Science.gov

Sample records for osteochondral tissue grafts

  1. Osteochondral tissue engineering.

    PubMed

    Martin, Ivan; Miot, Sylvie; Barbero, Andrea; Jakob, Marcel; Wendt, David

    2007-01-01

    Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint, and therefore with the risk of inducing osteoarthritic degenerative changes. Current surgical limits in the treatment of complex joint lesions could be overcome by grafting osteochondral composite tissues, engineered by combining the patient's own cells with three-dimensional (3D) porous biomaterials of pre-defined size and shape. Various strategies have been reported for the engineering of osteochondral composites, which result from the use of one or more cell types cultured into single-component or composite scaffolds in a broad spectrum of compositions and biomechanical properties. The variety of concepts and models proposed by different groups for the generation of osteochondral grafts reflects that understanding of the requirements to restore a normal joint function is still poor. In order to introduce the use of engineered osteochondral composites in the routine clinical practice, it will be necessary to comprehensively address a number of critical issues, including those related to the size and shape of the graft to be generated, the cell type(s) and properties of the scaffold(s) to be used, the potential physical conditioning to be applied, the degree of functionality required, and the strategy for a cost-effective manufacturing. The progress made in material science, cell biology, mechanobiology and bioreactor technology will be key to support advances in this challenging field. PMID:16730354

  2. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints.

    PubMed

    Roach, Brendan L; Hung, Clark T; Cook, James L; Ateshian, Gerard A; Tan, Andrea R

    2015-08-01

    Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm(2)), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950

  3. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints

    PubMed Central

    Roach, Brendan L.; Hung, Clark T.; Cook, James L.; Ateshian, Gerard A.; Tan, Andrea R.

    2015-01-01

    Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm2), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950

  4. Osteochondral Tissue Cell Viability Is Affected by Total Impulse during Impaction Grafting

    PubMed Central

    Balash, Paul; Kang, Richard W.; Schwenke, Thorsten; Cole, Brian J.; Wimmer, Markus A.

    2010-01-01

    Objective: Osteochondral graft transplantation has garnered significant attention because of its ability to replace the lesion with true hyaline cartilage. However, surgical impaction of the graft to anchor it into the defect site can be traumatic and lead to cell death and cartilage degeneration. This study aimed to test the hypothesis that increasing impulse magnitude during impaction of osteochondral plugs has a direct effect on loss of cell viability. Design: In this controlled laboratory study, the impaction force was kept constant while the impulse was varied. Ninety-six osteochondral plugs were extracted from the trochlea of bovine stifle joints and were randomly assigned into 3 experimental and 1 (nonimpacted) control group. The transferred impulse of the experimental groups reflected the median and the lower and upper quartiles of preceding clinical measurements. Data were obtained at day 0, day 4, and day 8; at each point, cell viability was assessed using the Live/Dead staining kit and histological assessments were performed to visualize matrix structural changes. Results: After impaction, cartilage samples stayed intact and did not show any histological signs of matrix disruption. As expected, higher impulse magnitudes introduced more cell death; however, this relationship was lost at day 8 after impaction. Conclusion: Impulse magnitude has a direct effect on cell viability of the graft. Because impulse magnitude is mostly governed by the press-fit characteristics of the recipient site, this study aids in the definition of optimal insertion conditions for osteochondral grafts. PMID:26069558

  5. Chondrocytes within osteochondral grafts are more resistant than osteoblasts to tissue culture at 37°C.

    PubMed

    Bastian, Johannes D; Egli, Rainer J; Ganz, Reinhold; Hofstetter, Willy; Leunig, Michael

    2011-01-01

    It is proposed that an ideal osteochondral allograft for cartilage repair consists of a devitalized bone but functional cartilage. The different modes of nutrient supply in vivo for bone (vascular support) and cartilage (diffusion) suggest that a modulation of storage conditions could differentially affect the respective cells, resulting in the proposed allograft. For this purpose, osteochondral tissues from porcine humeral heads were either cultured at 37°C for up to 24 hr or stored at 4°C for 24 hr, the temperature at which osteochondral allografts are routinely stored. Functionality of the cells was assessed by in situ hybridization for transcripts encoding collagen types I and II. At 37°C, a time-dependent significant reduction of the bone surface covered with functional cells was observed with only 5% ± 5% coverage left at 24 hr compared with 41% ± 10% at 0 hr. Similarly, cartilage area containing functional cells was significantly reduced from 84% ± 7% at 0 hr to 70% ± 3% after 24 hr. After 24 hr at 4°C, a significantly reduced amount of functional cells covering bone surfaces was observed (27% ± 5%) but not of cells within the cartilage (79% ± 8%). In the applied experimental setup, bone cells were more affected by tissue culture at 37°C than cartilage cells. Even though chondrocytes appear to be more sensitive to 37°C than to 4°C, the substantially reduced amount of functional bone cells at 37°C warrants further investigation of whether a preincubation of osteochondral allografts at 37°C--prior to regular storage at 4°C--might result in an optimized osteochondral allograft with devitalized bone but viable cartilage. PMID:21275527

  6. Review of the biomechanics and biotribology of osteochondral grafts used for surgical interventions in the knee

    PubMed Central

    Bowland, Philippa; Ingham, E; Jennings, Louise; Fisher, John

    2015-01-01

    A review of research undertaken to evaluate the biomechanical stability and biotribological behaviour of osteochondral grafts in the knee joint and a brief discussion of areas requiring further improvement in future studies are presented. The review takes into consideration osteochondral autografts, allografts, tissue engineered constructs and synthetic and biological scaffolds. PMID:26614801

  7. MR imaging of osteochondral grafts and autologous chondrocyte implantation

    PubMed Central

    Millington, S. A.; Szomolanyi, P.; Marlovits, S.

    2006-01-01

    Surgical articular cartilage repair therapies for cartilage defects such as osteochondral autograft transfer, autologous chondrocyte implantation (ACI) or matrix associated autologous chondrocyte transplantation (MACT) are becoming more common. MRI has become the method of choice for non-invasive follow-up of patients after cartilage repair surgery. It should be performed with cartilage sensitive sequences, including fat-suppressed proton density-weighted T2 fast spin-echo (PD/T2-FSE) and three-dimensional gradient-echo (3D GRE) sequences, which provide good signal-to-noise and contrast-to-noise ratios. A thorough magnetic resonance (MR)-based assessment of cartilage repair tissue includes evaluations of defect filling, the surface and structure of repair tissue, the signal intensity of repair tissue and the subchondral bone status. Furthermore, in osteochondral autografts surface congruity, osseous incorporation and the donor site should be assessed. High spatial resolution is mandatory and can be achieved either by using a surface coil with a 1.5-T scanner or with a knee coil at 3 T; it is particularly important for assessing graft morphology and integration. Moreover, MR imaging facilitates assessment of complications including periosteal hypertrophy, delamination, adhesions, surface incongruence and reactive changes such as effusions and synovitis. Ongoing developments include isotropic 3D sequences, for improved morphological analysis, and in vivo biochemical imaging such as dGEMRIC, T2 mapping and diffusion-weighted imaging, which make functional analysis of cartilage possible. PMID:16802126

  8. Fixation with autogenous osteochondral grafts for the treatment of osteochondritis dissecans (stages III and IV)

    PubMed Central

    Balacó, Inês

    2007-01-01

    This paper presents a clinical and functional assessment of the cases of osteochondritis dissecans (OCD) treated with small mosaicplasty type osteochondral grafts. Between 1999 and 2004, we operated on 12 knees with OCD stages III and IV. They were assessed using the International Cartilage Research Society (ICRS) scale, the Visual Analogue Scale (VAS) scale, X-ray and magnetic resonance imaging (MRI). The study was carried out using a clinical series, was retrospective and had a level of evidence of 4. Before surgery, all patients were in classes III and IV on the ICRS scale (four in class III and eight in class IV). At the time of surgery, the patient age was 27.5 ± 7.9 years, with male predominance (75%). Eleven of the cases were assessed as classes I and II on the ICRS scale (seven in class I and four in class II), with one patient in class IV. X-ray assessment was less favourable, revealing alterations in the articular space in 75% of cases. The results show that this technique enables the biological fixation of fragments and, functionally, the clinical results obtained were very good. The osteochondral grafts avoid the implantation of foreign material and make use of bone fragments of the same rigidity as the OCD fragment. We conclude that the technique described is an excellent alternative to the techniques normally used for the fixation of stage III and IV OCD. PMID:18038231

  9. Recent progress in interfacial tissue engineering approaches for osteochondral defects.

    PubMed

    Castro, Nathan J; Hacking, S Adam; Zhang, Lijie Grace

    2012-08-01

    This review provides a brief synopsis of the anatomy and physiology of the osteochondral interface, scaffold-based and non-scaffold based approaches for engineering both tissues independently as well as recent developments in the manufacture of gradient constructs. Novel manufacturing techniques and nanotechnology will be discussed with potential application in osteochondral interfacial tissue engineering. PMID:22677924

  10. Technique: Osteochondral Grafting of Capitate Chondrosis in PRC

    PubMed Central

    Tang, Peter; Imbriglia, Joseph E.

    2013-01-01

    Background Proximal row carpectomy (PRC) is a useful treatment option for wrist arthritis, but the operation is contraindicated when there is arthritis of the capitate head. We describe a technique that involves resurfacing of a capitate that has focal chondrosis, using an osteochondral graft harvested from the resected carpal bones. Materials and Methods PRC patients who had a focal area of capitate chondrosis underwent osteochondral grafting of the capitate. Pre- and postoperative pain level, employment status, motion, grip strength, and Modified Mayo Wrist Scores (MMWS) were assessed. Postoperative Disability of the Arm, Shoulder, and Hand (DASH) scores were also calculated. Description of Technique The articular surface of the capitate is assessed for need for grafting. The proximal row is resected with the lunate removed intact. The arthritic area is prepared. The graft is taken from the lunate and placed in the prepared site of the capitate. Results Eight patients (average age of 53 years) were followed for 18 months. Pain: Preoperatively, moderate to severe in 7 patients; postoperatively, mild to no pain in 7 patients. Motion: Preoperative, 84° (74% of the contralateral side); postoperative 75° (66%). Grip Strength: Preoperative, 29 kg (62%); postoperative, 34 kg (71%). Mayo Wrist Score: Preoperative, 51 (poor); postoperative, 68 (fair). Average postoperative DASH score was 19.5. Follow-up radiographs showed that 75% of patients had mild to no degeneration. Conclusions Osteochondral grafting in PRC offers satisfactory results in terms of pain relief, return to work, motion, and grip strength. Level of Evidence Therapeutic IV, Case series PMID:24436818

  11. Treatment of unstable osteochondritis dissecans in adults with autogenous osteochondral grafts (Mosaicplasty): long-term results

    PubMed Central

    RONGA, MARIO; STISSI, PLACIDO; LA BARBERA, GIUSEPPE; VALOROSO, MARCO; ANGERETTI, GLORIA; GENOVESE, EUGENIO; CHERUBINO, PAOLO

    2015-01-01

    Purpose the unstable osteochondritis dissecans (OCD-type II and III according to the ICRS classification) of the knee largher than > 2.5 cm2 in adults are uncommon lesions and there is no consensus on how to treat them. Medium-term studies have reported good results using autogenous osteochondral plugs (mosaicplasty). The aim of this study is to analyze the long-term results of this technique for the treatment of unstable OCD in a selected group of adult patients. Methods four patients with OCD at either one of the femoral condyles were included in this prospective study. The average age was 21.2 years (range, 18–24 years). The OCD lesions were classified as type II in three patients and type III in one patient and the average size was 3.8 cm2 (range, 2.55–5.1 cm2). The lesions were treated in situ with a variable number of autogenous osteochondral plugs (Ø 4.5 mm2). The Modified Cincinnati, Lysholm II and Tegner scores were used for clinical and functional evaluation. Magnetic resonance arthrography (MRA) was performed before surgery and at 2, 5 and 10 years after surgery. A modified MOCART score was used to evaluate MRA findings. Results the average follow-up duration was ten years and 6 months (range, 10–11 years). No complications occurred. At the final follow-up, all scores (clinical, functional and MOCART) improved. In all but one of the patients MRA showed complete osteochondral repair. Conclusions the fixation of large and unstable OCD lesions with mosaicplasty may be a good option for treating type II or III OCD lesions in adults. The advantages of this technique include stable fixation, promotion of blood supply to the base of the OCD fragment, and grafting of autologous cancellous bone that stimulates healing with preservation of the articular surface. Level of evidence Level IV, therapeutic case series. PMID:26904522

  12. Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair.

    PubMed

    Giannoni, Paolo; Lazzarini, Erica; Ceseracciu, Luca; Barone, Alberto C; Quarto, Rodolfo; Scaglione, Silvia

    2015-10-01

    Treatment of full-thickness cartilage defects relies on osteochondral bilayer grafts, which mimic the microenvironment and structure of the two affected tissues: articular cartilage and subchondral bone. However, the integrity and stability of the grafts are hampered by the presence of a weak interphase, generated by the layering processes of scaffold manufacturing. We describe here the design and development of a bilayer monolithic osteochondral graft, avoiding delamination of the two distinct layers but preserving the cues for selective generation of cartilage and bone. A highly porous polycaprolactone-based graft was obtained by combining solvent casting/particulate leaching techniques. Pore structure and interconnections were designed to favour in vivo vascularization only at the bony layer. Hydroxyapatite granules were added as bioactive signals at the site of bone regeneration. Unconfined compressive tests displayed optimal elastic properties and low residual deformation of the graft after unloading (< 3%). The structural integrity of the graft was successfully validated by tension fracture tests, revealing high resistance to delamination, since fractures were never displayed at the interface of the layers (n = 8). Ectopic implantation of grafts in nude mice, after seeding with bovine trabecular bone-derived mesenchymal stem cells and bovine articular chondrocytes, resulted in thick areas of mature bone surrounding ceramic granules within the bony layer, and a cartilaginous alcianophilic matrix in the chondral layer. Vascularization was mostly observed in the bony layer, with a statistically significant higher blood vessel density and mean area. Thus, the easily generated osteochondral scaffolds, since they are mechanically and biologically functional, are suitable for tissue-engineering applications for cartilage repair. PMID:23172816

  13. CAN OSTEOCHONDRAL GRAFTING BE AUGMENTED WITH MICROFRACTURE IN AN EXTENDED SIZED LESION OF ARTICULAR CARTILAGE

    PubMed Central

    Lane, JG; Healey, RM; Sah, RL; Chen, AC-S; Amiel, D

    2014-01-01

    BACKGROUND Both microfracture and osteochondral autografting procedures have been useful in treating osteochondral lesions. HYPOTHESIS Combining microfracture and osteochondral autografting procedures can extend the size of lesions which can be treated with either technique. STUDY DESIGN Descriptive laboratory study. METHODS Eight adult goats underwent osteochondral autograft transfer of a 4.5mm femoral trochlea plug into an 8mm full thickness chondral defect in the weight bearing portion of the medial femoral condyle. In the gap region surrounding the autograft, microfracture was performed. The animals were allowed normal activity until the end of the experiment at 6 months, at which time the knees were harvested. At harvest the knees were assessed grossly, and then evaluation was performed by histology and histomorphometry, biochemistry and biomechanics. One animal died at 6 wks from gastroenteritis. RESULTS The osteochondral plugs healed well, with integration of the bone and preservation of the chondral cap. The chondral gap between the host site articular cartilage and the transferred plug had decreased from 3 mm at implant to less than 0.1 mm. Histological analysis demonstrated regions of variable cartilage repair, with integration of the cartilage layer at some sites but incomplete healing at others. Histomorphometry demonstrated filling of the chondral gap to 75–85% of the normal volume. Biochemical analysis revealed greater than 90% type II collagen at most sites with some areas containing 80% type II collagen. Biomechanical indentation testing, indicated that the repaired area had variable thickness and stiffness, with a trend of increased stiffness in the bulk graft and decreased softness at the proximal microfracture interface site. CONCLUSIONS The performance of a combined microfracture and osteochondral autograft transfer (OATS) procedure to resurface a large chondral defect appears promising. Transferred cartilage tissue can successfully be

  14. Effect of Impaction Sequence on Osteochondral Graft Damage: The Role of Repeated and Varying Loads

    PubMed Central

    Kang, Richard W.; Friel, Nicole A.; Williams, James M.; Cole, Brian J.; Wimmer, Markus A.

    2013-01-01

    Background Osteochondral autografts and allografts require mechanical force for proper graft placement into the defect site; however, impaction compromises the tissue. This study aimed to determine the effect of impaction force and number of hits to seat the graft on cartilage integrity. Hypothesis Under constant impulse conditions, higher impaction load magnitudes are more detrimental to cell viability, matrix integrity and collagen network organization and will result in proteoglycan loss and nitric oxide release. Study Design Controlled laboratory study Methods Osteochondral explants, harvested from fresh bovine trochleas, were exposed to a series of consistent impact loads delivered by a pneumatically driven device. Each plug received the same overall impulse of 7 Ns, reflecting the mean of 23 clinically inserted plugs. Impaction loads of 37.5N, 75N, 150N, and 300N were matched with 74, 37, 21, and 11 hits respectively. Following impaction, the plugs were harvested and cartilage was analyzed for cell viability, histology by safranin-o and picosirius red, and release of sulfated glycosaminoglycans and nitric oxide. Data were compared with non-impacted control. Results Impacted plugs had significantly lower cell viability than non-impacted plugs. A dose response relationship in loss of cell viability with respect to load magnitude was seen immediately and after 4 days but lost after 8 days. Histologic analysis revealed intact cartilage surface in all samples (loaded or control), with loaded samples showing alterations in birefringence. While the sulfated GAG release was similar across varying impaction loads, release of nitric oxide increased with increasing impaction magnitudes and time. Conclusions Impaction loading parameters have a direct effect on the time course of the viability of the cartilage in the graft tissue. Clinical Relevance Optimal loading parameters for surgical impaction of osteochondral grafts are those with lower load magnitudes and a greater

  15. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds.

    PubMed

    Fedorovich, Natalja E; Schuurman, Wouter; Wijnberg, Hans M; Prins, Henk-Jan; van Weeren, P René; Malda, Jos; Alblas, Jacqueline; Dhert, Wouter J A

    2012-01-01

    Osteochondral defects are prone to induce osteoarthritic degenerative changes. Many tissue-engineering approaches that aim to generate osteochondral implants suffer from poor tissue formation and compromised integration. This illustrates the need for further improvement of heterogeneous tissue constructs. Engineering of these structures is expected to profit from strategies addressing the complexity of tissue organization and the simultaneous use of multiple cell types. Moreover, this enables the investigation of the effects of three-dimensional (3D) organization and architecture on tissue function. In the present study, we characterize the use of a 3D fiber deposition (3DF) technique for the fabrication of cell-laden, heterogeneous hydrogel constructs for potential use as osteochondral grafts. Changing fiber spacing or angle of fiber deposition yielded scaffolds of varying porosity and elastic modulus. We encapsulated and printed fluorescently labeled human chondrocytes and osteogenic progenitors in alginate hydrogel yielding scaffolds of 1×2 cm with different parts for both cell types. Cell viability remained high throughout the printing process, and cells remained in their compartment of the printed scaffold for the whole culture period. Moreover, distinctive tissue formation was observed, both in vitro after 3 weeks and in vivo (6 weeks subcutaneously in immunodeficient mice), at different locations within one construct. These results demonstrate the possibility of manufacturing viable centimeter-scaled structured tissues by the 3DF technique, which could potentially be used for the repair of osteochondral defects. PMID:21854293

  16. Mechanical effects of surgical procedures on osteochondral grafts elucidated by osmotic loading and real-time ultrasound

    PubMed Central

    2009-01-01

    Introduction Osteochondral grafts have become popular for treating small, isolated and full-thickness cartilage lesions. It is recommended that a slightly oversized, rather than an exact-sized, osteochondral plug is transplanted to achieve a tight fit. Consequently, impacting forces are required to insert the osteochondral plug into the recipient site. However, it remains controversial whether these impacting forces affect the biomechanical condition of the grafted articular cartilage. The present study aimed to investigate the mechanical effects of osteochondral plug implantation using osmotic loading and real-time ultrasound. Methods A full-thickness cylindrical osteochondral defect (diameter, 3.5 mm; depth, 5 mm) was created in the lateral lower quarter of the patella. Using graft-harvesting instruments, an osteochondral plug (diameter, 3.5 mm as exact-size or 4.5 mm as oversize; depth, 5 mm) was harvested from the lateral upper quarter of the patella and transplanted into the defect. Intact patella was used as a control. The samples were monitored by real-time ultrasound during sequential changes of the bathing solution from 0.15 M to 2 M saline (shrinkage phase) and back to 0.15 M saline (swelling phase). For cartilage sample assessment, three indices were selected, namely the change in amplitude from the cartilage surface (amplitude recovery rate: ARR) and the maximum echo shifts from the cartilage surface and the cartilage-bone interface. Results The ARR is closely related to the cartilage surface integrity, while the echo shifts from the cartilage surface and the cartilage-bone interface are closely related to tissue deformation and NaCl diffusion, respectively. The ARR values of the oversized plugs were significantly lower than those of the control and exact-sized plugs. Regarding the maximum echo shifts from the cartilage surface and the cartilage-bone interface, no significant differences were observed among the three groups. Conclusions These findings

  17. Effects of cryopreservation on the depth-dependent elastic modulus in articular cartilage and implications for osteochondral grafting.

    PubMed

    Kahn, David; Les, Clifford; Xia, Yang

    2015-05-01

    Cryopreservation of articular cartilage is often used in storage of experimental samples and osteochondral grafts, but the depth-dependence and concentration of glycosaminoglycan (GAG) are significantly altered when cryogenically stored without a cryoprotectant, which will reduce cartilage stiffness and affect osteochondral graft function and long-term viability. This study investigates our ability to detect changes due to cryopreservation in the depth-dependent elastic modulus of osteochondral samples. Using a direct-visualization method requiring minimal histological alterations, unconfined stepwise stress relaxation tests were performed on four fresh (never frozen) and three cryopreserved (-20 °C) canine humeral head osteochondral slices 125 ± 5 μm thick. Applied force was measured and tissue images were taken at the end of each relaxation phase using a 4× objective. Intratissue displacements were calculated by tracking chondrocytes through consecutive images for various intratissue depths. The depth-dependent elastic modulus was compared between fresh and cryopreserved tissue for same-depth ranges using analysis of variance (ANOVA) with Tukey post-test with a 95% confidence interval. Cryopreservation was found to significantly alter the force-displacement profile and reduce the depth-dependent modulus of articular cartilage. Excessive collagen fiber folding occurred at 40-60% relative depth, producing a "black line" in cryopreserved tissue. Force-displacement curves exhibited elongated toe-region in cryopreserved tissue while fresh tissue had nonmeasurable toe-region. Statistical analysis showed significant reduction in the elastic modulus and GAG concentration throughout the tissue between same-depth ranges. This method of cryopreservation significantly reduces the depth-dependent modulus of canine humeral osteochondral samples. PMID:25412272

  18. Early Postoperative Magnetic Resonance Imaging Findings After Autologous Osteochondral Plug Grafts For Osteochondritis Dissecans of the Humeral Capitellum

    PubMed Central

    Maruyama, Masahiro; Takahara, Masatoshi; Harada, Mikio; Satake, Hiroshi; Uno, Tomohiro; Takagi, Michiaki

    2016-01-01

    Objectives: Although good clinical outcomes of autologous osteochondral plug grafts for capitellar osteochondritis dissecans (OCD) have been reported, the timing of return to sports was various and still controversial. The period of graft incorporation and the lesion healing at repair site is important to establish the rehabilitation protocol, however there is little information. The aim of this study was to investigate early postoperative magnetic resonance imaging (MRI) findings and clinical outcomes after autologous osteochondral plug grafts for capitellar OCD. Methods: Fifteen young baseball players with advanced lesions of capitellar OCD underwent a procedure using autologous osteochondral plug grafts and underwent MRI (1.5 T) scan at 3 and 6 months, postoperatively. Their mean age at the time of surgery was 13.5 years (range, 13-15 years). Four lesions were classified as International Cartilage Repair Society (ICRS) OCD III and 11 lesions as OCD IV. The mean size of the lesions (sagittal × coronal) was 16 × 14 mm and the mean surface area was 181 mm2. One to two osteochondral plug grafts, with a mean diameter of 7 mm (range, 6-8 mm), were harvested from the lateral femoral condyle and transplanted to the defects. The mean reconstruction rate was 41% (range, 12%-65%), which was calculated as (total surface area of the grafts × 100%)/ (surface area of the lesion). Patients were allowed to begin throwing after 3 months and to return to sports after 6 months. The mean follow-up was 21 months (range, 12-36 months). The MRI findings were assessed graft incorporation, which was indicated by no T1-low-signal-intensity at the graft and no fluid surrounding the graft on T2-weighted fat-suppression (Figure 1), and the lesion healing according to the scoring system of Henderson (4, complete healing; 16, no healing). MRI were blinded and randomized, and two observers reviewed independently and conferred when they differed. Clinical outcomes were evaluated as elbow pain

  19. Effect of tissue culture storage on the in vivo survival of canine osteochondral allografts.

    PubMed

    Oates, K M; Chen, A C; Young, E P; Kwan, M K; Amiel, D; Convery, F R

    1995-07-01

    In vitro studies in our laboratory have shown that the biomechanical and biochemical characteristics of osteochondral grafts can be preserved for as long as 28 days under tissue culture conditions. This study represents an attempt to extend these results to an in vivo model. In adult mongrel dogs, either an autograft, a fresh allograft, or a stored allograft was placed in a standardized defect on the weight-bearing surface of the medial femoral condyle. The stored grafts were kept at 4 degrees C in tissue culture medium for 14 days prior to implantation. The animals were killed at 12 weeks. Cartilage from the contralateral knee served as a control. The modulus and permeability of the cartilage were assessed with confined compression creep tests. The collagen and glycosaminoglycan contents were measured, and the cartilage was analyzed histologically with hematoxylin and eosin and safranin O stains. Grossly, the cartilage appeared viable at harvest. The histologic results were similar in the treatment groups, with the same spectrum of mild degenerative changes being noted in each group. The glycosaminoglycan content was significantly less in the autograft group than in its control group and than in the fresh allograft group. The glycosaminoglycan content did not differ significantly between fresh and stored allografts. The collagen content, modulus, and permeability did not differ either between experimental and control groups or between graft types. Our results support the conclusion that osteochondral allografts can be stored for as many as 14 days without significantly affecting the results of the procedure. PMID:7674072

  20. A Hydrogel-Mineral Composite Scaffold for Osteochondral Interface Tissue Engineering

    PubMed Central

    Khanarian, Nora T.; Jiang, Jie; Wan, Leo Q.; Mow, Van C.

    2012-01-01

    Osteoarthritis is the leading cause of physical disability among Americans, and tissue engineered cartilage grafts have emerged as a promising treatment option for this debilitating condition. Currently, the formation of a stable interface between the cartilage graft and subchondral bone remains a significant challenge. This study evaluates the potential of a hybrid scaffold of hydroxyapatite (HA) and alginate hydrogel for the regeneration of the osteochondral interface. Specifically, the effects of HA on the response of chondrocytes were determined, focusing on changes in matrix production and mineralization, as well as scaffold mechanical properties over time. Additionally, the optimal chondrocyte population for interface tissue engineering was evaluated. It was observed that the HA phase of the composite scaffold promoted the formation of a proteoglycan- and type II collagen–rich matrix when seeded with deep zone chondrocytes. More importantly, the elevated biosynthesis translated into significant increases in both compressive and shear moduli relative to the mineral-free control. Presence of HA also promoted chondrocyte hypertrophy and type X collagen deposition. These results demonstrate that the hydrogel–calcium phosphate composite supported the formation of a calcified cartilage-like matrix and is a promising scaffold design for osteochondral interface tissue engineering. PMID:21919797

  1. Viral Inactivation of Human Osteochondral Grafts with Methylene Blue and Light

    PubMed Central

    Zhao, Zhixing; Call, Gazell M.; Gao, Jizong; Yao, Jian Q.

