the present work a complete set of radiative transition rates is calculated for all for the O-like ions with Z=11-30. Energy levels, oscillator strengths and A values are computed for all transitions within the n=2 complex and are compared with previous calculations, where available. Calculations are carried out using the Superstructure code. The present work provides for the first time a self-consistent, complete set of A values necessary for the calculation of line emissivities and synthetic spectra for all the ions considered, filling several gaps in the existing literature. The present data are especially suited for the analysis of spectral lines emitted by the less-abundant elements in the universe, for which few if any data were available in the literature. (2 data files).

  17. Oscillator strengths of ultraviolet Ni I lines from hook-method and absorption measurements in a furnace

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.; Sandeman, R. J.

    1980-01-01

    Measurements of the oscillator strengths of the ultraviolet lines of neutral nickel obtained by the use of the combined hook and absorption technique are reported. A total of 221 transitions in the range 1964-4094 A was measured for nickel atoms from a high-temperature graphite furnace (2000-2500 K) using a continuum background source, a Mach-Zehnder interferometer and a 3-m Czerny-Turner spectrograph. Hook and absorption measurements are presented, and radiative lifetimes are derived from log gf values. Comparison of the present values with previous results indicates only those of Bell et al. (1966) and Lennard et al. (1975) to consistently agree with the data presented, although the reliability laser-excitation technique of lifetime measurement is supported over that of Hanle methods.

  18. Statistics of equivalent width data and new oscillator strengths for Si II, Fe II, and Mn II. [in interstellar medium

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave

    1986-01-01

    Equivalent width data from Copernicus and IUE appear to have an exponential, rather than a Gaussian distribution of errors. This is probably because there is one dominant source of error: the assignment of the background continuum shape. The maximum likelihood method of parameter estimation is presented for the case of exponential statistics, in enough generality for application to many problems. The method is applied to global fitting of Si II, Fe II, and Mn II oscillator strengths and interstellar gas parameters along many lines of sight. The new values agree in general with previous determinations but are usually much more tightly constrained. Finally, it is shown that care must be taken in deriving acceptable regions of parameter space because the probability contours are not generally ellipses whose axes are parallel to the coordinate axes.

  19. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    SciTech Connect

    Abou El-Maaref, A.; Ahmad, Mahmoud; Allam, S.H.

    2014-05-15

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term, and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.

  20. Relativistic many-body calculations of excitation energies, oscillator strengths, transition rates, and lifetimes in samariumlike ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.

    2013-03-01

    The unique atomic properties of samariumlike ions, not yet measured experimentally, are theoretically predicted and studied in this paper. Excitation energies, oscillator strengths, transition probabilities, and lifetimes are calculated for (5s2+5p2+5d2+5s5d+5s5g+5p5f)-(5s5p+5s5f+5p5d+5p5g) electric dipole transitions in Sm-like ions with nuclear charge Z ranging from 74 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s22s22p63s23p63d104s24p64d104f14 Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate coupling coefficients, and the second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1 matrix elements to achieve agreement between length-form and velocity-form amplitudes. The resulting transition energies and transition probabilities, and lifetimes for Sm-like W12+ are compared with results obtained by the relativistic Hartree-Fock approximation (cowan code) to estimate contributions of the 4f-core-excited states. Trends of excitation energies and oscillator strengths as the function of nuclear charge Z are shown graphically for selected states and transitions. This work provides a number of yet unmeasured atomic properties of these samariumlike ions for various applications and as a benchmark for testing theory.

  1. The splitting and oscillator strengths for the 2S/2/S-2p/2/P/0/ doublet in lithium-like sulfur. [during Skylab observed solar flares

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Forester, J. P.; Elston, S. B.; Griffin, P. M.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Sellin, I. A.; Groeneveld, K.-O.

    1977-01-01

    The beam-foil technique has been used to study the 2S(2)S-2p(2)P(0) doublet in S XIV. The results confirm the doublet splitting measured aboard Skylab during solar flare events. In addition, the oscillator strengths for the resonance transitions comprising this doublet have been measured and found to agree well with recent relativistic f-value calculations.

  2. Absolute oscillator strengths for lines of neutral cobalt between 2276 A and 9357 A and a redetermination of the solar cobalt abundance

    NASA Astrophysics Data System (ADS)

    Cardon, B. L.; Smith, P. L.; Scalo, J. M.; Testerman, L.; Whaling, W.

    1982-09-01

    Absolute oscillator strengths of neutral cobalt have been determined from hook measurements for 159 transitions and emission intensity measurements for 314 transitions between 2276 Å and 9357 Å. Ninety-five of these transitions were subjected to the procedure developed by Cardon, Smith, and Whaling which fits combined absorption and emission data to a set of consistent, optimum, relative oscillator strengths and upper level lifetimes. These relative values were normalized to the radiative lifetimes of Figger et al. and of Marek and Vogt obtained by pulsed laser fluorescence. Absolute oscillator strengths for 362 transitions and 36 lifetimes were determined. Typical uncertainties in the reported absolute oscillator strengths are ±15-25% (2/3 confidence level). Equivalent widths were obtained for nineteen solar cobalt lines with the McMath solar telescope at Kitt Peak National Observatory. These widths were used to redetermine the solar cobalt abundance, assuming the photospheric model of Holweger and a microturbulence velocity of 1.0 km s-1. The adopted solar cobalt abundance is the mean value log Co/NH> + 12 = 4.92 ± 0.08 (±19%), from the 19 cobalt transitions. This value is in excellent agreement with the solar values of Ross and Aller, of Biemont, and of Holweger and that of Cameron for carbonaceous chondrites.

  3. Absolute oscillator strengths for lines of neutral cobalt between 2276 A and 9357 A and a redetermination of the solar cobalt abundance

    SciTech Connect

    Cardon, B.L.; Smith, P.L.; Scalo, J.M.; Testerman, L.; Whaling, W.

    1982-09-01

    Absolute oscillator strengths of neutral cobalt have been determined from hook measurements for 159 transitions and emission intensity measurements for 314 transitions between 2276 A and 9357 A. Ninety-five of these transitions were subjected to the procedure developed by Cardon, Smith, and Whaling which fits combined absorption and emission data to a set of consistent, optimum, relative oscillator strengths and upper level lifetimes. These relative values were normalized to the radiative lifetimes of Figger et al. and of Marek and Vogt obtained by pulsed laser fluorescence. Absolute oscillator strengths for 362 transitions and 36 lifetimes were determined. Typical uncertainties in the reported absolute oscillator strengths are +- 15-25% (2/3 confidence level). Equivalent widths were obtained for nineteen solar cobalt lines with the McMath solar telescope at Kitt Peak National Observatory. These widths were used to redetermine the solar cobalt abundance, assuming the photospheric model of Holweger and a microturbulence velocity of 1.0 km s/sup -1/. The adopted solar cobalt abundance is the mean value log +12 = 4.92 +- 0.08 ( +- 19%), from the 19 cobalt transitions. This value is in excellent agreement with the solar values of Ross and Aller, of Biemont, and of Holweger and that of Cameron for carbonaceous chondrites.

  4. Absolute oscillator strengths for the valence and inner (P 2p,2s) shell photoabsorption, photoionization, and ionic photofragmentation of PF 3

    NASA Astrophysics Data System (ADS)

    Au, Jennifer W.; Brion, C. E.

    1997-08-01

    Absolute oscillator strengths (cross-sections) for the photoabsorption of phosphorus pentafluoride (PF 5) have been measured for the first time in the valence and phosphorus 2p discrete regions using high-resolution (0.0-0.1 eV fwhm), dipole ( e, e) spectroscopy. Long-range data (10-300 eV) have also been obtained at lower resolution (1 eV fwhm), from which the absolute oscillator strength scale has been determined using the valence-shell Thomas-Reiche-Kuhn sum-rule. The accuracy of the present measurement has been tested using the S(-2) sum rule normalization. Evaluation of the S(-2) sum using the presently reported absolute photoabsorption oscillator strength data gives a dipole polarizabilit for PF 5 in good agreement with the experimental value. The photoionization efficiencies, photoion branching ratios, and absolute partial oscillator strengths for molecular and dissociative photoionization have also been determined for PF 5 by dipole ( e, e+ion) coincidence spectroscopy from the first ionization threshold up to and above the phosphorus 2p edge.

  5. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  6. A fast parallel code for calculating energies and oscillator strengths of many-electron atoms at neutron star magnetic field strengths in adiabatic approximation

    NASA Astrophysics Data System (ADS)

    Engel, D.; Klews, M.; Wunner, G.

    2009-02-01

    We have developed a new method for the fast computation of wavelengths and oscillator strengths for medium-Z atoms and ions, up to iron, at neutron star magnetic field strengths. The method is a parallelized Hartree-Fock approach in adiabatic approximation based on finite-element and B-spline techniques. It turns out that typically 15-20 finite elements are sufficient to calculate energies to within a relative accuracy of 10-5 in 4 or 5 iteration steps using B-splines of 6th order, with parallelization speed-ups of 20 on a 26-processor machine. Results have been obtained for the energies of the ground states and excited levels and for the transition strengths of astrophysically relevant atoms and ions in the range Z=2…26 in different ionization stages. Catalogue identifier: AECC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3845 No. of bytes in distributed program, including test data, etc.: 27 989 Distribution format: tar.gz Programming language: MPI/Fortran 95 and Python Computer: Cluster of 1-26 HP Compaq dc5750 Operating system: Fedora 7 Has the code been vectorised or parallelized?: Yes RAM: 1 GByte Classification: 2.1 External routines: MPI/GFortran, LAPACK, PyLab/Matplotlib Nature of problem: Calculations of synthetic spectra [1] of strongly magnetized neutron stars are bedevilled by the lack of data for atoms in intense magnetic fields. While the behaviour of hydrogen and helium has been investigated in detail (see, e.g., [2]), complete and reliable data for heavier elements, in particular iron, are still missing. Since neutron stars are formed by the collapse of the iron cores of massive stars, it may be assumed that their atmospheres contain an iron plasma. Our objective is to fill the gap

  7. FOREWORD: The 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS 9)

    NASA Astrophysics Data System (ADS)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2008-07-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy of Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and the Physics Department of Lund University during from 8 to 10 August 2007 and was attended by nearly 100 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume contains the submitted contributions from the poster presentations of the conference, and represents approximately forty percent of the presented posters. A complementary volume of Physica Scripta provides the written transactions of the ASOS9 invited presentations. With these two volumes the character of ASOS9 is more fully evident, and they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy where both the providers and users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths, and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, the latter including fusion energy and lighting research. As a part of ASOS9 we were honored to celebrate the retirement of Professor Sveneric Johansson. At a special session on the spectroscopy of iron, which was conducted in his honor, he presented his insights into the Fe II term system and his most recent

  8. Lifetimes and Oscillator Strengths for Ultraviolet Transitions Involving 6s26d 2D and 6s6p3 2D Levels in Pb II

    NASA Astrophysics Data System (ADS)

    Federman, Steven Robert; Heidarian, Negar; Irving, Richard; Ritchey, Adam M.; Ellis, David; Cheng, Song; Curtis, Larry; Furman, Walter

    2016-06-01

    We conducted beam-foil measurements on levels producing Pb II lines at 1203.6 and 1433.9 Å. These were supplemented by archival data from the Hubble Space Telescope (HST) covering the Pb II transitions. The oscillator strengths derived from our experimental lifetimes are generally consistent with recent large-scale theoretical results, as well as our own relativistic calculations. Our analysis of the HST spectra confirms the relative strengths of the two lines. However, the oscillator strength obtained for the line at 1433 Å is significantly smaller than earlier theoretical values used to derive the interstellar lead abundance, leading to an increase of 0.43 dex in this quantity. We will present our results for Pb II and compare them with others from the literature.

  9. Oscillator strengths and transition probabilities from the Breit–Pauli R-matrix method: Ne IV

    SciTech Connect

    Nahar, Sultana N.

    2014-09-15

    The atomic parameters–oscillator strengths, line strengths, radiative decay rates (A), and lifetimes–for fine structure transitions of electric dipole (E1) type for the astrophysically abundant ion Ne IV are presented. The results include 868 fine structure levels with n≤ 10, l≤ 9, and 1/2≤J≤ 19/2 of even and odd parities, and the corresponding 83,767 E1 transitions. The calculations were carried out using the relativistic Breit–Pauli R-matrix method in the close coupling approximation. The transitions have been identified spectroscopically using an algorithm based on quantum defect analysis and other criteria. The calculated energies agree with the 103 observed and identified energies to within 3% or better for most of the levels. Some larger differences are also noted. The A-values show good to fair agreement with the very limited number of available transitions in the table compiled by NIST, but show very good agreement with the latest published multi-configuration Hartree–Fock calculations. The present transitions should be useful for diagnostics as well as for precise and complete spectral modeling in the soft X-ray to infra-red regions of astrophysical and laboratory plasmas. -- Highlights: •The first application of BPRM method for accurate E1 transitions in Ne IV is reported. •Amount of atomic data (n going up to 10) is complete for most practical applications. •The calculated energies are in very good agreement with most observed levels. •Very good agreement of A-values and lifetimes with other relativistic calculations. •The results should provide precise nebular abundances, chemical evolution etc.

