Science.gov

Sample records for osmotic minipump studies

  1. Chronic infusion of opiate peptides to rat cerebrospinal fluid with osmotic minipumps.

    PubMed

    Saland, L C; Ortiz, E; Samora, A

    1984-09-01

    Beta-endorphin-related opiate peptides or the opiate antagonist naloxone were chronically infused for periods of 24 to 48 hours to the lateral cerebral ventricle of adult male rats using Alza osmotic minipumps. Previous studies have suggested a "chemotactic"-like effect of opiate peptides for supraependymal macrophages in the region of the third ventricle of the brain. The present study demonstrates a stimulatory effect of beta-endorphin infusion on the appearance of lymphocyte and neutrophil-like cells, in addition to macrophages, in the region of the third ventricle, suggestive of an intracerebral inflammatory response. None of the other molecules, including alpha-endorphin, methionine-enkephalin, naloxone, or sterile saline produced similar cellular responses after infusion, although some of the latter substances may have induced the appearance of supraependymal neuron-like cells in the area. Observations suggest that the chronic presence of beta-endorphin, a biologically active opiate peptide, will interact with cells of the immune system, which have the ability to gain access to the cerebrospinal fluid. PMID:6091499

  2. A comparative study of the effects of the intravenous self-administration or subcutaneous minipump infusion of nicotine on the expression of brain neuronal nicotinic receptor subtypes.

    PubMed

    Moretti, Milena; Mugnaini, Manolo; Tessari, Michela; Zoli, Michele; Gaimarri, Annalisa; Manfredi, Irene; Pistillo, Francesco; Clementi, Francesco; Gotti, Cecilia

    2010-08-01

    Long-term nicotine exposure changes neuronal acetylcholine nicotinic receptor (nAChR) subtype expression in the brains of smokers and experimental animals. The aim of this study was to investigate nicotine-induced changes in nAChR expression in two models commonly used to describe the effects of nicotine in animals: operant (two-lever presses) intravenous self-administration (SA) and passive subcutaneous nicotine administration via an osmotic minipump (MP). In the MP group, alpha4beta2 nAChRs were up-regulated in all brain regions, alpha6beta2* nAChRs were down-regulated in the nucleus accumbens (NAc) and caudate-putamen, and alpha7 nAChRs were up-regulated in the caudal cerebral cortex (CCx); the up-regulation of alpha4beta2alpha5 nAChRs in the CCx was also suggested. In the SA group, alpha4beta2 up-regulation was lower and limited to the CCx and NAc; there were no detectable changes in alpha6beta2* or alpha7 nACRs. In the CCx of the MP rats, there was a close correlation between the increase in alpha4beta2 binding and alpha4 and beta2 subunit levels measured by means of Western blotting, demonstrating that the up-regulation was due to an increase in alpha4beta2 proteins. Western blotting also showed that the increase in the beta2 subunit exceeded that of the alpha4 subunit, suggesting that a change in alpha4beta2 stoichiometry may occur in vivo as has been shown in vitro. These results show that nicotine has an area-specific effect on receptor subtypes, regardless of its administration route, but the effect is quantitatively greater in the case of MP administration. PMID:20439469

  3. Echographic studies of osmotic agents.

    PubMed

    Vucicevic, Z M; Tark, E; Ahmad, S

    1979-09-01

    The effectiveness of osmotic agents, acetazolamide (Diamox), urea, glycerol, and mannitol, and massages (5 and 10 minutes) for inducing hypotony in rabbit eyes was evaluated by ultrasonography. Mannitol was found to have the greatest hypotonic effect followed closely by urea and glycerol, then acetazolamide. The difference between the 5 and 10 minute massages was negligible. PMID:122221

  4. Studies of Protein Solution Properties Using Osmotic Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Agena, S.; Bogle, David; Pusey, Marc; Agena, S.

    1998-01-01

    Examination of the protein crystallization process involves investigation of the liquid and solid state and a protein's properties in these states. Liquid state studies such as protein self association in solution by light scattering methods or other methods have been used to examine a protein Is properties and therefore its crystallization process and conditions. Likewise can osmotic pressure data be used to examine protein properties and various published osmotic pressure studies were examined by us to correlate osmotic pressure to protein solution properties. The solution behavior of serum albumin, alpha - chymotrypsin, beta - lactoglobulin and ovalbumin was examined over a range of temperatures, pH values and different salt types and concentrations. Using virial expansion and a local composition model the non ideal solution behavior in form of the activity coefficients (thermodynamic) was described for the systems. This protein activity coefficient data was related to a protein's solubility behavior and this process and the results will be presented.

  5. Evaluating the control: minipump implantation and breathing behavior in the neonatal rat.

    PubMed

    Kidder, Ian J; Mudery, Jordan A; Barreda, Santiago; Taska, David J; Bailey, E Fiona

    2016-09-01

    We evaluated genioglossus (GG) gross motoneuron morphology, electromyographic (EMG) activities, and respiratory patterning in rat pups allowed to develop without interference (unexposed) and pups born to dams subjected to osmotic minipump implantation in utero (saline-exposed). In experiment 1, 48 Sprague-Dawley rat pups (Charles-River Laboratories), ages postnatal day 7 (P7) through postnatal day 10 (P10), were drawn from two experimental groups, saline-exposed (n = 24) and unexposed (n = 24), and studied on P7, P8, P9, or P10. Pups in both groups were sedated (Inactin hydrate, 70 mg/kg), and fine-wire electrodes were inserted into the GG muscle of the tongue and intercostal muscles to record EMG activities during breathing in air and at three levels of normoxic hypercapnia [inspired CO2 fraction (FiCO2 ): 0.03, 0.06, and 0.09]. Using this approach, we assessed breathing frequency, heart rate, apnea type, respiratory event types, and respiratory stability. In experiment 2, 16 rat pups were drawn from the same experimental groups, saline-exposed (n = 9) and unexposed (n = 7), and used in motoneuron-labeling studies. In these pups a retrograde dye was injected into the GG muscle, and the brain stems were subsequently harvested and sliced. Labeled GG motoneurons were identified with microscopy, impaled, and filled with Lucifer yellow. Double-labeled motoneurons were reconstructed, and the number of primary projections and soma volumes were calculated. Whereas pups in each group exhibited the same number (P = 0.226) and duration (P = 0.093) of respiratory event types and comparable motoneuron morphologies, pups in the implant group exhibited more central apneas and respiratory instability relative to pups allowed to develop without interference. PMID:27402557

  6. [Preliminary study of colloid osmotic pressure for cardiopulmonary bypass].

    PubMed

    Wang, D; Xiang, L; Luo, J

    1996-12-01

    The ideal colloid osmotic pressure is beneficial to decrease the fluid accumulated in the pulmonary and other tissue during cardiopulmonary bypass. Schupbach reported the proper colloidosmotic pressure for cardiopulmonary bypass was 2.1 kPa (16 mmHg). Colloid osmotic pressures of blood and priming fluid during cardiopulmonary bypass were measured in 28 patients with heart disease by using colloid osmotic pressure detection apparatus. The value of colloid osmotic pressure suitable for the designed standard was apparently different among the Gelofusine group and other groups. P value was 0.005. Priming fluid for cardiopulmonary bypass needs to satisfy the quality and the quantity of colloid osmotic pressure. Using Albumin isn't economical. Whole blood and plazma are not suitable for increasing colloid osmotic pressure. Hydroxyethyl starch or Gelofusine is best choice in priming to get designed standard of colloid osmotic pressure. The ratio of hydroxyethyl starch or Gelofusine in priming fluid should beyond 1/2. PMID:9590779

  7. Filtration method for studies of the kinetics of hypo-osmotic pore closure in erythrocyte.

    PubMed

    Shurkhina, E S; Nesterenko, V M; Tsvetaeva, N V; Kolodey, S V; Nikulina, O F

    2010-11-01

    Filterability of erythrocytes through small (3 μ) pores decreases with decreasing osmolarity of suspension medium because of hypo-osmotic swelling of cells. After appearance of lytic pores, erythrocyte filterability increases for some time, while after recovery of membrane integrity it decreases again. We suggest filtration method for studies of the kinetics of hypo-osmotic lytic pores closure. The dynamics of changes in erythrocyte filterability was studied in 2 patients with paroxysmal nocturnal hemoglobinuria and 6 donors (Ht 0.01%, Na phosphate buffer 5 mM, pH 7.4, 35 mOsm, 24°C). The method can be used for studies of erythrocyte membrane characteristics in various diseases and for evaluation of the membranotropic effects of drugs, infusion media, hemolysins, ethanol, etc. PMID:21165443

  8. Synchrotron X-ray Diffraction Study of Neurofilament Networks Interaction under Osmotic Pressure

    NASA Astrophysics Data System (ADS)

    Beck, R.; Deek, J.; Jones, J. B.; Hesse, H.; Choi, M. C.; Safinya, C. R.

    2008-03-01

    Neurofilaments (NFs) are cytoskeletal proteins, which are found abundantly in nerve cell axons and impart mechanical stability and act as structural scaffolds for microtubules. The filaments assemble from 3 different subunit proteins to form a 10 nm diameter flexible polymers with radiating unstructured sidearms. At high protein concentration, the NFs form a nematic hydrogel network with a well-defined interfilament spacing as measured by synchrotron small angle x-ray scattering (SAXS) [1]. Here, NFs purified from bovine spinal cord are reassembled in vitro. Using analogous SAXS-osmotic pressure techniques [2] we study forces between NFs and directly probe the polyampholyte brush interactions between NF sidearms. We measure the interfilament spacing at different osmotic pressure, salt and sidearm concentrations. The study reveals the non-trivial electrostatic nature of the interfilament interaction within the NF hydrogel. [1] J. Jones, C.R. Safinya (submitted) [2] D. J. Needleman et al., PRL 93, 198104 (2004)

  9. Fabrication and study of AC electro-osmotic micropumps

    NASA Astrophysics Data System (ADS)

    Guo, Xin

    In this thesis, microelectrode arrays of micropumps have been designed, fabricated and characterized for transporting microfluid by AC electro-osmosis (ACEO). In particular, the 3D stepped electrode design which shows superior performance to others in literature is adopted for making micropumps, and the performance of such devices has been studied and explored. A novel fabrication process has also been developed in the work, realizing 3D stepped electrodes on a flexible substrate, which is suitable for biomedical use, for example glaucoma implant. There are three major contributions to ACEO pumping in the work. First, a novel design of 3D "T-shaped" discrete electrode arrays was made using PolyMUMPsRTM process. The breakthrough of this work was discretizing the continuous 3D stepped electrodes which were commonly seen in the past research. The "T-shaped" electrodes did not only create ACEO flows on the top surfaces of electrodes but also along the side walls between separated electrodes. Secondly, four 3D stepped electrode arrays were designed, fabricated and tested. It was found from the experiment that PolyMUMPsRTM ACEO electrodes usually required a higher driving voltage than gold electrodes for operation. It was also noticed that a simulation based on the modified model taking into account the surface oxide of electrodes showed a better agreement with the experimental results. It thus demonstrated the possibility that the surface oxide of electrodes had impact on fluidic pumping. This methodology could also be applied to metal electrodes with a native oxide layer such as titanium and aluminum. Thirdly, a prototype of the ACEO pump with 3D stepped electrode arrays was first time realized on a flexible substrate using Kapton polyimide sheets and packaged with PDMS encapsulants. Comprehensive experimental testing was also conducted to evaluate the mechanical properties as well as the pumping performance. The experimental findings indicated that this fabrication

  10. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Rezaei, M.; Azimian, A. R.; Semiromi, D. Toghraie

    2015-05-01

    The electro-osmotic flow of an aqueous solution of NaCl between two parallel silicon walls is studied through a molecular dynamics simulation. The objective here is to examine the dependency of the electro-osmotic flow on the surface charge density by considering the changes made in the structural properties of the electric double layer (EDL). The ion concentration, velocity profiles, and electric charge density of the electrolyte solution are investigated. Due to the partially charged atoms of the water molecules, water concentration is of a layered type near the wall. The obtained profiles revealed that an increase in the surface charge density, at low surface charges where the governing electrostatic coupling regime is Debye-Hückel, increases both the electro-osmotic velocity and the EDL thickness; whereas, a decreasing trend is observed in these two parameters in the intermediate regime. For high values of surface charge density, due to the charge inversion phenomenon, the reversed electro-osmotic flow will be generated in the channel. Results indicate that the absolute value of the reversed electro-osmotic velocity rises with an increase in the surface charge density.

  11. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells

    PubMed Central

    Shu, Zhiquan; Hughes, Sean M.; Fang, Cifeng; Huang, Jinghua; Fu, Baiwen; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong

    2016-01-01

    Cryopreservation of specimens taken from the genital tract of women is important for studying mucosal immunity during HIV prevention trials. However, it is unclear whether the current, empirically developed cryopreservation procedures for peripheral blood cells are also ideal for genital specimens. The optimal cryopreservation protocol depends on the cryobiological features of the cells. Thus, we obtained tissue specimens from vaginal repair surgeries, isolated and flow cytometry-purified immune cells, and determined fundamental cryobiological characteristics of vaginal CD3+ T cells and CD14+ macrophages using a microfluidic device. The osmotically inactive volumes of the two cell types (Vb) were determined relative to the initial cell volume (V0) by exposing the cells to hypotonic and hypertonic saline solutions, evaluating the equilibrium volume, and applying the Boyle van't Hoff relationship. The cell membrane permeability to water (Lp) and to four different cryoprotective agent (CPA) solutions (Ps) at room temperature were also measured. Results indicated Vb values of 0.516 V0 and 0.457 V0 for mucosal T cells and macrophages, respectively. Lp values at room temperature were 0.196 and 0.295 μm/min/atm for T cells and macrophages, respectively. Both cell types had high Ps values for the three CPAs, dimethyl sulfoxide (DMSO), propylene glycol (PG) and ethylene glycol (EG) (minimum of 0.418 × 10−3 cm/min), but transport of the fourth CPA, glycerol, occurred 50–150 times more slowly. Thus, DMSO, PG, and EG are better options than glycerol in avoiding severe cell volume excursion and osmotic injury during CPA addition and removal for cryopreservation of human vaginal immune cells. PMID:26976225

  12. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells.

    PubMed

    Shu, Zhiquan; Hughes, Sean M; Fang, Cifeng; Huang, Jinghua; Fu, Baiwen; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong

    2016-04-01

    Cryopreservation of specimens taken from the genital tract of women is important for studying mucosal immunity during HIV prevention trials. However, it is unclear whether the current, empirically developed cryopreservation procedures for peripheral blood cells are also ideal for genital specimens. The optimal cryopreservation protocol depends on the cryobiological features of the cells. Thus, we obtained tissue specimens from vaginal repair surgeries, isolated and flow cytometry-purified immune cells, and determined fundamental cryobiological characteristics of vaginal CD3(+) T cells and CD14(+) macrophages using a microfluidic device. The osmotically inactive volumes of the two cell types (Vb) were determined relative to the initial cell volume (V0) by exposing the cells to hypotonic and hypertonic saline solutions, evaluating the equilibrium volume, and applying the Boyle van't Hoff relationship. The cell membrane permeability to water (Lp) and to four different cryoprotective agent (CPA) solutions (Ps) at room temperature were also measured. Results indicated Vb values of 0.516 V0 and 0.457 V0 for mucosal T cells and macrophages, respectively. Lp values at room temperature were 0.196 and 0.295 μm/min/atm for T cells and macrophages, respectively. Both cell types had high Ps values for the three CPAs, dimethyl sulfoxide (DMSO), propylene glycol (PG) and ethylene glycol (EG) (minimum of 0.418 × 10(-3) cm/min), but transport of the fourth CPA, glycerol, occurred 50-150 times more slowly. Thus, DMSO, PG, and EG are better options than glycerol in avoiding severe cell volume excursion and osmotic injury during CPA addition and removal for cryopreservation of human vaginal immune cells. PMID:26976225

  13. Role of Osmotic Adjustment in Plant Productivity

    SciTech Connect

    Gebre, G.M.

    2001-01-11

    Successful implementation of short rotation woody crops requires that the selected species and clones be productive, drought tolerant, and pest resistant. Since water is one of the major limiting factors in poplar (Populus sp.) growth, there is little debate for the need of drought tolerant clones, except on the wettest of sites (e.g., lower Columbia River delta). Whether drought tolerance is compatible with productivity remains a debatable issue. Among the many mechanisms of drought tolerance, dehydration postponement involves the maintenance of high leaf water potential due to, for example, an adequate root system. This trait is compatible with productivity, but requires available soil moisture. When the plant leaf water potential and soil water content decline, the plant must be able to survive drought through dehydration tolerance mechanisms, such as low osmotic potential or osmotic adjustment. Osmotic adjustment and low osmotic potential are considered compatible with growth and yield because they aid in the maintenance of leaf turgor. However, it has been shown that turgor alone does not regulate cell expansion or stomatal conductance and, therefore, the role of osmotic adjustment is debated. Despite this finding, osmotic adjustment has been correlated with grain yield in agronomic crop species, and gene markers responsible for osmotic adjustment are being investigated to improve drought tolerance in productive progenies. Although osmotic adjustment and low osmotic potentials have been investigated in several forest tree species, few studies have investigated the relationship between osmotic adjustment and growth. Most of these studies have been limited to greenhouse or container-grown plants. Osmotic adjustment and rapid growth have been specifically associated in Populus and black spruce (Picea mariuna (Mill.) B.S.P.) progenies. We tested whether these relationships held under field conditions using several poplar clones. In a study of two hybrid poplar

  14. Osmotic buckling of spherical capsules.

    PubMed

    Knoche, Sebastian; Kierfeld, Jan

    2014-11-01

    We study the buckling of elastic spherical shells under osmotic pressure with the osmolyte concentration of the exterior solution as a control parameter. We compare our results for the bifurcation behavior with results for buckling under mechanical pressure control, that is, with an empty capsule interior. We find striking differences for the buckling states between osmotic and mechanical buckling. Mechanical pressure control always leads to fully collapsed states with opposite sides in contact, whereas uncollapsed states with a single finite dimple are generic for osmotic pressure control. For sufficiently large interior osmolyte concentrations, osmotic pressure control is qualitatively similar to buckling under volume control with the volume prescribed by the osmolyte concentrations inside and outside the shell. We present a quantitative theory which also captures the influence of shell elasticity on the relationship between osmotic pressure and volume. These findings are relevant for the control of buckled shapes in applications. We show how the osmolyte concentration can be used to control the volume of buckled shells. An accurate analytical formula is derived for the relationship between the osmotic pressure, the elastic moduli and the volume of buckled capsules. This also allows use of elastic capsules as osmotic pressure sensors or deduction of elastic properties and the internal osmolyte concentration from shape changes in response to osmotic pressure changes. We apply our findings to published experimental data on polyelectrolyte capsules. PMID:25209240

  15. Powering an Implantable Minipump with a Multi-layered Printed Circuit Coil for Drug Infusion Applications in Rodents

    PubMed Central

    Givrad, Tina K.; Maarek, Jean-Michel I.; Moore, William H.; Holschneider, Daniel P.

    2014-01-01

    We report the use of a multi-layer printed coil circuit for powering (36–94 mW) an implantable microbolus infusion pump (MIP) that can be activated remotely for use in drug infusion in nontethered, freely moving small animals. This implantable device provides a unique experimental tool with applications in the fields of animal behavior, pharmacology, physiology, and functional brain imaging. Two different designs are described: a battery-less pump usable when the animal is inside a home-cage surrounded by a primary inductive coil and a pump powered by a rechargeable battery that can be used for studies outside the homecage. The use of printed coils for powering of small devices by inductive power transfer presents significant advantages over similar approaches using hand-wound coils in terms of ease of manufacturing and uniformity of design. The high efficiency of a class-E oscillator allowed powering of the minipumps without the need for close physical contact of the primary and secondary coils, as is currently the case for most devices powered by inductive power transfer. PMID:20033778

  16. Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.

    PubMed

    Alizadeh, A; Wang, J K; Pooyan, S; Mirbozorgi, S A; Wang, M

    2013-10-01

    In this paper, the effect of temperature difference between inlet flow and walls on the electro-osmotic flow through a two-dimensional microchannel is investigated. The main objective is to study the effect of temperature variations on the distribution of ions and consequently internal electric potential field, electric body force, and velocity fields in an electro-osmotic flow. We assume constant temperature and zeta potential on walls and use the mean temperature of each cross section to characterize the Boltzmann ion distribution across the channel. Based on these assumptions, the multiphysical transports are still able to be described by the classical Poisson-Boltzmann model. In this work, the Navier-Stokes equation for fluid flow, the Poisson-Boltzmann equation for ion distribution, and the energy equation for heat transfer are solved by a couple lattice Boltzmann method. The modeling results indicate that the temperature difference between walls and the inlet solution may lead to two symmetrical vortices at the entrance region of the microchannel which is appropriate for mixing enhancements. The advantage of this phenomenon for active control of mixing in electro-osmotic flow is the manageability of the vortex scale without extra efforts. For instance, the effective domain of this pattern could broaden by the following modulations: decreasing the external electric potential field, decreasing the electric double layer thickness, or increasing the temperature difference between inlet flow and walls. This work may provide a novel strategy for design or optimization of microsystems. PMID:23859813

  17. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function.

    PubMed

    Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J

    2012-06-01

    This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; P<0.001; n=50) between the area of relaxed chromatin in the nucleus and the degree of nucleotide labelling. While the chromatin of some spermatozoa increased more than eight times its normal size, not all sperm nuclei with relaxed chromatin showed evidence of nucleotide incorporation. Preferential staining associated with sperm DNA fragmentation (SDF) was typically located in the peri-acrosomal and peripheral regions of the sperm head and at the base of the spermatozoa where it appear to be 'hot spots' of DNA damage following cryopreservation. Results of the comparative effects of anisotonic media and cryopreservation on the integrity of koala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; P<0.05; n=5); however, no correlation was found when the percentage of sperm with relaxed chromatin was compared. While a cryo-induced osmotic

  18. Equation of State and Structure of Electrostatic Colloidal Crystals: Osmotic Pressure and Scattering Study

    NASA Astrophysics Data System (ADS)

    Reus, V.; Belloni, L.; Zemb, T.; Lutterbach, N.; Versmold, H.

    1997-04-01

    Electrostatically stabilized aqueous suspensions of bromopolystyrene particles have been studied by scattering and osmotic pressure measurements. We investigated their structure and the interparticle interactions as a function of the volume fraction at very low salinity of the order of micromole/l. At slow crystallization speed we observe perfect crystals, body centrered cubic crystals by light scattering for volume fractions between 0.04 and 0.7% and face centrered cubic crystals by Ultra Small Angle X ray Scattering (USAXS) for higher volume fractions (2 12%). After shear the crystal displays other structures. At low volume fractions (0.1 0.3%), some reflexions disappear by light scattering whereas a strong diffuse “prepeak" appears before the first Bragg peak for higher concentrations (2 12%) evidenced by USAXS. This “prepeak" can be attributed to defects in the crystal. Osmotic pressures have been measured by difference between the hydrostatic pressure in the solution and in the reservoir separated by an hemipermeable membrane. The experimental data are very well reproduced by the Poisson Boltzmann Cell (PBC) theory which shows that the interaction between particles is purely repulsive. No attractive contribution has been experimentally detected. By calculating the mean square displacement of a particle inside its cage from the eccentric PBC model, we have verified that the Lindemann criterion for the existence of crystals (against melting) is satisfied. This study has allowed to determine the equation of state of an electrostatical colloidal crystal and is equivalent to an ultraprecise force/distance measurement between latex particles since the measured forces are of the order of 10^{-12} N for distances of the order of 4000 Å. Des suspensions aqueuses de particules de bromopolystyrène ont été caractérisées par diffusion de lumière, diffusion de rayons X aux petits angles et par des mesures de pression osmotique. Nous avons ainsi étudié leur

  19. A New Role for Carbonic Anhydrase 2 in the Response of Fish to Copper and Osmotic Stress: Implications for Multi-Stressor Studies

    PubMed Central

    de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.

    2014-01-01

    The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015

  20. Study of three-dimensional electro-osmotic flow with curved boundary via lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Zhang, X. B.; Li, Q.; Jiang, X. S.; Zhou, H. P.

    2016-01-01

    A three-dimensional (3D) lattice Boltzmann model and boundary method is developed to simulate electro-osmotic flow (EOF) with a charged spherical particle immersed in an electrolyte solution. The general governing equations for electro-osmotic transport are Navier-Stokes equations for fluid flow and the Poisson-Boltzmann equation for electric potential distribution around the particle. Two sets of D3Q19 lattice structure with curved boundary conditions are implemented. The simulation results are compared with analytical predictions and are found to be in excellent agreement. The potential distribution appears circularly symmetric and the flow velocity decreases with the cross-sectional area for flow passage increasing due to the mass conservation. The effects of the ionic concentration, the sphere radius, electric potential and external electric field on the velocity profiles are investigated. The flow velocity increases with both the electric potential and the external electric field. However, the variation in flow velocity with the ionic concentration and the sphere radius is complex due to the change in electrical double layer (EDL) thickness.

  1. The Osmotic Pump

    ERIC Educational Resources Information Center

    Levenspiel, Octave; de Nevers, Noel

    1974-01-01

    Describes the principle involved in an osmotic pump used to extract fresh water from the oceans and in an osmotic power plant used to generate electricity. Although shown to be thermodynamically feasible, the osmotic principle is not likely to be used commerically for these purposes in the near future. (JR)

  2. Osmotic stress signaling via protein kinases.

    PubMed

    Fujii, Hiroaki; Zhu, Jian-Kang

    2012-10-01

    Plants face various kinds of environmental stresses, including drought, salinity, and low temperature, which cause osmotic stress. An understanding of the plant signaling pathways that respond to osmotic stress is important for both basic biology and agriculture. In this review, we summarize recent investigations concerning the SNF1-related protein kinase (SnRK) 2 kinase family, which play central roles in osmotic stress responses. SnRK2s are activated by osmotic stress, and a mutant lacking SnRK2s is hypersensitive to osmotic stress. Many questions remain about the signaling pathway upstream and downstream of SnRK2s. Because some SnRK2s also functions in the abscisic acid (ABA) signaling pathway, which has recently been well clarified, study of SnRK2s in ABA signaling can provide clues regarding their roles in osmotic stress signaling. PMID:22828864

  3. Superselective intraarterial cerebral infusion of cetuximab after osmotic blood/brain barrier disruption for recurrent malignant glioma: phase I study.

    PubMed

    Chakraborty, Shamik; Filippi, Christopher G; Wong, Tamika; Ray, Ashley; Fralin, Sherese; Tsiouris, A John; Praminick, Bidyut; Demopoulos, Alexis; McCrea, Heather J; Bodhinayake, Imithri; Ortiz, Rafael; Langer, David J; Boockvar, John A

    2016-07-01

    Objective To establish a maximum tolerated dose of superselective intraarterial cerebral infusion (SIACI) of Cetuximab after osmotic disruption of the blood-brain barrier (BBB) with mannitol, and examine safety of the procedure in patients with recurrent malignant glioma. Methods A total of 15 patients with recurrent malignant glioma were included in the current study. The starting dose of Cetuximab was 100 mg/m(2) and dose escalation was done to 250 mg/m(2). All patients were observed for 28 days post-infusion for any side effects. Results There was no dose-limiting toxicity from a single dose of SIACI of Cetuximab up to 250 mg/m(2) after osmotic BBB disruption with mannitol. A tolerable rash was seen in 2 patients, anaphylaxis in 1 patient, isolated seizure in 1 patient, and seizure and cerebral edema in 1 patient. Discussion SIACI of mannitol followed by Cetuximab (up to 250 mg/m(2)) for recurrent malignant glioma is safe and well tolerated. A Phase I/II trial is currently underway to determine the efficacy of SIACI of cetuximab in patients with high-grade glioma. PMID:26945581

  4. [Osmotic dehydration of apple (Grany Smith) with different osmotic solutions].

    PubMed

    Mercado-Silva, E; Vidal-Brotons, D

    1994-06-01

    The process of osmotic dehydration in apple rings at 40 degrees, 50 degrees and 60 degrees C in two osmotic agents were studied. The agents were similar in concentration, water activity and viscosity but differed in composition. The weight loss, water content, solids uptake and Brix showed differences in the medius studied. In syrup corn medium, the weight loss was higher and the solids uptake was lower than syrup sucrose. The polysacharides from the syrup corn lowered solutes uptake and the water out was facilited. PMID:7733790

  5. Further studies on osmotic resistance of nucleated erythrocytes: observations with pigeon, peafowl, lizard and toad erythrocytes during changes in temperature and pH.

    PubMed

    Oyewale, J O

    1994-02-01

    The osmotic resistance of pigeon, peafowl, lizard and toad erythrocytes at different temperatures and pH was studied. Erythrocytes from female pigeons showed greater osmotic resistance than those from males, but no sex difference appeared with erythrocytes from peafowls. Pigeon erythrocytes were more resistant and the red blood cell, packed cell volume and haemoglobin values were higher than those in peafowls. Although no significant differences appeared in their haematological values, erythrocytes from the lizard were more resistant than erythrocytes from the toad. At higher temperature, the osmotic resistance of pigeon, lizard and toad erythrocytes increased, while that of peafowl erythrocytes decreased. The resistance of toad erythrocytes decreased in acidic and alkaline solutions, but that of peafowl erythrocytes increased in both solutions. However, with pigeon and lizard erythrocytes, the resistance was unaltered in alkaline solution and decreased in acidic solution. PMID:8085400

  6. Osmotical liquid diffusion within sclera

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Genina, Elina A.; Kochubey, Vyacheslav I.; Lakodina, Nina A.; Tuchin, Valery V.