    2014-01-01

    Objective: Cartilage injury is one of the most common disorders of synovial joints. Fresh osteochondral allografts are becoming a standard treatment; however, they are supply constrained with a potential risk of disease transmission. There are no known virucidal processes available for osteochondral allografts and most methods presently available are detrimental to cartilage. Methylene blue light treatment has been shown to be successful in the literature for viral inactivation of fresh frozen plasma. The purpose of this study was to determine the capacity of methylene blue light treatment to inactivate a panel of clinically relevant viruses inoculated onto osteochondral allografts. Design: Osteochondral grafts recovered from human cadaveric knees were inoculated with one of the following viruses: bovine viral diarrhea virus (BVDV), hepatitis A virus (HAV), human immunodeficiency virus type 1 (HIV-1), porcine parvovirus (PPV), and pseudorabies virus (PrV). The samples were processed through a methylene blue light treatment, which consisted of an initial soak in nonilluminated circulating methylene blue at ambient temperature, followed by light exposure with circulating methylene blue at cool temperatures. The final titer was compared with the recovery control for the viral log reduction. Results: HIV-1, BVDV, and PrV were reduced to nondetectable levels while HAV and PPV were reduced by 3.1 and 5.6 logs, respectively. Conclusions: The methylene blue light treatment was effective in reducing (a) enveloped DNA and RNA viruses to nondetectable levels and (b) nonenveloped DNA and RNA viruses of inoculated human osteochondral grafts by 3.1 to 5.6 logs. This study demonstrates the first practical method for significantly reducing viral load in osteochondral implants. PMID:26069682

  2. Osteochondral tissue engineering: scaffolds, stem cells and applications

    PubMed Central

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  3. Reconstruction of Osteochondral Defects by Combined Bone Grafting and a Bilayer Collagen Membrane as a Sandwich Technique

    PubMed Central

    Petri, Maximilian; Ettinger, Max; von Falck, Christian; Hawi, Nael; Jagodzinski, Michael; Haasper, Carl

    2013-01-01

    Treatment of osteochondral lesions of the knee remains a major challenge in orthopedic surgery. Recently established procedures like autologous chondrocyte implantation or matrix-associated chondrocyte implantation yield good results, but include the disadvantage of two-step procedures. The purpose of this study was to evaluate the clinical and magnetic resonance imaging outcome of repairs of osteochondral defects of the knee by a combined procedure of bone grafting and covering with a bilayer collagen membrane in a sandwich technique. Seven male patients with a mean age of 42 (range 30-55) years and symptomatic focal osteochondral lesions of the knee grade IV according to the International Cartilage Repair Society classification were included. The mean diameter of defects was 28.6 (range 15-40) mm. Results were evaluated at a minimum of 24 months after surgery by International Knee Documentation Committee score, Lysholm-score, visual analogue scale, and magnetic resonance imaging with specific cartilage sequences, evaluating the ICRS score and the Magnetic Observation of Cartilage Repair Tissue (MOCART) score. All patients judged the operation as successful. Among the patients available for the long-term follow-up, mean visual analogue scale value was 1.3 (range 0-3) out of 10 points. Mean International Knee Documentation Committee score was 80.8 (range 63.2-88.5) out of 100 points. Mean Lysholm score was 85 (range 55-95) out of 100 points. None of the patients had to be reoperated until today. Evaluation of magnetic resonance imaging using the MOCART score revealed a good correlation to the clinical outcome. This is the first study reporting results after reconstruction of osteochondral defects of the knee joint by bone grafting and a bilayer collagen membrane. This new method offers the advantage of a one-step-procedure and yields both good clinical and magnetic resonance findings. We conclude that this procedure can be a valuable tool to improve joint function

  4. Effect of the Presence of Subchondral Cysts on Treatment Results of Autologous Osteochondral Graft Transfer in Osteochondral Lesions of the Talus.

    PubMed

    Gül, Murat; Çetinkaya, Engin; Aykut, Ümit Selçuk; Özkul, Barış; Saygılı, Mehmet Selçuk; Akman, Yunus Emre; Kabukcuoglu, Yavuz Selim

    2016-01-01

    The aim of the present study was to clinically evaluate whether the presence of subchondral cysts had an effect on the treatment results of autologous osteochondral graft transfer in osteochondral lesions of the talus. Patients were enrolled in the present study according to the inclusion criteria. In the evaluation, we divided the patients into 2 groups according to presence (n = 13 patients) or absence (n = 15 patients) of a subchondral cyst. The mean age, body mass index, follow-up period, and lesion size in each group were measured and compared, and no statistically significant differences were found between the 2 groups (p > .05). The clinical assessment was performed using the American Orthopaedic Foot and Ankle Society Hindfoot scoring system, visual analog scale, and International Knee Society scoring system. No statistically significant difference was found between the pre- and postoperative scores of the 2 patient groups (p > .05). The successful results in both groups after a 2-year follow-up period have demonstrated that treatment of osteochondral lesions of the talus with osteochondral graft transfer is a safe method that can be performed independently of the presence of a subchondral cyst. PMID:27432027

  5. Spectrocolorimetric assessment of cartilage plugs after autologous osteochondral grafting: correlations between color indices and histological findings in a rabbit model

    PubMed Central

    Hattori, Koji; Uematsu, Kota; Tanikake, Yohei; Habata, Takashi; Tanaka, Yasuhito; Yajima, Hiroshi; Takakura, Yoshinori

    2007-01-01

    We investigated the use of a commercial spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution) to describe and quantify cartilage plugs in a rabbit model of osteochondral autografting. Osteochondral plugs were removed and then replaced in their original positions in Japanese white rabbits. The rabbits were sacrificed at 4 or 12 weeks after the operation and cartilage samples were assessed using a spectrocolorimeter. The samples were retrospectively divided into two groups on the basis of the histological findings (group H: hyaline cartilage, successful; group F: fibrous tissue or fibrocartilage, failure) and investigated for possible significant differences in the spectrocolorimetric analyses between the two groups. Moreover, the relationships between the spectrocolorimetric indices and the Mankin histological score were examined. In the L* a* b* colorimetric system, the L* values were significantly lower in group H than in group F (P = 0.02), whereas the a* values were significantly higher in group H than in group F (P = 0.006). Regarding the spectral reflectance distribution, the spectral reflectance percentage 470 (SRP470) values, as a coincidence index for the spectral reflectance distribution (400 to 470 nm in wavelength) of the cartilage plugs with respect to intact cartilage, were 99.8 ± 6.7% in group H and 119.8 ± 10.6% in group F, and the difference between these values was significant (P = 0.005). Furthermore, the a* values were significantly correlated with the histological score (P = 0.004, r = -0.76). The SRP470 values were also significantly correlated with the histological score (P = 0.01, r = 0.67). Our findings demonstrate the ability of spectrocolorimetric measurements to predict the histological findings of cartilage plugs after autologous osteochondral grafting. In particular, the a* values and SRP470 values can be used to judge the surface condition of an osteochondral

  6. The Impact of Compact Layer in Biphasic Scaffold on Osteochondral Tissue Engineering

    PubMed Central

    Cheng, Jian-Hua; Zhou, Wei; Xiong, Zhuo; Mu, Yun-Jing; Liu, Jian

    2013-01-01

    The structure of an osteochondral biphasic scaffold is required to mimic native tissue, which owns a calcified layer associated with mechanical and separation function. The two phases of biphasic scaffold should possess efficient integration to provide chondrocytes and osteocytes with an independent living environment. In this study, a novel biphasic scaffold composed of a bony phase, chondral phase and compact layer was developed. The compact layer-free biphasic scaffold taken as control group was also fabricated. The purpose of current study was to evaluate the impact of the compact layer in the biphasic scaffold. Bony and chondral phases were seeded with autogeneic osteoblast- or chondrocyte-induced bone marrow stromal cells (BMSCs), respectively. The biphasic scaffolds-cells constructs were then implanted into osteochondral defects of rabbits’ knees, and the regenerated osteochondral tissue was evaluated at 3 and 6 months after surgery. Anti-tensile and anti-shear properties of the compact layer-containing biphasic scaffold were significantly higher than those of the compact layer-free biphasic scaffold in vitro. Furthermore, in vivo studies revealed superior macroscopic scores, glycosaminoglycan (GAG) and collagen content, micro tomograph imaging results, and histological properties of regenerated tissue in the compact layer-containing biphasic scaffold compared to the control group. These results indicated that the compact layer could significantly enhance the biomechanical properties of biphasic scaffold in vitro and regeneration of osteochondral tissue in vivo, and thus represented a promising approach to osteochondral tissue engineering. PMID:23382984

  7. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    SciTech Connect

    Seebauer, Christian J.; Bail, Hermann J.; Rump, Jens C. Walter, Thula Teichgraeber, Ulf K. M.

    2010-12-15

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesions of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.

  8. Osteochondral allograft transplantation in cartilage repair: Graft storage paradigm, translational models, and clinical applications.

    PubMed

    Bugbee, William D; Pallante-Kichura, Andrea L; Görtz, Simon; Amiel, David; Sah, Robert

    2016-01-01

    The treatment of articular cartilage injury and disease has become an increasingly relevant part of orthopaedic care. Articular cartilage transplantation, in the form of osteochondral allografting, is one of the most established techniques for restoration of articular cartilage. Our research efforts over the last two decades have supported the transformation of this procedure from experimental "niche" status to a cornerstone of orthopaedic practice. In this Kappa Delta paper, we describe our translational and clinical science contributions to this transformation: (1) to enhance the ability of tissue banks to process and deliver viable tissue to surgeons and patients, (2) to improve the biological understanding of in vivo cartilage and bone remodeling following osteochondral allograft (OCA) transplantation in an animal model system, (3) to define effective surgical techniques and pitfalls, and (4) to identify and clarify clinical indications and outcomes. The combination of coordinated basic and clinical studies is part of our continuing comprehensive academic OCA transplant program. Taken together, the results have led to the current standards for OCA processing and storage prior to implantation and also novel observations and mechanisms of the biological and clinical behavior of OCA transplants in vivo. Thus, OCA transplantation is now a successful and increasingly available treatment for patients with disabling osteoarticular cartilage pathology. PMID:26234194

  9. Stem Cell-Based Microphysiological Osteochondral System to Model Tissue Response to Interleukin-1β

    PubMed Central

    2015-01-01

    Osteoarthritis (OA) is a chronic degenerative disease of the articular joint that involves both bone and cartilage degenerative changes. An engineered osteochondral tissue within physiological conditions will be of significant utility in understanding the pathogenesis of OA and testing the efficacy of potential disease-modifying OA drugs (DMOADs). In this study, a multichamber bioreactor was fabricated and fitted into a microfluidic base. When the osteochondral construct is inserted, two chambers are formed on either side of the construct (top, chondral; bottom, osseous) that is supplied by different medium streams. These medium conduits are critical to create tissue-specific microenvironments in which chondral and osseous tissues will develop and mature. Human bone marrow stem cell (hBMSCs)-derived constructs were fabricated in situ and cultured within the bioreactor and induced to undergo spatially defined chondrogenic and osteogenic differentiation for 4 weeks in tissue-specific media. We observed tissue specific gene expression and matrix production as well as a basophilic interface suggesting a developing tidemark. Introduction of interleukin-1β (IL-1β) to either the chondral or osseous medium stream induced stronger degradative responses locally as well as in the opposing tissue type. For example, IL-1β treatment of the osseous compartment resulted in a strong catabolic response in the chondral layer as indicated by increased matrix metalloproteinase (MMP) expression and activity, and tissue-specific gene expression. This induction was greater than that seen with IL-1β application to the chondral component directly, indicative of active biochemical communication between the two tissue layers and supporting the osteochondral nature of OA. The microtissue culture system developed here offers novel capabilities for investigating the physiology of osteochondral tissue and pathogenic mechanisms of OA and serving as a high-throughput platform to test potential

  10. Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.

    PubMed

    Lin, Hang; Lozito, Thomas P; Alexander, Peter G; Gottardi, Riccardo; Tuan, Rocky S

    2014-07-01

    Osteoarthritis (OA) is a chronic degenerative disease of the articular joint that involves both bone and cartilage degenerative changes. An engineered osteochondral tissue within physiological conditions will be of significant utility in understanding the pathogenesis of OA and testing the efficacy of potential disease-modifying OA drugs (DMOADs). In this study, a multichamber bioreactor was fabricated and fitted into a microfluidic base. When the osteochondral construct is inserted, two chambers are formed on either side of the construct (top, chondral; bottom, osseous) that is supplied by different medium streams. These medium conduits are critical to create tissue-specific microenvironments in which chondral and osseous tissues will develop and mature. Human bone marrow stem cell (hBMSCs)-derived constructs were fabricated in situ and cultured within the bioreactor and induced to undergo spatially defined chondrogenic and osteogenic differentiation for 4 weeks in tissue-specific media. We observed tissue specific gene expression and matrix production as well as a basophilic interface suggesting a developing tidemark. Introduction of interleukin-1β (IL-1β) to either the chondral or osseous medium stream induced stronger degradative responses locally as well as in the opposing tissue type. For example, IL-1β treatment of the osseous compartment resulted in a strong catabolic response in the chondral layer as indicated by increased matrix metalloproteinase (MMP) expression and activity, and tissue-specific gene expression. This induction was greater than that seen with IL-1β application to the chondral component directly, indicative of active biochemical communication between the two tissue layers and supporting the osteochondral nature of OA. The microtissue culture system developed here offers novel capabilities for investigating the physiology of osteochondral tissue and pathogenic mechanisms of OA and serving as a high-throughput platform to test potential

  11. Spatial Engineering of Osteochondral Tissue Constructs Through Microfluidically Directed Differentiation of Mesenchymal Stem Cells.

    PubMed

    Goldman, Stephen M; Barabino, Gilda A

    2016-01-01

    The development of tissue engineered osteochondral units has been slowed by a number of technical hurdles associated with recapitulating their heterogeneous nature ex vivo. Subsequently, numerous approaches with respect to cell sourcing, scaffolding composition, and culture media formulation have been pursued, which have led to high variability in outcomes and ultimately the lack of a consensus bioprocessing strategy. As such, the objective of this study was to standardize the design process by focusing on differentially supporting formation of cartilaginous and bony matrix by a single cell source in a spatially controlled manner within a single material system. A cell-polymer solution of bovine mesenchymal stem cells and agarose was cast against micromolds of a serpentine network and stacked to produce tissue constructs containing two independent microfluidic networks. Constructs were fluidically connected to two controlled flow loops and supplied with independently tuned differentiation parameters for chondrogenic and osteogenic induction, respectively. Constructs receiving inductive media showed differential gene expression of both chondrogenic and osteogenic markers in opposite directions along the thickness of the construct that was recapitulated at the protein level with respect to collagens I, II, and X. A control group receiving noninductive media showed homogeneous expression of these biomarkers measured in lower concentrations at both the mRNA and protein level. This work represents an important step in the rational design of engineered osteochondral units through establishment of an enabling technology for further optimization of scaffolding formulations and bioprocessing conditions toward the production of commercially viable osteochondral tissue products. PMID:27190700

  12. Spatial Engineering of Osteochondral Tissue Constructs Through Microfluidically Directed Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Goldman, Stephen M.; Barabino, Gilda A.

    2016-01-01

    Abstract The development of tissue engineered osteochondral units has been slowed by a number of technical hurdles associated with recapitulating their heterogeneous nature ex vivo. Subsequently, numerous approaches with respect to cell sourcing, scaffolding composition, and culture media formulation have been pursued, which have led to high variability in outcomes and ultimately the lack of a consensus bioprocessing strategy. As such, the objective of this study was to standardize the design process by focusing on differentially supporting formation of cartilaginous and bony matrix by a single cell source in a spatially controlled manner within a single material system. A cell-polymer solution of bovine mesenchymal stem cells and agarose was cast against micromolds of a serpentine network and stacked to produce tissue constructs containing two independent microfluidic networks. Constructs were fluidically connected to two controlled flow loops and supplied with independently tuned differentiation parameters for chondrogenic and osteogenic induction, respectively. Constructs receiving inductive media showed differential gene expression of both chondrogenic and osteogenic markers in opposite directions along the thickness of the construct that was recapitulated at the protein level with respect to collagens I, II, and X. A control group receiving noninductive media showed homogeneous expression of these biomarkers measured in lower concentrations at both the mRNA and protein level. This work represents an important step in the rational design of engineered osteochondral units through establishment of an enabling technology for further optimization of scaffolding formulations and bioprocessing conditions toward the production of commercially viable osteochondral tissue products. PMID:27190700

  13. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering

    PubMed Central

    Mazaki, Tetsuro; Shiozaki, Yasuyuki; Yamane, Kentaro; Yoshida, Aki; Nakamura, Mariko; Yoshida, Yasuhiro; Zhou, Di; Kitajima, Takashi; Tanaka, Masato; Ito, Yoshihiro; Ozaki, Toshifumi; Matsukawa, Akihiro

    2014-01-01

    Osteochondral injuries remain difficult to repair. We developed a novel photo-cross-linkable furfurylamine-conjugated gelatin (gelatin-FA). Gelatin-FA was rapidly cross-linked by visible light with Rose Bengal, a light sensitizer, and was kept gelled for 3 weeks submerged in saline at 37°C. When bone marrow-derived stromal cells (BMSCs) were suspended in gelatin-FA with 0.05% Rose Bengal, approximately 87% of the cells were viable in the hydrogel at 24 h after photo-cross-linking, and the chondrogenic differentiation of BMSCs was maintained for up to 3 weeks. BMP4 fusion protein with a collagen binding domain (CBD) was retained in the hydrogels at higher levels than unmodified BMP4. Gelatin-FA was subsequently employed as a scaffold for BMSCs and CBD-BMP4 in a rabbit osteochondral defect model. In both cases, the defect was repaired with articular cartilage-like tissue and regenerated subchondral bone. This novel, photo-cross-linkable gelatin appears to be a promising scaffold for the treatment of osteochondral injury. PMID:24662725

  14. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.

    PubMed

    Steinmetz, Neven J; Aisenbrey, Elizabeth A; Westbrook, Kristofer K; Qi, H Jerry; Bryant, Stephanie J

    2015-07-01

    A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes. PMID:25900444

  15. Multiphasic construct studied in an ectopic osteochondral defect model

    PubMed Central

    Jeon, June E.; Vaquette, Cédryck; Theodoropoulos, Christina; Klein, Travis J.; Hutmacher, Dietmar W.

    2014-01-01

    In vivo osteochondral defect models predominantly consist of small animals, such as rabbits. Although they have an advantage of low cost and manageability, their joints are smaller and more easily healed compared with larger animals or humans. We hypothesized that osteochondral cores from large animals can be implanted subcutaneously in rats to create an ectopic osteochondral defect model for routine and high-throughput screening of multiphasic scaffold designs and/or tissue-engineered constructs (TECs). Bovine osteochondral plugs with 4 mm diameter osteochondral defect were fitted with novel multiphasic osteochondral grafts composed of chondrocyte-seeded alginate gels and osteoblast-seeded polycaprolactone scaffolds, prior to being implanted in rats subcutaneously with bone morphogenic protein-7. After 12 weeks of in vivo implantation, histological and micro-computed tomography analyses demonstrated that TECs are susceptible to mineralization. Additionally, there was limited bone formation in the scaffold. These results suggest that the current model requires optimization to facilitate robust bone regeneration and vascular infiltration into the defect site. Taken together, this study provides a proof-of-concept for a high-throughput osteochondral defect model. With further optimization, the presented hybrid in vivo model may address the growing need for a cost-effective way to screen osteochondral repair strategies before moving to large animal preclinical trials. PMID:24694896

  16. Multiphasic construct studied in an ectopic osteochondral defect model.

    PubMed

    Jeon, June E; Vaquette, Cédryck; Theodoropoulos, Christina; Klein, Travis J; Hutmacher, Dietmar W

    2014-06-01

    In vivo osteochondral defect models predominantly consist of small animals, such as rabbits. Although they have an advantage of low cost and manageability, their joints are smaller and more easily healed compared with larger animals or humans. We hypothesized that osteochondral cores from large animals can be implanted subcutaneously in rats to create an ectopic osteochondral defect model for routine and high-throughput screening of multiphasic scaffold designs and/or tissue-engineered constructs (TECs). Bovine osteochondral plugs with 4 mm diameter osteochondral defect were fitted with novel multiphasic osteochondral grafts composed of chondrocyte-seeded alginate gels and osteoblast-seeded polycaprolactone scaffolds, prior to being implanted in rats subcutaneously with bone morphogenic protein-7. After 12 weeks of in vivo implantation, histological and micro-computed tomography analyses demonstrated that TECs are susceptible to mineralization. Additionally, there was limited bone formation in the scaffold. These results suggest that the current model requires optimization to facilitate robust bone regeneration and vascular infiltration into the defect site. Taken together, this study provides a proof-of-concept for a high-throughput osteochondral defect model. With further optimization, the presented hybrid in vivo model may address the growing need for a cost-effective way to screen osteochondral repair strategies before moving to large animal preclinical trials. PMID:24694896

  17. Harnessing Cell–Biomaterial Interactions for Osteochondral Tissue Regeneration

    PubMed Central

    Kim, Kyobum; Yoon, Diana M.; Mikos, Antonios G.

    2013-01-01

    Articular cartilage that is damaged or diseased often requires surgical intervention to repair the tissue; therefore, tissue engineering strategies have been developed to aid in cartilage regeneration. Tissue engineering approaches often require the integration of cells, biomaterials, and growth factors to direct and support tissue formation. A variety of cell types have been isolated from adipose, bone marrow, muscle, and skin tissue to promote cartilage regeneration. The interaction of cells with each other and with their surrounding environment has been shown to play a key role in cartilage engineering. In tissue engineering approaches, biomaterials are commonly used to provide an initial framework for cell recruitment and proliferation and tissue formation. Modifications of the properties of biomaterials, such as creating sites for cell binding, altering their physicochemical characteristics, and regulating the delivery of growth factors, can have a significant influence on chondrogenesis. Overall, the goal is to completely restore healthy cartilage within an articular cartilage defect. This chapter aims to provide information about the importance of cell–biomaterial interactions for the chondrogenic differentiation of various cell populations that can eventually produce functional cartilage matrix that is indicative of healthy cartilage tissue. PMID:21975954

  18. Evaluation of cartilage, synovium and adipose tissue as cellular sources for osteochondral repair.

    PubMed

    Innes, J F; Gordon, C; Vaughan-Thomas, A; Rhodes, N P; Clegg, P D

    2013-09-01

    Osteochondral lesions are a major cause of pain and disability in several species including dogs, horses and human beings. The objective of this study was to assess three potential sources of canine cells for their osteochondral regenerative potential. Cartilage, synovium and adipose tissue cells were grown in pellet culture in chondrogenic or osteogenic media. Cartilage-derived pellets displayed the best chondrogenic differentiation as indicated by significantly higher COL2A1 and SOX9 mRNA expression, greater glycosaminoglycan content, and higher retention of Safranin-O stain compared to the synovium and adipose-derived cells. Following application of the osteogenic media, all three cell sources exhibited small areas of positive alizarin red staining. Poor intracellular alkaline phosphatase activity was found in all three cell types when stimulated although osteocalcin and RUNX2 expression were significantly increased. Cells isolated and cultured from canine articular cartilage retained their specific chondrocytic phenotype. Furthermore, canine adipocytes and synovial cells did not undergo chondrogenic differentiation and did not exhibit evidence of multipotency. Although osteogenic differentiation was initiated at a genomic level, phenotypic osteoblastic differentiation was not observed. The findings of this study suggest that cells isolated from canine adipose tissue and synovium are sub-optimal substitutes for chondrocytes when engineering articular cartilage in vitro. PMID:23886701

  19. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold.

    PubMed

    Chen, Kelei; Shi, Pujiang; Teh, Thomas Kok Hiong; Toh, Siew Lok; Goh, James Ch

    2016-04-01

    Tissue engineering of a biological osteochondral multilayered construct with a cartilage-interface subchondral bone layer is a key challenge. This study presented a rabbit bone marrow stromal cell (BMSC)/silk fibroin scaffold-based co-culture approach to generate tissue-engineered osteochondral grafts with an interface. BMSC-seeded scaffolds were first cultured separately in osteogenic and chondrogenic stimulation media. The two differentiated pieces were then combined using an RADA self-assembling peptide and subsequently co-cultured. Gene expression, histological and biochemical analyses were used to evaluate the multilayered structure of the osteochondral graft. A complete osteochondral construct with a cartilage-subchondral bone interface was regenerated and BMSCs were used as the only cell source for the osteochondral construct and interface regeneration. Furthermore, in the intermediate region of co-cultured samples, hypertrophic chondrogenic gene markers type X collagen and MMP-13 were found on both chondrogenic and osteogenic section edges after co-culture. However, significant differences gene expression profile were found in distinct zones of the construct during co-culture and the section in the intermediate region had significantly higher hypertrophic chondrocyte gene expression. Biochemical analyses and histology results further supported this observation. This study showed that specific stimulation from osteogenic and chondrogenic BMSCs affected each other in this co-culture system and induced the formation of an osteochondral interface. Moreover, this system provided a possible approach for generating multilayered osteochondral constructs. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23413023

  20. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.

    PubMed

    Yao, Qingqing; Nooeaid, Patcharakamon; Detsch, Rainer; Roether, Judith A; Dong, Yanming; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation. PMID:24677705

  1. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses.

    PubMed

    Kon, E; Mutini, A; Arcangeli, E; Delcogliano, M; Filardo, G; Nicoli Aldini, N; Pressato, D; Quarto, R; Zaffagnini, S; Marcacci, M

    2010-06-01

    The present in vivo preliminary experiment is aimed at testing mechanical and biological behaviour of a new nano-structured composite multilayer biomimetic scaffold for the treatment of chondral and osteochondral defects. The three-dimensional biomimetic scaffold (Fin-Ceramica Faenza S.p.A., Faenza-Italy) was obtained by nucleating collagen fibrils with hydroxyapatite nanoparticles, in two configurations, bi- and tri-layered, to reproduce, respectively, chondral and osteochondral anatomy. Chondral defects (lateral condyle) and deep osteochondral defects (medial condyle) were made in the distal epiphysis of the third metacarpal bone of both forelimbs of two adult horses and treated respectively with the chondral and osteochondral grafts. Both animals were euthanised six months follow up. The images obtained at the second look arthroscopy evaluation, performed two months after surgery, demonstrated good filling of the chondral and osteo-chondral defects without any inflammatory reaction around and inside the lesions. At the histological analysis the growth of trabecular bone in the osteochondral lesion was evident. Only in one case, the whole thickness of the osteochondral lesion was filled by fibrocartilaginous tissue. The formation of a tidemark line was evident at the interface with the newly formed bone. Newly formed fibrocartilaginous tissue was present in the area of the chondral defect. Initial alignment of the collagen fibres was recognisable with polarised light in both groups. The results of the present pilot study showed that this novel osteochondral and chondral scaffold may act as a suitable matrix to facilitate orderly regeneration of bone and hyaline-like cartilage. PMID:20049745

  2. Treatment of extended osteochondral lesions of the talus with a free vascularised bone graft from the medial condyle of the femur.

    PubMed

    Hintermann, B; Wagener, J; Knupp, M; Schweizer, C; J Schaefer, D

    2015-09-01

    Large osteochondral lesions (OCLs) of the shoulder of the talus cannot always be treated by traditional osteochondral autograft techniques because of their size, articular geometry and loss of an articular buttress. We hypothesised that they could be treated by transplantation of a vascularised corticoperiosteal graft from the ipsilateral medial femoral condyle. Between 2004 and 2011, we carried out a prospective study of a consecutive series of 14 patients (five women, nine men; mean age 34.8 years, 20 to 54) who were treated for an OCL with a vascularised bone graft. Clinical outcome was assessed using a visual analogue scale (VAS) for pain and the American Orthopaedic Foot and Ankle Society (AOFAS) hindfoot score. Radiological follow-up used plain radiographs and CT scans to assess graft incorporation and joint deterioration. At a mean follow-up of 4.1 years (2 to 7), the mean VAS for pain had decreased from 5.8 (5 to 8) to 1.8 (0 to 4) (p = 0.001) and the mean AOFAS hindfoot score had increased from 65 (41 to 70) to 81 (54 to 92) (p = 0.003). Radiologically, the talar contour had been successfully reconstructed with stable incorporation of the vascularised corticoperiosteal graft in all patients. Joint degeneration was only seen in one ankle. Treatment of a large OCL of the shoulder of the talus with a vascularised corticoperiosteal graft taken from the medial condyle of the femur was found to be a safe, reliable method of restoring the contour of the talus in the early to mid-term. PMID:26330592

  3. Hierarchical Structure of Articular Bone-Cartilage Interface and Its Potential Application for Osteochondral Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin

    2010-09-01

    The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.

  4. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    NASA Astrophysics Data System (ADS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  5. Simultaneous Osteoperiosteal Autologous Iliac Crest Graft and Lateral Meniscus Allograft Transplantation for Osteochondral Lesion with Bony Defect and Lateral Discoid Meniscus Tear.