  10. Suppression of fine-structure splitting and oscillator strength of sodium D-line in a Debye plasma

    SciTech Connect

    Basu, Joyee Ray, Debasis

    2014-01-15

    We investigate theoretically the influence of static plasma screening on relativistic spin-orbit interaction-induced fine-structure splitting of the D-line doublet arising from the transitions 3p{sub 1/2}–3s{sub 1/2} and 3p{sub 3/2}–3s{sub 1/2} of the valence electron of a sodium atom embedded in a model plasma environment. The many-electron atomic problem is formulated first as an effective one-electron problem in which the interaction between the optically active valence electron and the atomic ion core is represented by an accurate parametric model potential including core-polarization correction, and then the plasma effect on the atomic system is simulated by the Debye-screening model for the valence-core interaction. It is observed that the magnitude of spin-orbit energy shift reduces for both the upper component 3p{sub 3/2} and the lower component 3p{sub 1/2} with increasing plasma screening strength, thereby reducing the spin-orbit energy separation between these two components as the screening becomes stronger. As a consequence, the magnitude of fine-structure splitting between the D{sub 1} and D{sub 2} line energies of sodium drops significantly with stronger plasma screening. The optical (absorption) oscillator strength for 3s → 3p transition is seen to reduce with stronger screening and this leads to a screening-induced gradual suppression of the 3p → 3s spontaneous decay rate.

  11. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    SciTech Connect

    Savukov, I. M.; Filin, D. V.

    2014-12-29

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.

  12. Configuration-interaction plus many-body-perturbation-theory calculations of Si i transition probabilities, oscillator strengths, and lifetimes

    NASA Astrophysics Data System (ADS)

    Savukov, I. M.

    2016-02-01

    The precision of the mixed configuration-interaction plus many-body-perturbation-theory (CI+MBPT) method is limited in multivalence atoms by the large size of valence CI space. Previously, to study this problem, the CI+MBPT method was applied to calculations of energies in a four-valence electron atom, Si i. It was found that by using a relatively small cavity of 30 a.u. and by choosing carefully the configuration space, quite accurate agreement between theory and experiment at the level of 100 cm-1 can be obtained, especially after subtraction of systematic shifts for groups of states of the same J and parity. However, other properties are also important to investigate. In this work, the CI+MBPT method is applied to studies of transition probabilities, oscillator strengths, and lifetimes. A close agreement with accurate experimental measurements and other elaborate theories is obtained. The long-term goal is to extend the CI+MBPT approach to applications in more complex atoms, such as lantanides and actinides.

  13. Oscillator strengths and radiative decay rates for spin-changing S-P transitions in helium: finite nuclear mass effects

    NASA Astrophysics Data System (ADS)

    Morton, Donald C.; Schulhoff, Eva E.; Drake, G. W. F.

    2015-12-01

    We have calculated the electric dipole (E1) and magnetic quadrupole (M2) oscillator strengths and spontaneous decay rates for 24 spin-changing transitions of atomic helium. We included the effects of the finite nuclear mass and the anomalous magnetic moment of the electron augmented by the recently derived Pachucki term. The specific transitions for 4He are n{ }1{{{S}}}0-{n}\\prime { }3{{{P}}}{1,2} and n{ }3{{{S}}}1-{n}\\prime { }1{{{P}}}1 with n,{n}\\prime ≤slant 3 and n≤slant 10 for {n}\\prime =n. For the E1 calculations we used the Breit approximation and pseudostate expansions to perform the perturbation sums over intermediate states in both the length and velocity gauge as a check on both numerical accuracy and validity of the transition operators. The corrections for the nuclear mass and the electron anomaly tend to cancel, indicating that if one is included, then so should be the other. The tables give mass- and anomaly-dependent coefficients permitting the easy generation of results for the other isotopes of helium.

  14. Configuration-interaction relativistic-many-body-perturbation-theory calculations of photoionization cross sections from quasicontinuum oscillator strengths

    DOE PAGESBeta

    Savukov, I. M.; Filin, D. V.

    2014-12-29

    Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreementmore » with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions.« less

  15. Structural aspects of Judd-Ofelt oscillator strength parameters: relationship between Nd dissolution and its local environment in borosilicate glass

    SciTech Connect

    Li, Hong; Li, Liyu; Strachan, Denis M.

    2005-08-15

    Judd-Ofelt (JO) derived oscillator strength parameters ({Omega}{sub 2}, {Omega}{sub 4}, {Omega}{sub 6}) of electronic transitions of the trivalent lanthanides (Ln) qualitatively describe local Ln environment. Recently, we have systematically studied the parameters, or JO parameters, as a function Nd concentration in a single Na-rich aluminoborosilicate glass. Based on Nd partitioning scheme as its dissolution mechanism for borosilicate glasses, we simulated extent of borate saturation as a function of Nd concentration by applying a stable local Nd-metaborate structure derived from our previous studies. The best results concluded that the first onset of the {Omega}{sub 2} discontinuity resulted from the saturation of the borate sites by Nd. Combining with our earlier study of the JO parameters for Al-rich borosilicate glass without Na, we can further conclude that the index of saturation of boron by Nd, IS{sub [B]} = [Nd{sub 2}O{sub 3}]{sub B-site}/1/3{l_brace}[B{sub 2}O{sub 3}]ex + [Al{sub 2}O{sub 3}]ex{r_brace}, provides a general physical description of Nd partitioning in the borate site for complex Na{sub 2}O-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-SiO{sub 2} glasses, whereas for the Na-rich glass reported in this study, [Al{sub 2}O{sub 3}]{sub ex} = 0.

  16. Length and velocity form calculations of generalized oscillator strengths of dipole, quadrupole and monopole excitations of argon

    NASA Astrophysics Data System (ADS)

    Gomis, L.; Faye, I. G.; Diallo, S.; Tall, M. S.; Diedhiou, I.; Hibbert, A.; Daul, C. A.; Diatta, C. S.

    2016-01-01

    The quadrupole, monopole and dipole generalized oscillator strengths (GOSs) as a function of momentum transfer are respectively calculated for these 3p6 → 3p5 (4p, 5p, 6p) and 3p6 → 3p5 (4s, 5s, 6s) transitions. Configuration interaction (CI) and random phase approximation with exchange (RPAE) methods are used in the determination of these GOS, in the length and velocity forms. The code of Hibbert has been used to generate the wavefunctions from which a partial of argon GOSs are been computed. The present work has reduced the gap between the absolute values of the theoretical calculations of GOSs and those of the experimental results of Zhu et al for the quadrupole excitations to 3p5 (4p, 5p). The profile of our quadrupole GOS 3p6 → 3p55p transition agrees well with the experimental result of Zhu. The best agreement (0.7%) is observed between the (length) first maximum position and the experimental one for the quadrupole GOS 3p6 → 3p54p transition. The present velocity GOS minimum position for the dipole excitation in 3p6 → 3p54s and the calculated velocity GOS maximum position of the monopole 3p6 → 3p54p transition are in good agreement with the experimental observations (differences of 1.82% and 3.08%, respectively). Correlation effects decrease with increasing of the excited state principal quantum number and have no great influence on the extrema positions.

  17. Impact of ex situ rapid thermal annealing on magneto-optical properties and oscillator strength of In(Ga)As quantum dots

    NASA Astrophysics Data System (ADS)

    Braun, T.; Betzold, S.; Lundt, N.; Kamp, M.; Höfling, S.; Schneider, C.

    2016-04-01

    We discuss the influence of a rapid thermal annealing step on the magneto-optical emission properties of In(Ga)As/GaAs quantum dots. We map out a strong influence of the growth and annealing parameters on the excitons' effective Landé g factors and in particular on their diamagnetic coefficients, which we directly correlate with the modification of the emitters' shape and material composition. In addition, we study the excitons' spontaneous emission lifetime as a function of the annealing temperature and the dot height and observe a strong increase of the emission rate with the quantum dot volume. The corresponding increase in oscillator strength yields fully consistent results with the analysis of the diamagnetic behavior. Specifically, we demonstrate that a rapid thermal annealing step of 850 ∘C can be employed to increase the oscillator strength of as-grown InAs/GaAs QDs by more than a factor of 2.

  18. Oscillator strengths for transitions to Rydberg levels in 12C 16O, 13C 16O and 13C 18O between 967 and 972 Å

    NASA Astrophysics Data System (ADS)

    Eidelsberg, M.; Lemaire, J. L.; Fillion, J. H.; Rostas, F.; Federman, S. R.; Sheffer, Y.

    2004-09-01

    Absorption oscillator strengths have been determined from high-resolution spectra in the 967-972 Å region of three CO isotopomers for transitions to the Rydberg levels 4pπ(0), 3dπ(1)b and 4pσ(0), as well as to the mixed E(6) level recently characterized by Eidelsberg et al. (\\cite{Eid04}). Synchrotron radiation from the Super-ACO electron storage ring at Orsay (LURE) was used as a light source. Oscillator strengths were extracted from the recorded spectra by least-squares fitting of the experimental profiles with synthetic spectra taking into account the homogeneous and heterogeneous interactions of the four levels. Column densities were derived from fits to the 3pπ(0) absorption band whose oscillator strength is well established. These are the first reported measurements for 13C18O. For 12C16Op, our results are consistent with the larger values obtained in the most recent laboratory and astronomical studies. Based on experiments done at the Super-ACO electron storage ring at Orsay (LURE), France.

  19. Energy levels, transition rates, oscillator strengths and lifetimes in Ne-like, Ni-like, and Cu-like uranium ions

    NASA Astrophysics Data System (ADS)

    Bari, M. A.; Nazir, R. T.; Nasim, M. H.; Duan, B.; Azeem, M.; Shabbir Naz, G.; Salahuddin, M.

    2015-01-01

    We present the fine-structure energy levels, wavelengths, oscillator strengths, transition energies, and transition rates of optically allowed inner-shell transitions of Ne-, Ni-, and Cu-like uranium ions by using the multiconfiguration Dirac-Fock method with the fully relativistic GRASP2 code (partly improved by us). In order to compare these results, we have performed other independent calculations with a fully relativistic Flexible Atomic Code (FAC). We have determined extensive configuration interaction wavefunctions to calculate the level energies of the inner-shell excited states of these three uranium ionic states. Overall, our calculated energy levels, wavelengths, transition rates, and oscillator strengths within the levels of selected configurations show better agreement with the available experimental and other theoretical results. Furthermore, we report radiative lifetimes of all the excited states of these three uranium ions. We also present many unpublished data about energy values, wavelengths, transitions rates, and oscillator strengths for inner-shell transitions. We believe that our calculated inner shell transition energies are of interest for the analysis of uranium x-ray spectra.

  20. Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca{sup +}

    SciTech Connect

    Safronova, M. S.; Safronova, U. I.

    2011-01-15

    A systematic study of Ca{sup +} atomic properties is carried out using a high-precision relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Fock wave functions are included to all orders of perturbation theory. Reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for the levels up to n=7. Recommended values and estimates of their uncertainties are provided for a large number of electric-dipole transitions. Electric-dipole scalar polarizabilities for the 5s, 6s, 7s, 8s, 4p{sub j}, 5p{sub j}, 3d{sub j}, and 4d{sub j} states and tensor polarizabilities for the 4p{sub 3/2}, 5p{sub 3/2}, 3d{sub j}, and 4d{sub j} states in Ca{sup +} are calculated. Methods are developed to accurately treat the contributions from highly excited states, resulting in significant (factor of 3) improvement in the accuracy of the 3d{sub 5/2} static polarizability value, 31.8(3)a{sub 0}{sup 3}, in comparison with the previous calculation [Arora et al., Phys. Rev. A 76, 064501 (2007).]. The blackbody radiation shift of the 4s-3d{sub 5/2} clock transition in Ca{sup +} is calculated to be 0.381(4) Hz at room temperature, T=300 K. Electric-quadrupole 4s-nd and electric-octupole 4s-nf matrix elements are calculated to obtain the ground-state multipole E2 and E3 static polarizabilities. Excitation energies of the ns, np, nd, nf, and ng states with n{<=} 7 in are evaluated and compared with experiment. Recommended values are provided for the 7p{sub 1/2}, 7p{sub 3/2}, 8p{sub 1/2}, and 8p{sub 3/2} removal energies for which experimental measurements are not available. The hyperfine constants A are determined for the low-lying levels up to n=7. The quadratic Stark effect on hyperfine structure levels of {sup 43}Ca{sup +} ground state is investigated. These calculations provide recommended values critically evaluated for their accuracy for a number of Ca{sup +} atomic properties for use in planning and analysis of

  1. FOREWORD: The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Tchang-Brillet, Wad Lydia; Wyart, Jean-François; Zeippen, Claude

    1996-01-01

    The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas was held in Meudon, France, from August 28 to 31 1995. It was the fifth in a series started by the Atomic Spectroscopic Group at the University of Lund, Sweden, in 1983. Then followed the meetings in Toledo, USA, Amsterdam, The Nether- lands and Gaithersburg, USA, with a three year period. The original title of the series ended with "... for Astrophysics and Fusion Research" and became more general with the 4th colloquium in Gaithersburg. The purpose of the present meeting was, in line with tradition, to bring together "producers" and "users" of atomic data so as to ensure optimal coordination. Atomic physicists who study the structure of atoms and their radiative and collisional properties were invited to explain the development of their work, emphasizing the possibilities of producing precise transition wavelengths and relative line intensities. Astrophysicists and laboratory plasma physicists were invited to review their present research interests and the context in which atomic data are needed. The number of participants was about 70 for the first three meetings, then exploded to 170 at Gaithersburg. About 140 participants, coming from 13 countries, attended the colloquium in Meudon. This large gathering was partly due to a number of participants from Eastern Europe larger than in the past, and it certainly showed a steady interest for interdisciplinary exchanges between different communities of scientists. This volume includes all the invited papers given at the conference and, in the appendix, practical information on access to some databases. All invited speakers presented their talks aiming at good communication between scientists from different backgrounds. A separate bound volume containing extended abstracts of the poster papers has been published by the Publications de l'Observatoire de Paris, (Meudon 1996), under the responsibility of

  2. Stellar Laboratories: New GeV and Ge VI Oscillator Strengths and their Validation in the Hot White Dwarf RE0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Biemont, E.; Quinet, P.; Kruk, J. W.