    2000-06-01

    We present experimental results of investigation of the optical properties of the human eye sclera controlled by administration of osmotically active chemical, such as glucose solution with various concentrations. Administration of chemical agent induces diffusion of matter and as a result equalization of the refractive indices of collagen and ground material. Results of experimental study of influence of osmotical liquid (glucose solution) on reflectance and transmittance spectra of human sclera are presented. In vitro reflectance and transmittance spectra of the human sclera samples were investigated by commercially available spectrophotometer CARY-2415. The significant increasing of the transmittance and decreasing of the reflectance of human sclera samples under action of osmotical solutions were demonstrated. Results of our study show that the degree of the sclera samples clearing is increased with increasing of the chemical agent concentration in solution. The diffusion coefficients of glucose solution with various concentrations within scleral tissue was estimated.

  7. Monocarboxylate Transporter Inhibition with Osmotic Diuresis Increases γ-Hydroxybutyrate Renal Elimination in Humans: A Proof-of-Concept Study

    PubMed Central

    Morris, Marilyn E.; Morse, Bridget L.; Baciewicz, Gloria J.; Tessena, Matthew M.; Acquisto, Nicole M.; Hutchinson, David J.; DiCenzo, Robert

    2012-01-01

    Background and objective The purpose of the current study was to demonstrate proof-of-concept that monocarboxylate transporter (MCT) inhibition with L-lactate combined with osmotic diuresis increases renal clearance of γ-hydroxybutyrate (GHB) in human subjects. GHB is a substrate for human and rodent MCTs, which are responsible for GHB renal reabsorption, and this therapy increases GHB renal clearance in rats. Methods Ten healthy volunteers were administered GHB orally as sodium oxybate 50 mg/kg (4.5 gm maximum dose) on two different study days. On study day 1, GHB was administered alone. On study day 2, treatment of L-lactate 0.125 mmol/kg and mannitol 200 mg/kg followed by L-lactate 0.75 mmol/kg/hr was administered intravenously 30 minutes after GHB ingestion. Blood and urine were collected for 6 hours, analyzed for GHB, and pharmacokinetic and statistical analyses performed. Results L-lactate/mannitol administration significantly increased GHB renal clearance compared to GHB alone, 439 vs. 615 mL/hr (P=0.001), and increased the percentage of GHB dose excreted in the urine, 2.2 vs. 3.3% (P=0.021). Total clearance was unchanged. Conclusions MCT inhibition with L-lactate combined with osmotic diuresis increases GHB renal elimination in humans. No effect on total clearance was observed in this study due to the negligible contribution of renal clearance to total clearance at this low GHB dose. Considering the nonlinear renal elimination of GHB, further research in overdose cases is warranted to assess the efficacy of this treatment strategy for increasing renal and total clearance at high GHB doses. PMID:24772380

  8. Saltstone Osmotic Pressure

    SciTech Connect

    Nichols, Ralph L.; Dixon, Kenneth L.

    2013-09-23

    Recent research into the moisture retention properties of saltstone suggest that osmotic pressure may play a potentially significant role in contaminant transport (Dixon et al., 2009 and Dixon, 2011). The Savannah River Remediation Closure and Disposal Assessments Group requested the Savannah River National Laboratory (SRNL) to conduct a literature search on osmotic potential as it relates to contaminant transport and to develop a conceptual model of saltstone that incorporates osmotic potential. This report presents the findings of the literature review and presents a conceptual model for saltstone that incorporates osmotic potential. The task was requested through Task Technical Request HLW-SSF-TTR- 2013-0004.

  9. Freeze-fracture electron microscopic and osmotic water permeability studies of epidermal lipid liposomes derived from stratum corneum lipids of porcine epidermis.

    PubMed

    Mandal, T K; Downing, D T

    1993-02-01

    Freeze-fracture electron microscopic studies revealed that the liposomal membrane morphology was intact before and after osmotic treatment. This finding suggested that water leakage from the liposomes was not due to fusion of two or more lipid vesicles, but rather to the osmotic salt effect. A stop-flow spectrophotometric study revealed that epidermal lipid liposomes derived from stratum corneum lipids of porcine skin underwent increases of the absorbances with decreases of volume of the vesicles. The initial rate at which the changes in optical density occurs is a measure of the water permeability through the liposomes. The reciprocal of the changes in the absorbance at the equilibrium at different salt osmotic shocks showed a linear dependence on the reciprocal of the osmotic pressure gradient, indicating that epidermal lipid liposomes are an ideal osmometer. The present investigation reports that lignoceric acid is a potent water barrier. Present findings suggest that the initial rate of water penetration decreased in the liposomes made from 30-45% (wt% ratio) of cholesterol and ceramides. Oleic acid as drug penetration enhancer facilitated the water diffusion of the stratum corneum lipid liposomes by a fluidizing effect on the liposomal membranes. Furthermore, ceramides are important in the water barrier properties of the skin. The permeability of water depends upon the amount (wt%) and the type of lipid of the membrane. PMID:8095743

  10. Diagonal two-dimensional electrophoresis (D-2DE): a new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.).

    PubMed

    Kacem, N S; Mauro, S; Muhovski, Y; Delporte, F; Renaut, J; Djekoun, A; Watillon, B

    2016-09-01

    Acclimatization to stress is associated with profound changes in proteome composition. The use of plant cell and tissue culture offers a means to investigate the physiological and biochemical processes involved in the adaptation to osmotic stress. We employed a new proteomic approach to further understand the response of calli to dehydration induced by polyethylene glycol (PEG6000). Calli of three durum wheat genotypes Djenah Khetifa, Oued Zenati and Waha were treated with two concentrations of polyethylene glycol to mimic osmotic stress. Changes in protein relative abundance were analyzed using a new electrophoretic approach named diagonal two-dimensional electrophoresis (D-2DE), combined with mass spectrometry. Total proteins were extracted from 30-day-old calli from three durum wheat genotypes that showed contrasting levels of drought stress tolerance in the field. The combination of one-dimensional electrophoresis and D-2DE gave a specific imprint of the protein extracts under osmotic stress, as well as characterizing and identifying individual target proteins. Of the variously expressed proteins, three were selected (globulin, GAPDH and peroxidase) and further analyzed using qRT-PCR at the transcriptome level in order to compare the results with the proteomic data. Western blot analysis was used to further validate the differences in relative abundance pattern. The proteins identified through this technique provide new insights as to how calli respond to osmotic stress. Our method of study provides an original and relevant approach of analyzing the osmotic-responsive mechanisms at the cellular level of durum wheat with agronomic perspectives. PMID:27317377

  11. A systematic review of studies performing the hypo-osmotic swelling test to evaluate the quality of canine spermatozoa.

    PubMed

    Karger, S; Arlt, S; Haimerl, P; Heuwieser, W

    2014-02-01

    The hypo-osmotic swelling test (HOS test) is a simple and inexpensive test to evaluate the functional integrity of sperm cell membranes. According to the existing literature, its simple applicability has turned it into a valuable additional parameter to standard canine semen analysis. In the recent years, much research has been conducted in this field. The aim of this systematic review was to evaluate the quality of published literature in canine reproduction concerning the HOS test. Using two distinguished databases, 38 articles were detected and analysed subsequently according to various aspects, for example study design, population, semen sampling and implementation concerning the HOS test. Although there are numerous articles available, the diagnostic value of the HOS test remains ambiguous. Until now, neither a recognized test protocol nor reliable reference values have been defined. Most of the trials evaluated show serious methodological flaws and therefore do not permit drawing reliable conclusions. According to our results, approximately half of the studies (n = 20) included a sample size of five or less animals. None of the studies examined the inter- or intraobserver agreement for the HOS test. Further research is warranted including appropriate statistical methods and a sufficient number of animals to establish a standardized test protocol as well as reliable reference values. Most importantly, it is required to clarify a correlation between the HOS test and the fertilizing capacity to determine the diagnostic value of the HOS test. PMID:23931704

  12. FOST 2 Upgrade with Hollow-Fiber CTA FO Module and Generation of Osmotic Agent for Microorganism Growth Studies

    NASA Technical Reports Server (NTRS)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Shaw, Hali; Beeler, David

    2016-01-01

    FOST 2 is an integrated membrane system that incorporates a forward osmosis subsystem and a reverse osmosis subsystem working in series. It has been designed as a post treatment system to process the effluent from the Membrane Aerated Biological Reactor developed at NASA Johnson Space Center and Texas Tech University. Its function is to remove dissolved solids residual such as ammonia and suspended solids, as well as to provide a physical barrier to microbial and viral contamination. A tubular CTA membrane module from HTI and a flat-sheet lipid-base membrane module from Porifera were integrated and tested on FOST 2 in the past, using both a bioreactor's effluent and greywater as the feed solution. This paper documents the performance of FOST 2 after its upgrade with a hollow-fiber CTA membrane module from Toyobo, treating real black-water to generate the osmotic agent solution necessary to conduct growth studies of genetically engineered microorganism for the Synthetic Biological Membrane project.

  13. Nonlinear osmotic properties of the cell nucleus

    PubMed Central

    Finan, John D.; Chalut, Kevin J.; Wax, Adam; Guilak, Farshid

    2009-01-01

    Summary In the absence of active volume regulation processes, cell volume is inversely proportional to osmolarity, as predicted by the Boyle Van’t Hoff relation. In this study, we tested the hypothesis that nuclear volume has a similar relationship with extracellular osmolarity in articular chondrocytes, cells that are exposed to changes in the osmotic environment in vivo, and furthermore, we explored the mechanism of the relationships between osmolarity and nuclear size and shape. Nuclear size was quantified using two independent techniques, confocal laser scanning microscopy and angle-resolved low coherence interferometry. Nuclear volume was osmotically-sensitive but this relationship was not linear, showing a decline in the osmotic sensitivity in the hypo-osmotic range. Nuclear shape was also influenced by extracellular osmolarity, becoming smoother as the osmolarity decreased. The osmotically-induced changes in nuclear size paralleled the changes in nuclear shape, suggesting that shape and volume are interdependent. The osmotic sensitivity of shape and volume persisted after disruption of the actin cytoskeleton. Isolated nuclei contracted in response to physiologic changes in macromolecule concentration but not in response to physiologic changes in ion concentration, suggesting solute size has an important influence on the osmotic pressurization of the nucleus. This finding in turn implies that the diffusion barrier that causes osmotic effects is not a semi-permeable membrane, but rather due to size constraints that prevent large solute molecules from entering small spaces in the nucleus. As nuclear morphology has been associated previously with cell phenotype, these findings may provide new insight into the role of mechanical and osmotic signals in regulating cell physiology. PMID:19107599

  14. Auxin response under osmotic stress.

    PubMed

    Naser, Victoria; Shani, Eilon

    2016-08-01

    The phytohormone auxin (indole-3-acetic acid, IAA) is a small organic molecule that coordinates many of the key processes in plant development and adaptive growth. Plants regulate the auxin response pathways at multiple levels including biosynthesis, metabolism, transport and perception. One of the most striking aspects of plant plasticity is the modulation of development in response to changing growth environments. In this review, we explore recent findings correlating auxin response-dependent growth and development with osmotic stresses. Studies of water deficit, dehydration, salt, and other osmotic stresses point towards direct and indirect molecular perturbations in the auxin pathway. Osmotic stress stimuli modulate auxin responses by affecting auxin biosynthesis (YUC, TAA1), transport (PIN), perception (TIR/AFB, Aux/IAA), and inactivation/conjugation (GH3, miR167, IAR3) to coordinate growth and patterning. In turn, stress-modulated auxin gradients drive physiological and developmental mechanisms such as stomata aperture, aquaporin and lateral root positioning. We conclude by arguing that auxin-mediated growth inhibition under abiotic stress conditions is one of the developmental and physiological strategies to acclimate to the changing environment. PMID:27052306

  15. Advanced Life Support Water Recycling Technologies Case Studies: Vapor Phase Catalytic Ammonia Removal and Direct Osmotic Concentration

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.

  16. Osmotic micropumps for drug delivery.

    PubMed

    Herrlich, Simon; Spieth, Sven; Messner, Stephan; Zengerle, Roland

    2012-11-01

    This paper reviews miniaturized drug delivery systems applying osmotic principles for pumping. Osmotic micropumps require no electrical energy and consequently enable drug delivery systems of smallest size for a broad field of new applications. In contrast to common tablets, these pumps provide constant (zero-order) drug release rates. This facilitates systems for long term use not limited by gastrointestinal transit time and first-pass metabolism. The review focuses on parenteral routes of administration targeting drug delivery either in a site-specific or systemic way. Osmotic pumps consist of three building blocks: osmotic agent, solvent, and drug. This is used to categorize pumps into (i) single compartment systems using water from body fluids as solvent and the drug itself as the osmotic agent, (ii) two compartment systems employing a separate osmotic agent, and (iii) multi-compartment architectures employing solvent, drug and osmotic agent separately. In parallel to the micropumps, relevant applications and therapies are discussed. PMID:22370615

  17. In vitro--in silico--in vivo drug absorption model development based on mechanistic gastrointestinal simulation and artificial neural networks: nifedipine osmotic release tablets case study.

    PubMed

    Ilić, Marija; Ðuriš, Jelena; Kovačević, Ivan; Ibrić, Svetlana; Parojčić, Jelena

    2014-10-01

    In vitro--in vivo correlations (IVIVC) are generally accepted as a valuable tool in modified release formulation development aimed at (i) quantifying the in vivo drug delivery profile and formulation related effects on absorption; (ii) establishing clinically relevant dissolution specifications and (iii) supporting the biowaiver claims. The aim of the present study was to develop relevant IVIVC models based on mechanistic gastrointestinal simulation (GIS) and artificial neural network (ANN) analysis and to evaluate their applicability and usefulness in biopharmaceutical drug characterisation. Nifedipine osmotic release tablets were selected as model drug product on the basis of their robustness, dissolution limited drug absorption and the availability of relevant literature data. Although the osmotic release tablets have been designed to be robust against the influence of physiological conditions in the gastrointestinal tract, notable differences in nifedipine dissolution kinetics were observed depending on the in vitro experimental conditions employed. The results obtained indicate that both GIS and ANN model developed were sensitive to input kinetics represented by the in vitro profiles obtained under various experimental conditions. Different in silico approaches may be successfully employed in the in vitro--in silico--in vivo model development. However, the results obtained may differ and relevant outcomes are sensitive to the methodology employed. PMID:24911992

  18. Osmotic stress alters chromatin condensation and nucleocytoplasmic transport

    SciTech Connect

    Finan, John D.; Leddy, Holly A.; Guilak, Farshid

    2011-05-06

    Highlights: {yields} The rate of nucleocytoplasmic transport increases under hyper-osmotic stress. {yields} The mechanism is a change in nuclear geometry, not a change in permeability of the nuclear envelope. {yields} Intracytoplasmic but not intranuclear diffusion is sensitive to osmotic stress. {yields} Pores in the chromatin of the nucleus enlarge under hyper-osmotic stress. -- Abstract: Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.

  19. Relationship between Water Content and Osmotic Potential of Lentinula edodes

    PubMed Central

    Cho, Sun-Young

    2008-01-01

    This study was conducted to understand how osmotic potentials in Lentinula edodes tissues are related to water contents and how they change while a mushroom matures. Water content and osmotic potential of L. edodes mushroom tissues from log cultivation and sawdust cultivation were measured and the relationships were analyzed. Osmotic potentials in the tissues were exponentially proportional to their moisture contents and there were strain differences in the potentials. Strain 290 has lower osmotic potential than strain 302, in the tissues at the same water content. As the mushrooms mature, tissue water content maintained ca 94% in head tissues and ca 90% in gills, but significantly decreased from ca 90% to 82% in the stipe tissues. Osmotic potential changes were similar to the tissue water content changes as the mushrooms mature. While osmotic potentials maintained -0.25 to -0.45 MPa in head and gill tissues, the potentials greatly decreased from -0.65 to -1.33MPa in stipe tissues. Our results show that osmotic potentials in L. edodes tissues are exponentially proportional to tissue water contents, that strains differ in osmotic potential related to water, and that stipe tissues can still have nutritional value when they mature. PMID:23997603

  20. Osmotic and motional properties of intracellular water as influenced by osmotic swelling and shrinkage of Xenopus oocytes.

    PubMed

    Cameron, I L; Merta, P; Fullerton, G D

    1990-03-01

    Experiments were done on fully grown Xenopus oocytes to determine the extent and the properties of cellular water of hydration. The studies involved the osmotic shrinking and swelling of the oocytes under known osmotic pressure as well as proton NMR spectral, titration, and free induction decay analyses. Studies were done both on whole oocytes and on subcellular fractions. The results show that little if any of the oocyte water in situ has the motional or osmotic properties expected of pure "bulk" water. Four distinct water of hydration compartments were found and defined on the basis of distinct hydrogen bounding mechanisms. Some of the water in yolk platelets was found not to be in fast exchange with other water compartments. Osmotic shrinkage of oocytes caused an adaptive decrease in the bound water of hydration compartments. This osmotically induced decrease is attributed to decreased surface area available for the hydrogen bounding of water molecules on cellular proteins. PMID:2312616

  1. Evolution of osmotic pressure in solid tumors

    PubMed Central

    Voutouri, Chysovalantis; Stylianopoulos, Triantafyllos

    2014-01-01

    The mechanical microenvironment of solid tumors includes both fluid and solid stresses. These stresses play a crucial role in cancer progression and treatment and have been analyzed rigorously both mathematically and experimentally. The magnitude and spatial distribution of osmotic pressures in tumors, however, cannot be measured experimentally and to our knowledge there is no mathematical model to calculate osmotic pressures in the tumor interstitial space. In this study, we developed a triphasic biomechanical model of tumor growth taking into account not only the solid and fluid phase of a tumor, but also the transport of cations and anions, as well as the fixed charges at the surface of the glycosaminoglycan chains. Our model predicts that the osmotic pressure is negligible compared to the interstitial fluid pressure for values of glycosaminoglycans (GAGs) taken from the literature for sarcomas, melanomas and adenocarcinomas. Furthermore, our results suggest that an increase in the hydraulic conductivity of the tumor, increases considerably the intratumoral concentration of free ions and thus, the osmotic pressure but it does not reach the levels of the interstitial fluid pressure. PMID:25287111

  2. Development and optimization of buspirone oral osmotic pump tablet.

    PubMed

    Derakhshandeh, K; Berenji, M Ghasemnejad

    2014-01-01

    The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794

  3. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    PubMed

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit. PMID:12834836

  4. Osmotic dehydration of fruits and vegetables: a review.

    PubMed

    Yadav, Ashok Kumar; Singh, Satya Vir

    2014-09-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents. PMID:25190823

  5. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration. PMID:9277520

  6. Solute concentration effect on osmotic reflection coefficient.

    PubMed Central

    Adamski, R P; Anderson, J L

    1983-01-01

    A theory for the effect of concentration on osmotic reflection coefficient, correct to first order, was developed at the molecular level by considering the effect of solute-solute interactions on solute concentration and the fluid stress tensor within a solvent-filled pore. The solvent was modeled as a continuous fluid and potential energies between solute molecules and the pore wall were assumed to be pairwise additive. Although the theory is more general, calculations are presented only for excluded volume effects (hard-sphere for solute, hard-wall for pore). The relationship between the first-order concentration effect and the infinite dilution value of reflection coefficient appears to be geometry independent. The theory is discussed in light of experimental studies of osmotic flow that have recently appeared in the literature. PMID:6626681

  7. Acetazolamide inhibits osmotic water permeability by interaction with aquaporin-1.

    PubMed

    Gao, Junwei; Wang, Xiaohua; Chang, Yongjie; Zhang, Jianzhao; Song, Qianliu; Yu, Heming; Li, Xuejun

    2006-03-15

    Water channel proteins, known as aquaporins, are transmembrane proteins that mediate osmotic water permeability. In a previous study, we found that acetazolamide could inhibit osmotic water transportation across Xenopus oocytes by blocking the function of aquaporin-1 (AQP1). The purpose of the current study was to confirm the effect of acetazolamide on water osmotic permeability using the human embryonic kidney 293 (HEK293) cells transfected with pEGFP/AQP1 and to investigate the interaction between acetazolamide and AQP1. The fluorescence intensity of HEK293 cells transfected with pEGFP/AQP1, which corresponds to the cell volume when the cells swell in a hyposmotic solution, was recorded under confocal laser fluorescence microscopy. The osmotic water permeability was assessed by the change in the ratio of cell fluorescence to certain cell area. Acetazolamide, at concentrations of 1 and 10muM, inhibited the osmotic water permeability in HEK293 cells transfected with pEGFP/AQP1. The direct binding between acetazolamide and AQP1 was detected by surface plasmon resonance. AQP1 was prepared from rat red blood cells and immobilized on a CM5 chip. The binding assay showed that acetazolamide could directly interact with AQP1. This study demonstrated that acetazolamide inhibited osmotic water permeability through interaction with AQP1. PMID:16480680

  8. Phospholipid-cholesterol bilayers under osmotic stress.

    PubMed Central

    Sparr, Emma; Hallin, Linda; Markova, Natalia; Wennerström, Håkan

    2002-01-01

    Isothermal (27 degrees C) phase behavior of dimyristoyl phosphatidyl choline-cholesterol mixtures at various osmotic pressures and cholesterol contents was investigated by means of isothermal sorption microcalorimetry and (2)H-nuclear magnetic resonance. The calorimetric method allows for simultaneous measurement of the partial molar enthalpy and the chemical potential (the osmotic pressure) of water, thus providing an almost complete thermodynamic description of the sorption process. From the experimental results, the Pi(osm) - X(chol) and the ternary composition phase diagrams are constructed. We note that there are strong similarities between the Pi(osm) - X(chol) phase diagram and the previously reported T - X(chol) phase diagram at excess water. At high cholesterol contents a single liquid ordered (L(alpha)(o)) phase is present over the whole range of water contents, implying that this phase has a remarkable stability not only at decreasing temperature but also at increasing osmotic pressure. At low cholesterol contents, the microcalorimetric experiments confirm the extraordinary property of cholesterol not to cause any substantial melting point depression. One important conclusion in the present study is that the P(beta) phase can dissolve cholesterol more readily than the L(beta) phase and that the addition of cholesterol induces the P(beta) phase. Finally, the putative P(beta) - L(alpha)(o) periodic modulated structure is discussed. PMID:12324420

  9. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    PubMed

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products. PMID:21535673

  10. Osmotic therapy: fact and fiction.

    PubMed

    Diringer, Michael N; Zazulia, Allyson R

    2004-01-01

    This review examines the available data on the use of osmotic agents in patients with head injury and ischemic stroke, summarizes the physiological effects of osmotic agents, and presents the leading hypotheses regarding the mechanism by which they reduce ICP. Finally, it addresses the validity of the following commonly held beliefs: mannitol accumulates in injured brain; mannitol shrinks only normal brain and can increase midline shift; osmolality can be used to monitor mannitol administration; mannitol should be not be administered if osmolality is >320 mOsm; and hypertonic saline is equally effective as mannitol. PMID:16174920

  11. Photometric determination of phenomenological correlation between osmotic behavior and hemolysis of red blood cells.

    PubMed

    Yang, X S; Kamino, K

    1995-01-01

    The osmotic behavior of red blood cells from a human and from several other mammalian species was studied by photometric measurements. When red blood cells were suspended in sodium chloride solutions with various osmotic concentrations, the optical density at 620 nm was reciprocally related to the relative volume of the red cells. Thus, we evaluated the osmotic volume changes in the red cells from optical density measurements. The Boyle-van't Hoff relation was applicable to the osmotic behavior of red cells which responded as a complete osmometer in hypertonic and slightly hypotonic (lower than about 240 mOsm) solutions. Also, we examined the rheological correlation between osmotic volume changes and hemolysis. Osmotic hemolysis occurred corresponding to breakdown of the Boyle-van't Hoff relation in hypotonic solutions. The critical osmotic concentration for the breakdown of the Boyle-van't Hoff relation was that for osmotic hemolysis. In Na2SO4 solutions, although the critical osmotic concentration shifted towards a smaller value, the critical volume for the breakdown of the Boyle-van't Hoff relation and for osmotic hemolysis was maintained at a constant value, indicating that the onset of osmotic hemolysis depends exclusively upon the critical volume. In the samples from a human, the critical volume for the onset of hemolysis was estimated to be 1.25 +/- 0.05 in the ratio to the normal volume in iso-osmotic solution. From these obtained results, it is suggested that the red cell behaves in hypotonic solutions as a viscoelastic body of the type represented by the Voigt model, and the viscoelastic breakdown of the membrane results in osmotic hemolysis in hypotonic solution. PMID:8713172

  12. The Kinetic-Molecular and Thermodynamic Approaches to Osmotic Pressure: A Study of Dispute in Physical Chemistry and the Implications for Chemistry Education

    ERIC Educational Resources Information Center

    De Berg, Kevin C.

    2006-01-01

    Osmotic pressure proves to be a useful topic for illustrating the disputes brought to bear on the chemistry profession when mathematics was introduced into its discipline. Some chemists of the late 19th century thought that the introduction of mathematics would destroy that "chemical feeling" or "experience" so necessary to the practice of…

  13. A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains.

    PubMed Central

    Jansen, M; Blume, A

    1995-01-01

    Osmotic and diffusive water permeability coefficients Pf and Pd were measured for lipid vesicles of 100-250 nm diameter composed of a variety of phospholipids with different head groups and fatty acyl chains. Two different methods were applied: the H2O/D2O exchange technique for diffusive water flow, and the osmotic technique for water flux driven by an osmotic gradient. For phosphatidylcholines in the liquid-crystalline state at 70 degrees C, permeability constants Pd between 3.0 and 5.2.10(-4) cm/s and ratios Pf/Pd 7 and 23 were observed. The observation of a permeability maximum in the phase transition region and the fact that osmotically driven water flux is higher than diffusive water exchange suggest that water is diffusing through small transient pores arising from density fluctuations in the bilayers. The Pd values depend on the nature of the head group, on the chemical structure of the chains, and on the type of chain linkage. In the case of charged lipids, the ionic strength of the solution has a strong influence. For phosphatidylethanolamines, phosphatidic acids, and ether phosphatidylcholines, permeability constants Pd were considerably lower (2-4.10(-6) cm/s at 70 degrees C). For liquid-crystalline phosphatidylcholines, a strong reduction of Pd after addition of ethanol was observed (2-4.10(-6) cm/s at 70 degrees C). The experimental values are discussed in connection with different permeation models. PMID:7756562

  14. Titrating Optimal Dose of Osmotic-Controlled Release Oral Delivery (OROS)-Methylphenidate and Its Efficacy and Safety in Korean Children with ADHD: A Multisite Open Labeled Study

    PubMed Central

    Song, Dong-Ho; Choi, Soul; Joung, Yoo Sook; Ha, Eun Hye; Kim, Boong-Nyun; Shin, Yee-Jin; Shin, Dongwon; Yoo, Hee Jeong

    2012-01-01

    Objective This study was aimed to determine effectiveness and tolerability of Osmotic-controlled Release Oral delivery (OROS) methylphenidate (MPH) and its optimal dose administered openly over a period of up to 12 weeks in drug naïve Korean children with ADHD. Methods Subjects (n=143), ages 6 to 18-years, with a clinical diagnosis of any subtype of ADHD were recruited from 7 medical centers in Korea. An individualized dose of OROS-MPH was determined for each subject depending on the response criteria. The subjects were assessed with several symptom rating scales in week 1, 3, 6, 9 and 12. Results 77 of 116 subjects (66.4%) achieved the criteria for response and the average of optimal daily dose for response was to 30.05±12.52 mg per day (0.90±0.31 mg/kg/d) at the end of the study. Optimal dose was not significantly different between ADHD subtypes, whereas, significant higher dose was needed in older aged groups than younger groups. The average of optimal daily dose for response for the subjects aged above 12 years old was 46.38±15.52 per day (0.81±0.28 mg/kg/d) compared to younger groups (p<0.01). No serious adverse effects were reported and the dose did not have a significant effect on adverse effects. Conclusion Optimal mean dose of OROS-MPH was significantly different by age groups. Higher dose was needed in older aged groups than younger groups. Effectiveness and tolerability of OROS-MPH in symptoms of ADHD is sustained for up to 12 weeks. PMID:22993525

  15. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study

    NASA Astrophysics Data System (ADS)

    Petrov, Anton S.; Douglas, Scott S.; Harvey, Stephen C.

    2013-03-01

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage ϕ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage’s capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent’s viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  16. Osmotic effects of polyethylene glycol.