    PubMed

    Lee, Dhong Won; Kim, Jin Goo; Ha, Jeong Ku; Kim, Woo Jong

    2016-06-01

    The optimal treatment for combined osteochondritis dissecans (OCD) with considerable bony defect of the lateral femoral condyle (LFC) and torn discoid lateral meniscus is unclear. We present a case of a 15-year-old female who was a gymnast and had a large OCD lesion in the LFC combined with deficiency of the lateral meniscus. The patient underwent the "one-step" technique of osteoperiosteal autologous iliac crest graft and lateral meniscus allograft transplantation after a failure of meniscectomy with repair at another hospital. Twenty-four months postoperatively, clinical results were significantly improved. Follow-up imaging tests and second-look arthroscopy showed well incorporated structured bone graft and fibrous cartilage regeneration as well as stabilized lateral meniscus allograft. She could return to her sport without any pain or swelling. This "one-step" surgical technique is worth considering as a joint salvage procedure for massive OCD lesions with torn discoid lateral meniscus. PMID:27274475

  6. Simultaneous Osteoperiosteal Autologous Iliac Crest Graft and Lateral Meniscus Allograft Transplantation for Osteochondral Lesion with Bony Defect and Lateral Discoid Meniscus Tear

    PubMed Central

    Lee, Dhong Won; Ha, Jeong Ku; Kim, Woo Jong

    2016-01-01

    The optimal treatment for combined osteochondritis dissecans (OCD) with considerable bony defect of the lateral femoral condyle (LFC) and torn discoid lateral meniscus is unclear. We present a case of a 15-year-old female who was a gymnast and had a large OCD lesion in the LFC combined with deficiency of the lateral meniscus. The patient underwent the "one-step" technique of osteoperiosteal autologous iliac crest graft and lateral meniscus allograft transplantation after a failure of meniscectomy with repair at another hospital. Twenty-four months postoperatively, clinical results were significantly improved. Follow-up imaging tests and second-look arthroscopy showed well incorporated structured bone graft and fibrous cartilage regeneration as well as stabilized lateral meniscus allograft. She could return to her sport without any pain or swelling. This "one-step" surgical technique is worth considering as a joint salvage procedure for massive OCD lesions with torn discoid lateral meniscus. PMID:27274475

  7. [Tissue grafts: an activity concerning many patients].

    PubMed

    Loty, B

    1997-11-15

    Tissue allografts mainly include corneas, bone (and cartilage, tendon, ligament, aponevrosis), skin, vessels and cardiac valves. All these grafts have been widely used for many years and were the subject of a large number of experimental and clinical studies. The different steps allowing the obtention of different tissue allografts have in fact a common organization through tissue procurement and banking activities. Tissue banks have a central situation ensuring security, safety, traceability and distribution of tissues. Appropriate organization of the banks, and respect of high level standards are thus mandatory. Tissue transplantation activity in France has been studied through national surveys: they concern more than 600 hospitals and clinics, and grafts procured in France (excluding imported allografts) are around 15,000 a year. Precise regulation implied by the bioethical law published in 1994 and homogeneous organization of the activity allow the use of stringent and regularly updated standards, allowing the distribution to the patients of safe grafts procured in ethical conditions. The actual shortage of tissue allografts in France implies increasing procurement through a better organization of retrieval in hospitals and clinics and donation promotion. PMID:9501596

  8. CHONDROCYTE VIABILITY IS HIGHER AFTER PROLONGED STORAGE AT 37°C THAN AT 4°C FOR OSTEOCHONDRAL GRAFTS

    PubMed Central

    Pallante, Andrea L.; Bae, Won C.; Chen, Albert C.; Görtz, Simon; Bugbee, William D.; Sah, Robert L.

    2010-01-01

    Background Osteochondral allografts are currently stored at 4°C for 2–6 weeks before implantation. At 4°C, chondrocyte viability, especially in the superficial zone, deteriorates starting at 2 weeks. Alternative storage conditions could maintain chondrocyte viability beyond 2 weeks, and thereby facilitate increased graft availability and enhanced graft quality. Purpose Determine effects of prolonged 37°C storage compared to traditional 4°C storage on chondrocyte viability and cartilage matrix content. Study Design Controlled Laboratory Study Methods Osteochondral samples from humeral heads of adult goats were analyzed (i) fresh, or after storage in medium for (ii) 14d at 4°C including 10% FBS, (iii) 28d at 4°C including 10% FBS, (iv) 28d at 37°C without FBS, (v) 28d at 37°C including 2% FBS, or (vi) 28d at 37°C including 10% FBS. Portions of samples were analyzed by microscopy after LIVE/DEAD® staining to determine chondrocyte viability and density, both en face (to visualize the articular surface) and vertically (overall and in superficial, middle, and deep zones). The remaining cartilage was analyzed for sulfated-glycosaminoglycan and collagen. Results 37°C storage maintained high chondrocyte viability compared to 4°C storage. Viability of samples after 28d at 37°C was ~80% at the cartilage surface en face, ~65% in the superficial zone, and ~70% in the middle zone, which was much higher than ~45%, ~20%, and ~35%, respectively, in 4°C samples after 28d, and slightly decreased from ~100%, ~85%, and ~95%, respectively, in fresh controls. Cartilage thickness, glycosaminoglycan content, and collagen content were maintained for 37°C and 4°C samples compared to fresh controls. Conclusion 37°C storage of osteochondral grafts supports long-term chondrocyte viability, especially at the vulnerable surface and superficial zone of cartilage. Clinical Relevance Storage of allografts at physiological temperature of 37°C may prolong storage duration, improve

  9. Hyaluronic Acid (800 kDa) Supplementation of University of Wisconsin Solution Improves Viability of Osteochondral Grafts and Reduces Matrix Metalloproteinase Expression during Cold Preservation

    PubMed Central

    Yamada, Takuya; Uchida, Kentaro; Onuma, Kenji; Inoue, Gen; Aikawa, Jun; Takano, Shotaro; Sekiguchi, Hiroyuki; Fujimaki, Hisako; Miyagi, Masayuki; Takaso, Masashi

    2015-01-01

    Osteochondral allografting is a promising option for the treatment of large cartilage defects. However, because the cell viability of osteochondral tissues (OCTs) gradually reduces during storage at 4°C, methods for maintaining the cell viability of fresh OCTs are needed to improve transplantation outcomes. Here, we evaluated whether the supplementation of preservation solution with one of three different molecular weight forms of hyaluronic acid (HA) improved the viability of rat OCTs during long-term cold storage. The supplementation of University of Wisconsin (UW) solution with 800 kDa significantly improved the cell viability of OCT after 14 days at 4°C compared to nonsupplemented UW solution. In contrast, UW solution supplemented with either 1900 or 6000 kDa HA did not markedly improve the cell viability of the OCT. Real-time PCR analysis revealed that the levels of matrix metalloproteinases 2, 3, and 9 were significantly decreased in OCT stored in UW solution supplemented with 800 kDa HA. Although further studies in human OCT are warranted, these findings demonstrate that the use of 800 kDa HA in place of serum may be a suitable approach for the long-term preservation of osteochondral allografts designated for the repair of large cartilage defects in the clinical setting. PMID:26199955

  10. Tissue engineered small-diameter vascular grafts.

    PubMed

    Schmedlen, Rachael H; Elbjeirami, Wafa M; Gobin, Andrea S; West, Jennifer L

    2003-10-01

    Arterial occlusive disease remains the leading cause of death in western countries and often requires vascular reconstructive surgery. The limited supply of suitable small-diameter vascular grafts has led to the development of tissue engineered blood vessel substitutes. Many different approaches have been examined, including natural scaffolds containing one or more ECM proteins and degradable polymeric scaffolds. For optimal graft development, many efforts have modified the culture environment to enhance ECM synthesis and organization using bioreactors under physiologic conditions and biochemical supplements. In the past couple of decades, a great deal of progress on TEVGs has been made. Many challenges remain and are being addressed, particularly with regard to the prevention of thrombosis and the improvement of graft mechanical properties. To develop a patent TEVG that grossly resembles native tissue, required culture times in most studies exceed 8 weeks. Even with further advances in the field, TEVGs will likely not be used in emergency situations because of the time necessary to allow for cell expansion, ECM production and organization, and attainment of desired mechanical strength. Furthermore, TEVGs will probably require the use of autologous tissue to prevent an immunogenic response, unless advances in immune acceptance render allogenic and xenogenic tissue use feasible. TEVGs have not yet been subjected to clinical trials, which will determine the efficacy of such grafts in the long term. Finally, off-the-shelf availability and cost will become the biggest hurdles in the development of a feasible TEVG product. Although many obstacles exist in the effort to develop a small-diameter TEVG, the potential benefits of such an achievement are exciting. In the near future, a nonthrombogenic TEVG with sufficient mechanical strength may be developed for clinical trials. Such a graft will have the minimum characteristics of biological tissue necessary to remain patent

  11. Repair of osteochondral defects by mosaicplasty and allogeneic BMSCs transplantation

    PubMed Central

    Ma, Xin; Sun, Yuan; Cheng, Xiangguo; Gao, Youshui; Hu, Bin; Wen, Gen; Qian, Yebin; Gu, Wenqi; Mao, Yanjie; Liu, Wanjun

    2015-01-01

    Objective: To investigate the feasibility and efficacy of repairing osteochondral defects with mosaicplasty and allogeneic bone marrow mesenchymal stem cells (BMSCs) transplantation. Methods: BMSCs were harvested from rabbits and maintained in vitro. Cells of third passage were mixed with pluronic F-127. Osteochondral defect animal model was established in rabbits and then this defect was treated with autologous osteochondral grafts with or without BMSCs above mentioned. In control group, pure pluronic F-127 was filled in the defect. Histological and immunohistological examinations were performed for the evaluation of therapeutic effectiveness. Results: Autologous osteochondral grafts in both groups were not loose, prolapsed and depressed. In BMSCs group, the tissues in the “death space” became hyaline cartilage. The arrangement of chondrocytes was regular. At 4, 8, 12 and 16 weeks, O’Driscoll and Keeley and Salter score were 14.00±1.00, 16.75±1.71, 18.00±0.82 and 20.50±1.29 in BMSCs group, which were significantly higher than those in control group (7.67±0.58, 8.00±0.82, 8.50±0.58 and 9.00±0.82, respectively). There were significant differences among different treatments (F=584.028, P=0.000), but the score was comparable between right defect and left defect (F=0.028, P=0.890). In addition, significant difference was also observed at different time points (F=18.364, P=0.000), but there was no interaction between time and treatment (F=6.939, P=0.015). Moreover, interactions among other factors were also not observed. Conclusion: Mosaicplasty and BMSC transplantation are effective to repair the osteochondral defects and integrate the “death space”, achieving a better therapeutic efficacy. Thus, this combined therapy may become an effective strategy for the therapy of osteochondral defects. PMID:26131203

  12. A Silk Fibroin and Peptide Amphiphile-Based Co-Culture Model for Osteochondral Tissue Engineering.

    PubMed

    Çakmak, Soner; Çakmak, Anıl S; Kaplan, David L; Gümüşderelioğlu, Menemşe

    2016-08-01

    New biomaterials with the properties of both bone and cartilage extracellular matrices (ECM) should be designed and used with co-culture systems to address clinically applicable osteochondral constructs. Herein, a co-culture model is described based on a trilayered silk fibroin-peptide amphiphile (PA) scaffold cultured with human articular chondrocytes (hACs) and human bone marrow mesenchymal stem cells (hBMSCs) in an osteochondral cocktail medium for the cartilage and bone sides, respectively. The presence of hACs in the co-cultures significantly increases the osteogenic differentiation potential of hBMSCs based on ALP activity, RT-PCR for osteogenic markers, calcium analyses, and histological stainings, whereas hACs produces a significant amount of glycosaminoglycans (GAGs) for the cartilage region, even in the absence of growth factor TGF-β family in the co-culture medium. This trilayered scaffold with trophic effects offers a promising strategy for the study of osteochondral defects. PMID:27139244

  13. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.

    PubMed

    Berninger, Markus T; Wexel, Gabriele; Rummeny, Ernst J; Imhoff, Andreas B; Anton, Martina; Henning, Tobias D; Vogt, Stephan

    2013-01-01

    The treatment of osteochondral articular defects has been challenging physicians for many years. The better understanding of interactions of articular cartilage and subchondral bone in recent years led to increased attention to restoration of the entire osteochondral unit. In comparison to chondral lesions the regeneration of osteochondral defects is much more complex and a far greater surgical and therapeutic challenge. The damaged tissue does not only include the superficial cartilage layer but also the subchondral bone. For deep, osteochondral damage, as it occurs for example with osteochondrosis dissecans, the full thickness of the defect needs to be replaced to restore the joint surface (1). Eligible therapeutic procedures have to consider these two different tissues with their different intrinsic healing potential (2). In the last decades, several surgical treatment options have emerged and have already been clinically established (3-6). Autologous or allogeneic osteochondral transplants consist of articular cartilage and subchondral bone and allow the replacement of the entire osteochondral unit. The defects are filled with cylindrical osteochondral grafts that aim to provide a congruent hyaline cartilage covered surface (3,7,8). Disadvantages are the limited amount of available grafts, donor site morbidity (for autologous transplants) and the incongruence of the surface; thereby the application of this method is especially limited for large defects. New approaches in the field of tissue engineering opened up promising possibilities for regenerative osteochondral therapy. The implantation of autologous chondrocytes marked the first cell based biological approach for the treatment of full-thickness cartilage lesions and is now worldwide established with good clinical results even 10 to 20 years after implantation (9,10). However, to date, this technique is not suitable for the treatment of all types of lesions such as deep defects involving the subchondral

  14. Soft Tissue Augmentation with Silk Composite Graft

    PubMed Central

    Park, Yong-Tae; Kweon, Hae Yong; Kim, Seong-Gon

    2014-01-01

    Purpose: The objective of this study was to evaluate the interaction between 4-hexylresorcinol (4HR) and antibody as that affects the performance of a silk-4HR combination graft for soft tissue augmentation in an animal model. Methods: The silk graft materials consisted of four types: silk+10% tricalcium phosphate (TCP) (ST0), silk+10% TCP+1% 4HR (ST1), silk+10% TCP+3% 4HR (ST3), and silk+10% TCP+6% 4-HR (ST6). The antibody binding assay tested the 4HR effect and scanning electron microscopic (SEM) exam was done for silk grafts. The animal experiment used a subcutaneous pocket mouse model. The graft – SH0 or SH1 or SH3 or SH6 – was placed in a subcutaneous pocket. The animals were killed at one, two, and four weeks, postoperatively. The specimens were subjected to histological analysis and lysozyme assay. Results: Groups with 4HR applied showed lower antibody binding affinity to antigen compared to groups without 4HR. In the SEM examination, there was no significant difference among groups. Histological examinations revealed many foreign body giant cells in ST0 and ST1 group at four weeks postoperatively. Both ST3 and ST6 groups developed significantly lower levels of giant cell values compared to ST0 and ST1 groups (P <0.001) at four weeks postoperatively. In the lysozyme assay, the ST1 and ST3 groups showed denser signals than the other groups. Conclusion: 4HR combined silk implants resulted in high levels of vascular and connective tissue regeneration. PMID:27489833

  15. Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration.

    PubMed

    Manferdini, C; Cavallo, C; Grigolo, B; Fiorini, M; Nicoletti, A; Gabusi, E; Zini, N; Pressato, D; Facchini, A; Lisignoli, G

    2016-05-01

    Osteochondral lesions require treatment to restore the biology and functionality of the joint. A novel nanostructured biomimetic gradient scaffold was developed to mimic the biochemical and biophysical properties of the different layers of native osteochondral structure. The present results show that the scaffold presents important physicochemical characteristics and can support the growth and differentiation of mesenchymal stromal cells (h-MSCs), which adhere and penetrate into the cartilaginous and bony layers. H-MSCs grown in chondrogenic or osteogenic medium decreased their proliferation during days 14-52 on both scaffold layers and in medium without inducing factors used as controls. Both chondrogenic and osteogenic differentiation of h-MSCs occurred from day 28 and were increased on day 52, but not in the control medium. Safranin O staining and collagen type II and proteoglycans immunostaining confirmed that chondrogenic differentiation was specifically induced only in the cartilaginous layer. Conversely, von Kossa staining, osteocalcin and osteopontin immunostaining confirmed that osteogenic differentiation occurred on both layers. This study shows the specific potential of each layer of the biomimetic scaffold to induce chondrogenic or osteogenic differentiation of h-MSCs. These processes depended mainly on the media used but not the biomaterial itself, suggesting that the local milieu is fundamental for guiding cell differentiation. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23495253

  16. Biomaterials/scaffolds. Design of bioactive, multiphasic PCL/collagen type I and type II-PCL-TCP/collagen composite scaffolds for functional tissue engineering of osteochondral repair tissue by using electrospinning and FDM techniques.

    PubMed

    Schumann, Detlef; Ekaputra, Andrew K; Lam, Christopher X F; Hutmacher, Dietmar W

    2007-01-01

    Current clinical therapies for traumatic or chronic injuries involving osteochondral tissue result in temporary pain reduction and filling of the defect but with biomechanically inferior repair tissue. Tissue engineering of osteochondral repair tissue using autologous cells and bioactive biomaterials has the potential to overcome the current limitations and results in native-like repair tissue with good integration capabilities. For this reason, we applied two modem biomaterial design techniques, namely, electrospinning and fused deposition modeling (FDM), to produce bioactive poly(epsilon-caprolactone)/collagen (PCL/Col) type I and type II-PCL-tri-calcium phosphate (TCP)/Col composites for precursor cell-based osteochondral repair. The application of these two design techniques (electrospinning and FDM) allowed us to specifically produce the a suitable three-dimensional (3D) environment for the cells to grow into a particular tissue (cartilage and bone) in vitro prior to in vivo implantation. We hypothesize that our new designed biomaterials, seeded with autologous bone marrow-derived precursor cells, in combination with bioreactor-stimulated cell-culture techniques can be used to produce clinically relevant osteochondral repair tissue. PMID:18085205

  17. Biomimetic biphasic scaffolds for osteochondral defect repair

    PubMed Central

    Li, Xuezhou; Ding, Jianxun; Wang, Jincheng; Zhuang, Xiuli; Chen, Xuesi

    2015-01-01

    The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed. Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues. For osteochondral reconstruction, one intact scaffold should be considered to support the regeneration of both cartilage and subchondral bone. Therefore, the biphasic scaffolds with the mimic structures of osteochondral tissues have been developed to close this chasm. A variety of biomimetic bilayer scaffolds fabricated from natural or synthetic polymers, or the ones loading with growth factors, cells, or both of them make great progresses in osteochondral defect repair. In this review, the preparation and in vitro and/or in vivo verification of bioinspired biphasic scaffolds are summarized and discussed, as well as the prospect is predicted. PMID:26816644

  18. [Tissue engineering applied to the trachea as a graft].

    PubMed

    Barrera-Ramírez, Elisa; Rico-Escobar, Edna; Garrido-Cardona, Rubén E

    2016-01-01

    Tissue engineering offers, through new technologies, an ex vivo generation of organs and functional tissues as grafts for transplants, for the improvement and substitution of biological functions, with an absence of immunological response. The treatment of extended tracheal lesions is a substitution of the affected segment; nevertheless, the allogeneic transplant has failed and the use of synthetic materials has not had good results. New tissue engineering technology is being developed to offer a tracheal graft for a posterior implantation. The purpose of this article is to review all the methods and components used by the engineering of tissue for tracheal grafts. PMID:26927653

  19. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints.

    PubMed

    Levingstone, Tanya J; Ramesh, Ashwanth; Brady, Robert T; Brama, Pieter A J; Kearney, Clodagh; Gleeson, John P; O'Brien, Fergal J

    2016-05-01

    Developing repair strategies for osteochondral tissue presents complex challenges due to its interfacial nature and complex zonal structure, consisting of subchondral bone, intermediate calcified cartilage and the superficial cartilage regions. In this study, the long term ability of a multi-layered biomimetic collagen-based scaffold to repair osteochondral defects is investigated in a large animal model: namely critical sized lateral trochlear ridge (TR) and medial femoral condyle (MC) defects in the caprine stifle joint. The study thus presents the first data in a clinically applicable large animal model. Scaffold fixation and early integration was demonstrated at 2 weeks post implantation. Macroscopic analysis demonstrated improved healing in the multi-layered scaffold group compared to empty defects and a market approved synthetic polymer osteochondral scaffold groups at 6 and 12 months post implantation. Radiological analysis demonstrated superior subchondral bone formation in both defect sites in the multi-layered scaffold group as early as 3 months, with complete regeneration of subchondral bone by 12 months. Histological analysis confirmed the formation of well-structured subchondral trabecular bone and hyaline-like cartilage tissue in the multi-layered scaffold group by 12 months with restoration of the anatomical tidemark. Demonstration of improved healing following treatment with this natural polymer scaffold, through the recruitment of host cells with no requirement for pre-culture, shows the potential of this device for the treatment of patients presenting with osteochondal lesions. PMID:26901430

  20. TISSUE GRAFTS IN VITILIGO SURGERY – PAST, PRESENT, AND FUTURE

    PubMed Central

    Khunger, Niti; Kathuria, Sushruta Dash; Ramesh, V.

    2009-01-01

    Vitiligo, characterized by depigmented macules is a common disorder with a high psychosocial impact, particularly in darker skins. Surgical methods become important in cases where medical therapy fails to cause repigmentation or in cases of segmental vitiligo where the response to surgery is excellent. The basic principle of surgical treatment is autologous grafting of viable melanocytes from pigmented donor skin to recipient vitiliginous areas. Various grafting methods have been described including tissue grafts and cellular grafts. Stability of the disease is the most important criterion to obtain a successful outcome. Counseling of the patient regarding the outcome is vital before surgery. The technique and followup management of the tissue grafts has been described in detail in this review. PMID:20101311

  1. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model

    PubMed Central

    Boakye, Lorraine A; Ross, Keir A; Pinski, John M; Smyth, Niall A; Haleem, Amgad M; Hannon, Charles P; Fortier, Lisa A; Kennedy, John G

    2015-01-01

    AIM: To explore the effect of platelet-rich plasma on protein expression patterns of transforming growth factor-beta1 (TGF-β1) in cartilage following autologous osteochondral transplantation (AOT) in a rabbit knee cartilage defect model. METHODS: Twelve New Zealand white rabbits received bilateral AOT. In each rabbit, one knee was randomized to receive an autologous platelet rich plasma (PRP) injection and the contralateral knee received saline injection. Rabbits were euthanized at 3, 6 and 12 wk post-operatively. Articular cartilage sections were stained with TGF-β1 antibody. Histological regions of interest (ROI) (left, right and center of the autologous grafts interfaces) were evaluated using MetaMorph. Percentage of chondrocytes positive for TGF-β1 was then assessed. RESULTS: Percentage of chondrocytes positive for TGF-β1 was higher in PRP treated knees for selected ROIs (left; P = 0.03, center; P = 0.05) compared to control and was also higher in the PRP group at each post-operative time point (P = 6.6 × 10-4, 3.1 × 10-4 and 7.3 × 10-3 for 3, 6 and 12 wk, respectively). TGF-β1 expression was higher in chondrocytes of PRP-treated knees (36% ± 29% vs 15% ± 18%) (P = 1.8 × 10-6) overall for each post-operative time point and ROI. CONCLUSION: Articular cartilage of rabbits treated with AOT and PRP exhibit increased TGF-β1 expression compared to those treated with AOT and saline. Our findings suggest that adjunctive PRP may increase TGF-β1 expression, which may play a role in the chondrogenic effect of PRP in vivo. PMID:26716092

  2. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint.

    PubMed

    Shim, Jin-Hyung; Jang, Ki-Mo; Hahn, Sei Kwang; Park, Ju Young; Jung, Hyuntae; Oh, Kyunghoon; Park, Kyeng Min; Yeom, Junseok; Park, Sun Hwa; Kim, Sung Won; Wang, Joon Ho; Kim, Kimoon; Cho, Dong-Woo

    2016-03-01

    The use of cell-rich hydrogels for three-dimensional (3D) cell culture has shown great potential for a variety of biomedical applications. However, the fabrication of appropriate constructs has been challenging. In this study, we describe a 3D printing process for the preparation of a multilayered 3D construct containing human mesenchymal stromal cells with a hydrogel comprised of atelocollagen and supramolecular hyaluronic acid (HA). This construct showed outstanding regenerative ability for the reconstruction of an osteochondral tissue in the knee joints of rabbits. We found that the use of a mechanically stable, host-guest chemistry-based hydrogel was essential and allowed two different types of extracellular matrix (ECM) hydrogels to be easily printed and stacked into one multilayered construct without requiring the use of potentially harmful chemical reagents or physical stimuli for post-crosslinking. To the best of our knowledge, this is the first study to validate the potential of a 3D printed multilayered construct consisting of two different ECM materials (atelocollagen and HA) for heterogeneous tissue regeneration using an in vivo animal model. We believe that this 3D printing-based platform technology can be effectively exploited for regeneration of various heterogeneous tissues as well as osteochondral tissue. PMID:26844597

  3. Tissue-engineered lymphatic graft for the treatment of lymphedema

    PubMed Central

    Kanapathy, Muholan; Patel, Nikhil M.; Kalaskar, Deepak M.; Mosahebi, Afshin; Mehrara, Babak J.; Seifalian, Alexander M.

    2015-01-01

    Background Lymphedema is a chronic debilitating condition and curative treatment is yet to be found. Tissue engineering approach, which combines cellular components, scaffold, and molecular signals hold great potential in the treatment of secondary lymphedema with the advent of lymphatic graft to reconstruct damaged collecting lymphatic vessel. This review highlights the ideal characteristics of lymphatic graft, the limitation and challenges faced, and the approaches in developing tissue-engineered lymphatic graft. Methods Literature on tissue engineering of lymphatic system and lymphatic tissue biology was reviewed. Results The prime challenge in the design and manufacturing of this graft is producing endothelialized conduit with intraluminal valves. Suitable scaffold material is needed to ensure stability and functionality of the construct. Endothelialization of the construct can be enhanced via biofunctionalization and nanotopography, which mimics extracellular matrix. Nanocomposite polymers with improved performance over existing biomaterials are likely to benefit the development of lymphatic graft. Conclusions With the in-depth understanding of tissue engineering, nanotechnology, and improved knowledge on the biology of lymphatic regeneration, the aspiration to develop successful lymphatic graft is well achievable. PMID:25248852

  4. Inorganic-organic hybrid scaffolds for osteochondral regeneration.

    PubMed

    Munoz-Pinto, Dany J; McMahon, Rebecca E; Kanzelberger, Melissa A; Jimenez-Vergara, Andrea C; Grunlan, Melissa A; Hahn, Mariah S

    2010-07-01

    Ligament graft failure frequently results from poor integration of the replacement tissue with associated bone. Thus, the ability to regenerate the bone-ligament osteochondral interface would be advantageous in ligament reconstruction. At the osteochondral interface, the tissue transitions from a bone-like matrix to fibrocartilage. Therefore, a scaffold which promotes a spatially regulated transition in cell behavior from osteoblast-like to chondrocyte-like would be desirable. Previous research indicates that addition of inorganic components to organic scaffolds can enhance the deposition of bone-like matrix by associated osteoblasts. We therefore reasoned that a gradient in the inorganic content of a hybrid inorganic-organic scaffold may induce an osteochondral-like transition in cell phenotype and matrix production. To test this hypothesis, hydrogels were prepared from poly(ethylene glycol) (PEG) and star poly(dimethylsiloxane) (PDMS(star)). As anticipated, both the matrix deposition and phenotype of encapsulated osteoblasts varied with scaffold inorganic content, although the directionality of this modulation was contrary to expectation. Specifically, osteoblasts appeared to transdifferentiate into chondrocyte-like cells with increasing scaffold inorganic content, as indicated by increased chondroitin sulfate and collagen type II production and by upregulation of sox9, a transcription factor associated with chondrocytic differentiation. Furthermore, the deposition of bone-like matrix (collagen type I, calcium phosphate, and osteocalcin) decreased with increasing PDMS(star) content. The resistance of the PDMS(star)-PEG scaffolds to protein adsorption and/or the changes in gel modulus/mesh structure accompanying PDMS(star) incorporation may underlie the unexpected increase in chondrocytic phenotype with increasing inorganic content. Combined, the present results indicate that PDMS(star)-PEG hybrid gels may prove promising for osteochondral regeneration. (c) 2010

  5. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    PubMed Central

    Sutherland, Amanda J.; Beck, Emily C.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-β), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration. PMID:25965981

  6. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part I: Recapitulation of Native Tissue Healing and Variables for the Design of Delivery Systems

    PubMed Central

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules. PMID:23268651

  7. Optical methods for diagnostic of cell-tissue grafts

    NASA Astrophysics Data System (ADS)

    Timchenko, P. E.; Timchenko, E. V.; Volova, L. T.; Boltovskaya, V. V.; Zherdeva, L. A.; Belousov, N. V.; Pershutkina, S. V.