    2013-01-01

    State-of-the-art spectral analysis of hot stars by means of non-LTE model-atmosphere techniques has arrived at a high level of sophistication. The analysis of high-resolution and high-S/N spectra, however, is strongly restricted by the lack of reliable atomic data for highly ionized species from intermediate-mass metals to trans-iron elements. Especially data for the latter has only been sparsely calculated. Many of their lines are identified in spectra of extremely hot, hydrogen-deficient post-AGB stars. A reliable determination of their abundances establishes crucial constraints for AGB nucleosynthesis simulations and, thus, for stellar evolutionary theory. Aims. In a previous analysis of the UV spectrum of RE 0503-289, spectral lines of highly ionized Ga, Ge, As, Se, Kr, Mo, Sn, Te, I, and Xe were identified. Individual abundance determinations are hampered by the lack of reliable oscillator strengths. Most of these identified lines stem from Ge V. In addition, we identified Ge VI lines for the first time. We calculated Ge V and Ge VI oscillator strengths in order to reproduce the observed spectrum. Methods. We newly calculated Ge V and Ge VI oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our non-LTE stellar-atmosphere models for the analysis of the Ge IV-VI spectrum exhibited in high-resolution and high-S/N FUV (FUSE) and UV (ORFEUS/BEFS, IUE) observations of RE 0503-289. Results. In the UV spectrum of RE 0503-289, we identify four Ge IV, 37 Ge V, and seven Ge VI lines. Most of these lines are identified for the first time in any star. We can reproduce almost all Ge IV, GeV, and Ge VI lines in the observed spectrum of RE 0503-289 (T(sub eff) = 70 kK, log g = 7.5) at log Ge = -3.8 +/- 0.3 (mass fraction, about 650 times solar). The Ge IV/V/VI ionization equilibrium, that is a very sensitive T(sub eff) indicator, is reproduced well. Conclusions. Reliable measurements and calculations of atomic data are a

  3. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions

    SciTech Connect

    Xu, Min; Jiang, Gang; Deng, Banglin; Bian, Guojie

    2014-11-15

    Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions. The fully relativistic multiconfiguration Dirac–Fock method, taking quantum electrodynamical effects and the Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states for Cu-, Zn-, Ga-, Ge-, and Se-like Au ions from the method were compared with available theoretical and experimental results, and good agreement with them was achieved.

  4. Astrophysical oscillator strengths for TiO and VO bands from spectrum synthesis of spectral types M1 III to M7 III

    NASA Astrophysics Data System (ADS)

    Brett, J. M.

    1990-05-01

    For application to differential studies of molecular bandstrengths in red giant atmospheres, a comprehensive set of straight mean opacity data for O-rich stars was compiled. This includes original opacities for the TiO and VO A-X and B-X band systems. This paper reports the calibration of the opacity code which has produced a set of self-consistent astrophysical oscillator strengths for the TiO gamma, delta, phi, epsilon, and VO A-X and B-X systems. By combining these values with the known laboratory values of f(e) for the TiO delta system, estimates of the absolute value of f(e) for the TiO epsilon and VO bands are made. These estimates will be useful until laboratory measurements of the transition strengths of these astrophysically important band systems are available.

  5. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    SciTech Connect

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-21

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S{sub 2} and S{sub 1} sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C{sub 6} and triple-dipole C{sub 9} dispersion coefficients for the interactions among them are reported.

  6. Energy levels, oscillator strengths and transition probabilities for Si-like P II, S III, Cl IV, Ar V and K VI

    SciTech Connect

    Abou El-Maaref, A.; Uosif, M.A.M.; Allam, S.H.; El-Sherbini, Th.M.

    2012-07-15

    Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for transitions among the terms belonging to 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, 3s{sup 2}3p5s and 3s{sup 2}3p5p configurations of silicon-like ions P II, S III, Cl IV, Ar V and K VI have been calculated using configuration-interaction version 3 (CIV3). We compared our data with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels are also given.

  7. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  8. Spatial Noise in Coupling Strength and Natural Frequency within a Pacemaker Network; Consequences for Development of Intestinal Motor Patterns According to a Weakly Coupled Phase Oscillator Model

    PubMed Central

    Parsons, Sean P.; Huizinga, Jan D.

    2016-01-01

    Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875

  9. Relativistic distorted-wave collision strengths and oscillator strengths for the 185Δn=0 transitions with n=2 in the 67 C-like ions with 26≤Z≤92

    SciTech Connect

    Zhang, Hong Lin; Fontes, Christopher J.

    2015-01-15

    Relativistic distorted-wave collision strengths have been calculated for the 185 Δn=0 transitions with n=2 in the 67 C-like ions with nuclear charge number Z in the range 26≤Z≤92. The calculations were made for the six final, or scattered, electron energies E{sup ′}=0.03,0.08,0.20,0.42,0.80,  and  1.40, where E{sup ′} is in units of Z{sub eff}{sup 2} Ry with Z{sub eff}=Z−4.17. In addition, electric dipole oscillator strengths are provided. In the present collision-strength calculations, an improved “top-up” method, which employs relativistic plane waves, was used to obtain the high partial-wave contribution for each transition, in contrast to the partial-relativistic Coulomb–Bethe approximation used in previous work by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 63 (1996) 275]. In that earlier work, collision strengths were also provided for the same 185 Δn=0 transitions in C-like ions, but for the more limited list of 46 ions with Z in the range 9≤Z≤54. The collision strengths covered in the present work, particularly those for optically allowed transitions, should be more accurate than the corresponding data given by Zhang and Sampson [H.L. Zhang, D.H. Sampson, At. Data Nucl. Data Tables 63 (1996) 275] and are presented here to replace those earlier results.

  10. On the calculation of line strengths, oscillator strengths and lifetimes for very large principal quantum numbers in hydrogenic atoms and ions by the McLean-Watson formula

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2014-08-01

    As a sequel to an earlier study (Hey 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125701), we consider further the application of the line strength formula derived by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L291) to transitions arising from states of very high principal quantum number in hydrogenic atoms and ions (Rydberg-Rydberg transitions, n > 1000). It is shown how apparent difficulties associated with the use of recurrence relations, derived (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641) by the ladder operator technique of Infeld and Hull (1951 Rev. Mod. Phys. 23 21), may be eliminated by a very simple numerical device, whereby this method may readily be applied up to n ≈ 10 000. Beyond this range, programming of the method may entail greater care and complexity. The use of the numerically efficient McLean-Watson formula for such cases is again illustrated by the determination of radiative lifetimes and comparison of present results with those from an asymptotic formula. The question of the influence on the results of the omission or inclusion of fine structure is considered by comparison with calculations based on the standard Condon-Shortley line strength formula. Interest in this work on the radial matrix elements for large n and n‧ is related to measurements of radio recombination lines from tenuous space plasmas, e.g. Stepkin et al (2007 Mon. Not. R. Astron. Soc. 374 852), Bell et al (2011 Astrophys. Space Sci. 333 377), to the calculation of electron impact broadening parameters for such spectra (Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) and comparison with other theoretical methods (Peach 2014 Adv. Space Res. in press), to the modelling of physical processes in H II regions (Roshi et al 2012 Astrophys. J. 749 49), and the evaluation bound-bound transitions from states of high n during primordial cosmological recombination (Grin and Hirata 2010 Phys. Rev. D 81 083005, Ali-Haïmoud and Hirata 2010 Phys. Rev. D 82 063521, Ali

  11. Contributions to the generalized oscillator strength for the inner-shell C 1s{yields}3s{sigma}{sub g} transition in CO{sub 2} from the vibronic coupling mechanism

    SciTech Connect

    Rocha, Alexandre B.; Bielschowsky, Carlos E.

    2002-11-01

    An approach is proposed to account for the general effect of the nuclei motion in the intensity of electronic transitions caused by fast electron collision with molecular targets, following a similar procedure that has recently been used by our group to determine the optical oscillator strength of symmetry-forbidden transition, and which consists of expanding the (squared) transition moment along the normal coordinates of vibration. It is shown that the profile of total generalized oscillator strength as a function of the squared transferred moment can be significantly changed by the inclusion of terms that depend explicitly on the normal coordinates of vibration. The generalized oscillator strength for the inner-shell C 1s{yields}3s{sigma}{sub g} transition in CO{sub 2} is calculated within this approach and compared with experimental results.

  12. Oscillator Strengths and Predissociation Rates for W-X Bands and the 4P5P Complex in 13C18O

    NASA Astrophysics Data System (ADS)

    Eidelsberg, Michele; Lemaire, Jean Louis; Federman, Steven; Stark, Glenn; Heays, Alan; Gavilan, Lisseth; Lyons, James R.; Smith, Peter L.; de Oliveira, Nelson; Joyeux, Denis

    2015-06-01

    In our ongoing experiments on the DESIRS beam-line at the SOLEIL Synchrotron, we are acquiring the necessary data on oscillator strengths and predissociation rates for modeling CO photochemistry in astronomical environments. A VUV Fourier Transform Spectrometer with a resolving power of about 350,000 allows us to discern individual lines in electronic transitions. Here we focus on results obtained from absorption spectra of 13C18O, for the W ^1Π - X ^1σ^+ bands with v'=0, 2, {and} 3 and v''=0 and three resolved bands involving transitions to the upper levels 4pπ(2), 5pπ(0), and 5pσ(0) of the 4p(2) and 5p(0) complexes. We compare our results with earlier determinations for this isotopologue of CO, as well as with our SOLEIL measurements on 12C16O, 13C16O, and 12C18O.

  13. Influence of the composition fluctuations and decomposition on the tunable direct gap and oscillator strength of Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Freitas, F. L.; Furthmüller, J.; Bechstedt, F.; Marques, M.; Teles, L. K.

    2016-02-01

    In this work, we include disorder effects in order to analyze electronic and optical properties of Ge1-xSnx alloys, by means of a cluster expansion method combined with density functional theory. We derive the T-x phase diagram, which allows us to discuss phase separation versus composition fluctuations, especially in the Ge-rich range between binodal and spinodal curves for different growth temperatures. The gaps and their mean-square deviations resulting for random alloys and decomposed systems within an approximate quasiparticle theory are compared with available spectroscopic data. We relate deviations to the methods used and the local distribution of atoms. No significant indication for decomposition is observed. We show that the direct transitions possess optical oscillator strengths of the order of that of the E0 gap of pure germanium. The dependence of the indirect-direct crossover on preparation conditions is also discussed.

  14. The Interstellar Abundance of Lead: Experimental Oscillator Strengths for Pb II λ1203 and λ1433 and New Detections of Pb II in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam Michael; Heidarian, Negar; Irving, Richard E.; Federman, Steven R.; Ellis, David G.; Cheng, Song; Curtis, Larry J.; Furman, W. A.

    2015-08-01

    Accurate gas-phase abundances of ions in the interstellar medium may be obtained through the analysis of interstellar absorption lines, but only if the oscillator strengths (f-values) of the relevant transitions are well known. For dominant ions, comparison of the gas-phase abundance with the appropriate solar reference abundance yields the degree to which the element is incorporated into interstellar dust grains. Singly-ionized lead is the dominant form of this element in the neutral interstellar medium. However, while Pb II has several strong resonance lines in the ultraviolet, the f-values for these transitions are uncertain. Here, we present the first experimentally determined oscillator strengths for the Pb II transitions at 1203.6 Å and 1433.9 Å, obtained from lifetime measurements made using beam-foil techniques. We also present new detections of these lines in the interstellar medium from an analysis of archival spectra acquired by the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. Notably, our observations of the Pb II λ1203 line represent the first detection of this transition in interstellar gas. Our experimental f-values for the Pb II λ1203 and λ1433 transitions are consistent with recent theoretical results, including our own relativistic calculations, but are significantly smaller than previous values based on older calculations. For the Pb II λ1433 line, in particular, our new f-value yields an increase in the interstellar abundance of Pb of 0.43 dex over estimates based on the f-value listed by Morton. With our revised f-values, and with our new detections of Pb II λ1203 and λ1433, we find that the depletion of Pb onto interstellar grains is not nearly as severe as previously thought, and is very similar to the depletions seen for elements such as Zn and Sn, which have similar condensation temperatures.

  15. Improved automatic steam distillation combined with oscillation-type densimetry for determining alcoholic strength in spirits and liqueurs.