    PubMed

    Schiller, L R; Emmett, M; Santa Ana, C A; Fordtran, J S

    1988-04-01

    Polyethylene glycol (PEG) has been used to increase the osmotic pressure of fluids used to cleanse the gastrointestinal tract. However, little is known about its osmotic activity. To investigate this activity systematically, solutions of PEG of differing molecular weights were made and subjected to measurement of osmolality by both freezing point depression and vapor pressure osmometry. Measured osmolality was increasingly greater than predicted from average molecular weight as PEG concentration increased. Measurement of sodium activity in NaCl/PEG solutions by means of an ion-selective electrode suggested that the higher than expected osmolality could be due in part to interactions that, in effect, sequestered water from the solution. Osmolality was consistently greater by freezing point osmometry than by vapor pressure osmometry. To determine which osmometry method reflected biologically relevant osmolality, normal subjects underwent steady-state total gut perfusion with an electrolyte solution containing 105 g/L of PEG 3350. This produced rectal effluent that was hypertonic by freezing point osmometry but isotonic by vapor pressure osmometry. Assuming that luminal fluid reaches osmotic equilibrium with plasma during total gut perfusion, this result suggests that the vapor pressure osmometer accurately reflects the biologically relevant osmolality of intestinal contents. We conclude that PEG exerts more of an osmotic effect than would be predicted from its molecular weight. This phenomenon may reflect interactions between PEG and water molecules that alter the physical chemistry of the solution and sequester water from the solution. PMID:3345895

  17. Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray

    PubMed Central

    2013-01-01

    Background Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method. Methods Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis. Results A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells. Conclusions We anticipate that our results will provide new thoughts and methods for the study of IVD disease. PMID:24369767

  18. Electro-osmotic mobility of non-Newtonian fluids

    PubMed Central

    Zhao, Cunlu; Yang, Chun

    2011-01-01

    Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161

  19. Efficiency of osmotic pipe flows

    NASA Astrophysics Data System (ADS)

    Haaning, Louise Sejling; Jensen, Kaare Hartvig; Hélix-Nielsen, Claus; Berg-Sørensen, Kirstine; Bohr, Tomas

    2013-05-01

    We present experiments and theory for flows of sugar or salt solutions in cylindrical tubes with semipermeable walls (hollow fiber membranes) immersed in water, quantifying the strength of the osmotic driving force in relation to the dimensionless parameters that specify the system. The pumping efficiency of these flows is limited by the presence of “unstirred” concentration boundary layers near the tube walls, and our primary aim is to understand and quantify these layers and their effect on the flow. We measure the outlet flow rate Qout while varying the inlet flow rate Q*, concentration c*, and tube length L, and map out the dependence of the flow rate gain γ=Qout/Q*-1 on these parameters. A theoretical analysis based on (1) the known velocity field for slow flow in cylindrical porous tubes and (2) a parabolic concentration profile allows us to compute analytically how the flow gain depends on the relative magnitude of radial diffusion and advection as well as the ratio of the osmotic velocity to pumping velocity, in very good agreement with experiments and with no adjustable parameters. Our analysis provides criteria that are useful for optimizing osmotic flow processes in, e.g., water purification devices.

  20. Osmotic behavior of bacterial protoplasts: temperature effects.

    PubMed

    Eisenberg, A D; Corner, T R

    1973-06-01

    Among protoplasts released from cells of Bacillus megaterium grown at 20, 30, or 37 C, osmotic swelling in NaCl solution at a given external osmotic pressure was greatest for protoplasts from cells grown at 20 C and least for protoplasts from cells grown at 37 C. Protoplasts from cells grown at lower temperaturs were also less stable to osmotic shock and lysed at higher external osmotic pressures than did protoplasts from cells grown at higher temperatures. But for cells grown at any one temperature, osmotic stabilization was itself temperature dependent so that the higher the ambient incubation temperature, the higher the osmotic pressure needed to prevent lysis of a given fraction of the input protoplast population. However, comparison of the osmotic stability of protoplasts from cells grown at different temperatures at various ambient incubation temperatures revealed that, except at 5 C where no differences were discerned, protoplasts from cells grown at lower temperatures still lysed at higher osmotic pressures than did those from cells grown at higher temperatures. The apparent internal osmolality (28 to 31 atm) did not vary significantly among whole cells from the three growth temperatures. Therefore, the observed differences in osmotic behavior could not be attributed to changes in internal osmotic pressure. Rather, it seemed likely that the differences were due to changes in membrane properties. PMID:4197267

  1. Simulation of osmotic pressure in concentrated aqueous salt solutions.

    SciTech Connect

    Luo, Y.; Roux, B.; Univ. of Chicago

    2010-01-01

    Accurate force fields are critical for meaningful simulation studies of highly concentrated electrolytes. The ion models that are widely used in biomolecular simulations do not necessarily reproduce the correct behavior at finite concentrations. In principle, the osmotic pressure is a key thermodynamic property that could be used to test and refine force field parameters for concentrated solutions. Here we describe a novel, simple, and practical method to compute the osmotic pressure directly from molecular dynamics (MD) simulation of concentrated aqueous solutions by introducing an idealized semipermeable membrane. Simple models for Na+, K+, and Cl- are tested and calibrated to accurately reproduce the experimental osmotic pressure at high salt concentration, up to the solubility limit of 4-5 M. The methodology is general and can be extended to any type of solute as well as nonadditive polarizable force fields.

  2. Osmotic pumped heat pipes for large space platforms

    SciTech Connect

    Tanzer, H.J.; Fleischman, G.L.

    1982-01-01

    A thermal bus will be required as a thermal control source for future space platforms. The osmotic heat pipe is one candidate device with potential significant payoff toward serving growing thermal management needs. Results of a study evaluating osmotic heat pipes for thermal bus applications are presented. Electrostatic and other techniques are proposed for flow control and solution circulation in zero-gravity. Baseline size and performance design parameters of cellulose acetate membrane/sugar-water solution and other combinations were scaled up to predict osmotic pump performance for heat loads and temperatures of 4 to 120 C. A compact hollow-fiber membrane module measuring 20 inches in diameter by 12 inches long and weighing 190 pounds is projected for 50-kW heat loads.

  3. Asymmetric criticality of the osmotic compressibility in binary mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Tianxiang; Liu, Shixia; Xie, Jingjing; Shen, Weiguo

    2013-01-01

    Heat capacities in the critical and the non-critical regions for {benzonitrile + tridecane} and {benzonitrile + pentadecane}, and light scattering for {benzonitrile + undecane}, {benzonitrile + dodecane}, {benzonitrile + tridecane}, {benzonitrile + tetradecane}, {benzonitrile + pentadecane}, and {benzonitrile + hexadecane} in the critical two-phase region were measured. Light scattering measurements confirmed the existence of the asymmetry for the osmotic compressibility while no such asymmetry was observed for the correlation length. An analysis of the osmotic compressibility asymmetry suggested the dominance of the singular term | {Δ hat T} |^β, which supports the complete scaling theory. The consistency of the complete scaling theory in descriptions of different asymmetry behaviors was also discussed. Moreover, it was found that the contribution of the heat capacity-related term is also important in describing the asymmetry of the osmotic compressibility as it was observed in studies of the diameters of the coexistence curves.

  4. Hypo-osmotic test in cat spermatozoa.

    PubMed

    Comercio, E A; Monachesi, N E; Loza, M E; Gambarotta, M; Wanke, M M

    2013-10-01

    The hypo-osmotic (HOS) test has been used in other species as an indicator of the fertilising capacity of spermatozoa. The aims of this study were to assess the response of domestic cat spermatozoa to the hypo-osmotic test, to determine the type of solution, concentration and time of incubation needed to obtain a maximum percentage of swelling, to correlate the selected combination with the percentages of progressive motility and to evaluate whether dilution of the ejaculate alters the results. Incubation for 30 and 45 min in solutions of fructose and of citrate of 50 and 100 mOsmol kg⁻¹ was evaluated. The highest percentage of swelling was obtained using the 50 mOsmol kg⁻¹ solution, and no significant differences were observed between the times of exposure to the solutions. A positive correlation was observed between the percentage of individual progressive motility and the percentage of sperm swelling in a 50 mOsmol kg⁻¹ fructose solution, with no significant differences being observed between raw and diluted semen samples. The results of this study suggest that the HOS test could be useful for evaluating membrane function in domestic cat spermatozoa, both in raw semen and in samples diluted in the EZ Mixin® commercial extender, and thus could be incorporated into routine semen evaluation protocols. PMID:22928866

  5. Osmotic water transport through carbon nanotube membranes

    PubMed Central

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-01-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuations become significant at the nanoscopic length scales, and as a result, the flow is stochastic in nature. Further, the flow appears frictionless and is limited primarily by the barriers at the entry and exit of the nanotube pore. The observed flow rates are high (5.8 water molecules per nanosecond and nanotube), comparable to those through the transmembrane protein aquaporin-1, and are practically independent of the length of the nanotube, in contrast to predictions of macroscopic hydrodynamics. All of these distinct characteristics of nanoscopic water flow can be modeled quantitatively by a 1D continuous-time random walk. At long times, the pure-water compartment is drained, and the net flow of water is interrupted by the formation of structured solvation layers of water sandwiched between two nanotube membranes. Structural and thermodynamic aspects of confined water monolayers are studied. PMID:12878724

  6. [Effect of osmotic pressure on nitrification].

    PubMed

    Zheng, Ping; Wu, Ming-Sheng

    2006-01-01

    The effect of osmotic pressure on nitrification was investigated in the internal-loop air-lift nitrifying reactor. When influent ammonia concentration is kept at 420mg x L(-1) and influent osmotic pressure is increased from 4.3 to 18.8 x 10(5) Pa, the ammonia conversion of the nitrifying bioreactor is maintained between 93% and 100%. After influent osmotic pressure is further increased to 19.2 x 10(5)Pa, the ammonia conversion goes down to 69.2%. The influence of osmotic pressure on nitrification takes place without any alarm and the critical osmotic pressure is between 18.8 x 10(5) and 19.2 x 10(5) Pa. During osmotic stress, the nitrifying bacterial populations in the activated sludge become simplified, the cell size becomes smaller, the inner membrane becomes less and some unknown inclusion particles are formed. The cell structure is restored as soon as the osmotic pressure is removed. Addition of potassium is able to relieve the effect of osmotic pressure on nitrification. The nitrifying activity of the activated sludge is stimulated by the osmotic stress, and the specific ammonia conversion is increased from 0.083 kg x kg(-1) x d(-1) to 0.509 kg x kg(-1) x d(-1) and 2.569 kg x kg(-1) x d(-1), respectively. PMID:16572857

  7. Osmotic tolerance of human granulocytes

    SciTech Connect

    Armitage, W.J.; Mazur, P.

    1984-11-01

    Human granulocytes are injured when returned to isotonic conditions after exposure at 0/sup 0/C to hyperosmotic solutions of NaCl or sucrose with osmolalities above 0.6 osmolal. The damage was expressed as a loss of membrane integrity (fluorescein diacetate (FDA) assay) only after 60-90 min incubation at 37/sup 0/C. Survival after exposure to a 1.4-osmolal solution at 0/sup 0/C was dependent on the extent of subsequent dilution. Dilution to below 0.6 osmolal was damaging, but cells could be returned to near-osmotic conditions provided that the solute concentration was increased again to 0.64 osmolal before the cells were incubated at 37/sup 0/C. Granulocyte cell volumes were measured under various osmotic conditions by computer-assisted micrometry. The cells did not display a minimum volume but behaved as osmometers over the observed range of 0.2-1.4 osmolal. Granulocyte volume at a given osmolality was independent of whether the cells had first been exposed to a strongly hyperosmotic medium, indicating that no solute loading occurred in hyperosmotic sucrose solutions. Even though the cells did not survive sequential exposure to >0.6 osmolal solutions, subsequent return to isotonicity, and incubation at 37/sup 0/C, neither cell lysis nor loss in FDA-positive cells occurred after the first two steps. This finding is not consistent with the critical-surface area-increment theory of freezing injury. The mechanism of cell injury in hyperosmotic solutions is thus not known. However, the results show that osmotic stress is potentially a major damaging factor both in the equilibration of cells with protective additives and during freezing and thawing.

  8. The effect of osmotic stabilizers on the radiometric detection of osmotically sensitive populations of some gram-negative bacteria

    SciTech Connect

    Martinez, O.V.; Malinin, T.I.

    1982-02-01

    The effect of four osmotic stabilizers on the radiometric detection of osmotically sensitive populations of E. coli, S. typhimurium, and E. cloacae was studied. The addition of sucrose, sorbitol, glycerol, or ethylene glycoll to BACTEC 6B blood culture medium failed to improve the sensitivity of the system and produced an inhibitory effect on the level of 14CO2 released by organisms previously exposed to lysozyme and ECTA or to penicillin followed by the lysozyme treatment. The same effect was observed both in blood free media and simulated blood cultures. The addition of proline to sucrose-containing hypertonic media had no effect on growth index readings.

  9. Regulation of the paracellular Na+ and Cl- conductances by the NaCl-generated osmotic gradient in a manner dependent on the direction of osmotic gradients.

    PubMed

    Tokuda, Shinsaku; Niisato, Naomi; Nakajima, Ken-Ichi; Marunaka, Yoshinori

    2008-02-01

    In the present study, we investigated the effect of osmolality on the paracellular ion conductance (Gp) composed of the Na(+) conductance (G(Na)) and the Cl(-) conductance (G(Cl)). An osmotic gradient generated by NaCl with relatively apical hypertonicity (NaCl-absorption-direction) induced a large increase in the G(Na) associated with a small increase in the G(Cl), whereas an osmotic gradient generated by NaCl with relatively basolateral hypertonicity (NaCl-secretion-direction) induced small increases in the G(Na) and the G(Cl). These increases in the Gp caused by NaCl-generated osmotic gradients were diminished by the application of sucrose canceling the NaCl-generated osmotic gradient. The osmotic gradient generated by apical [corrected] application of sucrose without any NaCl gradients had little effects on the Gp. However, this apical [corrected] application of sucrose produced a precondition drastically quickening the time course of the action of the NaCl-generated osmotic gradient on the Gp. Further, we found that application of the basolateral hypotonicity generated by reduction of NaCl concentration shifted the localization of claudin-1 to the apical from the lateral [corrected] side. These results indicate that the osmotic gradient regulates the paracellular ion conductive pathway of tight junctions via a mechanism dependent on the direction of NaCl gradients associated with a shift of claudin-1 localization to the apical side in renal A6 epithelial cells. PMID:18068115

  10. Phosphatidic acid osmotically destabilizes lysosomes through increased permeability to K+ and H+.

    PubMed

    Yi, Y-P; Wang, X; Zhang, G; Fu, T-S; Zhang, G-J

    2006-06-01

    Lysosomal destabilization is a critical event not only for the organelle but also for living cells. However, what factors can affect lysosomal stability is not fully studied. In this work, the effects of phosphatidic acid (PA) on the lysosomal integrity were investigated. Through the measurements of lysosomal beta-hexosaminidase free activity, intralysosomal pH, leakage of lysosomal protons and lysosomal latency loss in hypotonic sucrose medium, we established that PA could increase the lysosomal permeability to K+ and H+, and enhance the lysosomal osmotic sensitivity. Treatment of lysosomes with PA promoted entry of K+ into the organelle via K+/H+ exchange, which could produce osmotic stresses and osmotically destabilize the lysosomes. In addition, PA-induced increase in the lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shocks. The results suggest that PA may play a role in the lysosomal destabilization. PMID:16917129

  11. Asymmetric Membrane Osmotic Capsules for Terbutaline Sulphate

    PubMed Central

    Gobade, N. G.; Koland, Marina; Harish, K. H.

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate. PMID:23204625

  12. Asymmetric membrane osmotic capsules for terbutaline sulphate.

    PubMed

    Gobade, N G; Koland, Marina; Harish, K H

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate. PMID:23204625

  13. Membrane trafficking and osmotically induced volume changes in guard cells.

    PubMed

    Shope, Joseph C; Mott, Keith A

    2006-01-01

    Guard cells rapidly adjust their plasma membrane surface area while responding to osmotically induced volume changes. Previous studies have shown that this process is associated with membrane internalization and remobilization. To investigate how guard cells maintain membrane integrity during rapid volume changes, the effects of two membrane trafficking inhibitors on the response of intact guard cells of Vicia faba to osmotic treatments were studied. Using confocal microscopy and epidermal peels, the relationship between the area of a medial paradermal guard-cell section and guard-cell volume was determined. This allowed estimates of guard-cell volume to be made from single paradermal confocal images, and therefore allowed rapid determination of volume as cells responded to osmotic treatments. Volume changes in control cells showed exponential kinetics, and it was possible to calculate an apparent value for guard-cell hydraulic conductivity from these kinetics. Wortmannin and cytochalasin D inhibited the rate of volume loss following a 0-1.5 MPa osmotic treatment. Cytochalasin D also inhibited volume increases following a change from 1.5 MPa to 0 MPa, but wortmannin had no effect. Previous studies showing that treatment with arabinanase inhibits changes in guard-cell volume in response to osmotic treatments were confirmed. However, pressure volume curves show that the effects of arabinanase and the cytochalasin D were not due to changes in cell wall elasticity. It is suggested that arabinanase, cytochalasin D, and wortmannin cause reductions in the hydraulic conductivity of the plasma membrane, possibly via gating of aquaporins. A possible role for aquaporins in co-ordinating volume changes with membrane trafficking is discussed. PMID:17088361

  14. Aquaporins: another piece in the osmotic puzzle.

    PubMed

    Alleva, Karina; Chara, Osvaldo; Amodeo, Gabriela

    2012-09-21

    Osmolarity not only plays a key role in cellular homeostasis but also challenges cell survival. The molecular understanding of osmosis has not yet been completely achieved, and the discovery of aquaporins as molecular entities involved in water transport has caused osmosis to again become a focus of research. The main questions that need to be answered are the mechanism underlying the osmotic permeability coefficients and the extent to which aquaporins change our understanding of osmosis. Here, attempts to answer these questions are discussed. Critical aspects of the state of the state of knowledge on osmosis, a topic that has been studied since 19th century, are reviewed and integrated with the available information provided by in vivo, in vitro and in silico approaches. PMID:22728434

  15. Toward an Injectable Continuous Osmotic Glucose Sensor

    PubMed Central

    Johannessen, Erik; Krushinitskaya, Olga; Sokolov, Andrey; Philipp, Häfliger; Hoogerwerf, Arno; Hinderling, Christian; Kautio, Kari; Lenkkeri, Jaakko; Strömmer, Esko; Kondratyev, Vasily; Tønnessen, Tor Inge; Mollnes, Tom Eirik; Jakobsen, Henrik; Zimmer, Even; Akselsen, Bengt

    2010-01-01

    Background The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. Method A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. Results An in vitro model based on a 3.6 × 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4–6 nm large pores. The affinity assay offers a dynamic range of 36–720 mg/dl with a resolution of ±16 mg/dl. An integrated 1 × 1 mm2 large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 µW. Conclusions Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG. PMID:20663452

  16. Osmotic pressure of ionic liquids in an electric double layer: Prediction based on a continuum model

    NASA Astrophysics Data System (ADS)

    Moon, Gi Jong; Ahn, Myung Mo; Kang, In Seok

    2015-12-01

    An analysis has been performed for the osmotic pressure of ionic liquids in the electric double layer (EDL). By using the electromechanical approach, we first derive a differential equation that is valid for computing the osmotic pressure in the continuum limit of any incompressible fluid in EDL. Then a specific model for ionic liquids proposed by Bazant et al. [M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett. 106, 046102 (2011), 10.1103/PhysRevLett.106.046102] is adopted for more detailed computation of the osmotic pressure. Ionic liquids are characterized by the correlation and the steric effects of ions and their effects are analyzed. In the low voltage cases, the correlation effect is dominant and the problem becomes linear. For this low voltage limit, a closed form formula is derived for predicting the osmotic pressure in EDL with no overlapping. It is found that the osmotic pressure decreases as the correlation effect increases. The osmotic pressures at the nanoslit surface and nanoslit centerline are also obtained for the low voltage limit. For the cases of moderately high voltage with high correlation factor, approximate formulas are derived for estimating osmotic pressure values based on the concept of a condensed layer near the electrode. In order to corroborate the results predicted by analytical studies, the full nonlinear model has been solved numerically.

  17. Synchronous delivery of felodipine and metoprolol tartrate using monolithic osmotic pump technology.

    PubMed

    Zhao, Shiqing; Yu, Fanglin; Liu, Nan; Di, Zhong; Yan, Kun; Liu, Yan; Li, Ying; Zhang, Hui; Yang, Yang; Yang, Zhenbo; Li, Zhiping; Mei, Xingguo

    2016-11-01

    The synchronous sustained-release of two drugs was desired urgently for patients needing combination therapy in long term. However, sophisticated technologies were used generally to realize the simultaneous delivery of two drugs especially those with different physico-chemical properties. The purpose of this study was to obtain the concurrent release of felodipine and metoprolol tartrate, two drugs with completely different solubilities, in a simple monolithic osmotic pump system (FMOP). Two types of blocking agents were used in monolithic osmotic pump tablets and the synchronous sustained-release of FMOP was acquired in vitro. The tablets were also administered to beagle dogs and the plasma levels of FMOP were determined by HPLC-MS/MS. The pharmacokinetic parameters were calculated using a non-compartmental model. Cmax of both felodipine and metoprolol from the osmotic pump tablets were lower, tmax and mean residence time of both felodipine and metoprolol from the osmotic pump tablets were longer significantly than those from immediate release tablets. These results verified prolonged release of felodipine and metoprolol tartrate from osmotic pump formulations. The similar absorption rate between felodipine and metoprolol in beagles was also obtained by this osmotic pump formulation. Therefore, it could be supposed that the accordant release of two drugs with completely different solubilities may be realized just by using monolithic osmotic pump technology. PMID:27074758

  18. Lack of appreciation of the role of osmotically unresponsive water in cell volume regulation.

    PubMed

    Cameron, Ivan L; Fullerton, Gary D

    2014-05-01

    The osmotic responsiveness of cell water has been re-evaluated of reports on the osmotic behaviour of cells. In seven animal cell types, the osmotically unresponsive water (OUR) fraction values ranged from 0.75 to 2.41 g water/g dry mass (g/g), and from 25 to 92% of the total cell water. Protein confirmation, aggregation and crowding play a major, but under-recognised, role in determining the extent of OUR and the regulation of cell volume. Volume regulation studies that do not take into account the role of OUR must be judged incomplete. PMID:24375657

  19. Deriving Osmotic Pressures of Draw Solutes used in Osmotically Driven Membrane Processes

    SciTech Connect

    Frederick F. Stewart

    2013-03-01

    In osmotically driven membrane processes (ODMPs), such as forward osmosis (FO), the concentration of the draw solute and the related osmotic pressure play a critical role in mass transport and overall process performance. Search of the literature reveals that the concentration units used to describe draw solutes vary and the methods of deriving osmotic pressure from those concentrations are often unclear or not discussed. This paper recommends the use of molality and identifies the benefit of experimentally determined van ‘t Hoff indices when calculating osmotic pressures.

  20. Osmotically Driven Deformation of a Stable Water Film.

    PubMed

    Chen, Sue A; Clasohm, Lucy Y; Horn, Roger G; Carnie, Steven L

    2015-09-01

    An aspect of dynamic colloidal interactions that has received little attention is the osmotic stress associated with nonequilibrium distribution of solutes. Recent experiments on a mercury drop near a mica surface show a dimple forming on the mercury/water interface when there is a sudden change in the electric potential of the mercury drop coated with a self-assembled monolayer (SAM) of 11-mercapto-1-undecanoic acid thiol molecules. A reasonable hypothesis is that the dimple formation is due to the desorption of a fraction of the SAM from the mercury drop surface when the surface potential is changed. The osmotic pressure in the thin film region increases as a result of the presence of the thiol molecules in the region, giving rise to the observed dimple. A model including the effects of osmotic flow, disjoining pressure, interfacial tension and hydrodynamic pressure is developed to test the hypothesis. The simplest version of the model, in which desorption is uniform and instantaneous, can produce a dimple whose growth is significantly more rapid than its decay, in qualitative agreement with the data. However, quantitative agreement is lacking. Several refinements to the model, including effects such as the change in interfacial tension as thiols are desorbed, gradual thiol desorption, a change in disjoining pressure as charged thiols are desorbed and nonuniform desorption do not change the qualitative picture. The qualitative success of the model suggests the osmotic pressure mechanism is correct, but the detailed picture of the SAM desorption at positive mercury surface potentials is not sufficiently well understood. The model reveals that the osmotic dimple is not the time-reverse equivalent of the usual hydrodynamic dimple phenomenon. We suggest that transient deformation of thin films by osmotic flow is a new and little-studied mechanism influencing the structure of stable thin films and the interaction of deformable drops. This has implications for

  1. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, iso-osmotic salinity (120 mM NaCl, 12mM CaCl2) and osmotic (PEG) stresses, along with chilling (5oC) stress, were applied to the cold-sensitive grapevine species V. vinifera cv. Cabernet Sauvignon. Microarray analysis of transcript abundance in shoot tips revealed that 43% of gene exp...

  2. A prospective multicentre study to evaluate the efficacy and tolerability of osmotic release oral system (OROS®) hydromorphone in opioid-naive cancer patients: Results of the Korean South West Oncology Group study

    PubMed Central

    Song, Eun-Kee; Shim, Hyunjeong; Han, Hye-Suk; Sun, DerSheng; Lee, Soon-Il; Kang, Myung Hee; Lee, KyuTaek; Cho, DoYeun; Cho, In Sung; Park, Suk Young; Kim, Samyong; Yim, Chang-Yeol

    2015-01-01

    BACKGROUND: Osmotic release oral system (OROS®) hydromorphone is a potent, long-acting opioid analgesic, effective and safe for controlling cancer pain in patients who have received other strong opioids. To date, few studies have examined the efficacy of hydromorphone for pain relief in opioid-naive cancer patients. OBJECTIVES: A prospective, open-label, multicentre trial was conducted to determine the efficacy and tolerability of OROS hydromorphone as a single and front-line opioid therapy for patients experiencing moderate to severe cancer pain. METHODS: OROS hydromorphone was administered to patients who had not previously received strong, long-acting opioids. The baseline evaluation (visit 1) was followed by two evaluations (visits 2 and 3) performed two and 14 weeks later, respectively. The starting dose of OROS hydromorphone was 4 mg/day and was increased every two days when pain control was insufficient. Immediate-release hydromorphone was the only accepted alternative strong opioid for relief of breakthrough pain. The efficacy, safety and tolerability of OROS hydromorphone, including the effects on quality of life, and patients’ and investigators’ global impressions on pain relief were evaluated. The primary end point was pain intensity difference (PID) at visit 2 relative to visit 1 (expressed as %PID). RESULTS: A total of 107 patients were enrolled in the present study. An improvement in pain intensity of >50% (≥50% PID) was observed in 51.0% of the full analysis set and 58.6% of the per-protocol set. The mean pain score, measured using a numerical rating scale, was significantly reduced after two weeks of treatment, and most adverse events were manageable. Quality of life also improved, and >70% of patients and investigators were satisfied with the treatment. CONCLUSIONS: OROS hydromorphone provided effective pain relief and improved quality of life in opioid-naive cancer patients. As a single and front-line treatment, OROS hydromorphone delivered

  3. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    PubMed

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  4. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  5. Direct measurement of osmotic pressure of glycosaminoglycan solutions by membrane osmometry at room temperature.

    PubMed

    Chahine, Nadeen O; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2005-09-01

    Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure. PMID:15980166

  6. Quorum sensing regulates the osmotic stress response in Vibrio harveyi.

    PubMed

    van Kessel, Julia C; Rutherford, Steven T; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James; Bassler, Bonnie L

    2015-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. PMID:25313392

  7. Quorum Sensing Regulates the Osmotic Stress Response in Vibrio harveyi

    PubMed Central

    Rutherford, Steven T.; Cong, Jian-Ping; Quinodoz, Sofia; Healy, James

    2014-01-01

    Bacteria use a chemical communication process called quorum sensing to monitor cell density and to alter behavior in response to fluctuations in population numbers. Previous studies with Vibrio harveyi have shown that LuxR, the master quorum-sensing regulator, activates and represses >600 genes. These include six genes that encode homologs of the Escherichia coli Bet and ProU systems for synthesis and transport, respectively, of glycine betaine, an osmoprotectant used during osmotic stress. Here we show that LuxR activates expression of the glycine betaine operon betIBA-proXWV, which enhances growth recovery under osmotic stress conditions. BetI, an autorepressor of the V. harveyi betIBA-proXWV operon, activates the expression of genes encoding regulatory small RNAs that control quorum-sensing transitions. Connecting quorum-sensing and glycine betaine pathways presumably enables V. harveyi to tune its execution of collective behaviors to its tolerance to stress. PMID:25313392

  8. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  9. Development of an oral push–pull osmotic pump of fenofibrate-loaded mesoporous silica nanoparticles

    PubMed Central

    Zhao, Zongzhe; Wu, Chao; Zhao, Ying; Hao, Yanna; Liu, Ying; Zhao, Wenming

    2015-01-01

    In this study, mesoporous silica nanoparticles (MSNs) were used to prepare an oral push–pull osmotic pump. Fenofibrate, the selected model drug, was firstly loaded into the MSNs, followed by a suspending agent consisting of a drug layer of push–pull osmotic pump. Fenofibrate-loaded MSNs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption analysis, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD) analysis, and Fourier-transform infrared (FT-IR) spectroscopy. Polyethylene oxide of molecular weight (MW) 100,000 and polyethylene oxide of MW 6,000,000 were selected as the suspending agent and the expanding agent, respectively. Cellulose acetate was used as the semipermeable membrane, along with polyethylene glycol 6,000 to increase the flexibility and control the membrane permeability. The in vitro dissolution studies indicated that the osmotic pump tablet combined with MSNs was able to deliver fenofibrate in an approximately zero-order manner in 24 hours. A pharmacokinetic study showed that, although the maximum plasma concentration of the osmotic pump was lower than that of the reference formulation, the relative bioavailability was increased, indicating that the osmotic pump was more efficient than the reference tablets. Therefore, using MSNs as a carrier for poorly water-soluble drugs is an effective method for preparing osmotic pump tablets. PMID:25784799

  10. Physical mechanism of membrane osmotic phenomena

    SciTech Connect

    Guell, D.C.; Brenner, H.

    1996-09-01

    The microscale, physicomechanical cause of osmosis and osmotic pressure in systems involving permeable and semipermeable membranes is not well understood, and no fully satisfactory mechanism has been offered to explain these phenomena. A general theory, albeit limited to dilute systems of inert, noninteracting solute particles, is presented which demonstrates that short-range forces exerted by the membrane on the dispersed solute particles constitute the origin of osmotic phenomena. At equilibrium, the greater total force exerted by the membrane on those solute particles present in the reservoir containing the more concentrated of the two solutions bathing the membrane is balanced by a macroscopically observable pressure difference between the two reservoirs. The latter constitutes the so-called osmotic pressure difference. Under nonequilibrium conditions, the membrane-solute force is transmitted to the solvent, thus driving the convective flow of solvent observed macroscopically as osmosis. While elements of these ideas have been proposed previously in various forms, the general demonstration offered here of the physicomechanical source of osmotic phenomena is novel. Beyond the purely academic interest that exists in establishing a mechanical understanding of osmotic pressure, the analysis lays the foundation underlying a quantitative theory of osmosis in dilute, nonequilibrium systems outlined in a companion paper.