    2015-08-01

    In this work the results of cell-tissue grafts research with a complex of optical methods - confocal fluorescent microscopy and Raman spectroscopy are presented. It was established that coefficient M scatter is related to irregularity of demineralization process. It was microscopically shown that the quantity of integrated cells into these types of transplants amounts to 20% of its surface.

  8. Strategies for osteochondral repair: Focus on scaffolds

    PubMed Central

    Seo, Seog-Jin; Mahapatra, Chinmaya; Singh, Rajendra K; Knowles, Jonathan C

    2014-01-01

    Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering. PMID:25343021

  9. Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source

    PubMed Central

    Mellor, Liliana F.; Mohiti-Asli, Mahsa; Williams, John; Kannan, Arthi; Dent, Morgan R.; Guilak, Farshid

    2015-01-01

    We have previously shown that elevating extracellular calcium from a concentration of 1.8 to 8 mM accelerates and increases human adipose-derived stem cell (hASC) osteogenic differentiation and cell-mediated calcium accretion, even in the absence of any other soluble osteogenic factors in the culture medium. However, the effects of elevated calcium on hASC chondrogenic differentiation have not been reported. The goal of this study was to determine the effects of varied calcium concentrations on chondrogenic differentiation of hASC. We hypothesized that exposure to elevated extracellular calcium (8 mM concentration) in a chondrogenic differentiation medium (CDM) would inhibit chondrogenesis of hASC when compared to basal calcium (1.8 mM concentration) controls. We further hypothesized that a full osteochondral construct could be engineered by controlling local release of calcium to induce site-specific chondrogenesis and osteogenesis using only hASC as the cell source. Human ASC was cultured as micromass pellets in CDM containing transforming growth factor-β1 and bone morphogenetic protein 6 for 28 days at extracellular calcium concentrations of either 1.8 mM (basal) or 8 mM (elevated). Our findings indicated that elevated calcium induced osteogenesis and inhibited chondrogenesis in hASC. Based on these findings, stacked polylactic acid nanofibrous scaffolds containing either 0% or 20% tricalcium phosphate (TCP) nanoparticles were electrospun and tested for site-specific chondrogenesis and osteogenesis. Histological assays confirmed that human ASC differentiated locally to generate calcified tissue in layers containing 20% TCP, and cartilage in the layers with no TCP when cultured in CDM. This is the first study to report the effects of elevated calcium on chondrogenic differentiation of hASC, and to develop osteochondral nanofibrous scaffolds using a single cell source and controlled calcium release to induce site-specific differentiation. This approach

  10. Development of Small Diameter Nanofiber Tissue Engineered Arterial Grafts

    PubMed Central

    Tara, Shuhei; Rocco, Kevin A.; Bagi, Paul S.; Yi, Tai; Udelsman, Brooks; Zhuang, Zhen W.; Cleary, Muriel; Iwakiri, Yasuko; Breuer, Christopher K.; Shinoka, Toshiharu

    2015-01-01

    The surgical repair of heart and vascular disease often requires implanting synthetic grafts. While synthetic grafts have been successfully used for medium-to-large sized arteries, applications for small diameter arteries (<6 mm) is limited due to high rates of occlusion by thrombosis. Our objective was to develop a tissue engineered vascular graft (TEVG) for small diameter arteries. TEVGs composed of polylactic acid nanofibers with inner luminal diameter between 0.5 and 0.6 mm were surgically implanted as infra-renal aortic interposition conduits in 25 female C17SCID/bg mice. Twelve mice were given sham operations. Survival of mice with TEVG grafts was 91.6% at 12 months post-implantation (sham group: 83.3%). No instances of graft stenosis or aneurysmal dilatation were observed over 12 months post-implantation, assessed by Doppler ultrasound and microCT. Histologic analysis of explanted TEVG grafts showed presence of CD31-positive endothelial monolayer and F4/80-positive macrophages after 4, 8, and 12 months in vivo. Cells positive for α-smooth muscle actin were observed within TEVG, demonstrating presence of smooth muscle cells (SMCs). Neo-extracellular matrix consisting mostly of collagen types I and III were observed at 12 months post-implantation. PCR analysis supports histological observations. TEVG group showed significant increases in expressions of SMC marker, collagen-I and III, matrix metalloproteinases-2 and 9, and itgam (a macrophage marker), when compared to sham group. Overall, patency rates were excellent at 12 months after implantation, as structural integrity of these TEVG. Tissue analysis also demonstrated vessel remodeling by autologous cell. PMID:25830942

  11. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction

    PubMed Central

    Bhumiratana, Sarindr; Bernhard, Jonathan C.; Alfi, David M.; Yeager, Keith; Eton, Ryan E.; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M.; Lopez, Mandi J.; Eisig, Sidney B.; Vunjak-Novakovic, Gordana

    2016-01-01

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care—the use of bone harvested from another region in the body—has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, without bone morphogenic proteins, using native bovine bone matrix and a perfusion bioreactor for the growth and transport of living grafts. The ramus-condyle unit (RCU), the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatan minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material, and crafted it into an anatomically correct shape using image-guided micromilling, to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either non-seeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  12. Clinical Evaluation of Papilla Reconstruction Using Subepithelial Connective Tissue Graft

    PubMed Central

    Kaushik, Alka; PK, Pal; Chopra, Deepak; Chaurasia, Vishwajit Rampratap; Masamatti, Vinaykumar S; DK, Suresh; Babaji, Prashant

    2014-01-01

    Objective: The aesthetics of the patient can be improved by surgical reconstruction of interdental papilla by using an advanced papillary flap interposed with subepithelial connective tissue graft. Materials and Methods: A total of fifteen sites from ten patients having black triangles/papilla recession in the maxillary anterior region were selected and subjected to presurgical evaluation. The sites were treated with interposed subepithelial connective tissue graft placed under a coronally advance flap. The integrity of the papilla was maintained by moving the whole of gingivopapillary unit coronally. The various parameters were analysed at different intervals. Results: There was a mean decrease in the papilla presence index score and distance from contact point to gingival margin, but it was statistically not significant. Also, there is increase in the width of the keratinized gingiva which was statistically highly significant. Conclusion: Advanced papillary flap with interposed sub–epithelial connective tissue graft can offer predictable results for the reconstruction of interdental papilla. If papilla loss occurs solely due to soft-tissue damage, reconstructive techniques can completely restore it; but if due to periodontal disease involving bone loss, reconstruction is generally incomplete and multiple surgical procedures may be required. PMID:25386529

  13. Tissue-engineered autologous grafts for facial bone reconstruction.

    PubMed

    Bhumiratana, Sarindr; Bernhard, Jonathan C; Alfi, David M; Yeager, Keith; Eton, Ryan E; Bova, Jonathan; Shah, Forum; Gimble, Jeffrey M; Lopez, Mandi J; Eisig, Sidney B; Vunjak-Novakovic, Gordana

    2016-06-15

    Facial deformities require precise reconstruction of the appearance and function of the original tissue. The current standard of care-the use of bone harvested from another region in the body-has major limitations, including pain and comorbidities associated with surgery. We have engineered one of the most geometrically complex facial bones by using autologous stromal/stem cells, native bovine bone matrix, and a perfusion bioreactor for the growth and transport of living grafts, without bone morphogenetic proteins. The ramus-condyle unit, the most eminent load-bearing bone in the skull, was reconstructed using an image-guided personalized approach in skeletally mature Yucatán minipigs (human-scale preclinical model). We used clinically approved decellularized bovine trabecular bone as a scaffolding material and crafted it into an anatomically correct shape using image-guided micromilling to fit the defect. Autologous adipose-derived stromal/stem cells were seeded into the scaffold and cultured in perfusion for 3 weeks in a specialized bioreactor to form immature bone tissue. Six months after implantation, the engineered grafts maintained their anatomical structure, integrated with native tissues, and generated greater volume of new bone and greater vascular infiltration than either nonseeded anatomical scaffolds or untreated defects. This translational study demonstrates feasibility of facial bone reconstruction using autologous, anatomically shaped, living grafts formed in vitro, and presents a platform for personalized bone tissue engineering. PMID:27306665

  14. Porous tantalum and poly-epsilon-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits.

    PubMed

    Mrosek, Eike H; Schagemann, Jan C; Chung, Hsi-Wei; Fitzsimmons, James S; Yaszemski, Michael J; Mardones, Rodrigo M; O'Driscoll, Shawn W; Reinholz, Gregory G

    2010-02-01

    Currently, various techniques are in use for the repair of osteochondral defects, none of them being truly satisfactory and they are often two step procedures. Comorbidity due to cancellous bone harvest from the iliac crest further complicates the procedure. Our previous in vitro studies suggest that porous tantalum (TM) or poly-epsilon-caprolactone scaffolds (PCL) in combination with periosteal grafts could be used for osteochondral defect repair. In this in vivo study, cylindrical osteochondral defects were created on the medial and lateral condyles of 10 rabbits and filled with TM/periosteum or PCL/periosteum biosynthetic composites (n = 8 each). The regenerated osteochondral tissue was then analyzed histologically, and evaluated in an independent and blinded manner by five different observers using a 30-point histological score. The overall histological score for PCL/periosteum was significantly better than for TM/periosteum. However, most of the regenerates were well integrated with the surrounding bone (PCL/periosteum, n = 6.4; TM/periosteum, n = 7) along with partial restoration of the tidemark (PCL/periosteum, n = 4.4; TM/periosteum, n = 5.6). A cover of hyaline-like morphology was found after PCL/periosteum treatment (n = 4.8), yet the cartilage yields were inconsistent. In conclusion, the applied TM and PCL scaffolds promoted excellent subchondral bone regeneration. Neo-cartilage formation from periosteum supported by a scaffold was inconsistent. This is the first study to show in vivo results of both PCL and TM scaffolds for a novel approach to osteochondral defect repair. PMID:19743507

  15. Electrospun Scaffolds for Tissue Engineering of Vascular Grafts

    PubMed Central

    Hasan, Anwarul; Memic, Adnan; Annabi, Nasim; Hossain, Monowar; Paul, Arghya; Dokmeci, Mehmet R.; Dehghani, Fariba; Khademhosseini, Ali

    2013-01-01

    There is a growing demand for off-the-shelf tissue engineered vascular grafts (TEVGs) for replacement or bypass of damaged arteries in various cardiovascular diseases. Scaffolds from the decellularized tissue skeletons to biopolymers and biodegradable synthetic polymers have been used for fabricating TEVGs. However, several issues have not yet been resolved, which include the inability to mimic the mechanical properties of native tissues, and the ability for long term patency and growth required for in vivo function. Electrospinning is a popular technique for the production of scaffolds that has the potential to address these issues. However, its application to human TEVGs has not yet been achieved. This review provides an overview of tubular scaffolds that have been prepared by electrospinning with potential for TEVG applications. PMID:23973391

  16. Synthesis of electroactive tetraaniline grafted polyethylenimine for tissue engineering

    NASA Astrophysics Data System (ADS)

    Dong, Shilei; Han, Lu; Cai, Muhang; Li, Luhai; Wei, Yan

    2015-07-01

    Tetraaniline grafted polyethylenimine (AT-PEI) was successfully synthesized in this study. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy was used to determine the structure of carboxyl-capped aniline tetramer (AT-COOH) and AT-PEI. UV-Vis spectroscopy and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the absorption spectrum of the obtained AT-PEI samples. The morphology of AT-PEI copolymers in aqueous solution was determined by Scanning electron microscope (SEM). Moreover, AT-PEI copolymers demonstrated excellent solubility in aqueous solution and possessed electroactivity by cyclic voltammogram (CV) curves, which showed its potential application in the field of tissue engineering.

  17. Bone Cysts After Osteochondral Allograft Repair of Cartilage Defects in Goats Suggest Abnormal Interaction Between Subchondral Bone and Overlying Synovial Joint Tissues

    PubMed Central

    Pallante-Kichura, Andrea L.; Cory, Esther; Bugbee, William D.; Sah, Robert L.

    2013-01-01

    The efficacy of osteochondral allografts (OCA) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12 months in vivo. The objectives of this study were to further analyze OCA and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral (ScB) and trabecular (TB) bone structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCA was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCA was lower than Non-Op and other OCA. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCA did not vary compared to Non-Op, but BS/TV was lower. (2) OCA contained “basal” cysts, localized to deeper regions, some “subchondral” cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  18. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance.

    PubMed

    Yan, Le-Ping; Silva-Correia, Joana; Oliveira, Mariana B; Vilela, Carlos; Pereira, Hélder; Sousa, Rui A; Mano, João F; Oliveira, Ana L; Oliveira, Joaquim M; Reis, Rui L

    2015-01-01

    Novel porous bilayered scaffolds, fully integrating a silk fibroin (SF) layer and a silk-nano calcium phosphate (silk-nanoCaP) layer for osteochondral defect (OCD) regeneration, were developed. Homogeneous porosity distribution was achieved in the scaffolds, with calcium phosphate phase only retained in the silk-nanoCaP layer. The scaffold presented compressive moduli of 0.4MPa in the wet state. Rabbit bone marrow mesenchymal stromal cells (RBMSCs) were cultured on the scaffolds, and good adhesion and proliferation were observed. The silk-nanoCaP layer showed a higher alkaline phosphatase level than the silk layer in osteogenic conditions. Subcutaneous implantation in rabbits demonstrated weak inflammation. In a rabbit knee critical size OCD model, the scaffolds firmly integrated into the host tissue. Histological and immunohistochemical analysis showed that collagen II positive cartilage and glycosaminoglycan regeneration presented in the silk layer, and de novo bone ingrowths and vessel formation were observed in the silk-nanoCaP layer. These bilayered scaffolds can therefore be promising candidates for OCD regeneration. PMID:25449920

  19. Heparan Sulfate Proteoglycan Metabolism and the Fate of Grafted Tissues

    PubMed Central

    Wrenshall, Lucile E.; Johnson, Geoffrey B.; Cascalho, Marilia

    2016-01-01

    Tissue and organ transplants between genetically distinct individuals are always or nearly always rejected. The universality and speed of transplant rejection distinguishes this immune response from all others. Although this distinction is incompletely understood, some efforts to shed light on transplant rejection have revealed broader insights, including a relationship between activation of complement in grafted tissues, the metabolism of heparan sulfate proteoglycan and the nature of immune and inflammatory responses that ensue. Complement activation on cell surfaces, especially on endothelial cell surfaces, causes the shedding heparan sulfate, an acidic saccharide, from the cell surface and neighboring extracellular matrix. Solubilized in this way, heparan sulfate can activate leukocytes via toll like receptor-4, triggering inflammatory responses and activating dendritic cells, which migrate to regional lymphoid organs where they spark and to some extent govern cellular immune responses. In this way local ischemia, tissue injury and infection, exert systemic impact on immunity. Whether or in what circumstances this series of events explains the distinct characteristics of the immune response to transplants is still unclear but the events offer insight into the inception of immunity under the sub-optimal conditions accompanying infection and mechanisms by which infection and tissue injury engender systemic inflammation. PMID:26306447

  20. Nonlinear and Anisotropic Tensile Properties of Graft Materials used in Soft Tissue Applications

    PubMed Central

    Yoder, Jonathon H; Elliott, Dawn M

    2010-01-01

    Background The mechanical properties of extracellular matrix grafts that are intended to augment or replace soft tissues should be comparable to the native tissue. Such grafts are often used in fiber-reinforced tissue applications that undergo multi-axial loading and therefore knowledge of the anisotropic and nonlinear properties are needed, including the moduli and Poisson's ratio in two orthogonal directions within the plane of the graft. The objective of this study was to measure the tensile mechanical properties of several marketed grafts: Alloderm, Restore, CuffPatch, and OrthADAPT. Methods The degree of anisotropy and nonlinearity within each graft was evaluated from uniaxial tensile tests and compared to their native tissue. Results The Alloderm graft was anisotropic in both the toe and linear-region of the stress-strain response, was highly nonlinear, and generally had low properties. The Restore and CuffPatch grafts had similar stress-strain responses, were largely isotropic, had a linear-region modulus of 18 MPa, and were nonlinear. OrthADAPT was anisotropic in the linear region (131 vs 47 MPa) and was highly nonlinear. The Poisson ratio for all grafts was between 0.4 and 0.7, except for the parallel orientation of Restore which was greater than 1.0. Interpretation Having an informed understanding of how the available grafts perform mechanically will allow for better assessment by the physician for which graft to apply depending upon its application. PMID:20129728

  1. Establishing proof of concept: Platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus

    PubMed Central

    Smyth, Niall A; Murawski, Christopher D; Haleem, Amgad M; Hannon, Charles P; Savage-Elliott, Ian; Kennedy, John G

    2012-01-01

    Osteochondral lesions of the talus are common injuries in the athletic patient. They present a challenging clinical problem as cartilage has a poor potential for healing. Current surgical treatments consist of reparative (microfracture) or replacement (autologous osteochondral graft) strategies and demonstrate good clinical outcomes at the short and medium term follow-up. Radiological findings and second-look arthroscopy however, indicate possible poor cartilage repair with evidence of fibrous infill and fissuring of the regenerative tissue following microfracture. Longer-term follow-up echoes these findings as it demonstrates a decline in clinical outcome. The nature of the cartilage repair that occurs for an osteochondral graft to become integrated with the native surround tissue is also of concern. Studies have shown evidence of poor cartilage integration, with chondrocyte death at the periphery of the graft, possibly causing cyst formation due to synovial fluid ingress. Biological adjuncts, in the form of platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC), have been investigated with regard to their potential in improving cartilage repair in both in vitro and in vitro settings. The in vitro literature indicates that these biological adjuncts may increase chondrocyte proliferation as well as synthetic capability, while limiting the catabolic effects of an inflammatory joint environment. These findings have been extrapolated to in vitro animal models, with results showing that both PRP and BMAC improve cartilage repair. The basic science literature therefore establishes the proof of concept that biological adjuncts may improve cartilage repair when used in conjunction with reparative and replacement treatment strategies for osteochondral lesions of the talus. PMID:22816065

  2. Point-of-care instrument for monitoring tissue health during skin graft repair

    NASA Astrophysics Data System (ADS)

    Gurjar, R. S.; Seetamraju, M.; Zhang, J.; Feinberg, S. E.; Wolf, D. E.

    2011-06-01

    We have developed the necessary theoretical framework and the basic instrumental design parameters to enable mapping of subsurface blood dynamics and tissue oxygenation for patients undergoing skin graft procedures. This analysis forms the basis for developing a simple patch geometry, which can be used to map by diffuse optical techniques blood flow velocity and tissue oxygenation as a function of depth in subsurface tissue.skin graft, diffuse correlation analysis, oxygen saturation.

  3. Material Properties of Fresh Cold-stored Allografts for Osteochondral Defects at 1 Year

    PubMed Central

    Ranawat, Anil S.; Vidal, Armando F.; Chen, Chris T.; Zelken, Jonathan A.; Turner, A. Simon

    2008-01-01

    Little is known about the long-term properties of fresh cold-stored osteochondral allograft tissue. We hypothesized fresh cold-stored tissue would yield superior material properties in an in vivo ovine model compared to those using freeze-thawed acellular grafts. In addition, we speculated that a long storage time would yield less successful grafts. We created 10-mm defects in medial femoral condyles of 20 sheep. Defects were reconstructed with allograft plugs stored at 4°C for 1, 14, and 42 days; control specimens were freeze-thawed or defect-only. At 52 weeks, animals were euthanized and retrieved grafts were analyzed for cell viability, gross morphology, histologic grade, and biomechanical and biochemical analysis. Explanted cold-stored tissue had superior histologic scores over freeze-thawed and defect-only grafts. Specimens stored for 1 and 42 days had higher equilibrium moduli and proteoglycan content than freeze-thawed specimens. We observed no difference among any of the cold-stored specimens for chondrocyte viability, histology, equilibrium aggregate modulus, proteoglycan content, or hypotonic swelling. Reconstructing cartilage defects with cold-stored allograft resulted in superior histologic and biomechanical properties compared with acellular freeze-thawed specimens; however, storage time did not appear to be a critical factor in the success of the transplanted allograft. PMID:18528743

  4. [Soft tissues volumes changing in malar and cheek area after fat grafting].

    PubMed

    Nadtochiy, A G; Grischenko, S V; Malitskaya, O A

    2016-01-01

    To improve the predictability of facial soft tissues fat grafting results tissue thickness dynamics before and 1 year postoperatively was assessed by means of ultrasonic method in 58 patients under standardized position of the ultrasonic transducer, physical and technical scanning conditions. The study revealed direct correlation of soft tissues thickness increase after fat grafting with the initial thickness of recipient area tissues. One year after fat grafting 60-65% of additional thickness remained in the lower regions of malar-cheek area (with the greatest soft tissues thickness), and only 25-27% preserved in the upper regions with the minimal initial thickness of soft tissues. I.e. to achieve necessary correction volume in a zone with small initial soft tissues thickness it is necessary to increase the amount of fat grafting stages. As the rates of soft tissues thickness in correction area change during 3-4 months after fat grafting remaining stable after this period it is expedient to assess postoperative results and to carry out repeated fat grafting not earlier than 4 months after operation. PMID:26925567

  5. Refixation of osteochondral fractures by ultrasound-activated, resorbable pins

    PubMed Central

    Neumann, H.; Schulz, A. P.; Gille, J.; Klinger, M.; Jürgens, C.; Reimers, N.; Kienast, B.

    2013-01-01

    Objectives Osteochondral injuries, if not treated adequately, often lead to severe osteoarthritis. Possible treatment options include refixation of the fragment or replacement therapies such as Pridie drilling, microfracture or osteochondral grafts, all of which have certain disadvantages. Only refixation of the fragment can produce a smooth and resilient joint surface. The aim of this study was the evaluation of an ultrasound-activated bioresorbable pin for the refixation of osteochondral fragments under physiological conditions. Methods In 16 Merino sheep, specific osteochondral fragments of the medial femoral condyle were produced and refixed with one of conventional bioresorbable pins, titanium screws or ultrasound-activated pins. Macro- and microscopic scoring was undertaken after three months. Results The healing ratio with ultrasound-activated pins was higher than with conventional pins. No negative heat effect on cartilage has been shown. Conclusion As the material is bioresorbable, no further surgery is required to remove the implant. MRI imaging is not compromised, as it is with implanted screws. The use of bioresorbable pins using ultrasound is a promising technology for the refixation of osteochondral fractures. PMID:23610699

  6. A new surgical technique to facilitate osteochondral autograft transfer in osteochondral defects of the capitellum: a case report.

    PubMed

    Bilsel, Kerem; Demirhan, Mehmet; Atalar, Ata Can; Akkaya, Semih

    2010-01-01

    A 17-year-old boy who was engaged in amateur weightlifting and body building presented with complaints of right elbow pain and limitation in elbow range of motion. Plain x-rays and magnetic resonance imaging showed an osteochondral defect in the medial third of the capitellum. At surgery, as a new technique, the lateral collateral ligament was detached from the humeral attachment to provide access to the capitellum with a clear and perpendicular exposure. Following removal of loose fragments within the joint, an osteochondral graft harvested from the lateral femoral condyle was implanted to the defect area of the capitellum. Postoperative radiologic controls showed that the defect was entirely filled by the graft with appropriate graft height. On follow-up examination at 12 months, the patient did not have any complaint about his elbow, and had no limitation of movement compared to the left elbow. Magnetic resonance imaging showed that the graft was successfully adapted to the recipient site without any sign of loosening. At final follow-up 40 months after surgery, the surface of the articular cartilage appeared normal. The range of elbow motion was preserved and the patient had no restriction in daily and sports activities. Considering technical difficulties posed by the narrow and complex structure of the elbow joint, this new technique involving detachment of the lateral collateral ligament facilitates perpendicular implantation of the graft. In our opinion, utilization of this new technique will improve functional and radiological results of osteochondral autograft transfer. PMID:20513997

  7. Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model.

    PubMed

    D'Este, Matteo; Sprecher, Christoph Martin; Milz, Stefan; Nehrbass, Dirk; Dresing, Iska; Zeiter, Stephan; Alini, Mauro; Eglin, David

    2016-06-01

    Articular cartilage displays very little self-healing capabilities, generating a major clinical need. Here, we introduce a thermoresponsive hyaluronan hydrogel for cartilage repair obtained by covalently grafting poly(N-isopropylacrylamide) to hyaluronan, to give a brush co-polymer HpN. The gel is fluid at room temperature and becomes gel at body temperature. In this pilot study HpN safety and repair response were evaluated in an osteochondral defect model in rabbit. Follow-up was of 1 week and 12 weeks and the empty defect served as a control, for a total of four experimental groups. At 12 weeks the defect sites were evaluated macroscopically and histologically. Local lymph nodes, spleen, liver, and kidneys were analyzed for histopathological evaluation. HpN could be easily injected and remained into the defect throughout the study. The macroscopic score was statistically superior for HpN versus empty. Histological score gave opposite trend but not statistically significant. A slight tissue reaction was observed around HpN, however, vascularization and subchondral bone formation were not impeded. An upper proteoglycans rich fibro-cartilaginous tissue with fairly good continuity and lateral integration into the existing articular cartilage was observed in all cases. No signs of local or systemic acute or subacute toxicity were observed. In conclusion, HpN is easily injectable, remains into an osteochondral defect within a moving synovial joint, is biocompatible and does not interfere with the intrinsic healing response of osteochondral defects in a rabbit model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1469-1478, 2016. PMID:26833870

  8. Layer-by-layer heparinization of decellularized liver matrices to reduce thrombogenicity of tissue engineered grafts

    PubMed Central

    Bruinsma, Bote G; Kim, Yeonhee; Berendsen, Tim A; Ozer, Sinan; Yarmush, Martin L; Uygun, Basak E

    2015-01-01

    Background Tissue-engineered liver grafts may offer a viable alternative to orthotopic liver transplantation and help overcome the donor organ shortage. Decellularized liver matrices (DLM) have a preserved vasculature and sustain hepatocellular function in culture, but graft survival after transplantation remains limited due to thrombogenicity of the matrix. Aim To evaluate the effect of heparin immobilization on DLM thrombogenicity. Methods Heparin was immobilized on DLMs by means of layer-by-layer deposition. Grafts with 4 or 8 bilayers and 2 or 4 g/L of heparin were recellularized with primary rat hepatocytes and maintained in culture for 5 days. Hemocompatibility of the graft was assessed by ex vivo diluted whole-blood perfusion and heterotopic transplantation. Results Heparin was deposited throughout the matrix and the heparin content in the graft was higher with increasing number of bilayers and concentration of heparin. Recellularization and in vitro albumin and urea production were unaffected by heparinization. Resistance to blood flow during ex vivo perfusion was lower with increased heparinization and, macroscopically, no clots were visible in grafts with 8 bilayers. Following transplantation, flow through the graft was limited in all groups. Histological evidence of thrombosis was lower in heparinized DLMs, but transplantation of DLM grafts was not improved. Conclusions Layer-by-layer deposition of heparin on a DLM is an effective method of immobilizing heparin throughout the graft and does not impede recellularization or hepatocellular function in vitro. Thrombogenicity during ex vivo blood perfusion was reduced in heparinized grafts and optimal with 8 bilayers, but transplantation remained unsuccessful with this method. Relevance for patients Tissue engineered liver grafts may offer a viable solution to dramatic shortages in donor organs PMID:26478914

  9. Albumin impregnated vascular grafts: albumin resorption and tissue reactions.

    PubMed

    Cziperle, D J; Joyce, K A; Tattersall, C W; Henderson, S C; Cabusao, E B; Garfield, J D; Kim, D U; Duhamel, R C; Greisler, H P

    1992-01-01

    This study aimed to determine the kinetics of albumin resorption from and the healing of two types of albumin impregnated Vasculour II (Bard Cardiovascular) Dacron grafts (ACG-A and ACG-B) using whole blood preclotted Vasculour II Dacron grafts (without albumin) as controls (PCC). Prostheses measuring 4 mm ID x 50 mm length were implanted in the aortoiliac position in 24 dogs (ACG-A n = 12, ACG-B n = 24, PCC n = 12) and explanted after 1, 2 4, and 6 months. Platelet count, platelet aggregometry to 10(-5) M ADP, prothrombin time (PT), and partial thromboplastin time (PTT) were determined preoperatively and at explantation. Sections of the explanted grafts were assayed for human albumin by immunohistochemical techniques utilizing a rabbit polyclonal mono-specific antibody for human albumin followed by the addition of a biotinylated goat anti-rabbit IgG. Immunoperoxidase staining was then performed using Avidin D horse-radish peroxidase. Histology of the grafts (light microscopy, scanning electron microscopy, and transmission electron microscopy) as well as percent thrombus free surface area (TFSA) by computerized planimetry were also determined. Seven of 48 grafts were occluded (85.4% patency) with no difference among the three groups. Platelet aggregometry was not predictive of graft patency. No change in PT or PTT occurred nor was there any difference among the three groups. Retained albumin was detected in every one-month explant but not beyond that time, with the sensitivity for detecting human albumin in this assay being 20 mg albumin per gram of Dacron. All ACG explants at one month revealed inner capsular fibrin coagula not present in PCC specimens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1388174

  10. Revascularization of autogenous skin grafts placed on irradiated tissue

    SciTech Connect

    Ueda, M.; Torii, S.; Kaneda, T.; Oka, T.