    PubMed

    Lachenmeier, Dirk W; Plato, Leander; Suessmann, Manuela; Di Carmine, Matthew; Krueger, Bjoern; Kukuck, Armin; Kranz, Markus

    2015-01-01

    The determination of the alcoholic strength in spirits and liqueurs is required to control the labelling of alcoholic beverages. The reference methodology prescribes a distillation step followed by densimetric measurement. The classic distillation using a Vigreux rectifying column and a West condenser is time consuming and error-prone, especially for liqueurs that may have problems with entrainment and charring. For this reason, this methodology suggests the use of an automated steam distillation device as alternative. The novel instrument comprises an increased steam power, a redesigned geometry of the condenser and a larger cooling coil with controllable flow, compared to previously available devices. Method optimization applying D-optimal and central composite designs showed significant influence of sample volume, distillation time and coolant flow, while other investigated parameters such as steam power, receiver volume, or the use of pipettes or flasks for sample measurement did not significantly influence the results. The method validation was conducted using the following settings: steam power 70 %, sample volume 25 mL transferred using pipettes, receiver volume 50 mL, coolant flow 7 L/min, and distillation time as long as possible just below the calibration mark. For four different liqueurs covering the typical range of these products between 15 and 35 % vol, the method showed an adequate precision, with relative standard deviations below 0.4 % (intraday) and below 0.6 % (interday). The absolute standard deviations were between 0.06 % vol and 0.08 % vol (intraday) and between 0.07 % vol and 0.10 % vol (interday). The improved automatic steam distillation devices offer an excellent alternative for sample cleanup of volatiles from complex matrices. A major advantage are the low costs for consumables per analysis (only distilled water is needed). For alcoholic strength determination, the method has become more rugged than before, and there are only

  16. Einstein A-values and oscillator strengths of the A2П-X2Σ+ system of CP

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Brooke, J. S. A.; Western, C. M.; Bernath, P. F.

    2014-05-01

    Line strengths for bands of the A2П-X2Σ+ transition of CP, including the effect of rotation on the vibrational wavefunctions (the Herman-Wallis effect), have been calculated using Western's PGOPHER program and Le Roy's LEVEL program. The potential energy functions for the A2П and X2Σ+ state were computed using spectroscopic constants obtained from high resolution spectra. The RKR potentials of the two states, and the electronic transition dipole moments of this transition calculated in a recent ab initio study have been used in Le Roy's LEVEL program to produce transition dipole moment matrix elements. The matrix elements have been converted from Hund's case (b) to (a), and then used in PGOPHER to generate a line list containing observed and calculated wavenumbers, Einstein A coefficients and f-values for 75 bands with v=0-8 for both states. The Einstein A coefficients have been used to compute radiative lifetimes for v=0-5 in the A2П state. The line list may be useful for computing the molecular opacities of CP needed to simulate the spectra of stellar and substellar sources.

  17. THE IRON PROJECT AND THE RMAX PROJECT: Photoionization, Electron-IonRecombination and Oscillator Strengths of Fe Ions, Fe XVII and Fe XIX

    NASA Astrophysics Data System (ADS)

    Eissner, Werner; Nahar, Sultana; Pradhan, Anil

    2010-03-01

    The aims of the Iron Project and the Rmax Project are detailed study of radiative and collisional processes of astrophysically abundant atoms and ions, mainly iron and iron-peak elements, over a wide energy range, from infra-red to X-rays. We will present the complete results on photoionization, partial and total, of fine structure levels with n <= 10 of Fe XVII. They correspond to a large-scale computation using a wave function expansion containing 60 levels of the core. Preliminary results on total recombination rate coefficients ranging over low to very high temperatures, especially where the ion is abundant in astrophysical plasmas, will be presented. We will also report the latest results on oscillator strengths for photo-excitations in Fe XIX. This highly charged nitrogen-like iron ion has over thousands of bound fine structure levels. The calculations have been carried out in relativistic Breit-Pauli R-matrix (BPRM) method. The forbidden electric quadrupole, electric octupole, magnetic dipole and magnetic quadrupole transitions for Fe XIX correspond to fine structure levels upto 4p obtained from atomic structure calculations in Breit-Pauli approximation.

  18. Absolute oscillator strengths for the iron group - A correction to the data of Warner for the second spectra and a comment on some of the semiempirical results of Kurucz and Peytremann

    NASA Technical Reports Server (NTRS)

    Smith, P. L.

    1976-01-01

    It has already been shown that the Fe II absolute oscillator strengths (f-values) measured by Warner (1967) contain a systematic error, the magnitude of which depends on the energy of the transition's upper level. The present paper demonstrates that this error affects all of Warner's oscillator strengths for the second spectra of the iron group and develops a correction formula for Warner's results. A comparison of the corrected f-values with other measured f-values for Ti II, V II, and Fe II indicates that the correction improves the usefulness of Warner's data and that the corrected f-values have no large systematic dependence on wavelength, level energy, or line strength. Solar abundances for iron-group elements computed using the original and corrected f-values are compared with recently suggested abundances, and it is found that the corrected f-values yield more consistent results. Semiempirical oscillator strengths calculated by Kurucz and Peytremann (1975) for Fe I, Ti II, and V II are also compared with measured data to evaluate the accuracy of the calculations. It is found that the absolute scales of these results are roughly correct, but some of them are subject to very large errors.

  19. Relativistic many-body calculations of electric-dipole lifetimes, rates, and oscillator strengths of Delta(n) = 0 transitions between 3l^-1 4l' states in Ni-like ions

    SciTech Connect

    Safronova, U I; Safronova, A S; Beiersdorfer, P

    2007-01-05

    Transition rates, oscillator strengths, and line strengths are calculated for electric-dipole (E1) transitions between odd-parity 3s{sup 2}3p{sup 6}3d{sup 9}4{ell}{sub 2}, 3s{sup 2}3p{sup 5}3d{sup 10}4{ell}{sub 2}, and 3s3p{sup 6}3d{sup 10}4{ell}{sub 1} states and even-parity 3s{sup 2}3p{sup 6}3d{sup 9}4{ell}{sub 2}, 3s{sup 2}3p{sup 5}3d{sup 10}4{ell}{sub 1}, and 3s3p{sup 6}3d{sup 10}4{ell}{sub 2} (with 4{ell}{sub 1} = 4p; 4f and 4{ell}{sub 2} = 4s; 4d) in Ni-like ions with the nuclear charges ranging from Z = 34 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s{sup 2}2s{sup 2}2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10} Dirac-Fock potential. First-order RMBPT is used to obtain intermediate coupling coefficients and second-order RMBPT is used to calculate transition matrix elements. Contributions from negative-energy states are included in the second-order E1 matrix elements to ensure the gauge independence of transition amplitudes. Transition energies used in the calculation of oscillator strengths and transition rates are from second-order RMBPT. Lifetimes of the 3s{sup 2}3p{sup 6}3d{sup 9}4d levels are given for Z = 34-100. Transition rates, line strengths, and oscillator strengths are compared with critically evaluated experimental values and with results from other recent calculations. These atomic data are important in modeling of M-shell radiation spectra of heavy ions generated in electron beam ion trap experiments and in M-shell diagnostics of plasmas.

  20. Measurements of photoionization cross section of the 4p levels and oscillator strength of the 4p→nd 2D3/2,5/2 transitions of potassium

    NASA Astrophysics Data System (ADS)

    Kalyar, M. A.; Yar, A.; Iqbal, J.; Ali, R.; Baig, M. A.

    2016-03-01

    We have carried out measurements of absolute photoionization cross sections of the 4p excited levels and oscillator strengths of the 4p→nd Rydberg transitions in potassium using a two-step photo-excitation and ionization technique in conjunction with a thermionic diode ion detector. The measurements were conducted using the linearly polarized laser light and the absolute values of the cross sections from the 4p 2P3/2 and 2P1/2 excited levels have been determined at the ionization threshold as (6.3±0.9) Mb and (5.4±0.8) Mb respectively. In addition, photoionization cross sections have been determined at various ionizing wavelengths above the first ionization threshold to explore different energy regions of the continuum. The oscillator strengths for the 4p 2P1/2→nd 2D3/2 and 4p 2P3/2→nd 2D3/2,5/2 Rydberg transitions have been deduced by using the measured cross sections of the 4p 2P1/2 and 2P3/2 levels at the ionization threshold. The new results are in good agreement with the available theoretical and experimental data.

  1. High-resolution oscillator strength measurements of the v' = 0,1 bands of the B-X, C-X, and E-X systems in five isotopologues of carbon monoxide

    SciTech Connect

    Stark, G.; Heays, A. N.; Lyons, J. R.; Smith, P. L.; Eidelsberg, M.; Lemaire, J. L.; Gavilan, L.; Federman, S. R.; De Oliveira, N.; Joyeux, D.; Nahon, L.

    2014-06-10

    We report oscillator strengths for six strong vibrational bands between 105.0 and 115.2 nm, associated with transitions from the v = 0 level of the X {sup 1}Σ{sup +} ground state to the v = 0 and 1 levels of the B {sup 1}Σ{sup +}, C {sup 1}Σ{sup +}, and E {sup 1}Π states, in {sup 12}C{sup 16}O, {sup 12}C{sup 17}O, {sup 12}C{sup 18}O, {sup 13}C{sup 16}O, and {sup 13}C{sup 18}O. These measurements extend the development of a comprehensive database of line positions, oscillator strengths, and linewidths of photodissociating transitions for all astrophysically relevant CO isotopologues. The E-X bands, in particular, play central roles in CO photodissociation and fractionation models of interstellar clouds and circumstellar disks including the early solar nebula. The resolving powers of the room-temperature measurements, R = 300,000-400,000, allow for the analysis of individual line strengths within bands; the measurements reveal J-dependences in the branch intensities of the C(v = 0,1)-X(0) and E(v = 0,1)-X(0) bands in all isotopologues. Minimal or no isotopologue dependence was found in the f-values of the C(v = 0,1)-X(0) and E(v = 0,1)-X(0) bands at a ∼5% uncertainty level. Revised dissociation branching ratios for the C(v = 0,1) and E(v = 0,1) levels are computed based on these f-values. The weak isotopologue dependence of the f-values presented here eliminates this mechanism as an explanation for the large {sup 17}O enrichments seen in recent laboratory photolysis experiments on CO at wavelengths from 105 to 108 nm.

  2. High-resolution oscillator strength measurements of the v' = 0,1 bands of the B - X, C - X, and E - X systems in five isotopologues of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Stark, Glenn; Heays, Alan; Lyons, James; Eidelsberg, Michelle; Federman, Steve; Lemaire, Jean Louis; de Oliveira, Nelson; Nahon, Laurent

    2015-08-01

    A complete database of line positions, oscillator strengths, and line widths for all relevant CO isotopologues is needed to assess models of CO isotopic fractionation in astrophysical environments. Despite considerable experimental and theoretical efforts, significant uncertainties and gaps remain in that spectroscopic database. We report oscillator strengths for six strong vibrational bands between 105.0 and 115.2 nm, associated with transitions from the v = 0 level of the X 1Σ+ ground state to the v = 0 and 1 levels of the B 1Σ+, C 1Σ+, and E 1Π states, in 12C16O, 12C17O, 12C18O, 13C16O, and 13C18O. The resolving powers of the room-temperature measurements, undertaken on the VUV-FTS branch of the DESIRS beamline at Synchrotron SOLEIL, allow for the analysis of individual line strengths within bands; the measurements reveal J-dependences in the branch intensities of the C(v=0,1) - X(0) and E(v=0,1) - X(0) bands in all isotopologues. Minimal or no isotopologue-dependence was found in the f-values of the C(v=0,1) - X(0) and E(v=0,1) - X(0) bands at a ~5% uncertainty level. Revised dissociation branching ratios for the C(v=0,1) and E(v=0,1) levels are computed based on these f-values. The weak isotopologue dependence of the f-values presented here eliminates this mechanism as an explanation for the large 17O enrichments seen in recent laboratory photolysis experiments on CO at wavelengths from 105 to 108 nm.

  3. Stellar laboratories. VII. New Kr iv - vii oscillator strengths and an improved spectral analysis of the hot, hydrogen-deficient DO-type white dwarf RE 0503-289

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Richter, P.; Kruk, J. W.; Demleitner, M.

    2016-05-01

    Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: New Kr iv-vii oscillator strengths for a large number of lines enable us to construct more detailed model atoms for our NLTE model-atmosphere calculations. This enables us to search for additional Kr lines in observed spectra and to improve Kr abundance determinations. Methods: We calculated Kr iv-vii oscillator strengths to consider radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Kr lines that are exhibited in high-resolution and high S/N ultraviolet (UV) observations of the hot white dwarf RE 0503-289. Results: We reanalyzed the effective temperature and surface gravity and determined Teff = 70000 ± 2000 K and log (g/ cm s-2) = 7.5 ± 0.1. We newly identified ten Kr v lines and one Kr vi line in the spectrum of RE 0503-289. We measured a Kr abundance of -3.3 ± 0.3 (logarithmic mass fraction). We discovered that the interstellar absorption toward RE 0503-289 has a multi-velocity structure within a radial-velocity interval of -40 km s-1oscillator strengths. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. Based on

  4. Stellar Laboratories II. New Zn Iv and Zn v Oscillator Strengths and Their Validation in the Hot White Dwarfs G191-B2B and RE0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-01-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191B2B,21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance.Aims. Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191B2B and the DO-type white dwarf RE 0503289. Methods. We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv v spectrum exhibited in high-resolution and high-SN UV observations of G191B2B and RE 0503289. Results. In the UV spectrum of G191B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn 5.52 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined Teff 60 000 2000 K and log g 7.60 0.05. In the spectrum of RE 0503289, we identified 128 Zn v lines for the first time and determined log Zn 3.57 0.2 (155 times solar). Conclusions. Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191B2B and RE 0503289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to determine the

  5. Stellar Laboratories: 3. New Ba 5, Ba 6, and Ba 7 Oscillator Strengths and the Barium Abundance in the Hot White Dwarfs G191-B2B and RE 0503-289

    NASA Technical Reports Server (NTRS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, Jeffrey Walter

    2014-01-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims. Reliable Ba 5-7 oscillator strengths are used to identify Ba lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ba abundances. Methods. We newly calculated Ba v-vii oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Ba lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results. For the first time, we identified highly ionized Ba in the spectra of hot white dwarfs. We detected Ba vi and Ba vii lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The Ba vi/Ba vii ionization equilibrium is well reproduced with the previously determined effective temperature of 70 000 K and surface gravity of log g=7.5. The Ba abundance is 3.5 +/- 0.5 × 10(exp-4) (mass fraction, about 23 000 times the solar value). In the FUSE spectrum of G191-B2B, we identified the strongest Ba vii line (at 993.41 Å) only, and determined a Ba abundance of 4.0 +/- 0.5 × 10(exp-6) (about 265 times solar). Conclusions. Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Ba vi-vii line profiles in two white dwarfs' (G191-B2B and RE 0503-289) far-ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed to determine the photospheric Ba abundance of these two stars precisely.

