Sample records for osmium phosphides

  1. Osmium: An Appraisal of Environmental Exposure

    PubMed Central

    Smith, Ivan C.; Carson, Bonnie L.; Ferguson, Thomas L.

    1974-01-01

    In the U.S., the chief source of new osmium is copper refining, where this metal is produced as a byproduct. Probably less than 10% of the osmium in the original copper ore is recovered, and 1000–3000 oz troy of osmium is lost each year to the environment as the toxic, volatile tetroxide from copper smelters. In 1971, about 2000 oz troy of osmium was domestically refined, most of which was from secondary sources. An additional 4169 oz troy of osmium was toll-refined. Major uses for osmium tetroxide identified are for catalysis, especially in steroid synthesis, and for tissue staining. Minor uses of osmium metal are for electrical contacts and for imparting hardness to alloys for mechanical pivots, etc. Unreclaimed osmium tetroxide that reaches wastewater streams is probably rapidly reduced by organic matter to nontoxic osmium dioxide or osmium metal, which would settle out in the sediment of the water course. Waste osmium metal, itself innocuous and chemically resistant, would be oxidized to the toxic tetroxide if incinerated. Because of the small amounts used and their wide dispersal, the amounts of osmium tetroxide in wastewater and air should pose no hazard to man or the environment. The chief acute toxic effects of osmium tetroxide are well known and include eye and respiratory-tract damage. Few data are available that provide information on possible effects of nonacute exposure resulting from environmental contamination by osmium. However, workers continually exposed to osmium tetroxide vapors (refiners and histologists) and rheumatoid arthritis patients who have received intra-articular injections of osmic acid solutions have shown no apparent damage from exposure to low levels of osmium. PMID:4470919

  2. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  3. Osmium-187 enrichment in some plumes: Evidence for core-mantle interaction?

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.

    1995-01-01

    Calculations with data for asteroidal cores indicate that Earth's outer core may have a rhenium/osmium ratio at least 20 percent greater than that of the chondritic upper mantle, potentially leading to an outer core with an osmium-187/osmium-188 ratio at least 8 percent greater than that of chondrites. Because of the much greater abundance of osmium in the outer core relative to the mantle, even a small addition of metal to a plume ascending from the D??? layer would transfer the enriched isotopic signature to the mixture. Sources of certain plume-derived systems seem to have osmium-187/osmium-188 ratios 5 to 20 percent greater than that for chondrites, consistent with the ascent of a plume from the core-mantle boundary.

  4. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  5. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  6. Anthropogenic Osmium in Airborne Particles from Woods Hole, Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Peucker-Ehrenbrink, B.; Sen, I. S.; Geboy, N.

    2012-12-01

    The global geochemical cycle of osmium has been significantly disturbed by the introduction of automobile exhaust catalysts to convert noxious gas emissions into more benign forms. Anthropogenic osmium has been reported in rainwater, snow, and in the urban airborne particles from around the world to reveal global-scale osmium pollution [1, 2]. In this study, we report on the platinum group element (PGE) concentrations and osmium isotope ratios of airborne particles (PM10) collected in Woods Hole, a small coastal town in Massachusetts to better understand inputs of anthropogenic osmium to rural environments. We further investigate the use of osmium isotopes to track sources of airborne particles and support source apportionment studies on a continental scale. The samples used in this study were collected at Woods Hole Oceanographic Institution over one year (2008-2009). From this collection twelve samples for which the backward air mass trajectories have been determined were selected for osmium isotope analyses. Our results show that the osmium and platinum concentrations are an order of magnitude lower when compared to downtown Boston [2]. The average Os, Pt and Ir concentrations are 0.006±0.012, 0.019±0.023, and 0.685±0.634 pg m-3, respectively. The 187Os/188Os of the aerosols range from 0.275 to 0.788. As continental crust is radiogenic (187Os/188Os >1) and PGE ore bodies generally have unradiogenic 187Os/188Os (~0.2), the unradiogenic 187Os/188Os signature of the aerosols indicates anthropogenic contributions. With 95% of the total osmium mobilization on land being attributed to human activities [3], it is clear that human imprint on airborne particles is not restricted to urban centers with high traffic flows, but also affects rural environments. Aerosol particles that have backward air mass trajectories from the Southwest, the densely populated and industrialized Eastern seaboard, are characterized by unradiogenic osmium, while air masses from the North

  7. Osmium coated diffraction grating in the Space Shuttle environment - Performance

    NASA Technical Reports Server (NTRS)

    Torr, M. R.

    1985-01-01

    Samples coated with osmium were flown on the early Shuttle test flights, and on the return of these samples, the osmium coating was found to have disappeared, evidently due to the oxidation of the material in the atomic oxygen atmosphere. An instrument flown on the Spacelab 1 mission comprised an array of five spectrometers covering the extreme ultraviolet (EUV) to near-IR wavelengths. The EUV spectrometer contained an osmium-coated reflective grating located fairly deep within the instruments. Here, results of an assessment of the reflectivity and stability of the osmium surface over the course of the ten-day mission are reported. It is concluded that the osmium reflective coating remained stable relative to the spectrometer coated with MgF2 over the course of the mission. In addition, the ratio of sensitivity of these two spectrometers did not change in any major way from the time of the laboratory calibration until the time of flight two years later. Any changes are within the 50-percent calibration uncertainty.

  8. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Zinc phosphide; tolerances for... § 180.284 Zinc phosphide; tolerances for residues. (a) General. Tolerances are established for residues of the phosphine resulting from the use of the rodenticide zinc phosphide in or on the raw...

  9. Can Ni phosphides become viable hydroprocessing catalysts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soled, S.; Miseo, S.; Baumgartner, J.

    2015-05-15

    We prepared higher surface area nickel phosphides than are normally found by reducing nickel phosphate. To do this, we hydrothermally synthesized Ni hydroxy phosphite precursors with low levels of molybdenum substitution. The molybdenum substitution increases the surface area of these precursors. During pretreatment in a sulfiding atmosphere (such as H2S/H2) dispersed islands of MoS2 segregate from the precursor and provide a pathway for H2 dissociation that allows reduction of the phosphite precursor to nickel phosphide at substantially lower temperatures than in the absence of MoS2. The results reported here show that to create nickel phosphides with comparable activity to conventionalmore » supported sulfide catalysts, one would have to synthesize the phosphide with surface areas exceeding 400 m2/g (i.e. with nanoparticles less than 30 Å in lateral dimension).« less

  10. Aluminum phosphide

    Integrated Risk Information System (IRIS)

    Aluminum phosphide ; CASRN 20859 - 73 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  11. Fast turn-on osmium coated cathode

    NASA Astrophysics Data System (ADS)

    Marrian, C. R. K.; Haas, G. A.; Shih, A.

    1984-03-01

    This abstract discloses a fast turn-on refractory coated cathode comprising a porous tungsten metal matrix impregnated with barium calcium aluminate and coated with osmium. The osmium coating has a planned series of interruptions with each interruption being on the order of several microns in width to thereby expose the tungsten. These interruptions permit the barium and oxygen from the impregnant to rise to the cathode surface during activation or reactivation to form a desired near monolayer of barium and oxygen to enhance electron emission. Thus, this cathode design provides a fast turn-on characteristic even after shelf storage.

  12. Method for production of free-standing polycrystalline boron phosphide film

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  13. Preparation of osmium targets with carbon backing

    NASA Astrophysics Data System (ADS)

    Fremont, Georges; Ngono-Ravache, Yvette; Schmitt, Christelle; Stodel, Christelle

    2018-05-01

    For nuclear reaction studies, thin metallic osmium targets, either natural or isotopically enriched (Os-192) of 200-300 µg/cm2 thicknesses deposited on a thin carbon backing are required. A challenging method was successfully performed at GANIL involving firstly the preparation of an aqueous solution of osmium tetrachloride, then its electro-deposition onto a thick copper backing (100 µm); this process was followed by the evaporation of a thin carbon layer (≈40 µg/cm²) and finally the dissolution of the copper material.

  14. CONTRAST BETWEEN OSMIUM-FIXED AND PERMANGANATE-FIXED TOAD SPINAL GANGLIA

    PubMed Central

    Rosenbluth, Jack

    1963-01-01

    Chains of vesicles are prominent near the plasma membranes of both the neurons and satellite cells of osmium-fixed toad spinal ganglia. In permanganate-fixed specimens, however, such vesicles are absent, and in their place are continuous invaginations of the plasma membranes of these cells. The discrepancy suggests that the serried vesicles seen in osmium-fixed preparations arise through disintegration of plasma membrane invaginations, and do not represent active pinocytosis, as has been suggested previously. A second difference between ganglia fixed by these two methods is that rows of small, disconnected cytoplasmic globules occur in the sheaths of permanganate-fixed ganglia, but not in osmium-fixed samples. It is suggested that these globules arise from the breakdown of thin sheets of satellite cell cytoplasm which occur as continuous lamellae in osmium-fixed specimens. Possible mechanisms of these membrane reorganizations, and the relevance of these findings to other tissues, are discussed. PMID:13990905

  15. Microwave-assisted synthesis of transition metal phosphide

    DOEpatents

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  16. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.

    PubMed

    Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John

    2017-10-01

    Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  18. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide

    PubMed Central

    Burton, K.

    1967-01-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0° by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO3NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient. PMID:6048808

  19. Oxidation of pyrimidine nucleosides and nucleotides by osmium tetroxide.

    PubMed

    Burton, K

    1967-08-01

    1. Pyrimidine nucleosides such as thymidine, uridine or cytidine are oxidized readily at 0 degrees by osmium tetroxide in ammonium chloride buffer. There is virtually no oxidation in bicarbonate buffer of similar pH. Oxidation of 1-methyluracil yields 5,6-dihydro-4,5,6-trihydroxy-1-methyl-2-pyrimidone. 2. Osmium tetroxide and ammonia react reversibly in aqueous solution to form a yellow 1:1 complex, probably OsO(3)NH. A second molecule of ammonia must be involved in the oxidation of UMP since the rate of this reaction is approximately proportional to the square of the concentration of unprotonated ammonia. 3. 4-Thiouridine reacts with osmium tetroxide much more rapidly than does uridine. The changes of absorption spectra are different in sodium bicarbonate buffer and in ammonium chloride buffer. They occur faster in the latter buffer and, under suitable conditions, cytidine is a major product. 4. Polyuridylic acid is oxidized readily by ammoniacal osmium tetroxide, but its oxidation is inhibited by polyadenylic acid. Pyrimidines of yeast amino acid-transfer RNA are oxidized more slowly than the corresponding mononucleosides, especially the thymine residues. Appreciable oxidation can occur without change of sedimentation coefficient.

  20. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    NASA Astrophysics Data System (ADS)

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong; Chen, Wei-Fu

    2017-03-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  1. Free-standing polycrystalline boron phosphide film and method for production thereof

    DOEpatents

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  2. Osmium isotopic tracing of atmospheric emissions from an aluminum smelter

    NASA Astrophysics Data System (ADS)

    Gogot, Julien; Poirier, André; Boullemant, Amiel

    2015-09-01

    We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.

  3. Osmium Isotopic Composition of the Sumbar Cretaceous- Tertiary Boundary, Turkmenia

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1992-07-01

    Turekian (1982) propagated the use of the osmium isotopic composition as a cosmic indicator for the origin of the high osmium (and iridium) layers at the K/T boundaries. He did not consider the osmium isotopic signature of the terrestrial mantle, which also has a chondritic evolution of the Re-Os system. Osmium cannot serve alone as an infallible indicator of the impact theory, but interesting results can be obtained from their investigation. Different K/T boundary section have been analyzed so far for ^187Os/^186Os. An overview of the values is presented in the table. Boundary Clay layer Os ratio Reference Stevns Klint fish clay 1.66 Luck and Turekian, 1983 Woodside Creek 1.12 Lichte et al., 1986 Raton Basin 1.23 Kraehenbuehl et al., 1988 Raton Basin (several) 1.15-1.23 Esser and Turekian, 1989 Sumbar (0-1 cm) 1.16 This work We obtained a complete marine section of the K/T boundary in southern Turkmenia (decribed by Alekseyev, 1988). It shows a very high Ir concentration (66 ppb) at the boundary layer and a remarkable Ir enrichment over crustal rocks continuing up to 30 cm above the boundary. Our aim of this investigation is to analyze several samples from above and below the boundary for the ^187Os/^186Os ratio to obtain a complete picture of the isotopic evolution of the section. We want to evaluate mixing of Os with chondritic ratios with Os from upper crustal rocks. Another goal is to investigate a mobilization of Os. So far only one sample has been analyzed with NTI-MS after fire assay digestion of the sample. The sample 0 to 1 cm has an ^187Os/^186Os ratio of 1.162 +- 13, which is quite low. We expect an even lower value for the boundary clay (0 cm) itself not taking into account a contribution of radiogenic osmium from the decay of terrestrial rhenium. This might put this K/T boundary section closest of all to the present day chondritic value (approx. 1.05). Further analysis will be presented at the meeting. References Alekseyev A. S., Nazarov M. A

  4. Seasonal shift of diet in bank voles explains trophic fate of anthropogenic osmium?

    PubMed

    Ecke, Frauke; Berglund, Åsa M M; Rodushkin, Ilia; Engström, Emma; Pallavicini, Nicola; Sörlin, Dieke; Nyholm, Erik; Hörnfeldt, Birger

    2018-05-15

    Diet shifts are common in mammals and birds, but little is known about how such shifts along the food web affect contaminant exposure. Voles are staple food for many mammalian and avian predators. There is therefore a risk of transfer of contaminants accumulated in voles within the food chain. Osmium is one of the rarest earth elements with osmium tetroxide (OsO 4 ) as the most toxic vapor-phase airborne contaminant. Anthropogenic OsO 4 accumulates in fruticose lichens that are important winter food of bank voles (Myodes glareolus). Here, we test if a) anthropogenic osmium accumulates in bank voles in winter, and b) accumulation rates and concentrations are lower in autumn when the species is mainly herbivorous. Our study, performed in a boreal forest impacted by anthropogenic osmium, supported the hypotheses for all studied tissues (kidney, liver, lung, muscle and spleen) in 50 studied bank voles. In autumn, osmium concentrations in bank voles were even partly similar to those in the graminivorous field vole (Microtus agrestis; n=14). In autumn but not in late winter/early spring, osmium concentrations were generally negatively correlated with body weight and root length of the first mandible molar, i.e. proxies of bank vole age. Identified negative correlations between organ-to-body weight ratios and osmium concentrations in late winter/early spring indicate intoxication. Our results suggest unequal accumulation risk for predators feeding on different cohorts of bank voles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Low Pressure Synthesis of Indium Phosphide,

    DTIC Science & Technology

    1982-04-01

    UNCLASSIFIED F/G 713 M EEEEEEEEEII MEEMMMME W , 2~ h IW 𔃼 * ).I 2 MICROCOP RESOWI1OW TWS CHAT . . WROmNA RUIEJ MT STHDMS-W3-ALORMO TNDM- m &6.4. MM RO - TMS...pNode . M-V Semiconductor compound ’S.T o a.ek* !cm .. EImd’b lc a ..... . P Pocry sline large g rain .bgot of indiumn phosphide have been synthe- simed...indium temperature of 1003"C. 2. BACKGROUND .r. Indium phosphide is a compound composed of elements from the third and fifth columns of the periodic

  6. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qingfang; Key Laboratory of Advanced Energy Materials Chemistry; Wang, Zhiqiang

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molarmore » ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.« less

  7. Osmium (VI) complexes of the 3', 5'-dinucleoside monophosphates, ApU and UpA.

    PubMed

    Daniel, F B; Behrman, E J

    1976-02-10

    The dinucleoside monophosphates, ApU and UpA, react with potassium osmate (VI) and 2,2'-bipyridyl to form the corresponding oxo-osmium (VI) bipyridyl sugar ester in which the osmate group is bonded to the terminal 2',3'-glycol. Osmium (VIII) tetroxide and 2,2'-bipyridyl react with the dinucleosides to form the corresponding oxo-osmium (VI) bipyridyl heterocyclic esters which result from addition of the tetroxide to the 5,6-double bond of the uracil residue. Although capable of transesterification reactions, these heterocyclic esters are exceptionally stable toward exchange reactions in solution. No apparent exchange was observed after 1 month. This reaction thus seems promising for single-site osmium labeling in polynucleotides.

  8. Aluminum Phosphide Poisoning-Related Deaths in Tehran, Iran, 2006 to 2013

    PubMed Central

    Etemadi-Aleagha, Afshar; Akhgari, Maryam; Iravani, Fariba Sardari

    2015-01-01

    Abstract Metal phosphides such as aluminum phosphide are potent insecticides. This highly toxic substance is used for rice and other grains protection in Iran. Due to its high toxicity potential and easy availability, it is widely used as a suicide poison. This substance has no effective antidote and the incidence of deaths due to its poisoning is increasing day by day in Iran. The present study was conducted to show the increasing incidence of fatal aluminum phosphide poisoning and its toxicological and forensic aspects in an 8-year study, 2006 to 2013. Autopsy sheets were reviewed and cases with the history of aluminum phosphide poisoning were selected. Toxicological analysis results, demographic and necroscopic examination findings were studied. A total of 51.8% of studied cases were female. Most of the cases were between 10 and 40 years old. The manner of death was self-poisoning in 85% of cases. Morphine, ethanol, and amitriptyline were the most common additional drugs detected in toxicological analysis. The incidence of fatal aluminum phosphide poisoning cases referred for phosphine analysis was 5.22 and 37.02 per million of population of Tehran in 2006 and 2013, respectively. The results of this study showed that in spite of ban and restrictions, there was a dramatic increase in the incidence of fatal aluminum phosphide poisoning in Tehran from 2006 to 2013. Safety alert should be highlighted in training program for all population groups about the toxic effects of aluminum phosphide tablets. PMID:26402837

  9. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Zinc phosphide; tolerances for residues. 180.284 Section 180.284 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.284 Zinc phosphide; tolerances for...

  10. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Zinc phosphide; tolerances for residues. 180.284 Section 180.284 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.284 Zinc phosphide; tolerances for...

  11. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Zinc phosphide; tolerances for residues. 180.284 Section 180.284 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.284 Zinc phosphide; tolerances for...

  12. Bioimaging of isosteric osmium and ruthenium anticancer agents by LA-ICP-MS.

    PubMed

    Klose, Matthias H M; Theiner, Sarah; Kornauth, Christoph; Meier-Menches, Samuel M; Heffeter, Petra; Berger, Walter; Koellensperger, Gunda; Keppler, Bernhard K

    2018-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to study the spatial distribution of two metallodrugs with anticancer activities in vivo, namely the organoruthenium plecstatin-1 (1) and its isosteric osmium analogue (2), in liver, kidneys, muscles and tumours of treated mice bearing a CT-26 tumour after single-dose i.p. administration. To the best of our knowledge, this is the first time that the spatial distribution of an osmium drug candidate has been investigated using LA-ICP-MS in tissues. Independent measurements of the average ruthenium and osmium concentration via microwave digestion and ICP-MS in organs and tumours were in good agreement with the LA-ICP-MS results. Matrix-matched standards (MMS) ranging from 1 to 30 μg g -1 were prepared to quantify the spatial distributions of the metals and the average metal content of the MMS samples was additionally quantified by ICP-MS after microwave digestion. The recoveries for osmium and ruthenium in the MMS were 105% and 101% on average, respectively, validating the sample preparation procedure of the MMS. Preparation of MMS was carried out under an argon atmosphere to prevent oxidation of osmium-species to the volatile OsO 4 . The highest metal concentrations were found in the liver, followed by kidney, lung and tumour tissues, while muscles displayed only very low quantities of the respective metal. Both metallodrugs accumulated in the cortex of the kidneys more strongly compared to the medulla. Interestingly, osmium from 2 was largely located at the periphery and tissue edges, whereas ruthenium from 1 was observed to penetrate deeper into the organs and tumours.

  13. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination

    PubMed Central

    Chen, Cynthia; Sedwick, Peter N.; Sharma, Mukul

    2009-01-01

    Osmium is one of the rarer elements in seawater, with typical concentration of ≈10 × 10−15 g g−1 (5.3 × 10−14 mol kg−1). The osmium isotope composition (187Os/188Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (≈1.3) and mantle/cosmic dust (≈0.13). Here, we show that the 187Os/188Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (≈0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower 187Os/188Os ratio (≈0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts. PMID:19416862

  14. Anthropogenic osmium in rain and snow reveals global-scale atmospheric contamination.

    PubMed

    Chen, Cynthia; Sedwick, Peter N; Sharma, Mukul

    2009-05-12

    Osmium is one of the rarer elements in seawater, with typical concentration of approximately 10 x 10(-15) g g(-1) (5.3 x 10(-14) mol kg(-1)). The osmium isotope composition ((187)Os/(188)Os ratio) of deep oceans is 1.05, reflecting a balance between inputs from continental crust (approximately 1.3) and mantle/cosmic dust (approximately 0.13). Here, we show that the (187)Os/(188)Os ratios measured in rain and snow collected around the world range from 0.16 to 0.48, much lower than expected (>1), but similar to the isotope composition of ores (approximately 0.2) that are processed to extract platinum and other metals to be used primarily in automobile catalytic converters. Present-day surface seawater has a lower (187)Os/(188)Os ratio (approximately 0.95) than deep waters, suggesting that human activities have altered the isotope composition of the world's oceans and impacted the global geochemical cycle of osmium. The contamination of the surface ocean is particularly remarkable given that osmium has few industrial uses. The pollution may increase with growing demand for platinum-based catalysts.

  15. Rhenium-osmium-isotope constraints on the age of iron meteorites

    NASA Technical Reports Server (NTRS)

    Horan, M. F.; Morgan, J. W.; Walker, R. J.; Grossman, J. N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately +/-31 million years for meteorites about 4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of Re-187, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  16. Rhenium-osmium isotope constraints on the age of iron meteorites

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Walker, R.J.; Grossman, J.N.

    1992-01-01

    Rhenium and osmium concentrations and the osmium isotopic compositions of iron meteorites were determined by negative thermal ionization mass spectrometry. Data for the IIA iron meteorites define an isochron with an uncertainty of approximately ??31 million years for meteorites ???4500 million years old. Although an absolute rhenium-osmium closure age for this iron group cannot be as precisely constrained because of uncertainty in the decay constant of 187Re, an age of 4460 million years ago is the minimum permitted by combined uncertainties. These age constraints imply that the parent body of the IIAB magmatic irons melted and subsequently cooled within 100 million years after the formation of the oldest portions of chondrites. Other iron meteorites plot above the IIA isochron, indicating that the planetary bodies represented by these iron groups may have cooled significantly later than the parent body of the IIA irons.

  17. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  18. Synthesis and catalytic activity of the metastable phase of gold phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Deshani; Nigro, Toni A. E.; Dyer, I. D.

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au2P3 was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized with 1-dodecanethiol undergomore » digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au2P3 nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction.« less

  19. Mechanism of hydrodenitrogenation on phosphides and sulfides.

    PubMed

    Oyama, S Ted; Lee, Yong-Kul

    2005-02-17

    The mechanism of hydrodenitrogenation (HDN) of 2-methylpiperidine was studied over a silica-supported nickel phosphide catalyst (Ni2P/SiO2, Ni/P = 1/2) and a commercial Ni-Mo-S/Al2O3 catalyst in a three-phase trickle-bed reactor operated at 3.1 MPa and 450-600 K. Analysis of the product distribution as a function of contact time indicated that the reaction proceeded in both cases predominantly by a substitution mechanism, with a smaller contribution of an elimination mechanism. Fourier transform infrared spectroscopy (FTIR) of the 2-methylpiperidine indicated that at reaction conditions a piperidinium ion intermediate was formed on both the sulfide and the phosphide. It is concluded that the mechanism of HDN on nickel phosphide is very similar to that on sulfides. The mechanism on the nickel phosphide was also probed by comparing the reactivity of piperidine and several of its derivatives in the presence of 3000 ppm S. The relative elimination rates depended on the structure of the molecules, and followed the sequence: 4-methylpiperidine approximately piperidine > 3-methylpiperidine > 2,6-dimethylpiperidine > 2-methylpiperidine. [Chemical structure: see text] This order of reactivity was not dependent on the number of alpha-H or beta-H atoms in the molecules, ruling out their reaction through a single, simple mechanism. It is likely that the unhindered piperidine molecules reacted by an S(N)2 substitution process and the more hindered 2,6-dimethylpiperidine reacted by an E2 elimination process.

  20. One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalysts in Acidic and Alkaline Medium.

    PubMed

    Sumboja, Afriyanti; An, Tao; Goh, Hai Yang; Lübke, Mechthild; Howard, Dougal Peter; Xu, Yijie; Handoko, Albertus Denny; Zong, Yun; Liu, Zhaolin

    2018-05-09

    Catalysts for hydrogen evolution reaction are in demand to realize the efficient conversion of hydrogen via water electrolysis. In this work, cobalt phosphides were prepared using a one-step, scalable, and direct gas-solid phosphidation of commercially available cobalt salts. It was found that the effectiveness of the phosphidation reaction was closely related to the state of cobalt precursors at the reaction temperature. For instance, a high yield of cobalt phosphides obtained from the phosphidation of cobalt(II) acetate was related to the good stability of cobalt salt at the phosphidation temperature. On the other hand, easily oxidizable salts (e.g., cobalt(II) acetylacetonate) tended to produce a low amount of cobalt phosphides and a large content of metallic cobalt. The as-synthesized cobalt phosphides were in nanostructures with large catalytic surface areas. The catalyst prepared from phosphidation of cobalt(II) acetate exhibited an improved catalytic activity as compared to its counterpart derived from phosphidation of cobalt(II) acetylacetonate, showing an overpotential of 160 and 175 mV in acidic and alkaline electrolytes, respectively. Both catalysts also displayed an enhanced long-term stability, especially in the alkaline electrolyte. This study illustrates the direct phosphidation behavior of cobalt salts, which serve as a good vantage point in realizing the large-scale synthesis of transition-metal phosphides for high-performance electrocatalysts.

  1. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  2. Intentional fatal metallic phosphide poisoning in a dog--a case report.

    PubMed

    Nagy, Andras-Laszlo; Bolfa, Pompei; Mihaiu, Marian; Catoi, Cornel; Oros, Adrian; Taulescu, Marian; Tabaran, Flaviu

    2015-07-23

    Metallic phosphides are extremely toxic pesticides that are regulated in their usage. Information concerning the impact of metallic phosphides on human health is abundant. Data regarding the clinical pathology of phosphide poisoning in humans or domestic and wild animals is largely incomplete with only a few cases of metallic phosphide poisoning being reported every year, especially in humans. For the majority of cases reported in dogs the data are vague or incomplete. Here we report a complete and detailed description of pathological changes in a case of intentional metallic phosphide poisoning in a dog including an exhaustive examination of the brain. A 1 year old, male, Belgian Shepherd crossbreed dog with a clean medical history and no observed clinical signs prior to death, was submitted for post mortem examination. The dog was found dead by the owner. Near the body a suspect mix of bread, fat and a blackish powder was found. The owner announced the authorities and submitted the animal and the possible bait for forensic examination. At necropsy, multisystemic necrotic and degenerative lesions were observed. Histological exam confirmed the presence of necrotic and degenerative lesions of variable severity in all of the examined organs. The toxicological forensic examination revealed the presence of the phosphine gas in the gastric content and the bait. Metallic phosphide poisoning is a rarely reported entity, since the diagnosis of intentional poisoning with these compounds is a great challenge for forensic pathologists and toxicologists. To our knowledge, this is the first study describing the lesions completely in veterinary forensic toxicology. We assume that the toxic shows systemic endotheliotropism and damage of the endothelial cells responsible for the hemorrhagic lesions and for the secondary ischemic necrosis in various organs. This report will contribute to a better understanding of the pathogenesis in cases of acute metallic phosphide exposure in

  3. Responses of Siberian ferrets to secondary zinc phosphide poisoning

    USGS Publications Warehouse

    Hill, E.F.; Carpenter, J.W.

    1982-01-01

    The hazard of operational-type applications of zinc phosphide (Zn3P2) on a species closely related to the black-footed ferret (Mustela nigripes), was evaluated by feeding 16 Siberian ferrets (M. eversmanni) rats that had been killed by consumption of 2% zinc phosphide treated bait or by an oral dose of 40, 80, or 160 mg of Zn3P2. All ferrets accepted rats and a single emesis by each of 3 ferrets was the only evidence of acute intoxication. All ferrets learned to avoid eating gastrointestinal tracts of the rats. Subacute zinc phosphide toxicity in the ferrets was indicated by significant decreases (18-48%) in hemoglobin, increases of 35-91 % in serum iron, and elevated levels of serum globulin, cholesterol, and triglycerides. Hemoglobin/iron, urea nitrogen/creatinine, and albumin/globulin ratios also were altered by the treatments. This study demonstrated that Siberian ferrets, or other species with a sensitive emetic reflex, are afforded a degree of protection from acute zinc phosphide poisoning due to its emetic action. The importance of toxicity associated with possible respiratory, liver, and kidney damage indicated by altered blood chemistries is not known.

  4. Himalayan uplift and osmium isotopes in oceans and rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.; Wasserburg, G.J.; Hofmann, A.W.

    1999-12-01

    Previous studies have shown that {sup 187}Os/{sup 188}Os in seawater has become increasingly radiogenic over the last 409 Ma in a manner analogous to strontium. This rapid rise in the marine {sup 187}Os/{sup 188}Os over the last 17 Ma has been attributed to an increase in the bulk silicate weathering rates resulting from the rise of the Himalayas and/or selective weathering and erosion of highly radiogenic organic rich ancient sediments. The key test of this hypothesis is the {sup 187}Os/{sup 188}Os and the total osmium concentration of the Himalayan rivers. The authors report the concentration and isotopic composition of osmiummore » in the Ganges, the Brahmaputra, and the Indus rivers. The {sup 187}Os/{sup 188}Os of the Ganges close to its source (at Kaudiyal) is 2.65 and [Os] = 45 fM/kg. A second sample of the lower reaches of the Ganges at Patna gives {sup 187}Os/{sup 188}Os = 1.59 and [Os] = 171 fM/kg. The {sup 187}Os/{sup 188}Os of the Brahmaputra at Guwahati is 1.07 and [Os] = 52 fM/kg. A sample of the Indus (Besham) has a {sup 187}Os/{sup 188}Os of 1.2 and [Os] = 59 fM/kg. The authors infer that the Himalayas do not provide either a high flow of osmium of a highly radiogenic osmium component to the oceans. The overall trend for osmium and strontium could be explained by a regularly increasing input of global continental weathering sources but the Himalayas themselves appear not to be the dominant source.« less

  5. Osmium isotope constraints on Earth's late accretionary history

    USGS Publications Warehouse

    Morgan, J.W.

    1985-01-01

    Osmium isotope measurements reported by Alle??gre and Luck 1,2 indicate that terrestrial osmiridiums evolved in a mantle source region in which the osmium/rhenium ratio falls strictly within the range found in chondrites. This suggests that the highly siderophile elements in the Earth's mantle were introduced by a late influx of chondritic material and are not a result of endogenous processes. I have now examined the available data in more detail and conclude that the inferred Os/Re ratio of the Earth's mantle matches the E group and C3 chondrites, but that C1 and probably C2 chondrites were not major components of the material accreted in the late stages of mantle formation. ?? 1985 Nature Publishing Group.

  6. Optimal design study of high efficiency indium phosphide space solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Recently indium phosphide solar cells have achieved beginning of life AMO efficiencies in excess of 19 pct. at 25 C. The high efficiency prospects along with superb radiation tolerance make indium phosphide a leading material for space power requirements. To achieve cost effectiveness, practical cell efficiencies have to be raised to near theoretical limits and thin film indium phosphide cells need to be developed. The optimal design study is described of high efficiency indium phosphide solar cells for space power applications using the PC-1D computer program. It is shown that cells with efficiencies over 22 pct. AMO at 25 C could be fabricated by achieving proper material and process parameters. It is observed that further improvements in cell material and process parameters could lead to experimental cell efficiencies near theoretical limits. The effect of various emitter and base parameters on cell performance was studied.

  7. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, Jr., Furn F.; Butler, Thomas A.; Brihaye, Claude

    1987-01-01

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline.

  8. Thin boron phosphide coating as a corrosion-resistant layer

    DOEpatents

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  9. Osmium Tag for Posttranscriptionally Modified RNA.

    PubMed

    Debnath, Turja Kanti; Okamoto, Akimitsu

    2018-05-25

    Nucleotide modifications of cellular RNA are highly abundant and diverse, but their origin and functions have not yet been investigated. 5-Methylcytidine (m5C) and 5-methyluridine (m5U) are highly abundant posttranscriptionally modified nucleotides observed in various natural RNAs. Such nucleotides have been labeled through a chemical approach as both undergo oxidation at the C5-C6 double bond, leading to the formation of osmium-bipyridine complexes, which are identified by mass spectrometry. This osmium tag made it possible to distinguished m5C and m5U from their isomers 2'-O-methylcytidine and 2'-O-methyluridine, respectively. Queuosine and 2-methylthio-N6-isopentenyladenosine in tRNA were also tagged through this complex formation--this is the first time that this has ever been achieved. Osmylation has emerged as a structure-selective reaction and largely governed by the environment of the target site (the steric and higher order structure), therefore it could be helpful for studying the structure and dynamics of RNA-protein interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Osmium-191/iridium-191m radionuclide

    DOEpatents

    Knapp, F.F. Jr.; Butler, T.A.; Brihaye, C.

    1985-08-26

    A generator system to provide iridium-191m for clinical imaging applications comprises an activated carbon adsorbent loaded with a compound containing the parent nuclide, osmium-191. The generator, which has a shelf-life in excess of two weeks and does not require a scavenger column, can be eluted with physiologically compatible saline. 4 figs. 3 tabs.

  11. A new superhard material: Osmium diboride OsB 2

    NASA Astrophysics Data System (ADS)

    Hebbache, M.; Stuparević, L.; Živković, D.

    2006-08-01

    Superhard materials have many industrial applications, wherever resistance to abrasion and wear are important. The synthesis of new superhard materials is one of the great challenges to scientists. We re-examined the phase diagram of the binary osmium-boron system and confirmed the existence of two hexagonal phases, OsB 1.1, Os 2B 3, and an orthorhombic phase, OsB 2. Almost nothing is known about the physical properties of osmium borides. Microhardness measurements show that OsB 2 is extremely hard. Ab initio calculations show that this is due to formation of covalent bonds between boron atoms. OsB 2 is also a low compressibility material. It can be used as hard coating.

  12. New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale

    USGS Publications Warehouse

    Lichte, F.E.; Wilson, S.M.; Brooks, R.R.; Reeves, R.D.; Holzbecher, J.; Ryan, D.E.

    1986-01-01

    The determination of osmium content and isotopic abundances in geological materials has received increasing attention in recent years following the proposal of Alvarez et al.1 that mass extinctions at the end of the Cretaceous period were caused by the impact of a large (???10km) meteorite which left anomalously high iridium levels as a geochemical signature in the boundary shales. Here we report a new and simple method for measuring osmium in geological materials, involving fusion of the sample with sodium peroxide, distillation of the osmium as the tetroxide using perchloric acid, extraction into chloroform, and absorption of the chloroform extract onto graphite powder before instrumental neutron activation analysis. In a variant of this technique, the chloroform extract is back-extracted into an aqueous phase and the osmium isotopes are determined by plasma-source mass spectrometry (ICPMS). We have used this method on the Woodside Creek (New Zealand) Cretaceous/Tertiary boundary clay and have obtained the first osmium content (6g ng g-1) for this material. The 187Os/186Os ratio is 1.12??0.16, showing a typical non-crustal signature. This combined distillation-extraction- ICPMS method will prove to be useful for measuring osmium isotopes in other geological materials. ?? 1986 Nature Publishing Group.

  13. Gallium phosphide nanowires as a substrate for cultured neurons.

    PubMed

    Hällström, Waldemar; Mårtensson, Thomas; Prinz, Christelle; Gustavsson, Per; Montelius, Lars; Samuelson, Lars; Kanje, Martin

    2007-10-01

    Dissociated sensory neurons were cultured on epitaxial gallium phosphide (GaP) nanowires grown vertically from a gallium phosphide surface. Substrates covered by 2.5 microm long, 50 nm wide nanowires supported cell adhesion and axonal outgrowth. Cell survival was better on nanowire substrates than on planar control substrates. The cells interacted closely with the nanostructures, and cells penetrated by hundreds of wires were observed as well as wire bending due to forces exerted by the cells.

  14. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  15. Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.

    PubMed

    Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom

    2017-10-01

    Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Indium phosphide nanowires and their applications in optoelectronic devices

    PubMed Central

    Zafar, Fateen

    2016-01-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II–VI and I–VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III–V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core–shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed. PMID:27118920

  17. Indium phosphide nanowires and their applications in optoelectronic devices.

    PubMed

    Zafar, Fateen; Iqbal, Azhar

    2016-03-01

    Group IIIA phosphide nanocrystalline semiconductors are of great interest among the important inorganic materials because of their large direct band gaps and fundamental physical properties. Their physical properties are exploited for various potential applications in high-speed digital circuits, microwave and optoelectronic devices. Compared to II-VI and I-VII semiconductors, the IIIA phosphides have a high degree of covalent bonding, a less ionic character and larger exciton diameters. In the present review, the work done on synthesis of III-V indium phosphide (InP) nanowires (NWs) using vapour- and solution-phase approaches has been discussed. Doping and core-shell structure formation of InP NWs and their sensitization using higher band gap semiconductor quantum dots is also reported. In the later section of this review, InP NW-polymer hybrid material is highlighted in view of its application as photodiodes. Lastly, a summary and several different perspectives on the use of InP NWs are discussed.

  18. Synthesis and catalytic activity of the metastable phase of gold phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Deshani; Nigro, Toni A.E.; Dyer, I.D.

    Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized withmore » 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen

  19. η2-SO2 Linkage Photoisomer of an Osmium Coordination Complex.

    PubMed

    Cole, Jacqueline M; Velazquez-Garcia, Jose de J; Gosztola, David J; Wang, SuYin Grass; Chen, Yu-Sheng

    2018-03-05

    We report the discovery of an η 2 -SO 2 linkage photoisomer in the osmium pentaammine coordination complex, [Os(NH 3 ) 5 (SO 2 )][Os(NH 3 ) 5 (HSO 3 )]Cl 4 (1). Its dark- and light-induced crystal structures are determined via synchrotron X-ray crystallography, at 100 K, where the photoinduced state is metastable in a single crystal that has been stimulated by 505 nm light for 2.5 h. The SO 2 photoisomer in the [Os(NH 3 ) 5 (SO 2 )] 2+ cation contrasts starkly with the photoinactivity of the HSO 3 ligand in its companion [Os(NH 3 ) 5 (HSO 3 )] + cation within the crystallographic asymmetric unit of this single crystal. Panchromatic optical absorption characteristics of this single crystal are revealed in both dark- and light-induced states, using concerted absorption spectroscopy and optical microscopy. Its absorption halves across most of its visible spectrum, upon exposure to 505 nm light. The SO 2 ligand seems to be responsible for this photoinduced bleaching effect, judging from a comparison of the dark- and light-induced crystal structures of 1. The SO 2 photoisomerism is found to be thermally reversible, and so 1 presents a rare example of an osmium-based solid-state optical switch. Such switching in an osmium complex is significant because bottom-row transition metals stand to offer linkage photoisomerism with the greatest photoconversion levels and thermal stability. The demonstration of η 2 -SO 2 bonding in this complex also represents a fundamental contribution to osmium coordination chemistry.

  20. Method of synthesizing bulk transition metal carbide, nitride and phosphide catalysts

    DOEpatents

    Choi, Jae Soon; Armstrong, Beth L; Schwartz, Viviane

    2015-04-21

    A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.

  1. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowker, Richard H.; Smith, Mica C.; Pease, Melissa

    2011-07-01

    Ru2P/SiO2 and RuP/SiO2 catalysts were prepared by the temperature-programmed reduction (TPR) of uncalcined precursors containing hypophosphite ion (H2PO2-) as the phosphorus source. The Ru2P/SiO2 and RuP/SiO2 catalysts had small average particle sizes (~4 nm) and high CO chemisorption capacities (90-110 umol/g). The Ru phosphide catalysts exhibited similar or higher furan (C4H4O) hydrodeoxygenation (HDO) activities than did a Ru/SiO2 catalyst, and the phosphide catalysts favored C4 hydrocarbon products while the Ru metal catalyst produced primarily C3 hydrocarbons.

  2. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Yagya N.; Roy, Asa; King, Laurie A.

    Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less

  3. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability

    DOE PAGES

    Regmi, Yagya N.; Roy, Asa; King, Laurie A.; ...

    2017-10-19

    Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less

  4. Structure-Activity Relationships for Pt-Free Metal Phosphide Hydrogen Evolution Electrocatalysts.

    PubMed

    Owens-Baird, Bryan; Kolen'ko, Yury V; Kovnir, Kirill

    2018-05-23

    In the field of renewable energy, the splitting of water into hydrogen and oxygen fuel gases using water electrolysis is a prominent topic. Traditionally, these catalytic processes have been performed by platinum-group metal catalysts, which are effective at promoting water electrolysis but expensive and rare. The search for an inexpensive and Earth-abundant catalyst has led to the development of 3d-transition-metal phosphides for the hydrogen evolution reaction. These catalysts have shown excellent activity and stability. In this review, we discuss the electronic and crystal structures of bulk and surface of selected Fe, Co, and Ni phosphides, and their relationships to the experimental catalytic activity. The various synthetic protocols towards the state-of-the-art transition metal phosphide electrocatalysts are also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides.

    PubMed

    Guo, Lijuan; Zhao, Yu; Yao, Zhiwei

    2016-01-21

    This study presents a new type of precursor, mechanical mixtures of metal oxides (MOs) and phosphorus pentoxide (P2O5) are used to synthesize Ni2P, Co2P and MoP phosphides by the H2 reduction method. In addition, this is first report of common solid-state P2O5 being used as a P source for the synthesis of metal phosphides. The traditional precursors are usually prepared via a complicated preparation procedure involving dissolution, drying and calcination steps. However, these novel MOs/P2O5 precursors can be obtained only by simple mechanical mixing of the starting materials. Furthermore, unlike the direct transformation from amorphous phases to phosphides, various specific intermediates were involved in the transformation from MOs/P2O5 to phosphides. It is worthy to note that the dispersions of Ni2P, Co2P and MoP obtained from MOs/P2O5 precursors were superior to those of the corresponding phosphides prepared from the abovementioned traditional precursors. It is suggested that the morphology of the as-prepared metal phosphides might be inherited from the corresponding MOs. Based on the results of XRD, XPS, SEM and TEM, the formation pathway of phosphides can be defined as MOs/P2O5 precursors → complex intermediates (metals, metal phosphates and metal oxide-phosphates) → metal phosphides.

  6. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    NASA Astrophysics Data System (ADS)

    Yamaura, Kazunari

    2016-04-01

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO3, LiOsO3, and Na2OsO4, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal-insulator transition in NaOsO3, a ferroelectric-like transition in LiOsO3, and high-temperature ferrimagnetism driven by a local structural distortion in Ca2FeOsO6 may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices.

  7. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.

    PubMed

    Chen, Ying-Chu; Chen, Zhong-Bo; Hsu, Yu-Kuei

    2018-08-01

    A Copper phosphide (Cu 3 P) micro-rod (MR) array, with coverage by an n-Cu 2 O thin layer by electrodeposition as a photocathode, has been directly fabricated on copper foil via simple electro-oxidation and phosphidation for photoelectrochemical (PEC) hydrogen production. The morphology, structure, and composition of the Cu 3 P/Cu 2 O heterostructure are systematically analyzed using a scanning electron microscope (SEM), X-ray diffraction and X-ray photoelectron spectra. The PEC measurements corroborate that the p-Cu 3 P/n-Cu 2 O heterostructural photocathode illustrates efficient charge separation and low charge transfer resistance to achieve the highest photocurrent of 430 μA cm -2 that is greater than other transition metal phosphide materials. In addition, a detailed energy diagram of the p-Cu 3 P/n-Cu 2 O heterostructure was investigated using Mott-Schottky analysis. Our study paves the way to explore phosphide-based materials in a new class for solar energy applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; DiNetta, Louis C.; DuganCavanagh, K.; Goetz, M. A.

    1996-01-01

    Betavoltaic power supplies based on gallium phosphide can supply long term low-level power with high reliability. Results are presented for GaP devices powered by Ni-63 and tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/cm(exp 2) have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. A small demonstration system has been assembled that generates and stores enough electricity to light up an LED.

  9. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  10. Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides

    DOE PAGES

    Yu, Zhiquan; Wang, Anjie; Liu, Shan; ...

    2018-05-07

    SiO 2, HZSM-5 and Al 2O 3 were used to support nickel phosphides to prepare hydrodeoxygenation (HDO) catalysts. The nickel loading was kept at 20 wt% while the Ni/P molar ratio was varied among 3, 2, and 1 in the preparation by incipient wetness impregnation. XRD characterization revealed that Ni 3P, Ni 12P 5, and Ni 2P as the major crystal phases were obtained at Ni/P ratio of 3, 2, and 1, respectively, on SiO 2 and HZSM-5. When Al 2O 3 was used as the support, nickel metal rather than nickel phosphides was generated. Among SiO 2-supported nickel phosphides,more » Ni 3P exhibited highest hydrogenation activity and catalytic performance in phenol HDO. Ni 3P/HZSM-5 showed the high catalytic performance in HDO of phenol as well as catechol and o-cresol, with Ni 3P as the hydrogenation site and the acid sites in HZSM-5 zeolite as the dehydration site. In conclusion, the strong acidity in HZSM-5 also facilitated the isomerization of cycloalkanes at elevated temperatures.« less

  11. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  12. Use of continuous renal replacement therapy in acute aluminum phosphide poisoning: a novel therapy.

    PubMed

    Nasa, Prashant; Gupta, Ankur; Mangal, Kishore; Nagrani, S K; Raina, Sanjay; Yadav, Rohit

    2013-09-01

    Aluminum phosphide is most common cause of poisoning in northern India. There is no specific antidote available and management of such cases is mainly supportive with high mortality. We present two cases of severe acute aluminium phosphide poisoning where continuous renal replacement therapy (CRRT) was started early along with other resuscitative measures and both the patients survived.

  13. A case of accidental fatal aluminum phosphide poisoning involving humans and dogs.

    PubMed

    Behera, Chittaranjan; Krishna, Karthik; Bhardwaj, Daya Nand; Rautji, Ravi; Kumar, Arvind

    2015-05-01

    Aluminum phosphide is one of the commonest poisons encountered in agricultural areas, and manner of death in the victims is often suicidal and rarely homicidal or accidental. This paper presents an unusual case, where two humans (owner and housemaid) and eight dogs were found dead in the morning hours inside a room of a house, used as shelter for stray dogs. There was allegation by the son of the owner that his father had been killed. Crime scene visit by forensic pathologists helped to collect vital evidence. Autopsies of both the human victims and the dogs were conducted. Toxicological analysis of viscera, vomitus, leftover food, and chemical container at the crime scene tested positive for aluminum phosphide. The cause of death in both humans and dogs was aluminum phosphide poisoning. Investigation by police and the forensic approach to the case helped in ascertaining the manner of death, which was accidental. © 2015 American Academy of Forensic Sciences.

  14. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  15. Scalable and Tunable Carbide-Phosphide Composite Catalyst System for the Thermochemical Conversion of Biomass

    DOE PAGES

    Regmi, Yagya; Rogers, Bridget; Labbe, Nicole; ...

    2017-07-13

    We have prepared composite materials of hexagonal nickel phosphide and molybdenum carbide (Mo2C) utilizing a simple and scalable two-stage synthesis method comprised of carbothermic reduction followed by hydrothermal incubation. We observe the monophasic hexagonal phosphide Ni2P in the composite at low phosphide-to-carbide (P:C) ratios. Upon increasing the proportion of P:C, the carbide surface becomes saturated, and we detect the emergence of a second hexagonal nickel phosphide phase (Ni5P4) upon annealing. We demonstrate that vapor-phase upgrading (VPU) of whole biomass via catalytic fast pyrolysis is achievable using the composite material as a catalyst, and we monitor the resulting product slates usingmore » pyrolysis gas chromatography/mass spectrometry. Our analysis of the product vapors indicates that variation of the P:C molar ratio in the composite material affords product slates of varying complexity and composition, which is indicated by the number of products and their relative proportions in the product slate. Our results demonstrate that targeted vapor product composition can be obtained, which can potentially be utilized to tune the composition of the bio-oil downstream.« less

  16. Development of gallium aluminum phosphide electroluminescent diodes

    NASA Technical Reports Server (NTRS)

    Chicotka, R. J.; Lorenz, M. R.; Nethercot, A. H.; Pettit, G. D.

    1972-01-01

    Work done on the development of gallium aluminum phosphide alloys for electroluminescent light sources is described. The preparation of this wide band gap semiconductor alloy, its physical properties (particularly the band structure, the electrical characteristics, and the light emitting properties) and work done on the fabrication of diode structures from these alloys are broadly covered.

  17. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  18. A Facile Molecular Precursor Route to Metal Phosphide Nanoparticles and Their Evaluation as Hydrodeoxygenation Catalysts

    DOE PAGES

    Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; ...

    2015-11-05

    Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni 2P, Rh 2P, and Pd 3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni 2P NPs was shownmore » to proceed through an amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H 2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H 2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H 2 incorporation in the presence of all of the catalysts except NP-Pd 3P, which exhibited minimal productive activity, and IW-Ni, which evolved H 2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of surface ligands. Most importantly, the NP-Ni 2P catalyst exhibited H 2 activation

  19. Photoelectrochemical cell having photoanode with thin boron phosphide coating as a corrosion resistant layer

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1984-01-01

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anitcorrosive, and providing it with unexpectedly improved photoresponsive properties.

  20. Rhenium-osmium concentration and isotope systematics in group IIAB iron meteorites

    USGS Publications Warehouse

    Morgan, J.W.; Horan, M.F.; Walker, R.J.; Grossman, J.N.