    1982-08-01

    Vascular changes in rat skin after irradiation were examined microangiographically. Revascularization of the skin transplanted during the chronic stage after irradiation was also studied. The results obtained through these examinations revealed higher vascular densities at the acute and the subacute stages, and low values at the chronic stages compared with those of the control. Furthermore, when the skin grafts were transplanted to the irradiated beds in the chronic stage, primary revascularization was scant, and the inhibited capillary proliferation in the recipient sites prevented new vessel penetration. This explains why grafts transplanted to previously irradiated beds fail to survive.

  11. Tissue-engineered acellular small diameter long-bypass grafts with neointima-inducing activity.

    PubMed

    Mahara, Atsushi; Somekawa, Shota; Kobayashi, Naoki; Hirano, Yoshiaki; Kimura, Yoshiharu; Fujisato, Toshiya; Yamaoka, Tetsuji

    2015-07-01

    Researchers have attempted to develop efficient antithrombogenic surfaces, and yet small-caliber artificial vascular grafts are still unavailable. Here, we demonstrate the excellent patency of tissue-engineered small-caliber long-bypass grafts measuring 20-30 cm in length and having a 2-mm inner diameter. The inner surface of an acellular ostrich carotid artery was modified with a novel heterobifunctional peptide composed of a collagen-binding region and the integrin α4β1 ligand, REDV. Six grafts were transplanted in the femoral-femoral artery crossover bypass method. Animals were observed for 20 days and received no anticoagulant medication. No thrombogenesis was observed on the luminal surface and five cases were patent. In contrast, all unmodified grafts became occluded, and severe thrombosis was observed. The vascular grafts reported here are the first successful demonstrations of short-term patency at clinically applicable sizes. PMID:25941782

  12. Alveolar ridge augmentation by connective tissue grafting using a pouch method and modified connective tissue technique: A prospective study

    PubMed Central

    Agarwal, Ashish; Gupta, Narinder Dev

    2015-01-01

    Background: Localized alveolar ridge defect may create physiological and pathological problems. Developments in surgical techniques have made it simpler to change the configuration of a ridge to create a more aesthetic and more easily cleansable shape. The purpose of this study was to compare the efficacy of alveolar ridge augmentation using a subepithelial connective tissue graft in pouch and modified connective tissue graft technique. Materials and Methods: In this randomized, double blind, parallel and prospective study, 40 non-smoker individuals with 40 class III alveolar ridge defects in maxillary anterior were randomly divided in two groups. Group I received modified connective tissue graft, while group II were treated with subepithelial connective tissue graft in pouch technique. The defect size was measured in its horizontal and vertical dimension by utilizing a periodontal probe in a stone cast at base line, after 3 months, and 6 months post surgically. Analysis of variance and Bonferroni post-hoc test were used for statistical analysis. A two-tailed P < 0.05 was considered to be statistically significant. Results: Mean values in horizontal width after 6 months were 4.70 ± 0.87 mm, and 4.05 ± 0.89 mm for group I and II, respectively. Regarding vertical heights, obtained mean values were 4.75 ± 0.97 mm and 3.70 ± 0.92 mm for group I and group II, respectively. Conclusion: Within the limitations of this study, connective tissue graft proposed significantly more improvement as compare to connective tissue graft in pouch. PMID:26759591

  13. Infiltrating cells from host brain restore the microglial population in grafted cortical tissue.

    PubMed

    Wang, Cong; Tao, Sijue; Fang, Yukun; Guo, Jing; Zhu, Lirui; Zhang, Shengxiang

    2016-01-01

    Transplantation of embryonic cortical tissue is considered as a promising therapy for brain injury. Grafted neurons can reestablish neuronal network and improve cortical function of the host brain. Microglia is a key player in regulating neuronal survival and plasticity, but its activation and dynamics in grafted cortical tissue remain unknown. Using two-photon intravital imaging and parabiotic model, here we investigated the proliferation and source of microglia in the donor region by transplanting embryonic cortical tissue into adult cortex. Live imaging showed that the endogenous microglia of the grafted tissue were rapidly lost after transplantation. Instead, host-derived microglia infiltrated and colonized the graft. Parabiotic model suggested that the main source of infiltrating cells is the parenchyma of the host brain. Colonized microglia proliferated and experienced an extensive morphological transition and eventually differentiated into resting ramified morphology. Collectively, these results demonstrated that donor tissue has little contribution to the activated microglia and host brain controls the microglial population in the graft. PMID:27615195

  14. Antigen Removal for the Production of Biomechanically Functional, Xenogeneic Tissue Grafts

    PubMed Central

    Cissell, Derek D.; Hu, Jerry C.; Griffiths, Leigh G.; Athanasiou, Kyriacos A.

    2013-01-01

    Xenogeneic tissues are derived from other animal species and provide a source of material for engineering mechanically functional tissue grafts, such as heart valves, tendons, ligaments, and cartilage. Xenogeneic tissues, however, contain molecules, known as antigens, which invoke an immune reaction following implantation into a patient. Therefore, it is necessary to remove the antigens from a xenogeneic tissue to prevent immune rejection of the graft. Antigen removal can be accomplished by treating a tissue with solutions and/or physical processes that disrupt cells and solubilize, degrade, or mask antigens. However, processes used for cell and antigen removal from tissues often have deleterious effects on the extracellular matrix (ECM) of the tissue, rendering the tissue unsuitable for implantation due to poor mechanical properties. Thus, the goal of an antigen removal process should be to reduce the antigen content of a xenogeneic tissue while preserving its mechanical functionality. To expand the clinical use of antigen-removed xenogeneic tissues as biomechanically functional grafts, it is essential that researchers examine tissue antigen content, ECM composition and architecture, and mechanical properties as new antigen removal processes are developed. PMID:24268315

  15. Osteochondral Allograft of the Talus

    PubMed Central

    Bisicchia, Salvatore; Rosso, Federica; Amendola, Annunziato

    2014-01-01

    Osteochondral lesions of the talus are being recognized as an increasingly common injury. They are most commonly located postero-medially or antero-laterally, while centrally located lesions are uncommon. Large osteochondral lesions have significant biomechanical consequences and often require resurfacing with osteochondral autograft transfer, mosaicplasty, autologous chondrocyte implantation (or similar methods) or osteochondral allograft transplantation. Allograft procedures have become popular due to inherent advantages over other resurfacing techniques. Cartilage viability is one of the most important factors for successful clinical outcomes after transplantation of osteochondral allografts and is related to storage length and intra-operative factors. While there is abundant literature about osteochondral allograft transplantation in the knee, there are few papers about this procedure in the talus. Failure of non-operative management, initial debridement, curettage or microfractures are an indication for resurfacing. Patients should have a functional ankle motion, closed growth plates, absence of cartilage lesions on the tibial side. This paper reviews the published literature about osteochondral allograft transplantation of the talus focusing on indications, pre-operative planning, surgical approaches, postoperative management, results and complications of this procedure. PMID:25328456

  16. Osteochondral Autograft Transplantation: A Review of the Surgical Technique and Outcomes.

    PubMed

    Richter, Dustin L; Tanksley, John A; Miller, Mark D

    2016-06-01

    Isolated chondral and osteochondral defects of the knee are challenging clinical entities, particularly in younger patients. Cartilage treatment strategies have previously been characterized as palliation (ie, chondroplasty and debridement), repair (ie, drilling and microfracture), or restoration (ie, autologous chondrocyte implantation, osteochondral autograft, and osteochondral allograft). The osteochondral autograft transplantation procedure allows defects to be filled immediately with mature, hyaline articular cartilage by utilizing either an arthroscopic or a mini-open procedure. Graft harvest and placement can be technically demanding, but results show trends toward greater longevity, durability, and improved outcomes in high-demand patients when compared with alternative techniques. Improved results are shown in younger patients with isolated lesions between 1 and 4 cm. PMID:27135290

  17. Grinding and polishing instead of sectioning for the tissue samples with a graft: Implications for light and electron microscopy.

    PubMed

    Mukhamadiyarov, Rinat A; Sevostyanova, Victoria V; Shishkova, Daria K; Nokhrin, Andrey V; Sidorova, Olga D; Kutikhin, Anton G

    2016-06-01

    A broad use of the graft replacement requires a detailed investigation of the host-graft interaction, including both histological examination and electron microscopy. A high quality sectioning of the host tissue with a graft seems to be complicated; in addition, it is difficult to examine the same tissue area by both of the mentioned microscopy techniques. To solve these problems, we developed a new technique of epoxy resin embedding with the further grinding, polishing, and staining. Graft-containing tissues prepared by grinding and polishing preserved their structure; however, sectioning frequently required the explantation of the graft and led to tissue disintegration. Moreover, stained samples prepared by grinding and polishing may then be assessed by both light microscopy and backscattered scanning electron microscopy. Therefore, grinding and polishing outperform sectioning when applied to the tissues with a graft. PMID:27023831

  18. Arthroscopically assisted autologous osteochondral transplantation for osteochondral lesions of the talar dome: an MRI and clinical follow-up study.

    PubMed

    Assenmacher, J A; Kelikian, A S; Gottlob, C; Kodros, S

    2001-07-01

    Osteochondral Lesions of the Talar Dome (OLT) are common problems encountered in orthopedics. Although the etiology remains uncertain, a myriad of treatment options exists. The authors describe arthroscopically assisted autologous osteochondral graft (OCG) transplantation procedures in the treatment of unstable OLTs in nine patients. The patients underwent standard preoperative MRI examination to assess fragment stability (using De Smet criteria for stability). Intraoperative arthroscopy was used to correlate the preoperative MRI assessment (using Cheng/Ferkel grading). After transplantation procedures, MRI (using De Smet criteria for stability) assessed graft incorporation for stability at an average of 9.3 months after the procedure. Preoperative MRI correlated highly with arthroscopic findings of OLT instability (sensitivity = 1.0). This has been demonstrated in the current orthopedic literature. The post transplantation MRI demonstrated stable graft osteointegration by De Smet criteria in all patients. Postoperative visual analogue pain scales showed significant improvement from preoperative assessment. Postoperative AOFAS Ankle-Hindfoot scores averaged 80.2 (S.D. +/- 18.9). Our favorable early results and those of other authors using similar techniques may validate OCG transplantation as a viable alternative for treating unstable osteochondral defects in the talus that are refractive to more commonly used surgical techniques. PMID:11503978

  19. Bone Grafts

    MedlinePlus

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  20. A Novel Local Autologous Bone Graft Donor Site After Scalp Tissue Expansion in Aplasia Cutis Congenita.

    PubMed

    Hadad, Ivan; Meara, John G; Rogers-Vizena, Carolyn R

    2016-06-01

    Aplasia cutis congenita (ACC) is a rare condition often presenting as an absent area of cutaneous scalp. The calvarium and dura may also be affected. Scalp reconstruction with tissue expansion is often needed for large defects. Patients involving deficient calvarial bone present a dilemma for the reconstructive surgeon, because bone graft donor sites are limited in young children.A thick, bony rim has been noted to form around the periphery of scalp tissue expanders. The authors present a series of 3 patients with ACC for whom this bony hyperostosis was used as donor particulate bone graft at the time of scalp tissue expansion. There was 85 to 100% graft ossification on postoperative computed tomography scan. There were no bone graft-related complications.In conclusion, the hyperostotic rim that forms after scalp tissue expansion can be successfully used as particulate bone graft, decreasing the number of procedures needed for patient with ACC and obviating the need for other donor sites. PMID:27192637

  1. Survival of cultured plant cells grafted into the subcutaneous tissue of rats (preliminary report).

    PubMed

    Lozoya, X; Madrazo, I; Guizar, G; Villarreal, M L; Grijalva, I; Salgado, H; Boijseauneau, E; Ibarra, A; Arias-Castro, C; Rodríguez-Mendiola, M A

    1995-01-01

    To evaluate the survival of plant tissue in an animal environment, cultured calli from a Mexican medicinal plant (Mimosa tenuiflora Poir.) were transplanted under sterile conditions into the subcutaneous tissue of rats. Microscopic studies of grafted areas were carried out at the 30th, 60th and 120th days after transplantation. Histological evidence of plant graft survival was found in specimens of all groups. during the first month of subcutaneous grafting a moderate inflammatory reaction around the callus was observed characterized by the presence of polymorphonuclear cells and some macrophages and the formation of a fibrous capsule. Nevertheless, the plant grafts remained viable and a decrease of the inflammatory reaction around the callus was observed in the specimens during the following months. In the fourth month specimens the formation of blood vessels inside the grafted plant tissue was observed. Once removed from rats, plant tissues showed high viability according to the fluorescein test. These calli were then transferred to the original in vitro medium showing growth capacity during the following weeks. These results demonstrate, for the first time, that cultivated cells of higher plants survive in an animal environment, suggesting the possibility to utilize pharmacologically active plant transplants in animals, a technique proposed here as inter-regni transplants. Further studies are required to explore this new field of research that opens numerous questions about plant-animal cellular interaction. PMID:7711454

  2. Adipose tissue-derived stem cell therapy in rat cryopreserved ovarian grafts.

    PubMed

    Damous, Luciana Lamarão; Nakamuta, Juliana Sanajotti; de Carvalho, Ana Elisa Teófilo Saturi; Soares-Jr, José Maria; de Jesus Simões, Manuel; Krieger, José Eduardo; Baracat, Edmund C

    2015-01-01

    The preliminary results of ovarian transplantation in clinical practice are encouraging. However, the follicular depletion caused by ischemic injury is a main concern and is directly related to short-term graft survival. Cell therapy with adipose tissue-derived stem cells (ASCs) could be an alternative to induce early angiogenesis in the graft. This study aimed to evaluate ASCs therapy in rat cryopreserved ovarian grafts. A single dose of rat ASC (rASCs) or vehicle was injected into the bilateral cryopreserved ovaries of twelve adult female rats immediately after an autologous transplant. Daily vaginal smears were performed for estrous cycle evaluation until euthanasia on postoperative day 30. Follicle viability, graft morphology and apoptosis were assessed. No differences were found with respect to estrous cycle resumption and follicle viability (P>0.05). However, compared with the vehicle-treated grafts, the morphology of the ASCs-treated grafts was impaired, with diffuse atrophy and increased apoptosis (P<0.05). ASCs direct injected in the stroma of rat cryopreserved ovarian grafts impaired its morphology although may not interfere with the functional resumption on short-term. Further investigations are necessary to evaluated whether it could compromise their viability in the long-term. PMID:25889829

  3. Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue-Like Assemblies.

    PubMed

    Kumar, Pramod; Pandit, Abhay; Zeugolis, Dimitrios I

    2016-07-01

    Corneal injuries and degenerative conditions have major socioeconomic consequences, given that in most cases, they result in blindness. In the quest of the ideal therapy, tissue grafts, biomaterials, and modular engineering approaches are under intense investigation. Herein, advancements and shortfalls are reviewed and future perspectives for these therapeutic strategies discussed. PMID:27028373

  4. Arthroscopically Assisted Anatomic Coracoclavicular Ligament Reconstruction Technique Using Coracoclavicular Fixation and Soft-Tissue Grafts

    PubMed Central

    Millett, Peter J.; Warth, Ryan J.; Greenspoon, Joshua A.; Horan, Marilee P.

    2015-01-01

    Acromioclavicular joint injuries are common and are often seen in contact athletes. Good to excellent clinical results have been reported using soft-tissue grafts to reconstruct the coracoclavicular ligaments; however, complications remain. Some complications are unique to the surgical technique, particularly clavicle and coracoid fractures that are associated with drilling large or multiple bone tunnels. The described technique allows for an anatomic coracoclavicular reconstruction using a large soft-tissue graft while minimizing the risk of clavicle fracture by avoiding large bone tunnels. PMID:26900558

  5. Grafting of nigral tissue hibernated with tirilazad mesylate and glial cell line-derived neurotrophic factor.

    PubMed

    Petersen, A; Hansson, O; Emgård, M; Brundin, P

    2000-01-01

    Transplantation of embryonic ventral mesencephalon is a potential therapy for patients with Parkinson's disease. As only around 5-10% of embryonic dopaminergic neurons survive grafting into the adult striatum, it is considered necessary to use multiple donor embryos. To increase the survival of the grafted dopaminergic neurons, the clinical transplantation program in Lund currently employs the lipid peroxidation inhibitor, tirilazad mesylate, in all solutions used during tissue storage, preparation, and transplantation. However, the difficulty in obtaining a sufficient number of donor embryos still remains an important limiting factor for the clinical application of neural transplantation. In many clinical transplantation programs, it would be a great advantage if human nigral donor tissue could be stored for at least 1 week. This study was performed in order to investigate whether storage of embryonic tissue at 4 degrees C for 8 days can be applied clinically without creating a need to increase the number of donors. We compared the survival of freshly grafted rat nigral tissue, prepared according to the clinical protocol, with tissue transplanted after hibernation. Thus, in all groups tirilazad mesylate was omnipresent. One group of rats was implanted with fresh tissue and three groups with hibernated tissue with or without addition of glial cell line-derived neurotrophic factor (GDNF) in the hibernation medium and/or the final cell suspension. Earlier studies have suggested that GDNF improves the survival of hibernated nigral transplants. We found no statistically significant difference between the groups regarding graft survival after 3 weeks. However, there was a nonsignificant trend for fewer surviving dopaminergic neurons in grafts from hibernated tissue compared to fresh controls. Furthermore, we show that the addition of GDNF to the hibernation medium and/or to the final cell suspension does not significantly increase the survival of the dopaminergic

  6. Orbital dermis-fat graft using periumbilical tissue.

    PubMed

    Bonavolontà, G; Tranfa, F; Salicone, A; Strianese, D

    2000-01-01

    Dermis-fat grafts are currently used in orbital reconstruction in a variety of procedures. The most frequent harvesting site is the gluteal area. However, we encountered some patients with anophthalmic socket who wished to avoid a visible scar on the buttock. In this article, we describe the effort to offer the patient an alternative donor site. Of the last 36 patients with anophthalmic socket who needed a dermal fat implant, 11 wished to avoid a visible scar on the buttock. To satisfy their requests we have endeavored to harvest the dermis graft from the periumbilical area. The rate of absorption, the motility, and the satisfaction of the patients were used as outcome measures and were analyzed carefully. Of 11 patients, 4 were women and 7 were men. The ages of these patients ranged from 24 to 56. The maximum follow-up was 137 months and the minimum 22 months, with a mean follow-up of 79 months. Some degree of absorption of the graft developed in one patient who had a severe absorption and required further operation. Of 11 cases, there were 7 with excellent motility, 3 with good motility, and 1 not evaluated. The motility was measured with the final prosthesis. The results for all patients were satisfactory. The periumbilical area has sufficient concentration of subdermal fat, and it is a relatively hair-free region as the lateral quadrant of the buttock. This area is a suitable alternative donor site of dermal fat implant for anophthalmic socket, especially in young women. PMID:10626965

  7. How I Manage Osteochondritis Dissecans.

    ERIC Educational Resources Information Center

    DiStefano, Vincent J.

    1986-01-01

    Osteochondritis dissecans, a lesion found most often on the femur at the knee joint, occurs most frequently in active adolescents. This article describes treatment for preadolescents, adolescents, and adults. Osteochondritus dissecans of the patella is also presented. (MT)

  8. The Treatment of Osteochondral Lesions of the Talus with Autologous Osteochondral Transplantation and Bone Marrow Aspirate Concentrate

    PubMed Central

    Kennedy, John G.; Murawski, Christopher D.

    2011-01-01

    Objective: To present the functional results after autologous osteochondral transplantation with bone marrow aspirate concentrate in 72 patients, while placing an emphasis on the surgical technique. Methods: Between 2005 and 2009, 72 patients underwent autologous osteochondral transplantation under the care of the senior author. The mean patient age at the time of surgery was 34.19 years (range, 16-85 years). All patients were followed for a minimum of 1 year after surgery. The mean follow-up time was 28.02 months (range, 12-64 months). Patient-reported outcome measures were taken preoperatively and at final follow-up using the Foot and Ankle Outcome Score (FAOS) and Short Form–12 (SF-12) general health questionnaire. Identical questionnaires were used in all instances. Results: The mean FAOS scores improved from 52.67 points preoperatively to 86.19 points postoperatively (range, 71-100 points). The mean SF-12 scores also improved from 59.40 points preoperatively to 88.63 points postoperatively (range, 52-98 points). Three patients reported donor site knee pain after surgery, and one patient required the decompression of a cyst that developed beneath the graft site approximately 2 years after the index procedure. Conclusion: Autologous osteochondral transplantation is a reproducible and primary treatment strategy for large osteochondral lesions of the talus. PMID:26069591

  9. Osteochondral Autograft from the Ipsilateral Femoral Head by Surgical Dislocation for Treatment of Femoral Head Fracture Dislocation: A Case Report.

    PubMed

    Won, Yougun; Lee, Gi Soo; Kim, Sang Bum; Kim, Sun Joong; Yang, Kyu Hyun

    2016-11-01

    As anatomical reduction of the articular surface of femoral head fractures and restoration of damaged cartilage are essential for good long-term results, many treatment options have been suggested, including fixation of the fracture using various surgical exposures and implants, as well as arthroscopic irrigation and debridement, bone marrow stimulating techniques, osteochondral allograft, autograft, and autogenous chondrocyte implantation. We report a case of osteochondral autograft harvested from its own femoral articular surface through surgical hip dislocation. The osteochondral graft was harvested from the inferior non-weight-bearing articular surface and grafted to the osteochondral defect. One year later, the clinical and radiological results were good, without the collapse of the femoral head or arthritic change. This procedure introduced in our case is considered convenient and able to lessen surgical time without morbidity of the donor site associated with the harvest. PMID:27593886

  10. Ectopic porcine spermatogenesis in murine subcutis: tissue grafting versus cell-injection methods

    PubMed Central

    Watanabe, Takeshi; Hayashi, Hirofumi; Kita, Kaoru; Kubota, Yoshinobu; Ogawa, Takehiko

    2009-01-01

    Fragments of testis tissue from immature animals grow and develop spermatogenesis when grafted onto subcutaneous areas of immunodeficient mice. The same results are obtained when dissociated cells from immature testes of rodents are injected into the subcutis of nude mice. Those cells reconstitute seminiferous tubules and facilitate spermatogenesis. We compared these two methods, tissue grafting and cell-injection methods, in terms of the efficiency of spermatogenesis in the backs of three strains of immunodeficient mice, using neonatal porcine testicular tissues and cells as donor material. Nude, severe combined immunodeficient (SCID) and NOD/Shi-SCID, IL-2Rγcnull (NOG) mice were used as recipients. At 10 months after surgery, the transplants were examined histologically. Both grafting and cell-injection methods resulted in porcine spermatogenesis on the backs of recipient mice; the percentage of spermatids present in the transplants was 67% and 22%, respectively. Using the grafting method, all three strains of mice supported the same extent of spermatogenesis. As for the cell-injection method, although SCID mice were the best host for supporting reconstitution and spermatogenesis, any difference from the other strains was not significant. As NOG mice did not show any better results, the severity of immunodeficiency seemed to be irrelevant for supporting xeno-ectopic spermatogenesis. Our results confirmed that tubular reconstitution is applicable to porcine testicular cells. This method as well as the grafting method would be useful for studying spermatogenesis in different kinds of animals. PMID:19137001

  11. Tissue specificity in rat peripheral nerve regeneration through combined skeletal muscle and vein conduit grafts.

    PubMed

    Tos, P; Battiston, B; Geuna, S; Giacobini-Robecchi, M G; Hill, M A; Lanzetta, M; Owen, E R

    2000-01-01

    Diffusible factors from the distal stumps of transected peripheral nerves exert a neurotropic effect on regenerating nerves in vivo (specificity). This morphological study was designed to investigate the existence of tissue specificity in peripheral nerve fiber regeneration through a graft of vein filled with fresh skeletal muscle. This tubulization technique demonstrated experimental and clinical results similar to those obtained with traditional autologous nerve grafts. Specifically, we used Y-shaped grafts to assess the orientation pattern of regenerating axons in the distal stump tissue. Animal models were divided into four experimental groups. The proximal part of the Y-shaped conduit was sutured to a severed tibial nerve in all experiments. The two distal stumps were sutured to different targets: group A to two intact nerves (tibial and peroneal), group B to an intact nerve and an unvascularized tendon, group C to an intact nerve and a vascularized tendon, and group D to a nerve graft and an unvascularized tendon. Morphological evaluation by light and electron microscopy was conducted in the distal forks of the Y-shaped tube. Data showed that almost all regenerating nerve fibers spontaneously oriented towards the nerve tissue (attached or not to the peripheral innervation field), showing a good morphological pattern of regeneration in both the early and late phases of regeneration. When the distal choice was represented by a tendon (vascularized or not), very few nerve fibers were detected in the corresponding distal fork of the Y-shaped graft. These results show that, using the muscle-vein-combined grafting technique, regenerating axons are able to correctly grow and orientate within the basement membranes of the graft guided by the neurotropic lure of the distal nerve stump. PMID:10702739

  12. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states.

    PubMed

    Cassell, O C S; Hofer, S O P; Morrison, W A; Knight, K R

    2002-12-01

    Angiogenesis (the formation of new blood vessels) is essential for the growth of new tissue, tissue repair and wound healing. Tissue engineering, the construction of new tissue and organs for reparative purposes, relies on angiogenesis for the vascularisation of these new grafts. In tissue engineering, the emphasis to date has been on vascularisation of newly constructed tissue grafts by an extrinsic blood supply, and relatively little attention has been given to the possibility of building these grafts around an intrinsic blood supply. However, there are many disease processes, notably tumour growth, where excess angiogenesis can be a major problem. The purposes of this review are, first, to examine various methods of vascularising tissue-engineered grafts, and, second, to compare the role of angiogenesis in tissue engineering, where stimulation of angiogenesis is paramount, with pathological states, such as tumour growth, where angiogenesis needs to be inhibited. PMID:12550111

  13. Treatment of osteochondral injuries with platelet gel

    PubMed Central

    Danieli, Marcus Vinicius; da Rosa Pereira, Hamilton; de Sá Carneiro, Carlos Augusto; Felisbino, Sérgio Luiz; Deffune, Elenice

    2014-01-01

    OBJECTIVES: Treatments for injured articular cartilage have not advanced to the point that efficient regeneration is possible. However, there has been an increase in the use of platelet-rich plasma for the treatment of several orthopedic disorders, including chondral injuries. Our hypothesis is that the treatment of chondral injuries with platelet gel results in higher-quality repair tissue after 180 days compared with chondral injuries not treated with gel. METHODS: A controlled experimental laboratory study was performed on 30 male rabbits to evaluate osteochondral injury repair after treatment with or without platelet gel. Osteochondral injuries were surgically induced in both knees of each rabbit at the medial femoral condyle. The left knee injury was filled with the platelet gel, and the right knee was not treated. Microscopic analysis of both knee samples was performed after 180 days using a histological grading scale. RESULTS: The only histological evaluation criterion that was not significantly different between treatments was metachromasia. The group that was treated with platelet gel exhibited superior results in all other criteria (cell morphology, surface regularity, chondral thickness and repair tissue integration) and in the total score. CONCLUSION: The repair tissue was histologically superior after 180 days in the study group treated with platelet gel compared with the group of untreated injuries. PMID:25518022

  14. Effect of different cryoprotectant agents on spermatogenesis efficiency in cryopreserved and grafted neonatal mouse testicular tissue.