  6. Control of Oscillation Patterns in a Symmetric Coupled Biological Oscillator System

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Tanaka, Reiko; Yamamoto, Takatoki; Fujii, Teruo

    2003-08-01

    A chain of three-oscillator system was constructed with living biological oscillators of phasmodial slime mold, Physarum polycehalum and the oscillation patterns were analyzed by the symmetric Hopf bifurcation theory using group theory. Multi-stability of oscillation patterns was observed, even when the coupling strength was fixed. This suggests that the coupling strength is not an effective parameter to obtain a desired oscillation pattern among the multiple patterns. Here we propose a method to control oscillation patterns using resonance to external stimulus and demonstrate pattern switching induced by frequency resonance given to only one of oscillators in the system.

  7. High-resolution oscillator strength measurements for the A(v') - X(0) bands of carbon monoxide with 11 less than or equal to v' less than or equal to 14

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Stark, G.; Yoshino, K.; Ito, K.

    1994-01-01

    Band oscillator strengths (f-values) for four bands of the Fourth Positive system (A (1)Pi - Chi(sup 1) Sigma(+)) of CO have been determined from high-resolution (lambda/Delta lambda approximately equal to 150,000) absorption spectra. The bands, (14, 0) through (11, 0), are at wavelengths between 121 and 127 nm. Our f-values for the (11, 0) and (12, 0) bands support those of Chan, Cooper, & Brion (1993), which have been shown to be consistent with observations of CO in the clouds in the line of sight to zeta Oph. Our f-values for the (13, 0) and (14, 0) bands are the first directly measured values for these bands.

  8. Stellar laboratories. VI. New Mo iv-vii oscillator strengths and the molybdenum abundance in the hot white dwarfs G191-B2B and RE 0503-289

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Quinet, P.; Hoyer, D.; Werner, K.; Demleitner, M.; Kruk, J. W.

    2016-03-01

    Context. For the spectral analysis of high-resolution and high signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. Aims: To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and, to determine their photospheric Mo abundances, reliable Mo iv-vii oscillator strengths are used. Methods: We newly calculated Mo iv-vii oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of Mo lines exhibited in high-resolution and high S/N UV observations of RE 0503-289. Results: We identified 12 Mo v and 9 Mo vi lines in the UV spectrum of RE 0503-289 and measured a photospheric Mo abundance of 1.2-3.0 × 10-4 (mass fraction, 22 500-56 400 times the solar abundance). In addition, from the As v and Sn iv resonance lines, we measured mass fractions of arsenic (0.5-1.3 × 10-5, about 300-1200 times solar) and tin (1.3-3.2 × 10-4, about 14 300-35 200 times solar). For G191-B2B, upper limits were determined for the abundances of Mo (5.3 × 10-7, 100 times solar) and, in addition, for Kr (1.1 × 10-6, 10 times solar) and Xe (1.7 × 10-7, 10 times solar). The arsenic abundance was determined (2.3-5.9 × 10-7, about 21-53 times solar). A new, registered German Astrophysical Virtual Observatory (GAVO) service, TOSS, has been constructed to provide weighted oscillator strengths and transition probabilities. Conclusions: Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. Observed Mo v-vi line profiles in the UV spectrum of the white dwarf RE 0503-289 were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed the photospheric Mo

  9. Oscillator Strengths and Predissociation Rates for Rydberg Transitions in 12C16O, 13C16O, and 13C18O Involving the E 1Π, B 1Σ+, and W 1Π States

    NASA Astrophysics Data System (ADS)

    Eidelsberg, M.; Sheffer, Y.; Federman, S. R.; Lemaire, J. L.; Fillion, J. H.; Rostas, F.; Ruiz, J.

    2006-08-01

    One of the processes controlling the interstellar CO abundance and the ratio of its isotopologues is photodissociation. Accurate oscillator strengths and predissociation rates for Rydberg transitions are needed for modeling this process. We present results on absorption from the E 1Π-X 1Σ+ (1-0) and B 1Σ+-X 1Σ+ (6-0) bands at 1051 and 1002 Å, respectively, and the vibrational progression W 1Π-X 1Σ+ (v'-0) bands with v'=0-3 at 972, 956, 941, and 925 Å, respectively. The corresponding spectra were acquired at the high resolution (R~30,000) SU5 beam line at the Super ACO Synchrotron in Orsay, France. Spectra were obtained for the 12C16O, 13C 16O, and 13C18O isotopologues. These represent the most complete set of measurements available. Comparison is made with earlier results, both empirical and theoretical. While earlier determinations of oscillator strengths based on absorption from synchrotron radiation tend to be somewhat smaller than ours, the suite of measurements from a variety of techniques agree for the most part, considering the mutual uncertainties. For the bands studied here, their relative weakness, or their significant line widths arising from predissociation, minimizes potential problems from large optical depths at line center in absorption measurements. Predissociating line widths could generally be extracted from the spectra thanks to the profile simulations used in the analysis. In many cases, these simulations allowed us to consider e and f parity levels separately and to determine the dependence of the width on rotational quantum number, J. Our results are consistent with earlier determinations, especially the widths inferred from laser experiments.

  10. Long-Range Temporal Correlations in the amplitude of alpha oscillations predict and reflect strength of intracortical facilitation: Combined TMS and EEG study.

    PubMed

    Fedele, Tommaso; Blagovechtchenski, Evgeny; Nazarova, Maria; Iscan, Zafer; Moiseeva, Victoria; Nikulin, Vadim V

    2016-09-01

    While variability of the motor responses to transcranial magnetic stimulation (TMS) is widely acknowledged, little is known about its central origin. One plausible explanation for such variability may relate to different neuronal states defining the reactivity of the cortex to TMS. In this study intrinsic spatio-temporal neuronal dynamics were estimated with Long-Range Temporal Correlations (LRTC) in order to predict the inter-individual differences in the strength of intra-cortical facilitation (ICF) and short-interval intracortical inhibition (SICI) produced by paired-pulse TMS (ppTMS) of the left primary motor cortex. LRTC in the alpha frequency range were assessed from multichannel electroencephalography (EEG) obtained at rest before and after the application of and single-pulse TMS (spTMS) and ppTMS protocols. For the EEG session, preceding TMS application, we showed a positive correlation across subjects between the strength of ICF and LRTC in the fronto-central and parietal areas. This in turn attests to the existence of subject-specific neuronal phenotypes defining the reactivity of the brain to ppTMS. In addition, we also showed that ICF was associated with the changes in neuronal dynamics in the EEG session after the application of the stimulation. This result provides a complementary evidence for the recent findings demonstrating that the cortical stimulation with sparse non-regular stimuli might have considerable long-lasting effects on the cortical activity. PMID:27318302

  11. Fractional oscillator.

    PubMed

    Stanislavsky, A A

    2004-11-01

    We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of ordinary harmonic oscillators with damping. The features of this analysis are discussed. PMID:15600586

  12. Stellar laboratories. IV. New Ga iv, Ga v, and Ga vi oscillator strengths and the gallium abundance in the hot white dwarfs G191-B2B and RE 0503-289

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2015-05-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, advanced non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These atmospheres are strongly dependent on the reliability of the atomic data that are used to calculate them. Aims: Reliable Ga iv-vi oscillator strengths are used to identify Ga lines in the spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE 0503-289 and to determine their photospheric Ga abundances. Methods: We newly calculated Ga iv-vi oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for analyzing of Ga lines exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: We unambiguously detected 20 isolated and 6 blended (with lines of other species) Ga v lines in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of RE 0503-289. The identification of Ga iv and Ga vi lines is uncertain because they are weak and partly blended by other lines. The determined Ga abundance is 3.5 ± 0.5 × 10-5 (mass fraction, about 625 times the solar value). The Ga iv/Ga v ionization equilibrium, which is a very sensitive indicator for the effective temperature, is well reproduced in RE 0503-289. We identified the strongest Ga iv lines (at 1258.801, 1338.129 Å) in the HST/STIS spectrum of G191-B2B and measured a Ga abundance of 2.0 ± 0.5 × 10-6 (about 22 times solar). Conclusions: Reliable measurements and calculations of atomic data are a prerequisite for stellar-atmosphere modeling. The observed Ga iv-v line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. For the first time, this allowed us to determine the photospheric Ga abundance in white dwarfs. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space

  13. Stellar laboratories. II. New Zn iv and Zn v oscillator strengths and their validation in the hot white dwarfs G191-B2B and RE 0503-289

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-04-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191-B2B, 21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance. Aims: Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191-B2B and the DO-type white dwarf RE 0503-289. Methods: We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv - v spectrum exhibited in high-resolution and high-S/N UV observations of G191-B2B and RE 0503-289. Results: In the UV spectrum of G191-B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn = -5.52 ± 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv / Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined and log g = 7.60 ± 0.05. In the spectrum of RE 0503-289, we identified 128 Zn v lines for the first time and determined log Zn = -3.57 ± 0.2 (155 times solar). Conclusions: Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191-B2B and RE 0503-289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to

  14. Repulsive Synchronization in an Array of Phase Oscillators

    NASA Astrophysics Data System (ADS)

    Tsimring, L. S.; Rulkov, N. F.; Larsen, M. L.; Gabbay, M.

    2005-06-01

    We study the dynamics of a repulsively coupled array of phase oscillators. For an array of globally coupled identical oscillators, repulsive coupling results in a family of synchronized regimes characterized by zero mean field. If the number of oscillators is sufficiently large, phase locking among oscillators is destroyed, independently of the coupling strength, when the oscillators’ natural frequencies are not the same. In locally coupled networks, however, phase locking occurs even for nonidentical oscillators when the coupling strength is sufficiently strong.

  15. Measurement of the oscillator strengths and autoionization widths of the neutral-aluminum multiplet 3s2 3p2 P0 - 3s 3p2 2P

    NASA Technical Reports Server (NTRS)

    Lombardi, G. G.; Cardon, B. L.; Kurucz, R. L.

    1981-01-01

    The hook method is used in conjunction with absorption equivalent width measurements to determine the oscillator strengths and line widths of the Al I multiplet 3s2 3p2 P0 - 3s 3p2 2P at 176 nm. Autoionization is found to be the dominant decay channel for the two levels of the 3p2 2P term, with autoionizing widths of 4.0 and 0.87 x 10 to the 10th/sec for J of 3/2 and 1/2, respectively. The van der Waals scattering cross section for the Al I transition at 176.91 nm by He is determined to be (1.3 + or - 0.3) x 10 to the -14th sq cm at 2400 K, and a solar spectrum calculation centered at 176 nm shows that the Al I features are possible diagnostic probes of (1) solar non-LTE processes, and (2) the temperature minimum and structure of the lower chromosphere.

  16. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  17. Galactic oscillations

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1991-01-01

    Long-lived oscillations that act like normal modes are described. The total kinetic energy is found to vary with time by amounts far in excess of the fluctuations expected from the virial theorem, and the variation shows periodic patterns that suggest oscillations. Experimental results indicate that oscillation amplitudes depend on the nature of the model. It is noted that it is difficult to answer questions about likely amplitudes in real galaxies with any confidence at the present time.

  18. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  19. Stochastic switching in delay-coupled oscillators.

    PubMed

    D'Huys, Otti; Jüngling, Thomas; Kinzel, Wolfgang

    2014-09-01

    A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a nondelayed Langevin equation, which allows us to analytically compute the distribution of frequencies and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators. PMID:25314515

  20. Atomic Oscillator Strengths in the Vacuum Ultraviolet

    NASA Technical Reports Server (NTRS)

    Nave, Gillian; Sansonetti, Craig J.; Szabo, Csilla I.

    2006-01-01

    We have developed techniques to measure branching fractions in the vacuum ultraviolet using diffraction grating spectroscopy and phosphor image plates as detectors. These techniques have been used to measure branching fractions in Fe II that give prominent emission lines in astrophysical objects.

  1. LINE ABSORPTION OSCILLATOR STRENGTHS FOR THE c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) BANDS IN N{sub 2}

    SciTech Connect

    Lavin, C.; Velasco, A. M.

    2011-09-20

    Theoretical absorption oscillator strengths and emission branching ratios for rotational lines of the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0-5) bands of molecular nitrogen are reported. The calculations have been performed with the molecular quantum defect orbital method, which has proved to be reliable in previous studies of rovibronic transitions in diatomic molecules. The strong interaction between c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) and b' {sup 1}{Sigma}{sup +}{sub u}(10) states has been analyzed through an interaction matrix that includes rotational terms. Owing to the perturbation, the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(0), c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(1), and c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3)-X{sup 1}{Sigma}{sup +}{sub g}(5) bands are not weak, in contrast to what would be expected on the basis of the Franck-Condon principle. Moreover, the intensity distribution of the rotational lines within each of the vibronic bands deviates from considerations based on Hoenl-London factors. In this work, we provide data that may be useful to interpret spectra from atmospheres of the Earth, Titan, and Triton, in which transitions from the c'{sub 4}{sup 1}{Sigma}{sup +}{sub u}(3) level have been detected.