    1995-01-01

    Rhenium and osmium abundances, and osmium isotopic compositions were measured by negative thermal ionization mass spectrometry in thirty samples, including replicates, of five IIA and eight IIB iron meteorites. Log plots of Os vs. Re abundances for IIA and IIB irons describe straight lines that approximately converge on Lombard, which has the lowest Re and Os abundances and highest 187Re/188Os measured in a IIA iron to date. The linear IIA trend may be exactly reproduced by fractional crystallization, but is not well fitted using variable partition coefficients. The IIB iron trend, however, cannot be entirely explained by simple fractional crystallization. One explanation is that small amounts of Re and Os were added to the asteroid core during the final stages of crystallization. Another possibility is that diffusional enrichment of Os may have occurred in samples most depleted in Re and Os. -from Authors

  1. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Corbea, Javier Jesus Concepcion; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2013-09-03

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  2. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    DOEpatents

    Concepcion Corbea, Javier Jesus; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L; Hoertz, Paul; Meyer, Thomas J

    2014-10-28

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  3. Rhenium-osmium evidence for regional mineralization in southwestern north america.

    PubMed

    McCandless, T E; Ruiz, J

    1993-09-03

    More than 40 base metal porphyry ore deposits in southwestern North America are associated with the Laramide orogeny (about 90 million to 50 million years ago). Rhenium-osmium dates on molybdenite, a rhenium-enriched sulfide common in many of the deposits, reveal that in individual deposits mineralization occurs near the final stages of magmatic activity irrespective of the time of inception, magnitude, or duration of magmatism. Deposits that differ widely in location and in the extent and timing of magmatism have nearly identical ages for mineralization. Rhenium-osmium-ages suggest that mineralization occurred during two distinct intervals from about 74 million to 70 million years ago and from 60 million to 55 million years ago. Most deposits that formed in the oldest interval are within the older Precambrian basement of northwestern Arizona, whereas the younger deposits are restricted to the younger Precambrian basement in southern Arizona and northern Mexico. Synchronous, widespread mineralization indicates that similar crust-mantle interaction occurred on a regional scale for ore deposits once thought to be the product of localized processes.

  4. New phases of osmium carbide from evolutionary algorithm and ab initio computations

    NASA Astrophysics Data System (ADS)

    Fadda, Alessandro; Fadda, Giuseppe

    2017-09-01

    New crystal phases of osmium carbide are presented in this work. These results were found with the CA code, an evolutionary algorithm (EA) presented in a previous paper which takes full advantage of crystal symmetry by using an ad hoc search space and genetic operators. The new OsC2 and Os2C structures have a lower enthalpy than any known so far. Moreover, the layered pattern of OsC2 serves as a blueprint for building new crystals by adding or removing layers of carbon and/or osmium and generating many other Os  +  C structures like Os2C, OsC, OsC2 and OsC4. These again have a lower enthalpy than all the investigated structures, including those of the present work. The mechanical, vibrational and electronic properties are discussed as well.

  5. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    PubMed

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  6. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function.

    PubMed

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N

    2013-07-19

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  7. Ingestion of gallium phosphide nanowires has no adverse effect on Drosophila tissue function

    NASA Astrophysics Data System (ADS)

    Adolfsson, Karl; Schneider, Martina; Hammarin, Greger; Häcker, Udo; Prinz, Christelle N.

    2013-07-01

    Engineered nanoparticles have been under increasing scrutiny in recent years. High aspect ratio nanoparticles such as carbon nanotubes and nanowires have raised safety concerns due to their geometrical similarity to asbestos fibers. III-V epitaxial semiconductor nanowires are expected to be utilized in devices such as LEDs and solar cells and will thus be available to the public. In addition, clean-room staff fabricating and characterizing the nanowires are at risk of exposure, emphasizing the importance of investigating their possible toxicity. Here we investigated the effects of gallium phosphide nanowires on the fruit fly Drosophila melanogaster. Drosophila larvae and/or adults were exposed to gallium phosphide nanowires by ingestion with food. The toxicity and tissue interaction of the nanowires was evaluated by investigating tissue distribution, activation of immune response, genome-wide gene expression, life span, fecundity and somatic mutation rates. Our results show that gallium phosphide nanowires applied through the diet are not taken up into Drosophila tissues, do not elicit a measurable immune response or changes in genome-wide gene expression and do not significantly affect life span or somatic mutation rate.

  8. Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites

    PubMed

    Parkinson; Hawkesworth; Cohen

    1998-09-25

    Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.

  9. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.

    PubMed

    Yuan, Yong; Shin, Hyosul; Kang, Chan; Kim, Sunghyun

    2016-04-01

    An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Orientation of Zn3P2 films via phosphidation of Zn precursors

    NASA Astrophysics Data System (ADS)

    Katsube, Ryoji; Nose, Yoshitaro

    2017-02-01

    Orientation of solar absorber is an important factor to achieve high efficiency of thin film solar cells. In the case of Zn3P2 which is a promising absorber of low-cost and high-efficiency solar cells, (110)/(001) orientation was only reported in previous studies. We have successfully prepared (101)-oriented Zn3P2 films by phosphidation of (0001)-oriented Zn films at 350 °C. The phosphidation mechanism of Zn is discussed through STEM observations on the partially-reacted sample and the consideration of the relationship between the crystal structures of Zn and Zn3P2 . We revealed that (0001)-oriented Zn led to nucleation of (101)-oriented Zn3P2 due to the similarity in atomic arrangement between Zn and Zn3P2 . The electrical resistivity of the (101)-oriented Zn3P2 film was lower than those of (110)/(001)-oriented films, which is an advantage of the phosphidation technique to the growth processes in previous works. The results in this study demonstrated that well-conductive Zn3P2 films could be obtained by controlling orientations of crystal grains, and provide a guiding principle for microstructure control in absorber materials.

  11. Clinical characteristics of zinc phosphide poisoning in Thailand.

    PubMed

    Trakulsrichai, Satariya; Kosanyawat, Natcha; Atiksawedparit, Pongsakorn; Sriapha, Charuwan; Tongpoo, Achara; Udomsubpayakul, Umaporn; Rittilert, Panee; Wananukul, Winai

    2017-01-01

    The objectives of this study were to describe the clinical characteristics and outcomes of poisoning by zinc phosphide, a common rodenticide in Thailand, and to evaluate whether these outcomes can be prognosticated by the clinical presentation. A 3-year retrospective cohort study was performed using data from the Ramathibodi Poison Center Toxic Exposure Surveillance System. In total, 455 poisonings were identified. Most were males (60.5%) and from the central region of Thailand (71.0%). The mean age was 39.91±19.15 years. The most common route of exposure was oral (99.3%). Most patients showed normal vital signs, oxygen saturation, and consciousness at the first presentation. The three most common clinical presentations were gastrointestinal (GI; 68.8%), cardiovascular (22.0%), and respiratory (13.8%) signs and symptoms. Most patients had normal blood chemistry laboratory results and chest X-ray findings at presentation. The median hospital stay was 2 days, and the mortality rate was 7%. Approximately 70% of patients underwent GI decontamination, including gastric lavage and a single dose of activated charcoal. In all, 31 patients were intubated and required ventilator support. Inotropic drugs were given to 4.2% of patients. Four moribund patients also received hyperinsulinemia-euglycemia therapy and intravenous hydrocortisone; however, all died. Patients who survived and died showed significant differences in age, duration from taking zinc phosphide to hospital presentation, abnormal vital signs at presentation (tachycardia, low blood pressure, and tachypnea), acidosis, hypernatremia, hyperkalemia, in-hospital acute kidney injury, in-hospital hypoglycemia, endotracheal tube intubation, and inotropic requirement during hospitalization ( P <0.05). Zinc phosphide poisoning causes fatalities. Most patients have mild symptoms, and GI symptoms are the most common. Patients who present with abnormal vital signs or electrolytes might have more severe poisoning and should

  12. Recent developments in indium phosphide space solar cell research

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Weinberg, Irving

    1987-01-01

    Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n+p and p+n configurations with total area efficiencies of 17.9 and 15.9% (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AMO efficiency of 20.5% was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 the the 16th power/cu cm respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n+p cells are more radiation resistant at higher fluences than the p+n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.

  13. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass.

    PubMed

    Emmer, Hal; Chen, Christopher T; Saive, Rebecca; Friedrich, Dennis; Horie, Yu; Arbabi, Amir; Faraon, Andrei; Atwater, Harry A

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnesses below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17  cm -3 that exhibited mobilities as high as 16 cm 2 V -1 s -1 . Due to their unique optical properties, these films hold much promise for use in advanced optical devices.

  14. Metal phosphide catalysts and methods for making the same and uses thereof

    DOEpatents

    Habas, Susan Ellen; Wang, Jun; Ruddy, Daniel A.; Baddour, Frederick Raymond Gabriel; Schaidle, Joshua

    2017-05-02

    The present disclosure relates to a method that includes heating a mixture that includes a metal phenylphosphine-containing precursor that includes at least one of Mo(PPh.sub.3).sub.2(CO).sub.4, Pd(PPh.sub.3).sub.4, Ru(PPh.sub.3).sub.3Cl.sub.2, Ru(PPh.sub.3).sub.2(CO).sub.2Cl.sub.2, Co(PPh.sub.3)(CO).sub.2(NO), and/or Rh(PPh.sub.3).sub.2(CO)Cl, a surfactant, and a solvent. The heating is to a target temperature to form a heated mixture containing a metal phosphide nanoparticle that includes at least one of MoP, Ru.sub.2P, Co.sub.2P, Rh.sub.2P, and/or Pd.sub.3P, and the metal phosphide nanoparticle is not hollow.

  15. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    DOE PAGES

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca; ...

    2017-07-05

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  16. Fabrication of Single Crystal Gallium Phosphide Thin Films on Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmer, Hal; Chen, Christopher T.; Saive, Rebecca

    Due to its high refractive index and low absorption coefficient, gallium phosphide is an ideal material for photonic structures targeted at the visible wavelengths. However, these properties are only realized with high quality epitaxial growth, which limits substrate choice and thus possible photonic applications. In this work, we report the fabrication of single crystal gallium phosphide thin films on transparent glass substrates via transfer bonding. GaP thin films on Si (001) and (112) grown by MOCVD are bonded to glass, and then the growth substrate is removed with a XeF 2 vapor etch. The resulting GaP films have surface roughnessesmore » below 1 nm RMS and exhibit room temperature band edge photoluminescence. Magnesium doping yielded p-type films with a carrier density of 1.6 × 10 17 cm -3 that exhibited mobilities as high as 16 cm 2V -1s -1. Therefore, due to their unique optical properties, these films hold much promise for use in advanced optical devices.« less

  17. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.

    PubMed

    Yang, Yongxing; Ochoa-Hernández, Cristina; de la Peña O'Shea, Víctor A; Pizarro, Patricia; Coronado, Juan M; Serrano, David P

    2015-09-01

    A series of catalysts constituted by nanoparticles of transition metal (M = Fe, Co, Ni and Mo) phosphides (TMP) dispersed on SBA-15 were synthesized by reduction of the corresponding metal phosphate precursors previously impregnated on the mesostructured support. All the samples contained a metal-loading of 20 wt% and with an initial M/P mole ratio of 1, and they were characterized by X-ray diffraction (XRD), N2 sorption, H2-TPR and transmission electron microscopy (TEM). Metal phosphide nanocatalysts were tested in a high pressure continuous flow reactor for the hydrodeoxygenation (HDO) of a methyl ester blend containing methyl oleate (C17H33-COO-CH3) as main component (70%). This mixture constitutes a convenient surrogate of triglycerides present in vegetable oils, and following catalytic hydrotreating yields mainly n-alkanes. The results of the catalytic assays indicate that Ni2P/SBA-15 catalyst presents the highest ester conversion, whereas the transformation rate is about 20% lower for MoP/SBA-15. In contrast, catalysts based on Fe and Co phosphides show a rather limited activity. Hydrocarbon distribution in the liquid product suggests that both hydrodeoxygenation and decarboxylation/decarbonylation reactions occur simultaneously over the different catalysts, although MoP/SBA-15 possess a selectivity towards hydrodeoxygenation exceeding 90%. Accordingly, the catalyst based on MoP affords the highest yield of n-octadecane, which is the preferred product in terms of carbon atom economy. Subsequently, in order to conjugate the advantages of both Ni and Mo phosphides, a series of catalysts containing variable proportions of both metals were prepared. The obtained results reveal that the mixed phosphides catalysts present a catalytic behavior intermediate between those of the monometallic phosphides. Accordingly, only marginal enhancement of the yield of n-octadecane is obtained for the catalysts with a Mo/Ni ratio of 3. Nevertheless, owing to this high selectivity

  18. Gallium phosphide energy converters

    NASA Astrophysics Data System (ADS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  19. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  20. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  1. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  2. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries.

    PubMed

    Zhong, Yiren; Yin, Lichang; He, Peng; Liu, Wen; Wu, Zishan; Wang, Hailiang

    2018-01-31

    Chemistry at the cathode/electrolyte interface plays an important role for lithium-sulfur batteries in which stable cycling of the sulfur cathode requires confinement of the lithium polysulfide intermediates and their fast electrochemical conversion on the electrode surface. While many materials have been found to be effective for confining polysulfides, the underlying chemical interactions remain poorly understood. We report a new and general lithium polysulfide-binding mechanism enabled by surface oxidation layers of transition-metal phosphide and chalcogenide materials. We for the first time find that CoP nanoparticles strongly adsorb polysulfides because their natural oxidation (forming Co-O-P-like species) activates the surface Co sites for binding polysulfides via strong Co-S bonding. With a surface oxidation layer capable of confining polysulfides and an inner core suitable for conducting electrons, the CoP nanoparticles are thus a desirable candidate for stabilizing and improving the performance of sulfur cathodes in lithium-sulfur batteries. We demonstrate that sulfur electrodes that hold a high mass loading of 7 mg cm -2 and a high areal capacity of 5.6 mAh cm -2 can be stably cycled for 200 cycles. We further reveal that this new surface oxidation-induced polysulfide-binding scheme applies to a series of transition-metal phosphide and chalcogenide materials and can explain their stabilizing effects for lithium-sulfur batteries.

  3. Highly efficient photocatalytic H2 evolution using TiO2 nanoparticles integrated with electrocatalytic metal phosphides as cocatalysts

    NASA Astrophysics Data System (ADS)

    Song, Rui; Zhou, Wu; Luo, Bing; Jing, Dengwei

    2017-09-01

    In this work, electrocatalysts like the metal phosphides Ni2P, NiCoP, and FeP, can serve as cocatalysts of TiO2 to form efficient composite photocatalysts for hydrogen generation from an aqueous methanol solution. On comparing Ni2P, NiCoP, and FeP and optimizing their proportions, the NiCoP(1 wt%)/TiO2 composite was found to exhibit the highest activity toward photocatalytic H2 production (1.54 μmol h-1 mg-1), which is about thirteen times that of the naked TiO2 nanoparticles. Mott-Schottky (MS) analysis indicated that the large upward shift or band bending of the Fermi energy level (EF) in metal phosphides was responsible for the enhanced activity of the composites. The steady-state photoluminescence (PL) spectra and photocurrent transient response further confirmed that the enhanced photoinduced charge transfer and band separation after TiO2 was integrated with the metal phosphides. Thus, these electrocatalysts were shown to be efficient cocatalysts that can replace noble metals as low-cost photocatalytic H2 production.

  4. Easy To Synthesize, Robust Organo‐osmium Asymmetric Transfer Hydrogenation Catalysts

    PubMed Central

    Coverdale, James P. C.; Sanchez‐Cano, Carlos; Clarkson, Guy J.; Soni, Rina

    2015-01-01

    Abstract Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori‐type RuII catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X‐ray crystal structures of the 16‐electron OsII catalysts are almost identical to those of RuII. Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The OsII catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones. PMID:25853228

  5. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  6. Gallium phosphide energy converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.

    1995-10-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured andmore » the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.« less

  7. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xuguang, E-mail: liuxuguang@qust.edu.cn; Xu, Lei; Zhang, Baoquan

    2014-04-01

    Preparation of supported nickel phosphide (Ni{sub 2}P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni{sub 2}P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni{sub 2}P structure, verified by XRD characterization results. The alumina (namely, γ-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, or α-Al{sub 2}O{sub 3}) with distinctmore » physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni{sub 2}P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N{sub 2}-sorption isotherm. The uniform surface energy of α-Al{sub 2}O{sub 3} results only in the nickel phosphosate precursor and thus the Ni{sub 2}P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, and γ-Al{sub 2}O{sub 3}) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni{sub 3}P, Ni{sub 12}P{sub 5}, Ni{sub 2}P). - Highlights: • Preparing pure Ni{sub 2}P. • Elucidating nickel phosphate precursor. • Associating with surface energy.« less

  8. Cobalt phosphide based nanostructures as bifunctional electrocatalysts for low temperature alkaline water splitting

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; Christensen, Ben

    2016-08-22

    Cobalt phosphide based thin films and nanoparticles were prepared by the thermal phosphidation of spinel Co 3O 4 precursor films and nanoparticles, respectively. CoP films were prepared with overall retention of the Co 3O 4 nanoplatelet morphology while the spherical/cubic Co 3O 4 and Ni 0.15Co 2.85O 4 nanoparticles were converted to nanorods or nanoparticles, respectively. The inclusion of nickel in the nanoparticles resulted in a 2.5 fold higher surface area leading to higher gravimetric performance. In each case high surface area structures were obtained with CoP as the primary phase. All materials were found to act as effective bifunctionalmore » electrocatalysts for both the HER and the OER and compared well to commercial precious metal benchmark materials in alkaline electrolyte. As a result, a symmetrical water electrolysis cell prepared from the CoP-based film operated at a low overpotential of 0.41-0.51 V.« less

  9. Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction

    NASA Astrophysics Data System (ADS)

    Ge, Zhijun; Wang, Ling; He, Zhangxing; Li, Yuehua; Jiang, Yingqiao; Meng, Wei; Dai, Lei

    2018-04-01

    A novel strategy for improving the electro-catalytic properties of graphite felt (GF) electrode in vanadium redox flow battery (VRFB) is designed by depositing cobalt phosphide (CoP) onto GF surface. The CoP powder is synthesized by direct carbonization of Co-based zeolitic imidazolate framework (ZIF-67) followed by phosphidation. Cyclic voltammetry results confirm that the CoP-modified graphite felt (GF-CoP) electrode has excellent reversibility and electro-catalytic activity to the VO2+/VO2+ cathodic reaction compared with the pristine GF electrode. The cell using GF-CoP electrode shows apparently higher discharge capacity over that based on GF electrode. The cell using GF-CoP electrode has the capacity of 67.2 mA h at 100 mA cm-2, 32.7 mA h larger than that using GF electrode. Compared with cell using GF electrode, the voltage efficiency of the cell based on GF-CoP electrode increases by 5.9% and energy efficiency by 5.4% at a current density of 100 mA cm-2. The cell using GF-CoP electrode can reach 94.31% capacity retention after 50 cycles at a current density of 30 mA cm-2. The results show that the CoP can effectively promote the VO2+/VO2+ redox reaction, implying that metal phosphides are a new kind of potential catalytic materials for VRFB.

  10. A gallium phosphide high-temperature bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  11. Moringa oleifera extract (Lam) attenuates Aluminium phosphide-induced acute cardiac toxicity in rats.

    PubMed

    Gouda, Ahmed S; El-Nabarawy, Nagla A; Ibrahim, Samah F

    2018-01-01

    Moringa oleifera extract (Lam) has many antioxidant and protective properties. Objective: to investigate the antioxidant activities of Lam in counteracting the high oxidative stress caused by acute sub-lethal aluminium phosphide (AlP) intoxication in rat heart. These activities will be detected by histopathological examination and some oxidative stress biomarkers. a single sub-lethal dose of Alp (2 mg/kg body weight) was administered orally, and Lam was given orally at a dose (100 mg/kg body weight) one hour after receiving AlP to rats. aluminium phosphide caused significant cardiac histopathological changes with a significant increase in malondialdehyde (MDA); lipid peroxidation marker; and a significant depletion of antioxidant enzymes (catalase and glutathione reductase). However, treatment with Lam protected efficiently the cardiac tissue of intoxicated rats by increasing antioxidants levels with slight decreasing in MDA production compared to untreated group. This study suggested that Moringa oleifera extract could possibly restore the altered cardiac histopathology and some antioxidant power in AlP intoxicated rats, and it could even be used as adjuvant therapy against AlP-induced cardiotoxicity.

  12. Novel, high-activity hydroprocessing catalysts: Iron group phosphides

    NASA Astrophysics Data System (ADS)

    Wang, Xianqin

    A series of iron, cobalt and nickel transition metal phosphides was synthesized by means of temperature-programmed reduction (TPR) of the corresponding phosphates. The same materials, Fe2P, CoP and NO, were also prepared on a silica (SiO2) support. The phase purity of these catalysts was established by x-ray diffraction (XRD), and the surface properties were determined by N2 BET specific surface area (Sg) measurements and CO chemisorption. The activities of the silica-supported catalysts were tested in a three-phase trickle bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene using a model liquid feed at realistic conditions (30 atm, 370°C). The reactivity studies showed that the nickel phosphide (Ni2P/SiO2) was the most active of the catalysts. Compared with a commercial Ni-Mo-S/gamma-Al 2O3 catalyst at the same conditions, Ni2P/silica had a substantially higher HDS activity (100% vs. 76%) and HDN activity (82% vs. 38%). Because of their good hydrotreating activity, an extensive study of the preparation of silica supported nickel phosphides, Ni2P/SiO 2, was carried out. The parameters investigated were the phosphorus content and the weight loading of the active phase. The most active composition was found to have a starting synthesis Ni/P ratio close to 1/2, and the best loading of this sample on silica was observed to be 18 wt.%. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES) measurements were employed to determine the structures of the supported samples. The main phase before and after reaction was found to be Ni2P, but some sulfur was found to be retained after reaction. A comprehensive scrutiny of the HDN reaction mechanism was also made over the Ni2P/SiO2 sample (Ni/P = 1/2) by comparing the HDN activity of a series of piperidine derivatives of different structure. It was found that piperidine adsorption involved an alpha-H activation

  13. Electronic properties of hexagonal gallium phosphide: A DFT investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vipin; Shah, Esha V.; Roy, Debesh R., E-mail: drr@ashd.svnit.ac.in

    2016-05-23

    A detail density functional investigation is performed to develop hexagonal 2D gallium phosphide material. The geometry, band structure and density of states (total and projected) of 2D hexagonal GaP are reported in detail. It is heartening to note that the developed material is identified as an indirect band gap semiconductor. The indirect gap for this material is predicted as 1.97 eV at K-Γ, and a direct gap of 2.28 eV at K point is achieved, which is very close to the reported direct band gap for zinc blende and buckled structures of GaP.

  14. Isoelectronic Traps in Gallium Phosphide

    NASA Astrophysics Data System (ADS)

    Christian, Theresa; Alberi, Kirstin; Beaton, Daniel; Fluegel, Brian; Mascarenhas, Angelo

    2015-03-01

    Isoelectronic substitutional dopants can result in strongly localized exciton traps within a host bandstructure such as gallium arsenide (GaAs) or gallium phosphide (GaP). These traps have received great attention for their role in the anomalous bandgap bowing of nitrogen or bismuth-doped GaAs, creating the dramatic bandgap tunability of these unusual dilute alloys. In the wider, indirect-bandgap host material GaP, these same isoelectronic dopants create bound states within the gap that can have very high radiative efficiency and a wealth of discrete spectral transitions illuminating the symmetry of the localized excitonic trap state. We will present a comparative study of nitrogen and bismuth isoelectronic traps in GaP. Research was supported by the U. S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308 and by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100.

  15. Fabrication of hierarchical CoP nanosheet@microwire arrays via space-confined phosphidation toward high-efficiency water oxidation electrocatalysis under alkaline conditions.

    PubMed

    Ji, Xuqiang; Zhang, Rong; Shi, Xifeng; Asiri, Abdullah M; Zheng, Baozhan; Sun, Xuping

    2018-05-03

    In spite of recent advances in the synthesis of transition metal phosphide nanostructures, the simple fabrication of hierarchical arrays with more accessible active sites still remains a great challenge. In this Communication, we report a space-confined phosphidation strategy toward developing hierarchical CoP nanosheet@microwire arrays on nickel foam (CoP NS@MW/NF) using a Co(H2PO4)2·2H3PO4 microwire array as the precursor. The thermally stable nature of the anion in the precursor is key to hierarchical nanostructure formation. When used as a 3D electrode for water oxidation electrocatalysis, such CoP NS@MW/NF needs an overpotential as low as 296 mV to drive a geometrical catalytic current density of 100 mA cm-2 in 1.0 M KOH, outperforming all reported Co phosphide catalysts in alkaline media. This catalyst also shows superior long-term electrochemical durability, maintaining its activity for at least 65 h. This study offers us a general method for facile preparation of hierarchical arrays for applications.

  16. Rhenium-osmium isotope systematics of carbonaceous chondrites

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.

    1989-01-01

    Rhenium and osmium concentrations and Os isotopic compositions of eight carbonaceous chondrites, one LL3 ordinary chondrite, and two iron meteorites were determined by resonance ionization mass spectrometry. Iron meteorite 187Re/186Os and 187OS/186Os ratios plot on the previously determined iron meteorite isochron, but most chondrite data plot 1 to 2 percent above this meteorite isochron. This suggests either that irons have significantly younger Re-Os closure ages than chondrites or that chondrites were formed from precursor materials with different chemical histories from the precursors of irons. Some samples of Semarkona (LL3) and Murray (C2M) meteorites plot 4 to 6 percent above the iron meteorite isochron, well above the field delineated by other chondrites. Murray may have lost Re by aqueous leaching during its preterrestrial history. Semarkona could have experienced a similar loss of Re, but only slight aqueous alteration is evident in the meteorite. Therefore, the isotopic composition of Semarkona could reflect assembly of isotopically heterogeneous components subsequent to 4.55 billion years ago or Os isotopic heterogeneities in the primordial solar nebula.

  17. New reactions involving the oxidative O-, N-, and C-phosphorylation of organic compounds by phosphorus and phosphides in the presence of metal complexes

    NASA Astrophysics Data System (ADS)

    Dorfman, Ya A.; Aleshkova, M. M.; Polimbetova, G. S.; Levina, L. V.; Petrova, T. V.; Abdreimova, R. R.; Doroshkevich, D. M.

    1993-09-01

    The mechanisms of new catalytic reactions leading to the formation of di-, and tri-alkyl phosphates, di- and tri-alkyl phosphites, phosphoramidites, phosphazenes, phosphines, and phosphine oxides from hydrogen, copper, and zinc phosphides and white and red phosphorus are analysed. The mechanisms of the activation of the reactants by metal complexes and of the reactions involving the oxidative P-O, P-N, and P-C coupling of organic compounds to phosphorus and phosphides are considered. The bibliography includes 124 references.

  18. Scalable Indium Phosphide Thin-Film Nanophotonics Platform for Photovoltaic and Photoelectrochemical Devices.

    PubMed

    Lin, Qingfeng; Sarkar, Debarghya; Lin, Yuanjing; Yeung, Matthew; Blankemeier, Louis; Hazra, Jubin; Wang, Wei; Niu, Shanyuan; Ravichandran, Jayakanth; Fan, Zhiyong; Kapadia, Rehan

    2017-05-23

    Recent developments in nanophotonics have provided a clear roadmap for improving the efficiency of photonic devices through control over absorption and emission of devices. These advances could prove transformative for a wide variety of devices, such as photovoltaics, photoelectrochemical devices, photodetectors, and light-emitting diodes. However, it is often challenging to physically create the nanophotonic designs required to engineer the optical properties of devices. Here, we present a platform based on crystalline indium phosphide that enables thin-film nanophotonic structures with physical morphologies that are impossible to achieve through conventional state-of-the-art material growth techniques. Here, nanostructured InP thin films have been demonstrated on non-epitaxial alumina inverted nanocone (i-cone) substrates via a low-cost and scalable thin-film vapor-liquid-solid growth technique. In this process, indium films are first evaporated onto the i-cone structures in the desired morphology, followed by a high-temperature step that causes a phase transformation of the indium into indium phosphide, preserving the original morphology of the deposited indium. Through this approach, a wide variety of nanostructured film morphologies are accessible using only control over evaporation process variables. Critically, the as-grown nanotextured InP thin films demonstrate excellent optoelectronic properties, suggesting this platform is promising for future high-performance nanophotonic devices.

  19. Nucleosynthetic osmium isotope anomalies in acid leachates of the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Reisberg, L.; Dauphas, N.; Luguet, A.; Pearson, D. G.; Gallino, R.; Zimmermann, C.

    2009-01-01

    We present osmium isotopic results obtained by sequential leaching of the Murchison meteorite, which reveal the existence of very large internal anomalies of nucleosynthetic origin (ɛ 184Os from - 108 to 460; ɛ 186Os from - 14.1 to 12.6; ɛ 188Os from - 2.6 to 1.6; ɛ 190Os from - 1.7 to 1.1). Despite these large variations, the isotopic composition of the total leachable osmium (weighted average of the leachates) is close to that of bulk chondrites. This is consistent with efficient large-scale mixing of Os isotopic anomalies in the protosolar nebula. The Os isotopic anomalies are correlated, and can be explained by the variable contributions of components derived from the s, r and p-processes of nucleosynthesis. Surprisingly, much of the s-process rich osmium is released by relatively mild leaching, suggesting the existence of an easily leachable s-process rich presolar phase, or alternatively, of a chemically resistant r-process rich phase. Taken together with previous evidence for a highly insoluble s-process rich carrier, such as SiC, these results argue for the presence of several presolar phases with anomalous nucleosynthetic compositions in the Murchison meteorite. The s-process composition of Os released by mild leaching diverges slightly from that released by aggressive digestion techniques, perhaps suggesting that the presolar phases attacked by these differing procedures condensed in different stellar environments. The correlation between ɛ 190Os and ɛ 188Os can be used to constrain the s-process 190Os/ 188Os ratio to be 1.275 ± 0.043. Such a ratio can be reproduced in a nuclear reaction network for a MACS value for 190Os of ~ 200 ± 22 mbarn at 30 keV. More generally, these results can help refine predictions of the s-process in the Os mass region, which can be used in turn to constrain the amount of cosmoradiogenic 187Os in the solar system and hence the age of the Galaxy. We also present evidence for extensive internal variation of 184Os

  20. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode.

    PubMed

    Hamada, Hiroki

    2017-07-28

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01-1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1-11] and [11-1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects.

  1. Deoxygenation of Palmitic Acid on Unsupported Transition-Metal Phosphides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peroni, Marco; Lee, Insu; Huang, Xiaoyang

    Abstract Highly active bulk transition metal phosphides (WP, MoP, and Ni2P) were synthesized for the catalytic hydrodeoxygenation of palmitic acid, hexadecanol, hexadecanal, and microalgae oil. The specific activities positively correlated with the concentration of exposed metal sites, although the relative rates changed with temperature due to activation energies varying from 57 kJ·mol-1 for MoP to 142 kJ·mol-1 for WP. The reduction of the fatty acid to the aldehyde occurs through a Langmuir-Hinshelwood mechanism, where the rate-determining step is the addition of the second H to the hydrocarbon. On WP, the conversion of palmitic acid proceeds via R-CH2COOH R-CH2CHO R-CH2CH2OH R-CHCH2more » R-CH2CH3 (hydrodeoxygenation). Decarbonylation of the intermittently formed aldehyde (R-CH2COOH R-CH2CHO R-CH3) was an important pathway on MoP and Ni2P. Conversion via dehydration to a ketene, followed by its decarbonylation occurred only on Ni2P. The rates of alcohol dehydration (R-CH2CH2OH R-CHCH2) correlate with the concentration of Lewis acid sites of the phosphides. Acknowledgements The authors would like to thank Roel Prins for the critical discussion of the results. We are also grateful to Xaver Hecht for technical support. Funding by the German Federal Ministry of Food and Agriculture in the framework of the Advanced Biomass Value project (03SF0446A) is gratefully acknowledged. J.A.L. acknowledges support for his contribution by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences for exploring non-oxidic supports for deoxygenation reactions.« less

  2. Direct Band Gap Wurtzite Gallium Phosphide Nanowires

    PubMed Central

    2013-01-01

    The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. PMID:23464761

  3. Vertically Emitting Indium Phosphide Nanowire Lasers.

    PubMed

    Xu, Wei-Zong; Ren, Fang-Fang; Jevtics, Dimitars; Hurtado, Antonio; Li, Li; Gao, Qian; Ye, Jiandong; Wang, Fan; Guilhabert, Benoit; Fu, Lan; Lu, Hai; Zhang, Rong; Tan, Hark Hoe; Dawson, Martin D; Jagadish, Chennupati

    2018-06-13

    Semiconductor nanowire (NW) lasers have attracted considerable research effort given their excellent promise for nanoscale photonic sources. However, NW lasers currently exhibit poor directionality and high threshold gain, issues critically limiting their prospects for on-chip light sources with extremely reduced footprint and efficient power consumption. Here, we propose a new design and experimentally demonstrate a vertically emitting indium phosphide (InP) NW laser structure showing high emission directionality and reduced energy requirements for operation. The structure of the laser combines an InP NW integrated in a cat's eye (CE) antenna. Thanks to the antenna guidance with broken asymmetry, strong focusing ability, and high Q-factor, the designed InP CE-NW lasers exhibit a higher degree of polarization, narrower emission angle, enhanced internal quantum efficiency, and reduced lasing threshold. Hence, this NW laser-antenna system provides a very promising approach toward the achievement of high-performance nanoscale lasers, with excellent prospects for use as highly localized light sources in present and future integrated nanophotonics systems for applications in advanced sensing, high-resolution imaging, and quantum communications.

  4. Thorium Copper Phosphides: More Diverse Metal-Phosphorus and Phosphorus-Phosphorus Interactions than U analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian

    To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less

  5. Thorium Copper Phosphides: More Diverse Metal-Phosphorus and Phosphorus-Phosphorus Interactions than U analogues

    DOE PAGES

    Jin, Geng Bang; Malliakas, Christos D.; Lin, Jian

    2017-09-28

    To explore the chemical analogy between thorium and heavier actinides in soft anionic environments, three new thorium phosphides (ThCuP 2, beta-ThCu 2P 2, and ThCu 5P 3) have been prepared through solid-state reactions using CuI as a reaction promoter. The structure of ThCuP 2 can be described as a filled UTe 2-type with both dimeric P 2 4- and monomeric P 3- anions, in which Th is coordinated by eight P atoms in a bicapped trigonal prismatic arrangement and Cu is tetrahedrally coordinated by four P atoms. β-ThCu 2P 2 contains only P 3- anions and is isostructural with BaCumore » 2S 2. In this structure, Th is coordinated by seven P atoms in monocapped trigonal prismatic geometry and Cu is tetrahedrally coordinated by four P atoms. ThCu 5P 3 adopts the YCo 5P 3-type structure consisting of P 3- anions. This structure contains Th atoms coordinated by six P atoms in a trigonal prismatic arrangement and Cu atoms that are either tetrahedrally coordinated by four P atoms or square pyramidally coordinated by five P atoms. Electric resistivity measurements and electronic structure calculations on β-ThCu 2P 2 indicate a metal. These new compounds may be charge-balanced and formulated as Th 4+Cu +(P 2 4-) 1/2P 3-, Th 4+(Cu +) 2(P 3-) 2, and Th 4+(Cu +) 5(P 3-) 3, respectively. The structural, bonding, and property relationships between these Th compounds and related actinide and rare-earth phases are discussed. In conclusion, titled compounds display more diverse ion-ion interactions and different electronic structures from those in UCuP 2 and UCu 2P 2 that were synthesized under similar experimental conditions, suggesting divergence of thorium-phosphide chemistry from uranium-phosphide chemistry.« less

  6. Characterization of Gallium Indium Phosphide and Progress of Aluminum Gallium Indium Phosphide System Quantum-Well Laser Diode

    PubMed Central

    Hamada, Hiroki

    2017-01-01

    Highly ordered gallium indium phosphide layers with the low bandgap have been successfully grown on the (100) GaAs substrates, the misorientation toward [01−1] direction, using the low-pressure metal organic chemical vapor deposition method. It is found that the optical properties of the layers are same as those of the disordered ones, essentially different from the ordered ones having two orientations towards [1−11] and [11−1] directions grown on (100) gallium arsenide substrates, which were previously reported. The bandgap at 300 K is 1.791 eV. The value is the smallest ever reported, to our knowledge. The high performance transverse stabilized AlGaInP laser diodes with strain compensated quantum well structure, which is developed in 1992, have been successfully obtained by controlling the misorientation angle and directions of GaAs substrates. The structure is applied to quantum dots laser diodes. This paper also describes the development history of the quantum well and the quantum dots laser diodes, and their future prospects. PMID:28773227

  7. Theoretical survey of the reaction between osmium and acetaldehyde

    NASA Astrophysics Data System (ADS)

    Dai, Guo-Liang; Wang, Chuan-Feng

    2012-05-01

    The mechanism of the reaction of osmium atom with acetaldehyde has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ sdd/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, C-O, and methyl C-H activation. These reactions can lead to four different products (HOsCH3 + CO, OsCO + CH4, OsCOCH3 + H, and OsO + C2H4). The minimum energy reaction path is found to involve the spin inversion in the initial reaction step. This potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.

  8. Solar cells with gallium phosphide/silicon heterojunction

    NASA Astrophysics Data System (ADS)

    Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina

    2015-09-01

    One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.

  9. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  10. Managing aluminum phosphide poisonings

    PubMed Central

    Gurjar, Mohan; Baronia, Arvind K; Azim, Afzal; Sharma, Kalpana

    2011-01-01

    Aluminum phosphide (AlP) is a cheap, effective and commonly used pesticide. However, unfortunately, it is now one of the most common causes of poisoning among agricultural pesticides. It liberates lethal phosphine gas when it comes in contact either with atmospheric moisture or with hydrochloric acid in the stomach. The mechanism of toxicity includes cellular hypoxia due to the effect on mitochondria, inhibition of cytochrome C oxidase and formation of highly reactive hydroxyl radicals. The signs and symptoms are nonspecific and instantaneous. The toxicity of AlP particularly affects the cardiac and vascular tissues, which manifest as profound and refractory hypotension, congestive heart failure and electrocardiographic abnormalities. The diagnosis of AlP usually depends on clinical suspicion or history, but can be made easily by the simple silver nitrate test on gastric content or on breath. Due to no known specific antidote, management remains primarily supportive care. Early arrival, resuscitation, diagnosis, decrease the exposure of poison (by gastric lavage with KMnO4, coconut oil), intensive monitoring and supportive therapy may result in good outcome. Prompt and adequate cardiovascular support is important and core in the management to attain adequate tissue perfusion, oxygenation and physiologic metabolic milieu compatible with life until the tissue poison levels are reduced and spontaneous circulation is restored. In most of the studies, poor prognostic factors were presence of acidosis and shock. The overall outcome improved in the last decade due to better and advanced intensive care management. PMID:21887030

  11. Tracing Anthropogenic Osmium around Japan using the Osmium Isotopic Composition of Macroalgae

    NASA Astrophysics Data System (ADS)

    Sproson, A. D.; Selby, D. S.; Suzuki, K.

    2016-12-01

    The present-day open ocean seawater 187Os/188Os value of 1.06 is seen to reflect the balance between unradiogenic mantle derived osmium (Os) and radiogenic continental Os. However, Os released by anthropogenic activities has been detected in coastal sediments, lakes, estuaries, rain and snow from sources such as sewage sludge, catalytic convertors, smelting, fossil fuel burning and use as a staining reagent, thereby impacting the global Os budget. Despite over two decades of research, contemporary Os inputs into the ocean are believed to be underestimated by a factor of 3, leading to discrepancies in oceanic Os residence times estimated from mass balance calculations. This, in part, is due to the problems associated with directly measuring ultra-low concentrations of Os in seawater. Recently, it has been proposed that the 187Os/188Os of macroalgae (seaweed) reflects that of the seawater in which it lives. This suggests macroalgae can act as a proxy for the Os isotopic composition of seawater. We present Os isotope data for macroalgae collected from Tokyo Bay, Osaka Bay, the Noto Peninsula, Izu Peninsula and Hokkaido. Macroalgae close to the major cities of Tokyo and Osaka exhibit unradiogenic 187Os/188Os values as low as 0.45, in agreement with published sediment data. As you move away from central Tokyo and Osaka, 187Os/188Os values become more radiogenic, reaching values as high as 0.95 due to the entrainment of more radiogenic seawater. Macroalgae from the less urbanised Noto and Izu Peninsulas show a radiogenic 187Os/188Os range of 0.70-0.91, close to global river estimates suggesting little contamination from anthropogenic processes. Deep-water species off the coast of Hokkaido exhibit 187Os/188Os values in agreement with published Pacific Ocean seawater data. We propose macroalgae is recording the influence of anthropogenic processes - in particular sewage sludge production and catalytic convertor exhaust - on the Os budget of Japanese waters. Therefore

  12. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.

    PubMed

    Pasek, Matthew A; Lauretta, Dante S

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  13. Andreyivanovite: A Second New Phosphide from the Kaidun Meteorite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael

    2008-01-01

    Andreyivanovite (ideally FeCrP) is another new phosphide species from the Kaidun meteorite, which fell in South Yemen in 1980. Kaidun is a unique breccia containing an unprecedented variety of fragments of different chondritic as well as achondritic lithologies. Andreyivanovite was found as individual grains and linear arrays of grains with a maximum dimension of 8 m within two masses of Fe-rich serpentine. In one sample it is associated with Fe-Ni-Cr sulfides and florenskyite (FeTiP). Andreyivanovite is creamy white in reflected light, and its luster is metallic. The average of nine electron microprobe analyses yielded the formula Fe(Cr0.587 Fe0.150 V0.109 Ti0.081 Ni0.060 Co0.002)P. Examination of single grains of andreyivanovite using Laue patterns collected by in-situ synchrotron X-ray diffraction (XRD), and by electron backscattered diffraction revealed that it is isostructural with florenskyite; we were unable to find single crystals of sufficient quality to perform a complete structure analysis. Andreyivanovite crystallizes in the space group Pnma, and has the anti-PbCl2 structure. Previously-determined cell constants of synthetic material [a = 5.833(1), b = 3.569(1), c = 6.658(1) A] were consistent with our XRD work. We used the XPOW program to calculate a powder XRD pattern; the 5 most intense reflections are d = 2.247 (I = 100), 2.074 (81), 2.258 (46), 1.785 (43), and 1.885 A (34). Andreyivanovite is the second new phosphide to be described from the Kaidun meteorite. Andreyivanovite could have formed as a result of cooling and crystallization of a melted precursor consisting mainly of Fe-Ni metal enriched in P, Ti, and Cr. Serpentine associated with andreyivanovite would then have formed during aqueous alteration on the parent asteroid. It is also possible that the andreyivanovite could have formed during aqueous alteration, however, artificial FeTiP has been synthesized only during melting experiments, at low oxygen fugacity, and there is no evidence that

  14. Rhenium and osmium isotopes in black shales and Ni-Mo-PGE-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Grauch, R.I.; Coveney, R.M.; Murowchick, J.B.; Hulbert, L.J.

    1994-01-01

    Rhenium and osmium abundances and osmium isotopic compositions were determined by negative thermal ionization mass spectrometry for samples of Devonian black shale and an associated Ni-enriched sulfide layer from the Yukon Territory, Canada. The same composition information was also obtained for samples of early Cambrian Ni-Mo-rich sulfide layers hosted in black shale in Guizhou and Hunan provinces, China. This study was undertaken to constrain the origin of the PGE enrichment in the sulfide layers. Samples of the Ni sulfide layer from the Yukon Territory are highly enriched in Re, Os, and other PGE, with distinctly higher Re/192Os but similar Pt/Re, compared to the black shale host. Re-Os isotopic data of the black shale and the sulfide layer are approximately isochronous, and the data plot close to reference isochrons which bracket the depositional age of the enclosing shales. Samples of the Chinese sulfide layers are also highly enriched in Re, Os, and the other PGE. Re/192Os are lower than in the Yukon sulfide layer. Re-Os isotopic data for the sulfide layers lie near a reference isochron with an age of 560 Ma, similar to the depositional age of the black shale host. The osmium isotopic data suggest that Re and PGE enrichment of the brecciated sulfide layers in both the Yukon Territory and in southern China may have occurred near the time of sediment deposition or during early diagenesis, during the middle to late Devonian and early Cambrian, respectively. ?? 1994.

  15. Osmium isotope stratigraphy of a marine ferromanganese crust

    USGS Publications Warehouse

    Klemm, V.; Levasseur, S.; Frank, M.; Hein, J.R.; Halliday, A.N.

    2005-01-01

    Ferromanganese crusts provide records of long term change in ocean circulation and continental weathering. However, calibrating their age prior to 10 Ma has been entirely based on empirical growth rate models using Co concentrations, which have inherently large uncertainties and fail to detect hiatuses and erosional events. We present a new method for dating these crusts by measuring their osmium (Os) isotope record and matching it to the well-known marine Os isotope evolution of the past 80 Ma. The well-characterised crust CD29-2 from the central Pacific, was believed to define a record of paleooceanographic change from 50 Ma. Previous growth rate estimates based on the Co method are consistent with the new Os isotope stratigraphy but the dating was grossly inaccurate due to long hiatuses that are now detectable. The new chronology shows that it in fact started growing prior to 70 Ma in the late Cretaceous and stopped growing or was eroded between 13.5 and 47 Ma. With this new technique it is now possible to exploit the full potential of the oceanographic and climatic records stored in Fe-Mn crusts. ?? 2005 Elsevier B.V. All rights reserved.

  16. MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts

    PubMed Central

    Li, Hong; Ke, Fei; Zhu, Junfa

    2018-01-01

    The development of a highly efficient and stable bifunctional electrocatalyst for water splitting is still a challenging issue in obtaining clean and sustainable chemical fuels. Herein, a novel bifunctional catalyst consisting of 2D transition-metal phosphide nanosheets with abundant reactive sites templated by Co-centered metal−organic framework nanosheets, denoted as CoP-NS/C, has been developed through a facile one-step low-temperature phosphidation process. The as-prepared CoP-NS/C has large specific surface area and ultrathin nanosheets morphology providing rich catalytic active sites. It shows excellent electrocatalytic performances for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic and alkaline media, with the Tafel slopes of 59 and 64 mV/dec and a current density of 10 mA/cm2 at the overpotentials of 140 and 292 mV, respectively, which are remarkably superior to those of CoP/C, CoP particles, and comparable to those of commercial noble-metal catalysts. In addition, the CoP-NS/C also shows good durability after a long-term test. PMID:29414838

  17. Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie

    2017-09-01

    Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.

  18. Ionization cross section, pressure shift and isotope shift measurements of osmium

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan

    2017-11-01

    In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.

  19. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  20. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.

    2016-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.

  1. Gallium Phosphide Integrated with Silicon Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chaomin

    It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch ( 0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si. In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM). The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation

  2. Comparative radiation resistance, temperature dependence and performance of diffused junction indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Ghandhi, S. K.; Borrego, J. M.

    1987-01-01

    Indium phosphide solar cells whose p-n junctions were processed by the open tube capped diffusion and by the closed tube uncapped diffusion of sulfur into Czochralski-grown p-type substrates are compared. Differences found in radiation resistance were attributed to the effects of increased base dopant concentration. Both sets of cells showed superior radiation resistance to that of gallium arsenide cells, in agreement with previous results. No correlation was, however, found between the open-circuit voltage and the temperature dependence of the maximum power.

  3. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power.

    PubMed

    Rivoire, Kelley; Lin, Ziliang; Hatami, Fariba; Masselink, W Ted; Vucković, Jelena

    2009-12-07

    We demonstrate second harmonic generation in photonic crystal nanocavities fabricated in the semiconductor gallium phosphide. We observe second harmonic radiation at 750 nm with input powers of only nanowatts coupled to the cavity and conversion effciency P(out)/P(2)(in,coupled)=430%/W. The large electronic band gap of GaP minimizes absorption loss, allowing effcient conversion. Our results are promising for integrated, low-power light sources and on-chip reduction of input power in other nonlinear processes.

  4. Fabrication and properties of gallium phosphide variable colour displays

    NASA Technical Reports Server (NTRS)

    Effer, D.; Macdonald, R. A.; Macgregor, G. M.; Webb, W. A.; Kennedy, D. I.

    1973-01-01

    The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission.

  5. Spectroscopic Identification of the Carbyne Hydride Structure of the Dehydrogenation Product of Methane Activation by Osmium Cations

    NASA Astrophysics Data System (ADS)

    Armentrout, P. B.; Kuijpers, Stach E. J.; Lushchikova, Olga V.; Hightower, Randy L.; Boles, Georgia C.; Bakker, Joost M.

    2018-04-01

    The present work explores the structures of species formed by dehydrogenation of methane (CH4) and perdeuterated methane (CD4) by the 5d transition metal cation osmium (Os+). Using infrared multiple photon dissociation (IRMPD) action spectroscopy and density functional theory (DFT), the structures of the [Os,C,2H]+ and [Os,C,2D]+ products are explored. This study complements previous work on the related species formed by dehydrogenation of methane by four other 5d transition metal cations (M+ = Ta+, W+, Ir+, and Pt+). Osmium cations are formed in a laser ablation source, react with methane pulsed into a reaction channel downstream, and the resulting products spectroscopically characterized through photofragmentation using the Free-Electron Laser for IntraCavity Experiments (FELICE) in the 300-1800 cm-1 range. Photofragmentation was monitored by the loss of H2/D2. Comparison of the experimental spectra and DFT calculated spectra leads to identification of the ground state carbyne hydride, HOsCH+ (2A') as the species formed, as previously postulated theoretically. Further, a full description of the systematic spectroscopic shifts observed for deuterium labeling of these complexes, some of the smallest systems to be studied using IRMPD action spectroscopy, is achieved. A full rotational contour analysis explains the observed linewidths as well as the observation of doublet structures in several bands, consistent with previous observations for HIrCH+ (2A'). [Figure not available: see fulltext.