    PubMed

    Yildiz, Cengiz; Mullen, Brendan; Jarvi, Keith; McKerlie, Colin; Lo, Kirk C

    2013-08-01

    Restoration of male fertility associated with use of the cryopreserved testicular tissue would be a significant advance in human and animal assisted reproductive technology. The purpose of this study was to test the effects of four different cryoprotectant agents (CPA) on spermatogenesis and steroidogenesis in cryopreserved and allotransplanted neonatal mouse testicular tissue. Hank's balanced salt solution (HBSS) with 5% fetal bovine serum including either 0.7 M dimethyl sulfoxide (DMSO), 0.7 M propylene glycol (PrOH), 0.7 M ethylene glycol (EG), or glycerol was used as the cryoprotectant solution. Donor testes were collected and dissected from neonatal pups of CD-1 mice (one day old). Freezing and seeding of the testicular whole tissues was performed using an automated controlled-rate freezer. Four fresh (non-frozen) or frozen-thawed pieces of testes were subcutaneously grafted onto the hind flank of each castrated male NCr nude recipient mouse and harvested after 3 months. Fresh neonatal testes grafts recovered from transplant sites had the most advanced rate of spermatogenesis with elongated spermatid and spermatozoa in 46.6% of seminiferous tubules and had higher levels of serum testosterone compared to all other frozen-thawed-graft groups (p<0.05). Fresh grafts and frozen-thawed grafts in the DMSO group had the highest rate of tissue survival compared to PrOH, EG, and glycerol after harvesting (p>0.05). The most effective CPA for the freezing and thawing of neonatal mouse testes was DMSO in comparison with EG (p<0.05) in both pre-grafted and post-grafted tissues based on histopathological evaluation. Likewise, the highest level of serum testosterone was obtained from the DMSO CPA group compared to all other cryoprotectants evaluated (p<0.05). The typical damage observed in the frozen-thawed grafts included disruption of the interstitial stroma, intercellular connection ruptures, and detachment of spermatogonia from the basement membrane. These findings

  15. Tissue Characterization after a New Disaggregation Method for Skin Micro-Grafts Generation.

    PubMed

    Purpura, Valeria; Bondioli, Elena; Graziano, Antonio; Trovato, Letizia; Melandri, Davide; Ghetti, Martina; Marchesini, Andrea; Cusella De Angelis, Maria Gabriella; Benedetti, Laura; Ceccarelli, Gabriele; Riccio, Michele

    2016-01-01

    Several new methods have been developed in the field of biotechnology to obtain autologous cellular suspensions during surgery, in order to provide one step treatments for acute and chronic skin lesions. Moreover, the management of chronic but also acute wounds resulting from trauma, diabetes, infections and other causes, remains challenging. In this study we describe a new method to create autologous micro-grafts from cutaneous tissue of a single patient and their clinical application. Moreover, in vitro biological characterization of cutaneous tissue derived from skin, de-epidermized dermis (Ded) and dermis of multi-organ and/or multi-tissue donors was also performed. All tissues were disaggregated by this new protocol, allowing us to obtain viable micro-grafts. In particular, we reported that this innovative protocol is able to create bio-complexes composed by autologous micro-grafts and collagen sponges ready to be applied on skin lesions. The clinical application of autologous bio-complexes on a leg lesion was also reported, showing an improvement of both re-epitalization process and softness of the lesion. Additionally, our in vitro model showed that cell viability after mechanical disaggregation with this system is maintained over time for up to seven (7) days of culture. We also observed, by flow cytometry analysis, that the pool of cells obtained from disaggregation is composed of several cell types, including mesenchymal stem cells, that exert a key role in the processes of tissue regeneration and repair, for their high regenerative potential. Finally, we demonstrated in vitro that this procedure maintains the sterility of micro-grafts when cultured in Agar dishes. In summary, we conclude that this new regenerative approach can be a promising tool for clinicians to obtain in one step viable, sterile and ready to use micro-grafts that can be applied alone or in combination with most common biological scaffolds. PMID:26967938

  16. Development of a Sterile Amniotic Membrane Tissue Graft Using Supercritical Carbon Dioxide.

    PubMed

    Wehmeyer, Jennifer L; Natesan, Shanmugasundaram; Christy, Robert J

    2015-07-01

    Numerous techniques have been reported for preparing and sterilizing amniotic membrane (AM) for use in clinical applications. However, these preparations either do not produce completely sterile tissue or are detrimental to molecules unique to the tissue matrix, thus compromising beneficial wound-healing properties of the AM graft. The objective of this work was to produce a sterile human AM tissue graft using a novel preparation technique involving supercritical carbon dioxide (SCCO2). AM tissue was subjected to various sterilization treatment groups that optimized the duration of exposure to SCCO2 and the amount of peracetic acid (PAA) required to achieve a sterility assurance level of 10(-6) log reduction in bacterial load. Effects of sterilization treatment on the histological, biophysical, and biochemical properties of the sterile AM were evaluated and compared with those of native AM tissue. Exposure of the AM tissue to combined SCCO2 and PAA sterilization treatment did not significantly alter tissue architecture, the amounts of pertinent extracellular matrix proteins (type IV collagen, glycosaminoglycans, elastin) present in the tissue, or the biophysical properties of the tissue. AMs treated with SCCO2 were also found to be excellent substrates for adipose-derived stem cell (ASC) attachment and proliferation in vitro. Human ASCs, attached to all treatment groups after 24 h of culture and continued to proliferate over the next few days. The current study's results indicate that SCCO2 can be used to sterilize AM tissue grafts while simultaneously preserving their biological attributes. The preservation of these features make AM appealing for use in numerous clinical and tissue engineering applications. PMID:25471248

  17. Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis.

    PubMed

    Lozito, Thomas P; Alexander, Peter G; Lin, Hang; Gottardi, Riccardo; Cheng, Anthony Wai-Ming; Tuan, Rocky S

    2013-01-01

    Osteoarthritis (OA), the most prevalent form of arthritis, affects up to 15% of the adult population and is principally characterized by degeneration of the articular cartilage component of the joint, often with accompanying subchondral bone lesions. Understanding the mechanisms underlying the pathogenesis of OA is important for the rational development of disease-modifying OA drugs. While most studies on OA have focused on the investigation of either the cartilage or the bone component of the articular joint, the osteochondral complex represents a more physiologically relevant target because the disease ultimately is a disorder of osteochondral integrity and function. In our current investigation, we are constructing an in vitro three-dimensional microsystem that models the structure and biology of the osteochondral complex of the articular joint. Osteogenic and chondrogenic tissue components are produced using adult human mesenchymal stem cells derived from bone marrow and adipose seeded within biomaterial scaffolds photostereolithographically fabricated with defined internal architecture. A three-dimensional-printed, perfusion-ready container platform with dimensions to fit into a 96-well culture plate format is designed to house and maintain the osteochondral microsystem that has the following features: an anatomic cartilage/bone biphasic structure with a functional interface; all tissue components derived from a single adult mesenchymal stem cell source to eliminate possible age/tissue-type incompatibility; individual compartments to constitute separate microenvironment for the synovial and osseous components; accessible individual compartments that may be controlled and regulated via the introduction of bioactive agents or candidate effector cells, and tissue/medium sampling and compositional assays; and compatibility with the application of mechanical load and perturbation. The consequences of mechanical injury, exposure to inflammatory cytokines, and

  18. Design and optimization of a tissue-engineered bone graft substitute

    NASA Astrophysics Data System (ADS)

    Shimko, Daniel Andrew

    2004-12-01

    In 2000, 3.1 million surgical procedures on the musculoskeletal system were reported in the United States. For many of these cases, bone grafting was essential for successful fracture stabilization. Current techniques use intact bone obtained either from the patient (autograft) or a cadaver (allograft) to repair large defects, however, neither source is optimal. Allografts suffer integration problems, and for autografts, the tissue supply is limited. Because of these shortcomings, and the high demand for graft tissues, alternatives are being explored. To successfully engineer a bone graft replacement, one must employ a three pronged research approach, addressing (1) the cells that will inhabit the new tissue, (2) the culture environment that these cells will be exposed to, and (3) the scaffold in which these cells will reside. The work herein examines each of these three aspects in great detail. Both adult and embryonic stem cells (ESCs) were considered for the tissue-engineered bone graft. Both exhibited desirable qualities, however, neither were optimal in all categories examined. In the end, the possibility of teratoma formation and ethical issues surrounding ESCs, made the use of adult marrow-derived stem cells in the remaining experiments obligatory. In subsequent experiments, the adult stem cells' ability to form bone was optimized. Basic fibroblast growth factor, fetal bovine serum, and extracellular calcium supplementation studies were all performed. Ultimately, adult stem cells cultured in alpha-MEM supplemented with 10% fetal bovine serum, 10mM beta-glycerophosphate, 10nM dexamethasone, 50mug/ml ascorbic acid, 1%(v/v) antibiotic/antimycotic, and 10.4mM CaCl2 performed the best, producing nearly four times more mineral than any other medium formulation. Several scaffolds were then investigated including those fabricated from poly(alpha-hydroxy esters), tantalum, and poly-methylmethacrylate. In the final study, the most appealing cell type, medium

  19. The use of embryonic cells in the treatment of osteochondral defects of the knee: an ovine in vivo study

    PubMed Central

    MANUNTA, ANDREA FABIO; ZEDDE, PIETRO; PILICCHI, SUSANNA; ROCCA, STEFANO; POOL, ROY R.; DATTENA, MARIA; MASALA, GEROLAMO; MARA, LAURA; CASU, SARA; SANNA, DANIELA; MANUNTA, MARIA LUCIA; PASSINO, ERALDO SANNA

    2016-01-01

    Purpose the aim of this study was to determine whether local delivery of embryonic stem-like (ESL) cells into osteochondral defects in the femoral condyles of sheep would enhance regeneration of hyaline articular cartilage. Methods male ESL cells embedded in fibrin glue were engrafted into osteochondral defects in the medial condyles (ESL-M) of the left femur in 22 ewes. An identical defect was created in the medial condyle of the contralateral stifle joint and left untreated as a control (empty defect, ED). The ewes were divided into 5 groups. Four sheep each were euthanized at 1, 2, 6, and 12 months from surgery, and 6 ewes were euthanized 24 months post-implantation. To study the effect of varying loads on the long-term regeneration process, an identical defect was also created and ESL cell engraftment performed in the lateral condyle (ESL-L) of the left stifle joint of the animals in the 12- and 24-month groups. The evaluation of regenerated tissue was performed by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and fluorescent in situ hybridization (FISH) assays. Results no significant differences were found between treated and control sites in the biomechanical assays at any time point. ESL cell grafts showed significantly greater macroscopic evidence of regeneration as compared to controls at 24 months after surgery; significantly better histological evidence of repair in ESL-M samples versus controls was found throughout the considered period. At 24 months from surgery there was significantly improved integration of graft edges with the host tissue in the ESL-M as compared to the ESL-L samples, demonstrating that load bearing positively affects the long-term regeneration process. Conclusions ESL cells enhanced the regeneration of hyaline cartilage. FISH confirmed that the regenerative tissue originated from ESL cells. Clinical Relevance ESL cells are able to self-renew for prolonged periods without differentiation and, most

  20. Direct Comparison of Rat- and Human-Derived Ganglionic Eminence Tissue Grafts on Motor Function.

    PubMed

    Lelos, Mariah J; Roberton, Victoria H; Vinh, Ngoc-Nga; Harrison, Carl; Eriksen, Peter; Torres, Eduardo M; Clinch, Susanne P; Rosser, Anne E; Dunnett, Stephen B

    2016-01-01

    Huntington's disease (HD) is a debilitating, genetically inherited neurodegenerative disorder that results in early loss of medium spiny neurons from the striatum and subsequent degeneration of cortical and other subcortical brain regions. Behavioral changes manifest as a range of motor, cognitive, and neuropsychiatric impairments. It has been established that replacement of the degenerated medium spiny neurons with rat-derived fetal whole ganglionic eminence (rWGE) tissue can alleviate motor and cognitive deficits in preclinical rodent models of HD. However, clinical application of this cell replacement therapy requires the use of human-derived (hWGE), not rWGE, tissue. Despite this, little is currently known about the functional efficacy of hWGE. The aim of this study was to directly compare the ability of the gold standard rWGE grafts, against the clinically relevant hWGE grafts, on a range of behavioral tests of motor function. Lister hooded rats either remained as unoperated controls or received unilateral excitotoxic lesions of the lateral neostriatum. Subsets of lesioned rats then received transplants of either rWGE or hWGE primary fetal tissue into the lateral striatum. All rats were tested postlesion and postgraft on the following tests of motor function: staircase test, apomorphine-induced rotation, cylinder test, adjusting steps test, and vibrissae-evoked touch test. At 21 weeks postgraft, brain tissue was taken for histological analysis. The results revealed comparable improvements in apomorphine-induced rotational bias and the vibrissae test, despite larger graft volumes in the hWGE cohort. hWGE grafts, but not rWGE grafts, stabilized behavioral performance on the adjusting steps test. These results have implications for clinical application of cell replacement therapies, as well as providing a foundation for the development of stem cell-derived cell therapy products. PMID:26727032

  1. Tissue-engineered vascular grafts: autologous off-the-shelf vascular access?

    PubMed

    Manson, Roberto J; Unger, Joshua M; Ali, Aamna; Gage, Shawn M; Lawson, Jeffrey H

    2012-11-01

    Dialysis grafts have provided reliable access for millions of patients in need of renal replacement therapy. However, regardless of the material used for artificial dialysis grafts their mean patency remains generally poor and infection rates are greater than native arteriovenous fistulas. The need for superior alternatives to conventional synthetic materials used for vascular access has been an area of investigation for more than 25 years and recently there has been a great deal of progress in the field of tissue-engineered vascular grafts. Many of these technologies are either commercially available or are now entering early phases of clinical trials. This review briefly covers the history, potential advantages, and disadvantages of these technologies, which are likely to create an impact in the field of vascular access surgery. PMID:23217339

  2. Current trends in safety assurance for tissue grafts used in burn treatment.

    PubMed

    Mericka, P

    2006-01-01

    The author presents a summary of current safety standards for allogeneic and xenogeneic biological skin grafts. The fundamental document relevant to allogeneic transplants, establishing the minimal level of safety guaranteed in European Union states, is the European Parliament and Council Directive (2004/23/EC) from March 31st 2004. This Directive determines that grafts will be prepared by a licensed or accredited tissue bank, and that this arrangement must be put in place by the member states within 2 years. In the Czech Republic licensing of tissue banks took place immediately after issuance of the Directive. Licensing was also a condition for product reimbursement by insurance companies. To gain a licence, tissue banks had to fulfil many safety criteria associated with screening of living or deceased donors for health suitability, providing traceability of the donor-recipient route, prevention of secondary and cross-contamination during processing and storage of the harvested tissues, proof of product microbiology check up, and cold chain control. The Tissue Bank of the Faculty Hospital in Hradec Králové is one of the two tissue banks that gained the broader type of 'multifunctional' licence and was granted registration number MTB 006. Obtaining the licence was facilitated by completion of a new workplace project conceived as a combination of cryogenic and clean-room technology. Currently, this tissue bank prepares cryopreserved dermoepidermal and dermal grafts as well as amnion and chorioamnion grafts. All tissue banks will have to renew their licences again according to the conditions established by a new law about human tissues and cells which is currently in preparation. Neither the Directive of the European Parliament nor the Transplantation Law of the Czech Republic regulates the issue of xenografts. Since availability of allogeneic biological covers is limited, it is significant that the WHO perspective on the use of xenogeneic biological covers, as

  3. On the influence of mechanical conditions in osteochondral defect healing.

    PubMed

    Duda, Georg N; Maldonado, Zully M; Klein, Petra; Heller, Markus O W; Burns, Justin; Bail, Hermann

    2005-04-01

    Despite the introduction of new surgical techniques, the treatment of cartilage defects remains challenging. Delay or complete failure of cartilage healing is associated with problems in biological regeneration. The influence of mechanical conditions on this process, however, remains unevaluated. Osteochondral defects were generated on the left femoral condyle in 18 Yucatan minipigs. After 4, 6 and 12 weeks the defect filling, trabecular orientation and bone density were compared to the intact contralateral side. The mechanical straining during this period was then analyzed using an adaptive finite element technique. Histologically, the osteochondral defects showed bone resorption at the base and bone formation from the circumference. At 12 weeks, the macroscopically healed specimens showed fibrous cartilage formation, a minimally organized trabecular structure and increased trabecular volume fraction compared to the controls (p < 0.002). The amount of cancellous, cartilagineous, and fibrous tissue and the defect size as measured in histomorphometric analysis for the three time points (4, 6 and 12 weeks) was comparable in magnitude to that predicted by finite element analysis. The simulated osteochondral healing process was not fully capable of re-establishing a hyaline-like cartilage layer. The correlation between simulation and histology allows identification of mechanical factors that appear to have a larger impact on the healing of osteochondral defects than previously considered. PMID:15713306

  4. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities.

    PubMed

    van Bergen, Christiaan Ja; Gerards, Rogier M; Opdam, Kim Tm; Terra, Maaike P; Kerkhoffs, Gino Mmj

    2015-12-18

    This current concepts review outlines the role of different imaging modalities in the diagnosis, preoperative planning, and follow-up of osteochondral ankle defects. An osteochondral ankle defect involves the articular cartilage and subchondral bone (usually of the talus) and is mostly caused by an ankle supination trauma. Conventional radiographs are useful as an initial imaging tool in the diagnostic process, but have only moderate sensitivity for the detection of osteochondral defects. Computed tomography (CT) and magnetic resonance imaging (MRI) are more accurate imaging modalities. Recently, ultrasonography and single photon emission CT have been described for the evaluation of osteochondral talar defects. CT is the most valuable modality for assessing the exact location and size of bony lesions. Cartilage and subchondral bone damage can be visualized using MRI, but the defect size tends to be overestimated due to bone edema. CT with the ankle in full plantar flexion has been shown a reliable tool for preoperative planning of the surgical approach. Postoperative imaging is useful for objective assessment of repair tissue or degenerative changes of the ankle joint. Plain radiography, CT and MRI have been used in outcome studies, and different scoring systems are available. PMID:26716090

  5. Diagnosing, planning and evaluating osteochondral ankle defects with imaging modalities

    PubMed Central

    van Bergen, Christiaan JA; Gerards, Rogier M; Opdam, Kim TM; Terra, Maaike P; Kerkhoffs, Gino MMJ

    2015-01-01

    This current concepts review outlines the role of different imaging modalities in the diagnosis, preoperative planning, and follow-up of osteochondral ankle defects. An osteochondral ankle defect involves the articular cartilage and subchondral bone (usually of the talus) and is mostly caused by an ankle supination trauma. Conventional radiographs are useful as an initial imaging tool in the diagnostic process, but have only moderate sensitivity for the detection of osteochondral defects. Computed tomography (CT) and magnetic resonance imaging (MRI) are more accurate imaging modalities. Recently, ultrasonography and single photon emission CT have been described for the evaluation of osteochondral talar defects. CT is the most valuable modality for assessing the exact location and size of bony lesions. Cartilage and subchondral bone damage can be visualized using MRI, but the defect size tends to be overestimated due to bone edema. CT with the ankle in full plantar flexion has been shown a reliable tool for preoperative planning of the surgical approach. Postoperative imaging is useful for objective assessment of repair tissue or degenerative changes of the ankle joint. Plain radiography, CT and MRI have been used in outcome studies, and different scoring systems are available. PMID:26716090

  6. Skeletal Muscle Regeneration on Protein-Grafted and Microchannel-Patterned Scaffold for Hypopharyngeal Tissue Engineering

    PubMed Central

    Shen, Zhisen; Guo, Shanshan; Ye, Dong; Chen, Jingjing; Kang, Cheng; Qiu, Shejie; Lu, Dakai; Li, Qun; Xu, Kunjie; Lv, Jingjing

    2013-01-01

    In the field of tissue engineering, polymeric materials with high biocompatibility like polylactic acid and polyglycolic acid have been widely used for fabricating living constructs. For hypopharynx tissue engineering, skeletal muscle is one important functional part of the whole organ, which assembles the unidirectionally aligned myotubes. In this study, a polyurethane (PU) scaffold with microchannel patterns was used to provide aligning guidance for the seeded human myoblasts. Due to the low hydrophilicity of PU, the scaffold was grafted with silk fibroin (PU-SF) or gelatin (PU-Gel) to improve its cell adhesion properties. Scaffolds were observed to degrade slowly over time, and their mechanical properties and hydrophilicities were improved through the surface grafting. Also, the myoblasts seeded on PU-SF had the higher proliferative rate and better differentiation compared with those on the control or PU-Gel. Our results demonstrate that polyurethane scaffolds seeded with myoblasts hold promise to guide hypopharynx muscle regeneration. PMID:24175281

  7. Dynamic Culture Conditions to Generate Silk-Based Tissue-Engineered Vascular Grafts

    PubMed Central

    Zhang, Xiaohui; Wang, Xiuli; Keshav, Vinny; Wang, Xiaoqin; Johanas, Jacqueline; Leisk, Gary; Kaplan, David L

    2009-01-01

    Tissue engineering is an alternative approach for the preparation of small-diameter (<6 mm) vascular grafts due to the potential to control thrombosis, anastomotic cellular hyperplasia and matrix production. This control also requires the maintenance of graft patency in vivo, appropriate mechanical properties and the formation of a functional endothelium. As a first step in generating such tissue-engineered vascular grafts (TEVG), our objective was to develop a tissue-engineered construct that mimicked the structure of blood vessels using tubular electrospun silk fibroin scaffolds (ESFS) with suitable mechanical properties. Human coronary artery smooth muscle cells (HCASMCs) and human aortic endothelial cells (HAECs) were sequentially seeded onto the luminal surface of the tubular scaffolds and cultivated under physiological pulsatile flow. The results demonstrated that TEVGs under dynamic flow conditions had better outcome than static culture controls in terms of cell proliferation and alignment, ECM production and cell phenotype based on transcript and protein level assessments. The metabolic activity of HCASMCs present in the TEGs indicated the advantage of dynamic flow over static culture in effective nutrient and oxygen distribution to the cells. A matrigel coating as a basement membrane mimic for ECM significantly improved endothelium coverage and retention under physiological shear forces. The results demonstrate the successful integration of vascular cells into silk electrospun tubular scaffolds as a step toward the development of a TEVG similar to native vessels in terms of vascular cell outcomes and mechanical properties. PMID:19232717

  8. Osteochondral and Meniscal Allograft Transplantation in the Football (Soccer) Player

    PubMed Central

    Williams, Riley J.; Gersoff, Wayne K.; Bugbee, William D.

    2012-01-01

    Knee injuries are common in football, frequently involving damage to the meniscus and articular cartilage. These injuries can cause significant disability, result in loss of playing time, and predispose players to osteoarthritis. Osteochondral allografting is an increasingly popular treatment option for osteoarticular lesions in athletes. Osteochondral allografts provide mature, orthotopic hyaline cartilage on an osseous scaffold that serves as an attachment vehicle, which is rapidly replaced via creeping substitution, leading to reliable graft integration that allows for simplified rehabilitation and accelerated return to sport. The indications for meniscal replacement in football players are currently still evolving. Meniscus allografts offer potential functional, analgesic, and chondroprotective benefits in the meniscectomized knee. In the player at the end of his or her professional/competitive career, meniscal allografts can play a role in averting progression of chondropenia and facilitating knee function and an active lifestyle. This article is intended to present a concise overview of the limited published results for osteochondral and meniscal allografting in the athletic population and to provide a practical treatment algorithm that is of relevance to the clinician as well as the patient/football player, based on current consensus of opinion. PMID:26069605

  9. Enhancing Osteochondral Allograft Viability: Effects of Storage Media Composition

    PubMed Central

    Teng, Margie S.; Yuen, Audrey S.

    2008-01-01

    Osteochondral allograft transplantation is a well-accepted treatment for articular cartilage damage. However, chondrocyte viability declines during graft storage, which may compromise graft performance. We first tested the hypothesis that the composition of commonly used storage media affects the viability of articular chondrocytes over time; we then tested the hypothesis that the addition of insulin growth factor-1 or the apoptosis inhibitor ZVAD-fmk could enhance the storage properties of serum-free media. Bovine osteochondral grafts were stored at 4°C in lactated Ringer’s, Dulbecco’s modified eagle’s media (DMEM), DMEM supplemented with either insulin growth factor-1 or ZVAD-fmk, and a commercial storage media. Chondrocyte viability in lactated Ringer’s declined rapidly to 20.4% at 2 weeks. Viability in DMEM declined more slowly to 54.8% at 2 weeks and 31.2% at 3 weeks. Viability in commercial storage media was 83.6% at 3 weeks and 44.8% at 4 weeks. Viability was increased in DMEM + insulin growth factor-1 (56.4%) and DMEM + ZVAD (52.4%) at 3 weeks compared with DMEM alone. These results confirm the hypotheses that media composition greatly influences chondrocyte viability during cold storage and that insulin growth factor-1 and ZVAD improve the storage properties of DMEM. PMID:18506560

  10. Enhancing osteochondral allograft viability: effects of storage media composition.

    PubMed

    Teng, Margie S; Yuen, Audrey S; Kim, Hubert T

    2008-08-01

    Osteochondral allograft transplantation is a well-accepted treatment for articular cartilage damage. However, chondrocyte viability declines during graft storage, which may compromise graft performance. We first tested the hypothesis that the composition of commonly used storage media affects the viability of articular chondrocytes over time; we then tested the hypothesis that the addition of insulin growth factor-1 or the apoptosis inhibitor ZVAD-fmk could enhance the storage properties of serum-free media. Bovine osteochondral grafts were stored at 4 degrees C in lactated Ringer's, Dulbecco's modified eagle's media (DMEM), DMEM supplemented with either insulin growth factor-1 or ZVAD-fmk, and a commercial storage media. Chondrocyte viability in lactated Ringer's declined rapidly to 20.4% at 2 weeks. Viability in DMEM declined more slowly to 54.8% at 2 weeks and 31.2% at 3 weeks. Viability in commercial storage media was 83.6% at 3 weeks and 44.8% at 4 weeks. Viability was increased in DMEM + insulin growth factor-1 (56.4%) and DMEM + ZVAD (52.4%) at 3 weeks compared with DMEM alone. These results confirm the hypotheses that media composition greatly influences chondrocyte viability during cold storage and that insulin growth factor-1 and ZVAD improve the storage properties of DMEM. PMID:18506560

  11. Osteochondritis dissecans of the capitellum.

    PubMed

    Baker, Champ L; Romeo, Anthony A; Baker, Champ L

    2010-09-01

    Osteochondritis dissecans of the capitellum is a well-recognized cause of elbow pain and disability in the adolescent athlete. This condition typically affects young athletes, such as throwers and gymnasts, involved in high-demand, repetitive overhead, or weightbearing activities. The true cause, natural history, and optimal treatment of osteochondritis dissecans of the capitellum remain unknown. Suspicion of this condition warrants investigation with proper radiographs and magnetic resonance imaging. Prompt recognition of this disorder and institution of nonoperative treatment for early, stable lesions can result in healing with later resumption of sporting activities. Patients with unstable lesions or those failing nonoperative therapy require operative intervention with treatment based on lesion size and extent. Historically, surgical treatment included arthrotomy with loose body removal and curettage of the residual osteochondral defect base. The introduction of elbow arthroscopy in the treatment of osteochondritis dissecans of the capitellum permits a thorough lesion assessment and evaluation of the entire elbow joint with the ability to treat the lesion and coexistent pathology in a minimally invasive fashion. Unfortunately, the prognosis for advanced lesions remains more guarded, but short-term results after newer reconstruction techniques are promising. PMID:20097927

  12. Reconstruction of Traumatic Composite Tissue Defect of Medial Longitudinal Arch With Free Osteocutaneous Fibular Graft.

    PubMed

    Unal, Mehmet Bekir; Seker, Ali; Demiralp, Bahtiyar; Sahin, Mustafa; Cift, Hakan Turan; Oltulu, Ismail

    2016-01-01

    A 34-year-old male sustained a crush injury resulting in bone and soft tissue loss along the medial longitudinal arch of his left foot. Specifically, the injury resulted in loss of first metatarsal without injury to the medial cuneiform or proximal phalanx, fracture of the third metatarsal, and a 5-cm × 9-cm soft tissue defect overlying the dorsomedial aspect of the right foot. After debridement and daily wound care, the defect was subsequently reconstructed using a free osteocutaneous fibular graft. Approximately 6 months after reconstructive surgery, the patient returned to his job without pain, and his pedogram showed almost equal weightbearing distribution on both feet. PMID:25459091

  13. Gingival Cyst of the Adult as Early Sequela of Connective Tissue Grafting

    PubMed Central

    Gil Escalante, Mariana; Tatakis, Dimitris N.