  2. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  3. Microelectronic oscillator

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1969-01-01

    Bipolar transistor operated in a grounded base configuration is used as the inductor in a microelectronic oscillator. This configuration is employed using thin-film hybrid technology and is also applicable to monolithic technology.

  4. Raindrop oscillations

    NASA Technical Reports Server (NTRS)

    Beard, K. V.

    1982-01-01

    A model of the change in shape of a raindrop is presented. Raindrops measured by two orthogonal cameras were classified by shape and orientation to determine the nature of the oscillation. A physical model based on potential energy was then developed to study the amplitude variation of oscillating drops. The model results show that oscillations occur about the equilibrium axis ratio, but the time average axis ratio if significantly more spherical for large amplitudes because of asymmetry in the surface potential energy. A generalization of the model to oscillations produced by turbulence yields average axis ratios that are consistent with the camera measurements. The model results for average axis ratios were applied to rainfall studies with a dual polarized radar.

  5. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  6. Chemotaxis and Actin Oscillations

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  7. Oscillator Stengths and Their Uncertainties

    NASA Astrophysics Data System (ADS)

    Wahlgren, G. M.

    2010-11-01

    The oscillator strength is a key parameter in the description of the line absorption coefficient. It can be determined through experiment, abinitio and semi-empirical calculations, and backward analysis of line profiles. Each method has its advantages, and the uncertainty attached to its determination can range from low to indeterminable. For analysis of line profiles or equivalent widths the uncertainty in the oscillator strength can rival or surpass the difference between the derived element abundance from classical LTE and non-LTE analyses. It is therefore important to understand the nature of oscillator strength uncertainties and to assess whether this uncertainty can be a factor in choosing to initiate a non-LTE analysis or in the interpretation of its results. Methods for the determination of the oscillator strength are presented, prioritizing experiments, along with commentary about the sources and impact of the uncertainties. The Sei spectrum is used to illustrate how gf-values can be constructed from published data on atomic lifetimes and line intensities.

  8. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  9. Magnetic Torsional Oscillations in Magnetars

    SciTech Connect

    Sotani, Hajime; Kokkotas, Kostas D.; Stergioulas, Nikolaos

    2009-05-01

    We investigate torsional Alfven oscillations of relativistic stars with a global dipole magnetic field, via 2D numerical simulations. We find that a) there exist two families of quasi-periodic oscillations (QPOs) with harmonics at integer multiples of the fundamental frequency, b) the QPOs are long-lived, c) for the chosen form of dipolar magnetic field, the frequency ratio of the lower to upper fundamental QPOs is about 0.6, independent of the equilibrium model or of the strength of the magnetic field, and d) within a representative sample of EOS and of various magnetar masses, the Alfven QPO frequencies are given by accurate empirical relations that depend only on the compactness of the star and on the magnetic field strength. Compared to the observational frequencies, we also obtain an upper limit on the strength of magnetic field of SGR 1806-20 (if is dominated by a dipolar component) between {approx}3 and 7x10{sup 15} Gauss.

  10. Reentrant transition in coupled noisy oscillators.

    PubMed

    Kobayashi, Yasuaki; Kori, Hiroshi

    2015-01-01

    We report on a synchronization-breaking instability observed in a noisy oscillator unidirectionally coupled to a pacemaker. Using a phase oscillator model, we find that, as the coupling strength is increased, the noisy oscillator lags behind the pacemaker more frequently and the phase slip rate increases, which may not be observed in averaged phase models such as the Kuramoto model. Investigation of the corresponding Fokker-Planck equation enables us to obtain the reentrant transition line between the synchronized state and the phase slip state. We verify our theory using the Brusselator model, suggesting that this reentrant transition can be found in a wide range of limit cycle oscillators. PMID:25679676

  11. STABILIZED OSCILLATOR

    DOEpatents

    Jessen, P.L.; Price, H.J.

    1958-03-18

    This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.

  12. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  13. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  14. High-resolution spectroscopy of the {A}^{1}{\\rm{\\Pi }}(v^{\\prime} =0{--}10){--}{X}^{1}{{\\rm{\\Sigma }}}^{+}(v^{\\prime\\prime} =0) bands in 13C18O: term values, ro-vibrational oscillator strengths and Hönl–London corrections

    NASA Astrophysics Data System (ADS)

    Lemaire, J. L.; Eidelsberg, M.; Heays, A. N.; Gavilan, L.; Federman, S. R.; Stark, G.; Lyons, J. R.; de Oliveira, N.; Joyeux, D.

    2016-08-01

    Our knowledge of astronomical environments containing CO depends on accurate molecular data to reproduce and interpret observations. The constant improvement in UV space instrumentation, both in sensitivity and resolution, requires increasingly detailed laboratory data. Following a long-term experimental campaign at the SOLEIL Synchrotron facility, we have acquired complete datasets on the CO isotopologues in the vacuum ultraviolet. Absorption spectra were recorded using the Fourier-transform spectrometer installed on the DESIRS beamline, providing a resolving power R > 106 in the 8–12 eV range. Such resolution allows the analysis of individual line positions and strengths in electronic transitions and the location of perturbations. We continue our previous work on A–X bands of 12C16O and 13C16O, reporting here measurements for the 13C18O isotopologue. Gas column densities in the differentially-pumped system were calibrated using the B {}1{{{Σ }}}+–X {}1{{{Σ }}}+({v}\\prime =0,v\\prime\\prime =0) band. Absorption bands are analyzed by synthesizing line and band profiles and fitting them to measured spectra. New results for A {}1{{\\Pi }}({v}\\prime =0{--}10)–X {}1{{{Σ }}}+(v\\prime\\prime =0) bands include precise line assignments, term values, band-integrated oscillator strengths as well as individual ro-vibrational oscillator strengths and Hönl–London corrections. For ({v}\\prime =1) our results are compared with earlier studies. The interpretation of mixed perturbing bands, complementing an earlier study, is also presented as well as precise line assignments and term values for the B {}1{{{Σ }}}+–X {}1{{{Σ }}}+(0–0) band calibrator, and the nearby B–X (1–0) and C {}1{{{Σ }}}+–X {}1{{{Σ }}}+(0–0) bands.

  15. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  16. Grid oscillators

    NASA Technical Reports Server (NTRS)

    Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.

    1988-01-01

    Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.

  17. Oscillating Permanent Magnets.

    ERIC Educational Resources Information Center

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  18. Angle-resolved electron-energy-loss study of core-level electron excitation in molecules: Determination of the generalized oscillator strength for the carbon 1 s (2. sigma. sub g r arrow 2. pi. sub u ) excitation in CO sub 2

    SciTech Connect

    Boechat Roberty, H.M.; Bielschowsky, C.E.; de Souza, G.G.B. )

    1991-08-01

    As part of a systematic, quantitative study of the angle dependence of core-level-electron excitation by electron impact, we have determined the generalized oscillator strength (GOS) for the carbon 1{ital s}(2{sigma}{sub {ital g}}{r arrow}2{pi}{sub {ital u}}) transition in CO{sub 2}. The experimental results were obtained at an impact energy of 1290 eV, in the angular range of 2{degree}--14{degree}, with an energy resolution of 0.9 eV. Theoretical values for the GOS were also obtained, using {ital ab} {ital initio} Hartree-Fock molecular wave functions and allowing for the relaxation of all the molecular orbitals in the determination of the excited-state wave function.

  19. Synchronization of optically coupled resonant tunneling diode oscillators

    NASA Astrophysics Data System (ADS)

    Romeira, Bruno; Figueiredo, José M. L.; Ironside, Charles N.; Quintana, José M.

    2013-11-01

    We experimentally investigate the synchronous response of two fiber-optic coupled optoelectronic circuit oscillators based on resonant tunneling diodes (RTDs). The fiber-optic synchronization link employs injection of a periodic oscillating optical modulated signal generated by a master RTD-laser diode (LD) oscillator to a slave RTD-photodetector (PD) oscillator. The synchronous regimes were evaluated as a function of frequency detuning and optical injection strength. The results show the slave RTD-PD oscillator follows the frequency and noise characteristics of the master RTD-LD oscillator resulting in two oscillators with similar phase noise characteristics exhibiting single side band phase noise levels below -100 dBc/Hz at 1 MHz offset from the carrier frequency. Optical synchronization of RTD-based optoelectronic circuit oscillators have many applications spanning from sensing, to microwave generation, and data transmission.

  20. Oscillation quenching mechanisms: Amplitude vs. oscillation death

    NASA Astrophysics Data System (ADS)

    Koseska, Aneta; Volkov, Evgeny; Kurths, Jürgen

    2013-10-01

    Oscillation quenching constitutes a fundamental emergent phenomenon in systems of coupled nonlinear oscillators. Its importance for various natural and man-made systems, ranging from climate, lasers, chemistry and a wide range of biological oscillators can be projected from two main aspects: (i) suppression of oscillations as a regulator of certain pathological cases and (ii) a general control mechanism for technical systems. We distinguish two structurally distinct oscillation quenching types: oscillation (OD) and amplitude death (AD) phenomena. In this review we aim to set clear boundaries between these two very different oscillation quenching manifestations and demonstrate the importance for their correct identification from the aspect of theory as well as of applications. Moreover, we pay special attention to the physiological interpretation of OD and AD in a large class of biological systems, further underlying their different properties. Several open issues and challenges that await further resolving are also highlighted.

  1. Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Fujii, Teruo; Endo, Isao

    2000-08-01

    A living coupled oscillator system was constructed by a cell patterning method with a plasmodial slime mold, in which parameters such as coupling strength and distance between the oscillators can be systematically controlled. Rich oscillation phenomena between the two-coupled oscillators, namely, desynchronizing and antiphase/in-phase synchronization were observed according to these parameters. Both experimental and theoretical approaches showed that these phenomena are closely related to the time delay effect in interactions between the oscillators.

  2. THE IRON PROJECT & THE RMAX PROJECT: Highly excited Core resonances in photoionzation of Fe XVII and impact on plasma opacities, oscillator strengths of Fe XIV, and nebular abundance of O II

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil; Nahar, Sultana; Palay, Ethan; Eissner, Werner

    2011-05-01

    The aims of the Iron Project and the Rmax Project are detailed study of radiative and collisional processes of astrophysically abundant atoms and ions, mainly iron and iron-peak elements, over a wide energy range, from infra-red to X-rays. We will illustrate the dominance of high energy photoexciation-of-core (PEC) resonances in photoionization of Fe XVII due to strong coupling effects on dipole transition arrays 2p5 --> 2p4 (3 s , 3 d) in the core and examine PEC and non-PEC resonance strengths for their expanded role to incorporate inner-shell excitations for improved opacities. Comparisons show that the currently available cross sections from the Opacity Project are considerably underestimated. For Fe XIV, we present preliminary results from a large scale computation where 747 fine structure levels with n <= 10, l <= 9, and 0.5 <= J <= 9.5, and 71,407 electric dipole allowed fine structure transitions have been obtained. We will also demonstrate the fine structure effects on the collision strengths and in very low energy photoionzation for in nebular oxygen abundance. Partial Supports: NSF, DOE

  3. Suppression and revival of oscillation in indirectly coupled limit cycle oscillators

    NASA Astrophysics Data System (ADS)

    Sharma, P. R.; Kamal, N. K.; Verma, U. K.; Suresh, K.; Thamilmaran, K.; Shrimali, M. D.

    2016-09-01

    We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.

  4. The Magnetic Torque Oscillator and the Magnetic Piston

    ERIC Educational Resources Information Center

    Connors, Martin; Al-Shamali, Farook

    2007-01-01

    A magnet suspended in a uniform magnetic field like that of the Earth can be made to oscillate about the field. The frequency of oscillation depends on the strength (magnetic moment) of the magnet, that of the external field, and the moment of inertia of the magnet. It is easily shown and verified by experiment that a simple but nontrivial…

  5. Synchronization of genetic oscillators

    NASA Astrophysics Data System (ADS)

    Zhou, Tianshou; Zhang, Jiajun; Yuan, Zhanjiang; Chen, Luonan

    2008-09-01

    Synchronization of genetic or cellular oscillators is a central topic in understanding the rhythmicity of living organisms at both molecular and cellular levels. Here, we show how a collective rhythm across a population of genetic oscillators through synchronization-induced intercellular communication is achieved, and how an ensemble of independent genetic oscillators is synchronized by a common noisy signaling molecule. Our main purpose is to elucidate various synchronization mechanisms from the viewpoint of dynamics, by investigating the effects of various biologically plausible couplings, several kinds of noise, and external stimuli. To have a comprehensive understanding on the synchronization of genetic oscillators, we consider three classes of genetic oscillators: smooth oscillators (exhibiting sine-like oscillations), relaxation oscillators (displaying jump dynamics), and stochastic oscillators (noise-induced oscillation). For every class, we further study two cases: with intercellular communication (including phase-attractive and repulsive coupling) and without communication between cells. We find that an ensemble of smooth oscillators has different synchronization phenomena from those in the case of relaxation oscillators, where noise plays a different but key role in synchronization. To show differences in synchronization between them, we make comparisons in many aspects. We also show that a population of genetic stochastic oscillators have their own synchronization mechanisms. In addition, we present interesting phenomena, e.g., for relaxation-type stochastic oscillators coupled to a quorum-sensing mechanism, different noise intensities can induce different periodic motions (i.e., inhomogeneous limit cycles).