  6. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogenmore » through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.« less

  7. Hot charcoal vomitus in aluminum phosphide poisoning - A case report of internal thermal reaction in aluminum phosphide poisoning and review of literature

    PubMed Central

    Mirakbari, Seyed Mostafa

    2015-01-01

    Aluminium phosphide (ALP) poisoning is a commonly encountered poisoning in emergency departments in most developing countries. Many papers have revealed metabolic derangements in this poisoning and also examined contributing factors leading to death, but only few have reported physical damage. Some case reports have described a complication that has been frequently termed ‘ignition’. The exact mechanism of this phenomenon has not been fully elucidated. An exothermic reaction during therapeutic administration of chemicals may contribute to this problem, but the incidence has occurred in the absence of treatment or drug administration. Here, we report a 34-year-old woman with ALP poisoning who presented with hot charcoal vomitus, a sign of internal thermal event, leading to the thermal burning of the patient's face and internal damage resulting in death. We reviewed all reported cases with similar complication to demonstrate varied characteristics of patients and to propose the possible mechanisms leading to this event. PMID:26257417

  8. Process Development of Gallium Nitride Phosphide Core-Shell Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Chuang, Chen

    Dilute Nitride GaNP is a promising materials for opto-electronic applications due to its band gap tunability. The efficiency of GaNxP1-x /GaNyP1-y core-shell nanowire solar cell (NWSC) is expected to reach as high as 44% by 1% N and 9% N in the core and shell, respectively. By developing such high efficiency NWSCs on silicon substrate, a further reduction of the cost of solar photovoltaic can be further reduced to 61$/MWh, which is competitive to levelized cost of electricity (LCOE) of fossil fuels. Therefore, a suitable NWSC structure and fabrication process need to be developed to achieve this promising NWSC. This thesis is devoted to the study on the development of fabrication process of GaNxP 1-x/GaNyP1-y core-shell Nanowire solar cell. The thesis is divided into two major parts. In the first parts, previously grown GaP/GaNyP1-y core-shell nanowire samples are used to develop the fabrication process of Gallium Nitride Phosphide nanowire solar cell. The design for nanowire arrays, passivation layer, polymeric filler spacer, transparent col- lecting layer and metal contact are discussed and fabricated. The property of these NWSCs are also characterized to point out the future development of Gal- lium Nitride Phosphide NWSC. In the second part, a nano-hole template made by nanosphere lithography is studied for selective area growth of nanowires to improve the structure of core-shell NWSC. The fabrication process of nano-hole templates and the results are presented. To have a consistent features of nano-hole tem- plate, the Taguchi Method is used to optimize the fabrication process of nano-hole templates.

  9. Confirmation of a meteoritic component in impact-melt rocks of the Chesapeake Bay impact structure, Virginia, USA - Evidence from osmium isotopic and PGE systematics

    USGS Publications Warehouse

    Lee, S.R.; Horton, J. Wright; Walker, R.J.

    2006-01-01

    The osmium isotope ratios and platinum-group element (PGE) concentrations of impact-melt rocks in the Chesapeake Bay impact structure were determined. The impact-melt rocks come from the cored part of a lower-crater section of suevitic crystalline-clast breccia in an 823 m scientific test hole over the central uplift at Cape Charles, Virginia. The 187Os/188Os ratios of impact-melt rocks range from 0.151 to 0.518. The rhenium and platinum-group element (PGE) concentrations of these rocks are 30-270?? higher than concentrations in basement gneiss, and together with the osmium isotopes indicate a substantial meteoritic component in some impact-melt rocks. Because the PGE abundances in the impact-melt rocks are dominated by the target materials, interelemental ratios of the impact-melt rocks are highly variable and nonchondritic. The chemical nature of the projectile for the Chesapeake Bay impact structure cannot be constrained at this time. Model mixing calculations between chondritic and crustal components suggest that most impact-melt rocks include a bulk meteoritic component of 0.01-0.1% by mass. Several impact-melt rocks with lowest initial 187Os/188Os ratios and the highest osmium concentrations could have been produced by additions of 0.1%-0.2% of a meteoritic component. In these samples, as much as 70% of the total Os may be of meteoritic origin. At the calculated proportions of a meteoritic component (0.01-0.1% by mass), no mixtures of the investigated target rocks and sediments can reproduce the observed PGE abundances of the impact-melt rocks, suggesting that other PGE enrichment processes operated along with the meteoritic contamination. Possible explanations are 1) participation of unsampled target materials with high PGE abundances in the impact-melt rocks, and 2) variable fractionations of PGE during syn- to post-impact events. ?? The Meteoritical Society, 2006.

  10. Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties

    NASA Astrophysics Data System (ADS)

    Zhang, C. Y.; Yu, M.

    2018-03-01

    Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ˜80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young’s moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.

  11. Indium phosphide solar cells - Status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Brinker, D. J.

    1986-01-01

    The current status of indium phosphide cell research is reviewed and state of the art efficiencies compared to those of GaAs and Si. It is shown that the radiation resistance of InP cells is superior to that of either GaAs or Si under 1 MeV electron and 10 MeV proton irradiation. Using lightweight blanket technology, a SEP array structure and projected cell efficiencies, array specific powers are obtained for all three cell types. Array performance is calculated as a function of time in orbit. The results indicate that arrays using InP cells can outperform those using GaAs or Si in orbits where radiation is a significant cell degradation factor. It is concluded that InP solar cells are excellent prospects for future use in the space radiation environment.

  12. Indium phosphide solar cells: status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Brinker, D. J.

    1986-01-01

    The current status of indium phosphide cell research is reviewed and state of the art efficiencies compared to those of GaAs and Si. It is shown that the radiation resistance of InP cells is superior to that of either GaAs or Si under 1 MeV electron and 10 MeV proton irradiation. Using lightweight blanket technology, a SEP array structure and projected cell efficiencies, array specific powers are obtained for all three cell types. Array performance is calculated as a function of time in orbit. The results indicate that arrays using InP cells can outperform those using GaAs or Si in orbits where radiation is a significant cell degradation factor. It is concluded that InP solar cells are excellent prospects for future use in the space radiation environment.

  13. Osmium isotopes in Ivory Coast tektites: Confirmation of a meteoritic component and rhenium depletion

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shirey, Steven B.

    1993-01-01

    The sensitive negative thermal ionization mass spectrometry method was used for the measurement of concentrations and isotopic ratios of osmium and rhenium in four Ivory Coast tektites. These tektites have crustal major and trace element composition, as well as large negative epsilon(sub Nd)(-20) and positive epsilon(sub Sr)(+260 to +300) which are characteristic for old continental crust. Os concentrations ranging from 0.09 to 0.30 ppb were found, clearly much higher than average crustal values, Os-187/Os-186 ratios of about 1.2-1.7, and low Re-187/Os-186 ratios. These results show unambiguously the existence of a meteoritic component (on the order of 0.06%) in the Ivory Coast tektites. Low Re abundances are the result of fractionation of Re during the impact.

  14. Carbon phosphide monolayers with superior carrier mobility

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great

  15. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries.

    PubMed

    Li, Guo-An; Wang, Chiu-Yen; Chang, Wei-Chung; Tuan, Hsing-Yu

    2016-09-27

    Phosphorus-rich transition metal phosphide CuP2 nanowires were synthesized with high quality and high yield (∼60%) via the supercritical fluid-liquid-solid (SFLS) growth at 410 °C and 10.2 MPa. The obtained CuP2 nanowires have a high aspect ratio and exhibit a single crystal structure of monoclinic CuP2 without any impurity phase. CuP2 nanowires have progressive improvement for semiconductors and energy storages compared with bulk CuP2. Being utilized for back-gate field effect transistor (FET) measurement, CuP2 nanowires possess a p-type behavior intrinsically with an on/off ratio larger than 10(4) and its single nanowire electrical transport property exhibits a hole mobility of 147 cm(2) V(-1) s(-1), representing the example of a CuP2 transistor. In addition, CuP2 nanowires can serve as an appealing anode material for a lithium-ion battery electrode. The discharge capacity remained at 945 mA h g(-1) after 100 cycles, showing a good capacity retention of 88% based on the first discharge capacity. Even at a high rate of 6 C, the electrode still exhibited an outstanding result with a capacity of ∼600 mA h g(-1). Ex-situ transmission electron microscopy and CV tests demonstrate that the stability of capacity retention and remarkable rate capability of the CuP2 nanowires electrode are attributed to the role of the metal phosphide conversion-type lithium storage mechanism. Finally, CuP2 nanowire anodes and LiFePO4 cathodes were assembled into pouch-type lithium batteries offering a capacity over 60 mA h. The full cell shows high capacity and stable capacity retention and can be used as an energy supply to operate electronic devices such as mobile phones and mini 4WD cars.

  16. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc–Air Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Qi; Wen, Peng

    Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this paper, highly monodisperse CoP and Co 2P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co 2P NCs show higher OER performance owing to easier formation of plentiful Co 2P@COOH heterojunctions. Density functional theory calculation results indicate that themore » desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co 2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co 2P NC anode can achieve a current density of 10 mA cm -2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO 2/C pair. Finally and furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm -2 and good stability.« less

  17. Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc–Air Battery

    DOE PAGES

    Li, Hui; Li, Qi; Wen, Peng; ...

    2018-01-15

    Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this paper, highly monodisperse CoP and Co 2P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co 2P NCs show higher OER performance owing to easier formation of plentiful Co 2P@COOH heterojunctions. Density functional theory calculation results indicate that themore » desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co 2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co 2P NC anode can achieve a current density of 10 mA cm -2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO 2/C pair. Finally and furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm -2 and good stability.« less

  18. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    DOE PAGES

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; ...

    2017-03-10

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. Thismore » shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.« less

  19. Abundances and isotopic compositions of rhenium and osmium in pyrite samples from the Huaibei coalfield, Anhui, China

    USGS Publications Warehouse

    Liu, Gaisheng; Chou, C.-L.; Peng, Z.; Yang, G.

    2008-01-01

    Two pyrite samples from the Shihezi Formation (Lower Permian), Huaibei coalfield, Anhui, China, have been analyzed for abundances and isotopic compositions of rhenium and osmium using negative thermal ion mass spectrometry. The Re-Os ages of the pyrites are 64.4 and 226 Ma, which are younger than the formation age of the coal seam. The pyrite samples may consist of pyrite formed at various stages during the history of coal formation. The ??Osvalues of the two pyrite samples are +17 and +18, respectively. Such high ??Osvalues are reported for the first time for recycles crustal materials from a sedimentary basin. ?? Springer-Verlag 2007.

  20. Osmium-Isotope and Platinum-Group-Element Systematics of Impact-Melt Rocks, Chesapeake Bay Impact Structure, Virginia, USA

    NASA Technical Reports Server (NTRS)

    Lee, Seung Ryeol; Wright Horton, J., Jr.; Walker, Richard J.

    2005-01-01

    Osmium (Os) isotopes and platinum-group elements (PGEs) are useful for geochemically identifying a meteoritic component within impact structures, because meteorites are typically characterized by low (187)Os/(188)Os ratios and high PGE concentrations. In contrast, most types of crustal target rocks have high radiogenic Os and very low PGE concentrations. We have examined Os isotope and PGE systematics of impact-melt rocks and pre-impact target rocks from a 2004 test hole in the late Eocene Chesapeake Bay impact structure and from nearby coreholes. Our goal is to determine the proportion of the projectile component in the melt rock Additional information is included in the original extended abstract.

  1. General One-Pot Synthesis of Transition-Metal Phosphide/Nitrogen-Doped Carbon Hybrid Nanosheets as Ultrastable Anodes for Sodium-Ion Batteries.

    PubMed

    Li, Jingjing; Shi, Liang; Gao, Jingyu; Zhang, Genqiang

    2018-01-26

    Sodium-ion batteries (SIBs) have been considered as promising energy storage devices in grid-level applications, owing to their largely reduced cost compared with that of lithium-ion batteries. However, the practical application of SIBs has been seriously hindered because of the lack of appropriate anode materials, limited by the thermodynamics perspective, which is one of the central task at current stage. Herein, we have developed a general one-pot strategy for the synthesis of transition-metal phosphide (TMP) based hybrid nanosheets composed of carbon-coated TMP nanoparticles anchored to the surface of nitrogen-doped carbon nanosheets. This facile and cost-effective method is quite universal and holds potential to be further extended to other metal phosphide materials. Significantly, the hybrid nanosheet electrode possesses excellent sodium storage properties as anodes for SIBs, including high specific capacity, an ultra-long cycle life and a remarkable rate performance. This work makes a significant contribution to not only the synthetic methodology of TMP-carbon two-dimensional hybrid nanostructures, but also the application of TMP-based anodes for high-energy SIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel tungsten phosphide embedded nitrogen-doped carbon nanotubes: A portable and renewable monitoring platform for anticancer drug in whole blood.

    PubMed

    Zhou, Haifeng; Ran, Guoxia; Masson, Jean-Francois; Wang, Chan; Zhao, Yuan; Song, Qijun

    2018-05-15

    Biosensors based on converting the concentration of analytes in complex samples into single electrochemical signals are attractive candidates as low cost, high-throughput, portable and renewable sensor platforms. Here, we describe a simple but practical analytical device for sensing an anticancer drug in whole blood, using the detection of methotrexate (MTX) as a model system. In this biosensor, a novel carbon-based composite, tungsten phosphide embedded nitrogen-doped carbon nanotubes (WP/N-CNT), was fixed to the electrode surface that supported redox cycling. The electronic transmission channel in nitrogen doped carbon nanotubes (N-CNT) and the synergistic effect of uniform distribution tungsten phosphide (WP) ensured that the electrode materials have outstanding electrical conductivity and catalytic performance. Meanwhile, the surface electronic structure also endows its surprisingly reproducible performance. To demonstrate portable operation for MTX sensing, screen printing electrodes (SPE) was modified with WP/N-CNT. The sensor exhibited low detection limits (45 nM), wide detection range (0.01-540 μM), good selectivity and long-term stability for the determination of MTX. In addition, the technique was successfully applied for the determination of MTX in whole blood. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Electronic structure and mechanical properties of osmium borides, carbides and nitrides from first principles

    NASA Astrophysics Data System (ADS)

    Liang, Yongcheng; Zhao, Jianzhi; Zhang, Bin

    2008-06-01

    The stabilities, mechanical properties and electronic structures of osmium boride (OsB), carbide (OsC) and nitride (OsN), in the tungsten carbide (WC), rocksalt (NaCl), cesium chloride (CsCl) and zinc blende (ZnS) structures respectively, are systematically predicted by calculations from first-principles. Only four phases, namely, OsB(WC), OsB(CsCl), OsC(WC), and OsC(ZnS), are mechanically stable, and none is a superhard compound, contrary to previous speculation. Most importantly, we find that the changing trends of bulk modulus and shear modulus are completely different for OsB, OsC and OsN in same hexagonal WC structure, which indicates that the underlying sources of hardness and incompressibility are fundamentally different: the former is determined by bonding nature while the latter is closely associated with valence electron density.

  4. Potential for use of indium phosphide solar cells in the space radiation environment

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    Indium phosphide solar cells were observed to have significantly higher radiation resistance than either GaAs or Si after exposure to 10 MeV proton irradiation data and previous 1 MeV electron data together with projected efficiencies for InP, it was found that these latter cells produced more output power than either GaAs or Si after specified fluences of 10 MeV protons and 1 MeV electrons. Estimates of expected performance in a proton dominated space orbit yielded much less degradation for InP when compared to the remaining two cell types. It was concluded that, with additional development to increase efficiency, InP solar cells would perform significantly better than either GaAs or Si in the space radiation environment.

  5. Deep levels in osmium doped p-type GaAs grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Iqbal, M. Zafar; Majid, A.; Dadgar, A.; Bimberg, D.

    2005-06-01

    Results of a preliminary study on deep level transient spectroscopy (DLTS) investigations of osmium (Os) impurity in p-type GaAs, introduced in situ during MOCVD crystal growth, are reported for the first time. Os is clearly shown to introduce two prominent deep levels in the lower half-bandgap of GaAs at energy positions Ev + 0.42 eV (OsA) and Ev + 0.72 eV (OsB). A minority-carrier emitting defect feature observed in the upper half-bandgap is shown to consist of a band of Os-related deep levels with a concentration significantly higher than that of the majority carrier emitting deep levels. Detailed data on the emission rate signatures and related parameters of the Os-related deep levels are reported.

  6. Lattice strain of osmium diboride under high pressure and nonhydrostatic stress

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Weinberger, Michelle B.; Shahar, Anat; Cumberland, Robert W.; Levine, Jonathan B.; Kaner, Richard B.; Tolbert, Sarah H.

    2012-07-01

    The lattice strain behavior of osmium diboride—a member of a group of third-row transition metal borides associated with hard/superhard behavior—has been studied using radial diffraction in a diamond anvil cell under high pressure and non-hydrostatic stress. We interpret the average values of the measured lattice strains as a lower-bound to the lattice-plane dependent yield strengths using existing estimates for the elastic constants of OsB2, with a yield strength of 11 GPa at 27.5 GPa of hydrostatic pressure. The measured differential lattice strains show significant plane-dependent anisotropy, with the (101) lattice plane showing the largest differential strain and the (001) lattice plane showing the least strain. At the highest pressure, the a-axis develops a larger compressive strain and supports a larger differential strain than either the b or c axes. This causes an increase in the c/a ratio and a decrease in the a/b ratio especially in the maximum stress direction. The large strength anisotropy of this material points to possible ways to modulate directional mechanical properties by taking advantage of the interplay between aggregate polycrystalline texture with directional mechanical properties.

  7. Reactivity of nitrido complexes of ruthenium(VI), osmium(VI), and manganese(V) bearing Schiff base and simple anionic ligands.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Lau, Tai-Chu

    2014-02-18

    Nitrido complexes (M≡N) may be key intermediates in chemical and biological nitrogen fixation and serve as useful reagents for nitrogenation of organic compounds. Osmium(VI) nitrido complexes bearing 2,2':6',2″-terpyridine (terpy), 2,2'-bipyridine (bpy), or hydrotris(1-pyrazolyl)borate anion (Tp) ligands are highly electrophilic: they can react with a variety of nucleophiles to generate novel osmium(IV)/(V) complexes. This Account describes our recent results studying the reactivity of nitridocomplexes of ruthenium(VI), osmium(VI), and manganese(V) that bear Schiff bases and other simple anionic ligands. We demonstrate that these nitrido complexes exhibit rich chemical reactivity. They react with various nucleophiles, activate C-H bonds, undergo N···N coupling, catalyze the oxidation of organic compounds, and show anticancer activities. Ruthenium(VI) nitrido complexes bearing Schiff base ligands, such as [Ru(VI)(N)(salchda)(CH3OH)](+) (salchda = N,N'-bis(salicylidene)o-cyclohexyldiamine dianion), are highly electrophilic. This complex reacts readily at ambient conditions with a variety of nucleophiles at rates that are much faster than similar reactions using Os(VI)≡N. This complex also carries out unique reactions, including the direct aziridination of alkenes, C-H bond activation of alkanes and C-N bond cleavage of anilines. The addition of ligands such as pyridine can enhance the reactivity of [Ru(VI)(N)(salchda)(CH3OH)](+). Therefore researchers can tune the reactivity of Ru≡N by adding a ligand L trans to nitride: L-Ru≡N. Moreover, the addition of various nucleophiles (Nu) to Ru(VI)≡N initially generate the ruthenium(IV) imido species Ru(IV)-N(Nu), a new class of hydrogen-atom transfer (HAT) reagents. Nucleophiles also readily add to coordinated Schiff base ligands in Os(VI)≡N and Ru(VI)≡N complexes. These additions are often stereospecific, suggesting that the nitrido ligand has a directing effect on the incoming nucleophile. M≡N is also

  8. Effects of Polyethylene Glycol and Citric Acid on Preparation and Hydrodechlorination Activity of Molybdenum Phosphide

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Lu, Shaoxiang; Xu, Hanghui; Ren, Lili

    2018-07-01

    Molybdenum phosphide (MoP), modified by polyethylene glycol (PEG) and citric acid (CA), exhibited 2 to 3 times superior activity than the MoP modified by CA alone. And the optimal activity temperature was reduced from 500 to 450oC. The catalyst was fully characterized by a variety of techniques including X-ray diffraction (XRD), N2 adsorption-desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM). The results showed that the addition of PEG and CA increased the surface area of MoP and decreased the particle size of MoP. Furthermore, the reaction mechanism also has been discussed by combining the activity data and characterization results.

  9. Elastic, magnetic and electronic properties of iridium phosphide Ir 2P

    DOE PAGES

    Wang, Pei; Wang, Yonggang; Wang, Liping; ...

    2016-02-24

    Cubic (space group: Fm3¯m) iridium phosphide, Ir 2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir 2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B 0 = 306(6) GPa and its pressure derivative B 0'= 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP 4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively lowmore » shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir 2P with metallic, ionic, and covalent characteristics. Additionally, a spin glass behavior is indicated by magnetic susceptibility measurements.« less

  10. Tailored surface structure of LiFePO4/C nanofibers by phosphidation and their electrochemical superiority for lithium rechargeable batteries.

    PubMed

    Lee, Yoon Cheol; Han, Dong-Wook; Park, Mihui; Jo, Mi Ru; Kang, Seung Ho; Lee, Ju Kyung; Kang, Yong-Mook

    2014-06-25

    We offer a brand new strategy for enhancing Li ion transport at the surface of LiFePO4/C nanofibers through noble Li ion conducting pathways built along reduced carbon webs by phosphorus. Pristine LiFePO4/C nanofibers composed of 1-dimensional (1D) LiFePO4 nanofibers with thick carbon coating layers on the surfaces of the nanofibers were prepared by the electrospinning technique. These dense and thick carbon layers prevented not only electrolyte penetration into the inner LiFePO4 nanofibers but also facile Li ion transport at the electrode/electrolyte interface. In contrast, the existing strong interactions between the carbon and oxygen atoms on the surface of the pristine LiFePO4/C nanofibers were weakened or partly broken by the adhesion of phosphorus, thereby improving Li ion migration through the thick carbon layers on the surfaces of the LiFePO4 nanofibers. As a result, the phosphidated LiFePO4/C nanofibers have a higher initial discharge capacity and a greatly improved rate capability when compared with pristine LiFePO4/C nanofibers. Our findings of high Li ion transport induced by phosphidation can be widely applied to other carbon-coated electrode materials.

  11. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  12. Rhenium-osmium and samarium-neodymium isotopic systematics of the stillwater complex

    USGS Publications Warehouse

    Lambert, D.D.; Morgan, J.W.; Walker, R.J.; Shirey, S.B.; Carlson, R.W.; Zientek, M.L.; Koski, M.S.

    1989-01-01

    Isotopic data for the Stillwater Complex, Montana , which formed about 2700 Ma (million years ago), were obtained to evaluate the role of magma mixing in the formation of strategic platinum-group element (PGE) ore deposits. Neodymium and osmium isotopic data indicate that the intrusion formed from at least two geochemically distinct magmas. Ultramafic affinity (U-type) magmas had initial ??Nd of -0.8 to -3.2 and a chondritic initial 187Os/186Os ratio of ???0.88, whereas anorthositic affinity (A-type) magmas had ??Nd of -0.7 to +1.7 and an initial 187Os/186Os ratio of ???1.13. These data suggest that U-type magmas were derived from a lithospheric mantle source containing recycled crustal materials whereas A-type magmas originated either by crustal contamination of basaltic magmas or by partial melting of basalt in the lower crust. The Nd and Os isotopic data also suggest that Os, and probably the other PGEs in ore horizons such as the J-M Reef, was derived from A-type magmas. The Nd and Os isotopic heterogeneity observed in rocks below the J-M Reef also suggests that A-type magmas were injected into the Stillwater U-type magma chamber at several stages during the development of the Ultramafic series.

  13. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range

    NASA Astrophysics Data System (ADS)

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian

    2018-01-01

    Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.

  14. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  15. Magneto-optical far-infrared absorption spectroscopy of the hole states of indium phosphide

    NASA Astrophysics Data System (ADS)

    Lewis, R. A.; Wang, Y.-J.

    2005-03-01

    Far-infrared absorption spectroscopy in magnetic fields of up to 30 T of the zinc acceptor impurity in indium phosphide has revealed for the first time a series of free-hole transitions (Landau-related series) in addition to the familiar bound-hole transitions (Lyman series) as well as hitherto unobserved phonon replicas of both series. Analysis of these data permits the simultaneous direct experimental determination of (i) the hole effective mass, (ii) the species-specific binding energy of the acceptor impurity, (iii) the absolute energy levels of the acceptor excited states of both odd and even parity, (iv) more reliable, and in some cases the only, g factors for acceptor states, through relaxation of the selection rules for phonon replicas, and (v) the LO phonon energy. The method is applicable to other semiconductors and may lead to the reappraisal of their physical parameters.

  16. Osmium uptake, distribution, and 187Os/188Os and 187Re/188Os compositions in Phaeophyceae macroalgae, Fucus vesiculosus: Implications for determining the 187Os/188Os composition of seawater

    NASA Astrophysics Data System (ADS)

    Racionero-Gómez, B.; Sproson, A. D.; Selby, D.; Gannoun, A.; Gröcke, D. R.; Greenwell, H. C.; Burton, K. W.

    2017-02-01

    The osmium isotopic composition (187Os/188Os) of seawater reflects the balance of input from mantle-, continental- and anthropogenic-derived sources. This study utilizes the Phaeophyceae, Fucus vesiculosus, to analyse its Os abundance and uptake, as well as to assess if macroalgae records the Os isotope composition of the seawater in which it lives. The data demonstrates that Os is not located in one specific biological structure within macroalgae, but is found throughout the organism. Osmium uptake was measured by culturing F. vesiculosus non-fertile tips with different concentrations of Os with a known 187Os/188Os composition (∼0.16), which is significantly different from the background isotopic composition of local seawater (∼0.94). The Os abundance of cultured non-fertile tips show a positive correlation to the concentration of the Os doped seawater. Moreover, the 187Os/188Os composition of the seaweed equalled that of the culture medium, strongly confirming the possible use of macroalgae as a biological proxy for the Os isotopic composition of the seawater.

  17. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  18. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus,more » 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.« less

  19. Dilute phosphide nitride materials as photocathodes for electrochemical solar energy conversion

    NASA Astrophysics Data System (ADS)

    Parameshwaran, Vijay; Xu, Xiaoqing; Kang, Yangsen; Harris, James; Wong, H.-S. Philip; Clemens, Bruce

    2013-03-01

    Dilute nitride materials have been used in a variety of III-V photonic devices, but have not been significantly explored in photoelectrochemical applications. This work focuses on using dilute phosphide nitride materials of the form (Al,In)P1-xNx as photocathodes for the generation of hydrogen fuel from solar energy. Heteroepitaxial MOCVD growth of AlPN thin films on GaP yields high quality material with a direct bandgap energy of 2.218 eV. Aligned epitaxial growth of InP and GaP nanowires on InP and Si substrates, respectively, provides a template for designing nanostructured photocathodes over a large area. Electrochemical testing of a AlPN/GaP heterostructure electrode yields up to a sixfold increase in photocurrent enhancement under blue light illumination as compared to a GaP electrode. Additionally, the AlPN/GaP electrodes exhibit no degradation in performance after galvanostatic biasing over time. These results show that (Al,In)P1-xNx is a promising materials system for use in nanoscale photocathode structures.

  20. POP-pincer osmium-polyhydrides: head-to-head (Z)-dimerization of terminal alkynes.

    PubMed

    Alós, Joaquín; Bolaño, Tamara; Esteruelas, Miguel A; Oliván, Montserrat; Oñate, Enrique; Valencia, Marta

    2013-05-20

    A wide range of osmium-polyhydride complexes stabilized by the POP-pincer ligand xant(P(i)Pr2)2 (9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) have been synthesized through cis-OsCl2{κ-S-(DMSO)4} (1, DMSO = dimethyl sulfoxide). Treatment of toluene solutions of this adduct with the diphosphine, under reflux, leads to OsCl2{xant(P(i)Pr2)2}(κ-S-DMSO) (2). The reaction of 2 with H2 in the presence of Et3N affords OsH3Cl{xant(P(i)Pr2)2} (3), which can be also prepared by addition of xant(P(i)Pr2)2 to toluene solutions of the unsaturated d(4)-trihydride OsH3Cl(P(i)Pr3)2 (5). Complex 3 reductively eliminates H2 in toluene at 90 °C. In the presence of dimethyl sulfoxide, the resulting monohydride is trapped by the S-donor molecule to give OsHCl{xant(P(i)Pr2)2}(κ-S-DMSO) (6). The reaction of 2 with H2 is sensible to the Brønsted base. Thus, in contrast to Et3N, NaH removes both chloride ligands and the hexahydride OsH6{xant(P(i)Pr2)2} (7), containing a κ(2)-P-binding diphosphine, is formed under 3 atm of hydrogen at 50 °C. Complex 7 releases a H2 molecule to yield the tetrahydride OsH4{xant(P(i)Pr2)2} (8), which can be also prepared by reaction of OsH6(P(i)Pr3)2 (9) with xant(P(i)Pr2)2. Complex 8 reduces H(+) to give, in addition to H2, the oxidized OsH4-species [OsH4(OTf){xant(P(i)Pr2)2}](+) (10, OTf = trifluoromethanesulfonate). The redox process occurs in two stages via the OsH5-cation [OsH5{xant(P(i)Pr2)2}](+) (11). The metal oxidation state four can be recovered. The addition of acetonitrile to 10 leads to [OsH2(η(2)-H2)(CH3CN){xant(P(i)Pr2)2}](2+) (12). The deprotonation of 12 yields the osmium(IV) trihydride [OsH3(CH3CN){xant(P(i)Pr2)2}](+) (13), which is also formed by addition of HOTf to the acetonitrile solutions of 8. The latter is further an efficient catalyst precursor for the head-to-head (Z)-dimerization of phenylacetylene and tert-butylacetylene. During the activation process of the tetrahydride, the bis(alkynyl)vinylidene derivatives Os

  1. Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P)

    NASA Astrophysics Data System (ADS)

    Yin, Jiuren; Wu, Bozhao; Wang, Yanggang; Li, Zhimi; Yao, Yuanpeng; Jiang, Yong; Ding, Yanhuai; Xu, Fu; Zhang, Ping

    2018-04-01

    Recently, there has been a surge of interest in the research of two-dimensional (2D) phosphides due to their unique physical properties and wide applications. Transition metal phosphides 2H-M 2Ps (Mo2P, W2P, Nb2P and Ta2P) show considerable catalytic activity and energy storage potential. However, the electronic structure and mechanical properties of 2D 2H-M 2Ps are still unrevealed. Here, first-principles calculations are employed to investigate the lattice dynamics, elasticity and thermodynamic properties of 2H-M 2Ps. Results show that M 2Ps with lower stiffness exhibit remarkable lateral deformation under unidirectional loads. Due to the largest average Grüneisen parameter, single-layer Nb2P has the strongest anharmonic vibrations, resulting in the highest thermal expansion coefficient. The lattice thermal conductivities of Ta2P, W2P and Nb2P contradict classical theory, which would predict a smaller thermal conductivity due to the much heavier atom mass. Moreover, the calculations also demonstrate that the thermal conductivity of Ta2P is the highest as well as the lowest thermal expansion, owing to its weak anharmonic phonon scattering and the lowest average Grüneisen parameter. The insight provided by this study may be useful for future experimental and theoretical studies concerning 2D transition metal phosphide materials.

  2. Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions.

    PubMed

    Miao, Yue-E; Li, Fei; Zhou, Yu; Lai, Feili; Lu, Hengyi; Liu, Tianxi

    2017-11-02

    Tailoring the size and controlling the morphology of particular nano-architectures are considered as two promising strategies to improve the catalytic performance of metal nanocrystals towards hydrogen evolution reactions (HERs). Herein, mesoporous cobalt phosphide nanotubes (CoP-NTs) with a three-dimensional network structure have been obtained through a facile and efficient electrospinning technique combined with thermal stabilization and phosphorization treatments. The thermal stabilization process has been demonstrated to play a key role in the morphological tailoring of Co 3 O 4 nanotubes (Co 3 O 4 -NTs). As a result, the CoP-NTs show one-dimensional hollow tubular architecture instead of forming a worm-like tubular CoP structure (W-CoP-NTs) or severely aggregated CoP powder (CoP-NPs) which originate from the Co 3 O 4 nanotubes without thermal stabilization treatment and Co 3 O 4 nanoparticles, respectively. Satisfyingly, under an optimized phosphorization degree, the CoP-NT electrode exhibits a low onset overpotential of 53 mV with a low Tafel slope of 50 mV dec -1 during the HER process. Furthermore, the CoP-NT electrode is capable of driving a large cathodic current density of 10 mA cm -2 at an overpotential of 152 mV, which is much lower than those of its contrast samples, i.e. CoP-NPs (211 mV) and W-CoP-NTs (230 mV). Therefore, this work provides a feasible and general strategy for constructing three-dimensionally organized mesoporous non-noble metal phosphide nanotubes as promising alternative high-performance electrocatalysts for the commercial platinum ones.

  3. Analysis of the spectrum of the (5d6+5d56s) -(5d56p+5d46s6p) transitions of two times ionized osmium (Os III)

    NASA Astrophysics Data System (ADS)

    Azarov, Vladimir I.; Tchang-Brillet, W.-Ü. Lydia; Gayasov, Robert R.

    2018-05-01

    The spectrum of osmium was observed in the (225-2100) Å wavelength region. The (5d6 + 5d56s) - (5d56p + 5d46s6p) transition array of two times ionized osmium, Os III, has been investigated and 1039 spectral lines have been classified in the region. The analysis has led to the determination of the 5d6, 5d56s, 5d56p and 5d46s6p configurations. Fifty-eight levels of the 5d6 and 5d56s configurations in the even system and 142 levels of the 5d56p and 5d46s6p configurations in the odd system have been established. The orthogonal operators technique was used to calculate the level structure and transition probabilities. The energy parameters have been determined by the least squares fit to the observed levels. Calculated transition probability and energy values, as well as LS-compositions obtained from the fitted parameters are presented.

  4. Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator.

    PubMed

    Maidment, Luke; Schunemann, Peter G; Reid, Derryck T

    2016-09-15

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  5. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity.

    PubMed

    Kuhn, Paul-Steffen; Büchel, Gabriel E; Jovanović, Katarina K; Filipović, Lana; Radulović, Siniša; Rapta, Peter; Arion, Vladimir B

    2014-10-20

    A one-electron reduction of osmium(IV) complexes trans-[Os(IV)Cl4(Hazole)2], where Hazole = 1H-pyrazole ([1](0)), 2H-indazole ([2](0)), 1H-imidazole ([3](0)), and 1H-benzimidazole ([4](0)), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-Os(III)Cl4(Hazole)2], where cation = H2pz(+) (H2pz[1]), H2ind(+) (H2ind[2]), H2im(+) (H2im[3]), Ph4P(+) (Ph4P[3]), nBu4N(+) (nBu4N[3]), H2bzim(+) (H2bzim[4]), Ph4P(+) (Ph4P[4]), and nBu4N(+) (nBu4N[4]). All complexes were characterized by elemental analysis, (1)H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1](-) and [4](-) are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5'-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3].

  6. Investigation of Hard Boron Rich Solids: Osmium Diboride and β-Rhombohedral Boron

    NASA Astrophysics Data System (ADS)

    Hebbache, M.; Živković, D.

    Recently, we succeeded in synthesizing three osmium borides, i.e., OsB1.1, Os2B3 and OsB2. Up to date, almost nothing is known about the physical properties of these materials. Microhardness measurements show that OsB2 is extremely hard. Ab initio calculations show that it is due to formation of covalent bonds between boron atoms. OsB2 is also a low compressibility material. It can be used for hard coatings. The β-rhombohedral polymorph of boron is the second hardest elemental crystal (H ≈ 33 GPa). It is also very light and a p-type semiconductor. In early 1970s, it has been shown that the doping of boron with 3d transition elements enhances its hardness by about 25%. We predict that, in general, heavily doped samples MBx, with x ≤ 31 or equivalently a dopant concentration larger than 3.2 at.%, should be ultrahard, i.e., H > 43 GPa. The relevant dopants M are Al, Cu, Sc, Mn, Mg and Li. In addition to these properties, boron-rich materials have a very low volatility, a high chemical inertness and high melting point. They are suitable for applications under extreme conditions and thermoelectric equipment.

  7. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  8. Synthesis and x-ray characterization of cobalt phosphide (Co₂P) nanorods for the oxygen reduction reaction

    DOE PAGES

    Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; ...

    2015-07-14

    Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co₂P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable thanmore » conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.« less

  9. A review of aluminium phosphide poisoning and a flowchart to treat it.

    PubMed

    Hashemi-Domeneh, Behrooz; Zamani, Nasim; Hassanian-Moghaddam, Hossein; Rahimi, Mitra; Shadnia, Shahin; Erfantalab, Peyman; Ostadi, Ali

    2016-09-01

    The use of pesticides such as aluminium phosphide (AlP) has increased in the recent years and improved the quantity and quality of agricultural products in a number of developing countries. The downside is that AlP causes severe chronic and acute health effects that have reached major proportions in countries such as India, Iran, Bangladesh, and Jordan. Nearly 300,000 people die due to pesticide poisoning in the world every year. Poisoning with AlP accounts for many of these deaths. Unfortunately, at the same time, there is no standard treatment for it. The aim of this article is to give a brief review of AlP poisoning and propose a treatment flowchart based on the knowledge gained so far. For this purpose we reviewed all articles on the management of AlP poisoning published from 2000 till now. Using a modified Delphi design, we have designed a handy flowchart that could be used as a guide for AlP poisoning management of patients in emergency centres.

  10. High Pressure Elastic Constants of High-Pressure Iron Analog Osmium

    NASA Astrophysics Data System (ADS)

    Godwal, B. K.; Geballe, Z.; Jeanloz, R.

    2011-12-01

    Understanding the elasticity of hcp iron is important both for ascertaining the stable phase and for explaining the observed seismic anomalies of Earth's inner core. A systematic experimental study of analog materials is warranted because experiments at inner-core conditions remain exceptionally challenging and theory has yielded conflicting results for iron. The deformation of hexagonal close-packed (hcp) Os, an analog for the high-pressure hcp form of Fe, has been characterized under non-hydrostatic stresses using synchrotron-based angular-dispersive radial x-ray diffraction to pressures of 60 GPa at room temperature. Starting with published ultrasonic values of elastic constants and previous measurements of linear and volume compressibilities, we estimate the single-crystal elasticity tensor of osmium to 60 GPa and find that the crystal orientation with the largest shear modulus, (002), accommodates the largest shear stress (10 GPa) and a differential strain surpassing the Voigt iso-strain limit. We find the conventional elastic model, bounded by Reuss (iso-stress) and Voigt limits, inadequate for explaining our measurements. Instead, we infer that plastic deformation limits the amount of shear stress supported by the crystal planes near the a-axis, causing the more elastically strong c-axis to support the majority of the differential strain. This conclusion is consistent with the elasto-plastic self-consistent approach used to model the effect of plasticity on the high-pressure deformation of hcp-Co (Merkel et al, PRB 79, 064110 (2009)). Importantly, we document a strength anisotropy so large that the Voigt (elastic) limit is clearly surpassed.

  11. Protonation of a lanthanum phosphide-alkyl occurs at the P-La not the C-La bond: isolation of a cationic lanthanum alkyl complex.

    PubMed

    Izod, Keith; Liddle, Stephen T; Clegg, William

    2004-08-07

    Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))

  12. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  13. Synthesis of indium phosphide nanocrystals by sonochemical method and survey of optical properties

    NASA Astrophysics Data System (ADS)

    Trung, Ho Minh; Duy Thien, Nguyen; Van Vu, Le; Long, Nguyen Ngoc; Hieu, Truong Kim

    2013-10-01

    Indium phosphide semiconductor materials (InP) have various applications in the field of semiconductor optoelectronics because of its advantages. But the making of this material is difficult due to the very weak chemical activity of In element. In this report we present a simple method to synthesize InP nanocrystals from inorganic precursors such as indium chloride (InCl3), yellow phosphorus (P4), reduction agent NaBH4 at low temperature with the aid of ultrasound. Structural, morphological and optical properties of the formed InP nanocrystals were examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersed X-ray analysis (EDS), Raman scattering, absorption and photoluminscence (PL) spectroscopy. After the surface treatment of InP nanocrystals with liquid hydrofluoric (HF) acid, the luminescence spectra have an enhanced intensity and consist of the peaks in the region from 500 nm to 700 nm. The intensity of these peaks strongly depends on the concentration and etching time of HF. International Workshop on Advanced Materials and Nanotechnology 2012 (IWAMN 2012).

  14. Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting.

    PubMed

    Xin, Yanmei; Kan, Xiang; Gan, Li-Yong; Zhang, Zhonghai

    2017-10-24

    Solar-driven overall water splitting is highly desirable for hydrogen generation with sustainable energy sources, which need efficient, earth-abundant, robust, and bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, we propose a heterogeneous bimetallic phosphide/sulfide nanocomposite electrocatalyst of NiFeSP on nickel foam (NiFeSP/NF), which shows superior electrocatalytic activity of low overpotentials of 91 mV at -10 mA cm -2 for HER and of 240 mV at 50 mA cm -2 for OER in 1 M KOH solution. In addition, the NiFeSP/NF presents excellent overall water splitting performance with a cell voltage as low as 1.58 V at a current density of 10 mA cm -2 . Combining with a photovoltaic device of a Si solar cell or integrating into photoelectrochemical (PEC) systems, the bifunctional NiFeSP/NF electrocatalyst implements unassisted solar-driven water splitting with a solar-to-hydrogen conversion efficiency of ∼9.2% and significantly enhanced PEC performance, respectively.

  15. Submillimeter sources for radiometry using high power Indium Phosphide Gunn diode oscillators

    NASA Technical Reports Server (NTRS)

    Deo, Naresh C.

    1990-01-01

    A study aimed at developing high frequency millimeter wave and submillimeter wave local oscillator sources in the 60-600 GHz range was conducted. Sources involved both fundamental and harmonic-extraction type Indium Phosphide Gunn diode oscillators as well as varactor multipliers. In particular, a high power balanced-doubler using varactor diodes was developed for 166 GHz. It is capable of handling 100 mW input power, and typically produced 25 mW output power. A high frequency tripler operating at 500 GHz output frequency was also developed and cascaded with the balanced-doubler. A dual-diode InP Gunn diode combiner was used to pump this cascaded multiplier to produce on the order of 0.5 mW at 500 GHz. In addition, considerable development and characterization work on InP Gunn diode oscillators was carried out. Design data and operating characteristics were documented for a very wide range of oscillators. The reliability of InP devices was examined, and packaging techniques to enhance the performance were analyzed. A theoretical study of a new class of high power multipliers was conducted for future applications. The sources developed here find many commercial applications for radio astronomy and remote sensing.

  16. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  17. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marking, Gregory Allen

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf 10Ta 3S 3 was found to crystallize in a new-structure type similar to the knownmore » gamma brasses. This structure is unique in that it is the only reported "stuffed" gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo Kα X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co 2Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.« less

  18. High-pressure structural parameters and equation of state of osmium to 207 GPa

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Vohra, Yogesh K.; ...

    2017-09-08

    We studied the most incompressible transition metal osmium (Os) under high pressure. There is significant interest in Os because of the structural anomalies attributed to topological transitions in the Fermi surface for valence electrons in the hexagonal close-packed phase. We report on measurements of structural parameters and equation of state on Os metal to a pressure of 207 GPa at ambient temperature using platinum as a pressure standard. We also obtained angle-dispersive X-ray diffraction data at a synchrotron source with closely spaced pressure intervals to observe any discontinuities or anomalies in the axial c/a ratio at high pressures. Rietveld refinementsmore » of X-ray diffraction data show a slowly varying axial ratio (c/a) with a broad minimum at 75 GPa. Our data do not provide any evidence of anomalous behavior in the c/a ratio in Os at 25 or 150 GPa as have been reported in previous studies. These experimental results are in agreement with theoretical calculations that do not predict any anomalous behavior in c/a ratio in Os under extreme conditions. We present an equation of state for Os to 207 GPa (V/V 0 = 0.761) at ambient temperature and compare our results with the previously published data.« less

  19. High-pressure structural parameters and equation of state of osmium to 207 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Vohra, Yogesh K.

    We studied the most incompressible transition metal osmium (Os) under high pressure. There is significant interest in Os because of the structural anomalies attributed to topological transitions in the Fermi surface for valence electrons in the hexagonal close-packed phase. We report on measurements of structural parameters and equation of state on Os metal to a pressure of 207 GPa at ambient temperature using platinum as a pressure standard. We also obtained angle-dispersive X-ray diffraction data at a synchrotron source with closely spaced pressure intervals to observe any discontinuities or anomalies in the axial c/a ratio at high pressures. Rietveld refinementsmore » of X-ray diffraction data show a slowly varying axial ratio (c/a) with a broad minimum at 75 GPa. Our data do not provide any evidence of anomalous behavior in the c/a ratio in Os at 25 or 150 GPa as have been reported in previous studies. These experimental results are in agreement with theoretical calculations that do not predict any anomalous behavior in c/a ratio in Os under extreme conditions. We present an equation of state for Os to 207 GPa (V/V 0 = 0.761) at ambient temperature and compare our results with the previously published data.« less

  20. Laser ablation synthesis of arsenic-phosphide Asm Pn clusters from As-P mixtures. Laser desorption ionisation with quadrupole ion trap time-of-flight mass spectrometry: The mass spectrometer as a synthesizer.

    PubMed

    Kubáček, Pavel; Prokeš, Lubomír; Pamreddy, Annapurna; Peña-Méndez, Eladia María; Conde, José Elias; Alberti, Milan; Havel, Josef

    2018-05-30

    Only a few arsenic phosphides are known. A high potential for the generation of new compounds is offered by Laser Ablation Synthesis (LAS) and when Laser Desorption Ionization (LDI) is coupled with simultaneous Time-Of-Flight Mass Spectrometry (TOFMS), immediate identification of the clusters can be achieved. LAS was used for the generation of arsenic phosphides via laser ablation of phosphorus-arsenic mixtures while quadrupole ion trap time-of-flight mass spectrometry (QIT-TOFMS) was used to acquire the mass spectra. Many new As m P n ± clusters (479 binary and 369 mono-elemental) not yet described in the literature were generated in the gas phase and their stoichiometry determined. The likely structures for some of the observed clusters arbitrary selected (20) were computed by density functional theory (DFT) optimization. LAS is an advantageous approach for the generation of new As m P n clusters, while mass spectrometry was found to be an efficient technique for the determination of cluster stoichiometry. The results achieved might inspire the synthesis of new materials. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H 2:1 guaiacol, weight hourly space velocity 5 h $-$1). Ligand-capped Ni, Pt, Rh, Ni 2P, and Rh 2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO 2 and Pt/SiO 2more » prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO 2 catalyst. The NP-Ni/SiO 2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO 2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO 2, NP-Rh2P/SiO 2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO 2 and IW-Pt/SiO 2 catalyst exhibited the highest normalized rate of guaiacol conversion per m 2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  2. Evaluation of Silica-Supported Metal and Metal Phosphide Nanoparticle Catalysts for the Hydrodeoxygenation of Guaiacol Under Ex Situ Catalytic Fast Pyrolysis Conditions

    DOE PAGES

    Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...

    2015-09-30

    A series of metal and metal phosphide catalysts were investigated for the hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis (CFP) conditions (350 °C, 0.5 MPa, 12 H 2:1 guaiacol, weight hourly space velocity 5 h $-$1). Ligand-capped Ni, Pt, Rh, Ni 2P, and Rh 2P nanoparticles (NPs) were prepared using solution-phase synthesis techniques and dispersed on a silica support. For the metal phosphide NP-catalysts, a synthetic route that relies on the decomposition of a single molecular precursor was employed. The reactivity of the NP-catalysts was compared to a series of reference materials including Ni/SiO 2 and Pt/SiO 2more » prepared using incipient wetness (IW) impregnation and a commercial (com) Pt/SiO 2 catalyst. The NP-Ni/SiO 2 catalyst exhibited the largest reduction in the oxygen mol% of the organic phase and outperformed the IW-Ni/SiO 2 material. Although it was less active for guaiacol conversion than NP-Ni/SiO 2, NP-Rh2P/SiO 2 demonstrated the largest production of completely deoxygenated products and the highest selectivity to anisole, benzene, and cyclohexane, suggesting that it is a promising catalyst for deoxygenation of aryl-OH bonds. Finally, the com-Pt/SiO 2 and IW-Pt/SiO 2 catalyst exhibited the highest normalized rate of guaiacol conversion per m 2 and per gram of active phase, respectively, but did not produce any completely deoxygenated products.« less

  3. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, andmore » light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.« less

  4. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites.

    PubMed

    Patzke, Greta R; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-12-27

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H₂O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP-Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics.

  5. Laser ablation synthesis of new gold phosphides using red phosphorus and nanogold as precursors. Laser desorption ionisation time-of-flight mass spectrometry.

    PubMed

    Panyala, Nagender Reddy; Peña-Méndez, Eladia María; Havel, Josef

    2012-05-15

    Gold phosphides show unique optical or semiconductor properties and there are extensive high technology applications, e.g. in laser diodes, etc. In spite of the various AuP structures known, the search for new materials is wide. Laser ablation synthesis is a promising screening and synthetic method. Generation of gold phosphides via laser ablation of red phosphorus and nanogold mixtures was studied using laser desorption ionisation time-of-flight mass spectrometry (LDI TOFMS). Gold clusters Au(m)(+) (m = 1 to ~35) were observed with a difference of one gold atom and their intensities were in decreasing order with respect to m. For P(n)(+) (n = 2 to ~111) clusters, the intensities of odd-numbered phosphorus clusters are much higher than those for even-numbered phosphorus clusters. During ablation of P-nanogold mixtures, clusters Au(m)(+) (m = 1-12), P(n)(+) (n = 2-7, 9, 11, 13-33, 35-95 (odd numbers)), AuP(n)(+) (n = 1, 2-88 (even numbers)), Au(2)P(n)(+) (n = 1-7, 14-16, 21-51 (odd numbers)), Au(3)P(n)(+) (n = 1-6, 8, 9, 14), Au(4)P(n)(+) (n = 1-9, 14-16), Au(5)P(n)(+) (n = 1-6, 14, 16), Au(6)P(n)(+) (n = 1-6), Au(7)P(n)(+) (n = 1-7), Au(8)P(n)(+) (n = 1-6, 8), Au(9)P(n)(+) (n = 1-10), Au(10)P(n)(+) (n = 1-8, 15), Au(11)P(n)(+) (n = 1-6), and Au(12)P(n)(+) (n = 1, 2, 4) were detected in positive ion mode. In negative ion mode, Au(m)(-) (m = 1-5), P(n)(-) (n = 2, 3, 5-11, 13-19, 21-35, 39, 41, 47, 49, 55 (odd numbers)), AuP(n)(-) (n = 4-6, 8-26, 30-36 (even numbers), 48), Au(2)P(n)(-) (n = 2-5, 8, 11, 13, 15, 17), A(3) P(n)(-) (n = 6-11, 32), Au(4)P(n)(-) (n = 1, 2, 4, 6, 10), Au(6)P(5)(-), and Au(7)P(8)(-) clusters were observed. In both modes, phosphorus-rich Au(m)P(n) clusters prevailed. The first experimental evidence for formation of AuP(60) and gold-covered phosphorus Au(12)P(n) (n = 1, 2, 4) clusters is given. The new gold phosphides generated might inspire synthesis of

  6. Bimetallic Cobalt-Based Phosphide Zeolitic Imidazolate Framework: CoP x Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Zhu, Chengzhou; Xu, Bo Z.