    2015-01-01

    The subepithelial connective tissue graft (SCTG) is a highly predictable procedure with low complication rate. The reported early complications consist of typical postsurgical sequelae, such as pain and swelling. This case report describes the development and management of a gingival cyst following SCTG to obtain root coverage. Three weeks after SCTG procedure, a slightly raised, indurated, ~5 mm diameter asymptomatic lesion was evident. Excisional biopsy was performed and the histopathological evaluation confirmed the gingival cyst diagnosis. At the 1-year follow-up, the site had complete root coverage and normal tissue appearance and the patient remained asymptomatic. PMID:26236510

  14. Chondrogenesis of Mesenchymal Stem Cells in an Osteochondral Environment Is Mediated by the Subchondral Bone

    PubMed Central

    de Vries–van Melle, Marloes L.; Narcisi, Roberto; Kops, Nicole; Koevoet, Wendy J.L.M.; Bos, P. Koen; Murphy, J. Mary; Verhaar, Jan A.N.; van der Kraan, Peter M.

    2014-01-01

    In articular cartilage repair, cells that will be responsible for the formation of repair tissue are often exposed to an osteochondral environment. To study cartilage repair mechanisms in vitro, we have recently developed a bovine osteochondral biopsy culture model in which cartilage defects can be simulated reproducibly. Using this model, we now aimed at studying the chondrogenic potential of human bone marrow-derived mesenchymal stem cells (hBMSCs) in an osteochondral environment. In contrast to standard in vitro chondrogenesis, it was found that supplementing transforming growth factor beta (TGFβ) to culture medium was not required to induce chondrogenesis of hBMSCs in an osteochondral environment. hBMSC culture in defects created in osteochondral biopsies or in bone-only biopsies resulted in comparable levels of cartilage-related gene expression, whereas culture in cartilage-only biopsies did not induce chondrogenesis. Subcutaneous implantation in nude mice of osteochondral biopsies containing hBMSCs in osteochondral defects resulted in the formation of more cartilaginous tissue than hBMSCs in chondral defects. The subchondral bone secreted TGFβ; however, the observed results could not be attributed to TGFβ, as either capturing TGFβ with an antibody or blocking the canonical TGFβ signaling pathway did not result in significant changes in cartilage-related gene expression of hBMSCs in the osteochondral culture model. Inhibition of BMP signaling did not prevent chondrogenesis. In conclusion, we demonstrate that chondrogenesis of hBMSCs is induced by factors secreted from the bone. We have strong indications that this is not solely mediated by members of the TGFβ family but other, yet unknown, factors originating from the subchondral bone appeared to play a key role. PMID:23980750

  15. The addition of soft tissue replacement grafts in plastic periodontal and implant surgery: critical elements in design and execution.

    PubMed

    Zuhr, Otto; Bäumer, Daniel; Hürzeler, Markus

    2014-04-01

    Soft tissue replacement grafts have become a substantial element to increase tissue volume in plastic periodontal and implant surgery. Autogenous subepithelial connective tissue grafts are increasingly applied in aesthetic indications like soft tissue thickening, recession treatment, ridge preservation, soft tissue ridge augmentation and papilla re-construction. For the clinical performance of connective tissue graft harvesting and transplantation, a fundamental understanding of the anatomy at the donor sites and a sound knowledge of tissue integration and re-vascularization processes are required. Possible donor sites are the anterior and posterior palate including the maxillary tuberosity, providing grafts of distinct geometric shape and histologic composition. The selective clinical application of different grafts depends on the amount of required tissue, the indication and the personal preference of the treating surgeon. One of the main future challenges is to volumetrically evaluate and compare the efficacy and long-term stability of soft tissue autografts and their prospective substitutes. The aim of this review was to discuss the advantages and shortfalls of different donor sites, substitute materials and harvesting techniques. Although standardized recommendations regarding treatment choice and execution can hardly be given, guidelines for predictable and successful treatment outcomes are provided based on clinical experience and the available scientific data. PMID:24640997

  16. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    PubMed

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation. PMID:26234364

  17. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    NASA Astrophysics Data System (ADS)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  18. Characterization of Evolving Biomechanical Properties of Tissue Engineered Vascular Grafts in the Arterial Circulation

    PubMed Central

    Udelsman, Brooks V.; Khosravi, Ramak; Miller, Kristin S.; Dean, Ethan W.; Bersi, Matthew R.; Rocco, Kevin; Yi, Tai; Humphrey, Jay D.; Breuer, Christopher K.

    2014-01-01

    We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from (poly)lactic acid (PLA) and coated with a 50:50 copolymer of (poly)caprolactone and (poly)lactic acid (P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, the TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify in vitro the circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, the TEVGs were much stiffer than native tissue in both directions. Repeat mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG. PMID:24702863

  19. Recent Advances in Egypt for Treatment of Talar Osteochondral Lesions.

    PubMed

    Haleem, Amgad M; AbouSayed, Mostafa M; Gomaa, Mohammed

    2016-06-01

    Treatment of osteochondral defects (OCLs) of the talus is a challenging orthopedic surgery. Treatment of talar OCLs has evolved through the 3 "R" paradigm: reconstruction, repair, and replacement. This article highlights current state-of-the-art techniques and reviews recent advances in the literature about articular cartilage repair using various novel tissue engineering approaches, including various scaffolds, growth factors, and cell niches; which include chondrocytes and culture-expanded bone marrow-derived mesenchymal stem cells. PMID:27261813

  20. The innate immune system contributes to tissue-engineered vascular graft performance

    PubMed Central

    Hibino, Narutoshi; Mejias, Dane; Pietris, Nicholas; Dean, Ethan; Yi, Tai; Best, Cameron; Shinoka, Toshiharu; Breuer, Christopher

    2015-01-01

    The first clinical trial of tissue-engineered vascular grafts (TEVGs) identified stenosis as the primary cause of graft failure. In this study, we aimed to elucidate the role of the host immune response in the development of stenosis using a murine model of TEVG implantation. We found that the C.B-17 wild-type (WT) mouse (control) undergoes a dramatic stenotic response, which is nearly completely abolished in the immunodeficient SCID/beige (bg) variant. SCID mice, which lack an adaptive immune system due to the absence of T and B lymphocytes, experienced rates of stenosis comparable to WT controls (average luminal diameter, WT: 0.071 ± 0.035 mm, SCID: 0.137 ± 0.032 mm, SCID/bg: 0.804 ± 0.039 mm; P < 0.001). The bg mutation is characterized by NK cell and platelet dysfunction, and systemic treatment of WT mice with either NK cell–neutralizing (anti–NK 1.1 antibody) or antiplatelet (aspirin/Plavix [clopidogrel bisulfate]; Asp/Pla) therapy achieved nearly half the patency observed in the SCID/bg mouse (NK Ab: 0.356 ± 0.151 mm, Asp/Pla: 0.452 ± 0.130 mm). Scaffold implantation elicited a blunted immune response in SCID/bg mice, as demonstrated by macrophage number and mRNA expression of proinflammatory cytokines in TEVG explants. Implicating the initial innate immune response as a critical factor in graft stenosis may provide a strategy for prognosis and therapy of second-generation TEVGs.—Hibino, N., Mejias, D., Pietris, N., Dean, E., Yi, T., Best, C., Shinoka, T., Breuer, C. The innate immune system contributes to tissue-engineered vascular graft performance. PMID:25713026

  1. Osteochondral Diseases and Fibrodysplasia Ossificans Progressiva

    PubMed Central

    Kaplan, Frederick S.

    2016-01-01

    Osteochondrodysplasias like thanatophoric dysplasia, osteogenesis imperfecta, achondroplasia, and other genetic skeletal disorders like fibrodysplasia ossificans progressiva are infrequently seen in clinical practice. In cases of sporadic achondroplasia as well as in fibrodysplasia ossificans progressiva, there is a strong association with paternal age, a relationship that is less evident in other genetic osteochondral diseases. No other constitutional or environmental factor has proven to be associated with these disorders. The use of prenatal ultrasonography as a routine component of prenatal care is crucial in the early suspicion of osteochondrodysplasias whereas definitive diagnosis is usually obtained by pre-natal molecular analysis. In the case of fibrodysplasia ossificans progressiva, recognition of congenital great toe malformations associated with rapidly–appearing soft tissue swelling is sufficient to make the proper clinical diagnosis, which can be confirmed by genetic testing. Large regional centres will improve diagnosis performance, provide accurate genetic counselling, and ensure an integral assistance for these often severe and incapacitating conditions. PMID:20824454

  2. Osteochondritis dissecans of the talus

    PubMed Central

    ZANON, GIACOMO; DI VICO, GIOVANNI; MARULLO, MATTEO

    2014-01-01

    Osteochondritis dissecans (OCD) is an acquired idiopathic lesion of subchondral bone that can produce delamination and sequestration with or without articular cartilage involvement and instability. The cause of OCD is still debated: the most recognized etiology is the occurrence of repetitive micro-traumas associated with vascular impairment, causing progressive ankle pain and dysfunction in skeletally immature and young adult patients. Ankle OCD is classically located in the medial part of the talus, while lateral and posterior involvement is less frequent. Diagnosis of OCD, based on MRI findings, is quite straightforward; MRI examination can also be very useful for dating the defect and obtaining information about the associated bone bruise. Osteochondritis dissecans, if not recognized and treated appropriately, may lead to secondary osteoarthritis with pain and functional limitation. Surgical treatment is mandatory especially in young patients with unstable cartilage fragments. There are various surgical options: fixation, microfracture, or substitution using autologous chondrocyte implantation techniques. PMID:25606554

  3. Osteochondritis dissecans of the elbow.

    PubMed

    Churchill, Ryan W; Munoz, Julianne; Ahmad, Christopher S

    2016-06-01

    Capitellar osteochondritis dissecans (OCD) can be a significant problem in adolescent overhead athletes. The cause is likely multifactorial secondary to repetitive stresses, biomechanical mismatch, and a tenuous vascular supply of the capitellum. Recent literature reveals that the prevalence is likely higher than previously thought. This, in conjunction with increased levels of athletic competition in children at younger ages, has fed the recent interest in this topic. The literature continues to show that non-operative treatment is still successful for stable lesions. Unstable lesions, therefore, have been the focus of the new literature regarding operative management and outcomes. The aim of this paper is to provide a summary of current literature and an up-to-date approach to the diagnosis, evaluation, and treatment of osteochondritis dissecans of the capitellum. PMID:27125506

  4. Collagen structural alterations contribute to stiffening of tissue after split-thickness skin grafting.

    PubMed

    Rosin, Nicole L; Agabalyan, Natacha; Olsen, Katherine; Martufi, Giampaol; Gabriel, Vincent; Biernaskie, Jeff; Di Martino, Elena S

    2016-03-01

    The gold standard treatment for full thickness injuries of the skin is autologous split-thickness skin grafting. This involves harvesting the epidermis and superficial dermis from healthy skin and transplanting it onto the prepared wound bed. The donor site regenerates spontaneously, but the appendages and cellular components from the dermal layer are excluded from the graft. As a result, the new tissue is inferior; the healed graft site is dry/itchy, has decreased elasticity, increased fragility, and altered sensory function. Because this dermal layer is composed of collagen and other extracellular matrix proteins, the aim was to characterize the changes in the dermal collagen after split thickness grafting that could contribute to a deficit in functionality. This will serve as a baseline for future studies designed to improve skin function using pharmacological or cell-based therapies for skin repair. A xenograft model whereby human split-thickness grafts were implanted into full-thickness defects on immunocompromised (athymic Nu/Nu) mice was used. The grafts were harvested 4 and 8 weeks later. The collagen microstructure was assessed with second harmonic generation with dual-photon microscopy and light polarization analysis. Collagen fiber stiffness and engagement stretch were estimated by fitting the results of biaxial mechanical tensile tests to a histo-mechanical constitutive model. The stiffness of the collagen fibril-proteoglycan complex increased from 682 ± 226 kPa/sr to 1016 ± 324 kPa/sr between 4 and 8 weeks postgrafting. At the microstructural level there were significant decreases in both thickness of collagen fibers (3.60 ± 0.34 μm vs. 2.10 ± 0.27 μm) and waviness ratio (2.04 ± 0.17 vs. 1.43 ± 0.08) of the collagen fibers postgrafting. The decrease of the macroscopic engagement stretch from 1.19 ± 0.11 to 1.09 ± 0.08 over time postgrafting mirrored the decrease in waviness measured at the microscopic level

  5. Alveolar Ridge Contouring with Free Connective Tissue Graft at Implant Placement: A 5-Year Consecutive Clinical Study.

    PubMed

    Hanser, Thomas; Khoury, Fouad

    2016-01-01

    This study evaluated volume stability after alveolar ridge contouring with free connective tissue grafts at implant placement in single-tooth gaps. A total of 52 single-tooth gaps with labial volume deficiencies in the maxilla (incisors, canines, and premolars) were consecutively treated with implants and concomitant free palatal connective tissue grafts in 46 patients between 2006 and 2009. Implants had to be covered with at least 2 mm peri-implant local bone after insertion. At implant placement, a free connective tissue graft from the palate was fixed inside a labial split-thickness flap to form an existing concave buccal alveolar ridge contour due to tissue volume deficiency into a convex shape. Standardized volumetric measurements of the labial alveolar contour using a template were evaluated before connective tissue grafting and at 2 weeks, 1 year, and 5 years after implantprosthetic incorporation. Tissue volume had increased significantly (P < .05) in all six reference points representing the outer alveolar soft tissue contour of the implant before connective tissue grafting to baseline (2 weeks after implant-prosthetic incorporation). Statistically, 50% of the reference points (P > .05) kept their volume from baseline to 1 year after prosthetic incorporation and from baseline to 5 years after prosthetic incorporation, respectively, whereas reference points located within the area of the implant sulcus showed a significant (P < .05) decrease in volume. Clinically, 5 years after prosthetic incorporation the originally concave buccal alveolar contour was still convex in all implants, leading to a continuous favorable anatomical shape and improved esthetic situation. Intraoral radiographs confirmed osseointegration and stable peri-implant parameters with a survival rate of 100% after a follow-up of approximately 5 years. Implant placement with concomitant free connective tissue grafting appears to be an appropriate long-term means to contour preexisting buccal

  6. Computationally Optimizing the Compliance of a Biopolymer Based Tissue Engineered Vascular Graft.

    PubMed

    Harrison, Scott; Tamimi, Ehab; Uhlorn, Josh; Leach, Tim; Vande Geest, Jonathan P

    2016-01-01

    Coronary heart disease is a leading cause of death among Americans for which coronary artery bypass graft (CABG) surgery is a standard surgical treatment. The success of CABG surgery is impaired by a compliance mismatch between vascular grafts and native vessels. Tissue engineered vascular grafts (TEVGs) have the potential to be compliance matched and thereby reduce the risk of graft failure. Glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen constructs were fabricated and mechanically tested in a previous study by our research group at 2, 8, and 24 hrs of GLUT vapor exposure. The current study details a computational method that was developed to predict the material properties of our constructs for crosslinking times between 2 and 24 hrs by interpolating the 2, 8, and 24 hrs crosslinking time data. matlab and abaqus were used to determine the optimal combination of fabrication parameters to produce a compliance matched construct. The validity of the method was tested by creating a 16-hr crosslinked construct of 130 μm thickness and comparing its compliance to that predicted by the optimization algorithm. The predicted compliance of the 16-hr construct was 0.00059 mm Hg-1 while the experimentally determined compliance was 0.00065 mm Hg-1, a relative difference of 9.2%. Prior data in our laboratory has shown the compliance of the left anterior descending porcine coronary (LADC) artery to be 0.00071 ± 0.0003 mm Hg-1. Our optimization algorithm predicts that a 258-μm-thick construct that is GLUT vapor crosslinked for 8.1 hrs would match LADC compliance. This result is consistent with our previous work demonstrating that an 8-hr GLUT vapor crosslinked construct produces a compliance that is not significantly different from a porcine coronary LADC. PMID:26593773

  7. 3D printing of novel osteochondral scaffolds with graded microstructure.

    PubMed

    Nowicki, Margaret A; Castro, Nathan J; Plesniak, Michael W; Zhang, Lijie Grace

    2016-10-14

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds. PMID:27606933

  8. Hard tissue remodeling using biofabricated coralline biomaterials.

    PubMed

    Vago, Razi; Plotquin, Daniel; Bunin, Alex; Sinelnikov, Igor; Atar, Dan; Itzhak, David

    2002-01-01

    Biotechnical and biomedical approaches were combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as biomatrices for remodeling bone and cartilage tissue. After grafting, it is desirable for bone ingrowth to proceed as quickly as possible because the strength of the implanted region depends on a good mechanical bond forming between the implant and surrounding regions in the body. Ingrowth can take place as a result of growth of tissue and cells into the implanted porous material, or it may be promoted by transplanting cells seeded onto such a material. The rate at which ingrowth occurs is dependent on many factors, including pore size and the interconnectivity of the implanted structure. In vivo graftings into osteochondral defects demonstrated that our biofabricated porous material is highly biocompatible with cartilage and bone tissue. The biofabricated matrix was well incorporated into the biphasic osteochondral area. Resorption was followed by bone and cartilage formation, and after 4 months, the biomaterial had been replaced by new tissue. Ossification was induced and enhanced without introduction of additional factors. We believe that this is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bioengineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling. PMID:11741712

  9. Guided tissue regeneration and bone grafts in the treatment of furcation defects.

    PubMed

    Caffesse, R G; Nasjleti, C E; Plotzke, A E; Anderson, G B; Morrison, E C

    1993-11-01

    The present study evaluated the effects of guided tissue regeneration (GTR), with and without demineralized freeze-dried cortical bone grafts, in the treatment of furcation defects in 4 female beagle dogs with naturally occurring periodontal disease. The root surfaces were thoroughly debrided. Four weeks later, full thickness facial and lingual mucoperiosteal flaps were reflected using inverse bevel incisions on both sides of the mandible involving the 2nd, 3rd, and 4th premolar, and the 1st molar teeth. Following debridement, notches were placed on the roots at the level of supporting bone. Test quadrants were randomly selected and furcations were filled with reconstituted, demineralized, freeze-dried human cortical bone grafts. Following bone grafting, all defects were covered with an expanded polytetrafluoroethylene (ePTFE) membrane, which was sutured with 4-0 sutures. Afterward, interproximal sutures were placed through the flaps, assuring the flaps covered the membranes completely. The contralateral side, serving as control, was treated by debridement only and application of ePTFE membrane. All membranes were removed 6 weeks after surgery. Dogs were sacrificed at 4 months after surgery. Both mesio-distal and bucco-lingual histologic sections were evaluated by descriptive histology. Linear measurements and surface area determination of the furcal tissues were carried out using the microscope attached to a digitizer. Twelve to 20 nonserial sections were made of the mid-buccal aspects of each root of each treated tooth. Half of these sections were stained with Harris' hematoxylin and eosin (H&E) and the other half stained with Mallory's trichrome stain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8295103

  10. A preliminary study on the effects of acellular tissue graft augmentation in acute Achilles tendon ruptures.

    PubMed

    Lee, Daniel K

    2008-01-01

    Acute Achilles tendon rupture injuries present surgical challenges because of the mechanical forces placed on this tendon. The purpose of this study was to evaluate the effectiveness of an acellular human dermal tissue matrix, GraftJacket Matrix (Wright Medical Technology, Inc., Arlington, TN), as an augmentation material in acute Achilles tendon repair. Eleven consecutive patients with acute tendon ruptures were evaluated and followed up (20-31 months). Primary repair was followed by augmentation with the graft sutured circumferentially around the tendon. Patients were placed in an early functional rehabilitation program with postoperative evaluation at 3, 6, and 12 months. Outcome scores were calculated based on the American Orthopaedic Foot and Ankle Society ankle-hindfoot scoring system. At 20-month postoperative follow-up, there have been no cases of rerupture or recurrent pain. The average return-to-activity time was 11.8 +/- 0.75 weeks. These retrospective clinical results suggest that with an acellular human dermal tissue matrix to augment acute Achilles tendon, primary repair offers a desirable return-to-activity time without any rerupture or complications. ACFAS Level of Clinical Evidence: 2c. PMID:18156058

  11. Repair of lacerated anterior tibial tendon with acellular tissue graft augmentation.

    PubMed

    DiDomenico, Lawrence A; Blasko, Gregory A; Cane, Laurence; Cross, Davina J

    2012-01-01

    In the present case report, we describe the surgical repair of a complete laceration of the anterior tibial tendon using acellular human dermal tissue matrix. A 17-year-old, elite league hockey player was injured in the locker room when a teammate still clad in ice skates stepped on his bare left foot. After evaluation at a local emergency department, the patient presented to our office the next day for additional evaluation. It was determined that surgery would be performed using acellular tissue graft augmentation, followed by physical therapy. Within 7 weeks of the injury, the athlete returned to his original level of activity. At 3 years of follow-up, he was playing Division 1 hockey at the university level. We believe that augmentation of the tendon repair with the grafting material enhanced the tendon tensile strength and promoted ingrowth through vascular channels. This, combined with the patient's dedication to physical therapy, led to excellent recovery in less time than anticipated. PMID:22762944

  12. Soft Tissue Reconstruction with Free Gingival Graft Technique following Excision of a Fibroma

    PubMed Central

    Tezci, Nurcan; Meseli, Suleyman Emre; Karaduman, Burcu; Dogan, Serap; Meric, Sabri Hasan

    2015-01-01

    Background. Oral fibromas are benign, asymptomatic, smooth surfaced, firm structured tumoral lesions that originate from gingival connective tissue or periodontal ligament. Histologically, they are nodular masses characterized by a dense connective tissue, surrounded by stratified squamous epithelium. Case Report. This case report includes the clinical, radiographical, and histological findings and periodontal treatment of a 38-year-old female patient having painless swelling on the gingiva. Intraoral examination revealed a fibrotic, sessile, smooth surfaced gingival overgrowth interdentally between the teeth #13 and #14. Radiographical findings were normal. Initial periodontal treatment (IPT) was applied including oral hygiene instructions, scaling, and root planing. Following IPT, the lesion (0.7 × 0.6 × 0.4 cm) was excised and examined histopathologically. Subsequently, flap operation was performed to have an access to alveolar bone. Surgical site was reconstructed with free gingival graft obtained from hard palate. Hematoxylin-eosin stained sections revealed a nodular mass composed by dense collagen fibers in lamina propria covered by a stratified squamous epithelium, which were consistent with fibroma. Gingival healing was uneventful and without any recurrence during the 12-month follow-up. Conclusions. In order to achieve optimal functional and aesthetical outcomes, free gingival graft can be used for the reconstruction of the wound site after the excision of the fibroma. PMID:26357576

  13. Structural hierarchy of biomimetic materials for tissue engineered vascular and orthopedic grafts.

    PubMed

    Lekakou, C; Lamprou, D; Vidyarthi, U; Karopoulou, E; Zhdan, P

    2008-05-01

    Gelatine gels and gelatine/elastin gels have been prepared to be used in tissue engineered vascular grafts. Optical microscopy and atomic force microscopy (AFM) revealed that the gelatine formed nanofibrils as in soft collagen tissues. The gelatine/elastin gels were nanocomposites with flat elastin nanodomains embedded in the gelatine matrix mimicking the structure of the tunica media in arteries. Gelatine/"hydroxyapatite" (HA) nanocomposites were prepared with the in situ production of "HA" in solution. AFM revealed "HA" solid nanoparticles of about 20 nm size embedded in the gelatine matrix, which formed a hierarchical structure similar to that of the collagen matrix in bone. The application of amagnetic field of 9.4 T resulted in the elongation and orientation of gelatine particles and orientation of gelatine microfibrils in a direction perpendicular to that of the magnetic field. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008. PMID:18098204

  14. Subpedicle connective tissue graft versus guided tissue regeneration with bioabsorbable membrane in the treatment of human gingival recession defects.

    PubMed

    Trombelli, L; Scabbia, A; Tatakis, D N; Calura, G

    1998-11-01

    The purpose of the present clinical study was to evaluate the effect of guided tissue regeneration (GTR) in comparison to subpedicle connective tissue graft (SCTG) in the treatment of gingival recession defects. A total of 12 patients, each contributing a pair of Miller's Class I or II buccal gingival recessions, was treated. According to a randomization list, one defect in each patient received a polyglycolide/lactide bioabsorbable membrane, while the paired defect received a SCTG. Treatment effect was evaluated 6 months postsurgery. Clinical recordings included full-mouth and defect-specific oral hygiene standards and gingival health, recession depth (RD), recession width (RW), probing depth (PD), clinical attachment level (CAL), and keratinized tissue width (KT). Mean RD significantly decreased from 3.1 mm presurgery to 1.5 mm at 6 months postsurgery for the GTR group (48% root coverage), and from 3.0 mm to 0.5 mm for the SCTG group (81% root coverage). RD reduction and root coverage were significantly greater in SCTG group compared to GTR group. Mean CAL gain amounted to 1.7 mm for the GTR group, and 2.3 mm in the SCTG group. No significant differences in PD changes were observed within and between groups. KT increased significantly from presurgery for both treatment groups, however gingival augmentation was significantly greater in the SCTG group compared to GTR group. Results indicate that: 1) treatment of human gingival recession defects by means of both GTR and SCTG procedures results in clinically and statistically significant improvement of the soft tissue conditions of the defect; and 2) treatment outcome was significantly better following SCTG compared to GTR in terms of recession depth reduction, root coverage, and keratinized tissue increase. PMID:9848537

  15. Clinical evaluation of subepithelial connective tissue graft and guided tissue regeneration for treatment of Miller’s class 1 gingival recession (comparative, split mouth, six months study)

    PubMed Central

    Bhavsar, Neeta-V.; Dulani, Kirti; Trivedi, Rahul

    2014-01-01

    Objectives: The present study aims to clinically compare and evaluate subepithelial connective tissue graft and the GTR based root coverage in treatment of Miller’s Class I gingival recession. Study Design: 30 patients with at least one pair of Miller’s Class I gingival recession were treated either with Subepithelial connective tissue graft (Group A) or Guided tissue regeneration (Group B). Clinical parameters monitored included recession RD, width of keratinized gingiva (KG), probing depth (PD), clinical attachment level (CAL), attached gingiva (AG), residual probing depth (RPD) and % of Root coverage(%RC). Measurements were taken at baseline, three months and six months. A standard surgical procedure was used for both Group A and Group B. Data were recorded and statistical analysis was done for both intergroup and intragroup. Results: At end of six months % RC obtained were 84.47% (Group A) and 81.67% (Group B). Both treatments resulted in statistically significant improvement in clinical parameters. When compared, no statistically significant difference was found between both groups except in RPD, where it was significantly greater in Group A. Conclusions: GTR technique has advantages over subepithelial connective tissue graft for shallow Miller’s Class I defects and this procedure can be used to avoid patient discomfort and reduce treatment time. Key words:Collagen membrane, comparative split mouth study, gingival recession, subepithelial connective tissue graft, guided tissue regeneration (GTR). PMID:25136420

  16. Clinical Comparison of Full and Partial Double Pedicle Flaps with Connective Tissue Grafts for Treatment of Gingival Recession

    PubMed Central

    Ranjbari, Ardeshir; Gholami, Gholam Ali; Amid, Reza; Kadkhodazadeh, Mahdi; Youssefi, Navid; Mehdizadeh, Amir Reza; Aghaloo, Maryam

    2016-01-01

    Statement of the Problem Gingival recession has been considered as the most challenging issue in the field of periodontal plastic surgery. Purpose The purpose of this study was to evaluate the clinical efficacy of root coverage procedures by using partial thickness double pedicle graft and compare it with full thickness double pedicle graft. Materials and Method Eight patients, aged 15 to 58 years including 6 females and 2 males with 20 paired (mirror image) defects with class I and II gingival recession were randomly assigned into two groups. Clinical parameters such as recession depth, recession width, clinical attachment level, probing depth, and width of keratinized tissue were measured at the baseline and 6 months post-surgery. A mucosal double papillary flap was elevated and the respective root was thoroughly planed. The connective tissue graft was harvested from the palate, and then adapted over the root. The pedicle flap was secured over the connective tissue graft and sutured. The surgical technique was similar in the control group except for the prepared double pedicle graft which was full thickness. Results The mean root coverage was 88.14% (2.83 mm) in the test group and 85.7% (2.75 mm) in the control group. No statistical differences were found in the mean reduction of vertical recession, width of recession, or probing depth between the test and control groups. In both procedures, the width of keratinized tissue increased after three months and the difference between the two groups was not statistically significant in this respect. Conclusion Connective tissue with partial and full thickness double pedicle grafts can be successfully used for treatment of marginal gingival recession. PMID:27602394

  17. Hybrid Matrix Grafts to Favor Tissue Regeneration in Rabbit Femur Bone Lesions

    PubMed Central

    Goy, Dante Pascual; Gorosito, Emmanuel; Costa, Hermes S; Mortarino, Pablo; Pedemonte, Noelia Acosta; Toledo, Javier; Mansur, Herman S; Pereira, Marivalda M; Battaglino, Ricardo; Feldman, Sara

    2012-01-01

    At present, typical approaches employed to repair fractures and other bone lesions tend to use matrix grafts to promote tissue regeneration. These grafts act as templates, which promote cellular adhesion, growth and proliferation, osteoconduction, and even osteoinduction, which commonly results in de novo osteogenesis. The present work aimed to study the bone-repairing ability of hybrid matrixes (HM) prepared with polyvinyl alcohol (PVA) and bioactive glass in an experimental rabbit model. The HM were prepared by combining 30% bioactive glass (nominal composition of 58% SiO2 -33 % CaO - 9% P2O5) and 70% PVA. New Zealand rabbits were randomly divided into the control group (C group) and two groups with bone lesions, in which one received a matrix implant HM (Implant group), while the other did not (no Implant group). Clinical monitoring showed no altered parameters from either the Implant or the no Implant groups as compared to the control group, for the variables of diet grades, day and night temperatures and hemograms. In the Implant group, radiologic and tomographic studies showed implanted areas with clean edges in femoral non-articular direction, and radio-dense images that suggest incipient integration. Minimum signs of phlogosis could be observed, whereas no signs of rejection at this imaging level could be identified. Histological analysis showed evidence of osteo-integration, with the formation of a trabecular bone within the implant. Together, these results show that implants of hybrid matrixes of bioactive glass are capable of promoting bone regeneration. PMID:22848334

  18. Sporicidal efficacy of genipin: a potential theoretical alternative for biomaterial and tissue graft sterilization.

    PubMed

    Reich, Michael S; Akkus, Ozan

    2013-09-01

    Terminal sterilization of musculoskeletal allografts by gamma radiation minimizes the risk of disease transmission but impairs allograft mechanical properties. Commonly employed crosslinking agents can sterilize tissues without affecting mechanical properties adversely; however, these agents are toxic. Genipin is reported to be a benign crosslinking agent that strengthens mechanical properties of tissues; however, the antimicrobial capacity of genipin is largely unknown. The present study's aims were: (1) to assess the sporicidal potential of genipin, (2) to improve antimicrobial capacity by changing chemical and physical treatment conditions. To establish genipin's sterilization potential Bacillus subtilis var. niger spore strips were treated with 0-10% genipin in PBS or in 1:1 DMSO:PBS up to 72 h at room temperature (RT). Sterilizing doses and concentrations of genipin were used to treat B. pumilus and Geobacillus stearothermophilus spores to assess broader spectrum sporicidal activity of genipin. Scanning electron microscopy (SEM) was performed to evaluate gross morphological changes after genipin treatment. Optimal sterilization conditions were determined by evaluating the effects of temperature (RT-50 °C), DMSO:PBS ratio (0:100-100:0), and treatment duration (24-72 h) on B. subtilis. Genipin penetration of full thickness bovine patellar tendon and cortical bone specimens was observed to assess the feasibility of the agent for treating grafts. Initial studies showed that after 72 h of treatment at RT with 0.63-10% genipin/DMSO:PBS B. subtilis spore strips were sterilized; 0.63% genipin/PBS did not sterilize spore strips at 72 h at RT. Genipin doses and concentrations that sterilized B. subtilis spore strips sterilized B. pumilus and G. stearothermophilus spore strips. SEM revealed no gross morphological differences between untreated and treated spores. Treatment optimization resulted in sterilization within 24 h with 100% PBS, and DMSO facilitated sporicidal

  19. Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering.