  11. Casein Micelle Dispersions under Osmotic Stress

    PubMed Central

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  12. Osmotically driven flows in microchannels separated by a semipermeable membrane.

    PubMed

    Jensen, Kåre Hartvig; Lee, Jinkee; Bohr, Tomas; Bruus, Henrik

    2009-07-21

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 microm wide and 50-200 microm deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental results and the predictions of the model. Our motivation for studying osmotically driven microflows is that they are believed to be responsible for the translocation of sugar in plants through the phloem sieve element cells. Also, we suggest that osmotic elements can act as on-chip integrated pumps with no movable parts in lab-on-a-chip systems. PMID:19568680

  13. Maximum efficiency of the electro-osmotic pump

    NASA Astrophysics Data System (ADS)

    Xu, Zuli; Miao, Jianying; Wang, Ning; Wen, Weijia; Sheng, Ping

    2011-06-01

    Electro-osmotic effect in a porous medium arises from the electrically charged double layer at the fluid-solid interface, whereby an externally applied electric field can give rise to fluid flow. The electro-osmotic pump (EOP) is potentially useful for a variety of engineering and biorelated applications, but its generally low efficiency is a negative factor in this regard. A study to determine the optimal efficiency of the EOP and the condition(s) under which it can be realized is therefore of scientific interest and practical importance. We present the results of a theoretical and experimental study on the maximum efficiency optimization of the electrokinetic effect in artificially fabricated porous media with controlled pore diameters. It is shown that whereas the EOP efficiency increases with decreasing channel diameter, from 4.5 to 2.5 μm for samples fabricated on oxidized silicon wafers as expected for the interfacial nature of the electro-osmotic effect, the opposite trend was observed for samples with much smaller channel diameters fabricated on anodized aluminum oxide films, with the pore surface coated with silica. These results are in agreement with the theoretical prediction, based on the competition between interfacial area and the no-slip flow boundary condition, that an optimal efficiency of ˜1% is attained at a microchannel diameter that is five times the Debye length, with a zeta potential of ˜100 mV.

  14. Osmotic blood-brain barrier disruption: CT and radionuclide imaging

    SciTech Connect

    Roman-Goldstein, S.; Clunie, D.A.; Stevens, J.; Hogan, R.; Monard, J.; Ramsey, F.; Neuwelt, E.A.

    1994-03-01

    The purpose of this study was to compare CT and radionuclide imaging of osmotic blood-brain barrier disruption, and to develop a quantitative method for imaging osmotic blood-brain barrier disruption and to see if iopamidol could be safety given intravenously in conjunction with blood-brain barrier disruption. Forty-five blood-brain barrier disruption procedures were imaged with CT and radionuclide scans. The scans were evaluated with visual and quantitative scales. Patients were observed for adverse effects after blood-brain barrier disruption. There was a 4% rate of seizures in this study. There was good agreement between visual CT and radionuclide grading systems. Quantitative disruption did not add useful information to visual interpretations. Nonionic iodine-based contrast medium has a lower incidence of seizures when injected intravenously in conjunction with osmotic blood-brain barrier disruption than ionic contrast material. Contrast-enhanced CT is the preferred method to image disruption because it has better spatial resolution than radionuclide techniques. 34 refs., 4 figs., 6 tabs.

  15. Osmotic pressure in a bacterial swarm.

    PubMed

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G; Tang, Jay X; Berg, Howard C

    2014-08-19

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. PMID:25140422

  16. Osmotic tolerance limits and properties of rhesus monkey (Macaca mulatta) spermatozoa.

    PubMed

    Rutllant, Josep; Pommer, Angela C; Meyers, Stuart A

    2003-01-01

    Fundamental cryobiological characteristics of rhesus spermatozoa must be determined for successful cryopreservation techniques to be established. The main objectives of the present study were to determine the osmotic behavior and osmotic tolerance limits of rhesus macaque spermatozoa. Cell volume changes over anisotonic conditions were assessed using an electronic particle counter and sperm motility was evaluated with a computer-assisted sperm analysis system. Analysis of membrane integrity and mitochondrial membrane potential was performed using flow cytometry. Rhesus monkey spermatozoa behave as linear osmometers in the osmotic range tested (75-900 mOsmol kg(-1)), as shown by the Boyle van't Hoff plot (r(2) =.99). Rhesus spermatozoa have a mean cell volume of 36.8 +/- 0.5 micro m(3) at 22 degrees C, with 77.2% of the intracellular volume being osmotically inactive. Results regarding sperm tolerance to osmotic stress showed that sperm motility was more sensitive than membrane integrity to deviations from isotonicity and, in addition, that rhesus sperm motility and membrane integrity were more sensitive to hypertonic than hypotonic conditions. Mitochondrial membrane potential did not explain the lack of sperm motility observed under anisosmolal conditions in our study. Although most spermatozoa were able to recover initial volume after osmotic stress, they were not able to recover initial motility. PMID:12826693

  17. Osmotic tolerance limits of red blood cells from umbilical cord blood.

    PubMed

    Zhurova, Mariia; Lusianti, Ratih E; Higgins, Adam Z; Acker, Jason P

    2014-08-01

    Effective methods for long-term preservation of cord red blood cells (RBCs) are needed to ensure a readily available supply of RBCs to treat fetal and neonatal anemia. Cryopreservation is a potential long-term storage strategy for maintaining the quality of cord RBCs for the use in intrauterine and neonatal transfusion. However, during cryopreservation, cells are subjected to damaging osmotic stresses during cryoprotectant addition and removal and freezing and thawing that require knowledge of osmotic tolerance limits in order to optimize the preservation process. The objective of this study was to characterize the osmotic tolerance limits of cord RBCs in conditions relevant to cryopreservation, and compare the results to the osmotic tolerance limits of adult RBCs. Osmotic tolerance limits were determined by exposing RBCs to solutions of different concentrations to induce a range of osmotic volume changes. Three treatment groups of adult and cord RBCs were tested: (1) isotonic saline, (2) 40% w/v glycerol, and (3) frozen-thawed RBCs in 40% w/v glycerol. We show that cord RBCs are more sensitive to shrinkage and swelling than adult RBCs, indicating that osmotic tolerance limits should be considered when adding and removing cryoprotectants. In addition, freezing and thawing resulted in both cord and adult RBCs becoming more sensitive to post-thaw swelling requiring that glycerol removal procedures for both cell types ensure that cell volume excursions are maintained below 1.7 times the isotonic osmotically active volume to attain good post-wash cell recovery. Our results will help inform the development of optimized cryopreservation protocol for cord RBCs. PMID:24836371

  18. Simultaneous measurement of peritoneal glucose and free water osmotic conductances.

    PubMed

    La Milia, V; Limardo, M; Virga, G; Crepaldi, M; Locatelli, F

    2007-09-01

    Ultrafiltration (UF) failure is one of the most important causes of long-term peritoneal dialysis (PD) failure in patients. Osmotic forces acting across small and ultra-small pores generate a UF with solutes through the small pore and free water transport (FWT) through the ultra-small pore. The ability of glucose to exert an osmotic pressure sufficient to cause UF is the so-called 'osmotic conductance to glucose' (OCG) of the peritoneal membrane. Our study proposes a simple method to determine both the OCG and FWT. In 50 patients on PD, a Double Mini-Peritoneal Equilibration Test (Double Mini-PET), consisting of two Mini-PET, was performed consecutively. A solution of 1.36% glucose was used for the first test, whereas a solution of 3.86% glucose was used for the second test. The sodium removal values and the differences in UF between the two tests were used to calculate FWT and the OCG. Patients with UF failure showed significant reductions not only in the OCG and the FWT but also of UF of small pores. The Double Mini-PET is simple, fast, and could become useful to evaluate patients on PD in everyday clinical practice. PMID:17609692

  19. Osmotic flow through fully permeable nanochannels.

    PubMed

    Lee, C; Cottin-Bizonne, C; Biance, A-L; Joseph, P; Bocquet, L; Ybert, C

    2014-06-20

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes. PMID:24996091

  20. Collective osmotic shock in ordered materials

    NASA Astrophysics Data System (ADS)

    Zavala-Rivera, Paul; Channon, Kevin; Nguyen, Vincent; Sivaniah, Easan; Kabra, Dinesh; Friend, Richard H.; Nataraj, S. K.; Al-Muhtaseb, Shaheen A.; Hexemer, Alexander; Calvo, Mauricio E.; Miguez, Hernan

    2012-01-01

    Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics.

  1. Graphic analysis of osmotic fragility of erythrocytes.

    PubMed

    Nagasawa, T; Sudo, K; Nishi, N; Sarashi, A; Kimura, E

    1976-11-01

    A precise and highly reproducible method for analyzing the osmotic fragility of erythrocytes with a minute amount of blood (less than 10 mul) is described. The osmotic fragility curves are recorded with a coil planet centrifuge with accessories and a scanning photodensitometer. The recorded curves are transcribed by a DuPont Curve Resolver and their components are analyzed. Normal fragility curves obtained from healthy adults revealed slightly skewed Gaussian curves and they were resolved into several typical Gaussian components which differed according to the physical and clinical conditions of subjects. Each resolved component is supposed to correspond to the population of erythrocytes having a nearly identical osmotic fragility. The method is proved to be useful for the detection of altered membrane properties of erythrocytes in various diseases. PMID:996851

  2. Collective osmotic shock in ordered materials.

    PubMed

    Zavala-Rivera, Paul; Channon, Kevin; Nguyen, Vincent; Sivaniah, Easan; Kabra, Dinesh; Friend, Richard H; Nataraj, S K; Al-Muhtaseb, Shaheen A; Hexemer, Alexander; Calvo, Mauricio E; Miguez, Hernan

    2012-01-01

    Osmotic shock in a vesicle or cell is the stress build-up and subsequent rupture of the phospholipid membrane that occurs when a relatively high concentration of salt is unable to cross the membrane and instead an inflow of water alleviates the salt concentration gradient. This is a well-known failure mechanism for cells and vesicles (for example, hypotonic shock) and metal alloys (for example, hydrogen embrittlement). We propose the concept of collective osmotic shock, whereby a coordinated explosive fracture resulting from multiplexing the singular effects of osmotic shock at discrete sites within an ordered material results in regular bicontinuous structures. The concept is demonstrated here using self-assembled block copolymer micelles, yet it is applicable to organized heterogeneous materials where a minority component can be selectively degraded and solvated whilst ensconced in a matrix capable of plastic deformation. We discuss the application of these self-supported, perforated multilayer materials in photonics, nanofiltration and optoelectronics. PMID:22120413

  3. Osmotic Flow through Fully Permeable Nanochannels

    NASA Astrophysics Data System (ADS)

    Lee, C.; Cottin-Bizonne, C.; Biance, A.-L.; Joseph, P.; Bocquet, L.; Ybert, C.

    2014-06-01

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes.

  4. Subcutaneous Angiotensin II Infusion using Osmotic Pumps Induces Aortic Aneurysms in Mice

    PubMed Central

    Lu, Hong; Howatt, Deborah A.; Balakrishnan, Anju; Moorleghen, Jessica J.; Rateri, Debra L.; Cassis, Lisa A.; Daugherty, Alan

    2015-01-01

    Osmotic pumps continuously deliver compounds at a constant rate into small animals. This article introduces a standard protocol used to induce aortic aneurysms via subcutaneous infusion of angiotensin II (AngII) from implanted osmotic pumps. This protocol includes calculation of AngII amount and dissolution, osmotic pump filling, implantation of osmotic pumps subcutaneously, observation after pump implantation, and harvest of aortas to visualize aortic aneurysms in mice. Subcutaneous infusion of AngII through osmotic pumps following this protocol is a reliable and reproducible technique to induce both abdominal and thoracic aortic aneurysms in mice. Infusion durations range from a few days to several months based on the purpose of the study. AngII 1,000 ng/kg/min is sufficient to provide maximal effects on abdominal aortic aneurysmal formation in male hypercholesterolemic mouse models such as apolipoprotein E deficient or low-density lipoprotein receptor deficient mice. Incidence of abdominal aortic aneurysms induced by AngII infusion via osmotic pumps is 5 - 10 times lower in female hypercholesterolemic mice and also lower in both genders of normocholesterolemic mice. In contrast, AngII-induced thoracic aortic aneurysms in mice are not hypercholesterolemia or gender-dependent. Importantly, multiple features of this mouse model recapitulate those of human aortic aneurysms. PMID:26436287

  5. Subcutaneous Angiotensin II Infusion using Osmotic Pumps Induces Aortic Aneurysms in Mice.

    PubMed

    Lu, Hong; Howatt, Deborah A; Balakrishnan, Anju; Moorleghen, Jessica J; Rateri, Debra L; Cassis, Lisa A; Daugherty, Alan

    2015-01-01

    Osmotic pumps continuously deliver compounds at a constant rate into small animals. This article introduces a standard protocol used to induce aortic aneurysms via subcutaneous infusion of angiotensin II (AngII) from implanted osmotic pumps. This protocol includes calculation of AngII amount and dissolution, osmotic pump filling, implantation of osmotic pumps subcutaneously, observation after pump implantation, and harvest of aortas to visualize aortic aneurysms in mice. Subcutaneous infusion of AngII through osmotic pumps following this protocol is a reliable and reproducible technique to induce both abdominal and thoracic aortic aneurysms in mice. Infusion durations range from a few days to several months based on the purpose of the study. AngII 1,000 ng/kg/min is sufficient to provide maximal effects on abdominal aortic aneurysmal formation in male hypercholesterolemic mouse models such as apolipoprotein E deficient or low-density lipoprotein receptor deficient mice. Incidence of abdominal aortic aneurysms induced by AngII infusion via osmotic pumps is 5-10 times lower in female hypercholesterolemic mice and also lower in both genders of normocholesterolemic mice. In contrast, AngII-induced thoracic aortic aneurysms in mice are not hypercholesterolemia or gender-dependent. Importantly, multiple features of this mouse model recapitulate those of human aortic aneurysms. PMID:26436287

  6. Relationship between sputum inflammatory markers and osmotic airway hyperresponsiveness during induction of sputum in asthmatic patients.

    PubMed Central

    Jang, A. S.; Choi, I. S.

    2001-01-01

    Hypertonic saline aerosols are being used increasingly for bronchial provocation testing and induction of sputum. The aims of this study were to assess the response to challenge with 3% hypertonic saline administered via a ultrasonic nebulizer in patients with asthma, and to evaluate relationship between % fall of FEV1 during induction of sputum (osmotic airway hyperresponsiveness; osmotic AHR) and biochemical markers of induced sputum. We investigated changes in FEV1 in response to inhaling ultrasonically nebulized 3% saline in 25 patients with asthma and 10 control subjects. FEV1 was measured before, during, and after induction of sputum. We used fluoroimmunoassay to detect eosinophil cationic protein (ECP), immunohistochemical staining to detect EG2+ (secretory form of ECP) eosinophils, and a sandwich ELISA to detect interleukin (IL)-5. Protein concentration was determined by using bicinchoninic acid protein assay reagent. Asthmatics, compared with controls, had significantly higher osmotic AHR. Moderate to severe asthmatics had significantly higher osmotic AHR compared to mild asthmatics. Osmotic AHR was significantly correlated with the proportion of eosinophils, the levels of ECP, EG2+ eosinophils, IL-5, and proteins. These data suggest that osmotic AHR is closely related to the clinical status and biochemical markers of sputum supernatant in asthmatic patients. PMID:11511785

  7. Reduced Osmotic Potential Effects on Photosynthesis 1

    PubMed Central

    Berkowitz, Gerald A.; Gibbs, Martin

    1983-01-01

    Addition of sorbitol, which facilitated reductions in reaction medium osmotic potential from standard (0.33 molar sorbitol, −10 bars) isotonic conditions to a stress level of 0.67 molar sorbitol (−20 bars), inhibited the photosynthetic capacity of isolated spinach (Spinacia oleracea) chloroplasts. This inhibition, which ranged from 64 to 74% under otherwise standard reaction conditions, was dependent on reaction medium inorganic phosphate concentration, with the phosphate optimum for photosynthesis reduced to 0.05 millimolar at the low osmotic potential stress treatment from a value of 0.25 millimolar under control conditions. Stromal alkalating agents such as NH4Cl (0.75 millimolar) and KCl (35 millimolar) were also found to affect the degree of low osmotic potential inhibition of photosynthesis. Both agents doubled the rate of NaHCO3-supported O2 evolution under the stress treatment, while hardly affecting the control rate at optimal concentrations. These agents also reduced the length of the lag phase of photosynthetic O2 evolution under the stress treatment to a much greater degree. The rate-enhancement effect of these agents under the stress treatment was reversed by sodium acetate, which is known to facilitate stromal acidification. The reaction medium pH optimum for photosynthesis under the stress treatment was higher than under control conditions. In the presence of optimal NH4Cl, this shift was no longer evident. Internal pH measurements indicated that the stress treatment caused a 0.43 and 0.24 unit reduction in the stromal and intrathylakoid pH, respectively, under illumination. This osmotically induced acidification was not evident in the dark. The presence of 0.75 millimolar NH4Cl partially reversed the osmotically induced reduction in the illuminated stromal pH. It was concluded that stromal acidification is a mediating mechanism of the most severe site of low osmotic potential inhibition of the photosynthetic process. PMID:16662927

  8. A comparative prospective study using matched samples to determine the influence of subnormal hypo-osmotic test scores of spermatozoa on subsequent fertilization and pregnancy rates following in-vitro fertilization.

    PubMed

    Check, J H; Stumpo, L; Lurie, D; Benfer, K; Callan, C

    1995-05-01

    The achievement of pregnancies in vivo is rare in couples where the male partner has defective sperm membranes as shown by hypo-osmotic swelling (HOS) test scores of < 50%. However, there have been mixed reports on the value of the HOS test in predicting outcome following invitro fertilization; some studies suggest reduced fertilization rates and others find little, if any, predictability of decreased fertilization. The assumption has been made that fertilization rates are proportional to pregnancy rates; however, this may not necessarily be true since defective spermatozoa could lead to a less viable pre-embryo and therefore a decreased viable pregnancy rate. We performed a comparative prospective study using matched controls to evaluate fertilization rates and to determine subsequent pregnancy rates. The mean HOS scores were 70.0 and 36.7% respectively, with mean motile sperm concentrations of 35.7 and 34.0 x 10(6)/ml in 27 matched pairs. There was no difference in the mean number of oocytes retrieved, fertilization rates or number of embryos transferred between the two groups by HOS score. The clinical and viable pregnancy rates and implantation rates were 25.9, 18.5 and 9.9% for normal versus 3.7, 3.7 and 1.1% for subnormal groups. These data suggest that low HOS scores may be associated with the formation of defective embryos, leading to low pregnancy rates but normal fertilization rates. PMID:7657765

  9. Magnetically Guided Propulsion of Osmotic Motors

    NASA Astrophysics Data System (ADS)

    Vidal, Glenn; Rinaldi, Carlos; Córdova-Figueroa, Ubaldo

    2010-11-01

    Propulsion of artificial nano- and micro-scale objects induced by chemical reactions is one of the most exciting challenges in colloidal physics. Recent experiments have shown that directed motion of catalytic motors is hindered by their rotary Brownian motion, preventing its potential to be fully realized. The present work investigates the magnetically guided propulsion of a colloidal particle--the osmotic motor-- immersed in a dispersion of colloidal `bath' particles subject to an unidirectional magnetic field using Brownian dynamics simulation. The osmotic motor is propelled by a chemical reaction that consumes bath particles over a portion of its surface. The non-equilibrium microstructure of bath particles induced by the surface reaction creates an `osmotic pressure' imbalance on the motor's surface causing it to move to regions of lower bath particle concentration. The strength of the magnetic field is controlled by the Langevin parameter, which physically measures the relative importance of magnetic to Brownian torques, and dictates the directionality of the osmotic motor. The translational self-diffusivity is measured for different reaction speeds, particle sizes, bath particle concentrations, and magnetic dipole orientations. Finally, a theory to determine the long-time self-diffusivity and time-averaged particle velocity is developed and compared to the simulation results.

  10. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles.

    PubMed

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-07-01

    The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Fӧster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations. PMID:27040652

  11. Osmotic Stress Signaling and Osmoadaptation in Yeasts

    PubMed Central

    Hohmann, Stefan

    2002-01-01

    The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects. PMID:12040128

  12. Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles

    PubMed Central

    Choi, Hyo-Jick; Song, Jae-Min; Bondy, Brian J.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2015-01-01

    Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (Ea = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination. PMID:26230936

  13. Swelling and electro-osmotic properties of cation-exchange membranes with different structures in methanol-water media

    NASA Astrophysics Data System (ADS)

    Barragán, V. M.; Villaluenga, J. P. G.; Godino, M. P.; Izquierdo-Gil, M. A.; Ruiz-Bauzá, C.; Seoane, B.

    Electro-osmosis experiments through three cation-exchange membranes with different morphology and similar electric properties have been performed using methanol-water solutions under different experimental conditions. The influence on the electro-osmotic transport of the percentage of methanol on solvent with two different electrolytes, NaCl and LiCl, has been studied. The experimental results show that the presence of methanol in the solutions affects strongly the electro-osmotic flow, and this influence is different depending on the membrane morphology. Correlations among electro-osmotic permeability, swelling behavior, and cell resistance are studied for these membrane systems at different percentages of methanol in solvent.

  14. Osmotic actuation modelling for innovative biorobotic solutions inspired by the plant kingdom.

    PubMed

    Sinibaldi, E; Puleo, G L; Mattioli, F; Mattoli, V; Di Michele, F; Beccai, L; Tramacere, F; Mancuso, S; Mazzolai, B

    2013-06-01

    Osmotic-driven plant movements are widely recognized as impressive examples of energy efficiency and low power consumption. These aspects motivate the interest in developing an original biomimetic concept of new actuators based on the osmotic principle exploited by plants. This study takes a preliminary step in this direction, by modelling the dynamic behaviour of two exemplificative yet relevant implementations of an osmotic actuator concept. In more detail, the considered implementations differ from each other in the way actuation energy storage is achieved (through a piston displacement in the former case, through membrane bulging in the latter). The dynamic problem is analytically solved for both cases; scaling laws for the actuation figures of merit (namely characteristic time, maximum force, maximum power, power density, cumulated work and energy density) as a function of model parameters are obtained for the bulging implementation. Starting from such performance indicators, a preliminary dimensioning of the envisaged osmotic actuator is exemplified, based on design targets/constraints (such as characteristic time and/or maximum force). Moreover, model assumptions and limitations are discussed towards effective prototypical development and experimental testing. Nonetheless, this study takes the first step towards the design of new actuators based on the natural osmotic principle, which holds potential for disruptive innovation in many fields, including biorobotics and ICT solutions. PMID:23648821

  15. Thermo-Osmotic Flow in Thin Films

    NASA Astrophysics Data System (ADS)

    Bregulla, Andreas P.; Würger, Alois; Günther, Katrin; Mertig, Michael; Cichos, Frank

    2016-05-01

    We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.

  16. Thermo-Osmotic Flow in Thin Films.

    PubMed

    Bregulla, Andreas P; Würger, Alois; Günther, Katrin; Mertig, Michael; Cichos, Frank

    2016-05-01

    We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces. PMID:27203347

  17. Physics of Bacteria During Osmotic Shock

    NASA Astrophysics Data System (ADS)

    Price, Jordan; Klug, William

    Bacteria combat hypoosmotic shocks by opening mechanosensitive ion channels located within the inner membrane. These channels are believed to act as ``emergency release valves,'' reducing transient pressure during the shock by regulating solute and water flux. Recent experiments have shown that cell survivability depends strongly on channel populations and the rate of osmotic shock. However, the understanding of the physical mechanisms behind osmotic protection remains unclear. We investigate how channel deletions, variations in shock rate, and cell envelope mechanics affect survivability by constructing theoretical elasticity and transport models. We find that reducing the number of channels and applying faster shocks significantly increases the time-dependent stress of the cell membrane and wall. This result provides insight into physical mechanisms that govern cell failure, including membrane rupture and wall fracture.

  18. Osmotically-assisted desalination method and system

    SciTech Connect

    Achilli, Andrea; Childress, Amy E.; Cath, Tzahi Y.

    2014-08-12

    Systems and methods for osmotically assisted desalination include using a pressurized concentrate from a pressure desalination process to pressurize a feed to the desalination process. The depressurized concentrate thereby produced is used as a draw solution for a pressure-retarded osmosis process. The pressure-retarded osmosis unit produces a pressurized draw solution stream that is used to pressurize another feed to the desalination process. In one example, the feed to the pressure-retarded osmosis process is impaired water.

  19. Osmotic Pressure in Ionic Microgel Dispersions

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2015-03-01

    Microgels are microscopic gel particles, typically 10-1000 nm in size, that are swollen by a solvent. Hollow microgels (microcapsules) can encapsulate cargo, such as dye molecules or drugs, in their solvent-filled cavities. Their sensitive response to environmental conditions (e.g., temperature, pH) and influence on flow properties suit microgels to widespread applications in the chemical, pharmaceutical, food, and consumer care industries. When dispersed in water, polyelectrolyte gels become charged through dissociation of counterions. The electrostatic contribution to the osmotic pressure inside and outside of ionic microgels influences particle swelling and bulk materials properties, including thermodynamic, structural, optical, and rheological properties. Within the primitive and cell models of polyelectrolyte solutions, we derive an exact statistical mechanical formula for the contribution of mobile microions to the osmotic pressure within ionic microgels. Using Poisson-Boltzmann theory, we validate this result by explicitly calculating ion distributions across the surface of an ionic microgel and the electrostatic contribution to the osmotic pressure. Within a coarse-grained one-component model, we further chart the limits of the cell model for salty dispersions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  20. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    PubMed

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  1. Membrane fluidity of halophilic ectoine-secreting bacteria related to osmotic and thermal treatment.

    PubMed

    Bergmann, Sven; David, Florian; Clark, Wiebke; Wittmann, Christoph; Krull, Rainer

    2013-12-01

    In response to sudden decrease in osmotic pressure, halophilic microorganisms secrete their accumulated osmolytes. This specific stress response, combined with physiochemical responses to the altered environment, influence the membrane properties and integrity of cells, with consequent effects on growth and yields in bioprocesses, such as bacterial milking. The aim of this study was to investigate changes in membrane fluidity and integrity induced by environmental stress in ectoine-secreting organisms. The halophilic ectoine-producing strains Alkalibacillus haloalkaliphilus and Chromohalobacter salexigens were treated hypo- and hyper-osmotically at several temperatures. The steady-state anisotropy of fluorescently labeled cells was measured, and membrane integrity assessed by flow cytometry and ectoine distribution. Strong osmotic downshocks slightly increased the fluidity of the bacterial membranes. As the temperature increased, the increasing membrane fluidity encouraged more ectoine release under the same osmotic shock conditions. On the other hand, combined shock treatments increased the number of disintegrated cells. From the ectoine release and membrane integrity measurements under coupled thermal and osmotic shock conditions, we could optimize the secretion conditions for both bacteria. PMID:23653110

  2. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans

    PubMed Central

    Chandler-Brown, Devon; Choi, Haeri; Park, Shirley; Ocampo, Billie R.; Chen, Shiwen; Le, Anna; Sutphin, George L.; Shamieh, Lara S.; Smith, Erica D.; Kaeberlein, Matt

    2015-01-01

    The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370) and independently of daf-16(mu86), sir-2.1(ok434), aak-2(ok524), and hif-1(ia04). Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113) fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813) and osm-7(n1515), were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes. PMID:26579191

  3. An analysis of the effects of osmotic backwashing on the seawater reverse osmosis process.

    PubMed

    Park, JunYoung; Jeong, WooWon; Nam, JongWoo; Kim, JaeHun; Kim, JiHoon; Chon, Kangmin; Lee, Euijong; Kim, HyungSoo; Jang, Am

    2014-01-01

    Fouling control is an important consideration in the design and operation of membrane-based water treatment processes. It has been generally known that chemical cleaning is still the most common method to remove foultants and maintain the performance of reverse osmosis (RO) desalination. Regardless of the chemical membrane cleaning methods applied effectively, however, frequent chemical cleaning can shorten the membrane life. In addition, it also increases operating and maintenance costs due to the waste chemical disposal. As an alternative, osmotic backwashing can be applied to RO membranes by diluting the concentration polarization (CP) layer. In this study, the effects of osmotic backwashing were analysed under different total dissolved salts (TDSs) and backwashing conditions, and the parameters of the osmotic backwashing were evaluated. The results of the analysis based on the properties of the organic matters found in raw water showed that the cleaning efficiency in respect to the fouling by hydrophilic organic matters was the greatest. Osmotic backwashing was carried out by changing the TDS of the permeate. As a result, the backwashing volume decreased with time due to the CP of the permeate and the backwashing volume. The difference in the osmotic pressure between the raw water and the permeate (Delta pi) also decreased as time passed. It was confirmed that when the temperature of the effluent was high, both the cleaning efficiency and the backwashing volume, which inpours at the same time, increased. When the circulation flow of the effluent was high, both the cleaning efficiency and the backwashing volume increased. PMID:24701943

  4. MpAsr encodes an intrinsically unstructured protein and enhances osmotic tolerance in transgenic Arabidopsis.

    PubMed

    Dai, Jin-Ran; Liu, Bing; Feng, Dong-Ru; Liu, Hai-yan; He, Yan-ming; Qi, Kang-biao; Wang, Hong-Bin; Wang, Jin-Fa

    2011-07-01

    Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect L: -lactate dehydrogenase (L: -LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress. PMID:21327389

  5. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L

    NASA Technical Reports Server (NTRS)

    Goliber, T. E.; Feldman, L. J.