    Cobalt-based bimetallic phosphide encapsulated in carbonized zeolitic imadazolate frameworks has been successfully synthesized and showed excellent activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory calculation and electrochemical measurements reveal that the electrical conductivity and electrochemical activity are closely associated with the Co2P/CoP mixed phase behaviors upon Cu metal doping. This relationship is found to be the decisive factor for enhanced electrocatalytic performance. Moreover, the precise control of Cu content in Co-host lattice effectively alters the Gibbs free energy for H* adsorption, which is favorable for facilitating reaction kinetics. Impressively, an optimized performance hasmore » been achieved with mild Cu doping in Cu0.3Co2.7P/nitrogen-doped carbon (NC) which exhibits an ultralow overpotential of 0.19 V at 10 mA cm–2 and satisfying stability for OER. Cu0.3Co2.7P/NC also shows excellent HER activity, affording a current density of 10 mA cm–2 at a low overpotential of 0.22 V. In addition, a homemade electrolyzer with Cu0.3Co2.7P/NC paired electrodes shows 60% larger current density than Pt/ RuO2 couple at 1.74 V, along with negligible catalytic deactivation after 50 h operation. The manipulation of electronic structure by controlled incorporation of second metal sheds light on understanding and synthesizing bimetallic transition metal phosphides for electrolysis-based energy conversion.« less

  7. Intense Femtosecond Laser-Mediated Electrical Discharge Enables Preparation of Amorphous Nickel Phosphide Nanoparticles.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Li, He-Long; Wang, Lei; Zhang, Yong-Lai; Sun, Hong-Bo

    2018-05-09

    Reported here is a high-efficiency preparation method of amorphous nickel phosphide (Ni-P) nanoparticles by intense femtosecond laser irradiation of nickel sulfate and sodium hypophosphite aqueous solution. The underlying mechanism of the laser-assisted preparation was discussed in terms of the breaking of chemical bond in reactants via highly intense electric field discharge generated by the intense femtosecond laser. The morphology and size of the nanoparticles can be tuned by varying the reaction parameters such as ion concentration, ion molar ratio, laser power, and irradiation time. X-ray diffraction and transmission electron microscopy results demonstrated that the nanoparticles were amorphous. Finally, the thermogravimetric-differential thermal analysis experiment verified that the as-synthesized noncrystalline Ni-P nanoparticles had an excellent catalytic capability toward thermal decomposition of ammonium perchlorate. This strategy of laser-mediated electrical discharge under such an extremely intense field may create new opportunities for the decomposition of molecules or chemical bonds that could further facilitate the recombination of new atoms or chemical groups, thus bringing about new possibilities for chemical reaction initiation and nanomaterial synthesis that may not be realized under normal conditions.

  8. Electronic Structures of Free-Standing Nanowires made from Indirect Bandgap Semiconductor Gallium Phosphide

    PubMed Central

    Liao, Gaohua; Luo, Ning; Chen, Ke-Qiu; Xu, H. Q.

    2016-01-01

    We present a theoretical study of the electronic structures of freestanding nanowires made from gallium phosphide (GaP)—a III-V semiconductor with an indirect bulk bandgap. We consider [001]-oriented GaP nanowires with square and rectangular cross sections, and [111]-oriented GaP nanowires with hexagonal cross sections. Based on tight binding models, both the band structures and wave functions of the nanowires are calculated. For the [001]-oriented GaP nanowires, the bands show anti-crossing structures, while the bands of the [111]-oriented nanowires display crossing structures. Two minima are observed in the conduction bands, while the maximum of the valence bands is always at the Γ-point. Using double group theory, we analyze the symmetry properties of the lowest conduction band states and highest valence band states of GaP nanowires with different sizes and directions. The band state wave functions of the lowest conduction bands and the highest valence bands of the nanowires are evaluated by spatial probability distributions. For practical use, we fit the confinement energies of the electrons and holes in the nanowires to obtain an empirical formula. PMID:27307081

  9. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide.

    PubMed

    Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing

    2016-01-01

    With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  11. Rational Design of Zinc Phosphide Heterojunction Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bosco, Jeffrey Paul

    The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an ``earth-abundant'' solar absorber, we find zinc phosphide (α-Zn 3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>10. 4cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P 2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn 3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P 2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found. The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P 2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are

  12. Observation of three-component fermions in the topological semimetal molybdenum phosphide.

    PubMed

    Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H

    2017-06-29

    In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.

  13. Observation of three-component fermions in the topological semimetal molybdenum phosphide

    NASA Astrophysics Data System (ADS)

    Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.

    2017-06-01

    In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.

  14. Osmium isotope perturbations during the Pliensbachian-Toarcian (Early Jurassic): Relationships between volcanism, weathering, and climate change

    NASA Astrophysics Data System (ADS)

    Percival, Lawrence; Cohen, Anthony; Davies, Marc; Dickson, Alexander; Jenkyns, Hugh; Hesselbo, Stephen; Mather, Tamsin; Xu, Weimu; Storm, Marisa

    2016-04-01

    The Mesozoic Era marked a time of greenhouse conditions on Earth, punctuated by a number of abrupt perturbations to the carbon cycle, such as Ocean Anoxic Events (OAEs). OAEs are typically marked in the stratigraphic record by the appearance of organic-rich shales, and excursions in carbon-isotope ratios registered in carbonates and organic matter. A range of geochemical evidence indicates changes to global temperatures, typically featuring abrupt warming possibly caused by CO2 emissions resulting from Large Igneous Province (LIP) volcanism. A warmer atmosphere is thought to have led to changes in the global hydrological cycle, which would likely have enhanced global weathering rates. The Toarcian OAE (T-OAE) is inferred, from osmium isotope ratios in organic-rich mudrocks from Yorkshire and western North America, to have been a time of such increased weathering rates. However, it is likely that the sediments at these locations were deposited in relatively hydrographically restricted environments, potentially more susceptible to the influence of local input; consequently, they may not offer the best representation of the global seawater Os-isotope composition at that time. In this study, we have measured the osmium isotope composition of siciliclastic mudrocks in a core from the Mochras borehole (Llanbedr Farm, Cardigan Bay Basin, Wales), which constitutes a sedimentary record for a fully open-marine seaway that connected Tethys to the Boreal ocean during the Toarcian. We analysed samples from strata including both the T-OAE and preceding Pliensbachian-Toarcian boundary (Pl-To), both of which record multiple geochemical excursions and records of elevated extinction amongst benthic fauna. We find that the latest Pliensbachian records seawater 187Os/188Os of ~0.35-0.4, rising to ~0.5 at the Pl-To boundary, before a further rise to ~0.7 during the T-OAE. We conclude that such increases in radiogenic Os flux to the ocean system resulted from enhanced continental

  15. Electrostatically driven resonance energy transfer in "cationic" biocompatible indium phosphide quantum dots.

    PubMed

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P

    2017-05-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

  16. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites

    PubMed Central

    Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-01-01

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296

  17. Forward-biased current annealing of radiation degraded indium phosphide and gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Michael, Sherif; Cypranowski, Corinne; Anspaugh, Bruce

    1990-01-01

    The preliminary results of a novel approach to low-temperature annealing of previously irradiated indium phosphide and gallium arsenide solar cells are reported. The technique is based on forward-biased current annealing. The two types of III-V solar cells were irradiated with 1-MeV electrons to a fluence level of (1-10) x 10 to the 14th electrons/sq cm. Several annealing attempts were made, varying all conditions. Optimum annealing was achieved when cells were injected with minority currents at a constant 90 C. The current density for each type of cell was also determined. Significant recovery of degraded parameters was achieved in both cases. However, the InP cell recovery notably exceeded the recovery in GaAs cells. The recovery is thought to be caused by current-stimulated reordering of the radiator-induced displacement damage. Both types of cell were then subjected to several cycles of irradiation and annealing. The results were also very promising. The significant recovery of degraded cell parameters at low temperature might play a major role in considerably extending the end of life of future spacecraft.

  18. Direct Band Gap Gallium Antimony Phosphide (GaSbxP1−x) Alloys

    PubMed Central

    Russell, H. B.; Andriotis, A. N.; Menon, M.; Jasinski, J. B.; Martinez-Garcia, A.; Sunkara, M. K.

    2016-01-01

    Here, we report direct band gap transition for Gallium Phosphide (GaP) when alloyed with just 1–2 at% antimony (Sb) utilizing both density functional theory based computations and experiments. First principles density functional theory calculations of GaSbxP1−x alloys in a 216 atom supercell configuration indicate that an indirect to direct band gap transition occurs at x = 0.0092 or higher Sb incorporation into GaSbxP1−x. Furthermore, these calculations indicate band edge straddling of the hydrogen evolution and oxygen evolution reactions for compositions ranging from x = 0.0092 Sb up to at least x = 0.065 Sb making it a candidate for use in a Schottky type photoelectrochemical water splitting device. GaSbxP1−x nanowires were synthesized by reactive transport utilizing a microwave plasma discharge with average compositions ranging from x = 0.06 to x = 0.12 Sb and direct band gaps between 2.21 eV and 1.33 eV. Photoelectrochemical experiments show that the material is photoactive with p-type conductivity. This study brings attention to a relatively uninvestigated, tunable band gap semiconductor system with tremendous potential in many fields. PMID:26860470

  19. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.

    PubMed

    Li, Jiayuan; Li, Jing; Zhou, Xuemei; Xia, Zhaoming; Gao, Wei; Ma, Yuanyuan; Qu, Yongquan

    2016-05-04

    To search for the efficient non-noble metal based and/or earth-abundant electrocatalysts for overall water-splitting is critical to promote the clean-energy technologies for hydrogen economy. Herein, we report nickel phosphide (NixPy) catalysts with the controllable phases as the efficient bifunctional catalysts for water electrolysis. The phases of NixPy were determined by the temperatures of the solid-phase reaction between the ultrathin Ni(OH)2 plates and NaH2PO2·H2O. The NixPy with the richest Ni5P4 phase synthesized at 325 °C (NixPy-325) delivered efficient and robust catalytic performance for hydrogen evolution reaction (HER) in the electrolytes with a wide pH range. The NixPy-325 catalysts also exhibited a remarkable performance for oxygen evolution reaction (OER) in a strong alkaline electrolyte (1.0 M KOH) due to the formation of surface NiOOH species. Furthermore, the bifunctional NixPy-325 catalysts enabled a highly performed overall water-splitting with ∼100% Faradaic efficiency in 1.0 M KOH electrolyte, in which a low applied external potential of 1.57 V led to a stabilized catalytic current density of 10 mA/cm(2) over 60 h.

  20. Byproduct-free mass production of compound semiconductor nanowires: zinc phosphide

    NASA Astrophysics Data System (ADS)

    Chen, Yixi; Polinnaya, Rakesh; Vaddiraju, Sreeram

    2018-05-01

    A method for the mass production of compound semiconductor nanowires that involves the direct reaction of component elements in a chemical vapor deposition chamber (CVD) is presented. This method results in nanowires, without the associated production of any other byproducts such as nanoparticles or three-dimensional (3D) bulk crystals. Furthermore, no unreacted reactants remain mixed with the nanowire product in this method. This byproduct-free nanowire production thus circumvents the need to tediously purify and collect nanowires from a mixture of products/reactants after their synthesis. Demonstration made using zinc phosphide (Zn3P2) material system as an example indicated that the direct reaction of zinc microparticles with phosphorus supplied via the vapor phase results in the production of gram quantities of nanowires. To enhance thermal transport and achieve the complete reaction of zinc microparticles, while simultaneously ensuring that the microparticles do not agglomerate into macroscale zinc particles and partly remain unreacted (owing to diffusion limitations), pellets composed of mixtures of zinc and a sacrificial salt, NH4Cl, were employed as the starting material. The sublimation by decomposition of NH4Cl in the early stages of the reaction leaves a highly porous pellet of zinc composed of only zinc microparticles, which allows for inward diffusion of phosphorus/outward diffusion of zinc and the complete conversion of zinc into Zn3P2 nanowires. NH4Cl also aids in removal of any native oxide layer present on the zinc microparticles that may prevent their reaction with phosphorus. This method may be used to mass produce many other nanowires in a byproduct-free manner, besides Zn3P2.

  1. Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen.

    PubMed

    Liu, Mengjia; Li, Jinghong

    2016-01-27

    The development of efficient and low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalysts for renewable-energy conversion techniques is highly desired. A kind of hollow polyhedral cobalt phosphide (CoP hollow polyhedron) is developed as efficient bifunctional electrocatalysts for HER and OER templated by Co-centered metal-organic frameworks. The as-prepared CoP hollow polyhedron, which have large specific surface area and high porosity providing rich catalytic active sites, show excellent electrocatalytic performances for both HER and OER in acidic and alkaline media, respectively, with onset overpotentials of 35 and 300 mV, Tafel slopes of 59 and 57 mV dec(-1), and a current density of 10 mA cm(-2) at overpotentials of 159 and 400 mV for HER and OER, respectively, which are remarkably superior to those of particulate CoP (CoP particles) and comparable to those of commercial noble-metal catalysts. In addition, the CoP hollow polyhedron also show good durability after long-term operations.

  2. A negative excursion at 14-16 Ma in seawater osmium isotope record: Implications for paleoceanographic studies using Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Tejada, M. L. G.; Suzuki, K.

    2017-12-01

    Osmium isotope stratigraphy is a recently proposed method to determine the depositional age of Fe-Mn crusts [1, 2]. Seawater Os isotope (187Os/188Os) is roughly determined by the balance of riverine Os inputs with radiogenic value (187Os/188Os = 1.4), and mantle-derived and extra-terrestrial Os inputs with non-radiogenic value (187Os/188Os = 0.12) [3]. Secular variation of global seawater Os isotope (seawater Os isotope curve) has been reconstructed by the analysis of pelagic sediments and exhibits large variations ranging from 0.2 to 1.0 with several negative excursions [3]. Hence, the depositional age of Fe-Mn crusts can be approximately estimated by fitting their Os isotope depth profiles to the seawater Os isotope curve (Osmium isotope stratigraphy). However, this method allows multiple interpretations which are partly due to the lack of high-resolution seawater Os isotope curve [1, 2]. For example, the available seawater Os isotope curve does not exhibit negative anomaly during the Miocene, which contrasts with Os isotope records of Fe-Mn crusts [4]. In the present study, we obtained a high-resolution Os isotope record of Miocene seawater using hemipelagic sediments from IODP Expedition 351 SiteU1438. We found a small negative Os isotope anomaly as low as 0.7 from sediments deposited at 14-16 Ma. The magnitude of this anomaly is similar to those reported from Fe-Mn crusts. Although the extrapolation of Be-10 ages for Fe-Mn crust indicate a younger age for the anomaly ( 11 Ma) [4], we could not find any discernable isotope anomaly at 11 Ma. Our finding is consistent with the timing of major eruption of the Columbia River flood basalts (CFRB) which could provide non-radiogenic Os to seawater at 14-16 Ma [5]. Hence, we suggest that the observed isotope anomaly reflect eruption and subsequent weathering of the CFRB. As the similar Os isotope anomaly is commonly found from Fe-Mn crusts, the Os isotope anomaly at 14-16 Ma could be used as a key event to constrain

  3. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    PubMed

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  4. Towards understanding the mechanism of rhenium and osmium precipitation in tungsten and its implication for tungsten-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Deng, Huiqiu; Lu, Gang; Lu, Guang-Hong

    2018-07-01

    Using a first-principles method in combination with thermodynamic models, we investigate the interaction between rhenium/osmium (Re/Os) and defects to explore the mechanism of radiation-induced Re/Os precipitation in tungsten (W). We demonstrate that radiation-induced defects play a key role in the solute precipitation in W, especially for self-interstitial atoms (SIAs). The presence of SIAs can significantly reduce the total nucleation free energy change of Re/Os, and thus facilitate the nucleation of Re/Os in W. Further, SIA is shown to be easily trapped by Re/Os once overcoming a low energy barrier, forming a W-Re/Os mixed dumbbell. Such W-Re/Os dumbbell forms a high stable Re/Os-Re/Os dumbbell structure with the substitutional Re/Os atoms, which can serve as a trapping centre for subsequent interstitial-Re/Os, leading to the growth of Re/Os-rich clusters. Consequently, an interstitial-mediated migration and aggregation mechanism for Re/Os precipitation in W has been proposed. Our results reveale that the alloying elements-defects interaction has significantly effect on their behaviors under irradiation, which should be considered in the design of W-based alloys for future fusion devices.

  5. Osmium isotope variations in the oceans recorded by Fe-Mn crusts

    USGS Publications Warehouse

    Burton, K.W.; Bourdon, B.; Birck, J.-L.; Allegre, C.J.; Hein, J.R.

    1999-01-01

    This study presents osmium (Os) isotope data for recent growth surfaces of hydrogenetic ferromanganese (Fe-Mn) crusts from the Pacific, Atlantic and Indian Oceans. In general, these data indicate a relatively uniform Os isotopic composition for modern seawater, but suggest that North Atlantic seawater is slightly more radiogenic than that of the Pacific and Indian Oceans. The systematic difference in the Os isotopic composition between the major oceans probably reflects a greater input of old continental material with a high Re/Os ratio in the North Atlantic Ocean, consistent with the distribution of Nd and Pb isotopes. This spatial variation in the Os isotope composition in seawater is consistent with a residence time for Os of between 2 and 60 kyr. Indian Ocean samples show no evidence of a local source of radiogenic Os, which suggests that the present-day riverine input from the Himalaya-Tibet region is not a major source for Os. Recently formed Fe-Mn crusts from the TAG hydrothermal field in the North Atlantic yield an Os isotopic composition close to that of modern seawater, which indicates that, in this area, the input of unradiogenic Os from the hydrothermal alteration of oceanic crust is small. However, some samples from the deep Pacific (???4 km) possess a remarkably unradiogenic Os isotope composition (187Os/186Os ratios as low as 4.3). The compositional control of Os incorporation into the crusts and mixing relationships suggest that this unradiogenic composition is most likely due to the direct incorporation of micrometeoritic or abyssal peridotite particles, rather than indicating the presence of an unradiogenic deep-water mass. Moreover, this unradiogenic signal appears to be temporary, and local, and has had little apparent effect on the overall evolution of seawater. These results confirm that input of continental material through erosion is the dominant source of Os in seawater, but it is not clear whether global Os variations are due to the input

  6. Pushing indium phosphide quantum dot emission deeper into the near infrared

    NASA Astrophysics Data System (ADS)

    Saeboe, A. M.; Kays, J.; Mahler, A. H.; Dennis, A. M.

    2018-02-01

    Cadmium-free near infrared (NIR) emitting quantum dots (QDs) have significant potential for multiplexed tissue-depth imaging applications in the first optical tissue window (i.e., 650 - 900 nm). Indium phosphide (InP) chemistry provides one of the more promising cadmium-free options for biomedical imaging, but the full tunability of this material has not yet been achieved. Specifically, InP QD emission has been tuned from 480 - 730 nm in previous literature reports, but examples of samples emitting from 730 nm to the InP bulk bandgap limit of 925 nm are lacking. We hypothesize that by generating inverted structures comprising ZnSe/InP/ZnS in a core/shell/shell heterostructure, optical emission from the InP shell can be tuned by changing the InP shell thickness, including pushing deeper into the NIR than current InP QDs. Colloidal synthesis methods including hot injection precipitation of the ZnSe core and a modified successive ion layer adsorption and reaction (SILAR) method for stepwise shell deposition were used to promote growth of core/shell/shell materials with varying thicknesses of the InP shell. By controlling the number of injections of indium and phosphorous precursor material, the emission peak was tuned from 515 nm to 845 nm (2.41 - 1.47 eV) with consistent full width half maximum (FWHM) values of the emission peak 0.32 eV. To confer water solubility, the nanoparticles were encapsulated in PEGylated phospholipid micelles, and multiplexing of NIR-emitting InP QDs was demonstrated using an IVIS imaging system. These materials show potential for multiplexed imaging of targeted QD contrast agents in the first optical tissue window.

  7. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide pre-catalysts† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05033j

    PubMed Central

    Xu, Junyuan; Li, Junjie; Xiong, Dehua; Zhang, Bingsen; Liu, Yuefeng; Wu, Kuang-Hsu; Amorim, Isilda; Li, Wei

    2018-01-01

    Transition metal phosphides (TMPs) have recently emerged as a new class of pre-catalysts that can efficiently catalyze the oxygen evolution reaction (OER). However, how the OER activity of TMPs varies with the catalyst composition has not been systematically explored. Here, we report the alkaline OER electrolysis of a series of nanoparticulate phosphides containing different equimolar metal (M = Fe, Co, Ni) components. Notable trends in OER activity are observed, following the order of FeP < NiP < CoP < FeNiP < FeCoP < CoNiP < FeCoNiP, which indicate that the introduction of a secondary metal(s) to a mono-metallic TMP substantially boosts the OER performance. We ascribe the promotional effect to the enhanced oxidizing power of bi- and tri-metallic TMPs that can facilitate the formation of MOH and chemical adsorption of OH– groups, which are the rate-limiting steps for these catalysts according to our Tafel analysis. Remarkably, the tri-metallic FeCoNiP pre-catalyst exhibits exceptionally high apparent and intrinsic OER activities, requiring only 200 mV to deliver 10 mA cm–2 and showing a high turnover frequency (TOF) of ≥0.94 s–1 at the overpotential of 350 mV. PMID:29780476

  8. CVD growth and properties of boron phosphide on 3C-SiC

    NASA Astrophysics Data System (ADS)

    Padavala, Balabalaji; Frye, C. D.; Wang, Xuejing; Raghothamachar, Balaji; Edgar, J. H.

    2016-09-01

    Improving the crystalline quality of boron phosphide (BP) is essential for realizing its full potential in semiconductor device applications. In this study, 3C-SiC was tested as a substrate for BP epitaxy. BP films were grown on 3C-SiC(100)/Si, 3C-SiC(111)/Si, and 3C-SiC(111)/4H-SiC(0001) substrates in a horizontal chemical vapor deposition (CVD) system. Films were produced with good crystalline orientation and morphological features in the temperature range of 1000-1200 °C using a PH3+B2H6+H2 mixture. Rotational twinning was absent in the BP due to the crystal symmetry-matching with 3C-SiC. Confocal 3D Raman imaging of BP films revealed primarily uniform peak shift and peak widths across the scanned area, except at defects on the surface. Synchrotron white beam X-ray topography showed the epitaxial relationship between BP and 3C-SiC was (100) 〈 011 〉 BP||(100) 〈 011 〉 3C-SiC and (111) 〈 11 2 ̅ 〉 BP||(111) 〈 11 2 ̅ 〉 3C-SiC. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis indicated residual tensile strain in the films and improved crystalline quality at temperatures below 1200 °C. These results indicated that BP properties could be further enhanced by employing high quality bulk 3C-SiC or 3C-SiC epilayers on 4H-SiC substrates.

  9. CVD growth and properties of boron phosphide on 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padavala, Balabalaji; Frye, C. D.; Wang, Xuejing

    Improving the crystalline quality of boron phosphide (BP) is essential for realizing its full potential in semiconductor device applications. In this study, 3C-SiC was tested as a substrate for BP epitaxy. BP films were grown on 3C-SiC(100)/Si, 3C-SiC(111)/Si, and 3C-SiC(111)/4H-SiC(0001) substrates in a horizontal chemical vapor deposition (CVD) system. Films were produced with good crystalline orientation and morphological features in the temperature range of 1000–1200 °C using a PH3+B2H6+H2 mixture. Rotational twinning was absent in the BP due to the crystal symmetry-matching with 3C-SiC. Confocal 3D Raman imaging of BP films revealed primarily uniform peak shift and peak widths acrossmore » the scanned area, except at defects on the surface. Synchrotron white beam X-ray topography showed the epitaxial relationship between BP and 3C-SiC was (100) <011>BP||(100) <011>3C-SiC and (111)View the MathML sourceBP||(111)View the MathML source3C-SiC. Scanning electron microscopy, Raman spectroscopy and X-ray diffraction analysis indicated residual tensile strain in the films and improved crystalline quality at temperatures below 1200 °C. These results indicated that BP properties could be further enhanced by employing high quality bulk 3C-SiC or 3C-SiC epilayers on 4H-SiC substrates.« less

  10. Integration of Indium Phosphide Based Devices with Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Wayne Huai

    2011-12-01

    Flexible substrates have many advantages in applications where bendability, space, or weight play important roles or where rigid circuits are undesirable. However, conventional flexible thin film transistors are typically characterized as having low carrier mobility as compared to devices used in the electronics industry. This is in part due to the limited temperature tolerance of plastic flexible substrates, which commonly reduces the highest processing temperature to below 200°C. Common approaches of implementation include low temperature deposition of organic, amorphous, or polycrystalline semiconductors, all of which result in carrier mobility well below 100 cm2V -1s-1. High quality, single crystalline III-V semiconductors such as indium phosphide (InP), on the other hand, have carrier mobility well over 1000 cm 2V-1s-1 at room temperature, depending on carrier concentration. Recently, the ion-cut process has been used in conjunction with wafer bonding to integrate thin layers of III-V material onto silicon for optoelectronic applications. This approach has the advantage of high scalability, reusability of the initial III-V substrate, and the ability to tailor the location (depth) of the layer splitting. However, the transferred substrate usually suffers from hydrogen implantation damage. This dissertation demonstrates a new approach to enable integration of InP with various substrates, called the double-flip transfer process. The process combines ion-cutting with adhesive bonding. The problem of hydrogen implantation was overcome by patterned ion-cut transfer. In this type of transfer, areas of interest are shielded from implantation but still transferred by surrounding implanted regions. We found that patterned ion-cut transfer is strongly dependent upon crystal orientation and that using cleavage-plane oriented donors can be beneficial in transferring large areas of high quality semiconductor material. InP-based devices were fabricated to demonstrate the

  11. Residency of rhenium and osmium in a heavy crude oil

    NASA Astrophysics Data System (ADS)

    DiMarzio, Jenna M.; Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.

    2018-01-01

    Rhenium-osmium (Re-Os) isotope geochemistry is an emerging tool for the study of oil formation and migration processes, and a new technology for petroleum exploration. Little is known, however, about the residency of Re and Os within asphaltene and maltene sub-fractions of crude oil. This information is crucial for understanding the 187Re-187Os radiometric clock held in petroleum systems and for interpreting geochronology for key processes such as oil formation, migration, and biodegradation. In this study, a heavy crude oil was separated into soluble (maltene, MALT) and insoluble (asphaltene, ASPH) fractions using n-heptane as the asphaltene-precipitating agent. The asphaltenes were separated sequentially into sub-fractions using two different solvent pairs (heptane-dichloromethane and acetone-toluene), and the bulk maltenes were separated into saturate, aromatic, and resin (SAR) fractions using open column chromatography. Each asphaltene and maltene sub-fraction was analyzed for Re and Os. The asphaltene sub-fractions and the bulk ASPH, MALT, and crude oil were analyzed for a suite of trace metals by ICP-MS. Our results show that Re and Os concentrations co-vary between the asphaltene sub-fractions, and that both elements are found mostly in the more polar and aromatic sub-fractions. Significant Re and Os are also present in the aromatic and resin fractions of the maltenes. However, each asphaltene and maltene sub-fraction has a distinct isotopic composition, and sub-fractions are not isochronous. This suggests that asphaltene sub-fractionation separates Re-Os complexes to the point where the isotopic integrity of the geochronometer is compromised. The mobility of individual Re and Os isotopes and the decoupling possibilities between radiogenic 187Os produced from 187Re remain elusive, but their recognition in this study is a critical first step. Re and Os correlate strongly with Mo and Cd in the asphaltene sub-fractions, suggesting that these metals occupy

  12. A review of episodes of zinc phosphide toxicosis in wild geese (Branta spp.) in Oregon (2004−2011)

    USGS Publications Warehouse

    Bildfell, Rob J.; Rumbeiha, Wilson K.; Schuler, Krysten L.; Meteyer, Carol U.; Wolff, Peregrine L.; Gillin, Colin M.

    2013-01-01

    Epizootic mortality in several geese species, including cackling geese (Branta hutchinsii) and Canada geese (Branta canadensis), has been recognized in the Willamette Valley of Oregon for over a decade. Birds are generally found dead on a body of water or are occasionally observed displaying neurologic clinical signs such as an inability to raise or control the head prior to death. Investigation of these epizootic mortality events has revealed the etiology to be accidental poisoning with the rodenticide zinc phosphide (Zn3P2). Gross and histologic changes are restricted to acute pulmonary congestion and edema, sometimes accompanied by distension of the upper alimentary tract by fresh grass. Geese are unusually susceptible to this pesticide; when combined with an epidemiologic confluence of depredation of specific agricultural crops by rodents and seasonal avian migration pathways, epizootic toxicosis may occur. Diagnosis requires a high index of suspicion, appropriate sample collection and handling, plus specific test calibration for this toxicant. Interagency cooperation, education of farmers regarding pesticide use, and enforcement of regulations has been successful in greatly decreasing these mortality events since 2009.

  13. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    PubMed

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  14. Effect of gas flow ratio on the microstructure and mechanical properties of boron phosphide films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jia, Z. C.; Zhu, J. Q.; Jiang, C. Z.; Shen, W. X.; Han, J. C.; Chen, R. R.

    2011-10-01

    Boron phosphide films were grown on silicon substrate by radio frequency reactive magnetron sputtering using boron target and hydrogen phosphine at different gas flow ratios (PH 3/Ar) at lower temperature. The chemical composition, microstructure and mechanical properties were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectrum, FTIR spectrum, surface profilometer and nano-indenter. The results indicate that the atomic ratio (P/B) rises from 1.06 up to 1.52 with the gas flow ratio increasing from 3/50 to 15/50. Simultaneously, the hardness and Young's modulus decrease from 25.4 GPa to 22.5 GPa, and 250.4 GPa to 238.4 GPa, respectively. Microstructure transforms from microcrystalline state to amorphous state along with the gas flow ratio increasing. Furthermore higher gas flow ratio leads to lower stress. The BP film prepared at the gas flow ratio of 3/50 can be contributed with the best properties.

  15. Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires.

    PubMed

    Pial, Turash Haque; Rakib, Tawfiqur; Mojumder, Satyajit; Motalab, Mohammad; Akanda, M A Salam

    2018-03-28

    The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.

  16. Investigation of Characteristics and Predictive Factors Affecting Mortality from Aluminum Phosphide Poisoning, Iran.

    PubMed

    Navabi, Seyed Mohammad Navabi; Navabi, Seyed Jafar; Aghaei, Abbas; Shaahmadi, Zahra; Heydari, Ruhollah

    2018-05-27

    Aluminum phosphide (ALP) or rice tablet is one of the most effective rodenticides used for the protection of grain storages from animals and rodents. ALP poisoning annually leads to mortality in human beings. The aim of this study was to evaluate the characteristics and predictive factors affecting mortality from ALP poisoning. This study evaluated patients with ALP poisoning referred to Imam Khomeini hospital in Kermanshah from 2014 to 2015. There are several data gathered from patient such as age, sex, number of consumed tablets, the number of attempts to commit suicide, elapsed time from consuming till treatment, blood pressure, PH, HCO3 and PCO2. Survivors (recovery) and non-survivors (death) from ALP poisoning are also evaluated in this study. Univariate logistic regression and multivariate analysis have been applied for data analysis. In this study, 48 patients were male and 29 patients were female, respectively (total 77 patient). The average age of survivors and non-survivors were 28.69 and 31.34 years, respectively. All cases (100%) of ALP poisoning were tried to commit suicide. The results showed that the main predictive variables of mortality from ALP poisoning were blood pressure, PH and elapsed time from consuming till treatment. The prognosis of death for patients with ALP poisoning can be determined by awareness of some of the main characteristics or factors such as blood pressure, PH and elapsed time from consuming till treatment. This can give a possibility for healthcare groups to consider more measures in patients with ALP poisoning.

  17. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle

    2012-05-10

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall andmore » surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.« less

  18. The achievement of low contact resistance to indium phosphide: The roles of Ni, Au, Ge, and combinations thereof

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1992-01-01

    We have investigated the electrical and metallurgical behavior of Ni, Au-Ni, and Au-Ge-Ni contacts on n-InP. We have found that very low values of contact resistivity rho(sub c) in the E-7 omega-sq cm range are obtained with Ni-only contacts. We show that the addition of Au to Ni contact metallization effects an additional order of magnitude reduction in rho(sub c). Ultra-low contact resistivities in the E-8 omega-sq cm range are obtained with both the Au-Ni and the Au-Ge-Ni systems, effectively eliminating the need for the presence of Ge in the Au-Ge-Ni system. The formation of various nickel phosphides at the metal-InP interface is shown to be responsible for the observed rho(sub c) values in the Ni and Au-Ni systems. We show, finally, that the order in which the constituents of Au-Ni and Au-Ge-Ni contacts are deposited has a significant bearing on the composition of the reaction products formed at the metal-InP interface and therefore on the contact resistivity at that interface.

  19. Selective gas adsorption and I-V response of monolayer boron phosphide introduced by dopants: A first-principle study

    NASA Astrophysics Data System (ADS)

    Cheng, Yongfa; Meng, Ruishen; Tan, Chunjian; Chen, Xianping; Xiao, Jing

    2018-01-01

    Two-dimensional (2D) materials have gained tremendous research interests for gas sensing applications because of their ultrahigh theoretical specific surface areas and unique electronic properties. Here, we investigate the adsorption of CO, SO2, NH3, O2, NO and NO2 gas molecules on pure and doped boron phosphide (BP) systems using first-principles calculations to exploit their potential in gas sensing. Our results predict that all six gas molecules show stronger adsorption interactions on impurities-doped BP over the pristine monolayer BP. Al-doped BP shows the highest sensitivity to all gas molecules, but N-doped BP is more suitable as a sensing material for SO2, NO and NO2 due to the feasibility of desorption. We further calculated the current-voltage (I-V) relation by mean of nonequilibrium Green's function (NEGF) formalism. The I-V curves indicate that the electronic properties of the doping systems change significantly with gas adsorption by studying the nonparamagnetic molecules NH3 and the paramagnetic molecules NO, which can be more likely to be measured experimentally compared to graphene and phosphorene. This work explores the possibility of BP as a superior sensor through introducing the appropriate dopants.

  20. Detection of basal acetylcholine release in the microdialysis of rat frontal cortex by high-performance liquid chromatography using a horseradish peroxidase-osmium redox polymer electrode with pre-enzyme reactor.

    PubMed

    Kato, T; Liu, J K; Yamamoto, K; Osborne, P G; Niwa, O

    1996-06-28

    To determine the basal acetylcholine level in the dialysate of rat frontal cortex, a horseradish peroxidase-osmium redox polymer-modified glassy carbon electrode (HRP-GCE) was employed instead of the conventional platinum electrode used in high-performance liquid chromatography-electrochemical detection (HPLC-ED). In initial experiments, an oxidizable unknown compound interfered with the detection of basal acetylcholine release on HPLC-HRP-GCE. An immobilized peroxidase-choline oxidase precolumn (pre-reactor) was included in the HPLC system, to eliminate the interference from the unknown compound. This combination could detect less than 10 fmol of standard acetylcholine and basal acetylcholine levels in the dialysate from a conventional concentric design microdialysis probe, without the use of cholinesterase inhibitor, and may facilitate physiological investigation of cholinergic neuronal activity in the central nervous system.

  1. Osmium isotope and highly siderophile element systematics of the lunar crust

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Walker, Richard J.; James, Odette B.; Puchtel, Igor S.

    2010-01-01

    Coupled 187Os/ 188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g - 1 Os, 1.5 ± 0.6 pg g - 1 Ir, 6.8 ± 2.7 pg g - 1 Ru, 16 ± 15 pg g - 1 Pt, 33 ± 30 pg g - 1 Pd and 0.29 ± 0.10 pg g - 1 Re (˜ 0.00002 × CI) and Re/Os ratios that were modestly elevated ( 187Re/ 188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (˜ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios ( D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are

  2. Osmium isotope and highly siderophile element systematics of the lunar crust

    USGS Publications Warehouse

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.

    2010-01-01

    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  3. Performance characterization of mid-infrared difference frequency generation in orientation-patterned gallium phosphide

    NASA Astrophysics Data System (ADS)

    Wei, Junxiong; Chaitanya Kumar, S.; Ye, Hanyu; Schunemann, Peter G.; Ebrahim-Zadeh, M.

    2018-02-01

    Orientation-patterned gallium phosphide (OP-GaP) is a recently developed nonlinear material with wide transparency across 0.8-12 μm and high nonlinearity (d14 70 pm/V), which is a promising candidate material for mid-infrared generation. Here we report the full performance characterization of a tunable single-pass nanosecond difference frequency generation (DFG) source based on OP-GaP by mixing the output of a Q-switched Nd:YAG laser at 1.064 μm with the signal from a pulsed MgO:PPLN OPO pumped by the same laser. Using the longest OP-GaP crystal (40 mm) deployed to date, the DFG source provides up to 14 mW of average output power at 2719 nm at 80 kHz repetition rate, with >6 mW across 2492-2782 nm, in TEM00 spatial profile. By performing relevant measurements, detrimental issues such as residual absorption and thermal effects have been studied and confirmed. The temperature and spectral acceptance bandwidths for DFG in the 40-mm-log OP-GaP are measured to be 18 °C and 17 nm, respectively, at 1766 nm. The DFG beam exhibits passive power stability better than 1.7% rms over 1.4 hours at 2774 nm, compared to 1.6% and 0.1% rms for the signal and pump, respectively. The polarization dependence of the input beams on the DFG power has also been systematically investigated, for the first time to our knowledge. Further, we have measured the damage threshold of the OP-GaP crystal to be 0.8 J/cm2 at 1064 nm.

  4. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  5. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  6. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT).

    PubMed

    Pai, Vinay M; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-05-01

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO(4) ) solution. As a tissue-staining contrast agent, OsO(4) is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO(4) preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE(-/-) ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO(4) and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts. Published 2012. This article is a US Government work and is in the public domain in the USA. Journal of Anatomy © 2012 Anatomical Society.

  7. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records

    USGS Publications Warehouse

    Klemm, V.; Frank, M.; Levasseur, S.; Halliday, A.N.; Hein, J.R.

    2008-01-01

    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10??Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10??Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12??Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the No??rdlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum. ?? 2008 Elsevier B.V.

  8. Patents and Licenses Through 1994,

    DTIC Science & Technology

    1994-01-01

    Chiang was employed at Honeywell Radiation Center, where she worked on mercury cadmium telluride (HgCdTe) and gallium phosphide photoconductive...5,251,225 Gallium Indium Arsenide Phosphide 4,258,375; 4,372,791; 4,718,070;4,722,092 Gallium Indium Arsenide Phosphide /Indium Phosphide ...Indirect-Gap Semiconductor 3,636,471 Indium Arsenide 2,990,259 Indium Gallium Arsenide 4,746,620 Indium Phosphide 2,990,259; 4,376,285

  9. Occupational phosphine gas poisoning at veterinary hospitals from dogs that ingested zinc phosphide--Michigan, Iowa, and Washington, 2006-2011.

    PubMed

    2012-04-27

    Zinc phosphide (Zn3P2) is a readily available rodenticide that, on contact with stomach acid and water, produces phosphine (PH3), a highly toxic gas. Household pets that ingest Zn3P2 often will regurgitate, releasing PH3 into the air. Veterinary hospital staff members treating such animals can be poisoned from PH3 exposure. During 2006-2011, CDC's National Institute for Occupational Safety and Health (NIOSH) received reports of PH3 poisonings at four different veterinary hospitals: two in Michigan, one in Iowa, and one in Washington. Each of the four veterinary hospitals had treated a dog that ingested Zn3P2. Among hospital workers, eight poisoning victims were identified, all of whom experienced transient symptoms related to PH3 inhalation. All four dogs recovered fully. Exposure of veterinary staff members to PH3 can be minimized by following phosphine product precautions developed by the American Veterinary Medical Association (AVMA). Exposure of pets, pet owners, and veterinary staff members to PH3 can be minimized by proper storage, handling, and use of Zn3P2 and by using alternative methods for gopher and mole control, such as snap traps.

  10. General Strategy for the Synthesis of Transition-Metal Phosphide/N-Doped Carbon Frameworks for Hydrogen and Oxygen Evolution.

    PubMed

    Pu, Zonghua; Zhang, Chengtian; Amiinu, Ibrahim Saana; Li, Wenqiang; Wu, Lin; Mu, Shichun

    2017-05-17

    Transition metal phosphides (TMPs) have been identified as promising nonprecious metal electrocatalyst for hydrogen evolution reaction (HER) and other energy conversion reactions. Herein, we reported a general strategy for synthesis of a series of TMPs (Fe 2 P, FeP, Co 2 P, CoP, Ni 2 P, and Ni 12 P 5 ) nanoparticles (NPs) with different metal phases embedded in a N-doped carbon (NC) matrix using metal salt, ammonium dihydrogen phosphate, and melamine as precursor with varying molar ratios and thermolysis temperatures. The resultant TMPs can serve as highly active and durable bifunctional electrocatalyst toward HER and oxygen evolution reaction (OER). In particular, the Ni 2 P@NC phase only requires an overpotential of ∼138 mV to derive HER in 0.5 M H 2 SO 4, and ∼320 mV for OER in 1.0 M KOH at the current density of 10 mA cm -2 . Because of the encapsulation of NC that can effectively prevent corrosion of embedded TMP NPs, Ni 2 P@NC exhibits almost unfading catalytic performance even after 10 h under both acidic and alkaline solutions. This synthesis strategy provides a new avenue to exploring TMPs as highly active and stable electrocatalyst for the HER, OER, and other electrochemical applications.

  11. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning.

    PubMed

    Soltani, Motahareh; Shetab-Boushehri, Seyed F; Shetab-Boushehri, Seyed V

    2016-08-01

    Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  12. Re-Os isotopic systematics in chromitites from the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Zindler, Alan; Reisberg, Laurie; Mathez, E. A.

    1993-08-01

    New Re-Os isotopic data on chromitites of the Stillwater Complex demonstrate isotopic equilibrium between cumulate chromite and whole rock. Initial osmium isotopic ratios for the chromitites, chosen for their freshness, are consistent with derivation from a mantle-derived magma that suffered little or no interaction with the continental crust prior to crystallization. Molybdenite, separated from a sample of the G-chromitite, yields a Re-Os age of 2740 Ma, indistinguishable from the age of the intrusion. The presence of molybdenite documents rhenium, and probably osmium, mobilization by hydrothermal fluids that permeated the intrusion shortly after crystallization. Initial osmium isotopic variability observed in chromitites and other rocks from the Stillwater Complex could result from interaction with these fluids. In this context, there is no compelling reason to call on assimilation of crust by mantle-derived magma to explain the osmium or neodymium isotopic variability. Although osmium isotopic systematics have been affected by hydrothermal processes, Re-Os results demonstrate that more than 95 percent of the osmium, and by inference other PGEs in the Stillwater Complex, derive from the mantle.

  13. Elevated Carboxyhaemoglobin Concentrations by Pulse CO-Oximetry is Associated with Severe Aluminium Phosphide Poisoning.

    PubMed

    Mashayekhian, Mohammad; Hassanian-Moghaddam, Hossein; Rahimi, Mitra; Zamani, Nasim; Aghabiklooei, Abbas; Shadnia, Shahin

    2016-09-01

    In pulse CO-oximetry of aluminium phosphide (ALP)-poisoned patients, we discovered that carboxyhaemoglobin (CO-Hb) level was elevated. We aimed to determine whether a higher CO level was detected in patients with severe ALP poisoning and if this could be used as a prognostic factor in these patients. In a prospective case-control study, 96 suspected cases of ALP poisoning were evaluated. In the ALP-poisoned group, demographic characteristics, gastric and exhalation silver nitrate test results, average CO-Hb saturation, methaemoglobin saturation, and blood pressure and blood gas analysis until death/discharge were recorded. Severely poisoned patients were defined as those with systolic blood pressure ≤80 mmHg, pH ≤7.2, or HCO3 ≤15 meq/L or those who died, while patients with minor poisoning were those without any of these signs/symptoms. A control group (37 patients) was taken from other medically ill patients to detect probable effects of hypotension and metabolic acidosis on CO-Hb and methaemoglobin saturations. Of 96 patients, 27 died and 37 fulfilled the criteria for severe poisoning. All patients with carbon monoxide saturation >18% met the criteria to be included in the severe poisoning group and all with a SpCO >25% died. Concerning all significant variables in univariate analysis of severe ALP toxicity, the only significant variable which could independently predict death was carbon monoxide saturation. Due to high mortality rate and need for intensive care support, early prediction of outcome is vital for choosing an appropriate setting (ICU or ordinary ward). CO-oximetry is a good diagnostic and prognostic factor in patients with ALP poisoning even before any clinical evidence of toxicity will develop. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. PLEURAL EFFECTS OF INDIUM PHOSPHIDE IN B6C3F1 MICE: NONFIBROUS PARTICULATE INDUCED PLEURAL FIBROSIS

    PubMed Central

    Kirby, Patrick J.; Shines, Cassandra J.; Taylor, Genie J.; Bousquet, Ronald W.; Price, Herman C.; Everitt, Jeffrey I.; Morgan, Daniel L.

    2010-01-01

    The mechanism(s) by which chronic inhalation of indium phosphide (InP) particles causes pleural fibrosis is not known. Few studies of InP pleural toxicity have been conducted because of the challenges in conducting particulate inhalation exposures, and because the pleural lesions developed slowly over the 2-year inhalation study. The authors investigated whether InP (1 mg/kg) administered by a single oropharyngeal aspiration would cause pleural fibrosis in male B6C3F1 mice. By 28 days after treatment, protein and lactate dehydrogenase (LDH) were significantly increased in bronchoalveolar lavage fluid (BALF), but were unchanged in pleural lavage fluid (PLF). A pronounced pleural effusion characterized by significant increases in cytokines and a 3.7-fold increase in cell number was detected 28 days after InP treatment. Aspiration of soluble InCl3 caused a similar delayed pleural effusion; however, other soluble metals, insoluble particles, and fibers did not. The effusion caused by InP was accompanied by areas of pleural thickening and inflammation at day 28, and by pleural fibrosis at day 98. Aspiration of InP produced pleural fibrosis that was histologically similar to lesions caused by chronic inhalation exposure, and in a shorter time period. This oropharyngeal aspiration model was used to provide an initial characterization of the progression of pleural lesions caused by InP. PMID:19995279

  15. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  16. Homogeneous dihydroxylation of olefins catalyzed by OsO(4)(2-) immobilized on a dendritic backbone with a tertiary nitrogen at its core position.

    PubMed

    Fujita, Ken-Ichi; Inoue, Kensuke; Tsuchimoto, Teruhisa; Yasuda, Hiroyuki

    2012-01-01

    OsO(4)(2-) immobilized on a poly(benzyl ether) dendrimer with a tertiary nitrogen at its core position efficiently catalyzed the homogeneous dihydroxylation of olefins with a low level of osmium leaching. The dendritic osmium catalyst could be applied to the wide range of olefins. Furthermore, the dendritic osmium catalyst was recovered by reprecipitation and then reused up to five times.

  17. Advanced transition metal phosphide materials from single-source molecular precursors

    NASA Astrophysics Data System (ADS)

    Colson, Adam Caleb

    In this thesis, the feasibility of employing organometallic single-source precursors in the preparation of advanced transition metal pnictide materials such as colloidal nanoparticles and films has been investigated. In particular, the ternary FeMnP phase was targeted as a model for preparing advanced heterobimetallic phosphide materials, and the iron-rich Fe3P phase was targeted due to its favorable ferromagnetic properties as well as the fact that the preparation of advanced Fe3P materials has been elusive by commonly used methods. Progress towards the synthesis of advanced Fe2--xMn xP nanomaterials and films was facilitated by the synthesis of the novel heterobimetallic complexes FeMn(CO)8(mu-PR1R 2) (R1 = H, R2 = H or R1 = H, R2 = Ph), which contain the relatively rare mu-PH2 and mu-PPhH functionalities. Iron rich Fe2--xMnxP nanoparticles were obtained by thermal decomposition of FeMn(CO)8(mu-PH 2) using solution-based synthetic methods, and empirical evidence suggested that oleic acid was responsible for manganese depletion. Films containing Fe, Mn, and P with the desired stoichiometric ratio of 1:1:1 were prepared using FeMn(CO)8(mu-PH2) in a simple low-pressure metal-organic chemical vapor deposition (MOCVD) apparatus. Although the elemental composition of the precursor was conserved in the deposited film material, spectroscopic evidence indicated that the films were not composed of pure-phase FeMnP, but were actually mixtures of crystalline FeMnP and amorphous FeP and Mn xOy. A new method for the preparation of phase-pure ferromagnetic Fe 3P films on quartz substrates has also been developed. This approach involved the thermal decomposition of the single-source precursors H 2Fe3(CO)9PR (R = tBu or Ph) at 400 °C. The films were deposited using a simple home-built MOCVD apparatus and were characterized using a variety of analytical methods. The films exhibited excellent phase purity, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy, and

  18. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    PubMed

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  19. 9,10-phenanthrenesemiquinone radical complexes of ruthenium(III), osmium(III) and rhodium(III) and redox series.