  6. Oscillator death induced by amplitude-dependent coupling in repulsively coupled oscillators.

    PubMed

    Liu, Weiqing; Xiao, Guibao; Zhu, Yun; Zhan, Meng; Xiao, Jinghua; Kurths, Jürgen

    2015-05-01

    The effects of amplitude-dependent coupling on oscillator death (OD) are investigated for two repulsively coupled Lorenz oscillators. Based on numerical simulations, it is shown that as constraint strengths on the amplitude-dependent coupling change, an oscillatory state may undergo a transition to an OD state. The parameter regimes of the OD domain are theoretically determined, which coincide well with the numerical results. An electronic circuit is set up to exhibit the transition process to the OD state with an amplitude-dependent coupling. These findings may have practical importance on chaos control and oscillation depression. PMID:26066224

  7. Rayleigh-type parametric chemical oscillation

    SciTech Connect

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  8. Rayleigh-type parametric chemical oscillation.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions. PMID:26429035

  9. Rayleigh-type parametric chemical oscillation

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-01

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  10. Pair creation and plasma oscillations.

    SciTech Connect

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  11. Synchronizing redundant power oscillators

    NASA Technical Reports Server (NTRS)

    Jenson, K. J.

    1969-01-01

    Outputs of oscillators are synchronized by summing the power transformer phase voltages, the summed voltages are applied to the frequency determining inductors of the individual voltage-controlled power oscillators. The beat frequency is eliminated when synchronization is achieved.

  12. Saturation in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Roman, Ahmed; Hanna, James

    2015-03-01

    We consider a weakly nonlinear system consisting of a resonantly forced oscillator coupled to an unforced oscillator. It has long been known that, for quadratic nonlinearities and a 2:1 resonance between the oscillators, a perturbative solution of the dynamics exhibits a phenomenon known as saturation. At low forcing, the forced oscillator responds, while the unforced oscillator is quiescent. Above a critical value of the forcing, the forced oscillator's steady-state amplitude reaches a plateau, while that of the unforced oscillator increases without bound. We show that, contrary to established folklore, saturation is not unique to quadratically nonlinear systems. We present conditions on the form of the nonlinear couplings and resonance that lead to saturation. Our results elucidate a mechanism for localization or diversion of energy in systems of coupled oscillators, and suggest new approaches for the control or suppression of vibrations in engineered systems.

  13. Microelectronic oscillator, 2

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1969-01-01

    Microelectronic oscillator uses a bipolar transistor to circumvent the problem of developing suitable inductors for lower frequencies. The oscillator is fabricated by hybrid thin film techniques or by monolithic construction. Discrete microminiature components may also be employed.

  14. Synchronization of coupled Boolean phase oscillators

    NASA Astrophysics Data System (ADS)

    Rosin, David P.; Rontani, Damien; Gauthier, Daniel J.

    2014-04-01

    We design, characterize, and couple Boolean phase oscillators that include state-dependent feedback delay. The state-dependent delay allows us to realize an adjustable coupling strength, even though only Boolean signals are exchanged. Specifically, increasing the coupling strength via the range of state-dependent delay leads to larger locking ranges in uni- and bidirectional coupling of oscillators in both experiment and numerical simulation with a piecewise switching model. In the unidirectional coupling scheme, we unveil asymmetric triangular-shaped locking regions (Arnold tongues) that appear at multiples of the natural frequency of the oscillators. This extends observations of a single locking region reported in previous studies. In the bidirectional coupling scheme, we map out a symmetric locking region in the parameter space of frequency detuning and coupling strength. Because of the large scalability of our setup, our observations constitute a first step towards realizing large-scale networks of coupled oscillators to address fundamental questions on the dynamical properties of networks in a new experimental setting.

  15. Covariant harmonic oscillators and coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  16. SHOCK-EXCITED OSCILLATOR

    DOEpatents

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  17. Discrete monotron oscillator

    SciTech Connect

    Carlsten, B.E.; Haynes, W.B.

    1996-08-01

    The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.

  18. Dysrhythmias of the respiratory oscillator

    NASA Astrophysics Data System (ADS)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  19. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  20. Non-linear oscillations

    NASA Astrophysics Data System (ADS)

    Hagedorn, P.

    The mathematical pendulum is used to provide a survey of free and forced oscillations in damped and undamped systems. This simple model is employed to present illustrations for and comparisons between the various approximation schemes. A summary of the Liapunov stability theory is provided. The first and the second method of Liapunov are explained for autonomous as well as for nonautonomous systems. Here, a basic familiarity with the theory of linear oscillations is assumed. La Salle's theorem about the stability of invariant domains is explained in terms of illustrative examples. Self-excited oscillations are examined, taking into account such oscillations in mechanical and electrical systems, analytical approximation methods for the computation of self-excited oscillations, analytical criteria for the existence of limit cycles, forced oscillations in self-excited systems, and self-excited oscillations in systems with several degrees of freedom. Attention is given to Hamiltonian systems and an introduction to the theory of optimal control is provided.

  1. Coherent magneto-elastic oscillations in superfluid magnetars

    NASA Astrophysics Data System (ADS)

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald

    2016-05-01

    We study the effect of superfluidity on torsional oscillations of highly magnetised neutron stars (magnetars) with a microphysical equation of state by means of two-dimensional, magneto-hydrodynamical-elastic simulations. The superfluid properties of the neutrons in the neutron star core are treated in a parametric way in which we effectively decouple part of the core matter from the oscillations. Our simulations confirm the existence of two groups of oscillations, namely continuum oscillations that are confined to the neutron star core and are of Alfvénic character, and global oscillations with constant phase and that are of mixed magneto-elastic type. The latter might explain the quasi-periodic oscillations observed in magnetar giant flares, since they do not suffer from the additional damping mechanism due to phase mixing, contrary to what happens for continuum oscillations. However, we cannot prove rigorously that the coherent oscillations with constant phase are normal modes. Moreover, we find no crustal shear modes for the magnetic field strengths typical for magnetars. We provide fits to our numerical simulations that give the oscillation frequencies as functions of magnetic field strength and proton fraction in the core.

  2. Coherent magneto-elastic oscillations in superfluid magnetars

    NASA Astrophysics Data System (ADS)

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald

    2016-08-01

    We study the effect of superfluidity on torsional oscillations of highly magnetised neutron stars (magnetars) with a microphysical equation of state by means of two-dimensional, magneto-hydrodynamical-elastic simulations. The superfluid properties of the neutrons in the neutron star core are treated in a parametric way in which we effectively decouple part of the core matter from the oscillations. Our simulations confirm the existence of two groups of oscillations, namely continuum oscillations that are confined to the neutron star core and are of Alfvénic character, and global oscillations with constant phase and that are of mixed magneto-elastic type. The latter might explain the quasi-periodic oscillations observed in magnetar giant flares, since they do not suffer from the additional damping mechanism due to phase mixing, contrary to what happens for continuum oscillations. However, we cannot prove rigorously that the coherent oscillations with constant phase are normal modes. Moreover, we find no crustal shear modes for the magnetic field strengths typical for magnetars. We provide fits to our numerical simulations that give the oscillation frequencies as functions of magnetic field strength and proton fraction in the core.

  3. Axion induced oscillating electric dipole moments

    SciTech Connect

    Hill, Christopher T.

    2015-06-24

    In this study, the axion electromagnetic anomaly induces an oscillating electric dipole for any magnetic dipole. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency ma and strength ~ 10-32 e-cm, within four orders of magnitude of the present standard model DC limit, and two orders of magnitude above the nucleon, assuming standard axion model and dark matter parameters. This may suggest sensitive new experimental venues for the axion dark matter search.

  4. Entrainment ranges of forced phase oscillators.

    PubMed

    Previte, Joseph P; Sheils, Natalie; Hoffman, Kathleen A; Kiemel, Tim; Tytell, Eric D

    2011-04-01

    In the vertebrate spinal cord, a neural circuit called the central pattern generator produces the basic locomotory rhythm. Short and long distance intersegmental connections serve to maintain coordination along the length of the body. As a way of examining the influence of such connections, we consider a model of a chain of coupled phase oscillators in which one oscillator receives a periodic forcing stimulus. For a certain range of forcing frequencies, the chain will match the stimulus frequency, a phenomenon called entrainment. Motivated by recent experiments in lampreys, we derive analytical expressions for the range of forcing frequencies that entrain the chain, and how that range depends on the forcing location. For short intersegmental connections, in which an oscillator is connected only to its nearest neighbors, we describe two ways in which entrainment is lost: internally, in which oscillators within the chain no longer oscillate at the same frequency; and externally, in which the the chain no longer has the same frequency as the forcing. By analyzing chains in which every oscillator is connected to every other oscillator (i.e., all-to-all connections), we show that the presence of connections with lengths greater than one do not necessarily change the entrainment ranges based on the nearest-neighbor model. We derive a criterion for the ratio of connection strengths under which the connections of length greater than one do not change the entrainment ranges produced in the nearest-neighbor model, provided entrainment is lost externally. However, when this criterion holds, the range of entrained frequencies is a monotonic function of forcing location, unlike experimental results, in which entrainment ranges are larger near the middle of the chain than at the ends. Numerically, we show that similar non-monotonic entrainment ranges are possible if the ratio criterion does not hold, suggesting that in the lamprey central pattern generator, intersegmental

  5. Electron impact collision strengths in Ne VII

    SciTech Connect

    Di, L.; Shi, J.R.; Zhao, G.

    2012-07-15

    The lines of Ne VII have been observed in many astronomical objects, and some transitions from high energy levels were observed both in Seyfert galaxies and stellar coronae. Thus, the atomic data for these transitions are important for modeling. Using the code FAC we calculated the collision strengths based on the distorted-wave method with large configuration interactions included. The Maxwellian averaged effective collision strengths covering the typical temperature range of astronomical and laboratory hot plasmas are presented. We extend the calculation of the energy levels to n=4 and 5. The energy levels, wavelengths, spontaneous transition rates, weighted oscillator strengths, and effective collision strengths were reported. Compared with the results from experiment or previous theoretical calculations a general agreement is found. It is found that the resonance effects are important in calculating the effective collision strengths.

  6. Transitional γ strength in Cd isotopes

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Ruud, I. E.; Bürger, A.; Goriely, S.; Guttormsen, M.; Görgen, A.; Hagen, T. W.; Harissopulos, S.; Nyhus, H. T.; Renstrøm, T.; Schiller, A.; Siem, S.; Tveten, G. M.; Voinov, A.; Wiedeking, M.

    2013-01-01

    The level densities and γ-ray strength functions of 105,106,111,112Cd have been extracted from particle-γ coincidence data using the Oslo method. The level densities are in very good agreement with known levels at low excitation energy. The γ-ray strength functions display no strong enhancement for low γ energies. However, more low-energy strength is apparent for 105,106Cd than for 111,112Cd. For γ energies above ≈4 MeV, there is evidence for some extra strength, similar to what has been previously observed for the Sn isotopes. The origin of this extra strength is unclear; it might be due to E1 and M1 transitions originating from neutron skin oscillations or the spin-flip resonance, respectively.

  7. Drop oscillation and mass transfer in alternating electric fields

    SciTech Connect

    Carleson, T.E.

    1992-06-24

    In certain cases droplet direct contact heat transfer rates can be significantly enhanced by the application of an alternating electric field. This field can produce shape oscillations in a droplet which will enhance mixing. The theoretical evaluation of the effect of the interaction of the field with drop charge on the hydrodynamics has been completed for small amplitude oscillations. Previous work with a zero order perturbation method was followed up with a first order perturbation method to evaluate the effect of drop distortion on drop charge and field distribution. The first order perturbation results show secondary drop oscillations of four modes and two frequencies in each mode. The most significant secondary oscillation has the same mode and frequency as the second mode oscillation predicted from the first order perturbation work. The resonant frequency of all oscillations decrease with increasing electric field strength and drop charge. Work is currently underway to evaluate the heat transfer enhancement from an applied alternating electric field.

  8. Frequency-locked chaotic opto-RF oscillator.

    PubMed

    Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc

    2016-06-15

    A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime. PMID:27304302

  9. Paradoxes of neutrino oscillations

    SciTech Connect

    Akhmedov, E. Kh.; Smirnov, A. Yu.

    2009-08-15

    Despite the theory of neutrino oscillations being rather old, some of its basic issues are still being debated in the literature. We discuss a number of such issues, including the relevance of the 'same energy' and 'same momentum' assumptions, the role of quantum-mechanical uncertainty relations in neutrino oscillations, the dependence of the coherence and localization conditions that ensure the observability of neutrino oscillations on neutrino energy and momentum uncertainties, the question of (in)dependence of the oscillation probabilities on the neutrino production and detection processes, and the applicability limits of the stationary-source approximation. We also develop a novel approach to calculation of the oscillation probability in the wave-packet approach, based on the summation/integration conventions different from the standard one, which allows a new insight into the 'same energy' vs. 'same momentum' problem. We also discuss a number of apparently paradoxical features of the theory of neutrino oscillations.

  10. Boxing with Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, Dj; Weiler, Thomas J.

    1998-03-01

    We have developed a model-independent ``box'' parameterization of neutrino oscillations. Oscillation probabilities are linear in these new parameters, so measurements can straighforwardly determine the box parameters which can then be manipulated to yield magnitudes of mixing matrix elements. We will present these new parameters and examine the effects of unitarity which reduce the number of independent parameters to the minimum set. The framework presented here will facilitate general analyses of neutrino oscillations among n >= 3 flavors.