    1989-01-01

    Previous reports indicate that heterophyllous aquatic plants can be induced to form aerial-type leaves on submerged shoots when they are grown in exogenous abscisic acid (ABA). This study reports on the relationship between osmotic stress (e.g. the situation encountered by a shoot tip when it grows above the water surface), endogenous ABA (as measured by gas chromatography-electron capture detector) and leaf morphology in the heterophyllous aquatic plant, Hippuris vulgaris. Free ABA could not be detected in submerged shoots of H. vulgaris but in aerial shoots ABA occurred at ca. 40 ng (g fr wt)-1. When submerged shoots were osmotically stressed ABA appeared at levels of 26 to 40 ng (g fr wt)-1. These and other data support two main conclusions: (1) Osmotically stressing a submerged shoot causes the appearance of detectable levels of ABA. (2) The rise of ABA in osmotically stressed submerged shoots in turn induces a change in leaf morphology from the submerged to the aerial form. This corroborates the hypothesis that, in the natural environment, ABA levels rise in response to the osmotic stress encountered when a submerged shoot grows up through the water/air interface and that the increased ABA leads to the production of aerial-type leaves.

  6. Early osmotic adjustment responses in drought-resistant and drought-sensitive oilseed rape.

    PubMed

    Hatzig, Sarah; Zaharia, L Irina; Abrams, Suzanne; Hohmann, Marie; Legoahec, Laurie; Bouchereau, Alain; Nesi, Nathalie; Snowdon, Rod J

    2014-08-01

    The impact of osmotic stress on growth, physiology, and metabolism of winter oilseed rape (Brassica napus L.) was investigated by detailed analysis of biomass traits, hormone metabolites and osmolytes in two genetically unrelated drought-tolerant genotypes and two unrelated drought-sensitive genotypes. Seedlings were grown in vitro under controlled conditions and osmotic stress was simulated by applying a gradual treatment with polyethylene glycol (PEG 6000), followed by hypo-osmotic treatment of variants used for metabolite determination. The results provide a basis for the identification of reliable selection criteria for drought resistance in oilseed rape. The in vitro cultivation system established during this study enabled effective discrimination of early osmotic stress responses between drought-resistant and -susceptible oilseed rape genotypes that also show large differences in relative seed yield under drought conditions in the field. Clear physiological and metabolic differences were observed between the drought-resistant and drought-sensitive genotypes, suggesting that osmotic adjustment is a key component of drought response in oilseed rape. Unexpectedly, however, the drought-resistant genotypes did not show typical hormonal adjustment and osmolyte accumulation, suggesting that they possess alternative physiological mechanisms enabling avoidance of stress symptoms. PMID:24667002

  7. Theoretical analysis of osmotic agents in peritoneal dialysis. What size is an ideal osmotic agent?

    PubMed

    Rippe, B; Zakaria el-R; Carlsson, O

    1996-01-01

    In this article the difference between osmotic fluid flow (ultrafiltration) as driven by osmotic pressure and diffusion through thin leaky membranes is discussed. It is pointed out that water transport induced by osmosis is fundamentally different from the process of water diffusion. Applying modern hydrodynamic pore theory, the molar solute concentration and the solute concentration in grams per 100 mL, exerting the same initial transmembrane osmotic pressure as a 1% glucose solution, was investigated as a function of solute molecular weight (MW). It was then assumed, base on experimental data, that the major pathway responsible for the peritoneal osmotic barrier characteristics is represented by pores of radius approximately 47 A. With increasing solute radius, the osmotic reflection coefficient (sigma) and, hence, the osmotic efficiency per mole of solute will increase. However, simultaneously, the molar concentration per unit solute weight will decrease. The balance point between these two events apparently occurs at a solute MW of approximately 1 kDa. An additional advantage of using solutes of high MW as osmotic agents during peritoneal dialysis (PD), rather than increased osmotic efficiency per se, lies in the fact that large solutes, due to their low peritoneal diffusion capacity, will maintain a sustained rate of ultrafiltration (osmosis) over a prolonged period. To illustrate this, we have performed computer simulations of peritoneal fluid transport according to the three-pore model of peritoneal permselectivity. According to these simulations, 4% of an 800 Da polymer solution (+50 mmol/L above isotonicity) will produce the same cumulative amount of intraperitoneal fluid volume ultrafiltered (UF) during 360-400 minutes as 4% of a 2 kDa polymer solution (+20 mmol/L) or 6.5% of a 10 kDa polymer solution (+6.5 mmol/L) having the same electrolyte concentration as dialysis solutions conventionally used for PD. Similar cumulative UF volumes (during 400 minutes

  8. From The Cover: Osmotic water transport through carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Kalra, Amrit; Garde, Shekhar; Hummer, Gerhard

    2003-09-01

    We use molecular dynamics simulations to study osmotically driven transport of water molecules through hexagonally packed carbon nanotube membranes. Our simulation setup comprises two such semipermeable membranes separating compartments of pure water and salt solution. The osmotic force drives water flow from the pure-water to the salt-solution compartment. Monitoring the flow at molecular resolution reveals several distinct features of nanoscale flows. In particular, thermal fluctuations become significant at the nanoscopic length scales, and as a result, the flow is stochastic in nature. Further, the flow appears frictionless and is limited primarily by the barriers at the entry and exit of the nanotube pore. The observed flow rates are high (5.8 water molecules per nanosecond and nanotube), comparable to those through the transmembrane protein aquaporin-1, and are practically independent of the length of the nanotube, in contrast to predictions of macroscopic hydrodynamics. All of these distinct characteristics of nanoscopic water flow can be modeled quantitatively by a 1D continuous-time random walk. At long times, the pure-water compartment is drained, and the net flow of water is interrupted by the formation of structured solvation layers of water sandwiched between two nanotube membranes. Structural and thermodynamic aspects of confined water monolayers are studied.

  9. Osmotic concentration of polypeptides from hemofiltrate of uremic patients.

    PubMed

    Ehrlich, K; Holland, F; Turnham, T; Klein, E

    1980-07-01

    Hemofiltrate from uremic patients was concentrated 15- to 40-fold by osmotic removal of water across a reverse osmosis membrane which retains salts and proteins. Salts and low molecular weight components were removed from the concentrate by partial dialysis using a highly impermeable cellulose membrane. Following this desalting step, 100- to 500-fold concentration could be achieved by evaporation at low pressure. The concentrate was fractionated on Sephadex G15 columns. Fractions were tested for their toxicity to human cells in culture. Fractions containing components with molecular weights greater than 700 daltons inhibited 3H-thymidine incorporation into the DNA of HeLa and skin fibroblast cells more than did low molecular weight peptides and an iso-osmolar control. Components eluting in the molecular weight range of angiotensin I and vitamin B-12 were most inhibitory. These studies show that hemofiltrate from uremic patients is a readily available source of toxic polypeptides. The osmotic concentration and gel chromatographic procedures described should make available large amounts of these molecules for further studies. PMID:7408253

  10. EFFECT OF EXOGENOUS GLUTATHIONE, GLUTATHIONE REDUCTASE, CHLORINE DIOXIDE, AND CHLORITE ON OSMOTIC FRAGILITY OF RAT BLOOD IN VITRO

    EPA Science Inventory

    Chlorine dioxide (ClO2), chlorite (ClO2(-1)), and chlorate (ClO3(-1)) in drinking water decreased blood glutathione and RBC osmotic fragility in vivo. The osmotic fragility and glutathione content were also studied in rat blood treated with ClO2, ClO2(-1), ClO3(-1) in vitro. RBC ...

  11. Freestanding polyelectrolyte films as sensors for osmotic pressure.

    PubMed

    Nolte, Marc; Dönch, Ingo; Fery, Andreas

    2006-09-11

    Freestanding ultrathin polyelectrolyte-multilayer membranes, transferred to topographically structured polydimethylsiloxane (PDMS), are used as mechanical sensors. Due to the membranes' semipermeability, high-molecular-weight molecules can be either entrapped inside them or excluded, thus generating an osmotic pressure. This leads to a deformation. We investigate the deformation as a function of the osmotic pressure and present an analytical theory that fully describes the data. Thus, osmotic pressures can be determined quantitatively. The individual osmotic-sensitive elements have only microscopic dimensions, and arrays can be easily produced. PMID:16929555

  12. An Open-label, Self-control, Prospective Study on Cognitive Function, Academic Performance, and Tolerability of Osmotic-release Oral System Methylphenidate in Children with Attention-deficit Hyperactivity Disorder

    PubMed Central

    Zheng, Yi; Liang, Jian-Min; Gao, Hong-Yun; Yang, Zhi-Wei; Jia, Fu-Jun; Liang, Yue-Zhu; Fang, Fang; Li, Rong; Xie, Sheng-Nan; Zhuo, Jian-Min

    2015-01-01

    Background: Attention-deficit hyperactivity disorder (ADHD) is the most common mental and behavioral disorder in school-aged children. This study evaluated the effect of osmotic-release oral system (OROS) methylphenidate (MPH) on cognitive function and academic performance of Chinese school-aged children with ADHD. Methods: This 12-week, prospective, multicenter, open-label, self-controlled study enrolled 153 Chinese school-aged children with ADHD and 41 non-ADHD children. Children with ADHD were treated with once-daily OROS-MPH (18 mg, 36 mg, or 54 mg). The primary endpoints were Inattention/Overactivity (I/O) with Aggression Conners Behavior Rating Scale (IOWA) and Digit Span Test at week 12 compared with baseline. Secondary endpoints included opposition/defiant (O/D) subscale of IOWA, Clinical Global Impression (CGI), Coding Test, Stroop Color-word Test, Wisconsin Card Sorting Test (WCST), academic performance on teacher-rated school examinations, and safety at week 12 compared with baseline. Both non-ADHD and ADHD children received the same frequency of cognitive operational test to avoid the possible bias caused by training. Results: A total of 128 patients were evaluated with cognitive assessments. The OROS-MPH treatment significantly improved IOWA Conners I/O subscale scores at week 12 (3.8 ± 2.3) versus baseline (10.0 ± 2.4; P < 0.0001). Digit Span Test scores improved significantly (P < 0.0001) with a high remission rate (81.1%) at week 12 versus baseline. A significant (P < 0.0001) improvement was observed in O/D subscale of IOWA, CGI, Coding Test, Stroop Color-word Test, WCST, and academic performance at week 12 versus baseline. Very few practice-related improvements were noticed in the non-ADHD group at week 12 compared with baseline. No serious adverse events and deaths were reported during the study. Conclusions: The OROS-MPH treatment effectively controlled symptoms of ADHD and significantly improved academic performance and cognitive function of

  13. Effect of Pulsed Electric Field Pre-Treatment on Osmotic Dehydration of Strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the effect of pulsed electric fields (PEF) as a pre-treatment on osmotic dehydration characteristics and quality of strawberries. The studied PDF treatment conditions included three strengths of electric field (1.0, 2.0, 3.0 Kw/cm) and three numbers of pu...

  14. The osmotic migration of cells in a solute gradient.

    PubMed Central

    Jaeger, M; Carin, M; Medale, M; Tryggvason, G

    1999-01-01

    The effect of a nonuniform solute concentration on the osmotic transport of water through the boundaries of a simple model cell is investigated. A system of two ordinary differential equations is derived for the motion of a single cell in the limit of a fast solute diffusion, and an analytic solution is obtained for one special case. A two-dimensional finite element model has been developed to simulate the more general case (finite diffusion rates, solute gradient induced by a solidification front). It is shown that the cell moves to regions of lower solute concentration due to the uneven flux of water through the cell boundaries. This mechanism has apparently not been discussed previously. The magnitude of this effect is small for red blood cells, the case in which all of the relevant parameters are known. We show, however, that it increases with cell size and membrane permeability, so this effect could be important for larger cells. The finite element model presented should also have other applications in the study of the response of cells to an osmotic stress and for the interaction of cells and solidification fronts. Such investigations are of major relevance for the optimization of cryopreservation processes. PMID:10465740

  15. Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.

    PubMed

    Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone

    2014-12-14

    Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration. PMID:25343500

  16. Osmotic Water Permeability of Isolated Protoplasts. Modifications during Development1

    PubMed Central

    Ramahaleo, Tiana; Morillon, Raphaël; Alexandre, Joël; Lassalles, Jean-Paul

    1999-01-01

    A transference chamber was developed to measure the osmotic water permeability coefficient (Pos) in protoplasts 40 to 120 μm in diameter. The protoplast was held by a micropipette and submitted to a steep osmotic gradient created in the transference chamber. Pos was derived from the changes in protoplast dimensions, as measured using a light microscope. Permeabilities were in the range 1 to 1000 μm s−1 for the various types of protoplasts tested. The precision for Pos was ≤40%, and within this limit, no asymmetry in the water fluxes was observed. Measurements on protoplasts isolated from 2- to 5-d-old roots revealed a dramatic increase in Pos during root development. A shift in Pos from 10 to 500 μm s−1 occurred within less than 48 h. This phenomenon was found in maize (Zea mays), wheat (Triticum aestivum), and rape (Brassica napus) roots. These results show that early developmental processes modify water-transport properties of the plasma membrane, and that the transference chamber is adapted to the study of water-transport mechanisms in native membranes. PMID:10069827

  17. Functional Characterization of TRPV4 As an Osmotically Sensitive Ion Channel in Articular Chondrocytes

    PubMed Central

    Phan, Mimi N.; Leddy, Holly A.; Votta, Bartholomew J.; Kumar, Sanjay; Levy, Dana S.; Lipshutz, David B.; Lee, Sukhee; Liedtke, Wolfgang; Guilak, Farshid

    2010-01-01

    Objective Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+ permeable channel that can be gated by tonicity (osmolarity) and mechanical stimuli. Chondrocytes, the cells in cartilage, respond to their osmotic and mechanical environments; however, the molecular basis of this signal transduction is not fully understood. The objective of this study was to demonstrate the presence and functionality of TRPV4 in chondrocytes. Methods TRPV4 protein expression was measured by immunolabeling and Western blotting. In response to TRPV4 agonist/antagonists, osmotic stress, and interleukin-1 (IL-1), changes in Ca2+ signaling, cell volume, and prostaglandin E2 (PGE2) production were measured in porcine chondrocytes using fluorescence microscopy, light microscopy, or immunoassay, respectively. Results TRPV4 was expressed abundantly at the RNA and protein level. Exposure to 4αPDD, a TRPV4 activator, caused Ca2+ signaling in chondrocytes, which was blocked by the selective TRPV4 antagonist, GSK205. Blocking TRPV4 diminished the chondrocytes' response to hypo-osmotic stress, reducing the fraction of Ca2+ responsive cells, regulatory volume decrease (RVD), and PGE2 production. Ca2+ signaling was inhibited by removal of extracellular Ca2+ or depletion of intracellular stores. Specific activation of TRPV4 restored defective RVD caused by IL-1. Chemical disruption of the primary cilium eliminated Ca2+ signaling in response to either 4αPDD or hypo-osmotic stress. Conclusion TRPV4 is present in articular chondrocytes, and chondrocyte response to hypo-osmotic stress is mediated by this channel, which involves both an extracellular Ca2+ and intracellular Ca2+ release. TRPV4 may also be involved in modulating the production or influence of pro-inflammatory molecules in response to osmotic stress. PMID:19790068

  18. A Simple Student Laboratory on Osmotic Flow, Osmotic Pressure, and the Reflection Coefficient.

    ERIC Educational Resources Information Center

    Feher, Joseph J.; Ford, George D.

    1995-01-01

    Describes a laboratory exercise containing a practical series of experiments that novice students can perform within two hours. The exercise provides a confirmation of van't Hoff's law while placing more emphasis on osmotic flow than pressure. Students can determine parameters such as the reflection coefficient which stress the interaction of both…

  19. Lipid tubule growth by osmotic pressure

    PubMed Central

    Rangamani, Padmini; Zhang, Di; Oster, George; Shen, Amy Q.

    2013-01-01

    We present here a procedure for growing lipid tubules in vitro. This method allows us to grow tubules of consistent shape and structure, and thus can be a useful tool for nano-engineering applications. There are three stages during the tubule growth process: initiation, elongation and termination. Balancing the forces that act on the tubule head shows that the growth of tubules during the elongation phase depends on the balance between osmotic pressure and the viscous drag exerted on the membrane from the substrate and the external fluid. Using a combination of mathematical modelling and experiment, we identify the key forces that control tubule growth during the elongation phase. PMID:24004559

  20. Effect of Long-Term Osmotic Loading Culture on Matrix Synthesis from Intervertebral Disc Cells

    PubMed Central

    Newman, Isabella B.; Carapezza, Michael A.

    2014-01-01

    Abstract The intervertebral disc is a highly hydrated tissue that acts to absorb and distribute large complex loads placed on the spine. Diurnal loading and disc degeneration causes significant changes in water volume and proteoglycan content, which alters the internal osmotic environment. Short-term osmotic loading alters disc cell gene expression; however, the long-term effect of osmotic loading on disc cell matrix synthesis is not well understood. The objective of this study was to determine the effect of long-term osmotic loading on matrix turnover and proliferation by juvenile and adult cells from the nucleus pulposus (NP) and the cartilaginous endplate (EP). Matrix synthesis was evaluated using pellets and a 3D agarose system, which has been used for developing engineered tissues. Intervertebral discs were acquired from juvenile and adult cows. Cells were acquired through enzymatic digestion and expanded in culture. Pellets were formed through centrifugation, and constructs were created by encapsulating cells within 2% w/v agarose hydrogel. Pellets and constructs were cultured up to 42 days in chemically defined medium with the osmolality adjusted to 300, 400, or 500 mOsm/kg. EP cells were evaluated as a chondrocyte comparison to chondrocyte-like NP cells. Pellet and agarose cultures of juvenile NP and EP cells demonstrated similarities with respect to cell proliferation and functional mechanical properties. Cell proliferation decreased significantly with increased osmotic loading. The final compressive Young's modulus of juvenile NP cells was 10–40× greater than initial properties (i.e., day 0) and was greater than the final Young's modulus of adult NP and juvenile EP constructs. In juvenile NP constructs, there were no significant differences in GAG content with respect to osmotic loading. However, GAG synthesis and mechanical properties were greatest for the 400 mOsm/kg group in adult NP constructs. Taken together, the results presented here suggest a

  1. Osmotic therapies added to antibiotics for acute bacterial meningitis

    PubMed Central

    Wall, Emma CB; Ajdukiewicz, Katherine MB; Heyderman, Robert S; Garner, Paul

    2014-01-01

    Background Every day children and adults throughout the world die from acute community-acquired bacterial meningitis, particularly in low-income countries. Survivors are at risk of deafness, epilepsy and neurological disabilities. Osmotic therapies have been proposed as an adjunct to improve mortality and morbidity from bacterial meningitis. The theory is that they will attract extra-vascular fluid by osmosis and thus reduce cerebral oedema by moving excess water from the brain into the blood. The intention is to thus reduce death and improve neurological outcomes. Objectives To evaluate the effects on mortality, deafness and neurological disability of osmotic therapies added to antibiotics for acute bacterial meningitis in children and adults. Search methods We searched CENTRAL 2012, Issue 11, MEDLINE (1950 to November week 3, 2012), EMBASE (1974 to November 2012), CINAHL (1981 to November 2012), LILACS (1982 to November 2012) and registers of ongoing clinical trials (April 2012). We also searched conference abstracts and contacted researchers in the field. Selection criteria Randomised controlled trials testing any osmotic therapy in adults or children with acute bacterial meningitis. Data collection and analysis Two review authors independently screened the search results and selected trials for inclusion. We collected data from each study for mortality, deafness, seizures and neurological disabilities. Results are presented using risk ratios (RR) and 95% confidence intervals (CI) and grouped according to whether the participants received steroids or not. Main results Four trials were included comprising 1091 participants. All compared glycerol (a water-soluble sugar alcohol) with a control; in three trials this was a placebo, and in one a small amount of 50% dextrose. Three trials included comparators of dexamethasone alone or in combination with glycerol. As dexamethasone appeared to have no modifying effect, we aggregated results across arms where both

  2. Osmotic barrier of the parietal peritoneum.

    PubMed

    Flessner, M F

    1994-11-01

    Fluid movement into the peritoneal cavity results after instillation of a hypertonic solution. Some investigators have assumed that the peritoneum is a significant barrier to small solutes and have predicted that fluid would be drawn by an osmotic gradient into the cavity from the tissue surrounding the peritoneal cavity, resulting in tissue hydrostatic pressures well below atmospheric pressure. Contrary to this, we have previously shown that protein and fluid cross the peritoneum and enter the tissue at the same rate during either isotonic or hypertonic dialysis. To investigate the nature of the osmotic barrier of the peritoneum, the hydrostatic pressure profiles were measured in the abdominal wall of the rat during conditions of either isotonicity or hypertonicity in the peritoneal cavity and constant intraperitoneal hydrostatic pressure (Pip). Measurements were made with a micropipette mounted on a micromanipulator and connected to a servo-null pressure measurement system. No interstitial pressures below atmospheric pressure were observed with either type of solution in the peritoneal cavity. For the three Pip values tested, there were few significant differences between the corresponding pressure profiles of isotonic or hypertonic solutions. It is concluded that the parietal peritoneum is not a functional barrier to small solutes, which are often used to raise the osmolality of intraperitoneal solutions. This finding also implies that the tissue interstitium underlying the parietal peritoneum is not the source of water flow into the cavity, which is observed during hypertonic dialysis. PMID:7977791

  3. Osmotic self-propulsion of slender particles

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2015-03-01

    We consider self-diffusiophoresis of axisymmetric particles using the continuum description of Golestanian et al. ["Designing phoretic micro-and nano-swimmers," New J. Phys. 9, 126 (2007)], where the chemical reaction at the particle boundary is modelled by a prescribed distribution of solute absorption and the interaction of solute molecules with that boundary is represented by diffusio-osmotic slip. With a view towards modelling of needle-like particle shapes, commonly employed in experiments, the self-propulsion problem is analyzed using slender-body theory. For a particle of length 2L, whose boundary is specified by the axial distribution κ(z) of cross-sectional radius, we obtain the approximation - /μ 2 D L ∫- L L j ( z ) /d κ ( z ) d z d z for the particle velocity, wherein j(z) is the solute-flux distribution, μ the diffusio-osmotic slip coefficient, and D the solute diffusivity. This approximation can accommodate discontinuous flux distributions, which are commonly used for describing bimetallic particles; it agrees strikingly well with the numerical calculations of Popescu et al. ["Phoretic motion of spheroidal particles due to self-generated solute gradients," Eur. Phys. J. E: Soft Matter Biol. Phys. 31, 351-367 (2010)], performed for spheroidal particles.

  4. Maximal Load of the Vitamin B12 Transport System: A Study on Mice Treated for Four Weeks with High-Dose Vitamin B12 or Cobinamide

    PubMed Central

    Lildballe, Dorte L.; Mutti, Elena; Birn, Henrik; Nexo, Ebba

    2012-01-01

    Several studies suggest that the vitamin B12 (B12) transport system can be used for the cellular delivery of B12-conjugated drugs, also in long-term treatment Whether this strategy will affect the endogenous metabolism of B12 is not known. To study the effect of treatment with excess B12 or an inert derivative, we established a mouse model using implanted osmotic minipumps to deliver saline, cobinamide (Cbi) (4.25 nmol/h), or B12 (1.75 nmol/h) for 27 days (n = 7 in each group). B12 content and markers of B12 metabolism were analysed in plasma, urine, kidney, liver, and salivary glands. Both Cbi and B12 treatment saturated the transcobalamin protein in mouse plasma. Cbi decreased the content of B12 in tissues to 33–50% of the level in control animals but did not influence any of the markers examined. B12 treatment increased the tissue B12 level up to 350%. In addition, the transcript levels for methylenetetrahydrofolate reductase in kidneys and for transcobalamin and transcobalamin receptor in the salivary glands were reduced. Our study confirms the feasibility of delivering drugs through the B12 transport system but emphasises that B12 status should be monitored because there is a risk of decreasing the transport of endogenous B12. This risk may lead to B12 deficiency during prolonged treatment. PMID:23049711

  5. Osmotic Power: A Fresh Look at an Old Experiment

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    Electricity from osmotic pressure might seem a far-fetched idea but this article describes a prototype in Norway where the osmotic pressure generated between salt and fresh water drives a turbine. This idea was applied in a student investigation, where they were tasked with researching which alternative materials could be used for the…

  6. Asymmetry of canine tracheal epithelium: osmotically induced changes.

    PubMed

    Man, S F; Hulbert, W; Park, D S; Thomson, A B; Hogg, J C

    1984-11-01

    The symmetry of osmotic conductivity of the canine tracheal epithelial cells was examined in vitro. When an osmotic load of 100 mosM sucrose was added to the serosal bathing solution, no change in the transepithelial potential difference was observed in 15 tissue preparations. In contrast, when the same osmotic load was added to the mucosal bathing solution, there was a rapid decrease in the transepithelial potential difference of 3.9 +/- 0.5 mV (n = 23); ouabain (10(-4) M) eliminated this change. Tissues that had been exposed to the osmotic load added to either the mucosal or serosal side were compared with the control using light and electron microscopy. When the osmotic load was added to the mucosal fluid, there was no change in the nuclear-to-cytoplasmic area ratio of the cell types examined. However, when the same osmotic load was added to the serosal fluid, a marked increase in the nuclear-to-cytoplasmic area ratio of the ciliated cells was observed. This finding indicated cell shrinkage. Dilution potentials measured by substituting NaCl with mannitol also showed asymmetry. The morphological features are probably caused by differences in the osmotic conductivity (Lp) of the basolateral and apical cell membranes, with the Lp of the apical membrane being less than that of the basolateral membrane. The basis for osmotically induced potentials remained undetermined. PMID:6440880

  7. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic...

  8. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic...

  9. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic...

  10. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic...

  11. 21 CFR 864.6600 - Osmotic fragility test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Osmotic fragility test. 864.6600 Section 864.6600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6600 Osmotic...

  12. Modeling of laboratory experiments determining the chemico-osmotic, hydraulic and diffusion properties of sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Hiratsuka, T.; Ito, K.

    2008-12-01

    properties of clay-rich materials have been demonstrated in laboratory experiments. However, it remains inconclusive whether chemical osmosis can retain the pressure disequilibrium and so influence groundwater flow in a geologic time scale. Therefore, systematic research involving field-scale investigations of pressure and salinity distributions and experimental estimations of the chemico-osmotic, hydraulic and diffusive properties of formation media is required. This study focuses on the development of a laboratory experimental system and the analytical solutions to estimate the chemico-osmotic, hydraulic and diffusive properties of formation media. The experimental system consists of a flexible-wall permeameter cell that loads confining pressures, along with a closed fluid circuit to perform osmotic, hydraulic and diffusion experiments under background fluid pressures. This experimental design enables simulating underground conditions at the depths required for safety assessments of geological waste disposal. The effectiveness of the experimental system and the analytical solutions are demonstrated with a set of osmotic, hydraulic and diffusion experiments performed using sedimentary rocks.

  13. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.

    PubMed

    Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-10-01

    The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. PMID:27496542

  14. Hypo-osmotic shock induces nuclear export and proteasome-dependent decrease of UBL5

    SciTech Connect

    Hatanaka, Ken; Ikegami, Koji; Takagi, Hiroshi; Setou, Mitsutoshi . E-mail: setou@nips.ac.jp

    2006-11-24

    The osmolarity of body fluid is strictly controlled through the action of diuretic hormones, which are secreted in the hypothalamus. In the mammalian brain, ubiquitin-like 5 (UBL5) is expressed in oxytocin- and vasopressin-positive neurons in the hypothalamus, and these neurons play a role in regulating osmolarity. We examined the dynamics of UBL5 levels in response to hyper- or hypo-osmotic conditions. Hypo-osmotic conditions led to significantly reduced levels of UBL5 both in brain slices from the hypothalamus and in NIH-3T3 cells. This decrease in UBL5 was transcription-independent and proteasome-dependent. Time-course immunocytochemical studies using exogenous UBL5 revealed that the protein was exported from the nucleus under hypo-osmotic conditions and decreased in a proteasome-dependent manner. This report is the first to describe changes in the intracellular and subcellular localization of UBL5 in response to hypo-osmotic conditions. Our results imply osmoregulation of UBL5.

  15. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals.