    PubMed

    Biswas, Manas Kumar; Patra, Sarat Chandra; Maity, Amarendra Nath; Ke, Shyue-Chu; Weyhermüller, Thomas; Ghosh, Prasanta

    2013-05-14

    Reactions of 9,10-phenanthrenequinone (PQ) in toluene with [M(II)(PPh3)3X2] at 298 K afford green complexes, trans-[M(PQ)(PPh3)2X2] (M = Ru, X = Cl, 1; M = Os, X = Br, 2) in moderate yields. Reaction of anhydrous RhCl3 with PQ and PPh3 in boiling ethanol affords the dark brown paramagnetic complex, cis-[Rh(PQ)(PPh3)2Cl2] (3) in good yields. Diffusion of iodine solution in n-hexane to the trans-[Os(PQ) (PPh3)2(CO)(Br)] solution in CH2Cl2 generates the crystals of trans-[Os(PQ)(PPh3)2(CO)(Br)](+)I3(-), (4(+))I3(-)), in lower yields. Single crystal X-ray structure determinations of 1·2toluene, 2·CH2Cl2 and 4(+)I3(-), UV-vis/NIR absorption spectra, EPR spectra of 3, electrochemical activities and DFT calculations on 1, 2, trans-[Ru(PQ)(PMe3)2Cl2] (1Me), trans-[Os(PQ)(PMe3)2Br2] (2Me), cis-[Rh(PQ)(PMe3)2Cl2] (3Me) and their oxidized and reduced analogues including trans-[Os(PQ)(PMe3)2(CO)(Br)](+) (4Me(+)) substantiated that 1-3 are the 9,10-phenanthrenesemiquinone radical (PQ(˙-)) complexes of ruthenium(III), osmium(III) and rhodium(III) and are defined as trans/cis-[M(III)(PQ(˙-))(PPh3)2X2] with a minor contribution of the resonance form trans/cis-[M(II)(PQ)(PPh3)2X2]. Two comparatively longer C-O (1.286(4) Å) and the shorter C-C lengths (1.415(7) Å) of the OO-chelate of 1·2toluene and 2·CH2Cl2 and the isotropic fluid solution EPR signal at g = 1.999 of 3 are consistent with the existence of the reduced PQ(˙-) ligand in 1-3 complexes. Anisotropic EPR spectra of the frozen glasses (g11 = g22 = 2.0046 and g33 = 1.9874) and solids (g11 = g22 = 2.005 and g33 = 1.987) instigate the contribution of the resonance form, cis-[Rh(II)(PQ)(PPh3)2Cl2] in 3. DFT calculations established that the closed shell singlet (CSS) solutions of 1Me and 2Me are unstable due to open shell singlet (OSS) perturbation. However, the broken symmetry (BS) (1,1) Ms = 0 solutions of 1Me and 2Me are respectively 22.6 and 24.2 kJ mole(-1) lower in energy and reproduced the experimental bond

  20. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.

    PubMed

    Wong, Christopher C; Curthoys, Ian S; O'Leary, Stephen J; Jones, Allan S

    2013-01-01

    The use of both gadolinium chloride (GdCl(3)) and osmium tetroxide (OsO(4)) allowed for the visualization of the membranous labyrinth and other intralabyrinthine structures, at different intensities, as compared with the control sample. This initial comparison shows the advantages of GdCl(3) in radiological assessments and OsO(4) in more detailed anatomical studies and pathways of labyrinthine pathogenesis using X-ray microtomography (microCT). To assess an improved OsO(4) staining protocol and compare the staining affinities against GdCl(3). Guinea pig temporal bones were stained with either GdCl(3) (2% w/v) for 7 days or OsO(4) (2% w/v) for 3 days, and scanned in a microCT system. The post-scanned datasets were then assessed in a 3D rendering program. The enhanced soft tissue contrast as presented in the temporal bones stained with either GdCl(3) or OsO(4) allowed for the membranous labyrinth to be visualized throughout the whole specimen. GdCl(3)-stained specimens presented more defined contours of the bone profile in the radiographs, while OsO(4)-stained specimens provided more anatomical detail of individual intralabyrinthine structures, hence allowing spatial relationships to be visualized with ease in a 3D rendering context and 2D axial slice images.

  1. Accelerator Production and Separations for High Specific Activity Rhenium-186

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurisson, Silvia S.; Wilbur, D. Scott

    2016-04-01

    Tungsten and osmium targets were evaluated for the production of high specific activity rhenium-186. Rhenium-186 has potential applications in radiotherapy for the treatment of a variety of diseases, including targeting with monoclonal antibodies and peptides. Methods were evaluated using tungsten metal, tungsten dioxide, tungsten disulfide and osmium disulfide. Separation of the rhenium-186 produced and recycling of the enriched tungsten-186 and osmium-189 enriched targets were developed.

  2. N-acetylcysteine, Ascorbic Acid, and Methylene Blue for the Treatment of Aluminium Phosphide Poisoning: Still Beneficial?

    PubMed Central

    Gheshlaghi, Farzad; Lavasanijou, Mohamad Reza; Moghaddam, Noushin Afshar; Khazaei, Majid; Behjati, Mohaddeseh; Farajzadegan, Ziba; Sabzghabaee, Ali Mohammad

    2015-01-01

    Objectives: Intentional and accidental intoxication with aluminium phosphide (ALP) remains a clinical problem, especially in the Middle East region. Considering the high mortality rate besides lack of any recommended first option drug for its treatment, this study was aimed to compare the therapeutic effects of N-acetylcysteine (NAC), vitamin C (Vit C), and methylene blue; both in isolate and also in combination, for the treatment of ALP intoxication in a rat model. Materials and Methods: In this experimental animal study, 80 male Wistar rats in eight groups were intoxicated with ALP (12.5 mg/kg) and treated with a single dose of NAC (100 mg/kg) or Vit C (500–1,000 mg/kg) or methylene blue (1 mg/kg/5 min, 0.1%) or two of these agents or all three of them (controls were not treated). Rats were monitored regarding the parameters of drug efficacy as increased survival time and reduced morbidity and mortality rate for 3 consecutive days to ensure toxin neutralization. Macroscopic changes were recorded and biopsy sections were taken from brain, cerebellum, kidney, liver, and heart for microscopic evaluation regarding cellular hypoxia. Results: The mean survival times of rats exposed to ALP and treated with VitC + NAC was 210.55±236.22 minutes. In analysis of survival times, there was a significant difference between Group 5 which received VitC + NAC and the other groups (P < 0.01). Serum magnesium levels after death were higher than normal (P = 0.01). Conclusions: Despite the higher survival rate of antioxidant-treated rats compared with controls, this difference was not statistically significant. PMID:26862259

  3. A Mechanistic Study of CO 2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Kristen

    2015-08-18

    Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less

  4. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations.

    PubMed Central

    Cotton, R G; Rodrigues, N R; Campbell, R D

    1988-01-01

    The chemical reactivity of thymine (T), when mismatched with the bases cytosine, guanine, and thymine, and of cytosine (C), when mismatched with thymine, adenine, and cytosine, has been examined. Heteroduplex DNAs containing such mismatched base pairs were first incubated with osmium tetroxide (for T and C mismatches) or hydroxylamine (for C mismatches) and then incubated with piperidine to cleave the DNA at the modified mismatched base. This cleavage was studied with an internally labeled strand containing the mismatched T or C, such that DNA cleavage and thus reactivity could be detected by gel electrophoresis. Cleavage at a total of 13 T and 21 C mismatches isolated (by at least three properly paired bases on both sides) single-base-pair mismatches was identified. All T or C mismatches studied were cleaved. By using end-labeled DNA probes containing T or C single-base-pair mismatches and conditions for limited cleavage, we were able to show that cleavage was at the base predicted by sequence analysis and that mismatches in a length of DNA could be readily detected by such an approach. This procedure may enable detection of all single-base-pair mismatches by use of sense and antisense probes and thus may be used to identify the mutated base and its position in a heteroduplex. Images PMID:3260032

  5. Non-invasive localization of organic matter in soil aggregates using SR-μCT

    NASA Astrophysics Data System (ADS)

    Peth, Stephan; Mordhorst, Anneka; Chenu, Claire; Uteau Puschmann, Daniel; Garnier, Patricia; Nunan, Naoise; Pot, Valerie; Beckmann, Felix; Ogurreck, Malte

    2014-05-01

    Knowledge of the location of soil organic matter (SOM) and its spatial association to soil structure is an important step in improving modeling approaches for simulating organic matter turnover processes. Advanced models for carbon mineralization are able to account for the 3D distribution of SOM which is assumed to influence mineralisation. However, their application is still limited by the fact that no method exists to non-invasively determine the 3D spatial distribution of SOM in structured soils. SR-based X-ray microtomography (SR-µCT) is an advanced and promising tool in gaining knowledge on the 3-dimensional organization of soil phases (minerals, organic matter, water, air) which on a voxel level could be implemented into spatially explicit models. However, since the contrast of linear attenuation coefficients of soil organic matter on the one hand and mineral components and water on the other hand are relatively low, especially when materials are finely dispersed, organic matter within the soil pore space is often not resolved in ordinary X-ray absorption contrast imaging. To circumvent this problem we have developed a staining procedure for organic matter using Osmium-tetroxide since Osmium is an element with an absorption edge at a higher X-ray energy level. Osmium is known from transmission electron microscopy analysis (TEM) to stain organic matter specifically and irreversibly while having an absorption edge at approximately 74 keV. We report on the application of a novel Osmium vapor staining method to analyze differences in organic matter content and identify small scale spatial distribution of SOM in soil aggregates. To achieve this we have taken soil aggregate samples (6-8 mm across) obtained from arable soils differing in soil management. Aggregate samples were investigated by synchrotron-based X-ray microtomography (SR-µCT) after staining the sample with Osmium-tetroxide (OsO4) vapor. We utilized the monochromatic X-ray beam to locate osmium

  6. Effect of multilayer structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide.

    PubMed

    Chen, Xianping; Tan, Chunjian; Yang, Qun; Meng, Ruishen; Liang, Qiuhua; Jiang, Junke; Sun, Xiang; Yang, D Q; Ren, Tianling

    2016-06-28

    Development of nanoelectronics requires two-dimensional (2D) systems with both direct-bandgap and tunable electronic properties as they act in response to the external electric field (E-field). Here, we present a detailed theoretical investigation to predict the effect of atomic structure, stacking order and external electric field on the electrical properties of few-layer boron-phosphide (BP). We demonstrate that the splitting of bands and bandgap of BP depends on the number of layers and the stacking order. The values for the bandgap show a monotonically decreasing relationship with increasing layer number. We also show that AB-stacking BP has a direct-bandgap, while ABA-stacking BP has an indirect-bandgap when the number of layers n > 2. In addition, for a bilayer and a trilayer, the bandgap increases (decreases) as the electric field increases along the positive direction of the external electric field (E-field) (negative direction). In the case of four-layer BP, the bandgap exhibits a nonlinearly decreasing behavior as the increase in the electric field is independent of the electric field direction. The tunable mechanism of the bandgap can be attributed to a giant Stark effect. Interestingly, the investigation also shows that a semiconductor-to-metal transition may occur for the four-layer case or more layers beyond the critical electric field. Our findings may inspire more efforts in fabricating new nanoelectronics devices based on few-layer BP.

  7. High-pressure behavior of iron-nickel-cobalt phosphides and its implications for meteorites and planetary cores

    NASA Astrophysics Data System (ADS)

    Dera, P.; Lavina, B.; Borkowski, L. A.; Downs, R. T.; Prewitt, C. T.; Prakapenka, V.; Rivers, M. L.; Sutton, S.; Boctor, N.

    2008-12-01

    Minerals with composition (Fe,Ni)xP, are rare, but important accessory phases present in iron and chondrite meteorites. The occurrence of these minerals in meteoritic samples is believed to originate either from the equilibrium condensation of protoplanetary materials taking place in solar nebulae or from crystallization processes in the cores of parent bodies. Fe-Ni phosphides are considered an important candidate for a minor phase present in Earth's core, and at least partially responsible for the observed core density deficit with respect to pure Fe. We report results of high-pressure high-temperature single-crystal X- ray diffraction experiments with end-members belonging to the (Fe,Ni,Co)2P family, including Fe2P, Ni2P and Co2P. A new phase transition to the Co2Si-type structure (allabogdanite) has been found in Fe2P barringerite at 8.0 GPa, upon heating. The high-pressure phase can be quenched metastably to ambient conditions and then, if heated again, it transforms back to barringerite. Ni2P barringerite does not undergo transformation to allabogdanite structure up to 50 GPa, but instead exhibits incongruent melting with formation of pyrite-type NiP2 and Ni-P glass. Our results indicate that the presence of allabogdanite in meteoritic samples places two important constraints on the thermodynamic history of the meteorite. First, it imposes a minimum pressure and temperature for the formation of the Fe2P, and additionally rules out any higher temperature low pressure alterations. If present in the Earth's core, Fe2P will have the allabogdanite rather than the barringerite structure. Crystal chemical trends in the compressibility of (Fe,Ni,Co)2P minerals, as well as polymorphic transition paths are analyzed in the context of Earth and planetary core composition and properties.

  8. Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries.

    PubMed

    Kim, Youngjin; Koo, Dongho; Ha, Seongmin; Jung, Sung Chul; Yim, Taeeun; Kim, Hanseul; Oh, Seung Kyo; Kim, Dong-Min; Choi, Aram; Kang, Yongku; Ryu, Kyoung Han; Jang, Minchul; Han, Young-Kyu; Oh, Seung M; Lee, Kyu Tae

    2018-05-04

    Lithium-oxygen (Li-O 2 ) batteries are desirable for electric vehicles because of their high energy density. Li dendrite growth and severe electrolyte decomposition on Li metal are, however, challenging issues for the practical application of these batteries. In this connection, an electrochemically active two-dimensional phosphorene-derived lithium phosphide is introduced as a Li metal protective layer, where the nanosized protective layer on Li metal suppresses electrolyte decomposition and Li dendrite growth. This suppression is attributed to thermodynamic properties of the electrochemically active lithium phosphide protective layer. The electrolyte decomposition is suppressed on the protective layer because the redox potential of lithium phosphide layer is higher than that of electrolyte decomposition. Li plating is thermodynamically unfavorable on lithium phosphide layers, which hinders Li dendrite growth during cycling. As a result, the nanosized lithium phosphide protective layer improves the cycle performance of Li symmetric cells and Li-O 2 batteries with various electrolytes including lithium bis(trifluoromethanesulfonyl)imide in N,N-dimethylacetamide. A variety of ex situ analyses and theoretical calculations support these behaviors of the phosphorene-derived lithium phosphide protective layer.

  9. Future Directions for Selected Topics in Physics and Materials Science

    DTIC Science & Technology

    2012-07-12

    referred to as lightides (e.g. borides , nitrides, phosphides) • Materials for energy conversion, energy storage, energy transport and energy production...Distributed nanosystems and sensors • Strategy for multilayered combinatorics • lightides ( borides , nitrides, phosphides, • New applications for...Strategy for multilayered combinatorics Lightides ( borides , nitrides, phosphides) • Energy conversion, .storage and production • Precision control

  10. Catalytic decomposition of toxic chemicals over iron group metals supported on carbon nanotubes.

    PubMed

    Li, Lili; Chen, Can; Chen, Long; Zhu, Zixue; Hu, Jianli

    2014-03-18

    This study explores catalytic decomposition of phosphine (PH3) using iron group metals (Co, Ni) and metal oxides (Fe2O3, Co(3)O4, NiO) supported on carbon nanotubes (CNTs). The catalysts are synthesized by means of a deposition-precipitation method. The morphology, structure, and composition of the catalysts are characterized using a number of analytical instrumentations, including high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area measurement, and inductively coupled plasma. The activity of the catalysts in the PH3 decomposition reaction is measured and correlated with their surface and structural properties. The characterization results show that phosphidation occurs on the catalyst surface, and the resulting metal phosphides act as an active phase in the PH3 decomposition reaction. Cobalt phosphide, CoP, is formed on Co/CNTs and Co(3)O4/CNTs, whereas iron phosphide, FeP, is formed on Fe2O3/CNTs. In contrast, phosphorus-rich phosphide NiP2 is formed on Ni/CNTs and NiO/CNTs. The initial activities of the catalysts are shown in the following sequence: Ni/CNTs > Co/CNTs > Co(3)O4/CNTs >NiO/CNTs > Fe2O3/CNTs, whereas activities of metal phosphides are shown in the following order: CoP > NiP2 > FeP. The catalytic activity of metal phosphides is attributed to their electronic properties. Cobalt phosphide formed on Co/CNTs and Co(3)O4/CNTs exhibits not only the highest activity, but also long-term stability in the PH3 decomposition reaction.

  11. Electron emitting device and method of making the same

    DOEpatents

    Olsen, Gregory Hammond; Martinelli, Ramon Ubaldo; Ettenberg, Michael

    1977-04-19

    A substrate of single crystalline gallium arsenide has on a surface thereof a layer of single crystalline indium gallium phosphide. A layer of single crystalline gallium arsenide is on the indium gallium phosphide layer and a work function reducing material is on the gallium arsenide layer. The substrate has an opening therethrough exposing a portion of the indium gallium phosphide layer.

  12. Osmium mass balance in peridotite and the effects of mantle-derived sulphides on basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.

    2011-10-01

    Analyses of enriched mantle (EM)-basalts, using lithophile element-based isotope systems, have long provided evidence for discrete mantle reservoirs with variable composition. Upon partial melting, the mantle reservoir imparts its isotopic fingerprint upon the partial melt produced. However, it has increasingly been recognised that it may not be simple to delimit these previously well-defined mantle reservoirs; the "mantle zoo" may contain more reservoirs than previously envisaged. Here we demonstrate that a simple model with varying contributions from two populations of compositionally distinct mantle sulphides can readily account for the observed heterogeneities in Os isotope systematics of such basalts without additional mantle reservoirs. Osmium elemental and isotopic analyses of individual sulphide grains separated from spinel lherzolites from Kilbourne Hole, New Mexico, USA demonstrate that two discrete populations of mantle sulphide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os] and low [Re] with unradiogenic, typically sub-chondritic 187Os/ 188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulphides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic 187Os/ 188Os ([Os] typically ⩽ 1-2 ppm, 187Os/ 188Os ⩽ 0.3729; this study). This population is thought to represent metasomatic sulphide. Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulphide ([Os] ⩽ 37 ppm; this study). During the early stages of partial melting, supra-chondritic interstitial sulphides are mobilised and incorporated into the melt, adding their radiogenic 187Os/ 188Os signature. Only when

  13. An electrocardiographic, molecular and biochemical approach to explore the cardioprotective effect of vasopressin and milrinone against phosphide toxicity in rats.

    PubMed

    Jafari, Abbas; Baghaei, Amir; Solgi, Reza; Baeeri, Maryam; Chamanara, Mohsen; Hassani, Shokoufeh; Gholami, Mahdi; Ostad, Seyed Nasser; Sharifzadeh, Moahmmad; Abdollahi, Mohammad

    2015-06-01

    The present study was conducted to identify the protective effect of vasopressin (AVP) and milrinone on cardiovascular function, mitochondrial complex activities, cellular ATP reserve, oxidative stress, and apoptosis in rats poisoned by aluminum phosphide (AlP). Rats were divided into five groups (n = 12) including control, AlP (12.5 mg/kg), AlP + AVP (2.0 Units/kg), AlP + milrinone (0.25 mg/kg) and AlP + AVP + milrinone. After treatment, the animals were connected to an electronic cardiovascular monitoring device to monitor electrocardiographic (ECG) parameter. Finally, oxidative stress biomarkers, mitochondrial complex activities, ADP/ATP ratio and apoptosis were evaluated on the heart tissues. Results indicated that AlP administration induced ECG abnormalities along with a decline in blood pressure and heart rate. AVP and milrinone significantly ameliorated these changes in all treated groups. Considerable protective effects on oxidative stress biomarkers, complex IV activity, ADP/ATP ratio and caspase-3 and -9 activities in treated groups were also found. These findings were supported by flow cytometry assay of cardiomyocytes. In conclusion, administration of AVP and milrinone, not only improve cardiovascular functions in AlP poisoned rats in the short time, but after a long time can also restore mitochondrial function and ATP level and reduce the oxidative damage, which prevent cardiomyocytes from entering the apoptotic phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Mechanistic Study of CO 2 Reduction at the Interface of a Gallium Phosphide (GaP) Surface using Core-level Spectroscopy - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Kristen

    2015-08-19

    Carbon dioxide (CO 2) emission into the atmosphere has increased tremendously through burning of fossil fuels, forestry, etc.. The increased concentration has made CO 2 reductions very attractive though the reaction is considered uphill. Utilizing the sun as a potential energy source, CO 2 has the possibility to undergo six electron and four proton transfers to produce methanol, a useable resource. This reaction has been shown to occur selectively in an aqueous pyridinium solution with a gallium phosphide (GaP) electrode. Though this reaction has a high faradaic efficiency, it was unclear as to what role the GaP surface played duringmore » the reaction. In this work, we aim to address the fundamental role of GaP during the catalytic conversion, by investigating the interaction between a clean GaP surface with the reactants, products, and intermediates of this reaction using X-ray photoelectron spectroscopy. We have determined a procedure to prepare atomically clean GaP and our initial CO 2 adsorption studies have shown that there is evidence of chemisorption and reaction to form carbonate on the clean surface at LN2 temperatures (80K), in contrast to previous theoretical calculations. These findings will enable future studies on CO 2 catalysis.« less

  15. Growth and Performance of GaInP/A1GaInP Visible Light Emitting Laser-Diodes,

    DTIC Science & Technology

    SEMICONDUCTOR LASERS, *EPITAXIAL GROWTH, ALLOYS, LAYERS, LOW PRESSURE, PRESSURE, QUALITY, ROOM TEMPERATURE, SUBSTRATES, GALLIUM PHOSPHIDES, INDIUM PHOSPHIDES, THERMAL PROPERTIES, ENERGY GAPS, ENERGY BANDS, VAPOR PHASES.

  16. DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine.

    PubMed

    Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil

    2012-08-01

    The modification of glassy carbon (GC) electrode with electrodeposited nickel oxide nanoparticles (NiOxNPs) and deoxyribonucleic acid (DNA) is utilized as a new efficient platform for entrapment of osmium (III) complex. Surface morphology and electrochemical properties of the prepared nanocomposite modified electrode (GC/DNA/NiOxNPs/Os(III)-complex) were investigated by FESEM, cyclic voltammetry and electrochemical impedance spectroscopy techniques. Cyclic voltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of l-cysteine (CySH) at reduced overpotential (0.1 V vs. Ag/AgCl). Using chronoamperometry to CySH detection, the sensitivity and detection limit of the biosensor are obtained as 44 μA mM(-1) and 0.07 μM with a concentration range up to 1000 μM. The electrocatalytic activity of the modified electrode not only for oxidation of low molecular-mass biothiols derivatives such as, glutathione, l-cystine, l-methionine and electroactive biological species ( dopamine, uric acid, glucose) is negligible but also for very similar biothiol compound (homocysteine) no recognizable response is observed at the applied potential window. Furthermore, the simultaneous voltammetric determination of l-cysteine and homocysteine compounds without any separation or pretreatment process was reported for the first time in this work. Finally, the applicability of sensor for the analysis of CySH concentration in complex serum samples was successfully demonstrated. Highly selectivity, excellent electrocatalytic activity and stability, remarkable antifouling property toward thiols and their oxidation products, as well as the ability for simultaneous detection of l-cysteine and homocysteine are remarkably advantageous of the proposed DNA based biosensor. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Structure of the nucleoid in cells of Streptococcus faecalis.

    PubMed Central

    Daneo-Moore, L; Dicker, D; Higgins, M L

    1980-01-01

    The structure of the nucleoid of Streptococcus faecalis (ATCC 9790) was examined and compared in the unfixed and fixed states by immersive refractometry and electron microscopy. It appears from these studies that the nucleoid structure is much more centralized in unfixed chloramphenicol-treated (stationary-phase) cells than it is in cells in the exponential phase of growth. The more dispersed configuration of the exponential-phase nucleoid could be preserved by fixation in glutaraldehyde, but not in Formalin or in osmium tetroxide. One important factor in explaining these differences in preservation is that glutaraldehyde (but not Formalin or osmium tetroxide) can rapidly cross-link the amino groups of macromolecules in cells. It was also observed that osmium tetroxide resulted in a preferential breakdown of nascent ribonucleic acid. These results are interpreted as indicating that glutaraldehyde is able to stabilize the exponential-phase nucleoid before it assumes the more central appearance seen in osmium tetroxide- and Formalin-fixed cells. These results are discussed in terms of the proposed organization of the exponential-phase nucleoid in unfixed cells. Images PMID:6767695

  18. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks

    PubMed Central

    1981-01-01

    The ordered structure of the leading edge (lamellipodium) of cultured fibroblasts is readily revealed in cells extracted briefly in Triton X- 100-glutaraldehyde mixtures, fixed further in glutaraldehyde, and then negatively stained for electron microscopy. By this procedure, the leading edge regions show a highly organised, three-dimensional network of actin filaments together with variable numbers of radiating actin filament bundles or microspikes. The use of Phalloidin after glutaraldehyde fixation resulted in a marginal improvement in filament order. Processing of the cytoskeletons though the additional steps generally employed for conventional electron microscopy resulted in a marked deterioration or complete disruption of the order of the actin filament networks. In contrast, the actin filaments of the stress fiber bundles were essentially unaffected. Thus, postfixation in osmium tetroxide (1% for 7 min at room temperature) transformed the networks to a reticulum of kinked fibers, resembling those produced by the exposure of muscle F-actin to OsO4 in vitro (P. Maupin-Szamier and T. D. Pollard. 1978. J. Cell Biol. 77:837--852). While limited exposure to OsO4 (0.2+ for 20 min at 0 degrees C) obviated this destruction, dehydration in acetone or ethanol, with or without post-osmication, caused a further and unavoidable disordering and aggregation of the meshwork filaments. The meshwork regions of the leading edge then showed a striking resemblance to the networks hitherto described in critical point-dried preparations of cultured cells. I conclude that much of the "microtrabecular lattice" described by Wolosewick and Porter (1979. J. Cell Biol. 82:114--139) in the latter preparations constitutes actin meshworks and actin filament arrays, with their associated components, that have been distorted and aggregated by the preparative procedures employed. PMID:6799521

  19. mer, fac, and Bidentate Coordination of an Alkyl-POP Ligand in the Chemistry of Nonclassical Osmium Hydrides.

    PubMed

    Esteruelas, Miguel A; García-Yebra, Cristina; Martín, Jaime; Oñate, Enrique

    2017-01-03

    Nonclassical and classical osmium polyhydrides containing the diphosphine 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene (xant(P i Pr 2 ) 2 ), coordinated in κ 3 -mer, κ 3 -fac, and κ 2 -P,P fashions, have been isolated during the cyclic formation of H 2 by means of the sequential addition of H + and H - or H - and H + to the classical trihydride OsH 3 Cl{xant(P i Pr 2 ) 2 } (1). This complex adds H + to form the compressed dihydride dihydrogen complex [OsCl(H···H)(η 2 -H 2 ){xant(P i Pr 2 ) 2 }] + (2). Under argon, cation 2 loses H 2 and the resulting unsaturated fragment dimerizes to give [(Os(H···H){xant(P i Pr 2 ) 2 }) 2 (μ-Cl) 2 ] 2+ (3). During the transformation the phosphine changes its coordination mode from mer to fac. The benzofuran counterpart of 1, OsH 3 Cl{dbf(P i Pr 2 ) 2 } (4; dbf(P i Pr 2 ) 2 = 4,6-bis(diisopropylphosphino)dibenzofuran), also adds H + to afford the benzofuran counterpart of 2, [OsCl(H···H)(η 2 -H 2 ){xant(P i Pr 2 ) 2 }] + (5), which in contrast to the latter is stable and does not dimerize. Acetonitrile breaks the chloride bridge of 3 to form the dihydrogen [OsCl(η 2 -H 2 )(CH 3 CN){xant(P i Pr 2 ) 2 }] + (6), regenerating the mer coordination of the diphosphine. The hydride ion also breaks the chloride bridge of 3. The addition of KH to 3 leads to 1, closing a cycle for the formation of H 2 . Complex 1 reacts with a second hydride ion to give OsH 4 {xant(P i Pr 2 ) 2 } (7) as consequence of the displacement of the chloride. Similarly to the latter, the oxygen atom of the mer-coordinated diphosphine of 7 has a tendency to be displaced by the hydride ion. Thus, the addition of KH to 7 yields [OsH 5 {xant(P i Pr 2 ) 2 }] - (8), containing a κ 2 -P,P-diphosphine. Complex 8 is easily protonated to afford OsH 6 {xant(P i Pr 2 ) 2 } (9), which releases H 2 to regenerate 7, closing a second cycle for the formation of molecular hydrogen.

  20. Concept Definition for the Pest Management Component of the Pollution Abatement Management System (PAMS).

    DTIC Science & Technology

    1982-01-01

    able to obtain * Aluminum phosphide, Bromacil, Carbaryl (Sevin), Chlordane, Chlorpyrifos (Oursban), Diazinon, Dichlorovos (DODYP), Malathion, Paraquat...Pentachloro- phenol (PCP), Propoxur (Baygon), Thiram, strychnine/strychnine sulfate, zinc phosphide, and 2,4-D. 10 sufficient data to respond to

  1. Yellow phosphorus-induced Brugada phenocopy.

    PubMed

    Dharanipradab, Mayakrishnan; Viswanathan, Stalin; Kumar, Gokula Raman; Krishnamurthy, Vijayalatchumy; Stanley, Daphene Divya

    Metallic phosphides (of aluminum and phosphide) and yellow phosphorus are commonly used rodenticide compounds in developing countries. Toxicity of yellow phosphorus mostly pertains to the liver, kidney, heart, pancreas and the brain. Cardiotoxicity with associated Brugada ECG pattern has been reported only in poisoning with metallic phosphides. Brugada phenocopy and hepatic dysfunction were observed in a 29-year-old male following yellow phosphorus consumption. He had both type 1 (day1) and type 2 (day2) Brugada patterns in the electrocardiogram, which resolved spontaneously by the third day without hemodynamic compromise. Toxins such as aluminum and zinc phosphide have been reported to induce Brugada ECG patterns due to the generation of phosphine. We report the first case of yellow phosphorus-related Brugada phenocopy, without hemodynamic compromise or malignant arrhythmia. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.

    1994-01-01

    Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also

  3. The effect of N-acetyl cysteine (NAC) on aluminum phosphide poisoning inducing cardiovascular toxicity: a case-control study.

    PubMed

    Taghaddosinejad, Fakhreddin; Farzaneh, Esmaeil; Ghazanfari-Nasrabad, Mahdi; Eizadi-Mood, Nastaran; Hajihosseini, Morteza; Mehrpour, Omid

    2016-01-01

    Aluminum phosphide (AlP) is a very effective indoor and outdoor pesticide. We investigated the effects of N-acetyl cysteine (NAC) on the survival time, hemodynamics, and cardiac biochemical parameters at various time intervals in some cases of AlP poisoning. This research was a case-control study to evaluate 63 AlP poisoned patients during 2010-2012. Patients with cardiovascular complications of AlP to be treated with intravenous NAC plus conventional treatment were considered as the case group and compared with patients who did not receive NAC. NAC infusion was administered to the case group at 300 mg/kg for 20 h. The data gathered included age, sex, heart rate, Systolic blood pressure (SBP), creatine phosphokinase (CPK), creatine kinase MB (CK-MB), and ECG at the admission time and 12, 18, and 24 h after admission. Analysis of repeated measures was performed to check the variability of parameters over time. The mean ages in the case and control groups were 26.65 ± 1.06 (19-37 years) and 28.39 ± 1.11 (18-37 years), respectively (P = 0.266). Most of the patients were female (56.5%). CK-MB means were significantly different between the two groups, but no differences between the other variables were observed. Also, CK-MB, CPK, heart rate, and systolic blood pressure means became significantly different over time (0, 12, 18, and 24 h) in both groups (P < 0.001). NAC prevented sharp heart rate fluctuations in AlP patients in the case group. Regarding the outcomes, 17 patients died (10 patients in the control and 7 patients in the case groups). No side-effects of NAC were observed. Our patients could be managed by the positive role of NAC as the biochemical index of cardiotoxicity was found to elevate in both the case and control groups. Therefore, for the management protocol optimization, NAC evaluation should be done in further cases.

  4. The role of nonmagnetic d{sup 0} vs. d{sup 10}B-type cations on the magnetic exchange interactions in osmium double perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Hai L., E-mail: Hai.Feng@cpfs.mpg.de; Yamaura, Kazunari; Tjeng, Liu Hao

    Polycrystalline samples of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are −590 K for Ba{sub 2}ScOsO{sub 6}, −571 K for Ba{sub 2}YOsO{sub 6}, and −155 K for Ba{sub 2}InOsO{sub 6}. Sc{sup 3+} and Y{sup 3+} have the open-shell d{sup 0} electronic configuration, while In{sup 3+} has the closed-shell d{sup 10}. This indicates that a d{sup 0} B-typemore » cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. Comparison of Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions. - Graphical abstract: Magnetic properties of osmium double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. Comparison of Ba{sub 2}BOsO{sub 6}indicates that a d{sup 0} B-type cation induces stronger overall magnetic exchange interactions in comparison to a d{sup 10}. - Highlights: • Magnetic properties of double perovskites Ba{sub 2}BOsO{sub 6} (B=Sc, Y, In) were studied. • A d{sup 0}B-type cation induces stronger magnetic interactions than a d{sup 10}. • Structural distortions weaken the overall Os{sup 5+}-Os{sup 5+} magnetic interactions.« less

  5. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    PubMed

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. REDUCTION OF INORGANIC COMPOUNDS WITH MOLECULAR HYDROGEN BY MICROCOCCUS LACTILYTICUS I.

    PubMed Central

    Woolfolk, C. A.; Whiteley, H. R.

    1962-01-01

    Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647–658. 1962.—Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of certain compounds of arsenic, bismuth, selenium, tellurium, lead, thallium, vanadium, manganese, iron, copper, molybdenum, tungsten, osmium, ruthenium, gold, silver, and uranium, as well as molecular oxygen. Chemical and manometric data indicate that the following reductions are essentially quantitative: arsenate to arsenite, pentavalent and trivalent bismuth to the free element, selenite via elemental selenium to selenide, tellurate and tellurite to tellurium, lead dioxide and manganese dioxide to the divalent state, ferric to ferrous iron, osmium tetroxide to osmate ion, osmium dioxide and trivalent osmium to the metal, uranyl uranium to the tetravalent state, vanadate to the level of vanadyl, and polymolybdate ions to molybdenum blues with an average valence for molybdenum of +5. The results of a study of certain other hydrogenase-containing bacteria with respect to their ability to carry out some of the same reactions are also presented. PMID:14001842

  7. Glucose Electrodes Based on Cross-Linked (Os(bpy)2CI)+/2+ Complexed Poly(1-Vinylimidazole) Films

    DTIC Science & Technology

    1993-05-24

    oxidase (GOX) through covalent bonding in the cross-linking step, glucose was electrooxidized at 250 mV (SCE). The characteristics of these... electrooxidation currents were independent of the polymers’ osmium content in the studied (3 - 10 osmium S_ _ centers per monomer unit ) range, Electrodes...glucose was electrooxidized at 250 mV (SCE). The characteristics of these electrodes depended on the GOX concentration, film thickness, 02

  8. Black-tailed prairie dog populations one year after treatment with rodenticides

    Treesearch

    Anthony D. Apa; Daniel W. Uresk; Raymond L. Linder

    1990-01-01

    Three rodenticide treatments, zinc phosphide with prebait, strychnine with prebait, and strychnine without prebait, were applied to black-tailed prairie dog (Cynomys ludovicianus) colonies in west central South Dakota. Results were compared immediately posttreatment and for one year after application. Zinc phosphide was the most effective for...

  9. Rhenium - osmium heterogeneity of enriched mantle basalts explained by composition and behaviour of mantle-derived sulfides

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Dale, C. W.; Gannoun, A.; Burton, K. W.

    2010-12-01

    Analyses of enriched mantle (EM) -basalts, using lithophile element-based isotope systems have long provided evidence for discrete, but variable mantle reservoirs [1]. Upon partial melting, the isotopic fingerprint of each reservoir is imparted upon the partial melt produced. However, recent work involving the Re-Os isotope systematics of EM-basalts [2] suggests that it may not be so simple to delimit these previously well defined mantle reservoirs; the “mantle zoo” [3] may contain more reservoirs than previously envisaged. However, a simple model, with varying contributions from two populations of compositionally distinct mantle sulfides can readily account for the observed heterogeneities in Re-Os isotope systematics of such basalts without additional mantle reservoirs. Rhenium-osmium elemental and isotopic analyses of individual sulfide grains separated from spinel lherzolites from Kilbourne Hole, NM, USA demonstrate that two discrete populations of mantle sulfide exist in terms of both Re-Os systematics and textural relationship with co-existing silicates. One population, with a rounded morphology, is preserved in silicate grains and typically possesses high [Os], low [Re] with unradiogenic, typically sub-chondritic, 187Os/188Os attributable to long term isolation in a low-Re environment. By contrast, irregular-shaped sulfides, preserved along silicate grain boundaries, possess low [Os], higher [Re] and a wider range of, but generally supra-chondritic, 187Os/188Os ([Os] typically ≤ 1-2 ppm, 187Os/188Os ≤ 0.3729; this study). This population is thought to represent metasomatic sulfide (e.g. [4,5]). Uncontaminated silicate phases contain negligible Os (<100 ppt) therefore the Os elemental and isotope composition of basalts is dominated by volumetrically insignificant sulfide ([Os] ≤ 37 ppm, this study). During the early stages of partial melting, supra-chondritic interstitial sulfides are mobilized and incorporated into the melt, adding their radiogenic

  10. Strained quantum well photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  11. Sinterless Fabrication Of Contact Pads On InP Devices

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.; Korenyi-Both, Andras L.

    1995-01-01

    Research has shown that with proper choice of material, low-resistance contact pads deposited on solar cells and other devices by improved technique that does not involve sintering. Research directed at understanding mechanisms involved in contact-sintering process has resulted in identification of special group of materials that includes phosphides of gold, silver, and nickel; specifically, Au(2)P(3), AgP(2), and Ni(3)P. Incorporation of phosphide interlayer substantially reduces resistivity between gold current-carrying layer and indium phosphide substrate. Further research indicated only very thin interlayer of any of these compounds needed to obtain low contact resistance, without subjecting contact to destructive sintering process.

  12. Scanning electron microscopy of hepatic ultrastructure: secondary, backscattered, and transmitted electron imaging.

    PubMed

    Miyai, K; Abraham, J L; Linthicum, D S; Wagner, R M

    1976-10-01

    Several methods of tissue preparation and different modes of operation of the scanning electron microscope were used to study the ultrastructure of rat liver. Rat livers were perfusion fixed with buffered 2 per cent paraformaldehyde or a mixture of 1.5 per cent paraformaldehyde and 1 per cent glutaraldehyde and processed as follows. Tissue blocks were postfixed in buffered 2 per cent osmium tetroxide followed sequentially by the ligand-mediated osmium binding technique, dehydration and cryofracture in ethanol, and critical point drying. They were then examined without metal coating in the scanning electron microscope operating in the secondary electron and backscattered electron modes. Fifty-micrometer sections were cut with a tissue sectioner, stained with lead citrate, postfixed with osmium, dehydrated, critical point dried, and examined in the secondary electron and back-scattered electron modes. Frozen sections (0.25 to 0.75 mum. thick) were cut by the method of Tokuyasu (Toluyasu KT: J Cell Biol 57:551, 1973) and their scanning transmission electron microscope images were examined either with a scanning transmission electron microscope detector or with a conversion stub using the secondary electron detector. Secondary electron images of the liver prepared by ligand-mediated osmium binding and subsequent cryofracture revealed such intracellular structures as cisternae of the endoplasmic reticulum, lysosomes, mitochondria, lipid droplets, nucleolus and nuclear chromatin, as well as the usual surface morphology, Lipocytes in the perisinusoidal space were readily identified. Backscattered electron images. Unembedded frozen sections had little drying artifact and were virtually free of freezing damage. The scanning transmission electron microscope image revealed those organelles visualized by the secondary electron mode in the ligand-mediated osmium binding-treated tissue.

  13. Susan Habas | NREL

    Science.gov Websites

    chemical transformations Scalable methods for solution-phase nanomaterials synthesis Production of premium Patents "Metal Phosphide Catalysts and Methods for Making the Same and Uses Thereof," U.S . Patent No. 9,636,664 B1 (2017) "Metal Phosphide Catalysts and Methods for Making the Same and Uses

  14. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-04

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes.

  15. Gap/silicon Tandem Solar Cell with Extended Temperature Range

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2006-01-01

    A two-junction solar cell has a bottom solar cell junction of crystalline silicon, and a top solar cell junction of gallium phosphide. A three (or more) junction solar cell has bottom solar cell junctions of silicon, and a top solar cell junction of gallium phosphide. The resulting solar cells exhibit improved extended temperature operation.

  16. Oceanic mantle rocks reveal evidence for an ancient, 1.2-1.3 Ga global melting event

    NASA Astrophysics Data System (ADS)

    Dijkstra, A. H.; Sergeev, D.; McTaminey, L.; Dale, C. W.; Meisel, T. C.

    2011-12-01

    It is now increasingly being recognized that many oceanic peridotites are refertilized harzburgites, and that the refertilization often masks an extremely refractory character of the original mantle rock 'protolith'. Oceanic peridotites are, when the effects of melt refertilization are undone, often too refractory to be simple mantle melting residues after the extraction of mid-ocean ridge basalts at a spreading center. Rhenium-osmium isotope analysis is a powerful method to look through the effects of refertilization and to obtain constraints on the age of the melting that produced the refractory mantle protolith. Rhenium-depletion model ages of such anomalously refractory oceanic mantle rocks - found as abyssal peridotites or as mantle xenoliths on ocean islands - are typically >1 Ga, i.e., much older than the ridge system at which they were emplaced. In my contribution I will show results from two case studies of refertilized anciently depleted mantle rocks (Macquarie Island 'abyssal' peridotites and Lanzarote mantle xenoliths). Interestingly, very refractory oceanic mantle rocks from sites all around the world show recurring evidence for a Mesoproterozoic (~1.2-1.3 Ga) melting event [1]. Therefore, oceanic mantle rocks seem to preserve evidence for ancient melting events of global significance. Alternatively, such mantle rocks may be samples of rafts of ancient continental lithospheric mantle. Laser-ablation osmium isotope 'dating' of large populations of individual osmium-bearing alloys from mantle rocks is the key to better constrain the nature and significance of these ancient depletion events. Osmium-bearing alloys form when mantle rocks are melted to high-degrees. We have now extracted over >250 detrital osmium alloys from placer gold occurrences in the river Rhine. These alloys are derived from outcrops of ophiolitic mantle rocks in the Alps, which include blocks of mantle rocks emplaced within the Tethys Ocean, and ultramafic lenses of unknown

  17. PHYSICAL STUDIES OF PHOSPHOLIPIDS

    PubMed Central

    Chapman, D.; Fluck, D. J.

    1966-01-01

    On heating pure, fully saturated 2,3-diacyl-DL-phosphatidyl-ethanolamines and 2,3-diacylphosphatidyl-cholines (lecithins) in water to the transition temperature at which large endothermic heat changes occur, they are observed, by light microscopy, to form myelin figures. This result is discussed in terms of the large difference in the transition temperature for "melting" of the hydrocarbon chains of unsaturated and saturated phospholipids and is illustrated by means of differential thermal analysis (D.T.A.) curves. These structures have been examined by electron microscopy after negative staining and after reaction with osmium tetroxide. Typical phospholipid lamella structures are seen in the phosphatidylcholines after negative staining, and in the phosphatidyl-ethanolamines after both negative staining and osmium fixation. The distances across these lamellae have been measured. Some preliminary investigations of the nature of the osmium tetroxide reaction with the phosphatidyl-ethanolamines have been made. PMID:4165077

  18. Wavelength-scale Microlasers based on VCSEL-Photonic Crystal Architecture

    DTIC Science & Technology

    2015-01-20

    molecular beam epitaxy , MBE). We will also assume the triangular lattice of air...Abbreviations, and Acronyms InP: indium phosphide InGaAsP: indium gallium arsenide phosphide MBE: molecular beam epiitaxy VCSEL : vertical cavity...substrates and were grown by MBE. Electron beam lithography and reactive ion etching was used to deep‐etch the holes of the PhC‐ VCSELS ,

  19. Zinc phosphide

    Integrated Risk Information System (IRIS)

    Zinc phoshide ; CASRN 1314 - 84 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  20. The Mechanism of Anaerobic (Microbial) Corrosion.

    DTIC Science & Technology

    1982-12-01

    hydrogen sulfide reacts with hypophosphite (as well as phosphate and phosphite ) .to form, in the presence of mild steel, iron phosphide, simulating the...of phosphate and phosphite , but not hypophosphite, were observed to have become yellow in 24 hours. The yellow color disap- peared upon exposure to... product is an amorphous type of iron phosphide which can be !- detected b the formation of phos hine upon its acidification. Phosphine( in M IFO, 1473

  1. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    USGS Publications Warehouse

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os

  2. In-depth survey report of Early and Daniel Co. , Inc. , Louisville, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaebst, D.D.

    1986-09-01

    An in-depth industrial hygiene survey was conducted to evaluate worker exposures to phosphine during fumigation of grain at the Early and Daniel Co. grain elevator in Louisville, Kentucky. Stored grain was fumigated using aluminum phosphide. Aluminum-phosphide pellets were also added directly to the grain by the blender as it was poured into the storage containers. Local exhaust ventilation was used at points in the grain-moving system where grain dust was generated. Air samples were taken during full-shift periods at the breathing zone of the weighmaster, two bin floormen, and the blender. Area monitoring samples were also taken. If the operatorsmore » spend considerable time in the vicinity of a bin which is being filled with grain, there is a likelihood of far greater exposure levels being noted. According to the author, further studies of the use of phosphide products at other elevators should be conducted to determine the effect of environmental and process parameters on phosphine exposures.« less

  3. Redox polymer mediation for enzymatic biofuel cells

    NASA Astrophysics Data System (ADS)

    Gallaway, Joshua

    Mediated biocatalytic cathodes prepared from the oxygen-reducing enzyme laccase and redox-conducting osmium hydrogels were characterized for use as cathodes in enzymatic biofuel cells. A series of osmium-based redox polymers was synthesized with redox potentials spanning the range from 0.11 V to 0.85 V (SHE), and the resulting biocatalytic electrodes were modeled to determine reaction kinetic constants using the current response, measured osmium concentration, and measured apparent electron diffusion. As in solution-phase systems, the bimolecular rate constant for mediation was found to vary greatly with mediator potential---from 250 s-1M-1 when mediator and enzyme were close in potential to 9.4 x 10 4 s-1M-1 when this overpotential was large. Optimum mediator potential for a cell operating with a non-limiting platinum anode and having no mass transport limitation from bulk solution was found to be 0.66 V (SHE). Redox polymers were synthesized under different concentrations, producing osmium variation. An increase from 6.6% to 7.2% osmium increased current response from 1.2 to 2.1 mA/cm2 for a planar film in 40°C oxygen-saturated pH 4 buffer, rotating at 900 rpm. These results translated to high surface area electrodes, nearly doubling current density to 13 mA/cm2, the highest to date for such an electrode. The typical fungal laccase from Trametes versicolor was replaced by a bacterially-expressed small laccase from Streptomyces coelicolor, resulting in biocatalytic films that reduced oxygen at increased pH, with full functionality at pH 7, producing 1.5 mA/cm 2 in planar configuration. Current response was biphasic with pH, matching the activity profile of the free enzyme in solution. The mediated enzyme electrode system was modeled with respect to apparent electron diffusion, mediator concentration, and transport of oxygen from bulk solution, all of which are to some extent controlled by design. Each factor was found to limit performance in certain circumstances

  4. Catalytic asymmetric dihydroxylation of olefins with reusable OsO(4)(2-) on ion-exchangers: the scope and reactivity using various cooxidants.

    PubMed

    Choudary, Boyapati M; Chowdari, Naidu S; Jyothi, Karangula; Kantam, Mannepalli L

    2002-05-15

    Exchanger-OsO(4) catalysts are prepared by an ion-exchange technique using layered double hydroxides and quaternary ammonium salts covalently bound to resin and silica as ion-exchangers. The ion-exchangers with different characteristics and opposite ion selectivities are specially chosen to produce the best heterogeneous catalyst that can operate using the various cooxidants in the asymmetric dihydroxylation reaction. LDH-OsO(4) catalysts composed of different compositions are evaluated for the asymmetric dihydroxylation of trans-stilbene. Resin-OsO(4) and SiO(2)-OsO(4) designed to overcome the problems associated with LDH-OsO(4) indeed show consistent activity and enantioselectivity in asymmetric dihydroxylation of olefins using K(3)Fe(CN)(6) and molecular oxygen as cooxidants. Compared to the Kobayashi heterogeneous systems, resin-OsO(4) is a very efficient catalyst for the dihydroxylation of a wide variety of aromatic, aliphatic, acyclic, cyclic, mono-, di-, and trisubstituted olefins to afford chiral vicinal diols with high yields and enantioselectivities irrespective of the cooxidant used. Resin-OsO(4) is recovered quantitatively by a simple filtration and reused for a number of cycles with consistent activity. The high binding ability of the heterogeneous osmium catalyst enables the use of an equimolar ratio of ligand to osmium to give excellent enantioselectives in asymmetric dihydroxylation in contrast to the homogeneous osmium system in which excess molar quantities of the expensive chiral ligand to osmium are invariably used. The complexation of the chiral ligand (DHQD)(2)PHAL, having very large dimension, a prerequisite to obtain higher ee, is possible only with the OsO(4)(2-) located on the surface of the supports.

  5. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    NASA Astrophysics Data System (ADS)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  6. The causes for geographical variations in OS187/OS186 at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Turekian, K. K.; Esser, B. K.; Ravizza, G. E.