  11. Self-oscillation

    NASA Astrophysics Data System (ADS)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  12. Workshop on Harmonic Oscillators

    NASA Technical Reports Server (NTRS)

    Han, D. (Editor); Kim, Y. S. (Editor); Zachary, W. W. (Editor)

    1993-01-01

    Proceedings of a workshop on Harmonic Oscillators held at the College Park Campus of the University of Maryland on March 25 - 28, 1992 are presented. The harmonic oscillator formalism is playing an important role in many branches of physics. This is the simplest mathematical device which can connect the basic principle of physics with what is observed in the real world. The harmonic oscillator is the bridge between pure and applied physics.

  13. Mutual phase-locking of planar nano-oscillators

    NASA Astrophysics Data System (ADS)

    Xu, K. Y.; Li, J.; Xiong, J. W.; Wang, G.

    2014-06-01

    Characteristics of phase-locking between Gunn effect-based planar nano-oscillators are studied using an ensemble Monte Carlo (EMC) method. Directly connecting two oscillators in close proximity, e.g. with a channel distance of 200 nm, only results in incoherent oscillations. In order to achieve in-phase oscillations, additional considerations must be taken into account. Two coupling paths are shown to exist between oscillators. One coupling path results in synchronization and the other results in anti-phase locking. The coupling strength through these two paths can be adjusted by changing the connections between oscillators. When two identical oscillators are in the anti-phase locking regime, fundamental components of oscillations are cancelled. The resulting output consists of purely second harmonic oscillations with a frequency of about 0.66 THz. This type of second harmonic generation is desired for higher frequency applications since no additional filter system is required. This transient phase-locking process is further analyzed using Adler's theory. The locking range is extracted, and a criterion for the channel length difference required for realizing phased arrays is obtained. This work should aid in designing nano-oscillator arrays for high power applications and developing directional transmitters for wireless communications.

  14. Frequencies of solar oscillations

    NASA Technical Reports Server (NTRS)

    Libbrecht, K. G.; Woodard, M. F.; Kaufman, J. M.

    1990-01-01

    Solar oscillations have been observed at three different spatial scales at Big Bear Solar Observatory during 1986-1987 and, using three data sets, a new and more accurate table of solar oscillation frequencies has been compiled. The oscillations, which are presented as functions of radial order n and spherical harmonic degree l, are averages over azimuthal order and therefore approximate the normal mode frequencies of a nonrotating, spherically symmetric sun, near solar minimum. The table contains frequencies for most of the solar p and f modes with l between 0 and 1860, n between 0 and 26, and oscillation mode frequencies between 1.0 and 5.3.

  15. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Xiao, Di; Brataas, Arne

    2016-05-01

    We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators.

  16. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator.

    PubMed

    Cheng, Ran; Xiao, Di; Brataas, Arne

    2016-05-20

    We consider the current-induced dynamics of insulating antiferromagnets in a spin Hall geometry. Sufficiently large in-plane currents perpendicular to the Néel order trigger spontaneous oscillations at frequencies between the acoustic and the optical eigenmodes. The direction of the driving current determines the chirality of the excitation. When the current exceeds a threshold, the combined effect of spin pumping and current-induced torques introduces a dynamic feedback that sustains steady-state oscillations with amplitudes controllable via the applied current. The ac voltage output is calculated numerically as a function of the dc current input for different feedback strengths. Our findings open a route towards terahertz antiferromagnetic spin-torque oscillators. PMID:27258884

  17. Interstellar iron and manganese - UV oscillator strengths and abundances

    NASA Technical Reports Server (NTRS)

    Lugger, P.; Barker, E.; York, D. G.; Oegerle, W.

    1982-01-01

    Observations of 16 UV resonance lines of Fe II and six of Mn II in five stars are used to derive new f-values for the lines of these species at wavelengths lower than 1300 A. Values of forbidden lines Fe/H and Mn/H are derived. These new values are used to reassess mean depletions and range of variations in depletions for several lines of sight. On an integrated line-of-sight basis, depletions of Fe and Mn show larger variations than P, Cl, or Zn. The mean local depletion forbidden line Fe/H is 1.65, in interstellar gas. One Fe II line, 2366.864 A, has never been detected. Its f-value is shown to be much lower than previously thought. This line is therefore not useful for interstellar studies at the present time. It is suggested that the true wavelength of 1142 A of Fe II, from UV multiplet 10, is 1142.285 A.

  18. Must Kohn-Sham oscillator strengths be accurate at threshold?

    SciTech Connect

    Yang Zenghui; Burke, Kieron; Faassen, Meta van

    2009-09-21

    The exact ground-state Kohn-Sham (KS) potential for the helium atom is known from accurate wave function calculations of the ground-state density. The threshold for photoabsorption from this potential matches the physical system exactly. By carefully studying its absorption spectrum, we show the answer to the title question is no. To address this problem in detail, we generate a highly accurate simple fit of a two-electron spectrum near the threshold, and apply the method to both the experimental spectrum and that of the exact ground-state Kohn-Sham potential.

  19. Active Emulsions: Synchronization of Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Fraden, Seth

    2012-02-01

    We explore the dynamical behavior of emulsions consisting of nanoliter volume droplets of the oscillatory Belousov-Zhabotinsky (BZ) reaction separated by a continuous oil phase. Some of the aqueous BZ reactants partition into the oil leading to chemical coupling of the drops. We use microfluidics to vary the size, composition and topology of the drops in 1D and 2D. Addition of a light sensitive catalyst to the drops and illumination with a computer projector allows each drop to be individually perturbed. A variety of synchronous regimes are found that systematically vary with the coupling strength and whether coupling is dominated by activatory or inhibitory species. In 1D we observe in- and anti-phase oscillations, stationary Turing patterns in which drops stop oscillating, but form spatially periodic patterns of drops in the oxidized and reduced states, and more complex combinations of stationary and oscillatory drops. In 2D, the attractors are more complex and vary with network topology and coupling strength. For hexagonal lattices as a function of increasing coupling strength we observe right and left handed rotating oscillations, mixed oscillatory and Turing states and finally full Turing states. Reaction -- diffusion models based on a simplified description of the BZ chemistry and diffusion of messenger species reproduce a number of the experimental results. For a range of parameters, a simplified phase oscillator model provides an intuitive understanding of the complex synchronization patterns. [4pt] ``Coupled oscillations in a 1D emulsion of Belousov--Zhabotinsky droplets,'' Jorge Delgado, Ning Li, Marcin Leda, Hector O. Gonzalez-Ochoa, Seth Fraden and Irving R. Epstein, Soft Matter, 7, 3155 (2011).

  20. SOLAR H{alpha} OSCILLATIONS FROM INTENSITY AND DOPPLER OBSERVATIONS

    SciTech Connect

    Jackiewicz, Jason; Balasubramaniam, K. S.

    2013-03-01

    Chromospheric wave activity around flares and filaments has been a research focus for years, and could provide indirect measurements of local conditions that are not otherwise accessible. One interesting observed phenomenon is oscillations in filaments, activated by distant flares and the large-scale waves they produce. Characteristics of these oscillations, such as periods, amplitudes, and lifetimes, can provide unique information about the filament. We measure oscillation properties in flares and filaments from H{alpha} chromospheric data using a new method that provides important spatial and frequency content of the dynamics. We apply the method to two flare events where filaments are observed to oscillate and determine their properties. We find strong oscillatory signal in flaring active regions in the chromosphere over a range of frequencies. Two filaments are found to oscillate without any detectable chromospheric wave acting as an activation mechanism. We find that filaments oscillate with periods of tens of minutes, but variations are significant at small spatial scales along the filamentary region. The results suggest that there is a frequency dependence of the oscillation amplitude, as well as a spatial dependence along single filaments that is more difficult to quantify. It also appears that the strength of the oscillations does not necessarily depend on the strength of the trigger, although there are other possible effects that make this conclusion preliminary. Applications of this technique to other events and different data sets will provide important new insights into the local energy densities and magnetic fields associated with dynamic chromospheric structures.

  1. A model El Nino-Southern Oscillation

    NASA Technical Reports Server (NTRS)

    Zebiak, Stephen E.; Cane, Mark A.

    1987-01-01

    A coupled atmosphere-ocean model is developed and used to study the ENSO (El Nino/Southern Oscillation) phenomenon. With no anomalous external forcing, the coupled model reproduces certain key features of the observed phenomenon, including the recurrence of warm events at irregular intervals with a preference for three to four years. It is shown that the mean sea surface temperature, wind and ocean current fields determine the characteristic spatial structure of ENSO anomalies. The tendency for phase-locking of anomalies is explained in terms of a variation in coupling strength associated with the annual cycle in the mean fields. Sensitivity studies reveal that both the amplitude and the time scale of the oscillation are sensitive to several parameters that affect the strength of the atmosphere-ocean coupling. Stronger coupling implies larger oscillations with a longer timescale. A critical element of the model oscillation is the variability in the equatorial heat content of the upper ocean. Equatorial heat content increases prior to warm events and decreases sharply during the events. A theory for this variability and the associated transitions between non-El Nino and El Nino states is presented. Implications of the model results for the prediction of El Nino events are discussed.

  2. Absorption Oscillator Strengths for the c4‧1Σu+(3, 4, 6)-X1Σg+(v‧‧), b‧1Σu+(10, 13, 20)-X1Σg+(v‧‧), and c5‧1Σu+(1)-X1Σg+(v‧‧) Progressions in N2

    NASA Astrophysics Data System (ADS)

    Lavín, C.; Velasco, A. M.

    2016-01-01

    Absorption oscillator strengths, calculated with the molecular quantum defect orbital method, for the c4'1 Σu+(3)-X1Σg+ (v\\prime\\prime = 0-12), c4'1Σu+(4) -X1Σg+(v\\prime\\prime = 0-12), c4'1Σu+(6)- X1Σg+(v\\prime\\prime = 0-12), b\\prime 1Σu+(10)- X1Σg+(v\\prime\\prime = 0-12), b\\prime 1Σu+(13)- X1Σg+(v\\prime\\prime = 0-12), b\\prime 1Σu+(20)- X1Σg+(v\\prime\\prime = 0-12), and c5'1Σu+(1)- X1Σg+(v\\prime\\prime = 0-12) bands of molecular nitrogen are reported. The Rydberg-valence interaction between states of 1Σu+ symmetry has been treated through an interaction matrix that includes vibrational coupling. Due to the homogeneous interaction, the intensity distribution of the bands within each progression deviates from the Franck-Condon predictions. The present results for vibronic transitions from the X1Σg+(0) ground state agree rather well with reported high-resolution measurements. As far as we know, f-values for bands originating from v″ > 0 vibrational levels of the electronic ground state are reported here for the first time. These data may be useful in the interpretation of the extreme ultraviolet spectra from Earth’s and Titan’s atmospheres, in which several bands of the c4\\prime (3), c4\\prime (4), and c4\\prime (6) progressions have been identified.

  3. Active-bridge oscillator

    DOEpatents

    Wessendorf, Kurt O.

    2001-01-01

    An active bridge oscillator is formed from a differential amplifier where positive feedback is a function of the impedance of one of the gain elements and a relatively low value common emitter resistance. This use of the nonlinear transistor parameter h stabilizes the output and eliminates the need for ALC circuits common to other bridge oscillators.

  4. Investigating Magnetic Oscillations.

    ERIC Educational Resources Information Center

    Brueningsen, Christopher A.

    1993-01-01

    Studies magnetic oscillation using an air track. Ceramic magnets are attached to the cart and also are used as dampeners in place of the springs. The resulting oscillations are fairly sinusoidal and is a good example of simple harmonic motion. (MVL)

  5. Transition from amplitude to oscillation death in a network of oscillators

    SciTech Connect

    Nandan, Mauparna; Hens, C. R.; Dana, Syamal K.; Pal, Pinaki

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  6. Transition from amplitude to oscillation death in a network of oscillators.

    PubMed

    Nandan, Mauparna; Hens, C R; Pal, Pinaki; Dana, Syamal K

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics. PMID:25554023

  7. HIGH POWER PULSED OSCILLATOR

    DOEpatents

    Singer, S.; Neher, L.K.

    1957-09-24

    A high powered, radio frequency pulse oscillator is described for generating trains of oscillations at the instant an input direct voltage is impressed, or immediately upon application of a light pulse. In one embodiment, the pulse oscillator comprises a photo-multiplier tube with the cathode connected to the first dynode by means of a resistor, and adjacent dynodes are connected to each other through adjustable resistors. The ohmage of the resistors progressively increases from a very low value for resistors adjacent the cathode to a high value adjacent the plate, the last dynode. Oscillation occurs with this circuit when a high negative voltage pulse is applied to the cathode and the photo cathode is bombarded. Another embodiment adds capacitors at the resistor connection points of the above circuit to increase the duration of the oscillator train.

  8. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  9. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Jaimes-Reátegui, R.

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively.

  10. Deterministic coherence resonance in coupled chaotic oscillators with frequency mismatch.

    PubMed

    Pisarchik, A N; Jaimes-Reátegui, R

    2015-11-01

    A small mismatch between natural frequencies of unidirectionally coupled chaotic oscillators can induce coherence resonance in the slave oscillator for a certain coupling strength. This surprising phenomenon resembles "stabilization of chaos by chaos," i.e., the chaotic driving applied to the chaotic system makes its dynamics more regular when the natural frequency of the slave oscillator is a little different than the natural frequency of the master oscillator. The coherence is characterized with the dominant component in the power spectrum of the slave oscillator, normalized standard deviations of both the peak amplitude and the interpeak interval, and Lyapunov exponents. The enhanced coherence is associated with increasing negative both the third and the fourth Lyapunov exponents, while the first and second exponents are always positive and zero, respectively. PMID:26651632