    PubMed

    Shu, Lie-Bo; Ding, Wei; Wu, Jin-Hong; Feng, Fang-Jun; Luo, Li-Jun; Mei, Han-Wei

    2010-11-01

    Following the idea of partial root-zone drying (PRD) in crop cultivation, the morphological and physiological responses to partial root osmotic stress (PROS) and whole root osmotic stress (WROS) were investigated in rice. WROS caused stress symptoms like leaf rolling and membrane leakage. PROS stimulated stress signals, but did not cause severe leaf damage. By proteomic analysis, a total of 58 proteins showed differential expression after one or both treatments, and functional classification of these proteins suggests that stress signals regulate photosynthesis, carbohydrate and energy metabolism. Two other proteins (anthranilate synthase and submergence-induced nickel-binding protein) were upregulated only in the PROS plants, indicating their important roles in stress resistance. Additionally, more enzymes were involved in stress defense, redox homeostasis, lignin and ethylene synthesis in WROS leaves, suggesting a more comprehensive regulatory mechanism induced by osmotic stress. This study provides new insights into the complex molecular networks within plant leaves involved in the adaptation to osmotic stress and stress signals. PMID:20977656

  16. Differential osmotic behavior of water components in living skeletal muscle resolved by 1H-NMR.

    PubMed

    Kimura, Masako; Takemori, Shigeru; Yamaguchi, Maki; Umazume, Yoshiki

    2005-08-01

    Using frog sartorius muscle, we observed transverse relaxation processes of (1)H-NMR signals from myowater. The process could be well described by four characteristic exponentials: the extremely slow exponential of relaxation time constant T(2) > 0.4 s, the slow one of T(2) approximately 0.15 s, the intermediate one of 0.03 s < T(2) < 0.06 s, and the rapid one of T(2) < 0.03 s. Addition of isotonic extracellular solution affected only the extremely slow exponential, linearly increasing its amplitude and gradually increasing its T(2) toward that of the bulk solution (1.7 s). Therefore, this exponential should represent extracellular surplus solution independently of the other exponentials. At two thirds to three times the isotonicity, the amplitude of the intermediate exponential showed normal osmotic behavior in parallel with the volume change of the myofilament lattice measured with x-ray diffraction. In the same tonicity range, the amplitude of the rapid exponential showed converse osmotic behavior. Lower tonicities increased the amplitude of only the slow exponential. Studied tonicities did not affect the T(2) values. The distinct osmotic behavior indicated that each characteristic exponential could be viewed as a distinct water group. In addition, the converse osmotic behavior suggested that the rapid exponential would not be a static water layer on the macromolecule surface. PMID:15894647

  17. Design and evaluation of osmotic pump-based controlled release system of Ambroxol Hydrochloride.

    PubMed

    Cheng, Xiongkai; Sun, Min; Gao, Yan; Cao, Fengliang; Zhai, Guangxi

    2011-08-01

    The purpose of the present study was to design and evaluate an osmotic pump-based drug delivery system for controlling the release of Ambroxol Hydrochloride (Amb). Citric acid, lactose and polyethylene glycol 6000 (PEG 6000) were employed as osmotic agents. Surelease EC containing polyethylene glycol 400 (PEG 400) controlling the membrane porosity was used as semi-permeable membrane. The formulation of tablet core was optimized by orthogonal design and evaluated by weighted mark method. The influences of the amount of PEG 400 and membrane thickness on Amb release were investigated. The optimal osmotic pump tablet (OPT) was evaluated in different release media and at different stirring rates. The major release power confirmed was osmotic pressure. The release of Amb from OPT was verified at a rate of approximately zero-order, and cumulative release percentage at 12?h was 92.6%. The relative bioavailability of Amb OPT in rabbits relative to the commercial sustained capsule was 109.6%. Our results showed that Amb OPT could be a practical preparation with a good prospect. PMID:20429827

  18. Phenotypic characterization of Corynebacterium glutamicum under osmotic stress conditions using elementary mode analysis.

    PubMed

    Rajvanshi, Meghna; Venkatesh, K V

    2011-09-01

    Corynebacterium glutamicum, a soil bacterium, is used to produce amino acids such as lysine and glutamate. C. glutamicum is often exposed to osmolality changes in its medium, and the bacterium has therefore evolved several adaptive response mechanisms to overcome them. In this study we quantify the metabolic response of C. glutamicum under osmotic stress using elementary mode analysis (EMA). Further, we obtain the optimal phenotypic space for the synthesis of lysine and formation of biomass. The analysis demonstrated that with increasing osmotic stress, the flux towards trehalose formation and energy-generating pathways increased, while the flux of anabolic reactions diminished. Nodal analysis indicated that glucose-6-phosphate, phosphoenol pyruvate, and pyruvate nodes were capable of adapting to osmotic stress, whereas the oxaloacetic acid node was relatively unresponsive. Fewer elementary modes were active under stress indicating the rigid behavior of the metabolism in response to high osmolality. Optimal phenotypic space analysis revealed that under normal conditions the organism optimized growth during the initial log phase and lysine and trehalose formation during the stationary phase. However, under osmotic stress, the analysis demonstrated that the organism operates under suboptimal conditions for growth, and lysine and trehalose formation. PMID:21132515

  19. Osmotic Effects on the Electrical Properties of Arabidopsis Root Hair Vacuoles in Situ1

    PubMed Central

    Lew, Roger R.

    2004-01-01

    To assess the role of the vacuole in responses to hyperosmotic and hypo-osmotic stress, the electrical properties of the vacuole were measured in situ. A double-barrel micropipette was inserted into the vacuole for voltage clamping. A second double-barrel micropipette was inserted into the cytoplasm to provide a virtual ground that separated the electrical properties of the vacuole from those of the plasma membrane. Osmotic stress causes immediate electrical responses at the plasma membrane (Lew RR [1996] Plant Physiol 97: 2002-2005) and ion flux changes and turgor recovery (Shabala SN, Lew RR [2002] 129: 290-299) in Arabidopsis root cells. In situ, the vacuole also responds rapidly to changes in extracellular osmotic potential. Hyperosmotic treatment caused a very large increase in the ionic conductance of the vacuole. Hypo-osmotic treatment did not affect the vacuolar conductance. In either case, the vacuolar electrical potential was unchanged. Taken in concert with previous studies of changes at the plasma membrane, these results demonstrate a highly coordinated system in which the vacuole and plasma membrane are primed to respond immediately to hyperosmotic stress before changes in gene expression. PMID:14730070

  20. Apoplastic barrier development and water transport in Zea mays seedling roots under salt and osmotic stresses.

    PubMed

    Shen, Jie; Xu, Guoxin; Zheng, Hui Qiong

    2015-01-01

    The development of apoplastic barriers was studied in Zea mays seedling roots grown in hydroculture solution supplemented with 0-200 mM NaCl or 20% polyethylene glycol (PEG). Casparian bands in the endodermis of both NaCl- and PEG-treated roots were observed closer to the root tip in comparison with those of control roots, but the cell wall modifications in the endodermis and exodermis induced by salt and osmotic stresses differed. High salinity induced the formation of a multiseriate exodermis, which ranged from several cell layers to the entire cortex tissue but did not noticeably influence cell wall suberization in the endodermis. In contrast, osmotic stress accelerated suberization in both the endodermis and exodermis, but the exodermis induced by osmotic stress was limited to several cell layers in the outer cortex adjacent to the epidermis. The hydrostatic hydraulic conductivity (Lp) had decreased significantly after 1 day of PEG treatment, whereas in NaCl-treated roots, Lp decreased to a similar level after 5 days of treatment. Peroxidase activity in the roots increased significantly in response to NaCl and PEG treatments. These data indicate that salt stress and osmotic stress have different effects on the development of apoplastic barriers and water transport in Z. mays seedling roots. PMID:24965373

  1. The Relationship of Mucus Concentration (Hydration) to Mucus Osmotic Pressure and Transport in Chronic Bronchitis

    PubMed Central

    Coakley, Raymond D.; Button, Brian; Henderson, Ashley G.; Zeman, Kirby L.; Alexis, Neil E.; Peden, David B.; Lazarowski, Eduardo R.; Davis, C. William; Bailey, Summer; Fuller, Fred; Almond, Martha; Qaqish, Bahjat; Bordonali, Elena; Rubinstein, Michael; Bennett, William D.; Kesimer, Mehmet; Boucher, Richard C.

    2015-01-01

    Rationale: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. Objectives: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. Methods: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. Measurements and Results: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. Conclusions: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis. PMID:25909230

  2. Osmotic water permeability in glycoprotein containing liposomes.

    PubMed

    Neitchev, V Z; Kostadinov, A P

    1987-01-01

    The kinetics of osmotic water permeability in proteoliposomes containing alpha 1-acid glycoprotein was investigated by means of stopped-flow spectrophotometry. A biphasic time-course of scattered light with time was registered. The rate constants calculated from fits to an exponential function in the first phase were proportional to the final medium osmolarity. The apparent second order rate constants Kapp (Osm-1 sec-1) were determined at different glycoprotein concentrations in the original mixture for preparation of proteoliposomes. The value of Kapp at lipid:glycoprotein weight ratio = 1 was plotted in Arrhenius coordinates. The calculated activation energy for water permeation through the lipid bilayer suggests that eventual channel mechanism may be involved due to the presence of glycoprotein molecule in the liposomes. PMID:3431542

  3. Effect of osmotic pressure to bioimpedance indexes of erythrocyte suspensions

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Nikolaev, D. V.; Malahov, M. V.; Smirnov, A. V.

    2012-12-01

    In the paper we studied effects of osmotic modification of red blood cells on bioimpedance parameters of erythrocyte suspension. The Cole parameters: the extracellular (Re) and intracellular (Ri) fluid resistance, the Alpha parameter, the characteristic frequency (Fchar) and the cell membranes capacitance (Cm) of concentrated erythrocyte suspensions were measured by bioimpedance analyser in the frequency range 5 - 500 kHz. Erythrocytes were incubated in hypo-, hyper- and isoosmotic solutions to achieve changes in cell volume. It was found that Re and Alpha increased in the suspensions with low osmolarity and decreased in the hypertonic suspensions. Ri, Fchar and Cm were higher in the hyperosmotic and were lower in the hypoosmotic suspensions. Correlations of all BIS parameters with MCV were obtained, but multiple regression analysis showed that only Alpha parameter was independently related to MCV (β=0.77, p=0.01). Thus Alpha parameter may be related the mean corpuscular volume of cells.

  4. Ecophysiology of invasive plants: osmotic adjustment and antioxidants.

    PubMed

    Pintó-Marijuan, Marta; Munné-Bosch, Sergi

    2013-12-01

    Current research into plant invasiveness often attempts to predict the effect of invasions under future climate change, but most studies only focus on ecological aspects. Understanding ecophysiological responses by characterizing physiological markers such as osmotic adjustment or antioxidant protection indicators will help us to project future invasiveness patterns. In this opinion article, we highlight how the information from physiological measurements can be incorporated into effective management strategies. Furthermore, we propose how combining research strategies of physiologists and ecologists could speed up our understanding of the advantageous mechanisms adopted by invasive species. We suggest that a combined approach would also be of considerable benefit for the development of effective governmental biodiversity conservation policies. PMID:24001766

  5. Solute coupled diffusion in osmotically driven membrane processes.

    PubMed

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process. PMID:19764248

  6. Atrial natriuretic peptide mediates oxytocin secretion induced by osmotic stimulus.

    PubMed

    Chriguer, Rosengela S; Antunes-Rodrigues, José; Franci, Celso R

    2003-02-15

    Atrial natriuretic peptide (ANP), first discovered in the heart, has been also detected in various brain regions involved in the control of cardiovascular function and water and sodium balance. The anteroventral region of the third ventricle (AV3V) and the subfornical organ (SFO) have ANP-immunoreactive projections towards the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Extracellular fluid (ECF) hyperosmolality stimulates the secretion of oxytocin (OT) which induces ANP release by the atrium. On the other hand, passive immunoneutralization of ANP reduces OT secretion in response to ECF hypertonicity. Previous studies have shown the co-localization of ANP and OT in PVN and SON neurons and in the periventricular region, as well as the presence of ANPergic and oxytocinergic neurons in the median eminence. The aim of the present study was to investigate the OT and ANP content in the SON and PVN of the hypothalamus and in the posterior pituitary (PP) after an osmotic stimulus that induces OT secretion. The results showed that intracerebroventricular microinjection of normal rabbit serum (NRS) or of ANP antiserum followed or not by an intraperitoneal injection of isotonic saline did not alter OT secretion or OT content in the PVN, SON, and PP; passive ANP immunoneutralization reduced the basal content of ANP in the PVN, SON, and PP of animals in a situation of isotonicity; the ANP antiserum inhibited the increase of OT secretion and content of OT and ANP in the PVN, SON and PP induced by the osmotic stimulus. Thus, the increase in plasma OT and oxytocinergic neurons of the hypothalamus-posterior pituitary system in response to hypertonicity depends on the action of endogenous ANP, i.e., ECF hypertonicity must activate ANPergic neurons which directly or indirectly stimulate OT release. PMID:12576148

  7. OSMOTIC PROPERTIES OF THE EGG CELLS OF THE OYSTER (OSTREA VIRGINICA).

    PubMed

    Lucké, B; Ricca, R A

    1941-11-20

    INVESTIGATIONS OF THE OSMOTIC PROPERTIES OF OYSTER EGGS BY A DIFFRACTION METHOD FOR MEASURING VOLUMES HAVE LED TO THE FOLLOWING CONCLUSIONS: 1. The product of cell volume and osmotic pressure is approximately constant, if allowance is made for osmotically inactive cell contents (law of Boyle-van't Hoff). The space occupied by osmotically inactive averages 44 per cent of cell volume. 2. Volume changes over a wide range of pressures are reversible, indicating that the semipermeability of the cell during such changes remains intact. 3. The kinetics of endosmosis and of exosmosis are described by the equation, See PDF for Equation, where dV is rate of volume change; S, surface area of cell, (P-P(e)), the difference in osmotic pressure between cell interior and medium, and K, the permeability of the cell to water. 4. Permeability to water during endosmosis is 0.6micro(3) of water per minute, per square micron of cell surface, per atmosphere of pressure. The value of permeability for exosmosis is closely the same; in this respect the egg cell of the oyster appears to be a more perfect osmometer than the other marine cells which have been studied. Permeability to water computed by the equation given above is in good agreement with computations by the entirely different method devised by Jacobs. 5. Permeability to diethylene glycol averages 27.2, and to glycerol 20.7. These values express the number of mols x 10(-15) which enter per minute through each square micron of cell surface at a concentration difference of 1 mol per liter and a temperature of 22.5 degrees C. 6. Values for permeability to water and to the solutes tested are considerably higher for the oyster egg than for other forms of marine eggs previously examined. 7. The oyster egg because of its high degree of permeability is a natural osmometer particularly suitable for the study of the less readily penetrating solutes. PMID:19873267

  8. Osmotically regulated transport of proline by Lactobacillus acidophilus IFO 3532.

    PubMed

    Jewell, J B; Kashket, E R

    1991-10-01

    We reported previously that, when exposed to high osmotic pressure, Lactobacillus acidophilus IFO 3532 cells accumulated N,N,N-trimethylglycine (glycine betaine), which serves as a compatible intracellular solute. When grown in medium with high osmotic pressure, these cells also accumulated one amino acid, proline. The uptake of [3H]proline by resting, glucose-energized cells was stimulated by increasing the osmotic pressure of the assay medium with 0.5 to 1.0 M KCl, 1.0 M NaCl, or 0.5 M sucrose. The accumulated [3H]proline was not metabolized further. In contrast, there was no osmotic stimulation of [3H]leucine uptake. The uptake of proline was activated rather than induced by exposure of the cells to high osmotic pressure. Only one proline transport system could be discerned from kinetics plots. The affinity of the carrier for proline remained constant over a range of osmotic pressures from 650 to 1,910 mosM (Kt, 7.8 to 15.5 mM). The Vmax, however, increased from 15 nmol/min/mg of dry weight in 0.5 M sucrose to 27 and 40 nmol/min/mg of dry weight in 0.5 M KCl and in 1.0 M KCl or NaCl, respectively. The efflux of proline from preloaded cells occurred rapidly when the osmotic pressure of the suspending buffer was lowered. PMID:1786048

  9. Optical changes in unilamellar vesicles experiencing osmotic stress.

    PubMed Central

    White, G; Pencer, J; Nickel, B G; Wood, J M; Hallett, F R

    1996-01-01

    Membrane properties that vary as a result of isotropic and transmembrane osmolality variations (osmotic stress) are of considerable relevance to mechanisms such as osmoregulation, in which a biological system "senses" and responds to changes in the osmotic environment. In this paper the light-scattering behavior of a model system consisting of large unilamellar vesicles of dioleoyl phosphatidyl glycerol (DOPG) is examined as a function of their osmotic environment. Osmotic downshifts lead to marked reductions in the scattered intensity, whereas osmotic upshifts lead to strong intensity increases. It is shown that these changes in the scattering intensity involve changes in the refractive index of the membrane bilayer that result from an alteration in the extent of hydration and/or the phospholipid packing density. By considering the energetics of osmotically stressed vesicles, and from explicit analysis of the Rayleigh-Gans-Debye scattering factors for spherical and ellipsoidal shells, we quantitatively demonstrate that although changes in vesicle volume and shape can arise in response to the imposition of osmotic stress, these factors alone cannot account for the observed changes in scattered intensity. PMID:8913607

  10. Interstitial Fluid Colloid Osmotic Pressure in Healthy Children

    PubMed Central

    Guthe, Hans Jørgen Timm; Indrebø, Marianne; Nedrebø, Torbjørn; Norgård, Gunnar; Wiig, Helge; Berg, Ansgar

    2015-01-01

    Objective The colloid osmotic pressure (COP) of plasma and interstitial fluid play important roles in transvascular fluid exchange. COP values for monitoring fluid balance in healthy and sick children have not been established. This study set out to determine reference values of COP in healthy children. Materials and Methods COP in plasma and interstitial fluid harvested from nylon wicks was measured in 99 healthy children from 2 to 10 years of age. Nylon wicks were implanted subcutaneously in arm and leg while patients were sedated and intubated during a minor surgical procedure. COP was analyzed in a colloid osmometer designed for small fluid samples. Results The mean plasma COP in all children was 25.6 ± 3.3 mmHg. Arbitrary division of children in four different age groups, showed no significant difference in plasma or interstitial fluid COP values for patients less than 8 years, whereas patients of 8-10 years had significant higher COP both in plasma and interstitial fluid. There were no gender difference or correlation between COP in interstitial fluid sampled from arm and leg and no significant effect on interstitial COP of gravity. Prolonged implantation time did not affect interstitial COP. Conclusion Plasma and interstitial COP in healthy children are comparable to adults and COP seems to increase with age in children. Knowledge of the interaction between colloid osmotic forces can be helpful in diseases associated with fluid imbalance and may be crucial in deciding different fluid treatment options. Trial Registration ClinicalTrials.gov NCT01044641 PMID:25853713

  11. Self-assembly of silk fibroin under osmotic stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  12. Investigation of the Effects of Extracellular Osmotic Pressure on Morphology and Mechanical Properties of Individual Chondrocyte.

    PubMed

    Nguyen, Trung Dung; Oloyede, Adekunle; Singh, Sanjleena; Gu, YuanTong

    2016-06-01

    It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic force microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate-dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young's modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young's modulus. Moreover, using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality. PMID:26831866

  13. Effect of osmotic pressure in the solvent extraction phase on BSA release profile from PLGA microspheres.

    PubMed

    Jiang, Ge; Thanoo, B C; DeLuca, Patrick P

    2002-11-01

    This study investigated the influence of osmotic pressure in the organic solvent extraction phase on release profile of bovine serum albumin (BSA) from poly(lactide-co-glycolide) (PLGA) microspheres. BSA-loaded PLGA microspheres with a target load of 10% were prepared by a double emulsion phase separation method. All the microsphere batches were fabricated in the same conditions except that in the organic solvent (CH2Cl2) evaporation step. Different concentrations of NaCl (0, 1.8, and 3.6%) or sucrose (20%) were used to generate a range of osmotic pressures in the extraction aqueous phase. These microspheres were characterized for incorporation efficiency, surface and internal morphology, particle size, protein stability, and in vitro release. The microspheres were spherical with particle size ranging from 16.8 to 27.8 microns. Higher osmotic pressure resulted in a denser internal structure although similar nonporous surface morphology was observed with all batches. No significant difference in encapsulation efficiency existed from batch to batch (87-94%). Sodium dodecyl sulfate-polyamide gel electrophoresis showed that BSA integrity was well retained. The release profile of the batch prepared with only water as the continuous (solvent extraction) phase exhibited a 79% burst release in the first 24 hr followed by a plateau and then a little release after 21 days. In the presence of NaCl or sucrose, the burst effect significantly decreased with increase in osmotic pressure in the extraction aqueous phase, which was then followed by sustained release for 35 days. A mass balance was made when the release terminated. Therefore, in the organic solvent extraction and evaporation step, increasing the osmotic pressure in the aqueous phase both reduced the burst release from the microspheres and improved the subsequent sustained release profile. PMID:12503521

  14. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. PMID:27107175

  15. Membrane permeability characteristics and osmotic tolerance limits of sea urchin (Evechinus chloroticus) eggs.

    PubMed

    Adams, Serean L; Kleinhans, F W; Mladenov, Philip V; Hessian, Paul A

    2003-08-01

    Development of effective cryopreservation protocols relies on knowledge of the fundamental cryobiological characteristics for a particular cell type. These characteristics include osmotic behaviour, membrane permeability characteristics, and osmotic tolerance limits. Here, we report on measures of these characteristics for unfertilized and fertilised eggs of the sea urchin (Evechinus chloroticus). In NaCl solutions of varying osmolalities, sea urchin eggs behaved as ideal linear osmometers. The osmotically inactive volume (vb) was similar for unfertilized and fertilised eggs, 0.367+/-0.008 (mean+/-SE) and 0.303+/-0.007, respectively. Estimates of water solubility (Lp) and solute permeability (Ps) and their respective activation energies (Ea) for unfertilized and fertilised eggs were determined following exposure to cryoprotectant (CPA) solutions at different temperatures. Irrespective of treatment, fertilised eggs had higher values of Lp and Ps. The presence of a CPA decreased Lp. Among CPAs, solute permeability was highest for propylene glycol followed by dimethyl sulphoxide and then ethylene glycol. Measures of osmotic tolerance limits of the eggs revealed unfertilized eggs were able to tolerate volumetric changes of -20% and +30% of their equilibrium volume; fertilised eggs were able to tolerate changes +/-30%. Using membrane permeability data and osmotic tolerance limits, we established effective methods for loading and unloading CPAs from the eggs. The results of this study establish cryobiological characteristics for E. chloroticus eggs of use for developing an effective cryopreservation protocol. The approach we outline can be readily adapted for determining cryobiological characteristics of other species and cell types, as an aid to successful cryopreservation. PMID:12963407

  16. Osmotic characteristics and fertility of murine spermatozoa collected in different solutions.

    PubMed

    Si, Wei; Men, Hongsheng; Benson, James D; Critser, John K

    2009-02-01

    Osmotic stress is an important factor that can result in cell damage during cryopreservation. Before ejaculation or collection for cryopreservation, murine spermatozoa are stored in epididymal fluid, a physiologically hyperosmotic environment (approximately 415 mmol/kg). The objectives of this study were to determine the osmotic tolerance limits of sperm motion parameters of ICR and C57BL/6 mouse spermatozoa collected in isosmotic (290 mmol/kg) and hyperosmotic (415 mmol/kg) media, and the effect of the osmolality of sperm collection media on sperm fertility after cryopreservation. Our results indicate that murine spermatozoa collected in media with different osmolalities (290 and 415 mmol/kg Dulbecco's phosphate buffered saline (DPBS)) appeared to have different osmotic tolerances for the maintenance of sperm motility and other motion parameters in both mouse strains. The hypo- and hyperosmotic treatments decreased motility and affected other motion parameters of spermatozoa collected in 290 mmol/kg DPBS. The extent of the change of motion parameters after treatments corresponded with the levels of osmotic stress. However, for spermatozoa collected in 415 mmol/kg DPBS, exposure to 290 mmol/kg DPBS tended to increase sperm motility and the quality of their motion parameters. The osmolality of sperm collection medium can affect murine sperm fertility. Spermatozoa collected in 415 mmol/kg medium showed higher fertility compared with spermatozoa collected in 290 mmol/kg as assessed by IVF. Results characterizing murine sperm osmotic tolerance collected in media with different osmolalities from different strains and the effect of collection media osmolality on sperm fertility after cryopreservation will be useful in designing cryopreservation protocols. PMID:19028924

  17. Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet.

    PubMed

    Qin, Chao; He, Wei; Zhu, Chunli; Wu, Mengmeng; Jin, Zhu; Zhang, Qiang; Wang, Guangji; Yin, Lifang

    2014-05-15

    The marketed compound tablet of metformin hydrochloride (MH) and repaglinide (RG) exhibits perfect multidrug therapeutic effect of type 2 diabetes. However, due to the short half life of the drugs, the tablet has to be administered 2 to 3 times a day, causing inconvenience to patient and fluctuations of plasma concentration. Here, a sandwiched osmotic pump tablet was developed to deliver the two drugs simultaneously at zero-order rate, in which MH and RG were loaded in different layers separated by a push layer. The osmotic pump tablet was prepared by a combination of three tableting procedure and film coating method. The factors including type and amount of propellant, osmotic active agents, amount of porogenic agent, coating weight, orifice diameter were optimized. The pharmacokinetic study was performed in beagle dogs, and the drug concentration in plasma samples was assayed by HPLC-MS/MS method. Simultaneous, controlled release of MH and RG in the first 12 and 8h was achieved from the optimized formulation. A significantly decreased Cmax, prolonged Tmax and satisfactory bioavailability of the osmotic pump tablet were obtained, and a good in vivo-in vitro correlation of the two drugs was also established. In summary, the sandwiched osmotic pump tablet released the MH and RG simultaneously at zero-order rate, and exhibited significant sustained release effect in vivo and good in vivo-in vitro correlation. The designed controlled release system for MH and RG proposed a promising replacement for the marked compound product in the therapy of type 2 diabetes. PMID:24607209

  18. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    SciTech Connect

    Wullschleger, S.D. ); Oosterhuis, D.M. )

    1991-09-01

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leaf water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.

  19. Role of spinal V1a receptors in regulation of arterial pressure during acute and chronic osmotic stress.

    PubMed

    Veitenheimer, Britta; Osborn, John W

    2011-02-01

    Vasopressinergic neurons in the paraventricular nucleus project to areas in the spinal cord from which sympathetic nerves originate. This pathway is hypothesized to be involved in the regulation of mean arterial pressure (MAP), particularly under various conditions of osmotic stress. Several studies measuring sympathetic nerve activity support this hypothesis. However, the evidence that spinal vasopressin influences MAP under physiological or pathophysiological conditions in conscious animals is limited. The purpose of this study was to investigate, in conscious rats, if the increases in MAP during acute or chronic osmotic stimuli are due to activation of spinal vasopressin (V1a) receptors. Three conditions of osmotic stress were examined: acute intravenous hypertonic saline, 24- and 48-h water deprivation, and 4 wk of DOCA-salt treatment. Rats were chronically instrumented with an indwelling catheter for intrathecal injections and a radiotelemeter to measure MAP. In normotensive rats, intrathecal vasopressin and V1a agonist increased MAP, heart rate, and motor activity; these responses were blocked by pretreatment with an intrathecal V1a receptor antagonist. However, when the intrathecal V1a antagonist was given during the three conditions of osmotic stress to investigate the role of "endogenous" vasopressin, the antagonist had no effect on MAP, heart rate, or motor activity. Contrary to the hypothesis suggested by previous studies, these findings indicate that spinal V1a receptors are not required for elevations of MAP under conditions of acute or chronic osmotic stress in conscious rats. PMID:21123759

  20. Impact of osmotic stress on volume regulation, cytoplasmic solute composition and lysine production in Corynebacterium glutamicum MH20-22B.

    PubMed

    Rönsch, Hendrik; Krämer, Reinhard; Morbach, Susanne

    2003-09-01

    The response of the L-lysine producing Corynebacterium glutamicum strain MH20-22B to osmotic stress was studied in batch cultures. To mimic the conditions during a fermentation process the long term adaptation of cells subjected to a constant osmotic stress between 1.0 and 2.5 osM was investigated. Cytoplasmic water content and volume of C. glutamicum cells were found to depend on growth phase, extent of osmotic stress and availability of betaine. The maximal cytoplasmic volumes, which were highest at maximal growth rate, were linearily related to osmotic stress, whereas in stationary cells no active volume regulation was observed. Under severe osmotic stress proline was the prominent compatible solute in growing cells. Uptake of betaine, if available in the medium, reduced the concentration of proline from 750 to 300 mM, indicating that uptake of compatible solutes is preferred to synthesis. Furthermore, betaine was shown to have a higher efficiency to counteract osmotic stress, since the overall concentration of compatible solutes was lower in the presence of betaine. Under severe osmotic stress, the addition of betaine shifted L-lysine production in MH20-22B to earlier fermentation times and increased both product concentration and yield in these phases, but did not improve the final L-lysine yield. PMID:12948632

  1. Phenotypic variation and quantitative trait locus identification for osmotic potential in an interspecific hybrid inbred F2 poplar pedigree grown in contrasting environments

    SciTech Connect

    Tschaplinski, Timothy J; Tuskan, Gerald A; Sewell, Mitchell; Gebre, G; Todd Jr, Donald E; Pendley, Carrie D

    2006-01-01

    Elucidation of the mechanisms of dehydration tolerance in popular (Populus sp.) trees will permit development of biochemical and molecular indicators to indentify dehydration-tolerant genotypes during genetic selection. The objectives of the study were to characterize the degree of phenotypic variation in osmotic potential (a determinant of dehydration tolerance), determine the relationship between osmotic potential at full turgor and relative growth rate, and identify quantitative trait loci (QTL) for osmotic potential in an advanced-generation, interpsecific popular pedigree established in contrasting environments.

  2. Comparative analysis of induction of osmotic-stress-dependent genes in Vibrio vulnificus exposed to hyper- and hypo-osmotic stress.