    1988-01-01

    Researchers at Yale has approached the problem of the osmium isotopic composition of marine deposits formed in contact with both oxidized and reduced bottom waters. The measured (187) Os/(186) Os ratios of modern bulk sediment can be explained using mixing equations involving continental detrital, volcaniclastic, cosmogenic and hydrogeneous components. These studies show that sediments deposited under reducing marine conditions contain a hydrogenous component which is enriched in Re and has a radiogenic (187) Os/(186) Os ratio. The presence of such a hydrogenous component in the marine fish clay at Stevns Klint can account for the elevation of its (187) Os/(186) Os ration above the expected meteoritic value. Mass balance considerations require the Re/Os ratio of the phase precipitated from the terminal Cretaceous sea at Stevns Klint to have been about one tenth the value observed in contemporary deposits in the Black Sea, assuming Re has not been lost (or Os gained) subsequent to precipitation. In continental sections, the elevation of the (187) Os/(186) Os ratio in boundary layers may be due to precipitation from continental waters of crustally-derived radiogenic osmium either contemporaneous with the meteoritic (or mantle) osmium deposition or later during diagenesis.

  7. OsN2: Crystal structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Montoya, Javier A.; Hernandez, Alexander D.; Sanloup, Chrystèle; Gregoryanz, Eugene; Scandolo, Sandro

    2007-01-01

    Osmium nitride belongs to a family of nitrides synthesized recently at high pressures from their parent elements. Here we show, based on first-principles calculations, that the crystal structure of osmium nitride is isostructural to marcasite. Excellent agreement is obtained between the authors' results and x-ray, Raman, and compressibility measurements. In the OsN2 marcasite structure single-bonded N2 units occupy the interstitial sites of the Os close-packed lattice, giving rise to a metallic compound. A comparison between the formation energies of OsN2 and PtN2 explains the similar thermodynamic conditions of formation reported experimentally for the two compounds.

  8. Osmium-Iridium Correlation and Osmium Isotopic Composition in Some Geological Boundaries and Meteorites

    NASA Astrophysics Data System (ADS)

    Liu, Y. Z.; Wang, J. X.; Mao, X. Y.; Chai, C. F.

    1992-07-01

    Since the pioneering study of Alvarez et al. on K/T boundary event, Ir has long been considered to be the main indicator of extraterrestrial materials in boundaries, while little work about Os and its isotopic composition have been done. In this work a sophisticated radiochemical separation procedure together with neutron activation analsis (NAA) method was established for the determination of Os in some geological boundaries (P epsilon/epsilon, K/T, D/C, O/S, P/T). Combined with our early work--determination of Ir abundances [1], the sources of boundary events were deciphered by using the Os/Ir ratios. Simultaneously ^184Os/^190Os ratios in K/T boundaries, as well as inclusions of Allende chondrite and acid-insoluble residues of iron meteorites (Nandan, Jianshi, Longchang) were determined to search for the Os isotopic composition anomalies resulted from the extrasolar components by RNAA. The results show that the Os abundances exhibit a positive correlation with the Ir abundances for overall K/T boundary samples, but only the Os/Ir ratios of K/T boundaries, with the average of 0.98 +- 0.55, are in excellent agreement with 1.01 of the solar system [2], Accordingly, it provides new evidence for an extraterrestrial source of the K/T event. The results of ^184Os/^190Os ratios, with uncertainties of less than 1%, indicate there is no remarkable ^184Os/^190Os ratio anomaly in the K/T boundary samples, which implies the impacting matter may be from the solar system not the extrasolar, while no anomaly exists in the inclusions of Allende chondrite and acid-insoluble residues of iron meteorites, which disagree with the results obtained by Goel [3]. REFERENCES [1] Chai Chifang (1988) Isotopenpraxis 24, pp. 257-272. [2] Anders E. and Grevesse N. (l989) Geochim. Cosmochim. Acta 53, 197-214. [3] Goel P.S.(1987) Proc. Indian Acad. Sci. (Earth Planet. Sci), 96, pp. 81-102.

  9. Barringerite Fe2P from Pyrometamorphic Rocks of the Hatrurim Formation, Israel

    NASA Astrophysics Data System (ADS)

    Britvin, S. N.; Murashko, M. N.; Vapnik, E.; Polekhovsky, Yu. S.; Krivovichev, S. V.

    2017-12-01

    The article provides a detailed mineralogical and crystallochemical description (including refinement of the crystal structure) of the first finding of the phosphide class mineral barringerite, Fe2P, from terrestrial pyrometamorphic rocks of the Hatrurim Formation in Israel. The mineral occurs in the association of the so-called paralavas—initially silicate—carbonate sedimentary rocks that remelted during pyrometamorphic processes at a temperature above 1000°C and at a low pressure. Questions on the genesis and crystal chemistry of barringerite are discussed in connection with another polymorphic iron phosphide, allabogdanite (Fe,Ni)2P.

  10. Epitaxy of boron phosphide on AlN, 4H-SiC, 3C-SiC and ZrB2 substrates

    NASA Astrophysics Data System (ADS)

    Padavala, Balabalaji

    The semiconductor boron phosphide (BP) has many outstanding features making it attractive for developing various electronic devices, including neutron detectors. In order to improve the efficiency of these devices, BP must have high crystal quality along with the best possible electrical properties. This research is focused on growing high quality crystalline BP films on a variety of superior substrates like AlN, 4H-SiC, 3C-SiC and ZrB2 by chemical vapor deposition. In particular, the influence of various parameters such as temperature, reactant flow rates, and substrate type and its crystalline orientation on the properties of BP films were studied in detail. Twin-free BP films were produced by depositing on off-axis 4H-SiC(0001) substrate tilted 4° toward [11¯00] and crystal symmetry matched zincblende 3C-SiC. BP crystalline quality improved at higher deposition temperature (1200°C) when deposited on AlN, 4H-SiC, whereas increased strain in 3C-SiC and increased boron segregation in ZrB2 at higher temperatures limited the best deposition temperature to below 1200°C. In addition, higher flow ratios of PH 3 to B2H6 resulted in smoother films and improved quality of BP on all substrates. The FWHM of the Raman peak (6.1 cm -1), XRD BP(111) peak FWHM (0.18°) and peak ratios of BP(111)/(200) = 5157 and BP(111)/(220) = 7226 measured on AlN/sapphire were the best values reported in the literature for BP epitaxial films. The undoped films on AlN/sapphire were n-type with a highest electron mobility of 37.8 cm2/V˙s and a lowest carrier concentration of 3.15x1018 cm -3. Raman imaging had lower values of FWHM (4.8 cm-1 ) and a standard deviation (0.56 cm-1) for BP films on AlN/sapphire compared to 4H-SiC, 3C-SiC substrates. X-ray diffraction and Raman spectroscopy revealed residual tensile strain in BP on 4H-SiC, 3C-SiC, ZrB2/4H-SiC, bulk AlN substrates while compressive strain was evident on AlN/sapphire and bulk ZrB2 substrates. Among the substrates studied, Al

  11. Preparation and characterization of a supported system of Ni2P/Ni12P5 nanoparticles and their use as the active phase in chemoselective hydrogenation of acetophenone

    NASA Astrophysics Data System (ADS)

    Costa, Dolly C.; Soldati, Analía L.; Pecchi, Gina; Bengoa, José Fernando; Marchetti, Sergio Gustavo; Vetere, Virginia

    2018-05-01

    Ni2P/Ni12P5 nanoparticles were obtained by thermal decomposition of nickel organometallic salt at low temperature. The use of different characterization techniques allowed us to determine that this process produced a mixture of two nickel phosphide phases: Ni2P and Ni12P5. These nickel phosphides nanoparticles, supported on mesoporous silica, showed activity and high selectivity for producing the hydrogenation of the acetophenone carbonyl group to obtain 1-phenylethanol. This is a first report that demonstrates the ability of supported Ni2P/Ni12P5 nanoparticles to produce the chemoselective hydrogenation of acetophenone. We attribute these special catalytic properties to the particular geometry of the Ni–P sites on the surface of the nanoparticles. This is an interesting result because the nickel phosphides have a wide composition range (from Ni3P to NiP3), with different crystallographic structures, therefore we think that different phases could be active and selective to hydrogenate many important molecules with more than one functional group.

  12. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes.

    PubMed

    Lan, Yingying; Zhao, Hongyang; Zong, Yan; Li, Xinghua; Sun, Yong; Feng, Juan; Wang, Yan; Zheng, Xinliang; Du, Yaping

    2018-05-01

    Binary transition metal phosphides hold immense potential as innovative electrode materials for constructing high-performance energy storage devices. Herein, porous binary nickel-cobalt phosphide (NiCoP) nanosheet arrays anchored on nickel foam (NF) were rationally designed as self-supported binder-free electrodes with high supercapacitance performance. Taking the combined advantages of compositional features and array architectures, the nickel foam supported NiCoP nanosheet array (NiCoP@NF) electrode possesses superior electrochemical performance in comparison with Ni-Co LDH@NF and NiCoO2@NF electrodes. The NiCoP@NF electrode shows an ultrahigh specific capacitance of 2143 F g-1 at 1 A g-1 and retained 1615 F g-1 even at 20 A g-1, showing excellent rate performance. Furthermore, a binder-free all-solid-state asymmetric supercapacitor device is designed, which exhibits a high energy density of 27 W h kg-1 at a power density of 647 W kg-1. The hierarchical binary nickel-cobalt phosphide nanosheet arrays hold great promise as advanced electrode materials for supercapacitors with high electrochemical performance.

  13. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean

    PubMed Central

    Kendall, Brian; Creaser, Robert A.; Reinhard, Christopher T.; Lyons, Timothy W.; Anbar, Ariel D.

    2015-01-01

    It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O2 levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean. PMID:26702438

  14. Sodium bicarbonate secretion indicated by ultrastructural cytochemical localization of HCO3(-), Cl-, and Na+ ions on rat bile duct brush cells.

    PubMed

    Ogata, Takuro

    2005-12-01

    Brush cells are widely distributed in the digestive and respiratory apparatus, but their function is still unknown. Because brush cells (BC) are found in organs secreting NaHCO3, it was hypothesized that these cells may secrete NaHCO3. To test this possibility, rat common bile duct epithelia were examined by ultrastructural cytochemical methods for localizing HCO3(-), Cl-, and Na+ ions. All three ion precipitates were few in or on BCs of rats without stimulation. Lead carbonate precipitates, which localized HCO3(-) ions by the lead nitrate-osmium method, increased markedly on the surface of the microvilli (MV) of BCs after secretin or meal stimulation, but similar precipitates were few on the luminal surface of principal cells (PCs). Silver chloride precipitates, which indicate the presence of Cl- ions by the silver-osmium method, increased in the apical cytoplasm and in MV of BCs after secretin or meal stimulation, but they were few in PCs. Sodium pyroantimonate precipitates, which localize Na+ ions by the potassium pyroantimonate-osmium method, increased on the surface of the MV, along the basolateral membrane, and in the apical cytoplasm of BCs after secretin or meal stimulation, but they were few in PCs. These results strongly suggest that BCs may be a significant source of NaHCO3 secretion.

  15. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  16. Thin film photovoltaic device

    DOEpatents

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  17. Low resistance contacts for shallow junction semiconductors

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S. (Inventor); Weizer, Victor G. (Inventor)

    1994-01-01

    A method of enhancing the specific contact resistivity in InP semiconductor devices and improved devices produced thereby are disclosed. Low resistivity values are obtained by using gold ohmic contacts that contain small amounts of gallium or indium and by depositing a thin gold phosphide interlayer between the surface of the InP device and the ohmic contact. When both the thin interlayer and the gold-gallium or gold-indium contact metallizations are used, ultra low specific contact resistivities are achieved. Thermal stability with good contact resistivity is achieved by depositing a layer of refractory metal over the gold phosphide interlayer.

  18. Ultrastructural histochemical investigations of "dense deposit disease". Pathogenetic approach to a special type of mesangiocapillary glomerulonephritis.

    PubMed

    Muda, A O; Barsotti, P; Marinozzi, V

    1988-01-01

    Dense deposit disease is characterized by the presence of intramembranous dense deposits; their constituents are unknown but immunological and biochemical studies have demonstrated that they contain no gamma-globulins or any other plasma protein. In order to clarify the nature of the dense deposits better, we investigated their most distinctive character, (marked electron-density) by means of ultrastructural histochemistry techniques using thin sections from Formaldehyde fixed, OsO4 postfixed and Epon embedded specimens collected for diagnostic electron microscopy. The dense deposits have a higher osmium affinity than the lamina densa of normal basement membranes, and the electron-density is strictly osmium-dependent suggesting the presence of a lipid component. Further data, obtained using an extraction method for lipids, seems to confirm our hypothesis.

  19. The Chelyabinsk Fall Highly Siderophile Element Abundance and 187Os/188Os Composition and Comparison with Ordinary and Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Day, J. M. D.; Corder, C. A.; Dhaliwal, J. K.; Liu, Y.; Taylor, L. A.

    2014-09-01

    New osmium isotope and highly siderophile element abundance data are presented for the Chelyabinsk ordinary chondrite fall (February 2013) and placed into context with new data for ordinary and carbonaceous chondrites.

  20. MXP(M = Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction.

    PubMed

    Zhao, Wentong; Lu, Xiaoqing; Selvaraj, Manickam; Wei, Wei; Jiang, Zhifeng; Ullah, Nabi; Liu, Jie; Xie, Jimin

    2018-05-24

    Low-cost electrocatalysts play an important role in the hydrogen evolution reaction (HER). Particularly, transition metal phosphides (TMPs) are widely applied in the development of HER electrocatalysts. To improve the poor electrochemical reaction kinetics of HER, we introduce a facile way to synthesize carbon core-shell materials containing cobalt phosphide nanoparticles embedded in different graphene aerogels (GAs) (CoP@C-NPs/GA-x (x = 5, 10 and 20)) using seaweed biomass as precursors. The synthesized CoP@C-NPs/GA-5 exhibits efficient catalytic activity with small overpotentials of 120 and 225 mV at current densities of 10 mA cm-2, along with the low Tafel slopes of 57 and 66 mV dec-1, for HER in acidic and alkaline electrolytes, respectively. Compared with carbon aerogel (CA) containing cobalt phosphide nanoparticles (CoP-NPs@CA), the stability of CoP@C-NPs/GA-5 coated with carbon-shells (∼0.8 nm) was significantly improved in acidic electrolytes. We also prepared carbon core-shell materials containing nickel phosphide nanoparticles embedded in GA (Ni2P@C-NPs/GA) to further expand this synthetic route. The graphene-Ni2P@C aerogel shows a similar morphology and better catalytic activity for HER in acidic and alkaline electrolytes. In this work, the robust three-dimensional (3D) GA matrix with abundant open pores and large surface area provides unblocked channels for electrolyte contact and electronic transfer and enables very close contact between the catalyst and electrolyte. The MxP@C core-shell structure prevents the inactivation of MxP NPs during HER processes, and the thin graphene oxide (GO) layers and 3D CA together build up a 3D conductive matrix, which not only adjusts the volume expansion of MxP NPs as well as preventing their aggregation, but also provides a 3D conductive pathway for rapid charge transfer processes. The present synthetic strategy for phosphides via in situ phosphorization with 3D GA can be extended to other novel high

  1. Reactions of technetium hexafluoride with nitric acid, nitrosyl fluoride, and nitryl fluoride

    NASA Technical Reports Server (NTRS)

    Holloway, J. H.; Selig, H.

    1970-01-01

    Stoichiometry of technetium hexafluoride reactions is studied. Magnetic properties and infrared spectra of reaction products are studied and compared with those of analogous complexes of the hexafluorides of tungsten, rhenium, and osmium.

  2. 40 CFR 421.261 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...

  3. 40 CFR 421.261 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...

  4. 40 CFR 421.261 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...

  5. 40 CFR 421.261 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhiquan; Wang, Anjie; Liu, Shan

    SiO 2, HZSM-5 and Al 2O 3 were used to support nickel phosphides to prepare hydrodeoxygenation (HDO) catalysts. The nickel loading was kept at 20 wt% while the Ni/P molar ratio was varied among 3, 2, and 1 in the preparation by incipient wetness impregnation. XRD characterization revealed that Ni 3P, Ni 12P 5, and Ni 2P as the major crystal phases were obtained at Ni/P ratio of 3, 2, and 1, respectively, on SiO 2 and HZSM-5. When Al 2O 3 was used as the support, nickel metal rather than nickel phosphides was generated. Among SiO 2-supported nickel phosphides,more » Ni 3P exhibited highest hydrogenation activity and catalytic performance in phenol HDO. Ni 3P/HZSM-5 showed the high catalytic performance in HDO of phenol as well as catechol and o-cresol, with Ni 3P as the hydrogenation site and the acid sites in HZSM-5 zeolite as the dehydration site. In conclusion, the strong acidity in HZSM-5 also facilitated the isomerization of cycloalkanes at elevated temperatures.« less

  7. Uranium distribution in pseudowollastonite slag from a phosphorus furnace

    USGS Publications Warehouse

    Young, Edward; Altschuler, Zalman S.

    1956-01-01

    Silicate slag from the Victor Chemical Company phosphorus furnace at Tarpon Springs, Fla., has been found to consist essentially of pseudowollastonite, α-CaSiO3. The first-formed crystals are euhedral laths which form a mesh making up most of the slag. As the slag continues to solidify, its composition changes slightly and more equant, subhedral crystals of pseudowollastonite are deposited within the framework of the earlier material. Finally, anherdral masses of fibrous, poorly crystallized material are deposited in the remaining pore spaces which are not always completely filled. Spherules of iron phosphide, Fe2P, occur very sparsely in the slag as inclusions from the immiscible iron phosphide melt. Uranium content increases in the later crystal products of the slag, and by heavy-liquid fractionation it has been possible to segregate partially the phases and to obtain a fourfold concentration of uranium in 5 percent of the material and a twofold concentration in 30 percent of the material. Nuclear-emulsion studies indicate that the last phases of the silicate slag are actually eight times as radioactive as the early phases. In addition, the iron phosphide spherules are comparably enriches in uranium.

  8. The relation of the yield stress of high-pressure anvils to the pressure attained at yielding and the ultimate attainable pressure

    NASA Technical Reports Server (NTRS)

    Panda, P. C.; Ruoff, A. L.

    1979-01-01

    A sensitive microprofilometer was used to determine the onset of yielding in the anvils of a supported opposed anvil device for the case of 3% cobalt-cemented tungsten carbide as the anvil material. In addition, it is shown how the commencement of yielding in boron carbide pistons, the yield strength being known, can be used to obtain the transition pressure to a conducting phase in gallium phosphide. The transition pressures of bismuth and gallium phosphide are obtained and it is found that these transitions are extremely close to the maximum attainable pressure in, respectively, a maraging steel and a 3% cobalt-cemented tungsten carbide.

  9. Vapor phase growth technique of III-V compounds utilizing a preheating step

    NASA Technical Reports Server (NTRS)

    Olsen, Gregory Hammond (Inventor); Zamerowski, Thomas Joseph (Inventor); Buiocchi, Charles Joseph (Inventor)

    1978-01-01

    In the vapor phase epitaxy fabrication of semiconductor devices and in particular semiconductor lasers, the deposition body on which a particular layer of the laser is to be grown is preheated to a temperature about 40.degree. to 60.degree. C. lower than the temperature at which deposition occurs. It has been discovered that by preheating at this lower temperature there is reduced thermal decomposition at the deposition surface, especially for semiconductor materials such as indium gallium phosphide and gallium arsenide phosphide. A reduction in thermal decomposition reduces imperfections in the deposition body in the vicinity of the deposition surface, thereby providing a device with higher efficiency and longer lifetime.

  10. Determination of osmium concentrations and (187)Os/(188)Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO(4) into a multicollector inductively coupled plasma mass spectrometer.

    PubMed

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard

    2014-03-18

    The (187)Os/(188)Os ratio that is based on the β(-)-decay of (187)Re to (187)Os (t1/2 = 41.6 billion years) is widely used to investigate petroleum system processes. Despite its broad applicability to studies of hydrocarbon deposits worldwide, a suitable matrix-matched reference material for Os analysis does not exist. In this study, a method that enables Os isotope measurement of crude oil with in-line Os separation and purification from the sample matrix is proposed. The method to analyze Os concentration and (187)Os/(187)Os involves sample digestion under high pressure and high temperature using a high pressure asher (HPA-S, Anton Paar), sparging of volatile osmium tetroxide from the sample solution, and measurements using multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). This methods significantly reduced the total procedural time compared to conventional Carius tube digestion followed by Os separation and purification using solvent extraction, microdistillation and N-TIMS analysis. The method yields Os concentration (28 ± 4 pg g(-1)) and (187)Os/(188)Os (1.62 ± 0.15) of commercially available crude oil reference material NIST 8505 (1 S.D., n = 6). The reference material NIST 8505 is homogeneous with respect to Os concentration at a test portion size of 0.2 g. Therefore, (187)Os/(188)Os composition and Os concentration of NIST 8505 can serve as a matrix-matched reference material for Os analysis. Data quality was assessed by repeated measurements of the USGS shale reference material SCo-1 (sample matrix similar to petroleum source rock) and the widely used Liquid Os Standard solution (LOsSt). The within-laboratory reproducibility of (187)Os/(188)Os for a 5 pg of LOsSt solution, analyzed with this method over a period of 12 months was ∼1.4% (1 S.D., n = 26), respectively.

  11. Paleogene Seawater Osmium Isotope Records

    NASA Astrophysics Data System (ADS)

    Rolewicz, Z.; Thomas, D. J.; Marcantonio, F.

    2012-12-01

    Paleoceanographic reconstructions of the Late Cretaceous and early Cenozoic require enhanced geographic coverage, particularly in the Pacific, in order to better constrain meridional variations in environmental conditions. The challenge with the existing inventory of Pacific deep-sea cores is that they consist almost exclusively of pelagic clay with little existing age control. Pelagic clay sequences are useful for reconstructions of dust accumulation and water mass composition, but accurate correlation of these records to other sites requires improved age control. Recent work indicates that seawater Os isotope analyses provide useful age control for red clay sequences. The residence time of Os in seawater is relatively long compared to oceanic mixing, therefore the global seawater 187Os/188Os composition is practically homogeneous. A growing body of Late Cretaceous and Cenozoic data has constrained the evolution of the seawater Os isotopic composition and this curve is now a viable stratigraphic tool, employed in dating layers of Fe-Mn crusts (e.g., Klemm et al., 2005). Ravizza (2007) also demonstrated that the seawater Os isotopic composition can be extracted reliably from pelagic red clay sediments by analyzing the leached oxide minerals. The drawback to using seawater Os isotope stratigraphy to date Paleogene age sediments is that the compilation of existing data has some significant temporal gaps, notably between ~38 and 55 Ma. To improve the temporal resolution of the seawater Os isotope curve, we present new data from Ocean Drilling Program (ODP) Site 865 in the equatorial Pacific. Site 865 has excellent biostratigraphic age control over the interval ~38-55Ma. Preliminary data indicate an increase in the seawater composition from 0.427 at 53.4 Ma to 0.499 by 43 Ma, consistent with the apparent trend in the few existing data points. We also analyzed the Os isotopic composition recorded by oxide minerals at Integrated Ocean Drilling Program (IODP) Site U1370 to construct an age model for this predominantly pelagic clay section. The 187Os/188Os values generally increase from 0.312 at 64.46 mbsf to 0.531 at 28.26 mbsf. The low value recorded at 64.46 likely reflects the Os isotope minimum recorded across the K/Pg boundary, while the uppermost value likely correlates to the E/O interval. Comparison of the Os-derived ages with a crude linearly interpolated sedimentation rate age model reveals variations in sediment accumulation rate between 0.86 and 1.5 m/Myr.

  12. Osmium Isotope Systematics of Ureilites

    NASA Technical Reports Server (NTRS)

    Rankenburg, K.; Brandon, A. d.; Humayun, M.

    2007-01-01

    The Os-187/Os-188 for twenty-two ureilite whole rock samples, including monomict, augite-bearing, and polymict lithologies, were examined in order to constrain the provenance and subsequent magmatic processing of the ureilite parent body (or bodies). The Re/Os ratios of most ureilites show evidence for a recent disturbance, probably related to Re mobility during weathering, and no meaningful chronological information can be extracted from the present data set. The ureilite Os-187/Os-188 ratios span a range from 0.11739 to 0.13018, with an average of 0.1258+/-0.0023 (1(sigma)), similar to typical carbonaceous chondrites, and distinct from ordinary or enstatite chondrites. The similar mean of Os-187/Os-188 measured for the ureilites and carbonaceous chondrites suggests that the ureilite parent body probably formed within the same region of the solar nebula as carbonaceous chondrites. From the narrow range of the 187Os/188Os distribution in ureilite meteorites it is further concluded that Re was not significantly fractionated from Os during planetary differentiation and was not lost along with the missing ureilitic melt component. The lack of large Re/Os fractionations requires that Re/Os partitioning was controlled by a metal phase, and thus metal had to be stable throughout the interval of magmatic processing on the ureilite parent body.

  13. Osmium isotopes and mantle convection.

    PubMed

    Hauri, Erik H

    2002-11-15

    The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities (greater than 10%) of lithologically distinct mafic material which represents ancient oceanic lithosphere cycled through the convecting mantle on a time-scale of 800 million years or more.

  14. Visualization of predentine matrix components and endocytic structures in rat incisor odontoblasts with tannic acid.

    PubMed

    Goldberg, M; Septier, D

    1989-12-01

    Rat incisor odontoblasts and predentine fixed with tannic acid-glutaraldehyde-osmium tetroxide (Tago) were compared with those obtained by prior incubation in tannic acid-Ringer before conventional fixation with glutaraldehyde-osmium-tetroxide (Tari) The Tago method allowed visualization of complex glycoconjugates along the plasma membrane, in the pericellular spaces and in the intercellular predentine matrix. The non-collagenous proteins, proteoglycans and lipids were seen as granules and thin filaments located between the collagen fibers and at their surface. The collagen fibers themselves were also stained. The Tari method which was used to visualize exocytosis, mainly revealed endocytosis in the form of large intracellular vacuoles containing tannic acid and stained proteoglycans. It is suggested that tannic acid-Ringer incubation prior to fixation increases the endocytosis of the matrix components, which acculumates in these large vesicles.

  15. Properties of GaP Schottky barrier diodes at elevated temperatures.

    NASA Technical Reports Server (NTRS)

    Nannichi, Y.; Pearson, G. L.

    1969-01-01

    Gallium phosphide Schottky barrier diodes, discussing construction and metals used, barrier height relationships to impurity concentration and temperature, rectifying characteristics and internal quantum efficiency

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbea, Javier Jesus Concepcion; Chen, Zoufeng; Jurss, Jonah Wesley

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  17. Impact Chemistry and the Origin of Life

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.; Pasek, M.

    2012-12-01

    Most discussions of global environmental effects of large impacts focus on changes deleterious to extant life. However, impacts may also produce changes that enhance or even create conditions beneficial to the origin of life. Many other authors have discussed impact delivery of organic molecules, and some have shown the shock synthesis of prebiotic molecules such as amino acids during impact. Our past work on the chemistry of impacts demonstrated that strong chemical reduction occurs in impact melt ejecta (spherules and melt droplets; tektites). Here we focus on the element phosphorus (P), whose role is crucial in biology as the backbone of DNA and RNA, and in metabolic biochemical energy transfer. Pasek previously showed that reduced P readily enters into interesting biological compounds with organic molecules in aqueous solution, and that these reduced P compounds may generate structures similar to sugar phosphates, which are critical to life as we know it. In this talk we argue that impact reduction of P transforms terrestrial and meteoritic phosphates bearing an oxidation state of +5 to the lower redox states of +3 (phosphites) and 0 as an alloy with metal (phosphides). We base this argument on studies of fulgurites—glasses formed by cloud-to-ground lightning—that bear phosphides and phosphites as major carriers of P. Fulgurite chemistry frequently parallels that of impact glasses. Additionally, thermodynamic calculations show that separation of an O-rich vapor from a melt readily results in the transformation of phosphate to phosphites and metal phosphides. These results are confirmed by the presence of metal phosphides within tektites. The impact reduction of phosphates followed by global dispersal of reduced P in the form of glassy droplets likely played a major role in the origin of life on Earth and perhaps on other young planets.

  18. Pesticide poisoning.

    PubMed

    Goel, Ashish; Aggarwal, Praveen

    2007-01-01

    Acute poisoning with pesticides is a global public health problem and accounts for as many as 300,000 deaths worldwide every year. The majority of deaths occur due to exposure to organophosphates, organochlorines and aluminium phosphide. Organophosphate compounds inhibit acetylcholinesterase resulting in acute toxicity. Intermediate syndrome can develop in a number of patients and may lead to respiratory paralysis and death. Management consists of proper oxygenation, atropine in escalating doses and pralidoxime in high doses. It is Important to decontaminate the skin while taking precautions to avoid secondary contamination of health personnel. Organochlorine pesticides are toxic to the central nervous system and sensitize the myocardium to catecholamines. Treatment involves supportive care and avoiding exogenous sympathomimetic agents. Ingestion of paraquat causes severe inflammation of the throat, corrosive injury to the gastrointestinal tract, renal tubular necrosis, hepatic necrosis and pulmonary fibrosis. Administration of oxygen should be avoided as it produces more fibrosis. Use of immunosuppressive agents have improved outcome in patients with paraquat poisoning. Rodenticides include thallium, superwarfarins, barium carbonate and phosphides (aluminium and zinc phosphide). Alopecia is an atypical feature of thallium toxicity. Most exposures to superwarfarins are harmless but prolonged bleeding may occur. Barium carbonate Ingestion can cause severe hypokalaemia and respiratory muscle paralysis. Aluminium phosphide is a highly toxic agent with mortality ranging from 37% to 100%. It inhibits mitochondrial cytochrome c oxidase and leads to pulmonary and cardiac toxicity. Treatment is supportive with some studies suggesting a beneficial effect of magnesium sulphate. Pyrethroids and insect repellants (e.g. diethyltoluamide) are relatively harmless but can cause toxic effects to pulmonary and central nervous systems. Ethylene dibromide-a highly toxic, fumigant

  19. Synthesis of pentafluorides

    DOEpatents

    Asprey, L.B.; Paine, R.T. Jr.

    1975-12-30

    The reactions of uranium, molybdenum, rhenium, osmium and iridium hexafluorides with hydrogen gas in the presence of ultraviolet radiation or with silicon powder in an anhydrous HF slurry provide especially useful, high yield syntheses of pure pentafluorides.

  20. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core

    NASA Astrophysics Data System (ADS)

    Scherstén, Anders; Elliott, Tim; Hawkesworth, Chris; Norman, Marc

    2004-01-01

    Osmium isotope ratios provide important constraints on the sources of ocean-island basalts, but two very different models have been put forward to explain such data. One model interprets 187Os-enrichments in terms of a component of recycled oceanic crust within the source material. The other model infers that interaction of the mantle with the Earth's outer core produces the isotope anomalies and, as a result of coupled 186Os-187Os anomalies, put time constraints on inner-core formation. Like osmium, tungsten is a siderophile (`iron-loving') element that preferentially partitioned into the Earth's core during core formation but is also `incompatible' during mantle melting (it preferentially enters the melt phase), which makes it further depleted in the mantle. Tungsten should therefore be a sensitive tracer of core contributions in the source of mantle melts. Here we present high-precision tungsten isotope data from the same set of Hawaiian rocks used to establish the previously interpreted 186Os-187Os anomalies and on selected South African rocks, which have also been proposed to contain a core contribution. None of the samples that we have analysed have a negative tungsten isotope value, as predicted from the core-contribution model. This rules out a simple core-mantle mixing scenario and suggests that the radiogenic osmium in ocean-island basalts can better be explained by the source of such basalts containing a component of recycled crust.

  1. SEM-EDX analysis of an unknown "known" white powder found in a shipping container from Peru

    NASA Astrophysics Data System (ADS)

    Albright, Douglas C.

    2009-05-01

    In 2008, an unknown white powder was discovered spilled inside of a shipping container of whole kernel corn during an inspection by federal inspectors in the port of Baltimore, Maryland. The container was detained and quarantined while a sample of the powder was collected and sent to a federal laboratory where it was screened using chromatography for the presence of specific poisons and pesticides with negative results. Samples of the corn kernels and the white powder were forwarded to the Food and Drug Administration, Forensic Chemistry Center for further analysis. Stereoscopic Light Microscopy (SLM), Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX), and Polarized Light Microscopy/Infrared Spectroscopy (PLM-IR) were used in the analysis of the kernels and the unknown powder. Based on the unique particle analysis by SLM and SEM as well as the detection of the presence of aluminum and phosphorous by EDX, the unknown was determined to be consistent with reacted aluminum phosphide (AlP). While commonly known in the agricultural industry, aluminum phosphide is relatively unknown in the forensic community. A history of the use and acute toxicity of this compound along with some very unique SEM/EDX analysis characteristics of aluminum phosphide will be discussed.

  2. Internal Grains Within KFC Graphites: Implications for Their Stellar Source

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Stadermann, F. J.; Bernatowicz, T. J.

    2005-03-01

    TEM and NanoSIMS investigations find high s-process element enrichments in internal carbides, suggesting an AGB origin for most Murchison KFC presolar graphites. Other rare phases (iron phases and metallic osmium) are consistent with a SN origin.

  3. Re-Os systematics of early proterozoic ferropicrites, Pechenga Complex, northwestern Russia: Evidence for ancient 187Os-enriched plumes

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Morgan, John W.; Hanski, Eero J.; Smolkin, Valery F.

    1997-08-01

    The Re-Os isotopic systematics of various ferropicritic flows and sills of the Pechenga Complex, Russia, have been examined. During crystallization about 1.98 Ga ago, many of these bodies became highly differentiated. In addition, some of the larger igneous units are associated with major NiCu ore deposits. The melts that produced these rocks have been termed ferropicritic because of their high FeO and MgO contents. They are also enriched in light rare earth elements (LREEs), TiO 2, Zr, and many other incompatible trace elements. Previous studies have concluded that the ferropicrites were most likely derived from an Fe-rich mantle plume that had a complex history of long-term LREE depletion (initial ɛNd = + 1.4), but that also experienced a LREE enrichment event within 200 Ma of the generation of the rocks. Whole rock samples believed to be most representative of primary melt compositions indicate that initial melt concentrations of rhenium and osmium were approximately 1.1 ppb and 0.5 ppb, respectively. The high primary melt concentrations presumably made the osmium contained in the melts relatively immune to the effects of crustal contamination. Nonetheless, all ore-bearing intrusions examined show osmium isotopic evidence for crustal contamination. For example, the initial γOs for some primary magmatic sulfides from the Pilgujärvi intrusion average +46. Other ore-bearing intrusions, such as the Kammikivi sill, appear to have been similarly contaminated by crustal osmium during the injection of magma, with initial yo, values as high as +251. The seemingly high levels of crustal osmium may be attributed to the rapidly diminishing concentrations of osmium in the melts as the larger bodies differentiated, combined with localized in situ assimilation of the metasedimentary rocks that comprise the country rocks. The Re-Os systematics of some whole rock samples of both mineralized and sulfide-poor intrusions were affected by post-magmatic events, especially the

  4. Highly selective dry etching of GaP in the presence of AlxGa1–xP with a SiCl4/SF6 plasma

    NASA Astrophysics Data System (ADS)

    Hönl, Simon; Hahn, Herwig; Baumgartner, Yannick; Czornomaz, Lukas; Seidler, Paul

    2018-05-01

    We present an inductively coupled-plasma reactive-ion etching process that simultaneously provides both a high etch rate and unprecedented selectivity for gallium phosphide (GaP) in the presence of aluminum gallium phosphide (AlxGa1–xP). Utilizing mixtures of silicon tetrachloride (SiCl4) and sulfur hexafluoride (SF6), selectivities exceeding 2700:1 are achieved at GaP etch rates above 3000 nm min‑1. A design of experiments has been employed to investigate the influence of the inductively coupled-plasma power, the chamber pressure, the DC bias and the ratio of SiCl4 to SF6. The process enables the use of thin AlxGa1–xP stop layers even at aluminum contents of a few percent.

  5. Growth of indium gallium arsenide thin film on silicon substrate by MOCVD technique

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sisir; Das, Anish; Banerji, Pallab

    2018-05-01

    Indium gallium arsenide (InGaAs) thin film with indium phosphide (InP) buffer has been grown on p-type silicon (100) by Metal Organic Chemical Vapor Deposition (MOCVD) technique. To get a lattice matched substrate an Indium Phosphide buffer thin film is deposited onto Si substrate prior to InGaAs growth. The grown films have been investigated by UV-Vis-NIR reflectance spectroscopy. The band gap energy of the grown InGaAs thin films determined to be 0.82 eV from reflectance spectrum and the films are found to have same thickness for growth between 600 °C and 650 °C. Crystalline quality of the grown films has been studied by grazing incidence X-ray diffractometry (GIXRD).

  6. New intermetallic MIrP (M=Ti, Zr, Nb, Mo) and MgRuP compounds related with MoM'P (M'=Ni and Ru) superconductor

    NASA Astrophysics Data System (ADS)

    Kito, Hijiri; Iyo, Akira; Wada, Toshimi

    2011-01-01

    Using a cubic-anvil high-pressure apparatus, ternary iridium phosphides MIrP (M=Ti, Zr, Nb, Mo) and MgRuP have been prepared by reaction of stoichiometric amounts of each metal and phosphide powders at around 2 Gpa and above 1523 K for the first time. The structure of these compounds prepared at high-pressure has been characterized by X-ray powder diffraction. Diffraction lines of these compounds are assigned by the index of the Co2Si-type structure. The electrical resistivity and the d.c magnetic susceptibility of MIrP (M=Ti, Zr, Nb, Mo) have measured at low temperatures. Unfortunately, no superconducting transition for MIrP (M=Ti, Zr, Nb, Mo) and MgRuP are observed down to 2 K.

  7. Strongly-guided indium phosphide/indium gallium arsenic phosphide Mach-Zehnder modulator for optical communications

    NASA Astrophysics Data System (ADS)

    Betty, Ian Brian

    2006-12-01

    The development of strongly-guided InP/In1-x GaxAsyP 1-y based Mach-Zehnder optical modulators for 10Gb/s telecommunications is detailed. The modulators have insertion losses including coupling as low as 4.5dB, due to the incorporation of monolithically integrated optical mode spot-size converters (SSC's). The modulators are optimized to produce system performance that is independent of optical coupling alignment and for wavelength operation between 1525nm and 1565nm. A negatively chirped Mach-Zehnder modulator design is demonstrated, giving optimal dispersion-limited reach for 10Gb/s ON/OFF-keying modulation. It is shown that the optical system performance for this design can be determined from purely DC based optical measurements. A Mach-Zehnder modulator design invoking nearly no transient frequency shifts under intensity modulation is also presented, for the first time, using phase-shifter implementations based on the Quantum-Confined-Stark-Effect (QCSE). The performance impact on the modulator from the higher-order vertical and lateral waveguide modes found in strongly-guided waveguides has been determined. The impact of these higher-order modes has been minimized using the design of the waveguide bends, MMI structures, and doping profiles. The fabrication process and optical design for the spot-size mode converters are also thoroughly explored. The SSC structures are based on butt-joined vertically tapered passive waveguide cores within laterally flared strongly-guided ridges, making them compatible with any strong-guiding waveguide structure. The flexibility of the SSC process is demonstrated by the superior performance it has also enabled in a 40Gb/s electro-absorption modulator. The presented electro-absorption modulator has 3.6dB fiber-to-fiber insertion loss, polarization dependent loss (PDL) of only 0.3dB over 15dB extinction, and low absolute chirp (|alpha H| < 0.6) over the full dynamic range.

  8. Catalytic asymmetric dihydroxylation of olefins using a recoverable and reusable OsO(4)2- in ionic liquid [bmim][PF6].

    PubMed

    Branco, Luís C; Afonso, Carlos A M

    2002-12-21

    The use of the solvent systems water/ionic liquid or water/ionic liquid/tert-butanol provides a recoverable, reusable, robust and simple system for the asymmetric dihydroxylation of olefins, based on the immobilization of the osmium-ligand catalyst in the ionic liquid phase.

  9. 10 CFR Appendix L to Part 110 - Illustrative List of Byproduct Materials Under NRC Export/Import Licensing Authority a

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 149 (Nd 149) Neptunium 235 (Np 235) Neptunium 237 (Np 237) Nickel 59 (Ni 59) Nickel 63 (Ni 63) Nickel 65 (Ni 65) Niobium 93m (Nb 93m) Niobium 94 (Nb 94) Niobium 95 (Nb 95) Niobium 97 (Nb 97) Osmium 185...

  10. 40 CFR 421.261 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... apply to this subpart. (b) The term precious metals shall mean gold, platinum, palladium, rhodium, iridium, osmium, and ruthenium. (c) The term Combined Metals, shall mean the total of gold, platinum and... AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Precious Metals...

  11. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  12. Mineral resource of the month: platinum-group metals

    USGS Publications Warehouse

    Hilliard, Henry

    2003-01-01

    The precious metals commonly referred to as platinum-group metals (PGM) include iridium, osmium, palladium, platinum, rhodium and ruthenium. PGM are among the rarest of elements, and their market values — particularly for palladium, platinum and rhodium — are the highest of all precious metals.

  13. 40 CFR 266.70 - Applicability and requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE... requirements. (a) The regulations of this subpart apply to recyclable materials that are reclaimed to recover economically significant amounts of gold, silver, platinum, palladium, iridium, osmium, rhodium, ruthenium, or...

  14. Electrocatalyst compositions

    DOEpatents

    Mallouk, Thomas E.; Chan, Benny C.; Reddington, Erik; Sapienza, Anthony; Chen, Guoying; Smotkin, Eugene; Gurau, Bogdan; Viswanathan, Rameshkrishnan; Liu, Renxuan

    2001-09-04

    Compositions for use as catalysts in electrochemical reactions are described. The compositions are alloys prepared from two or more elemental metals selected from platinum, molybdenum, osmium, ruthenium, rhodium, and iridium. Also described are electrode compositions including such alloys and electrochemical reaction devices including such catalysts.

  15. Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies

    NASA Astrophysics Data System (ADS)

    Mirzaei, Mahmoud; Yousefi, Mohammad; Meskinfam, Masoumeh

    2012-06-01

    The properties of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) nanocones were investigated by density functional theory (DFT) calculations. The investigated structures were optimized and chemical shielding (CS) properties including isotropic and anisotropic CS parameters were calculated for the atoms of the optimized structures. The magnitudes of CS parameters were observed to be mainly dependent on the bond lengths of considered atoms. The results indicated that the atoms could be divided into atomic layers due to the similarities of their CS properties for the atoms of each layer. The trend means that the atoms of each layer detect almost similar electronic environments. Moreover, the atoms at the apex and mouth of nanocones exhibit different properties with respect to the other atomic layers.

  16. GaAsP on GaP top solar cells

    NASA Technical Reports Server (NTRS)

    Mcneely, J. B.; Negley, G. H.; Barnett, A. M.

    1985-01-01

    GaAsP on GaP top solar cells as an attachment to silicon bottom solar cells are being developed. The GaAsP on GaP system offers several advantages for this top solar cell. The most important is that the gallium phosphide substrate provides a rugged, transparent mechanical substrate which does not have to be removed or thinned during processing. Additional advantages are that: (1) gallium phosphide is more oxidation resistant than the III-V aluminum compounds, (2) a range of energy band gaps higher than 1.75 eV is readily available for system efficiency optimization, (3) reliable ohmic contact technology is available from the light-emitting diode industry, and (4) the system readily lends itself to graded band gap structures for additional increases in efficiency.

  17. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koumetz, Serge D., E-mail: Serge.Koumetz@univ-rouen.fr; Martin, Patrick; Murray, Hugues

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method,more » is proposed.« less

  18. Gallium phosphide high temperature diodes

    NASA Technical Reports Server (NTRS)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  19. Preparation and characterization of some alkanethiolatoosmium compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schobert, Harold Harris

    1970-11-01

    Results of magnetic susceptibility and infrared spectroscopy studies are presented and briefly discussed. The reaction of osmium tetrachloride with simple alkanethiols was found to proceed readily at room temperature, yielding in a few days a product of black amorphous solid soluble in most common organic solvents.

  20. Phosphide oxides RE2AuP2O (RE = La, Ce, Pr, Nd): synthesis, structure, chemical bonding, magnetism, and 31P and 139La solid state NMR.

    PubMed

    Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer

    2013-02-18

    Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K.

  1. Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.

    PubMed

    Ameye, L; Hermann, R; Dubois, P

    2000-08-01

    The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms. Copyright 2000 Academic Press.

  2. Thermophysical and Electronic Properties Information Analysis Center (TEPIAC): A Continuing Systematic Program on Tables of Thermophysical and Electronic Properties of Materials.

    DTIC Science & Technology

    1977-02-01

    oxides and their mixtures, arsenides, borides, bromides , carbides , chlorides , fluoride s, nitride s, phosphides, silicides , sulfides , tellurides...ivity of alkali elements (lithium , sodium , potassium , rubi- dium , ces ium , and francium) and contains recomme nded reference values generated

  3. Multiple quarantine treatment using bale compression and a three-day fumigation to control Hessian fly (Diptera: Cecidomyiidae) in exported hay.

    PubMed

    Yokoyama, Victoria Y

    2014-06-01

    A multiple quarantine treatment was developed to control Hessian fly puparia, Mayetiola destructor (Say), the stage of regulatory concern in exported hay. In a commercial test using 51.589 puparia, no insects survived to the adult stage after exposure to bale compression at 137 kg/cm2 and fumigation with 61 g/28.3 m3 hydrogen phosphide for 3d. The puparia were fumigated in infested wheat seedlings in cloth bags inside compressed timothy bales placed in different locations in three replicate freight containers in a heated building. Fumigant concentrations were 345-522 ppm on day 1; 580-824 ppm on day 2; and 680-861 ppm on day 3. Monitored temperatures were < 20 degrees C in all locations allowing the fumigation temperature to be established at > or = 20 degrees C. Copper detection plate corrosion values were severe inside the freight container doors, and moderate in the middle of bales in all locations, providing visual confirmation of exposure to hydrogen phosphide. Hydrogen phosphide residues in exposed hay bales were found in trace amounts, below the U.S. Environmental Protection Agency tolerance of 0.1 ppm for animal feeds. Timothy hay used in the commercial test is the representative species for all previously exported hay and straw species. The new multiple quarantine treatment is proposed for use with all previously tested bale sizes and wrapper styles for which 3-d fumigation data has been reported, and for bales and wrappers derived from those tested.

  4. High-Performance Rh 2 P Electrocatalyst for Efficient Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Haohong; Li, Dongguo; Tang, Yan

    2017-04-05

    Search for active, stable and cost-efficient electrocatalysts for hydrogen production via water splitting could make substantial impact to the energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high surface area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) compared to Rh/C and Pt/C catalysts. The atomic structure of the rhodium phosphide nanocubes was directly observed by annular dark-field scanning transmission electron microscopy (ADF-STEM),more » which revealed phosphorous-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorous plays crucial role in determining the robust catalyst properties.« less

  5. Nucleation of intragranular ferrite in Fe-Ni-P alloys

    NASA Astrophysics Data System (ADS)

    Narayan, C.; Goldstein, J. I.

    1984-05-01

    The nucleation of intragranular ferrite from austenite in Fe-Ni-P alloys was investigated in order to understand the development of the Widmanstätten pattern in iron meteorites. Alloys containing 5 to 10 wt pct Ni and 0 to 1 wt pct P were used to simulate iron meteorite compositions. In the isothermal and controlled cooling experiments the reaction path γ → α + γ serves only to nucleate ferrite along austenite grain boundaries. It is necessary for (FeNi)3P to be present within y grains in order to nucleate intragranular ferrite. The reaction path γ → γ + phosphide → α + γ + phosphide yields rod shaped ferrite nuclei that bear a near Kurdjumov-Sachs orientation relationship with the surrounding matrix. The precipitation of ferrite, both along grain boundaries and within the austenite grains, is suppressed in the absence of P.

  6. Temporal record of osmium concentrations and 187Os/188Os in organic-rich mudrocks: Implications for the osmium geochemical cycle and the use of osmium as a paleoceanographic tracer

    NASA Astrophysics Data System (ADS)

    Lu, Xinze; Kendall, Brian; Stein, Holly J.; Hannah, Judith L.

    2017-11-01

    We present a compilation of 192Os concentrations (representing non-radiogenic Os) and initial 187Os/188Os isotope ratios from organic-rich mudrocks (ORM) to explore the evolution of the Os geochemical cycle during the past three billion years. The initial 187Os/188Os isotope ratio of a Re-Os isochron regression for ORM constrains the local paleo-seawater 187Os/188Os, which is governed by the relative magnitudes of radiogenic Os (old continental crust) and unradiogenic Os (mantle, extraterrestrial, and juvenile/mafic/ultramafic crust) fluxes to seawater. A first-order increase in seawater 187Os/188Os ratios occurs from the Archean to the Phanerozoic, and may reflect a combination of increasing atmosphere-ocean oxygenation and weathering of progressively more radiogenic continental crust due to in-growth of 187Os from radioactive decay of 187Re. Superimposed on this long-term trend are shorter-term fluctuations in seawater 187Os/188Os ratios as a result of climate change, emplacement of large igneous provinces, bolide impacts, tectonic events, changes in seafloor spreading rates, and lithological changes in crustal terranes proximal to sites of ORM deposition. Ediacaran-Phanerozoic ORM have mildly higher 192Os concentrations overall compared with pre-Ediacaran Proterozoic ORM based on the mean and 95% confidence interval of 10,000 median values derived using a bootstrap analysis for each time bin (insufficient Archean data exist for robust statistical comparisons). However, there are two groups with anomalously high 192Os concentrations that are distinguished by their initial 187Os/188Os isotope ratios. Ediacaran-Cambrian ORM from South China have radiogenic initial 187Os/188Os, suggesting their high 192Os concentrations reflect proximal Os-rich crustal source(s), ultraslow sedimentation rates, and/or other unusual depositional conditions. In contrast, the unradiogenic initial 187Os/188Os and high 192Os concentrations of some Mesozoic ORM can be tied to emplacement of large igneous provinces. Excluding these two anomalous groups and repeating the bootstrap analysis, we find that, overall, the 192Os concentrations for the Ediacaran-Phanerozoic and pre-Ediacaran Proterozoic time bins are not significantly different. An improved understanding of Os geochemical behavior in modern environments is required before our compilation can be fully used to constrain the temporal evolution of the seawater Os reservoir.