    PubMed

    Rao, Namrata V; Shashidhar, Ravindranath; Bandekar, Jayant R

    2013-05-01

    Vibrio vulnificus, a halophilic pathogenic bacterium of marine environments, encounters changes in salinity in its natural habitat and in the food-processing environment. The comparative response of V. vulnificus to hyperosmotic and hypoosmotic stress in terms of gene expression was investigated. Genes belonging to the proU operon for transport of compatible solutes and compatible solute synthesis were significantly upregulated (3- to 4.7-fold) under hyperosmotic stress. Under hypoosmotic stress, upregulation of genes coding for mechanosensitive channels of small conductance (mscS) was not observed. In hyperosmotic conditions a 2.3-fold decrease in the expression of aqpZ was observed. A 2-fold induction in gyrA was observed in V. vulnificus cells on exposure to hyperosmotic stress. groEL genes, VVA1659 (1.6-fold), and VV3106 (1-fold) were induced in hypoosmotic condition. Results of this study indicate that to manage hyperosmotic stress, V. vulnificus accumulated osmoprotectants through uptake or through endogenous synthesis of compatible solutes. Expression of mscS may not be necessary for immediate protection in cells exposed to hyper- and hypo-osmotic stress. Comparative analysis of important osmotic-stress-related genes showed up- or down-regulation of 14 genes in hyperosmotic stress as compared with up- or down-regulation of only 7 genes in hypoosmotic stress, indicating that the cells respond asymmetrically to hyper- and hypo-osmotic stress. PMID:23647346

  3. Physiological and genetic responses of bacteria to osmotic stress.

    PubMed Central

    Csonka, L N

    1989-01-01

    The capacity of organisms to respond to fluctuations in their osmotic environments is an important physiological process that determines their abilities to thrive in a variety of habitats. The primary response of bacteria to exposure to a high osmotic environment is the accumulation of certain solutes, K+, glutamate, trehalose, proline, and glycinebetaine, at concentrations that are proportional to the osmolarity of the medium. The supposed function of these solutes is to maintain the osmolarity of the cytoplasm at a value greater than the osmolarity of the medium and thus provide turgor pressure within the cells. Accumulation of these metabolites is accomplished by de novo synthesis or by uptake from the medium. Production of proteins that mediate accumulation or uptake of these metabolites is under osmotic control. This review is an account of the processes that mediate adaptation of bacteria to changes in their osmotic environment. PMID:2651863

  4. Exposure to ozone and erythrocyte osmotic resistance in the rat

    SciTech Connect

    Ikemi, Y.; Ohmori, K.; Ito, T.; Osaka, F.; Matuura, Y. )

    1992-10-01

    In order to learn the biological effect of photochemical oxidants on living bodies, we exposed newborn and adult rats, of both sexes, to ozone at a concentration of 0.25 ppm, which can be encountered in an urban environment, and then measured the osmotic resistance of their erythrocytes. The results of experiments using newborn rats indicated a positive increase in the osmotic resistance of erythrocytes in whole blood following ozone exposure for 4 weeks. An increase in the osmotic resistance of erythrocytes in the top part obtained by centrifugation was observed following ozone exposure for 12 weeks. This tendency was especially evident among male rats. On the other hand, no increase in the osmotic resistance of erythrocytes was recognized in the adult animals which had been exposed to the same concentration of ozone for 18 months.

  5. Experimental Support for a Predictive Osmotic Model of Clay Membranes

    SciTech Connect

    Fritz, S.J.

    2001-08-29

    Osmosis has been cited as a mechanism for explaining anomalously high fluid pressures in the subsurface. Clays and shales act as membranes, and osmotic flux across these units may result in pressures sufficiently high to explain these anomalies. The theoretical osmotic pressures as calculated solely from solution properties can be quite large; however, it is not yet resolved whether these geologic membranes are sufficiently ideal to generate such pressures.

  6. An experimental approach to assess Corbicula fluminea (Müller, 1774) resistance to osmotic stress in estuarine habitats

    NASA Astrophysics Data System (ADS)

    Ferreira-Rodríguez, Noé; Pardo, Isabel

    2016-07-01

    Corbicula fluminea arrived in the Miño Estuary in 1989 and, from there, colonized more than 150 km upstream. Our aim was to test the capacity of C. fluminea to cope with osmotic stress conditions previously to invade new freshwater habitats through estuaries. Based on previously collected information, the experiment aims to study the response of the species to marine osmotic stress, evaluated by survival and behaviour. Experiments determined the resistance by the species to various levels of osmotic stress, and recovery time after exposure to high salinity levels, representative of the temporal and spatial salinity variation existing in the estuary. Under osmotic stress the semi-maximum response was reached after 19 days exposure. The species tolerance range, measured by individual maintained activity, was at salinity ∼20 when exposed to winter temperatures, while when animals were exposed to summer ones its tolerance was reduced to salinity lower than 15. C. fluminea show a large physiological flexibility to cope with salinity variations in estuaries. In summer, the temperature increases the metabolic rate thus making the species more vulnerable to osmotic stress exposure. These findings are relevant to preventing new invasions through ship ballast waters ensuring complete mortality if individuals are retained for >26 days.

  7. Comparative Analysis on the Key Enzymes of the Glycerol Cycle Metabolic Pathway in Dunaliella salina under Osmotic Stresses

    PubMed Central

    Chen, Hui; Lu, Yan; Jiang, Jian-Guo

    2012-01-01

    The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. salina and their activity changes under various salt stresses were investigated, from which glycerol metabolic flow direction in the glycerol metabolic pathway was estimated. Results showed that the salinity changes had different effects on the enzymes activities. NaCl could stimulate the activities of all the four enzymes in various degrees when D. salina was grown under continuous salt stress. When treated by hyperosmotic or hypoosmotic shock, only the activity of G3pdh in D. salina was significantly stimulated. It was speculated that, under osmotic stresses, the emergency response of the cycle pathway in D. salina was driven by G3pdh via its response to the osmotic stress. Subsequently, with the changes of salinity, other three enzymes started to respond to osmotic stress. Dhar played a role of balancing the cycle metabolic pathway by its forward and backward reactions. Through synergy, the four enzymes worked together for the effective flow of the cycle metabolic pathways to maintain the glycerol requirements of cells in order to adapt to osmotic stress environments. PMID:22675484

  8. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress

    PubMed Central

    Hu, Xiuli; Li, Nana; Wu, Liuji; Li, Chunqi; Li, Chaohai; Zhang, Li; Liu, Tianxue; Wang, Wei

    2015-01-01

    Abscisic acid (ABA) regulates various developmental processes and stress responses in plants. Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to 4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723 non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a vital role in regulating these pathways related to mRNA synthesis, protein synthesis and photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or dephosphorylation cascades. PMID:26503333

  9. Compression and lubrication of salt free polyelectrolyte microgel particles in highly compressed suspensions by counterion osmotic pressure

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2015-06-01

    The compression of polyelectrolyte microgel particles in a salt-free highly compressed colloid due to osmotic pressure outside of the particles due to counterions located there is studied for a model based on a quasi-analytic solution of the Poisson-Boltzmann equation and a model for the gel elasticity based on counterion osmotic pressure inside the particles and polymer elasticity (of entropic origin). It is found that for particles of radius of the order of a tenth of a micron, the counterion osmotic pressure should play a significant role in the compression of the particles, especially particles which do not have a corona (i.e., nonlinked polymer chains attached to their surface). The presence of a corona of monomer density smaller than that of the core of the microgel reduces the contribution of the osmotic pressure due to counterions outside of the microgel. It is also demonstrated that counterion osmotic pressure outside the particles can provide a significant contribution to the lubrication of the interface between the particles and a surface along which the compressed colloid is made to slide, for sufficiently slow velocities.

  10. Establishment of HEK293 cell line expressing green fluorescent protein-aquaporin-1 to determine osmotic water permeability.

    PubMed

    Gao, Junwei; Yu, Heming; Song, Qianliu; Li, Xuejun

    2005-07-01

    Aquaporin (AQP) is a kind of channel-forming membrane glycoprotein that mediates osmotic water transport. The present study aimed to establish a cell line stably transfected with AQP1 to measure osmotic water permeability. The recombinant plasmid was constructed by subcloning the full-length rat AQP1 cDNA into pEGFP-C3 vector, named pEGFP/AQP1. Human embryonic kidney 293 cells were transfected with pEGFP/AQP1 and selected by G418 to obtain a cell line stably expressing AQP1 tagged with green fluorescent protein. The expression level of AQP1 in the stably transfected cell was detected by reverse transcription polymerase chain reaction and Western blot. The real-time change of fluorescence density, corresponding to cell swelling induced by hyposmotic solution, was recorded under confocal laser scanning microscope and used to assess osmotic water permeability. The typical AQP1 inhibitor, mercuric chloride, validated this osmotic water permeability assay. These results suggested that this transfected cell model could be conveniently used to determine osmotic water permeability. PMID:15958180

  11. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    NASA Astrophysics Data System (ADS)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  12. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress?

    PubMed

    Booth, I R; Higgins, C F

    1990-06-01

    Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration. PMID:1974769

  13. Effects of a High Magnetic Field at Different Osmotic Pressures and Temperatures on Multiplication of Saccharomyces cerevisiae

    PubMed Central

    Van Nostran, F. E.; Reynolds, R. J.; Hedrick, H. G.

    1967-01-01

    The application of a yeast as a biosystem for determining the effects of a high magnetic field and other physical phenomena was studied. Multiplication of Saccharomyces cerevisiae was observed during exposure to a magnetic field of 4,600 gauss. Cell populations were determined at 24-, 48-, and 72-hr intervals, and possible interactions between the magnetic field and other environmental parameters, such as time, temperature, and osmotic pressure, were considered statistically. The main effect of the high magnetic field was a significant reduction of cell multiplication during each time interval. Significant interactions were found to occur between temperature and the magnetic field at 24 hr, and between temperature and osmotic pressure at each sampling interval. Synergistic effects of the magnetic field and osmotic pressure at both 28 and 38 C were nonsignificant. PMID:6035047

  14. Optical control of electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Kirei, Huba; Der, Andras; Oroszi, Laszlo; Ferencz, Karpat; Rakovics, Vilmos; Ormos, Pal

    2005-08-01

    Electro-osmotic pumping is an efficient way to move fluids in microfluidic systems. It is driven by the interaction of the Debye layer formed in the vicinity of the charged channel wall with a tangential electric field. The key parameters that determine the flow properties are the zeta potential of the surface and the electric field that drives the flow. Consequently, the flow can be controlled by appropriately modifying these parameters. Controlling the charge on the channel wall makes it possible to modify fluid flow. Likewise, the electric field close to the surface can be modified by changing the conductivity of the surface. The surface charge of appropriate materials can be changed by light illumination: the application of this phenomenon offers the possibility to optically control flow parameters. We have tested this possibility with several light sensitive surfaces. In the class of materials that change their charge upon illumination TiO2, a well known photoactive material was investigated. Experiments were also performed with the protein bacteriorhodopsin, known to change its surface charge following the release of protons into the solvent upon illumination. CdS was tested as the photoconductive material to modify the electric field by light. Linear microfluidic channels were prepared by soft lithography: a PDMS mold was placed upon a planar glass surface so that a rectangular cross section channel was formed upon the glass. The photosensitive materials covered the bottom glass surface. The experiments show that the flow can be readily modulated by illumination. The results demonstrate that it is possible to dynamically control microfluidic flow, opening up the prospect to create optically controlled complex microfluidic networks.

  15. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials.

    PubMed

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell-burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition--resulting from a well-coordinated sequence of mechanochemical events--suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. PMID:25318069

  16. Osmotic swelling of hepatocytes increases membrane conductance but not membrane capacitance.

    PubMed Central

    Graf, J; Rupnik, M; Zupancic, G; Zorec, R

    1995-01-01

    We have used the whole-cell patch-clamp technique to study changes in membrane conductance and membrane capacitance after osmotic swelling in rat hepatocytes. Hypoosmotic solutions induced an instantaneous increase in the volume of patch-clamped cells that was followed by a slow decline reminiscent of regulatory volume decrease as seen in intact cells. These morphological changes were associated with a transient increase in membrane conductance. The rise in conductance was not correlated with changes in capacitance, neither in time after the initiation of cell swelling nor in magnitude. Therefore we conclude that an osmotically induced increase in conductance is probably a result of the activation of existent channels in the plasmalemma and not a result of the fusion of vesicle membrane containing ionic channels. Images FIGURE 1 PMID:7540428

  17. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    PubMed Central

    2011-01-01

    Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional

  18. Structure and osmotic pressure of ionic microgel dispersions

    SciTech Connect

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-21

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.

  19. Ionic Origin of Electro-osmotic Flow Hysteresis.

    PubMed

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-01-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field. PMID:26923197

  20. Osmotic adjustment and requirement for sodium in marine protist thraustochytrid.

    PubMed

    Shabala, Lana; McMeekin, Tom; Shabala, Sergey

    2009-07-01

    A non-invasive ion-selective microelectrode technique was used to elucidate the ionic mechanisms of osmotic adjustment in a marine protist thraustochytrid. Hypoosmotic stress caused significant efflux of Na(+), Cl(-) and K(+) from thraustochytrid cells. Model calculations showed that almost complete osmotic adjustment was achieved within the first 30 min after stress onset. Of these, sodium was the major contributor (more than half of the total osmotic adjustment), with chloride being the second major contributor. The role of K(+) in the process of osmotic adjustment was relatively small. Changes in Ca(2+) and H(+) flux were attributed to intracellular signalling. Ion flux data were confirmed by growth experiments. Thraustochytrium cells showed normal growth patterns even when grown in a sodium-free solution provided the medium osmolality was adjusted by mannitol to one of the seawater. That suggests that the requirement of sodium for thraustochytrid growth cycle is due to its role in cell osmotic adjustment rather than because of the direct Na(+) involvement in cell metabolism. Altogether, these data demonstrate the evidence for turgor regulation in thraustochytrids and suggest that these cells may be grown in the absence of sodium providing that cell turgor is adjusted by some other means. PMID:20849566

  1. Structure and osmotic pressure of ionic microgel dispersions

    NASA Astrophysics Data System (ADS)

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-01

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model's limits in predicting osmotic pressures of salty dispersions.

  2. Osmotic water transport in aquaporins: evidence for a stochastic mechanism

    PubMed Central

    Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna

    2013-01-01

    We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676

  3. Modelling of mass transfer kinetic in osmotic dehydration of kiwifruit

    NASA Astrophysics Data System (ADS)

    Jabrayili, Sharokh; Farzaneh, Vahid; Zare, Zahra; Bakhshabadi, Hamid; Babazadeh, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel S.

    2016-04-01

    Osmotic dehydration characteristics of kiwifruit were predicted by different activation functions of an artificial neural network. Osmotic solution concentration (y1), osmotic solution temperature (y2), and immersion time (y3) were considered as the input parameters and solid gain value (x1) and water loss value (x2) were selected as the outlet parameters of the network. The result showed that logarithm sigmoid activation function has greater performance than tangent hyperbolic activation function for the prediction of osmotic dehydration parameters of kiwifruit. The minimum mean relative error for the solid gain and water loss parameters with one hidden layer and 19 nods were 0.00574 and 0.0062% for logarithm sigmoid activation function, respectively, which introduced logarithm sigmoid function as a more appropriate tool in the prediction of the osmotic dehydration of kiwifruit slices. As a result, it is concluded that this network is capable in the prediction of solid gain and water loss parameters (responses) with the correlation coefficient values of 0.986 and 0.989, respectively.

  4. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules.

    PubMed

    Carpi-Medina, P; González, E; Whittembury, G

    1983-05-01

    Cell osmotic water permeability, Pcos, of the peritubular aspect of the proximal convoluted tubule (PCT) was measured from the time course of cell volume changes subsequent to the sudden imposition of an osmotic gradient, delta Cio, across the cell membrane of PCT that had been dissected and mounted in a chamber. The possibilities of artifact were minimized. The bath was vigorously stirred, the solutions could be 95% changed within 0.1 s, and small osmotic gradients (10-20 mosM) were used. Thus, the osmotically induced water flow was a linear function of delta Cio and the effect of the 70-microns-thick unstirred layers was negligible. In addition, data were extrapolated to delta Cio = 0. Pcos for PCT was 41.6 (+/- 3.5) X 10(-4) cm3 X s-1 X osM-1 per cm2 of peritubular basal area. The standing gradient osmotic theory for transcellular osmosis is incompatible with this value. Published values for Pcos of PST are 25.1 X 10(-4), and for the transepithelial permeability Peos values are 64 X 10(-4) for PCT and 94 X 10(-4) for PST, in the same units. These results indicate that there is room for paracellular water flow in both nephron segments and that the magnitude of the transcellular and paracellular water flows may vary from one segment of the proximal tubule to another. PMID:6846543

  5. Ionic Origin of Electro-osmotic Flow Hysteresis

    PubMed Central

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-01-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field. PMID:26923197

  6. Ionic Origin of Electro-osmotic Flow Hysteresis

    NASA Astrophysics Data System (ADS)

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong

    2016-02-01

    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field.

  7. Theoretical and experimental investigations of the potential of osmotic energy for power production.

    PubMed

    Sharif, Adel O; Merdaw, Ali A; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%-80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  8. In vitro-in vivo evaluation of nanosuspension release from subcutaneously implantable osmotic pumps.

    PubMed

    Hill, A; Geissler, S; Meyring, M; Hecht, S; Weigandt, M; Mäder, K

    2013-07-15

    Utilizing poorly soluble drug candidates in pharmacokinetic studies remains challenging in preclinical drug development. We investigated a nanosuspension-based delivery system to achieve constant drug plasma levels by applying the nanoparticles via subcutaneously implanted micro-osmotic pumps. Various nanosuspension formulations were characterized in vitro prior to Alzet® pump release by means of dynamic light scattering (DLS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and rheological measurements. In vitro formulation release was checked by HPLC/UV. The in vivo experiments compared plasma-concentration time profiles of subcutaneously injected nanosuspensions with those of formulations delivered by pumps. Two Poloxamer 338 containing nanosuspensions with different viscosities were found to be stable over observation time, physically resistant against biorelevant media and showed only a low amorphous part after preparation. The more viscous nanosuspension with 31.65 mPas revealed in vitro the expected zero-order release, while the low viscous formulation with 2.18 mPas showed first order release. In in vivo experiments, the higher viscous nanosuspension released from osmotic pumps exhibited elevated plasma levels compared to the lower viscous formulation. Compared to bolus injected nanosuspensions constant plasma levels could be maintained by adapting the viscosity of the nanosuspension. Subcutaneously implanted osmotic pumps prove to be a valuable delivery system for nanosuspensions in pharmacokinetic studies by consideration of the key parameter viscosity in release kinetics. PMID:23628403

  9. Effects of osmotic stress on predation behaviour of Asterias rubens L.

    NASA Astrophysics Data System (ADS)

    Agüera, Antonio; Schellekens, Tim; Jansen, Jeroen M.; Smaal, Aad C.

    2015-05-01

    Environmental stress plays an important role in determining ecosystem functioning and structure. In estuarine areas both tidal and seasonal salinity changes may cause osmotic stress on predators, affecting their behaviour and survival. The interaction between these predators and their prey may affect performance, thus influencing predator impact on prey populations. The common starfish, Asterias rubens, inhabits estuarine areas, such as the Dutch Wadden Sea, that exhibit large seasonal variation in salinity (10-32 PSU). In those areas A. rubens exerts top down control on its prey, thus representing an important shellfish predator. This predation may impact on cultured and natural shellfish populations. However, the effects of osmotic stress on A. rubens performance may influence its effect on prey. Although the effect of salinity in A. rubens survival has been extensively studied, the impact on its predation behaviour and acclimation capacity remains unclear. In this study, we analyse the performance of A. rubens preying on mussels (Mytilus edulis) after a salinity decrease and monitor its acclimation capacity over a period of 22 days. Our experiments demonstrated that salinity affected performance by reducing feeding activity and altering size prey selection. Moreover, as acclimation occurred, A. rubens predation performance improved in all sub-lethal treatments. We conclude that osmotic stress caused by decreasing salinity potentially influences A. rubens distribution, abundance, and potential impact on prey populations. However the magnitude of the change in salinity (from 31 to a minimum of 10 PSU) and its timescale (3 weeks) mediate this effect.

  10. Effects of aluminum chloride on some trace elements and erythrocyte osmotic fragility in rats.

    PubMed

    Oztürk, Bahar; Ozdemir, Semra

    2015-12-01

    Aluminum (Al) is a nonessential, toxic element to which humans are constantly exposed as a result of an increase in industrialization and improving technology practices. The aim of the study was to investigate the effects of different durations and doses of Al exposure on serum and tissue element levels and erythrocyte osmotic fragility in rats. A total of 40 male Wistar Albino rats were divided into five groups: control, group I (3 weeks, 8 mg/kg), group II (6 weeks, 8 mg/kg), group III (3 weeks, 16 mg/kg), and group IV (6 weeks, 16 mg/kg). Al chloride (AlCl3) was injected intraperitoneally (i.p.) five times a week. At the end of the experimental period, levels of Al, iron (Fe), copper (Cu), and zinc (Zn) in serum, liver, and kidney tissues were measured using inductively coupled plasma optical emission spectrometry. Osmotic fragility was determined using a spectrophotometer. The results of the experiment indicate that Al induced a statistically significant increase in Al and Fe concentrations in liver and serum as well as in Cu in the kidney. The Fe concentration in serum and kidney tissues was significantly lower in all the groups. As a result of our study, it may be concluded that tissue Al accumulation may lead to an increase in osmotic fragility of erythrocytes and abnormal trace element levels. PMID:23625912

  11. Physcomitrella patens DNA methyltransferase 2 is required for recovery from salt and osmotic stress.

    PubMed

    Arya, Deepshikha; Kapoor, Sanjay; Kapoor, Meenu

    2016-02-01

    DNA methyltransferase 2 (DNMT2) unlike other members of the cytosine DNA methyltransferase gene family has dual substrate specificity and it methylates cytosines in both the DNA and transfer RNA (tRNA). Its role in plants, however, has remained obscure to date. In this study, we demonstrate that DNMT2 from Physcomitrella patens accumulates in a temporal manner under salt and osmotic stress showing maximum accumulation during recovery, i.e. 24 h after plants are transferred to normal growth medium. Therefore, to study its role in stress tolerance, we generated PpDNMT2 targeted knockout plants (ppdnmt2ko). Mutant plants show increased sensitivity to salt and osmotic stress and are unable to recover even after 21 days of growth on optimal growth media. ppdnmt2ko, however, accumulate normal levels of dehydrin-like and small heat shock protein encoding transcripts under stress but show dramatic reduction in levels of tRNA(A) (sp-) (GUC) . The levels of tRNA(A) (sp-) (GUC) , in contrast, increase ~ 25-30-fold in ppdnmt2ko under non-stress conditions and > 1200-fold in wild-type plants under stress. The role of PpDNMT2 in modulating biogenesis/stability of tRNA(A) (sp-) (GUC) under salt and osmotic stress is discussed in the light of these observations. PMID:26639858

  12. Transition zone dynamics in combined isotachophoretic and electro-osmotic transport

    NASA Astrophysics Data System (ADS)

    Schönfeld, Friedhelm; Goet, Gabriele; Baier, Tobias; Hardt, Steffen

    2009-09-01

    The present study focuses on the interplay of isotachophoresis (ITP) and electro-osmotic flow (EOF). While EOF is commonly suppressed in ITP applications, we investigate scenarios of the combination of both EOF and ITP. Experimental results of ITP/EOF experiments within cross-patterned polymer chips show characteristic deformations of fluorescent sample zones sandwiched between leading and trailing electrolytes. A changing curvature of the deformation is observed during ITP/EOF runs, but overall a well defined sample segment is maintained after a transport over a few centimeters. By means of numerical modeling we study the deformation attributed to the mismatch of EOF between leading and trailing electrolytes. The model results are found to qualitatively agree with our experimental findings. We introduce the ratio of the EOF velocities in the leading and trailing electrolyte, expressed via the respective mobilities, as a dimensionless parameter γ and show that in the case where electro-osmotically induced convection dominates over electromigration the deformation width scales as 1-γ. In particular, we find that the EOF-induced dispersion virtually vanishes for the case γ =1. Hence, in this particular case isotachophoretic self-sharpening and electro-osmotic pumping can be combined without any detrimental effects on sample transport even for large EOF velocities.

  13. Theoretical and Experimental Investigations of the Potential of Osmotic Energy for Power Production †

    PubMed Central

    Sharif, Adel O.; Merdaw, Ali A.; Aryafar, Maryam; Nicoll, Peter

    2014-01-01

    This paper presents a study on the potential of osmotic energy for power production. The study includes both pilot plant testing and theoretical modelling as well as cost estimation. A projected cost of £30/MWh of clean electricity could be achieved by using a Hydro-Osmotic Power (HOP) plant if a suitable membrane is used and the osmotic potential difference between the two solutions is greater than 25 bar; a condition that can be readily found in many sites around the world. Results have shown that the membrane system accounts for 50%–80% of the HOP plant cost depending on the salinity difference level. Thus, further development in membrane technology and identifying suitable membranes would have a significant impact on the feasibility of the process and the route to market. As the membrane permeability determines the HOP process feasibility, this paper also describes the effect of the interaction between the fluid and the membrane on the system permeability. It has been shown that both the fluid physical properties as well as the membrane micro-structural parameters need to be considered if further development of the HOP process is to be achieved. PMID:25110959

  14. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes.

    PubMed

    Hdud, Ismail M; Mobasheri, Ali; Loughna, Paul T

    2014-06-01

    The metabolic activity of articular chondrocytes is influenced by osmotic alterations that occur in articular cartilage secondary to mechanical load. The mechanisms that sense and transduce mechanical signals from cell swelling and initiate volume regulation are poorly understood. The purpose of this study was to investigate how the expression of two putative osmolyte channels [transient receptor potential vanilloid 4 (TRPV4) and large-conductance Ca(2+)-activated K(+) (BKCa)] in chondrocytes is modulated in different osmotic conditions and to examine a potential role for MAPKs in this process. Isolated equine articular chondrocytes were subjected to anisosmotic conditions, and TRPV4 and BKCa channel expression and ERK1/2 and p38 MAPK protein phosphorylation were investigated using Western blotting. Results indicate that the TRPV4 channel contributes to the early stages of hypo-osmotic stress, while the BKCa channel is involved in responding to elevated intracellular Ca(2+) and mediating regulatory volume decrease. ERK1/2 is phosphorylated by hypo-osmotic stress (P < 0.001), and p38 MAPK is phosphorylated by hyperosmotic stress (P < 0.001). In addition, this study demonstrates the importance of endogenous ERK1/2 phosphorylation in TRPV4 channel expression, where blocking ERK1/2 by a specific inhibitor (PD98059) prevented increased levels of the TRPV4 channel in cells exposed to hypo-osmotic stress and decreased TRPV4 channel expression to below control levels in iso-osmotic conditions (P < 0.001). PMID:24671100

  15. Formulation and process optimization of multiparticulate pulsatile system delivered by osmotic pressure-activated rupturable membrane.

    PubMed

    Hung, Sheng-Feng; Hsieh, Chien-Ming; Chen, Ying-Chen; Lin, Cheng-Mao; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-03-01

    In this study, a multiparticulate pulsatile drug delivery system activated by a rupturable controlled-release membrane (Eudragit(®) RS) via osmotic pressure (with NaCl as the osmogent) was developed and characterized for omeprazole, omeprazole sodium, and propranolol HCl which have different water solubilities. Multiparticulates in pellet form for incorporation with or without the osmogent were manufactured by three methods and then used to coat a polymeric membrane. Results demonstrated that drug/osmogent-containing pellets manufactured by the extrusion/spheronization method with incorporation of the osmogent were optimal. The lag time (tL) to initiate pulsatile release is regulated by tL=l(2)/(6×D), which is dependent on the coating levels (l(2)) and plasticizer content (D). The pulsatile release pattern was found to be dependent on the osmotic pressure (osmogent), drug solubility, and mechanical properties of the polymeric membrane (elasticity and toughness). Omeprazole with lower water solubility could not generate sufficient osmotic pressure to create a crack in the membrane to activate pulsatile release, whereas the two other model drugs with higher solubilities could. But adsorption of omeprazole sodium on Eudragit(®) RS via charge-charge interactions led the its incomplete release. Finally, with 4% osmogent of NaCl added, a lag time in a range from 0 to 12h proportionally regulated by varying both the membrane thickness and plasticizer level initiated the complete pulsatile release of propranolol HCl. In conclusion, a multiparticulate pulsatile drug delivery system activated by a rupturable controlled-release membrane via osmotic pressure was successfully developed, and clinical applications of chronotherapy with drugs like propranolol HCl are expected. PMID:25575473

  16. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    PubMed

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity. PMID:20711754

  17. INFLUENCE OF OSMOTIC PRESSURE ON THE MORPHOLOGY OF THE REITER TREPONEME

    PubMed Central

    Hardy, Paul H.; Nell, E. Ellen

    1961-01-01

    Hardy, Paul H., Jr. (Johns Hopkins University, Baltimore, Md.) and E. Ellen Nell. Influence of osmotic pressure on the morphology of the Reiter treponeme. J. Bacteriol. 82: 967–978. 1961.—Spherical bodies similar to those that develop spontaneously in cultures of treponemes, and which have been considered by many investigators to represent one stage in a complex life cycle of these organisms, can be produced rapidly with the Reiter treponeme by merely altering the medium in which the organisms are suspended. Osmotic pressure appears to be the major factor responsible for this effect, as shown by the observation that treponemes suspended in NaCl solutions of 0.15 to 0.10 m retain their spirochetal morphology, whereas organisms suspended in more dilute salt solutions rapidly become spherical. Moreover, the concentration of salt appears to influence both the rate and extent of sphere formation. Further evidence that osmotic pressure is primarily involved is demonstrated by the selectivity of the conditions under which spheres form. Treponemes suspended in various 0.3 osmolal solutions either retain their spiral shape or form spheres, depending upon the nature of the solute. Viability studies of suspensions containing predominantly spherical forms, which have developed spontaneously or have been artificially induced, have failed to produce evidence that the resulting growth of treponemes came from the spheres. It is concluded, therefore, that the naturally occurring spheres probably arise as the result of an osmotic imbalance which develops between the cells and their environment, and that the spheres represent degenerative forms rather than an intermediate stage in a life cycle. Images PMID:13904666

  18. Optical methods for measuring plasma membrane osmotic water permeability in cell layers

    NASA Astrophysics Data System (ADS)

    Farinas, Javier Anibal

    Optical methods were developed to measure water permeability in cell layers and used to characterize water channel transfected cells and measure individual plasma membrane water permeabilities of epithelial cells. The general approach was to measure the rate of change of cell volume in response to osmotic gradients. Changes in solute concentration resulting from cell volume changes were used to generate optical signals. Because of the high data acquisition rates obtainable with optical instruments, very high water permeabilities found in cells containing water channels can be measured. Total internal reflection microfluorimetry was used to measure water permeability in cells grown on transparent, solid supports. The fluorescence measured from cells containing a cytosolic fluorophore was inversely proportional to cell volume. The method was applied to transfected cells which expressed water channels and to investigate a cell model of the vasopressin-regulated shuttling of AQP2. Interferometry was used to measure cell volume and water permeability in adherent or non-adherent epithelial cell layers. Volume changes were shown to alter the optical path length of light passing through a cell layer. An interferometer was used to convert the small changes in optical path length to measurable changes in intensity. Cell membrane osmotic water permeability was determined from the time course of interference signal in response to osmotic gradients. Individual plasma membrane water permeabilities of epithelial cells were measured. To overcome the difficulties associated with interferometry, a spatial filtering microscopy method was developed based on changes in transmitted light intensity in a phase contrast microscope occurring after volume changes induced by osmotic gradients. A theory based on the refractive index changes observed in cells by interferometry was developed to explain the dependence of transmitted light intensity on cell volume. The method was applied to

  19. Osmotic potential of several hardwood species as affected by manipulation of throughfall precipitation in an upland oak forest during a dry year.