  7. Corrosion of Cellular Metals in Marine Environments

    DTIC Science & Technology

    2006-09-30

    phosphides and silicides during the brazing process. Phosphorus, particularly, which is very proficient at depressing the filler alloy melting point...theories of corrosion were constructed for isolated AL-6XN in neutral sodium chloride solutions. This also demonstrated the intrinsic resistance of AL

  8. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... one containing white phosphorus, phosphide or flammable liquid or gel or hypergolic liquid) G 1.1G1.2G 1.3G 1.4G Article containing both an explosive substance and white phosphorus H 1.2H1.3H Article...

  9. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... one containing white phosphorus, phosphide or flammable liquid or gel or hypergolic liquid) G 1.1G1.2G 1.3G 1.4G Article containing both an explosive substance and white phosphorus H 1.2H1.3H Article...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza-Garcia, Adriana; Zhu, Huiyuan; Yu, Yongsheng

    Presented here is a facile approach to bimetallic phosphides, Co-Fe-P, via high-temperature (300°C) reaction between Co-Fe-O nanoparticles and trioctylphosphine. The growth of Co-Fe-P from the Co-Fe-O is anisotropic. As a result, Co-Fe-P nanorods (from the polyhedral Co-Fe-O nanoparticles) and sea-urchin-like Co-Fe-P (from the cubic Co-Fe-O nanoparticles) are synthesized with both nanorod and the sea-urchin-arm dimensions controlled by Co/Fe ratios. The Co-Fe-P structure, especially the sea-urchin-like (Co 0.54Fe 0.46) 2P, shows enhanced catalysis for oxygen evolution reaction in KOH with its catalytic efficiency surpassing Ir catalyst. Our synthesis is simple and may be readily extended to the preparation of other multimetallicmore » phosphides for important catalysis and energy storage applications.« less

  11. An in-situ phosphorus source for the synthesis of Cu 3P and the subsequent conversion to Cu 3PS 4 nanoparticle clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheets, Erik J.; Stach, Eric A.; Yang, Wei -Chang

    2015-09-20

    The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I-V-VI chalcogenides including copper phosphide (Cu 3P) and copper thiophosphate (Cu 3PS 4). Herein, we report a one-pot, solution-based synthesis of Cu 3P nanocrystals utilizing an in-situ phosphorus source: phosphorus pentasulfide (P 2S 5) in trioctylphosphine (TOP). By injecting this phosphorus source into a copper solution in oleylamine (OLA), uniform and size controlled Cu 3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cumore » 3P nanocrystals with decomposing thiourea forms nanoscale Cu 3PS 4 particles having p-type conductivity and an effective optical band gap of 2.36 eV.« less

  12. Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Beary, E.S.; Smoliar, M.I.; Czamanske, G.K.; Horan, M.F.

    1997-01-01

    Platinum is fractionated from osmium primarily as a consequence of processes involving sulfide and metal crystallization. Consequently, the 190Pt-186Os isotope system (190Pt ??? 186Os + ??) shows promise for dating some types of magmatic sulfide ores and evolved iron meteorites. The first 190Pt-186Os isochrons are presented here for ores from the ca. 251 Ma Noril'sk, Siberia plume, and for group IIAB magmatic iron meteorites. Given the known age of the Noril'sk system, a decay constant for 190Pt is determined to be 1.542 ?? 10-12a-1, with ??1% uncertainty. The isochron generated for the IIAB irons is consistent with this decay constant and the known age of the group. The 186Os/188Os ratios of presumably young, mantle-derived osmiridiums and also the carbonaceous chondrite Allende were measured to high-precision to constrain the composition of the modern upper mantle. These compositions overlap, indicating that the upper mantle is chondritic within the level of resolution now available. Our best estimate for this 186Os/188Os ratio is 0.119834 ?? 2 (2??M). The 190Pt/186Os ratios determined for six enstatite chondrites average 0.001659 ?? 75, which is very similar to published values for carbonaceous chondrites. Using this ratio and the presumed composition of the modern upper mantle and chondrites, a solar system initial 186Os/188Os ratio of 0.119820 is calculated. In comparison to the modern upper mantle composition, the 186Os/188Os ratio of the Noril'sk plume was approximately 0.012% enriched in 186Os. Possible reasons for this heterogeneity include the recycling of Pt-rich crust into the mantle source of the plume and derivation of the osmium from the outer core. Derivation of the osmium from the outer core is our favored model. Copyright ?? 1997 Elsevier Science Ltd.

  13. Fabrication of crystals from single metal atoms

    PubMed Central

    Barry, Nicolas P. E.; Pitto-Barry, Anaïs; Sanchez, Ana M.; Dove, Andrew P.; Procter, Richard J.; Soldevila-Barreda, Joan J.; Kirby, Nigel; Hands-Portman, Ian; Smith, Corinne J.; O’Reilly, Rachel K.; Beanland, Richard; Sadler, Peter J.

    2014-01-01

    Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms. PMID:24861089

  14. Mid-Cenomanian Event I (MCE I, 96 Ma): elemental and osmium isotope evidence for sea level, climate, and palaeocirculation changes in the NW European epicontinental sea

    NASA Astrophysics Data System (ADS)

    Jarvis, Ian; Roest-Ellis, Sascha; Selby, David

    2017-04-01

    Cenomanian times (100.5-93.9 Ma) represent perhaps the best documented episode of eustatic rise in sea level in Earth history and the beginning of the Late Mesozoic thermal maximum, driving global expansion of epicontinental seas and the onset of widespread pelagic and hemipelagic carbonate (chalk) deposition. Significant changes occurred in global stable-isotope records, including two prominent perturbations of the carbon cycle -Mid-Cenomanian Event I (MCEI; 96.5-96.2 Ma) and Oceanic Anoxic Event 2 (OAE2; 94.5-93.8 Ma). OAE2 was marked by the widespread deposition of black shales in the deep ocean and epicontinental seas, and a global positive carbon stable-isotope excursion of 2.0 - 2.5‰ δ13C in marine carbonates. Osmium isotopes and other geochemical data indicate that OAE2 was associated with a major pulse of LIP-associated volcanism, with coincident changes in eustatic sea level, rising atmospheric pCO2 and warming climate, but including a transient phase of global cooling - the Plenus Cold Event. MCEI, by contrast, shows a <1‰ δ13Ccarb excursion, and has no associated black shales in most areas, yet it also displays evidence of two episodes of cooling, comparable to the Plenus Cold Event. MCEI marks a major breakpoint on long-term carbon-isotope profiles, from relatively constant to very slowly rising δ13C values through the Lower Cenomanian, to a trend of generally increasing δ13C values through the Middle and Upper Cenomanian. This represents a significant long-term change in the global carbon cycle starting with MCEI. Here, we present new high-resolution major- (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P) and trace-element (Ba, Cr, Re, Os, Sr, Zr) data and 187Os/188Os isotope results for MCEI from an English Chalk reference section at Folkestone. Our results are compared to published δ13Ccarb, δ18Ocarb, δ13Corg stable isotope and neodymium isotope ɛNd(t) data from the same section. Elemental proxies (Mn, Ti/Al, Zr/Al, Si/Al) define key sequence

  15. A simple method for maintaining relative positions of separate tissue elements during processing for electron microscopy.

    PubMed

    Stirling, C A

    1978-09-01

    Molten (328 K) 20% gelatin is used as a 'glue' to hold together separate tissue elements or tissue elements that may be separated when cutting small blocks of tissue for plastic embedding. Standard aldehyde and osmium fixation, dehydration and epoxy embedding are compatible with this as is semi-thin sectioning for light microscopy or thin sectioning for electron microscopy.

  16. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  17. N-doping of organic semiconductors by bis-metallosandwich compounds

    DOEpatents

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  18. Ultrasonic Characterization of Superhard Material: Osmium Diboride

    NASA Astrophysics Data System (ADS)

    Yadawa, P. K.

    2012-12-01

    Higher order elastic constants have been calculated in hexagonal structured superhard material OsB2 at room temperature following the interaction potential model. The temperature variation of the ultrasonic velocities is evaluated along different angles with unique axis of the crystal using the second order elastic constants. The ultrasonic velocity decreases with the temperature along particular orientation with the unique axis. Temperature variation of the thermal relaxation time and Debye average velocities are also calculated along the same orientation. The temperature dependency of the ultrasonic properties is discussed in correlation with elastic, thermal and electrical properties. It has been found that the thermal conductivity is the main contributor to the behaviour of ultrasonic attenuation as a function of temperature and the responsible cause of attenuation is phonon-phonon interaction. The mechanical properties of OsB2 at low temperature are better than at high temperature, because at low temperature it has low ultrasonic velocity and ultrasonic attenuation. Superhard material OsB2 has many industrial applications, such as abrasives, cutting tools and hard coatings.

  19. Effects of prairie dog rodenticides on deer mice in western South Dakota

    Treesearch

    Michele S. Deisch; Daniel W. Uresk; Raymond L. Linder

    1990-01-01

    Mortality of nontarget small mammals was determined after application of three black-tailed prairie dog (Cynomys Zudovicianus) rodenticide treatments (prebaited zinc phosphide, prebaited strychnine, and strychnine alone) in western South Dakota. Immediate (September 1983) and long-term (September 1983 through August 1984) impacts on deer mouse (...

  20. Static photoelasticity of gallium phosphide crystals

    NASA Astrophysics Data System (ADS)

    Mytsyk, B. G.; Andrushchak, A. S.; Kost', Ya. P.

    2012-01-01

    The piezo-optic effect (POE) in cubic GaP crystals (symmetry class bar 43 m) is studied in detail by interferometry. The relations for determining the absolute piezo-optic coefficients (POCs) π im or their combinations on a sample of X/45° cut at all allowable geometries of the experiment are recorded. The determination of a specific coefficient π im at different experimental geometries on samples of right cuts and a X/45° cut made it possible to find the π im values with a high accuracy and reliability.

  1. Precipitation behavior in austenitic and ferritic steels during fast neutron irradiation and thermal aging*1

    NASA Astrophysics Data System (ADS)

    Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.

    1988-07-01

    Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1 × 10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6C in JPCA-2.

  2. CoP/WS2 nanoflake heterostructures as efficient electrocatalysts for significant improvement in hydrogen evolution activity

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Kang, Chuanhong; Wang, Ruihong; Ren, Zhiyu; Fu, Huiying; Xiao, Yuting; Tian, Guohui

    2018-06-01

    The CoP/WS2 nanoflake composites were synthesized via the sulfuration and subsequent phosphidation using the pre-prepared WO2.72 nanowires as precursors. Originally, WO2.72 nanowires were prepared and followed by sulfuration to obtain WS2 nanoflakes. The as-prepared WS2 nanoflakes were used as substrates, on which the Co3O4 nanoparticles were uniformly anchored to construct the Co3O4/WS2 nanoflakes. Finally, the Co3O4/WS2 composites were subjected to phosphidation and in-situ converted into CoP/WS2 nanoflakes. Because of the dual functionalities of both CoP and WS2, the abundant interfaces as well as their synergy, the CoP/WS2 nanoflakes exhibited much higher electrocatalytic activity, smaller overpotential (-81 mV), lower Tafel slope (62 mV decade-1), and higher stability toward hydrogen-evolution reaction than those for the single CoP and WS2.

  3. First principle study of electronic nanoscale structure of In x Ga1- x P with variable size, shape and alloying percentage

    NASA Astrophysics Data System (ADS)

    Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.

    2013-11-01

    In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.

  4. Impacts of black-tailed prairie dog rodenticides on nontarget passerines

    Treesearch

    Anthony D. Apa; Daniel W. Uresk; Raymond L. Linder

    1991-01-01

    In 1983 zinc phosphide, strychnine with prebait, and strychnine without prebait were applied to black-tailed prairie dog (Cynomys Zudovicianus) colonies in west central South Dakota. Short-term (four days later) and long-term (one year later) impacts of the rodenticides on Horned Larks (Eremophila alpestris) and other...

  5. Catalytic Cyclization of o-Alkynyl Phenethylamines via Osmacyclopropene Intermediates: Direct Access to Dopaminergic 3-Benzazepines.

    PubMed

    Álvarez-Pérez, Andrea; González-Rodríguez, Carlos; García-Yebra, Cristina; Varela, Jesús A; Oñate, Enrique; Esteruelas, Miguel A; Saá, Carlos

    2015-11-02

    A novel osmium-catalyzed cyclization of o-alkynyl phenethylamines to give 3-benzazepines is reported. The procedure allows the straightforward preparation of a broad range of dopaminergic 3-benzazepine derivatives. Mechanistic investigations revealed that the process takes place via osmacyclopropene intermediates, which were isolated and characterized by X-ray crystallography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Analysis of the Nuclear Structure of Rhenium-186 Using Neutron-Induced Reactions

    DTIC Science & Technology

    2015-03-26

    5 1.5 Methods ... radioisotope power source for use on the battlefield. 1 Re-Os Cosmochronometer. The isotope 187Re has a half-life in its ground state of 4.35⇥ 1010 years [2...187Os in meteorites permits one to date the nucleosynthesis of rhenium and osmium by high neutron flux events such as supernovae. The Re-Os radioactive

  7. Domestic Production Issues in Chromium and Platinum-Group Metals

    DTIC Science & Technology

    1988-09-01

    iridium, and minor amounts of osmium. 12 Uses. Platinum-group metals (PGM) are critical as catalysts in fossil fuel processing and electronic...metals (PGM) were then described as critical in fossil fuel production, and in electronic and electrical components. The international market is...this research process . ii Table of Contents Page Preface.. .............. ii List of Figures ................ vi List of Tables ................ vi

  8. Proceedings of the Conference on Toxicology Held in Dayton, Ohio on 28- 30 October 1986

    DTIC Science & Technology

    1987-12-01

    paints (3). TBT is released from the painted surfaces by hydrolysis , forming species such as TBT hydroxide and TBT chloride. Several organotin-based...postfixation, and followed by dehydration through an increasing series of ethanol concentrations, lacked the electron-dense intramembranous...observed in osmium-fixed preparations. Presumably, the ethanol dehydration extracted any tin aggregates from the membranes because of the solubility

  9. Selective degradation of thymidine and thymine deoxynucleotides

    PubMed Central

    Burton, K.; Riley, W. T.

    1966-01-01

    1. Osmium tetroxide in dilute ammonia oxidizes various pyrimidine nucleosides at different rates. Thymidine is oxidized about 45 times as fast as deoxycytidine. The phosphate groups may be eliminated from oxidized thymine nucleotides by successive treatments with alkali and then with diphenylamine in aqueous formic acid. The reactions can be applied to the selective degradation of thymidine in oligodeoxynucleotides. PMID:5938667

  10. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    PubMed

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  11. Synthesis and thermoelectric properties of CoP(sub 3)

    NASA Technical Reports Server (NTRS)

    Shields, V. B.; Caillet, T.

    2002-01-01

    In an effort to expand the range of operation for highly efficient, segmented thermoelectric unicouples currently being developed at JPL, skutterudite phosphides are being investigated as potential high temperature segments to supplement antimonide segments that limit the use of these unicouples at a hot-side temperature of about 873-973 K.

  12. Petrology and Geochemistry of Lunar Regolith Particle 65903,16-7: Evidence for Extreme Reduction and Oxidation

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Jolliff, B. L.; Korotev, R. L.; Kremser, D. T.; Haskin, L. A.

    2001-01-01

    Apollo 16 particle 65903,16-7 is a magnesian, alkali-rich impact melt breccia. Low Fe/Mn and high phosphide/phosphate ratios are evidence of severe reduction during impact-melt cooling. Presence of carbonate and FeOOH is evidence for later oxidation. Additional information is contained in the original extended abstract.

  13. Pesticide Spill Prevention and Management

    DTIC Science & Technology

    2009-08-01

    Gentrol IGR) Strong oxidizers. Imidacloprid Oxidizing agents. Lambda-cyhalothrin Oxidizing agents, alkalis, calcium hypochlorite. Malathion... Imidacloprid Sodium salt of diphacinone Methyl Azoxystrobin Use Hard Water Detergent for: Diquat Aluminum phosphide – NOTE: See special...Hydroprene, 9.0%, emulsifiable concentrate (Gentrol IGR) Imidacloprid (Maxforce Granular Fly Bait) Imidacloprid (Maxforce Fly Spot Bait

  14. Demography of black-tailed prairie dog populations reoccupying sites treated with rodenticide

    Treesearch

    R. P. Cincotta; Daniel W. Uresk; R. M. Hansen

    1987-01-01

    A rodenticide, zinc phosphide, was applied to remove black-tailed prairie dogs (Cynomys ludovicianus) from 6 haofa prairie dog colony in southwestern South Dakota. Another adjacent 6 ha was left untreated. The removal experiment was repeated two consecutive years. Contingency table analysis showed that the resultant population was not homogeneous;...

  15. An economic analysis of black-tailed prairie dog (Cynomys ludovicianus) control

    Treesearch

    Alan R. Collins; John P. Workman; Daniel W. Uresk

    1984-01-01

    Black-tailed prairie dog (Cynomys ludovicianus) control by poisoning with zinc phosphide was not economically feasible in the Conata Basin of South Dakota. Economic analyses were conducted from U.S. Forest Service and rancher viewpoints. Control programs were analyzed with annual maintenance or complete retreatment of initially treated areas to...

  16. Muon spin relaxation and rotation studies of the filled skutterudite alloys praseodymium osmium ruthenium antimonide and praseodymium lanthanum osmium antimonide

    NASA Astrophysics Data System (ADS)

    Shu, Lei

    Some filled skutterudite compounds have recently been found to exhibit very interesting properties. The first Pr-based heavy-fermion superconductor, PrOs4Sb12, is an intriguing material due to the unusual properties of both its normal and superconducting states. Comprehensive muon spin rotation and relaxation studies and magnetic susceptibility measurements, described in this dissertation, have been performed to investigate the microscopic properties of PrOs4Sb12 and its Ru and La doped alloys. The temperature dependence of penetration depth measured in the vortex state of PrOs4Sb12 using transverse-field muon spin rotation (TF-muSR) is weaker than those measured by radiofrequency measurements. A scenario based on two-band superconductivity in PrOs4Sb 12, is proposed to resolve this difference. TF-muSR experiments also suggest the suppression of superfluid density with Ru doping, probably due to impurity scattering. In addition, magnetic susceptibility data as well as analysis of the muSR data in PrOs4Sb12 reveal a nearly linear relation of mu+ Knight shift vs. magnetic susceptibility. This suggests that the muon charge does not affect the crystalline electric field splitting of Pr3+ near neighbors. Additional evidence comes from the fact that the superconducting transition temperature Tc measured from muSR is consistent with the bulk superconducting values. Zero-field muon spin relaxation (ZF-muSR) experiments have been carried out in the Pr(Os1-xRux) 4Sb12 and Pr1-yLayOs 4Sb12 alloy systems to investigate the time-reversal symmetry (TRS) breaking found in an earlier ZF-muSR study of the end compound PrOs 4Sb12. The results from measurements at KEK, Japan, suggest that Ru doping is considerably more efficient than La doping in suppressing TRS breaking superconducting in PrOs4Sb12. However, we think that the spontaneous local field that indicates TRS breaking detected by ZF-muSR may depend on sample quality if those fields are from inhomogeneity in the superconducting order parameter, since our ZF-muSR experiment detects nonzero spontaneous fields for Pr(Os0.9Ru0.1)4 Sb12 from measurement at ISIS, United Kingdom in different samples. Longitudinal-field muon spin relaxation experiments also have been carried out to elucidate the anomalous dynamic muon spin relaxation detected by ZF-muSR in those alloys. The dynamic muon relaxation found in the alloys appears to be due to 141Pr nuclear spin fluctuations, where the 141Pr moments are enhanced by hyperfine coupling to the Pr 3+ Van Vleck susceptibility.

  17. Effects of two prairie dog rodenticides on ground-dwelling invertebrates in western South Dakota

    Treesearch

    Michele S. Deisch; Daniel W. Uresk; Raymond L. Linder

    1989-01-01

    Immediate and long-term effects of 3 rodenticide treatments on nontarget invertebrates were evaluated on prairie dog colonies. Immediate impacts indicated zinc phosphide reduced ants, strychnine alone reduced wolf spiders, and prebaited strychnine had no impacts. Long-term changes showed increases in wolf spiders and ground beetles and densities were contributed to...

  18. Charge Transfer in Multiple Site Chemical Systems.

    DTIC Science & Technology

    1985-05-30

    oxidation either chemically (using excess Ce+(IV)) or electrochemically (using a reticulated vitreous carbon electrode potentiostated at +1.20 V vs.. SCE...The resulting polymers form fairly stable, electrochemically active films on the cxidizing electrode, which can be Pt, SnO2 or vitreous carbon ...surface, including platinum and glassy carbon electrodes. The redox couples incorporated include polypyrydyl omplexes of iron, ruthenium and osmium

  19. CYTOGENETIC EFFECTS OF PHOSPHINE INHALATION BY RODENTS

    EPA Science Inventory

    Phosphine (PH3) is a highly toxic grain fumigant that can be produced from the reaction of metal phosphides with water. o determine the in vivo cytogenetic effects of inhalation of PH3, male CD-1 mice were exposed to either 0, 5, 10, or 15 ppm target concentrations of PH3 for 6 h...

  20. 40 CFR Appendix Vii to Part 266 - Health-Based Limits for Exclusion of Waste-Derived Residues*

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Constituent CAS No. Concentration limits (mg/L) Antimony 7440-36-0 1xE+00 Arsenic 7440-38-2 5xE+00 Barium 7440... alcohol 107-18-6 2xE−01 Aluminum phosphide 20859-73-8 1xE−02 Aniline 62-53-3 6xE−02 Barium cyanide 542-62...

  1. Field trials of the rodenticide gophacide against wild house mice (Mus musculus L.).

    PubMed Central

    Rowe, F. P.; Swinney, T.; Bradfield, A.

    1975-01-01

    The acute rodenticide gophacide was tested against urban infestations of the house mouse (Mus musculus L.) and treatment success was assessed from the results of census baitings conducted before and after each treatment. Seven of eight populations of mice living in premises where alternative food supplies were limited were successfully controlled when medium oatmeal bait containing gophacide at 0.1% was laid directly for 4 days. In further treatments against mice inhabiting more complex environments and having greater access to other foods, the performance of gophacide at 0.1% and at 0.25% in a wholemeal flour/pinhead oatmeal/corn oil bait was compared with that of zinc phosphide at 3.0% in the same bait-base. The poison treatments were conducted for 1 or 4 days and always after 3 days pre-baiting. Treatment success varied considerably irrespective of the type of treatment or of the poison used. In general, however, gophacide proved to be as effective as zinc phosphide for the control of mice. PMID:1054056

  2. First-principles study of low compressibility osmium borides

    NASA Astrophysics Data System (ADS)

    Gou, Huiyang; Hou, Li; Zhang, Jingwu; Li, Hui; Sun, Guifang; Gao, Faming

    2006-05-01

    Using first-principles total energy calculations we investigate the structural, elastic, and electronic properties of OsB2 and OsB, respectively. The calculated equilibrium structural parameters of OsB2 are in agreement with the available experimental results. The calculations indicate that OsB in tungsten carbide is more energetically stable under the ambient condition than the metastable cesium chloride phase of OsB. Results of bulk modulus show that they are potential low compressible materials. The hardness of OsB2 is estimated by employing a semiempirical theory. The results indicate that OsB2 is an ultraincompressible material, but not a superhard material. The method designing superhard materials is different from one creating ultraincompressible materials.

  3. Osmium Isotope Compositions of Komatiite Sources Through Time

    NASA Astrophysics Data System (ADS)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os value of only +1.2 and a 186Os/188Os enrichment relative to the contemporary upper mantle of only +13 ppm. Greater isotopic enrichments could have been achieved by 2.7 Ga if either the inner core comprised >2.8% of the mass of the core by 2.7 Ga, or if Re and Os solid metal-liquid metal D's for core crystallization were greater that those applied in the initial calculation.

  4. Osmium isotopic homogeneity in the CK carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Brandon, Alan D.; Mayer, Bernhard; Humayun, Munir

    2017-11-01

    Variable proportions of isotopically diverse presolar components are known to account for nucleosynthetic isotopic anomalies for a variety of elements (e.g., Ca, Ti, Cr, Ni, Sr, Zr, Mo, Ru, Pd, Ba, Nd, and Sm) in both bulk chondrites and achondrites. However, although large Os isotopic anomalies have been measured in acid leachates and residues of unequilibrated chondrites, bulk chondrites of various groups, iron meteorites, and pallasites exhibit Os isotopic compositions that are indistinguishable from terrestrial or bulk solar isotopic abundances. Since the magnitude of nucleosynthetic anomalies is typically largest in the carbonaceous chondrites, this study reports high-precision Os isotopic compositions and highly siderophile element (HSE) concentrations for ten CK chondrites. The isotope dilution concentration data for HSE and high-precision Os isotope ratios were determined on the same digestion aliquots, to precisely correct for radiogenic contributions to 186Os and 187Os. While acid leached bulk unequilibrated carbonaceous chondrites show deficits of s-process Os components to the same extent as revealed by unequilibrated enstatite, ordinary, and Rumuruti chondrites, equilibrated bulk CK chondrites exhibit no resolvable Os isotopic anomalies. These observations support the idea that acid-resistant, carbon-rich presolar grains, such as silicon carbide (SiC) or graphite, are major carriers for nucleosynthetic isotopic anomalies of Os. The destruction of these presolar grains, which are omnipresent in unequilibrated meteorites, must have occurred during aqueous alteration and thermal metamorphism, early in the CK chondrite parent body history. The dispersal of CK chondrites along the IIIAB iron meteorite isochron on a 187Os/188Os versus 187Re/188Os diagram, with Re/Os ratios from 0.032 to 0.083, in combination with the observed redistribution of other HSE (e.g., Pt, Pd), highlights the influence of parent body processes, overprinted by effects of recent terrestrial alteration. Under the oxidizing conditions prevalent on the CK parent body, evident from high abundances of magnetite and limited Fe-Ni metal in CK chondrites, these parent body processes made all isotopically anomalous Os, originally hosted in reduced presolar grains, accessible. The absence of Os isotopic anomalies in ordinary, enstatite, and now also carbonaceous chondrites, implies that the carriers of s- and r-process Os must have been effectively homogenized across the region of chondrite formation, and possibly even the entire solar protoplanetary nebula, as suggested by the Os isotopic compositions of iron meteorites and non-anomalous ureilites. Except for a limited number of ureilites, the relative proportions of presolar s- and r-process carriers of Os (and other elements such as W) in chondrites, and most other planetary bodies, must have remained constant during all subsequent nebular and planetary processes, which appears not to have been the case for other siderophile elements, including Mo, Ru, and Pd. The existence of Mo, Ru, Pd and other siderophile element isotopic anomalies thus appears to be in part controlled by the chemical properties of these elements (e.g., volatility), their host phase(s) (e.g., SiC, graphite, metal, sulfides), and the nature of the nebular or planetary processes experienced in the early solar system.

  5. Relativistic effects in iron-, ruthenium-, and osmium porphyrins

    NASA Astrophysics Data System (ADS)

    Liao, Meng-Sheng; Scheiner, Steve

    2002-12-01

    Nonrelativistic and relativistic DFT calculations are performed on four-coordinate metal porphyrins MP and their six-coordinate adducts MP(py) 2 and MP(py)(CO) (py=pyridine) with M=Fe, Ru, and Os. The electronic structures of the MPs are investigated by considering all possible low-lying states with different configurations of nd-electrons. FeP and OsP have a 3A2 g ground state, while this state is nearly degenerate with 3Eg for RuP. Without relativistic corrections, the ground states of both RuP and OsP would be 3Eg. For the six-coordinate adducts with py and CO, the strong-field axial ligands raise the energy of the M d z2-orbital, thereby making the M II ion diamagnetic. The calculated redox properties of MP(py) 2 and MP(py)(CO) are in agreement with experiment. The difference between RuP(py)(CO) and OsP(py)(CO), in terms of site of oxidation, is due to relativistic effects.

  6. Optical Computing, 1991, Technical Digest Series, Vol. 6

    DTIC Science & Technology

    1992-05-22

    lasers). Compound semiconductors may satisfy these requirements. For example, optical signal amplification by two-beam coupling and amplified phase... compound semiconductors can provide this type of implementationi. This paper presents results from a detailed investigation on potentials of the...conductivity to achieve high multichannel cell performance. We describe several high performance Gallium Phosphide multichannel Bragg cells which employ these

  7. Sustainable Phosphorus Chemistry: A Silylphosphide Synthon for the Generation of Value-Added Phosphorus Chemicals.

    PubMed

    Slootweg, J Chris

    2018-05-07

    Avoiding white phosphorus: Cummins and Geeson have recently described the conversion of phosphoric acid into the novel bis(trichlorosilyl)phosphide anion, which serves as a key intermediate in the synthesis of organophosphines, hexafluorophosphate, and phosphine gas in a reaction sequence that does not rely on white phosphorus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phase-contrast tomography of sciatic nerves: image quality and experimental parameters

    NASA Astrophysics Data System (ADS)

    Töpperwien, M.; Krenkel, M.; Ruhwedel, T.; Möbius, W.; Pacureanu, A.; Cloetens, P.; Salditt, T.

    2017-06-01

    We present propagation-based phase-contrast tomography of mouse sciatic nerves stained with osmium, leading to an enhanced contrast in the myelin sheath around the axons, in order to visualize the threedimensional (3D) structure of the nerve. We compare different experimental parameters and show that contrast and resolution are high enough to identify single axons in the nerve, including characteristic functional structures such as Schmidt-Lanterman incisures.

  9. Mineral resource of the month: platinum group metals

    USGS Publications Warehouse

    Loferski, Patricia J.

    2010-01-01

    The article focuses on platinum group metals (PGMs) and their properties. According to the author, PGMs, which include iridium, osmium, palladium, platinum, rhodium, and ruthenium, are among the rarest mineral commodities in the Earth's crust. PGMs are primarily used as catalytic converters that clean harmful exhaust from vehicle engines. They are also used in the chemical industry as catalysts in the production of nitric acid and in the petroleum refining industry.

  10. Hybrid indium phosphide-on-silicon nanolaser diode

    NASA Astrophysics Data System (ADS)

    Crosnier, Guillaume; Sanchez, Dorian; Bouchoule, Sophie; Monnier, Paul; Beaudoin, Gregoire; Sagnes, Isabelle; Raj, Rama; Raineri, Fabrice

    2017-04-01

    The most-awaited convergence of microelectronics and photonics promises to bring about a revolution for on-chip data communications and processing. Among all the optoelectronic devices to be developed, power-efficient nanolaser diodes able to be integrated densely with silicon photonics and electronics are essential to convert electrical data into the optical domain. Here, we report a demonstration of ultracompact laser diodes based on one-dimensional (1D) photonic crystal (PhC) nanocavities made in InP nanoribs heterogeneously integrated on a silicon-waveguide circuitry. The specific nanorib design enables an efficient electrical injection of carriers in the nanocavity without spoiling its optical properties. Room-temperature continuous-wave (CW) single-mode operation is obtained with a low current threshold of 100 µA. Laser emission at 1.56 µm in the silicon waveguides is obtained with wall-plug efficiencies greater than 10%. This result opens up exciting avenues for constructing optical networks at the submillimetre scale for on-chip interconnects and signal processing.

  11. 1/F Noise in Indium Phosphide Transistors

    DTIC Science & Technology

    1992-04-01

    Zn/5 nm Au. The gate length and width were 1 Pm and 400 gm, respectively. The device was annealed at 375"C in argon for 1 minute to simultaneously...evaporation, defined by lift-off, and annealed at 375°C for 10 minutes. The gate region was recessed until a source-drain current of 35 mA was obtained...considerations for the signal Sn V,2/R, at the network input from the amplifier output show that vo2 4RoR,, s - 4 nR 2 = So •Mo. (6) 4Ro (Ro + R,) 2

  12. Development of high temperature gallium phosphide rectifiers

    NASA Technical Reports Server (NTRS)

    Craford, M. G.; Keune, D. L.

    1972-01-01

    Large area high performance, GaP rectifiers were fabricated by means of Zn diffusion into vapor phase epitaxial GaP. Devices with an active area of 0.01 sq cm typically exhibit forward voltages of 3 volts for a bias current of 1 ampere and have reverse breakdown voltages of 300 volts for temperatures from 27 C to 400 C. Typical device reverse saturation current at a reverse bias of 150 volts is less than 10 to the minus 9th power amp at 27 C and less than 0.000050 amp at 400 C.

  13. Changing trends and predictors of outcome in patients with acute poisoning admitted to the intensive care.

    PubMed

    Jayashree, M; Singhi, S

    2011-10-01

    Acute poisoning in children is a medical emergency and preventable cause of morbidity and mortality. Knowledge about the nature, magnitude, outcome and predictors of outcome is necessary for management and allocation of scant resources. This is a retrospective study conducted in the Pediatric Intensive Care Unit (PICU) of an urban multi speciality teaching and referral hospital in North India from January 1993 to June 2008 to determine the epidemiology, clinical profile, outcome and predictors of outcome in children with acute poisoning. Data of 225 children with acute poisoning was retrieved from case records with respect to demographic profile, time to presentation, PRISM score, clinical features, investigations, therapeutic measures, complications and outcome in terms of survival or death. Survivors and non-survivors were compared to determine the predictors of mortality. Acute poisoning constituted 3.9% of total PICU admissions; almost all (96.9%) were accidental. The mean age of study patient's was 3.3 ± 3.1 (range 0.10-12) years with majority (61.3%) being toddlers (1-3 years). In the overall cohort, kerosene (27.1%) and prescription drugs (26.7%) were the most common causative agents followed by organophosphates (16.0%), corrosives (7.6%), carbamates (4.9%) and aluminum phosphide (4.9%). However the trends of the three 5-year interval (1993 till the end of 1997, 1998 till the end of 2002 and 2003 till the end of June 2008) revealed a significant decrease in kerosene, aluminum phosphide and iron with increase in organophosphate compound poisoning. Ninety nine (44%) patients required supplemental oxygen, of which nearly half (n = 42; 42.4%) needed mechanical ventilation. Twenty (8.9%) died; cause of death being iron poisoning in five; aluminum phosphide in four; organophosphates in three and one each because of kerosene, diesel, carbamate, corrosive, sewing machine lubricant, isoniazid, salicylate and maduramycin poisoning. There has been a significant

  14. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  15. Measuring the Dispersion in Laser Cavity Mirrors using White-Light Interferometry

    DTIC Science & Technology

    2008-03-01

    mirrors. Two AlGaInP (aluminum gallium indium phosphide ) diode lasers are aligned such that one is polarized vertically while one is polarized...linear crystals, where the index of refraction depends on beam intensity. Short pulses with high peak intensities are well 14 suited to induce the...MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING WHITE-LIGHT INTERFEROMETRY THESIS Allison S

  16. Nations Hospitable to Organized Crime and Terrorism

    DTIC Science & Technology

    2003-10-01

    illegal migrants from Somalia, Ethiopia, China, India, and Sri Lanka pass through the airport’s weak customs barriers en route to Western Europe and...osmium-187, possibly en route to terrorist organizations or Iraq. In December 2001, Moscow authorities arrested a group of Chechens from Kazakhstan...utilizes the city as a transit point en route to Sri Lanka.492 The LTTE continues to procure arms from arsenals abandoned after Cambodia’s civil war

  17. Electrostatically driven resonance energy transfer in “cationic” biocompatible indium phosphide quantum dots† †Electronic supplementary information (ESI) available: Detailed experimental methods, the synthesis and characterization of QDs, bioimaging, stability studies, control experiments, and the calculation of various parameters involved in the resonance energy transfer process etc. See DOI: 10.1039/c7sc00592j Click here for additional data file.

    PubMed Central

    Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta

    2017-01-01

    Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer (E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern–Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules. PMID:28626557

  18. Exercise Decreases Marrow Adipose Tissue Through ß-Oxidation in Obese Running Mice

    PubMed Central

    Styner, Maya; Pagnotti, Gabriel M; McGrath, Cody; Wu, Xin; Sen, Buer; Uzer, Gunes; Xie, Zhihui; Zong, Xiaopeng; Styner, Martin A; Rubin, Clinton T; Rubin, Janet

    2017-01-01

    The relationship between marrow adipose tissue (MAT) and bone health is poorly understood. We used running exercise to ask whether obesity-associated MAT can be attenuated via exercise and whether this correlates with gains in bone quantity and quality. C57BL/6 mice were divided into diet-induced obesity (DIO, n = 14) versus low-fat diet (LFD, n = 14). After 3 months, 16-week-old mice were allocated to an exercise intervention (LFD-E, DIO-E) or a control group (LFD, DIO) for 6 weeks (4 groups, n = 7/group). Marrow adipocyte area was 44% higher with obesity (p<0.0001) and after exercise 33% lower in LFD (p<0.0001) and 39% lower in DIO (p<0.0001). In LFD, exercise did not affect adipocyte number; however, in DIO, the adipocyte number was 56% lower (p<0.0001). MAT was 44% higher in DIO measured by osmium-µCT, whereas exercise associated with reduced MAT (–23% in LFD, –48% in DIO, p<0.05). MAT was additionally quantified by 9.4TMRI, and correlated with osmium-µCT (r = 0.645; p<0.01). Consistent with higher lipid beta oxidation, perilipin 3 (PLIN3) rose with exercise in tibial mRNA (+92% in LFD,+60% in DIO, p<0.05). Tibial µCT-derived trabecular bone volume (BV/TV) was not influenced by DIO but responded to exercise with an increase of 19% (p<0.001). DIO was associated with higher cortical periosteal and endosteal volumes of 15% (p = 0.012) and 35% (p<0.01), respectively, but Ct. Ar/Tt.Ar was lower by 2.4% (p<0.05). There was a trend for higher stiffness (N/m) in DIO, and exercise augmented this further. In conclusion, obesity associated with increases in marrow lipid—measured by osmium-µCT and MRI—and partially due to an increase in adipocyte size, suggesting increased lipid uptake into preexisting adipocytes. Exercise associated with smaller adipocytes and less bone lipid, likely invoking increased ß-oxidation and basal lipolysis as evidenced by higher levels of PLIN3. PMID:28436105

  19. Superconductivity theory applied to the periodic table of the elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elifritz, T.L.

    1994-12-31

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition, is applied to the periodic table of the elements, in order to isolate the essential features of high temperature superconductivity and to predict its occurrence within the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  20. Superconductivity theory applied to the periodic table of the elements

    NASA Technical Reports Server (NTRS)

    Elifritz, Thomas Lee

    1995-01-01

    The modern theory of superconductivity, based upon the BCS to Bose-Einstein transition is applied to the periodic table of the elements, in order to isolate the essential features of of high temperature superconductivity and to predict its occurrence with the periodic table. It is predicted that Sodium-Ammonia, Sodium Zinc Phosphide and Bismuth (I) Iodide are promising materials for experimental explorations of high temperature superconductivity.

  1. Europe/Latin America Report, Science and Technology

    DTIC Science & Technology

    1997-01-16

    Space Accord 3 AUTOMOBILE INDUSTRY Volvo Chief Attacks Japanese Car Manufacturers’ Tactics in Sweden (SVENSKA DAGBLADET, 21 Nov 86) 4...Great Britain (BIOTEC, Apr 86) 10 EEC’s 1982-86 Biotechnology Programs (BIOTEC, Apr 86) 11 - a Industry , Universities Meet in Italy on...Epitaxy Devices (S. Dumontet; ELECTRONIQUE ACTUALITES, 19 Sep 86) 23 Briefs French Indium Phosphide Production 25 SCIENTIFIC AND INDUSTRIAL POLICY

  2. Sarah Kurtz | NREL

    Science.gov Websites

    next stage of growth for the PV industry. Participated in the demonstration of the GaInP/GaAs solar photovoltaics (PV), concentrator PV, and PV reliability. Kurtz and NREL colleague Jerry Olson championed the early use of multi-junction solar cells by showing that a top cell of gallium indium phosphide (GaInP

  3. Free-space coherent optical communication receivers implemented with photorefractive optical beam combiners

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.

    1992-01-01

    Performance measurements are reported concerning a coherent optical communication receiver that contained an iron doped indium phosphide photorefractive beam combiner, rather than a conventional optical beam splitter. The system obtained a bit error probability of 10(exp -6) at received signal powers corresponding to less than 100 detected photons per bit. The system used phase modulated Nd:YAG laser light at a wavelength of 1.06 microns.

  4. Implications of extraterrestrial material on the origin of life

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.

    Meteoritic organic material may provide the best perspective on prebiotic chemistry. Meteorites have also been invoked as a source of prebiotic material. This study suggests a caveat to extraterrestrial organic delivery: that prebiotic meteoritic organics were too dilute to promote prebiotic reactions. However, meteoritic material provides building material for endogenous synthesis of prebiotic molecules, such as by hydrolysis of extraterrestrial organic tars, and corrosion of phosphide minerals.

  5. Quantum Enhanced Imaging by Entangled States

    DTIC Science & Technology

    2009-07-01

    classes of entangled states. In tripartite systems two classes of genuine tripartite entanglement have been discovered, namely, the Greenberger -Horne...D. M. Greenberger , M. Horne and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Concepts of the Universe, ed. M. Kafatos (Kluwer, Dordrecht 1989...Gallium Indium Arsenide Phosphide (a III-V compound semiconductor) GHZ: Greenberger -Horne-Zeilinger (a class of entangled states) GLAD: General

  6. Investigation of the thermophysical properties of high-melting materials with the aid of a complex of instruments

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Gordiyenko, S. P.; Guseva, Y. A.; Turchanin, A. G.; Fenochka, B. V.; Fesenko, V. V.

    1984-01-01

    The evaporation rate, vapor pressure, heats of evaporation reaction (sublimation, dissociation), enthalpy, electrical resistance, heat capacity, emissivity, and heat conductivity of various carbides, borides, sulfides, nitrides, selenides, and phosphides were investigated. A set of high temperature high vacuum devices, calorimeters (designed for operation at 400 to 1300 K and from 1200 K), and mass spectrometers, most of which were specially developed for these studies, is described.

  7. Strongly luminescent InP/ZnS core-shell nanoparticles.

    PubMed

    Haubold, S; Haase, M; Kornowski, A; Weller, H

    2001-05-18

    The wide-bandgap semiconducting material, zinc sulfide, has been coated on indium phosphide nanoclusters to a 1-2-Å thickness. The resulting InP-ZnS core-shell particle (as shown in the TEM image; scale 1 cm=5 nm) exhibits bright luminescence at room temperature with quantum efficiencies as high as 23 %. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  8. Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage.

    PubMed

    Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin

    2017-04-25

    In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.

  9. ULTRASTRUCTURAL ORGANIZATION OF CILIA AND BASAL BODIES OF THE EPITHELIUM OF THE CHOROID PLEXUS IN THE CHICK EMBRYO

    PubMed Central

    Doolin, Paul F.; Birge, Wesley J.

    1966-01-01

    Ultrastructural studies were performed on normal and abnormal cilia and basal bodies associated with the choroidal epithelium of the chick embryo. Tissues were prepared in each of several fixatives including: 1% osmium tetroxide, in both phosphate and veronal acetate buffers; 2% glutaraldehyde, followed by postfixation in osmium tetroxide; 1% potassium permanganate in veronal acetate buffer. Normal cilia display the typical pattern of 9 peripheral doublets and 2 central fibers, as well as a system of 9 secondary fibers. The latter show distinct interconnections between peripheral and central fibers. Supernumerary fibers were found to occur in certain abnormal cilia. The basal body is complex, bearing 9 transitional fibers at the distal end and numerous cross-striated rootlets at the proximal end. The distal end of the basal body is delimited by a basal plate of moderate density. The tubular cylinder consists of 9 triple fibers. The C subfibers end at the basal plate, whereas subfibers A and B continue into the shaft of the cilium. The 9 transitional fibers radiate out from the distal end of the basal body, ending in bulblike terminal enlargements which are closely associated with the cell membrane in the area of the basal cup. One or 2 prominent basal feet project laterally from the basal body. These structures characteristically show several dense cross-bands and, on occasion, are found associated with microtubules. PMID:5335827

  10. CALCIUM BINDING TO INTESTINAL MEMBRANES

    PubMed Central

    Oschman, James L.; Wall, Betty J.

    1972-01-01

    Flame photometry reveals that glutaraldehyde and buffer solutions in routine use for electron microscopy contain varying amounts of calcium. The presence of electron-opaque deposits adjacent to membranes in a variety of tissues can be correlated with the presence of calcium in the fixative. In insect intestine (midgut), deposits occur adjacent to apical and lateral plasma membranes. The deposits are particularly evident in tissues fixed in glutaraldehyde without postosmication. They are also observed in osmicated tissue if calcium is added to wash and osmium solutions. Deposits are absent when calcium-free fixatives are used, but are present when traces of CaCl2 (as low as 5 x 10-5 M) are added. The deposits occur at regular intervals along junctional membranes, providing images strikingly similar to those obtained by other workers who have used pyroantimonate in an effort to localize sodium. Other divalent cations (Mg++, Sr++, Ba++, Mn++, Fe++) appear to substitute for calcium, while sodium, potassium, lanthanum, and mercury do not. After postfixing with osmium with calcium added, the deposits can be resolved as patches along the inner leaflet of apical and lateral plasma membranes. The dense regions may thus localize membrane constituents that bind calcium. The results are discussed in relation to the role of calcium in control of cell-to-cell communication, intestinal calcium uptake, and the pyroantimonate technique for ion localization. PMID:4569411

  11. Evidence for a Meteoritic Component in Impact Melt Rock from the Chicxulub Structure

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Sharpton, Virgil L.; Schuraytz, Benjamin C.; Shirey, Steven B.; Blum, Joel D.; Marin, Luis E.

    1994-01-01

    The Chicxulub structure in Yucatan, Mexico, has recently been recognized as a greater then 200-km-diameter multi-ring impact crater of K-T boundary age. Crystalline impact melt rocks and breccias from within the crater, which have compositions similar to those of normal continental crustal rocks and which show shock metamorphic effects, have been studied for trace element and Re-Os isotope compositions. Re-Os isotope systematics allow the sensitive and selective determination of an extraterrestrial component in impact-derived rocks. A melt rock sample shows elevated iridium concentrations, an osmium concentration of 25 ppb, and a low Os-187/Os-188 ratio of 0.113, which are incompatible with derivation from the continental crust. Even though the Os-187/Os-188 ratio is slightly lower than the range so far measured in meteorites, a mantle origin seems unlikely for mass balance reasons and because the cratering event is unlikely to have excavated mantle material. The data support the hypothesis of a heterogeneously distributed meteoritic component in the Chicxulub melt rock. A sample of impact glass from the Haitian K-T boundary at Beloc yielded about 0.1 ppb osmium and an Os-187/0s-188 ratio of 0.251, indicating the presence of a small meteoritic component in the impact ejecta as well.

  12. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame.

    PubMed

    Gray, Jennifer C; Habtemariam, Abraha; Winnig, Marcel; Meyerhof, Wolfgang; Sadler, Peter J

    2008-09-01

    The novel organometallic sandwich complexes [(eta(6)-p-cymene)Ru(eta(6)-aspartame)](OTf)(2) (1) (OTf = trifluoromethanesulfonate) and [(eta(6)-p-cymene)Os(eta(6)-aspartame)](OTf)(2) (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK(a) values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h(-1) for 1, and to 0.43 h(-1) for 2. Furthermore, the reduction potential of the ligand shifted from -1.133 to -0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at -0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

  13. Accelerator-based production of the (99m)Tc-(186)Re diagnostic-therapeutic pair using metal disulfide targets (MoS2, WS2, OsS2).

    PubMed

    Gott, Matthew D; Hayes, Connor R; Wycoff, Donald E; Balkin, Ethan R; Smith, Bennett E; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Wilbur, D Scott; Jurisson, Silvia S

    2016-08-01

    Novel, natural abundance metal disulfide targets were irradiated for 1h with a 10µA proton beam in a small, medical cyclotron. Osmium disulfide was synthesized by simple distillation and precipitation methods while MoS2 and WS2 were commercially available. The targets dissolved under mild conditions and were analyzed by γ-spectroscopy. Production rates and potential applications are discussed, including target recovery and recycling schemes for OsS2 and WS2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation and prediction of long-term environmental effects on non metallic materials

    NASA Technical Reports Server (NTRS)

    Papazian, H.

    1985-01-01

    Predictive modeling of environmental conditions on nonmetallic materials was studied. The in-flight data of the atomic oxygen reaction with carbon and osmium, the laboratory and in-flight data of the atomic oxygen reaction with polymeric films and the effect of electron irradiation on the rates of oxidation are discussed. No information is found that can be used to model such effects on composites. The effects of the space environment on thermal control coatings and its effect on the space station are examined.

  15. Hardness behavior of binary and ternary niobium alloys at 77 and 300 K

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1974-01-01

    The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.

  16. Ceramic Coating Method

    DTIC Science & Technology

    2002-07-02

    cobalt , zirconia, boron carbide, BN, SiC, Si3 N4, zirconium carbide, chromium , gold, silver, platinum, osmium, and the like. The TiB2 (melting point 29000...possible with the new diamond doping Periodic Table such as N, P, As, Sb, Bi, V, Cb, Ta, Pa; method. elements in the Sixth Group (0, S, Se, Te, Po, Cr ...also the surface of many reactive others are done at low temperatures to avoid unwanted metals such as aluminum, magnesium, chromium , silicon, thermal

  17. Screening-Engineered Field-Effect Solar Cells

    DTIC Science & Technology

    2012-01-01

    virtually any semiconductor, including the promising but hard-to- dope metal oxides, sulfides, and phosphides.3 Prototype SFPV devices have been...MIS interface. Unfortu- nately, MIS cells, though sporting impressive efficiencies,4−6 typically have short operating lifetimes due to surface state...instability at the MIS interface.7 Methods aimed at direct field- effect “ doping ” of semiconductors, in which the voltage is externally applied to a gate

  18. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1980-01-01

    The apparatus and techniques used in effort to determine the relationships between crystal growth and electronic properties are described with emphasis on electroepitaxy and melt-grown gallium aresenide crystal. Applications of deep level transient spectroscopy, derivative photocapitance spectroscopy, and SEM-cathodoluminescene in characterizing wide bandgap semiconductors; determining photoionization in MOS, Schottky barriers, and p-n junctions; and for identifying inhomogeneities are examined, as well as the compensation of indium phosphide.