    PubMed

    Tschaplinski, Timothy J.; Gebre, G. Michael; Shirshac, Terri L.

    1998-05-01

    Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy

  20. Osmotolerant yeast species differ in basic physiological parameters and in tolerance of non-osmotic stresses.

    PubMed

    Bubnová, Michala; Zemančíková, Jana; Sychrová, Hana

    2014-08-01

    Osmotolerance is the ability to grow in an environment with a high osmotic pressure. In this study we compared the physiological parameters and tolerance to osmotic and non-osmotic stresses of three osmotolerant yeast species, Debaryomyces hansenii, Pichia farinosa (sorbitophila) and Zygosaccharomyces rouxii, with those of wild-type Saccharomyces cerevisiae. Although the osmotolerant species did not differ significantly in their basic parameters, such as cell size or growth capacity, they had different abilities to survive anhydrobiosis, potassium limitation or the presence of toxic cationic drugs. When their osmotolerance was compared, the results revealed that some of the species isolated as sugar/polyol-tolerant (e.g.  P. farinosa) are also highly tolerant to salts and, vice versa, some strains isolated from an environment with high concentration of salt (e.g. Z. rouxii ATCC 42981) tolerate high concentrations of sugars. None of the tested strains and species was osmophilic. Taken together, our results showed that P. farinosa (sorbitophila) is the most robust species when coping with various stresses, while Z. rouxii CBS 732, although osmotolerant in general, is not specifically salt-tolerant and is quite sensitive to most of the tested stress conditions. PMID:24962688

  1. Food grade duplex emulsions designed and stabilised with different osmotic pressures.

    PubMed

    Pawlik, Aleksandra; Cox, Philip W; Norton, Ian T

    2010-12-01

    In this study we have investigated the production of food grade W(1)/O/W(2) duplex emulsions with salt partitioned into one water phase but not the other. Investigations were carried out with and without balancing osmotic pressures with glucose. A stable 30% primary W(1)/O emulsions containing salt could be produced with more than or equal to 2% polyglycerol polyricinoleate (PGPR) in the oil phase. We suggest that the addition of salt strengthens the interactions between surfactant molecules in the adsorbed film. This is supported by interfacial viscosity and elasticity measurements both of which increased on addition of salt and the fact that in the presence of salt the emulsion was more stable. These simple emulsions were then processed to construct duplex emulsions. When osmotic pressures were balanced with glucose there was still a release of salt in storage. The extent and rate of release was proportional to glucose concentration. This effect was followed over a period of 60days. These data suggest that the release is driven by the chemical potential difference between the two water compartments rather than the unbalanced osmotic pressures. These observations are explained in the context of a water structuring effect from the added glucose, which lowers the interfacial tension of oil-water interface and thus facilitates micellar transport of hydrated salt ions across the oil layer. PMID:20828706

  2. Osmotically induced removal of water from fungal cells as determined by a spin probe technique.

    PubMed

    Miller, R W

    1978-11-01

    Effects of physical environment on plasma membrane semipermeability and osmotic induction of changes in aqueous cytoplasmic volume were studied in vegetative and spore cells of a plant pathogenic fungus, Fusarium sulphureum. A direct method, employing a spin probe molecule that partitioned between intracellular aqueous and hydrophobic phases, allowed measurement of reversible water movement out of macroconidial cells and chlamydospores exposed to solutions of high osmolarity. Equilibrium distribution of the spin probe between intracellular aqueous and lipid phases was more rapid than movement of water in and out of the cells. The extent of water removal was exponentially dependent on osmotic strength. Some cells became irreversibly permeable to divalent cations on treatment with sodium chloride above 1.5 osmolar but addition of sucrose to the suspension medium at equivalent osmolar concentrations caused water removal without adversely affecting the viability. Sucrose also protected the plasma membrane against damage during freeze-drying. Induction of plasma membrane damage by osmotic shock or freeze-drying permitted rapid permeation of nickel ions. Neither slow equilibration of intracellular components with divalent paramagnetic cations nor partial permeability of damaged plasma membranes to these ions was observed. PMID:16660597

  3. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti.

    PubMed Central

    Smith, L T; Pocard, J A; Bernard, T; Le Rudulier, D

    1988-01-01

    Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, we used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, 14C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared. PMID:3290197

  4. Effect of osmotic pressure on ganglioside-cholesterol-DOPC lipid mixture

    NASA Astrophysics Data System (ADS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2007-10-01

    By means of small-angle X-ray scattering (SAXS) method, we have studied the structure of the lipid mixtures of monosialoganglioside (GMI)-cholesterol-dioleoyl-phosphatidylcholine (DOPC) system as a model of lipid raft. The samples were small uni-lamellar vesicle (SUV) except for GMI sample. The osmotic pressure was changed with varying the polyvinylpyrrolidone (PVP) concentration in the range from 0 to 25 % w/w. The increase of the PVP concentration is known to reduce the lamellar spacing due to the increase of the osmotic pressure. On the other hand the polar head region of GMI was shown to be highly hydrophilic by the presence of oligosaccharide chain containing one sialic acid residue. In the cases of the GMI micelle and GMI-cholesterol SUV the presence of PVP affects little on those aggregate structures. In the case of the SUVs of cholesterol-DOPC the stacking of the bilayers was induced with the increase of PVP concentration, especially at high cholesterol content. In the case of the SUVs of GMI-cholesterol-DOPC the multi-lamellar stacking was suppressed, but a minor change of the SUV structure was induced. The present results suggest that the coexistence of GMI and cholesterol affords the lipid bilayer a resistance to the osmotic stress and avoids a multi-layered stacking.

  5. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti

    SciTech Connect

    Smith, L.T.; Pocard, J.A.; Bernard, T.; Le Rudulier, D.

    1988-07-01

    Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, the authors used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, /sup 14/C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared.

  6. Water fluxes and encapsulation efficiency in double emulsions: impact of emulsification and osmotic pressure unbalance.

    PubMed

    Nollet, Maxime; Mercé, Manuel; Laurichesse, Eric; Pezon, Annaïck; Soubabère, Olivier; Besse, Samantha; Schmitt, Véronique

    2016-03-30

    We study the influence of the emulsification process on encapsulation efficiency of drugs in double water-in-oil-in-water emulsions. Two drugs were used, first vitamin B12 which can be considered as a model drug and secondly a suspension of Cydia pomonella Granulovirus (CpGV), a virus used in organic agriculture to protect fruits against the Carpocapse insect. Encapsulation is measured by classical UV-Vis spectroscopy method. Additionally we show that rheology is a useful tool to determine water exchanges during emulsification. In a two-step emulsification process, using rotor-stator mixers, encapsulation reaches high levels, close to 100% whatever the flowing regime. This encapsulation decreases only if two conditions are fulfilled simultaneously: (i) during the second emulsification step the flow is turbulent and (ii) it leads to excessive fragmentation inducing formation of too small drops. We also investigate the effect of a deliberate loss of osmotic pressure balance on the encapsulation and characterize the induced water fluxes. We show that encapsulation of vitamin B12 is not affected by the osmotic pressure unbalance, while water exchanges, if they exist, are very fast and aim at restoring equilibrium. As a consequence, the emulsification efficiency is not very sensitive to osmotic stresses provided that the interfaces resist mechanically. PMID:26936127

  7. Trehalose enhances osmotic tolerance and suppresses lysophosphatidylcholine-induced acrosome reaction in ram spermatozoon.

    PubMed

    Ahmad, E; Naseer, Z; Aksoy, M; Küçük, N; Uçan, U; Serin, I; Ceylan, A

    2015-09-01

    This study was aimed to investigate the influence of trehalose on osmotic tolerance and the ability of ram spermatozoon to undergo acrosome reaction induced by lysophosphatidylcholine (LPC). In experiment 1, the diluted ejaculates were exposed to anisosmotic fructose solutions (70, 500, 750 and 1000 mOsm l(-1) ) with or without 50 mm trehalose. The presence of trehalose in hyperosmotic conditions enhanced (P < 0.05) the percentage of live, live-intact and intact spermatozoa. Similarly, trehalose enhanced (P < 0.05) the live and live-intact spermatozoa during hypo-osmotic conditions. In experiment 2, the centrifuged ejaculates were diluted with TCG only or TCG containing either 50 or 100 mm trehalose. The acrosome reaction was induced by LPC. The percentage of acrosome-reacted spermatozoon was less (P < 0.05) in trehalose-supplemented groups compared to control. In experiment 3, the ejaculates were cryopreserved in an extender containing 0 mm (control), 50 mm or 100 mm trehalose. Supplementation of extender with trehalose, either 50 mm or 100 mm, enhanced the cryosurvival rate (P < 0.05) compared to the control. In conclusion, the presence of trehalose in anisosmotic conditions enhances the osmotic tolerance, cryosurvival rate of ram spermatozoon and suppresses their ability to undergo LPC and cryo-induced acrosome reaction. PMID:25269572

  8. Both water intoxication and osmotic BBB disruption increase brain water content in rats.

    PubMed

    Kozler, P; Riljak, V; Pokorný, J

    2013-01-01

    Our previous experiments revealed that water intoxication and osmotic BBB disruption in the rat allow penetration of high-molecular substances into the brain and that resulting changes in the internal environment of the CNS lead to pathological development, such as the loss of integrity of myelin. The aim of the present study was to determine whether the previously described phenomena are associated with increased water content in the brain. To answer the question following methods were used: a) water intoxication: intraperitoneal administration of distilled water, b) osmotic BBB disruption: application of mannitol (20 %) selectively into the internal carotid artery, c) brain wet weight was measured after decapitation, and subsequently (after six days in thermostat set at 86 °C) the dry weight were estimated d) in animals with 20 % and 30 % hyperhydration the degree of myelin deterioration was estimated e) animal locomotor activity was tested by continuous behavior tracking and analysis. Brain water content after water intoxication and following the administration of mannitol was higher than in the control group. Different degrees of hyperhydration led to different levels of brain water content and to different degrees of myelin impairment. Hyperhydration corresponding to 20 % of the body weight brought about lower locomotor activity. Increased water content in the brain after the BBB osmotic disruption is surprising because this method is frequently used in the clinical practice. PMID:24329706

  9. THE OSMOTIC PROPERTIES OF LIVING CELLS (EGGS OF ARBACIA PUNCTULATA).

    PubMed

    McCutcheon, M; Lucké, B; Hartline, H K

    1931-01-20

    WE HAVE ATTEMPTED TO ANSWER THE QUESTION: How nearly ideal, as an osmometer, is the unfertilized Arbacia egg? The following conclusion have been reached: 1. Volumes can be measured accurately over a wide range of pressures since the cell is in general spherical and does not suffer deformation from its own weight or other factors. 2. The product of volume and pressure is approximately constant, if allowance be made for osmotically inactive cell contents. It is computed that from 7 to 14 per cent of cell volume is occupied by osmotically inactive material. 3. Evidence is presented that no appreciable escape of cell contents occurs while the cell is in hypotonic sea water; that, therefore, the semipermeability of the membrane is approximately perfect, so long as injury to the cell is avoided. 4. In comparison with osmotic pressure the influence of other forces, such as elasticity or surface tension, on cell volume must in these experiments be slight. PMID:19872593

  10. Determination of colloidal osmotic equation of state by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Mazza, Jacob; Huang, Hao; Ou-Yang, H. Daniel

    2015-03-01

    Osmotic equation of state [P(N,T)] describes both the mechanical properties and phase behavior of a colloidal suspension. As an alternative to sedimentation, we propose a new approach to determine P(N,T) by dielectrophoresis (DEP). Using fluorescence confocal microscopy, we obtain particle density profiles in order to determine the DEP force distribution when the particle concentration is low and the inter-particle interactions are negligible. From the known force distribution and Einstein's osmotic equilibrium equation, we can calculate P(N,T) from the particle density profile of interacting, charge-stabilized polystyrene latex particles under different salt concentrations and added neutral polymers. The osmotic equation of state for colloidal suspensions can then be crosschecked by sedimentation equilibrium.

  11. Effect of an osmotic stress on multicellular aggregates.

    PubMed

    Monnier, Sylvain; Delarue, Morgan; Brunel, Benjamin; Dolega, Monika E; Delon, Antoine; Cappello, Giovanni

    2016-02-01

    There is increasing evidence that multicellular structures respond to mechanical cues, such as the confinement and compression exerted by the surrounding environment. In order to understand the response of tissues to stress, we investigate the effect of an isotropic stress on different biological systems. The stress is generated using the osmotic pressure induced by a biocompatible polymer. We compare the response of multicellular spheroids, individual cells and matrigel to the same osmotic perturbation. Our findings indicate that the osmotic pressure occasioned by polymers acts on these systems like an isotropic mechanical stress. When submitted to this pressure, the volume of multicellular spheroids decreases much more than one could expect from the behavior of individual cells. PMID:26210402

  12. Nanofluidic Osmotic Diodes: Theory and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Picallo, Clara B.; Gravelle, Simon; Joly, Laurent; Charlaix, Elisabeth; Bocquet, Lydéric

    2013-12-01

    Osmosis describes the flow of water across semipermeable membranes powered by the chemical free energy extracted from salinity gradients. While osmosis can be expressed in simple terms via the van ’t Hoff ideal gas formula for the osmotic pressure, it is a complex phenomenon taking its roots in the subtle interactions occurring at the scale of the membrane nanopores. Here we use new opportunities offered by nanofluidic systems to create an osmotic diode exhibiting asymmetric water flow under reversal of osmotic driving. We show that a surface charge asymmetry built on a nanochannel surface leads to nonlinear couplings between water flow and the ion dynamics, which are capable of water flow rectification. This phenomenon opens new opportunities for water purification and complex flow control in nanochannels.

  13. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  14. Chronic Severe Hyponatremia and Cardiopulmonary Bypass: Avoiding Osmotic Demyelination Syndrome.

    PubMed

    Canaday, Susan; Rompala, John; Rowles, John; Fisher, Josh; Holt, David

    2015-12-01

    Serum sodium concentration affects every cell in the body with respect to cellular tonicity. Hyponatremia is the most frequent electrolyte abnormality encountered, occurring at clinical admission in 22% of elderly patients. Any rapid correction of chronic severe hyponatremia can result in rapid cellular shrinking due to loss of intracellular free water. This is commonly associated with paralysis and severe brain damage due to osmotic demyelination syndrome (ODS). ODS occurs because the body has the ability to compensate for cellular fluid shifts due to chronic hyponatremia (by a decrease in brain concentration of several ions, amino acids, and organic osmolytes). Thus, the neurons are often at a functional state of fluid balance despite the sodium imbalance. The initiation of cardiopulmonary bypass (CPB) can introduce between 1 and 2 L of priming solution containing a normal sodium concentration creating a rapid rise in sodium concentration within the extracellular fluid. This abrupt change establishes a situation where intracellular free water can be lost resulting in cellular shrinking and ODS. In presenting this case study, we hope to add to the current literature with a specific isotonic approach to treating the chronically severe hyponatremic patient pre-CPB, during CPB, and post-CPB. PMID:26834285

  15. Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.J.; McNab, W.W.; Wildenschild, D.; Ruiz, R.; Elsholz, A.

    1999-11-22

    The coupled-flow phenomenon, electro-osmosis, whereby water flow results from an applied electrical potential gradient, is being used at Lawrence Livermore National Laboratory to induce water flow through deep (25-40 meters below surface) fine-grained sediments. The scoping work described here lays the groundwork for implementation of this technology to remediate solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) measured in-situ between two 37 m deep wells, 3 m apart of 2.3 x 10{sup -9} m{sup 2}/s-V is in good agreement with the value determined from bench-top studies on the core extracted from one of the wells of 0.94 {+-} 0.29 x 10{sup -9} m{sup 2}/s-V. Hydraulic conductivity (k{sub h}) of the same core is measured to be 2.03 {+-} 0.36 x 10{sup -10} m/s. Thus, a voltage gradient of 1 V/cm produces an effective hydraulic conductivity of {approx}1 x 10{sup -7} m/s; an increase in conductivity of nearly three orders of magnitude.

  16. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, J.F.

    1998-09-22

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

  17. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  18. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium.

    PubMed

    Cheng, Xi; Pinsky, Peter M

    2015-01-01

    The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK) equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea. PMID:26719894

  19. The Balance of Fluid and Osmotic Pressures across Active Biological Membranes with Application to the Corneal Endothelium

    PubMed Central

    Cheng, Xi; Pinsky, Peter M.

    2015-01-01

    The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK) equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea. PMID:26719894

  20. PEG-mediated osmotic stress induces premature differentiation of the root apical meristem and outgrowth of lateral roots in wheat

    PubMed Central

    Ji, Hongtao; Liu, Ling; Li, Kexue; Xie, Qingen; Wang, Zhijuan; Zhao, Xuhua; Li, Xia

    2014-01-01

    Water stress is one of the major environmental stresses causing growth retardation and yield loss of plants. In the past decades, osmotic adjustment, antioxidant protection, and stomatal movement have been extensively studied, but much less attention has been paid to the study of root system reprogramming to maximize water absorption and survival under water stress. Here, it is shown that polyethylene glycol (PEG)-simulated mild and moderate osmotic stress induced premature differentiation of the root apical meristem (RAM). It is demonstrated that RAM premature differentiation is a conserved adaptive mechanism that is widely adopted by various plants to cope with osmotic stress simulated by PEG 8000, and the occurrence of RAM premature differentiation is directly related to stress tolerance of plants. It is shown that the osmotic stress-induced premature differentiation caused growth cessation of primary roots allowing outgrowth of lateral roots. This work has uncovered a key mechanism for controlling the plastic development of the root system by which plants are capable of survival, growth, or reproduction under water stress. PMID:24935621

  1. Osmotic and Specific Ion Effects on the Germination of Prosopis strombulifera

    PubMed Central

    SOSA, LAURA; LLANES, ANALÍA; REINOSO, HERMINDA; REGINATO, MARIANA; LUNA, VIRGINIA

    2005-01-01

    • Background and Aims Salinity can affect germination of seeds either by creating osmotic potentials that prevent water uptake or by toxic effects of specific ions. Most studies have only used monosaline solutions, although these limit the extent to which one can interpret the results or relate them to field conditions. The aim of this work was to evaluate the germination of Prosopis strombulifera seeds under increasing salinity by using the most abundant salts in central Argentina in monosaline or bisaline iso-osmotic solutions, or in solutions of mannitol and polyethylene glycol. • Methods Seeds were allowed to germinate under controlled conditions in a germination chamber at 30 ± 1 °C and at 80 % r.h. Salinizing agents were KCl, NaCl, Na2SO4, K2SO4, NaCl + Na2SO4 and KCl + K2SO4 and osmotic agents were polyethylene glycol 6000 and mannitol. Treatments for all osmotica consisted of 0·0, −0·4, −0·8, −1·2, −1·5, −1·9 and −2·2 MPa solutions. • Key Results The percentage of germination decreased as salinity increased. \\batchmode \\documentclass[fleqn,10pt,legalpaper]{article} \\usepackage{amssymb} \\usepackage{amsfonts} \\usepackage{amsmath} \\pagestyle{empty} \\begin{document} \\(\\mathrm{SO}_{4}^{2{-}}\\) \\end{document} in monosaline solutions, with osmotic potentials −1·2 MPa and lower, was more inhibitory than Cl− at iso-osmotic concentrations. This \\batchmode \\documentclass[fleqn,10pt,legalpaper]{article} \\usepackage{amssymb} \\usepackage{amsfonts} \\usepackage{amsmath} \\pagestyle{empty} \\begin{document} \\(\\mathrm{SO}_{4}^{2{-}}\\) \\end{document} toxicity was alleviated in salt mixtures and was more noticeable in higher concentrations. K+ was more inhibitory than Na+ independently of the accompanying anion. • Conclusions Different responses to different compositions of iso-osmotic salt solutions and to both osmotic agents indicate specific ionic effects. This study demonstrates that the germination of P

  2. How small polar molecules protect membrane systems against osmotic stress: the urea-water-phospholipid system.

    PubMed

    Costa-Balogh, Fátima O; Wennerström, Håkan; Wadsö, Lars; Sparr, Emma

    2006-11-30

    We investigate how a small polar molecule, urea, can act to protect a phospholipid bilayer system against osmotic stress. Osmotic stress can be caused by a dry environment, by freezing, or by exposure to aqueous systems with high osmotic pressure due to solutes like in saline water. A large number of organisms regularly experience osmotic stress, and it is a common response to produce small polar molecules intracellularly. We have selected a ternary system of urea-water-dimyristoyl phosphatidylcholine (DMPC) as a model to investigate the molecular mechanism behind this protective effect, in this case, of urea, and we put special emphasis on the applications of urea in skin care products. Using differential scanning calorimetry, X-ray diffraction, and sorption microbalance measurements, we studied the phase behavior of lipid systems exposed to an excess of solvent of varying compositions, as well as lipid systems exposed to water at reduced relative humidities. From this, we have arrived at a rather detailed thermodynamic characterization. The basic findings are as follows: (i) In excess solvent, the thermally induced lipid phase transitions are only marginally dependent on the urea content, with the exception being that the P(beta) phase is not observed in the presence of urea. (ii) For lipid systems with limited access to solvent, the phase behavior is basically determined by the amount (volume) of solvent irrespective of the urea content. (iii) The presence of urea has the effect of retaining the liquid crystalline phase at relative humidities down to 64% (at 27 degrees C), whereas, in the absence of urea, the transition to the gel phase occurs already at a relative humidity of 94%. This demonstrates the protective effect of urea against osmotic stress. (iv) In skin care products, urea is referred to as a moisturizer, which we find slightly misleading as it replaces the water while keeping the physical properties unaltered. (v) In other systems, urea is known to

  3. A Simple Membrane Osmometer System & Experiments that Quantitatively Measure Osmotic Pressure

    ERIC Educational Resources Information Center

    Marvel, Stephen C.; Kepler, Megan V.

    2009-01-01

    It is important for students to be exposed to the concept of osmotic pressure. Understanding this concept lays the foundation for deeper discussions that lead to more theoretical aspects of water movement associated with the concepts of free energy, water potential, osmotic potential, pressure potential, and osmotic adjustment. The concept of…

  4. Osmotic gradient dependence of osmotic water permeability in rabbit proximal convoluted tubule.

    PubMed

    Berry, C A; Verkman, A S

    1988-10-01

    To assess steady-state transepithelial osmotic water permeability (Pf), rabbit proximal convoluted tubules were perfused in vitro with the impermeant salt, sodium isethionate at 26 degrees C. Osmotic gradients (delta pi) were established by varying the bath concentration of the impermeant solute, raffinose. When lumen osmolality was 300 mOsm and bath osmolality was 320, 360 and 400 mOsm, apparent Pf decreased from 0.5 to 0.10 to 0.08 cm/sec, respectively. Similar data were obtained when lumen osmolality was 400 mOsm. Five possible causes of the delta pi dependence of apparent Pf were considered experimentally and/or theoretically: (1) external unstirred layer (USL); (2) cytoplasmic USL; (3) change in surface area; (4) saturation of water transport; (5) down-regulation of Pf. Apparent Pf was inhibited 83% by p-chloromercuribenzene sulfonate (pCMBS) at 20 mOsm, but not at 60 mOsm delta pi, suggesting presence of a serial barrier resistance to water transport. Increases in perfusate or bath solution flow rate and viscosity did not alter apparent Pf, ruling out an external USL. A simple cytoplasmic USL, described by a constant USL thickness and solute diffusion coefficient, could not account for the delta pi dependence of apparent Pf according to a mathematical model. The activation energy (Ea) for apparent Pf increased from 7.0 to 12.5 kcal/mol when delta pi was increased from 20 to 60 mOsm, not consistent with a simple USL or a change in membrane surface area with transepithelial water flow. These findings are most consistent with a complex cytoplasmic USL, where the average solute diffusion coefficient and/or the area available for osmosis decrease with increasing delta pi. These results (1) indicate that true Pf (at physiologically low delta pi) is very high (greater than 0.5 cm/sec) in the rabbit proximal tubule; (2) provide an explanation for the wide variation in Pf values reported in the literature using different delta pi, and (3) suggest the presence of a

  5. Controlled porosity solubility modulated osmotic pump tablets of gliclazide.

    PubMed

    Banerjee, Arti; Verma, P R P; Gore, Subhash

    2015-06-01

    A system that can deliver drug at a controlled rate is very important for the treatment of various chronic diseases such as diabetes, asthma, and heart disease. Poorly water-soluble drug with pH-dependent solubility such as gliclazide (GLZ) offers challenges in the controlled-release formulation because of low dissolution rate and poor bioavailability. Solid dispersion (SD) of GLZ consisted of hydroxypropyl cellulose (HPC-SSL) as a polymeric solubilizer was manufactured by hot melt extrusion (HME) technology. Then, controlled porosity osmotic pump (CPOP) tablet of gliclazide was designed to deliver drug in a controlled manner up to 16 h. The developed formulation was optimized for type and level of pore former and coating weight gain. The optimized formulation was found to exhibit zero order kinetics independent of pH and agitation speed but depends on osmotic pressure of dissolution media indicated that mechanism of drug release was osmotic pressure. The in vivo performance prediction of developed formulation using convolution approach revealed that the developed formulation was superior to the existing marketed extended-release formulation in terms of attaining steady state plasma levels and indicated adequate exposure in translating hypoglycemic response. The prototype solubilization method combined with controlled porosity osmotic pump based technique could provide a unique way to increase dissolution rate and bioavailability of many poorly water-soluble, narrow therapeutic index drugs used in diabetes, cardiovascular diseases, etc. PMID:25378281

  6. Vocal Fold Epithelial Response to Luminal Osmotic Perturbation

    ERIC Educational Resources Information Center

    Sivasankar, Mahalakshmi; Fisher, Kimberly V.

    2007-01-01

    Purpose: Dry-air challenges increase the osmolarity of fluid lining the luminal surface of the proximal airway. The homeostasis of surface fluid is thought to be essential for voice production and laryngeal defense. Therefore, the authors hypothesized that viable vocal fold epithelium would generate a water flux to reduce an osmotic challenge (150…

  7. Electro-osmotic infusion for joule heating soil remediation techniques

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    1999-01-01

    Electro-osmotic infusion of ground water or chemically tailored electrolyte is used to enhance, maintain, or recondition electrical conductivity for the joule heating remediation technique. Induced flows can be used to infuse electrolyte with enhanced ionic conductivity into the vicinity of the electrodes, maintain the local saturation of near-electrode regions and resaturate a partially dried out zone with groundwater. Electro-osmotic infusion can also tailor the conductivity throughout the target layer by infusing chemically modified and/or heated electrolyte to improve conductivity contrast of the interior. Periodic polarity reversals will prevent large pH changes at the electrodes. Electro-osmotic infusion can be used to condition the electrical conductivity of the soil, particularly low permeability soil, before and during the heating operation. Electro-osmotic infusion is carried out by locating one or more electrodes adjacent the heating electrodes and applying a dc potential between two or more electrodes. Depending on the polarities of the electrodes, the induced flow will be toward the heating electrodes or away from the heating electrodes. In addition, electrodes carrying a dc potential may be located throughout the target area to tailor the conductivity of the target area.

  8. Osmotic Stressing, Membrane Leakage, and Fluorescence: An Introductory Biochemistry Demonstration

    ERIC Educational Resources Information Center

    Seu, Kalani J.

    2015-01-01

    A fluorescence demonstration is described that incorporates several fundamental aspects of an introductory biochemistry course. A variation of a known leakage assay is utilized to prepare vesicles containing a quenched fluorophore. The vesicles are exposed to several osmotic environments ranging from isotonic to hypotonic. The degree of vesicle…

  9. Osmotic generation of 'anomalous' fluid pressures in geological environments

    USGS Publications Warehouse

    Neuzii, C.E.

    2000-01-01

    Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.

  10. Density-Gradient Determination of Osmotic Potential in Plant Cells

    ERIC Educational Resources Information Center

    Nabors, Murray W.

    1973-01-01

    Describes a method for measuring osmotic potential which is suitable for high school and college biology classes. This method introduces students to the hard-to-visualize technique of using density gradients to separate cells or cell constituents of differing densities. (JR)