  19. Bibliography of Soviet Laser Developments. Number 71, May - June 1984.

    DTIC Science & Technology

    1985-08-01

    d * Coumarin *o..*....... .. o... -- e. Phthalimide ...... o..... o. .. ... --- f . Cyanine .. ... .o o . .. .. .. see. --- go Xanthene...Barinova, E.Yu. (MGU). Determining the concentration of nitrogen in gallium phosphide from its photoluminescence spectrum. VMUFA, no. 3, 1984, 59-62. 23...characteristics for lasing in solutions of rhodamine 6G in a small-base resonator. OPSPA, v.56, no.5, 1984, 884-888. 5 a’ F, c. Polymethine d. Coumarin e

  20. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOEpatents

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  1. Broadband arrayed waveguide grating multiplexers on indium phosphide

    NASA Astrophysics Data System (ADS)

    Rausch, Kameron

    2005-11-01

    Coarse Wavelength Division Multiplexing (CWDM) is becoming a popular way to increase the optical throughput of fibers for short to medium haul networks at a reduced cost. The International Telecommunications Union (ITU) has defined the CWDM network to consist of eighteen channels with channel spacings of 20 nm starting at 1270 nm and ending at 1610 nm. Four and eight channel AWGs suitable for CWDM were fabricated using a versatile S-shape design novel to InP. The standard horseshoe layout will not work on semiconductor for AWGs with a free spectral range (FSR) larger than 30 nm. The AWG design provides operation insensitive to thermal and polarization fluctuations; which is key for low cost operation and packaging. It will be shown that, refractive index changes over the large operating wavelength band produced negligible effects in the transmission spectrum. Standard AWG design assumes refractive index is a constant over the operating wavelength band. As a result, the output waveguide separations are held constant on the second star coupler. As the channel number increases, secondary focal dispersion caused from a changing refractive index can have detrimental effects on performance. A new design method will be introduced which includes refractive index dispersion by allowing the output waveguide separations to vary. The new design is consistent with standard design but is applicable in materials with a linear index dispersion over an arbitrarily large wavelength band. Lastly, a method for increasing the transmission using multimode waveguides is discussed. Traditionally, single mode waveguides are required in order to prevent higher order waveguide modes creating ghost images in the output spectrum. Using bend loss and waveguide junction offsets, higher order modes can be filtered from the output, thereby eliminating ghost images and at the same time, increase transmission.

  2. Radiation-acoustic treatment of gallium phosphide light diodes

    NASA Astrophysics Data System (ADS)

    Tartachnik, Volodimir P.; Gontaruk, Olexsandr M.; Vernydub, Roman M.; Kryvutenko, Anatoly M.; Olikh, Yaroslav M.; Opilat, Vitalij Y.; Petrenko, Igor V.; Pinkovska, Myroslava B.

    1999-11-01

    The ultrasound influence on the defects of technological and radiation origin of GaP light diodes has been investigated. GaP light diodes were treated by ultrasound wave in different operating modes. Electroluminescence spectra were measured at room and low temperatures, integrated luminosity of devices was checked by solar cell. In order to find out the radiation field influence on non-equilibrium defects of acoustic origin samples were irradiated at room temperature by gamma rays of Co60. It has been discovered that in GaP light diodes treated by ultrasound unstable at room temperature dislocation networks occur at the volume of crystal. Ultrasound dose increase causes the creation of complex defects with high relaxation time and appearing of a part of more mobile defect,s which relax quicker. The nature of effects discovered has been discussed. The method of the emissive capacity restoring of samples degraded after irradiation have been proposed.

  3. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar; Rajasthan Technical University, Kota, Rajasthan

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 andmore » 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.« less

  4. Conceptual design of a lunar base solar power plant lunar base systems study task 3.3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The best available concepts for a 100 kW Solar Lunar Power Plant based on static and dynamic conversion concepts have been examined. The two concepts which emerged for direct comparison yielded a difference in delivered mass of 35 MT, the mass equivalent of 1.4 lander payloads, in favor of the static concept. The technologies considered for the various elements are either state-of-the-art or near-term. Two photovoltaic cell concepts should receive high priority for development: i.e., amorphous silicon and indium phosphide cells. The amorphous silicon, because it can be made so light weight and rugged; and the indium phosphide, because it shows very high efficiency potential and is reportedly not degraded by radiation. Also the amorphous silicon cells may be mounted on flexible backing that may roll up much like a carpet for compact storage, delivery, and ease of deployment at the base. The fuel cell and electrolysis cell technology is quite well along for lunar base applications, and because both the Shuttle and the forthcoming Space Station incorporate these devices, the status quo will be maintained. Early development of emerging improvements should be implemented so that essential life verification test programs may commence.

  5. OsB 2 and RuB 2, ultra-incompressible, hard materials: First-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Chiodo, S.; Gotsis, H. J.; Russo, N.; Sicilia, E.

    2006-07-01

    Recently it has been reported that osmium diboride has an unusually large bulk modulus combined with high hardness, and consequently is a most interesting candidate as an ultra-incompressible and hard material. The electronic and structural properties of the transition metal diborides OsB 2 and RuB 2 have been calculated within the local density approximation (LDA). It is shown that the high hardness is the result of covalent bonding between transition metal d states and boron p states in the orthorhombic structure.

  6. High-pressure crystal growth and electromagnetic properties of 5d double-perovskite Ca3OsO6

    NASA Astrophysics Data System (ADS)

    Feng, Hai Luke; Shi, Youguo; Guo, Yanfeng; Li, Jun; Sato, Akira; Sun, Ying; Wang, Xia; Yu, Shan; Sathish, Clastin I.; Yamaura, Kazunari

    2013-05-01

    Single crystals of the osmium-containing compound Ca3OsO6 have been successfully grown under high-pressure conditions, for the first time. The crystal structure of Ca3OsO6 were characterized as an ordered double-perovskite structure of space group P21/n with the Ca and Os atoms being fully ordered at the perovskite B-site. The electromagnetic analysis shows that the crystal exhibits a semiconductor-like behavior below 300 K and undergoes an antiferromagnetic transition at 50 K.

  7. Development of advanced thermoelectric materials

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an advanced thermoelectric material for radioisotope thermoelectric generator (RTG) applications is reported. A number of materials were explored. The bulk of the effort, however, was devoted to improving silicon germanium alloys by the addition of gallium phosphide, the synthesis and evaluation of lanthanum chrome sulfide and the formulation of various mixtures of lanthanum sulfide and chrome sulfide. It is found that each of these materials exhibits promise as a thermoelectric material.

  8. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  9. Microwave Semiconductor Research-Materials, Devices and Circuits.

    DTIC Science & Technology

    1987-10-01

    Quantum Well and Graded Refractive Index Separate Confinement Heterostructure Quantum Well Lasers Grown Via Molecular Beam Epitaxy" JSEP PUBLICATIONS...J.M. Ballantyne and A.J. Sievers, J. Appl. Phys., 58, 3145 (1985). 6. "Epitaxial Growth and Characterization of Indian Phosphide and Gallium Indian...Approach to Dispersion Analysis in Graded Index Optical Fiber", by H.J. Carlin and Henry Zmuda. DEGREES 1. Henry Zmuda, Ph.D., July 1984 "A New Approach

  10. Petrography of the carbonaceous, diamond-bearing stone "Hypatia" from southwest Egypt: A contribution to the debate on its origin

    NASA Astrophysics Data System (ADS)

    Belyanin, Georgy A.; Kramers, Jan D.; Andreoli, Marco A. G.; Greco, Francesco; Gucsik, Arnold; Makhubela, Tebogo V.; Przybylowicz, Wojciech J.; Wiedenbeck, Michael

    2018-02-01

    The stone named "Hypatia" found in the Libyan Desert Glass area of southwest Egypt is carbon-dominated and rich in microdiamonds. Previous noble gas and nitrogen isotope studies suggest an extraterrestrial origin. We report on a reconnaissance study of the carbonaceous matrix of this stone and the phases enclosed in it. This focused on areas not affected by numerous transecting fractures mostly filled with secondary minerals. The work employed scanning electron microscopy (SEM) with energy-dispersive (EDS) and wavelength-dispersive (WDS) electron microprobe (EMPA) analysis, Proton Induced X-ray Emission (PIXE) spectrometry and micro-Raman spectroscopy. We found that carbonaceous matrices of two types occur irregularly intermingled on the 50-500 μm scale: Matrix-1, consisting of almost pure carbonaceous matter, and Matrix-2, containing Fe, Ni, P and S at abundances analyzable by microprobe. Matrix-2 contains the following phases as inclusions: (i) (Fe,Ni) sulphide occurring in cloud-like concentrations of sub-μm grains, in domains of the matrix that are enriched in Fe and S. These domains have (Fe + Ni)/S (atomic) = 1.51 ± 0.24 and Ni/Fe = 0.086 ± 0.061 (both 1SD); (ii) grains up to ∼5 μm in size of moissanite (SiC); (iii) Ni-phosphide compound grains up to 60 μm across that appear cryptocrystalline or amorphous and have (Ni + Fe)/P (atomic) = 5.6. ± 1.7 and Ni/Fe = 74 ± 29 (both 1SD), where both these ratios are much higher than any known Ni-phosphide minerals; (iv) rare grains (observed only once) of graphite, metallic Al, Fe and Ag, and a phase consisting of Ag, P and I. In Matrix-2, Raman spectroscopy shows a prominent narrow diamond band at 1340 cm-1. In Matrix-1 the D and G bands of disordered carbon are dominant, but a minor diamond band is ubiquitous, accounting for the uniform hardness of the material. The D and G bands have average full width at half maximum (FWHM) values of 295 ± 19 and 115 ± 19 cm-1, respectively, and the D/G intensity ratio

  11. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    NASA Astrophysics Data System (ADS)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate

  12. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  13. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  14. Opto-EM and Devices Investigation

    DTIC Science & Technology

    1989-06-01

    value of bandwidth is used the signal to noise ratio of the UAM system becomes ( SNP )u z exp ’cr. 2P,\\ 3 .V N._ W/ 3.3 GAUSSIAN SHAPED MESSAGE SPECTRA...Unclassified N/A 2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION/AVAILABILITY OF REPORT N/A Approved for public release; 2b. DECLASSIFICATION...Synthesis, Single Crystal Growth, Purification and Characterization of Indium Phosphide 2. Deposition of Select Silicides Under High Vacuum Conditions 3 . Use

  15. Pulsed Plasma Preparation for LWIR Materials

    DTIC Science & Technology

    1990-06-18

    Reported Data: AlP is normally considered chemically unstable with respect to hydrolysis and formation of PH3 as a result of the exceptional stability of...A1203 (and consequently it is often used as a fumigant ). Its stability is thought to increase with purity. The thermal conductivity of crystalline...AlP is high (-1.3 Wcm’Kŕ at room temperature). Experimental Data: Initial films of aluminium phosphide, deposited from trimethylaluminium (TMA) and PH3

  16. Infrared resonance Raman, and excitation profile studies of Os/sub 2/(O/sub 2/CCH/sub 3/)/sub 4/Cl/sub 2/ and Os/sub 2/(O/sub 2/CCD/sub 3/)/sub 4/Cl/sub 2/. The assignment of the osmium-osmium stretching vibration for a complex involving an osmium-osmium multiple bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.J.H.; Hempleman, A.J.; Tocher, D.A.

    1988-08-31

    Extensive Raman studies (1525-40 cm/sup /minus/1/) of Os/sub 2/(O/sub 2/CCH/sub 3/)/sub 4/Cl/sub 2/ have led to the identification of the three strong bands, /nu//sub 1/, /nu//sub 2/, and /nu//sub 3/, at 229, 393, and 292 cm/sup /minus/1/ to the key skeletal stretching modes, /nu/(OsOs), /nu/(OsO), and /nu/(OsCl), respectively. Raman spectra of the complex at resonance with the intense electronic band at /lambda//sub max/ = 383 nm lead to the development of a six-membered overtone progression in /nu//sub 1/ as well as combination band progressions in /nu//sub 1/ based upon one quantum of either /nu//sub 2/ or /nu//sub 3/. This indicatesmore » that the principal structural change attendant upon excitation to the resonant state is along the OsOs coordinate. Fourier transform infrared spectra (3500-40 cm/sup /minus/1/) have also been obtained. Acetate deuteriation provides conclusive evidence for many of the infrared and Raman band assignments. The study provides the first firm identification of /nu/(OsOs) for a multiply bonded species.« less

  17. Search for Extraterrestrial Osmium at the Allerod - Younger Dryas Boundary

    NASA Astrophysics Data System (ADS)

    Beets, C.; Sharma, M.; Kasse, K.; Bohncke, S.

    2008-12-01

    Ir and Os are excellent markers of extraterrestrial impact events, due to their high abundance in ET objects (Alvarez et al., 1980 Science; Turekian, 1982 Geol. Bull. Am. Spec. Pap.). Os has the advantage over Ir, in that the 187Os/188Os ratio also greatly differs between meteorites and upper continental crust (UCC). The combination of [Os] and 187Os/188Os analyses would be superior in detecting any ET contribution. Firestone et al (2007 PNAS) attributed a widespread 12.9 ka Ir containing black carbon layer to a potential extraterrestrial impact at the Allerød-Younger Dryas (A-YD) boundary. In order to test this inference, we measured [Os] and 187Os/188Os on a radiocarbon dated A-YD record (13.210 to 12.788 cal years BP) from the Netherlands. This location is close to Lommel, a Belgian site studied by Firestone et al.(2007). The organic-rich sequence was sampled continuously over a 12 cm interval at 2 cm resolution (~70 years). About 10 g samples were freeze-dried, ground and homogenized in a zirconia ball-mill. The samples mixed with 190Os tracer solutions were dissolved in carius tubes and Os extracted in liquid bromine. Os was further purified using micro-distillation. Os isotopes were measured using N-TIMS on Dartmouth Triton. The procedural blank was 7 fg/g Os with an isotopic composition of 0.41±0.01 The Allerød samples have an order of magnitude higher abundance than UCC (200 vs. 30 pg/g), but similar 187Os/188Os ratios, >1.1. The sample at the base of the YD (12.893±75 cal years BP) contains a similar amount of Os, but has a distinctly lower isotopic signature, 0.53±0.002. The high [Os] in the A-YD section possibly reflects enrichment by preferential partitioning into organic matter. The Os isotope composition of 0.53, sandwiched between values >1.1, implies contribution of a significant amount of non-radiogenic Os. Since the pollen spectra show no reworking, the non-radiogenic Os could only have been delivered as a discrete pulse at 12.893 cal yr BP. The observation of the non-radiogenic Os isotope composition would therefore be consistent with a meteorite impact. However, it is intriguing to note there was a small volcanic eruption of Laacher See tephra (LST) at this time (surface immediately below LST = 12.979±147 cal years BP, Bittmann, 2007 Veget Hist Archeobot) approximately 150 km away. The timing of this eruption has been traditionally placed in upper Allerød, about 200 years before the onset of YD. More work is needed to resolve the issue of ET Os at the YD boundary.

  18. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  19. Rhenium-osmium isotope systematics of ordinary chondrites and iron meteorites

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Morgan, J. W.; Horan, M. F.; Grossman, J. N.

    1993-01-01

    Using negative thermal ionization mass spectrometry, Re and Os abundances were determined by isotope dilution and Os-187/Os-186 measured in 11 ordinary chondrites, and also in 1 IIB and 3 IIIB irons. In addition, Os-186/Os-188 and Os-189/Os-188 ratios were precisely determined for 3 unspiked ordinary chondrites as a means of constraining the intensity of any neutron irradiation these meteorites may have experienced.

  20. Experimental discovery of a topological Weyl semimetal state in TaP

    DOE PAGES

    Xu, Su -Yang; Belopolski, Ilya; Sanchez, Daniel S.; ...

    2015-11-13

    Here, Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we findmore » that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal’s surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.« less

  1. 180-GHz I-Q Second Harmonic Resistive Mixer MMIC

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    An indium phosphide MMIC (monolithic microwave integrated circuit) mixer was developed, processed, and tested in the NGC 35-nm-gate-length HEMT (high electron mobility transistor) process. This innovation is very compact in size and operates with very low LO power. Because it is a resistive mixer, this innovation does not require DC power. This is an enabling technology for the miniature receiver modules for the GeoSTAR instrument, which is the only viable option for the NRC decadal study mission PATH.

  2. Gas Phase Ion-Molecule Chemistry of Carbon, Nitrogen and Oxygen Compounds.

    DTIC Science & Technology

    1985-01-29

    silyl anions aza allyl anion) phosphide anion sulfides) Reactivity; nitrite estersj electron affinityMechanism’, sulfur dioxidej. (cont’d) M L..J A6*rAcr...use of silane chemistry to attack a problem of fundamental importance to all organic chemistry, the relative acidity of the alkanes.20 While it is well...alkane lost are a measure of the relative acidity of RH. For example, because ethane is lost less easily than methane, we believe that the ethyl anion

  3. Laboratory trials of seven rodenticides for use against the cotton rat (Sigmodon hispidus).

    PubMed Central

    Gill, J. E.; Redfern, R.

    1980-01-01

    The efficacy of seven rodenticides for use against Sigmodon hispidus was investigated in the laboratory. The poisons (warfarin, coumatetralyl, difenacoum, brodifacoum, bromadiolone, calciferol and zinc phosphide) were all toxic at the concentrations normally used against Rattus rattus and R. norvegicus and all were palatable. Trials are now needed to confirm the efficacy of these poisons in the field, but it seems likely that, if used in suitable bait formulations, they would all be useful for the practical control of S. hispidus. PMID:7462594

  4. Electrochemical Characterization of InP and GaAs Based Structures for Space Solar Cell Applications.

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Jenkins, Philip P.; Goradia, Manju; Wilt, David M.

    1994-01-01

    In this paper the emphasis is on accurate majority carrier concentration EC-V profiling of structures based on Indium Phosphide and Gallium Arsenide, using a newly developed electrolyte based on Hydrogen Flouride, Acetic Acid, Phosphoric Acid, 1-phenyl-2-propanamine and Ammonia Diflouride. Some preliminary data on the use of this electrolyte for determining the energy distribution of surface and deep states of these structures, applicable to fabrication process optimization and radiation induced defects studies of solar cells, are also provided.

  5. 40 CFR 180.284 - Zinc phosphide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agricultural commodities as follows: Commodity Parts per million Alfalfa, forage 0.2 Alfalfa, hay 0.2 Barley... Expiration/Revocation Date Alfalfa, forage 1.0 12/31/05 Alfalfa, hay 1.0 12/31/05 Clover, forage 0.1 12/31/05...

  6. Technology and Application of Indium Phosphide and Related Semiconductors

    DTIC Science & Technology

    1989-03-01

    Application and Insertion, GED-L 80/84-9, Oct 1984 1.2: M. Y. Yen , B. F. Levine, C. G. Bethea, K. K. Choi, and A. Y. Cho, Appl. Phys. Lett. 50 (1987) 927...Schlachetzki, Solid-State Electron. 28 (1985) 299 40 IV,A,5: F. B. Fank, J. D. Crowley, and J. J. Berenz, Microwave Journal, June 1979, p. 86 IV,A.6...Ser. 79 (1986) 703 IV,CIb.6: N. K. Dutta, S. G. Napholtz, R. Yen , R. L. Brown, T. M. Shen, N. A. Olsson, and D. C. Craft, Appl. Phys. Lett. 46 (1985

  7. Femtosecond Nonlinearities in Indium Gallium Arsenic Phosphide Diode Lasers

    NASA Astrophysics Data System (ADS)

    Hall, Katherine Lavin

    Semiconductor optical amplifiers are receiving increasing attention for possible applications to broadband optical communication and switching systems. In this thesis we report the results of an extensive experimental study of the ultrafast gain and refractive index nonlinearities in 1.5 μm InGaAsP laser diode amplifiers. The temporal resolution afforded by the femtosecond optical pulses used in these experiments allows us to study carrier interactions with other carriers as well as carrier interactions with the lattice. The 100-200 fs optical pulses used in the pump -probe experiments are generated by an Additive Pulse Modelocked color center laser. The measured group velocity dispersion in the diodes ranged from -0.6 to -0.95 mu m^{-1 }. Differences in the group velocity for TE - and TM-polarized pulses suggested that cross-polarized pump-probe pulses walk off from each other in the diode. This walk-off can diminish the time resolution of some experiments. A novel heterodyne pump-probe technique was developed to distinguish collinear, copolarized, pump and probe pulses that were nominally at the same wavelength. Comparing cross-polarized and copolarized pump-probe results yielded new information about the physical mechanisms responsible for nonlinear gain in the diodes. We observed a gain compression across the entire bandwidth of the diode, associated with carrier heating. The hot carrier distribution cooled back to the lattice temperature with a 0.6 to 1.0 ps time constant, depending on the device structure. In addition, we observed a 0.1 to 0.25 ps delay in onset of carrier heating. Large gain compression due to two photon absorption was also observed. A small portion of the nonlinear gain is attributed to spectral hole burning. Pulsewidth-dependent output saturation energies were explained by a rate equation model that included the effect of carrier heating. Measurements of pump-induced probe phase changes revealed index nonlinearities due to delayed carrier heating and an instantaneous electronic, or virtual process. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  8. Syntheses, structures and redox properties of some complexes containing the Os(dppe)Cp* fragment, including [{Os(dppe)Cp*}2(mu-C triple bondCC triple bond C)].

    PubMed

    Bruce, Michael I; Costuas, Karine; Davin, Thomas; Halet, Jean-François; Kramarczuk, Kathy A; Low, Paul J; Nicholson, Brian K; Perkins, Gary J; Roberts, Rachel L; Skelton, Brian W; Smith, Mark E; White, Allan H

    2007-12-14

    The sequential conversion of [OsBr(cod)Cp*] (9) to [OsBr(dppe)Cp*] (10), [Os([=C=CH2)(dppe)Cp*]PF6 ([11]PF6), [Os(C triple bond CH)(dppe)Cp*] (12), [{Os(dppe)Cp*}2{mu-(=C=CH-CH=C=)}][PF6]2 ([13](PF6)2) and finally [{Os(dppe)Cp*}(2)(mu-C triple bond CC triple bond C)] (14) has been used to make the third member of the triad [{M(dppe)Cp*}2(mu-C triple bond CC triple bond C)] (M = Fe, Ru, Os). The molecular structures of []PF6, 12 and 14, together with those of the related osmium complexes [Os(NCMe)(dppe)Cp*]PF6 ([15]PF6) and [Os(C triple bond CPh)(dppe)Cp*] (16), have been determined by single-crystal X-ray diffraction studies. Comparison of the redox properties of 14 with those of its iron and ruthenium congeners shows that the first oxidation potential E1 varies as: Fe approximately Os < Ru. Whereas the Fe complex has been shown to undergo three sequential 1-electron oxidation processes within conventional electrochemical solvent windows, the Ru and Os compounds undergo no fewer than four sequential oxidation events giving rise to a five-membered series of redox related complexes [{M(dppe)Cp*}2(mu-C4)]n+ (n = 0, 1, 2, 3 and 4), the osmium derivatives being obtained at considerably lower potentials than the ruthenium analogues. These results are complimented by DFT and DT DFT calculations.

  9. Complex anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA.

    PubMed

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas

    2013-09-17

    Platinum group elements (PGE) of anthropogenic origin have been reported in rainwater, snow, roadside soil and vegetation, industrial waste, and urban airborne particles around the world. As recent studies have shown that PGE are bioavailable in the environment and pose health risks at chronic levels, the extent of PGE pollution is of global concern. In this study, we report PGE concentrations and osmium isotope ((187)Os/(188)Os) ratios of airborne particles (particulate matter, PM10) collected in Woods Hole, a small coastal village on Cape Cod, Massachusetts, U.S.A. The sampling site is more than 100 km away from the nearest urban centers (Boston, Providence) and has no large industrial emission center within a 30 km radius. The study reveals that, although PGE concentrations in rural airborne particulate matter are orders of magnitude lower than in urban aerosols, 69% of the total osmium is of anthropogenic origin. Anthropogenic PGE signatures in airborne particles are thus not restricted to large cities with high traffic flows and substantial industries; they can also be found in rural environments. We further conclude that the combination of Pt/Rh concentration ratios and (187)Os/(188)Os composition can be used to trace PGE sources. The Pt/Rh and (187)Os/(188)Os composition of Woods Hole aerosols indicate that the anthropogenic PGE fraction is primarily sourced from ore smelting processes, with possible minor contributions from fossil fuel burning and automobile catalyst-derived materials. Our results further substantiate the use of (187)Os/(188)Os in source apportionment studies on continental scales.

  10. Use of a tissue sectioner to expose internal structures of biological samples for scanning electron microscopy.

    PubMed

    Brown, M F; Brotzman, H G; Kinden, D A

    1976-09-01

    A procedure yielding sections of unembedded biological samples for observation by scanning electron microscopy is described. Sections of samples, fixed and hardened in OsO4, were obtained in quantity with a tissue sectioner. Subsequent treatments to osmium-coat cut surfaces were employed prior to critical point drying. The procedure yields cleanly cut surfaces through cells and cytoplasmic organelles which are retained in their normal position. Sections of apple leaf and mouse kidney are illustrated. Sections can be readily cut in a desired plane with less structural damage than is typically encountered by other sectioning or dissection techniques.

  11. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  12. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  13. An Ordinary Chondrite Impactor Composition for the Bosumtwi Impact Structure, Ghana, West Africa: Discussion of Siderophile Element Contents and Os and Cr Isotope Data

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shukolyukov, Alex; Lugmair, Guenter

    2004-01-01

    Osmium isotope data had shown that Ivory Coast tektites contain an extraterrestrial component, but do not allow distinction between chondritic and iron meteorite contamination. PGE abundances of Ivory Coast tektites and impactites and target rocks from the Bosumtwi crater, the source crater of the Ivory Coast tektites, were all relatively high and did not allow to resolve the presence, or identify the nature, of the meteoritic component. However, Cr isotope analyses of an Ivory Coast tektite yielded a distinct 53Cr excess of 0.30+/-0.06, which indicates that the Bosumtwi impactor was an ordinary chondrite.

  14. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-01-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  15. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Astrophysics Data System (ADS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-04-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  16. What is the best bonding model of the (σ-H-BR) species bound to a transition metal? Bonding analysis in complexes [(H)2Cl(PMe3)2M(σ-H-BR)] (M = Fe, Ru, Os).

    PubMed

    Pandey, Krishna K

    2012-03-21

    Density Functional Theory calculations have been performed for the σ-hydroboryl complexes of iron, ruthenium and osmium [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] (M = Fe, Ru, Os; R = OMe, NMe(2), Ph) at the BP86/TZ2P/ZORA level of theory in order to understand the interactions between metal and HBR ligands. The calculated geometries of the complexes [(H)(2)Cl(PMe(3))(2)Ru(HBNMe(2))], [(H)(2)Cl(PMe(3))(2)Os(HBR)] (R = OMe, NMe(2)) are in excellent agreement with structurally characterized complexes [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))], [(H)(2)Cl(P(i)Pr(3))(2)Os{σ-H-BOCH(2)CH(2)OB(O(2)CH(2)CH(2))}] and [(H)(2)Cl(P(i)Pr(3))(2)Os(σ-H-BNMe(2))]. The longer calculated M-B bond distance in complex [(H)(2)Cl(PMe(3))(2)M(σ-H-BNMe(2))] are due to greater B-N π bonding and as a result, a weaker M-B π-back-bonding. The B-H2 bond distances reveal that (i) iron complexes contain bis(σ-borane) ligand, (ii) ruthenium complexes contain (σ-H-BR) ligands with a stretched B-H2 bond, and (iii) osmium complexes contain hydride (H2) and (σ-H-BR) ligands. The H-BR ligands in osmium complexes are a better trans-directing ligand than the Cl ligand. Values of interaction energy, electrostatic interaction, orbital interaction, and bond dissociation energy for interactions between ionic fragments are very large and may not be consistent with M-(σ-H-BR) bonding. The EDA as well as NBO and AIM analysis suggest that the best bonding model for the M-σ-H-BR interactions in the complexes [(H)(2)Cl(PMe(3))(2)M(σ-H-BR)] is the interaction between neutral fragments [(H)(2)Cl(PMe(3))(2)M] and [σ-H-BR]. This becomes evident from the calculated values for the orbital interactions. The electron configuration of the fragments which is shown for C in Fig. 1 experiences the smallest change upon the M-σ-H-BR bond formation. Since model C also requires the least amount of electronic excitation and geometry changes of all models given by the ΔE(prep) values, it is clearly the most appropriate choice of

  17. Experimental control of steady state photorefractive self-focusing in InP:Fe at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Dan, C.; Wolfersberger, D.; Fressengeas, N.

    2011-09-01

    This paper reports an experimental study of the self-focusing process in iron doped indium phosphide at an 1.06 micron wavelength, identifying the influence of temperature, beam intensity and background illumination for two different iron dopings. We point out that the iron ionization ratio is at the origin of different qualitative behavior previously reported and we show that it is possible to reproduce the said behaviors in the same crystal by applying a uniform illumination, allowing their eventual control for dynamic wave-guiding.

  18. Modeling Laser Effects on Multi-Junction Solar Cells Using Silvaco ATLAS Software for Spacecraft Power Beaming Applications

    DTIC Science & Technology

    2010-06-01

    could not. Figure 11 shows the Indium Gallium Phosphide (InGaP)- Gallium Arsenide (GaAs)- Germanium (Ge) solar cell utilization of the solar spectrum...2 opcv nL  (4.4) p = 1, 2, 3, … nr = index of refraction of the cavity co = speed of light in a vacuum (m/s) L = cavity length (meters...illumination – ηsolar  Efficiency under solar illumination – n Number of electrons – nr Index of refraction –  Photon frequency Hz ΔFSR

  19. 99 W mid-IR operation of a ZGP OPO at 25% duty cycle.

    PubMed

    Hemming, Alexander; Richards, Jim; Davidson, Alan; Carmody, Neil; Bennetts, Shayne; Simakov, Nikita; Haub, John

    2013-04-22

    We have demonstrated the highest reported output power from a mid-IR ZGP OPO. The laser is a cascaded hybrid system consisting of a thulium fibre laser, Ho:YAG solid state laser and a Zinc Germanium Phosphide parametric oscillator. The system produces 27 W of output power in the 3-5 μm wavelength range with an M(2) = 4.0 when operating in a repetitively q-switched mode, and a modulated peak output power of 99 W at a reduced duty cycle of 25%.

  20. Space Photovoltaic Research and Technology, 1989

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Remarkable progress on a wide variety of approaches in space photovoltaics, for both near and far term applications is reported. Papers were presented in a variety of technical areas, including multi-junction cell technology, GaAs and InP cells, system studies, cell and array development, and non-solar direct conversion. Five workshops were held to discuss the following topics: mechanical versus monolithic multi-junction cells; strategy in space flight experiments; non-solar direct conversion; indium phosphide cells; and space cell theory and modeling.

  1. Liver histopathology of fatal phosphine poisoning.

    PubMed

    Saleki, Sepideh; Ardalan, Farid Azmoudeh; Javidan-Nejad, Abdullah

    2007-03-02

    Two commonly used pesticides in agriculture are phosphides of aluminium and zinc. Both of these metal phosphides act through elaboration of toxic phosphine gas. The poisoning in Iran is mostly oral and suicidal. Phosphine is rapidly absorbed throughout the gastrointestinal tract after ingestion and it is partly carried to the liver by the portal vein. In this study the liver histopathology of fatal poisoning is scrutinized. A descriptive, retrospective study was performed on 38 fatal phosphine poisonings. The slides of liver specimens of the cases were retrieved and studied separately by two pathologists. The poisoning was suicidal in 33 (86.5%) of cases. Portal inflammation was negligible in 37 cases and only in one of the cases, a moderate degree of chronic inflammation accompanied by granuloma formation was observed. Major histopathologic findings were as follows: mild sinusoidal congestion; 12 cases (31.6%), severe sinusoidal congestion; 25 cases (45.8%), central vein congestion; 23 cases (60.5%), centrilobular necrosis; 3 cases (7.9%), hepatocytes nuclear fragmentation; 6 cases (15.8%), sinusoidal clusters of polymorphonuclear leukocytes; 12 cases (31.6%), and mild macrovesicular steatosis; 5 cases (13.2%). Fine isomorphic cytoplasmic vacuoles were observed in 36 cases (94.7%). These vacuoles were distributed uniformly in all hepatic zones in the majority (75%) of cases. This study reveals that the main histopathologic findings of fatal phosphine poisoning in the liver are fine cytoplasmic vacuolization of hepatocytes and sinusoidal congestion.

  2. Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage.

    PubMed

    Li, Bing; Shi, Yuxin; Huang, Kesheng; Zhao, Mingming; Qiu, Jiaqing; Xue, Huaiguo; Pang, Huan

    2018-03-01

    Compared to single metallic Ni or Co phosphides, bimetallic Ni-Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one-step solvothermal process is proposed for the synthesis of bouquet-like cobalt-doped nickel phosphite (Ni 11 (HPO 3 ) 8 (OH) 6 ), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 electrode presents a maximum specific capacitance of 714.8 F g -1 . More significantly, aqueous and solid-state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm -2 at the power density of 0.6 KW cm -2 . The solid-state device shows a high energy density of 14.72 mWh cm -2 at the power density of 0.6 KW cm -2 . These excellent performances confirm that the cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 are promising materials for applications in electrochemical energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting

    DOE PAGES

    Xuan, Cuijuan; Wang, Jie; Xia, Weiwei; ...

    2017-07-18

    Exploring nonprecious metal electrocatalysts to replace the noble metal-based catalysts for full water electrocatalysis is still an ongoing challenge. In this work, porous structured ternary nickel–iron–phosphide (Ni–Fe–P) nanocubes were synthesized through one-step phosphidation of a Ni–Fe-based Prussian blue analogue. The Ni–Fe–P nanocubes exhibit a rough and loose porous structure on their surface under suitable phosphating temperature, which is favorable for the mass transfer and oxygen diffusion during the electrocatalysis process. As a result, Ni–Fe–P obtained at 350 °C with poorer crystallinity offers more unsaturated atoms as active sites to expedite the absorption of reactants. Additionally, the introduction of nickel improvedmore » the electronic structure and then reduced the charge-transfer resistance, which would result in a faster electron transport and an enhancement of the intrinsic electrocatalytic activities. Benefiting from the unique porous nanocubes and the chemical composition, the Ni–Fe–P nanocubes exhibit excellent hydrogen evolution reaction and oxygen evolution reaction activities in alkaline medium, with low overpotentials of 182 and 271 mV for delivering a current density of 10 mA cm–2, respectively. Moreover, the Ni–Fe–P nanocubes show outstanding stability for sustained water splitting in the two-electrode alkaline electrolyzer. Furthermore, this work not only provides a facile approach for designing bifunctional electrocatalysts but also further extends the application of metal–organic frameworks in overall water splitting.« less

  4. Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xuan, Cuijuan; Wang, Jie; Xia, Weiwei

    Exploring nonprecious metal electrocatalysts to replace the noble metal-based catalysts for full water electrocatalysis is still an ongoing challenge. In this work, porous structured ternary nickel–iron–phosphide (Ni–Fe–P) nanocubes were synthesized through one-step phosphidation of a Ni–Fe-based Prussian blue analogue. The Ni–Fe–P nanocubes exhibit a rough and loose porous structure on their surface under suitable phosphating temperature, which is favorable for the mass transfer and oxygen diffusion during the electrocatalysis process. As a result, Ni–Fe–P obtained at 350 °C with poorer crystallinity offers more unsaturated atoms as active sites to expedite the absorption of reactants. Additionally, the introduction of nickel improvedmore » the electronic structure and then reduced the charge-transfer resistance, which would result in a faster electron transport and an enhancement of the intrinsic electrocatalytic activities. Benefiting from the unique porous nanocubes and the chemical composition, the Ni–Fe–P nanocubes exhibit excellent hydrogen evolution reaction and oxygen evolution reaction activities in alkaline medium, with low overpotentials of 182 and 271 mV for delivering a current density of 10 mA cm–2, respectively. Moreover, the Ni–Fe–P nanocubes show outstanding stability for sustained water splitting in the two-electrode alkaline electrolyzer. Furthermore, this work not only provides a facile approach for designing bifunctional electrocatalysts but also further extends the application of metal–organic frameworks in overall water splitting.« less

  5. High-Efficiency Thin-Film Silicon-on-GaP Solar Cell for Improved Radiation Resistance.

    DTIC Science & Technology

    1987-09-01

    UNCLASSIFIED MyUM 21 LIX E / 82H M D 132 11111_Lt5l1. t FILE UPI" AD-A190 268 AFWAL-TR-87-2070 HIGH-EFFICIENCY THIN- FILM SILICON-ON-GaP SOLAR CELL...EFFICIENCY THIN- FILM SILICON-ON-GaP SOLAR CELL FOR IMPROVED RADIATION RESISTANCE 12. PERSONAL AUTHOR(S) JEROME S. CULIK 13a. TYPE OF REPORT 13b. TIME...C tinue on reverse if necessary and identify by block number) 10 01 SILICONs THIN* FILM , . HETEROEPITAXIAL, RADIATION, 10 01 i GALLIUM PHOSPHIDE 19

  6. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP.

    PubMed

    Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J

    2011-07-04

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster.

  7. The Kaidun Meteorite: Where Did It Come From?

    NASA Technical Reports Server (NTRS)

    Ivanov, Andrei; Zolensky, Michael

    2003-01-01

    The Kaidun meteorite, which fell on 3.12.1980 at lat. 15 deg N, long. 48.3 deg E, holds a special place in the world meteorite collection. Kaidun is characterized by an unprecedentedly wide variety of meteorite material in its makeup. The high degree of variability in this meteorite s material is evidenced by the richness of its mineral composition - nearly 60 minerals and mineral phases have been identified in Kaidun, including several never before found in nature, such as florenskiite FeTiP, the first known phosphide of a lithophilic element.

  8. Diffusion length variation and proton damage coefficients for InP/In(x)Ga(1-x)As/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1993-01-01

    Indium phosphide solar cells are more radiation resistant than gallium arsenide and silicon solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter, mechanically strong and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5 and 3 MeV proton irradiations are explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence is calculated by simulating the cell performance. The diffusion length damage coefficient K(L) is plotted as a function of proton fluence.

  9. Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors

    NASA Technical Reports Server (NTRS)

    Lowry, S.; Krishnan, A.; Clark, I.

    1999-01-01

    The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.

  10. Method for the preparation of inorganic single crystal and polycrystalline electronic materials

    NASA Technical Reports Server (NTRS)

    Groves, W. O. (Inventor)

    1969-01-01

    Large area, semiconductor crystals selected from group 3-5 compounds and alloys are provided for semiconductor device fabrication by the use of a selective etching operation which completely removes the substrate on which the desired crystal was deposited. The substrate, selected from the same group as the single crystal, has a higher solution rate than the epitaxial single crystal which is essentially unaffected by the etching solution. The preparation of gallium phosphide single crystals using a gallium arsenide substrate and a concentrated nitric acid etching solution is described.

  11. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.

  12. Probing near-normally propagating bulk acoustic waves using pseudo-reflection geometry Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Parsons, L. C.; Andrews, G. T.

    2012-09-01

    Pseudo-reflection geometry Brillouin spectroscopy can be used to probe acoustic wave dispersion approximately along the surface normal of a material system while avoiding the difficulties associated with specularly reflected light encountered in an ideal reflection configuration. As an example of its application, we show analytically that it can be used to determine both the refractive index and bulk acoustic mode velocities of optically-isotropic non-metallic materials and confirm the utility of the approach via a series of experiments on fused quartz, gallium phosphide, water, and porous silicon films.

  13. INTERACTION OF INTERSTITIAL CLUSTERS WITH RHENIUM, OSMIUM, AND TANTALUM IN TUNGSTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.

    2016-09-01

    In the previous semi annual report, we explored the stability of interstitial clusters in W up to size seven. In this report, we study the binding of those clusters to Re, Os, and Ta atoms. For each cluster size, the three most stable configurations are considered to average the binding property. The average binding energy to a Re decreases from 0.79 eV for a size-1 cluster (a [111] dumbbell) to 0.65 eV for a size-7 cluster. For Os, the binding decreases from 1.61 eV for a [111] dumbbell to 1.34 eV for a size-7 cluster. Tantalum is repulsive to interstitialmore » clusters with binding energy ranges from -0.61 eV for a [111] dumbbell to -0.5 eV for a size-7 cluster.« less

  14. Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.

    2005-01-01

    The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].

  15. Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.

    2006-12-01

    The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.

  16. Osmium isotopes demonstrate distal transport of contaminated sediments in Chesapeake Bay

    USGS Publications Warehouse

    Helz, G.R.; Adelson, J.M.; Miller, C.V.; Cornwell, J.C.; Hill, J.M.; Horan, M.; Walker, R.J.

    2000-01-01

    Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated sediments in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated sediments bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal Plain deposits due to post- Miocene 187Re decay. The upper Susquehanna Basin yields sediments also with higher 187Os/188Os. Beginning in the late 1970s, this signal was overprinted by a low 187Os/188Os (anthropogenic) source in the lower Susquehanna Basin. In the vicinity of Baltimore, which is a major center of heavy industry as well as biomedical research, anthropogenic Os has been found only in sediments impacted by the principal wastewater treatment plant. Surprisingly, a mid-Bay site distant from anthropogenic sources contains the strongest anthropogenic Os signal in the data set, having received anthropogenic Os sporadically since the mid-20th Century. Transport of particles to this site overrode the northward flowing bottom currents. Finding anthropogenic Os at this site cautions that other particle-borne substances, including hazardous ones, could be dispersed broadly in this estuary.Because the isotopic composition of anthropogenic Os is normally distinctive in comparison to continental crust and is precisely measurable, this platinum-group element is attractive as a tracer of transport pathways for contaminated sediments in estuaries. Evidence herein and elsewhere suggest that biomedical research institutions are the chief source of anthropogenic Os. In the Chesapeake Bay region, uncontaminated sediments bear a crustal 187Os/188Os signature of 0.73 ?? 0.10. Slightly higher 187Os/188Os ratios occur in Re-rich Coastal Plain deposits due to post-Miocene 187Re decay. The upper Susquehanna Basin yields sediments also with higher 187Os/188Os. Beginning in the late 1970s, this signal was overprinted by a low 187Os/188Os (anthropogenic) source in the lower Susquehanna Basin. In the vicinity of Baltimore, which is a major center of heavy industry as well as biomedical research, anthropogenic Os has been found only in sediments impacted by the principal wastewater treatment plant. Surprisingly, a mid-Bay site distant from anthropogenic sources contains the strongest anthropogenic Os signal in the data set, having received anthropogenic Os sporadically since the mid-20th Century. Transport of particles to this site overrode the northward flowing bottom currents. Finding anthropogenic Os at this site cautions that other particle-borne substances, including hazardous ones, could be dispersed broadly in this estuary.

  17. Rhenium-osmium systematics of calcium-aluminium-rich inclusions in carbonaceous chondrites

    USGS Publications Warehouse

    Becker, H.; Morgan, J.W.; Walker, R.J.; MacPherson, G.J.; Grossman, J.N.

    2001-01-01

    The Re-Os isotopic systematics of calcium-aluminium-rich inclusions (CAIs) in chondrites were investigated in order to shed light on the behavior of the Re-Os system in bulk chondrites, and to constrain the timing of chemical fractionation in primitive chondrites. CAIs with relatively unfractionated rare earth element (REE) patterns (groups I, III, V, VI) define a narrow range of 187Re/188Os (0.3764-0.4443) and 187Os/188Os (0.12599-0.12717), and high but variable Re and Os abundances (3209-41,820 ppb Os). In contrast, CAIs that show depletions in highly refractory elements and strongly fractionated REE patterns (group II) also show a much larger range in 187Re/188Os (0.409-0.535) and 187Os/188Os (0.12695-0.13770), and greater than an order of magnitude lower Re and Os abundances than other groups (e.g., 75.7-680.2 ppb Os). Sixteen bulk CAIs and CAI splits plot within analytical uncertainty of a 4558 Ga reference isochron, as is expected for materials of this antiquity. Eight samples, however, plot off the isochron. Several possible reasons for these deviations are discussed. Data for multiple splits of one CAI indicate that the nonisochronous behavior for at least this CAI is the result of Re-Os reequilibration at approximately 1.6 Ga. Thus, the most likely explanation for the deviations of most of the nonisochronous CAIs is late-stage open-system behavior of Re and Os in the asteroidal environment. The 187Os/188Os-Os systematics of CAIs are consistent with previous models that indicate group II CAIs are mixtures of components that lost the bulk of their highly refractory elements in a previous condensation event and a minor second component that provided refractory elements at chondritic relative proportions. The high Re/Os of group II CAIs relative to other CAIs and chondrite bulk rocks may have been caused by variable mobilization of Re and Os during medium- to low-temperature parent body alteration ??4.5 Ga ago. This model is favored over nebular models, which pose several difficulties. The narrow range of 187Os/188Os in group I, III, V, and VI bulk CAIs, and the agreement with 187Os/188Os of whole rock carbonaceous chondrites suggest that on a bulk inclusion scale, secondary alteration only modestly fractionated Re/Os in these CAIs. The average of 187Os/188Os for group I, III, V, and VI CAIs is indistinguishable from average CI chondrites, indicating a modern solar system value for 187Os/188Os of 0.12650, corresponding to a 187Re/188Os of 0.3964. Copyright ?? 2001 Elsevier Science Ltd.

  18. Rhenium-osmium and samarium-neodymium isotopic systematics of the Stillwater complex

    NASA Technical Reports Server (NTRS)

    Lambert, David D.; Shirey, Steven B.; Carlson, Richard W.; Morgan, John W.; Walker, Richard J.

    1989-01-01

    The role of magma mixing in the formation of strategic platinum-group element ore deposits is examined using isotopic data from the Stillwater Complex, Montana. Nd and Os isotopic data show that the intrusion formed from at least two distinct magmas: ultramafic (U-type) affinity magmas and anorthositic (A-type) affinity magmas. The U-type magmas formed from a lithospheric mantle source containing recycled crustal materials and the A-type magmas originated either by crustal contamination of basaltic magmas or by partial melting of basalt in the lower crust. The results also suggest that the platinum-group element ore deposits were derived from A-type magmas which were injected into the U-type magma chamber at several stages during the development of the ultramafic series.

  19. Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles.

    PubMed

    Curcio, Christine A; Presley, J Brett; Millican, C Leigh; Medeiros, Nancy E

    2005-06-01

    Neutral lipid, including esterified cholesterol, and apolipoproteins B and E are abundant in basal deposits and drusen of aged and age-related maculopathy (ARM) eyes. The principal component of basal linear deposit (BlinD), a specific ARM lesion, is membranous debris, which if actually derived from membranes cannot account for extracellular neutral lipid. We therefore used a lipid-preserving ultrastructural method to obtain improved images of membranous debris. Maculas from 44 human donors (71-96 yr) were preserved <7.5 hr after death. Blocks were post-fixed in 2% osmium or osmium-tannic acid-paraphenylenediamine (OTAP) to preserve neutral lipid for thin-section transmission electron microscopic (TEM) examination. Solid particles identified by OTAP were considered closest to the in vivo state of extracellular lipids. Micrographs were examined for intermediate forms, with greatest weight given to comparable images from different preparations of same or fellow eyes. Twenty eyes of older adults (12 with ARM including fellows treated with photodynamic and radiation therapies) had adequately preserved extracellular lipid. The exterior surface of membranous debris was thicker and more electron-dense than basal infoldings of retinal pigment epithelium (RPE) cells. By OTAP, individual membranous debris profiles were solid (diameters, 80-200 nm) and formed tracks across or aggregations within basal laminar deposits. Solid particles and/or pools of neutral lipid were visible in BlinD and drusen. When processed to preserve lipid, membranous debris resembles neither membranes of surrounding cells nor vesicles possessing aqueous interiors but rather solid particles. These results are consistent with recent evidence implicating lipoprotein particles of intra-ocular origin as a potential source of neutral lipids, including esterified cholesterol, in the specific lesions of ARM.

  20. Nanostructured Semiconductor Electrodes for Solar Energy Conversion and Innovations in Undergraduate Chemical Lab Curriculum

    NASA Astrophysics Data System (ADS)

    Lee, Sudarat

    This dissertation presents the methodology and discussion of preparing nanostructured, high aspect ratio p-type phosphide-based binary and ternary semiconductors via "top-down" anodic etching, a process which creates nanostructures from a large parent entity, and "bottom-up" vapor-liquid-solid growth, a mechanism which builds up small clusters of molecules block-by-block. Such architecture is particularly useful for semiconducting materials with incompatible optical absorption depth and charge carrier diffusion length, as it not only relaxes the requirement for high-grade crystalline materials, but also increases the carrier collection efficiencies for photons with energy greater than or equal to the band gap. The main focus of this dissertation is to obtain nanostructured p-type phosphide semiconductors for photoelectrochemical (PEC) cell applications. Chapter II in the thesis describes a methodology for creating high-aspect ratio p-GaP that function as a photocathode under white light illumination. Gallium phosphide (GaP, band gap: 2.26 eV) is a suitable candidate for solar conversion and energy storage due to its ability to generate large photocurrent and photovoltage to drive fuel-forming reactions. Furthermore, the band edge positions of GaP can provide sufficient kinetics for the reduction of protons and carbon dioxide. The structure is prepared by anodic etching, and the resulting macroporous structures are subsequently doped with Zn by thermally driving in Zn from conformal ZnO films prepared by atomic layer deposition (ALD). The key finding of this work is a viable doping strategy involving ALD ZnO films for making functioning p-type GaP nanostructures. Chapter III compares the GaP nanowires grown from gold (Au) and tin (Sn) VLS catalysts in a benign solid sublimation growth scheme in terms of crystal structure and photoactivity. Sn is less noble than Au, allowing complete removal of Sn metal catalysts from the nanowires through wet chemical etching which