    PubMed

    Liu, Yadong; Cui, Haitao; Zhuang, Xiuli; Wei, Yen; Chen, Xuesi

    2014-12-01

    Blends of aniline pentamer-graft-gelatin (AP-g-GA) and poly(l-lactide) (PLLA) were electrospun to prepare uniform nanofibers as biomimetic scaffolds. The nanofibers exhibited good electroactivity, thermal stability and biodegradability. The biocompatibility of the nanofibers in vitro was evaluated by the adhesion and proliferation of mouse preosteoblastic MC3T3-E1 cells. The cellular elongation was significantly greater on electroactive AP-g-GA/PLLA nanofibers than on PLLA nanofibers. Moreover, the AP-g-GA/PLLA nanofibers stimulated by an electrical pulsed signal could promote the differentiation of MC3T3-E1 cells compared with pure PLLA nanofibers. Our results demonstrated that the biodegradable and electroactive AP-g-GA/PLLA nanofibers had potential application in vivo as bone repair scaffold materials in tissue engineering. PMID:25200841

  20. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  1. Decellularized ureter for tissue-engineered small-caliber vascular graft.

    PubMed

    Narita, Yuji; Kagami, Hideaki; Matsunuma, Hiroshi; Murase, Yosuke; Ueda, Minoru; Ueda, Yuichi

    2008-01-01

    Previous attempts to create small-caliber vascular prostheses have been limited. The aim of this study was to generate tissue-engineered small-diameter vascular grafts using decellularized ureters (DUs). Canine ureters were decellularized using one of four different chemical agents [Triton-X 100 (Tx), deoxycholate (DCA), trypsin, or sodium dodecyl sulfate (SDS)] and the histology, residual DNA contents, and immunogenicity of the resulting DUs were compared. The mechanical properties of the DUs were evaluated in terms of water permeability, burst strength, tensile strength, and compliance. Cultured canine endothelial cells (ECs) and myofibroblasts were seeded onto DUs and evaluated histologically. Canine carotid arteries were replaced with the EC-seeded DUs (n = 4). As controls, nonseeded DUs (n = 5) and PTFE prostheses (n = 4) were also used to replace carotid arteries. The degree of decellularization and the maintenance of the matrix were best in the Tx-treated DUs. Tx-treated and DCA-treated DUs had lower remnant DNA contents and immunogenicity than the others. The burst strength of the DUs was more than 500 mmHg and the maximum tensile strength of the DUs was not different to that of native ureters. DU compliance was similar to that of native carotid artery. The cell seeding test resulted in monolayered ECs and multilayered alpha-smooth muscle actin-positive cells on the DUs. The animal implantation model showed that the EC-seeded DUs were patent for at least 6 months after the operation, whereas the nonseeded DUs and PTFE grafts become occluded within a week. These results suggest that tissue-engineered DUs may be a potential alternative conduit for bypass surgery. PMID:18604613

  2. Achilles tendon repair with acellular tissue graft augmentation in neglected ruptures.

    PubMed

    Lee, Daniel K

    2007-01-01

    Neglected Achilles tendon rupture injuries present surgical challenges because of the quality and quantity of tendon tissue during repair combined with the magnitude of mechanical forces placed on this tendon. The purpose of this study was to evaluate the effects of an acellular human dermal tissue matrix, GRAFTJACKET, as an augmentation material in neglected Achilles tendon repair. Nine patients with neglected Achilles tendon ruptures were evaluated and followed up for a minimum of 20 months. Primary repair was followed by augmentation with the graft and suturing circumferentially around the tendon. Patients were placed in an early, functional rehabilitation program with postoperative evaluation at 3, 6, and 12 months. Outcome scores were calculated based on the American Orthopaedic Foot and Ankle Society ankle-hindfoot scoring system. At 20 to 30 months postoperative follow-up range, there has been no incidence of re-rupture or recurrent pain. The average return-to-activity time was 15.2 +/- 1.7 weeks. The results from this retrospective clinical series suggest that using an acellular human dermal tissue matrix to augment neglected Achilles tendon rupture primary repair offers desirable return-to-activity time points and viable surgical alternative over previously reported surgical options. PMID:17980842

  3. Influence of intra-articular administration of trichostatin a on autologous osteochondral transplantation in a rabbit model.

    PubMed

    Hou, Huacheng; Zheng, Ke; Wang, Guanghu; Ikegawa, Shiro; Zheng, Minghao; Gao, Xiang; Qin, Jinzhong; Teng, Huajian; Jiang, Qing

    2015-01-01

    Autologous osteochondral transplantation (AOT) is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA) on AOT, we conducted a case control study in a rabbit model. International Cartilage Repair Society (ICRS) macroscopic scores, the modified O'Driscoll histology scores, and real-time PCR were utilized to evaluate the results. At 4 weeks, both macroscopic and histological assessments showed that there was no significant difference between the TSA and control groups. However, the mean macroscopic and histological scores for the TSA-treated group were significantly higher than the scores for the control group at 12 weeks. TSA was shown to directly reduce collagen type II (COL2), aggrecan, matrix metalloproteinase (MMP), and a disintegrin and metalloproteinase domain with thrombospondin motifs 5 (ADAMTS-5) expression and to simultaneously repress the upregulation of MMP-3, MMP-9, and MMP-13 levels induced by interleukin 1β (IL-1β) in chondrocytes. In conclusion, TSA protects AOT grafts from degeneration, which may provide a benefit in the repair of articular cartilage injury. PMID:25866784

  4. Human Mesenchymal Stem Cell Grafts Enhance Normal and Impaired Wound Healing by Recruiting Existing Endogenous Tissue Stem/Progenitor Cells

    PubMed Central

    Shin, Laura

    2013-01-01

    Mesenchymal stem cells (MSCs) have been investigated as a clinical therapy to promote tissue repair. However, the disappearance of grafted cells soon after engraftment suggests a possible role as initiators of repair rather than effectors. We evaluated the relative contribution of grafted human MSCs and host stem/progenitor cells in promoting wound healing by using a novel asymmetric wound model in normal and impaired healing diabetic (db/db) mice to discriminate between the effect of direct engraftment and the subsequent systemic response. Experimental animals received paired wounds, with one wound receiving human mesenchymal stem cells (hMSCs) and the other wound receiving vehicle to assess local and systemic effects, respectively. Control animals received vehicle in both wounds. Grafted hMSCs significantly improved healing in both normal and impaired healing animals; produced significant elevation of signals such as Wnt3a, vascular endothelial growth factor, and platelet-derived growth factor receptor-α; and increased the number of pre-existing host MSCs recruited to the wound bed. Improvement was also seen in both the grafted and nongrafted sides, suggesting a systemic response to hMSC engraftment. Healing was enhanced despite the rapid loss of hMSCs, suggesting that mobilizing the host response is the major outcome of grafting MSCs to tissue repair. We validate that hMSCs evoke a host response that is clinically relevant, and we suggest that therapeutic efforts should focus on maximizing the mobilization of host MSCs. PMID:23283490

  5. Genetics Home Reference: familial osteochondritis dissecans

    MedlinePlus

    ... Gentili C, Cancedda R. Cartilage and bone extracellular matrix. Curr Pharm Des. 2009;15(12):1334-48. ... the aggrecan C-type lectin domain disrupts extracellular matrix interactions and causes dominant familial osteochondritis dissecans. Am ...

  6. Effect of Autogenous Cortical Bone Grafting in Conjunction with Guided Tissue Regeneration in the Treatment of Intraosseous Periodontal Defects

    PubMed Central

    Keles, Gonca Cayir; Sumer, Mahmut; Cetinkaya, Burcu Ozkan; Tutkun, Ferda; Simsek, S. Burcak

    2010-01-01

    Objectives: The aim of this clinical trial was to evaluate the additional benefit of using guided tissue regeneration (GTR) with autogenous cortical bone (ACB) grafting versus ACB grafting alone for the regenerative treatment of intraosseous periodontal defects. Methods: Via a split-mouth design, 12 patients with chronic periodontitis (five men, seven women; mean age, 45.3±4.6 years) who had probing pocket depths (PPDs) of ≥6 mm following initial periodontal therapy were randomly assigned to two treatments in contralateral areas of the dentition: a combination of ACB grafting and GTR (with a absorbable membrane of polylactic acid) or ACB grafting alone. The compared parameters were preoperative and 6-month postoperative PPDs, clinical attachment levels (CALs), and radiographic alveolar bone heights. Results: Both treatment modalities resulted in significant changes in the postoperative measurements from the preoperative values (P<.01). The reduction in the PPDs, gain in the CALs, and gain in the radiographic alveolar bone heights were 4.58±1.08, 4.25±1.06, and 5.50±2.24 mm in the patients treated with ACB grafting and GTR and 4.92±1.00, 4.50±0.80, and 5.92±1.83 mm in those treated with ACB grafting alone, respectively. The differences between the treatments were not statistically significant (P>.05). Conclusions: Within the study limitations, both ACB grafting with GTR and ACB grafting alone lead to significant improvements in clinical and radiographic parameters at 6 months postoperatively. The combined approach does not provide any additional benefit for treating intraosseous periodontal defects. PMID:20922160

  7. Repair and regeneration of osteochondral defects in the articular joints.

    PubMed

    Swieszkowski, Wojciech; Tuan, Barnabas Ho Saey; Kurzydlowski, Krzysztof J; Hutmacher, Dietmar W

    2007-11-01

    People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue

  8. Development of a Tissue-Engineered Lymphatic Graft Using Nanocomposite Polymer for the Treatment of Secondary Lymphedema.

    PubMed

    Kanapathy, Muholan; Kalaskar, Deepak; Mosahebi, Afshin; Seifalian, Alexander M

    2016-03-01

    Damage of the lymphatic vessels, commonly due to surgical resection for cancer treatment, leads to secondary lymphedema. Tissue engineering approach offers a possible solution to reconstruct this damage with the use of lymphatic graft to re-establish the lymphatic flow, hence preventing lymphedema. The aim of this study is to develop a tissue-engineered lymphatic graft using nanocomposite polymer and human dermal lymphatic endothelial cells (HDLECs). A nanocomposite polymer, the polyhedral oligomeric silsequioxane-poly(carbonate-urea)urethane (POSS-PCU), which has enhanced mechanical, chemical, and physical characteristics, was used to develop the lymphatic graft. POSS-PCU has been used clinically for the world's first synthetic trachea, lacrimal duct, and is currently undergoing clinical trial for coronary artery bypass graft. Two designs and fabrication methods were used to manufacture the conduits. The fabrication method, the mechanical and physical properties, as well as the hydraulic conductivity were tested. This is followed by in vitro cell culture analysis to test the cytocompatibility of HDLEC with the polymer surface. Using the casted extrusion method, the nanocomposite lymphatic graft demonstrates desirable mechanical property and hydraulic conductivity to re-establish the lymphatic flow. The conduit has high tensile strength (casted: 74.86 ± 5.74 MPa vs. coagulated: 31.33 ± 3.71 MPa; P < 0.001), favorable kink resistance, and excellent suture retention property (casted vs. coagulated, P < 0.05). Cytocompatibility study showed that the POSS-PCU scaffold supports the attachment and growth of HDLECs. This study demonstrates the feasibility of developing a tissue-engineered lymphatic graft using the nanocomposite polymer. It displays excellent mechanical property and cytocompatibility to HDLECs, offering much promise for clinical applications and as a new treatment option for secondary lymphedema. PMID:26517009

  9. Effects of sterilization and storage on the properties of ALP-grafted biomaterials for prosthetic and bone tissue engineering applications.

    PubMed

    Ferraris, S; Pan, G; Cassinelli, C; Mazzucco, L; Vernè, E; Spriano, S

    2012-10-01

    Grafting of the biomaterial surfaces with biomolecules is nowadays a challenging research field for prosthetic and bone tissue engineering applications. On the other hand, very few research works investigate the effect of the sterilization processes on the properties of functionalized biomaterials. In this study, the effects of different sterilization techniques (e.g. gamma and electron beam irradiation, ethylene oxide) on the enzymatic activity of bioactive glasses and Ti6Al4V grafted with alkaline phosphatase (ALP) have been analyzed. Sterility maintenance and in vitro bioactivity of the sterilized surfaces have also been investigated. Finally the effect of packaging and storage conditions has been considered. PMID:22971978

  10. USPIO-labeled textile materials for non-invasive MR imaging of tissue-engineered vascular grafts.

    PubMed

    Mertens, Marianne E; Koch, Sabine; Schuster, Philipp; Wehner, Jakob; Wu, Zhuojun; Gremse, Felix; Schulz, Volkmar; Rongen, Lisanne; Wolf, Frederic; Frese, Julia; Gesché, Valentine N; van Zandvoort, Marc; Mela, Petra; Jockenhoevel, Stefan; Kiessling, Fabian; Lammers, Twan

    2015-01-01

    Non-invasive imaging might assist in the clinical translation of tissue-engineered vascular grafts (TEVG). It can e.g. be used to facilitate the implantation of TEVG, to longitudinally monitor their localization and function, and to provide non-invasive and quantitative feedback on their remodeling and resorption. We here incorporated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles into polyvinylidene fluoride (PVDF)-based textile fibers, and used them to prepare imageable tissue-engineered vascular grafts (iTEVG). The USPIO-labeled scaffold materials were molded with a mixture of fibrin, fibroblasts and smooth muscle cells, and then endothelialized in a bioreactor under physiological flow conditions. The resulting grafts could be sensitively detected using T1-, T2- and T2*-weighted MRI, both during bioreactor cultivation and upon surgical implantation into sheep, in which they were used as an arteriovenous shunt between the carotid artery and the jugular vein. In vivo, the iTEVG were shown to be biocompatible and functional. Post-mortem ex vivo analyses provided evidence for efficient endothelialization and for endogenous neo-vascularization within the biohybrid vessel wall. These findings show that labeling polymer-based textile materials with MR contrast agents is straightforward and safe, and they indicate that such theranostic tissue engineering approaches might be highly useful for improving the production, performance, personalization and translation of biohybrid vascular grafts. PMID:25465443

  11. Microstructural Remodeling of Articular Cartilage Following Defect Repair by Osteochondral Autograft Transfer

    PubMed Central

    Raub, CB; Hsu, SC; Chan, EF; Shirazi, R; Chen, AC; Chnari, E; Semler, EJ; Sah, RL

    2013-01-01

    Objective To assess collagen network alterations occurring with flow and other abnormalities of articular cartilage at medial femoral condyle (MFC) sites repaired with osteochondral autograft (OATS) after 6 and 12 months, using quantitative polarized light microscopy (qPLM) and other histopathological methods Design The collagen network structure of articular cartilage of OATS-repaired defects and non-operated contralateral control sites were compared by qPLM analysis of parallelism index (PI), orientation angle (α) relative to the local tissue axes, and retardance (Γ) as a function of depth. qPLM parameter maps were also compared to ICRS and Modified O’Driscoll grades, and cell and matrix sub-scores, for sections stained with H&E and Safranin-O, and for Collagen-I and II Results Relative to non-operated normal cartilage, OATS-repaired regions exhibited structural deterioration, with low PI and more horizontal α, and unique structural alteration in adjacent host cartilage: more aligned superficial zone, and reoriented deep zone lateral to the graft, and matrix disorganization in cartilage overhanging the graft. Shifts in α and PI from normal site-specific values were correlated with histochemical abnormalities and co-localized with changes in cell organization/orientation, cloning, or loss, indicative of cartilage flow, remodeling, and deterioration, respectively Conclusions qPLM reveals a number of unique localized alterations of the collagen network in both adjacent host and implanted cartilage in OATS-repaired defects, associated with abnormal chondrocyte organization. These alterations are consistent with mechanobiological processes and the direction and magnitude of cartilage strain. PMID:23528954

  12. Unusual Appearance of an Osteochondral Lesion Accompanying Medial Meniscus Injury

    PubMed Central

    Mine, Takatomo; Ihara, Koichiro; Kawamura, Hiroyuki; Date, Ryo; Chagawa, Kazuki

    2014-01-01

    An osteochondral lesion in the knee joint is caused by a focal traumatic osteochondral defect, osteochondritis dissecans, an isolated degenerative lesion, or diffuse degenerative disease. An osteochondral lesion with a cleft-like appearance accompanying medial meniscus injury is rare without trauma. We report the case of a 13-year-old boy who complained of right knee pain and swelling, with radiographic findings of an osteochondral defect. Arthroscopic inspection showed an osteochondral lesion in the medial condyle of the femur and tibial plateau accompanying a partial medial meniscus discoid tear. Partial meniscectomy was performed, and a microfracture procedure was carried out on the osteochondral defect. The patient was asymptomatic at 2 years' follow-up. This technique is a relatively easy, completely arthroscopic procedure that spares the bone and cartilage and has yielded a good clinical outcome in a skeletally immature patient who had an osteochondral lesion with a cleft-like appearance. PMID:24749028

  13. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time

    PubMed Central

    Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher

    2016-01-01

    Aim We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Materials & methods Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. Results The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Conclusion Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft. PMID:26925512

  14. Clinical evaluation of expanded mesh connective tissue graft in the treatment for multiple adjacent gingival recessions in the esthetic zone

    PubMed Central

    Shanmugam, M.; Shivakumar, B.; Meenapriya, B.; Anitha, V.; Ashwath, B.

    2015-01-01

    Background: Multiple approaches have been used to replace lost, damaged or diseased gingival tissues. The connective tissue graft (CTG) procedure is the golden standard method for root coverage. Although multiple sites often need grafting, the palatal mucosa supplies only a limited area of grafting material. To overcome this limitation, expanded mesh graft provides a method whereby a graft can be stretched to cover a large area. The aim of this study was to evaluate the effectiveness and the predictability of expanded mesh CTG (e-MCTG) in the treatment of adjacent multiple gingival recessions. Materials and Methods: Sixteen patients aged 20–50 years contributed to 55 sites, each site falling into at least three adjacent Miller's Class 1 or Class 2 gingival recession. The CTG obtained from the palatal mucosa was expanded to cover the recipient bed, which was 1.5 times larger than the graft. Clinical measurements were recorded at baseline and 3 months, 12 months postoperatively. Results: A mean coverage of 1.96 mm ± 0.66 mm and 2.22 mm ± 0.68 mm was obtained at the end of 3rd and 12th month, respectively. Twelve months after surgery a statistically significant increase in CAL (2.2 mm ± 0.68 mm, P < 0.001) and increasing WKT (1.75 ± 0.78, P < 0.001) were obtained. In 80% of the treated sites, 100% root coverage was achieved (mean 93.5%). Conclusions: The results of this study demonstrated that multiple adjacent recessions were treated by using e-MCTG technique can be applied and highly predictable root coverage can be achieved. PMID:26321829

  15. Targeted SPECT/CT Imaging of Matrix Metalloproteinase Activity in the Evaluation of Remodeling Tissue-Engineered Vascular Grafts Implanted in a Growing Lamb Model

    PubMed Central

    Stacy, Mitchel R.; Naito, Yuji; Maxfield, Mark W.; Kurobe, Hirotsugu; Tara, Shuhei; Chan, Chung; Rocco, Kevin A.; Shinoka, Toshiharu; Sinusas, Albert J.; Breuer, Christopher K.

    2014-01-01

    Objective(s) The clinical translation of tissue-engineered vascular grafts has been demonstrated in children. The remodeling of biodegradable, cell-seeded scaffolds to functional neovessels is partially attributed to matrix metalloproteinases. Noninvasive assessment of matrix metalloproteinase activity may indicate graft remodeling and elucidate the progression of neovessel formation. Therefore, matrix metalloproteinase activity was evaluated in grafts implanted in lambs using in vivo and ex vivo hybrid imaging. Graft growth and remodeling was quantified using in vivo X-ray computed tomography angiography. Methods Cell-seeded and unseeded scaffolds were implanted in lambs (n=5) as inferior vena cava interposition grafts. At 2 and 6 months post-implantation, in vivo angiography assessed graft morphology. In vivo and ex vivo single photon emission tomography/X-ray computed tomography imaging was performed with a radiolabeled compound targeting matrix metalloproteinase activity at 6 months. Neotissue was examined at 6 months using qualitative histologic and immunohistochemical staining and quantitative biochemical analysis. Results Seeded grafts demonstrated significant luminal and longitudinal growth from 2 to 6 months. In vivo imaging revealed subjectively higher matrix metalloproteinase activity in grafts vs. native tissue. Ex vivo imaging confirmed a quantitative increase in matrix metalloproteinase activity and demonstrated higher activity in unseeded vs. seeded grafts. Glycosaminoglycan content was increased in seeded grafts vs. unseeded grafts, without significant differences in collagen content. Conclusions Matrix metalloproteinase activity remains elevated in tissue-engineered grafts 6 months post-implantation and may indicate remodeling. Optimization of in vivo imaging to noninvasively evaluate matrix metalloproteinase activity may assist in serial assessment of vascular graft remodeling. PMID:24952823

  16. Monitoring changes in heart tissue temperature and evaluation of graft function after coronary artery bypass grafting surgery.

    PubMed

    Lekas, Raimundas; Jakuska, Povilas; Krisciukaitis, Algimantas; Veikutis, Vincentas; Dzemyda, Gintautas; Mickevicius, Tomas; Morkūnaite, Kristina; Vilke, Alina; Treigys, Povilas; Civinskiene, Genuvaite; Andriuskevicius, Jonas; Vanagas, Tomas; Skauminas, Kestutis; Bernatoniene, Jurga

    2009-01-01

    Thermography is a relatively new contact-free method used in experimental and clinical studies and in cardiovascular surgery to investigate the myocardium and coronary artery function. Objects of complex study included mongrel dogs and patients with coronary artery disease who underwent cardiac surgery. For active dynamic thermography, we used a thermovision camera "A20V" (FLIR Systems, USA). Our data indicate that both experimental and clinical study performed on beating hearts could be an important approach to interoperation inspection of autovenous graft function. An infrared camera also can be successfully used to determine the extent of ischemic damage to the myocardium, heart, and blood vessels during surgery as a significant prognostic tool for evaluating outcome after cardiac operation. PMID:19357452

  17. Osteointegration of soft tissue grafts within the bone tunnels in anterior cruciate ligament reconstruction can be enhanced.

    PubMed

    Kuang, Guan-Ming; Yau, W P; Lu, William W; Chiu, K Y

    2010-08-01

    Anterior cruciate ligament reconstruction with a soft tissue autograft (hamstring autograft) has grown in popularity in the last 10 years. However, the issues of a relatively long healing time and an inferior histological healing result in terms of Sharpey-like fibers connection in soft tissue grafts are still unsolved. To obtain a promising outcome in the long run, prompt osteointegration of the tendon graft within the bone tunnel is essential. In recent decades, numerous methods have been reported to enhance osteointegration of soft tissue graft in the bone tunnel. In this article, we review the current literature in this research area, mainly focusing on strategies applied to the local bone tunnel environment. Biological strategies such as stem cell and gene transfer technology, as well as the local application of specific growth factors have been reported to yield exciting results. The use of biological bone substitute and physical stimulation also obtained promising results. Artificially engineered tissue has promise as a solution to the problem of donor site morbidity. Despite these encouraging results, the current available evidence is still experimental. Further clinical studies in terms of randomized control trial in the future should be conducted to extrapolate these basic science study findings into clinical practice. PMID:19779894

  18. Porcine embryos produced after intracytoplasmic sperm injection using xenogeneic pig sperm from neonatal testis tissue grafted in mice.

    PubMed

    Honaramooz, Ali; Cui, Xiang-Shun; Kim, Nam-Hyung; Dobrinski, Ina

    2008-01-01

    Embryo development after homologous intracytoplasmic sperm injection (ICSI) with sperm from testis tissue xenografts from pigs or any other farm animal species has not been evaluated critically. Here, we report development of porcine embryos in vitro following ICSI with sperm retrieved from xenografted neonatal pig testis. Small pieces of testis tissue from newborn piglets were grafted under the back skin of castrated immunodeficient mice (n = 4) and the xenografts were collected 8 months after grafting. Spermatozoa were recovered by mincing of the grafted tissue. For comparison, testicular, epididymal and ejaculated spermatozoa were also collected from mature boars. Oocytes injected with xenogeneic spermatozoa were either fixed to determine fertilisation processes (n = 89 in five replicates) or allowed to develop in vitro (n = 143 in four replicates). Xenogeneic porcine spermatozoa were fertilisation competent (24% v. 58%, 68%, 62% or 0% for xenogeneic v. control testicular, epididymal and ejaculated spermatozoa or no spermatozoa, respectively) and embryos developed to the blastocyst stage (8% v. 22%, 27%, 25% or 0%, respectively). These results demonstrate that porcine spermatozoa derived from immature testis tissue xenografted into mice are fertilisation competent, albeit at a lower rate than testicular, epididymal or ejaculated spermatozoa from control boars, and support embryo development after ICSI. PMID:18842182

  19. Comparative clinical evaluation of laterally positioned pedicle graft and subepithelial connective tissue graft in the treatment of Miller's Class I and II gingival recession: A 6 months study

    PubMed Central

    Dulani, Kirti Satish; Bhavsar, Neeta Vijay; Trivedi, Sakshee Rahul; Trivedi, Rahul Anil

    2015-01-01

    Aim: The purpose of the study was to compare clinical outcomes of laterally positioned pedicle graft (LPPG) and subepithelial connective tissue graft (SCTG) for treatment of Miller's Class I and II gingival recession defects, at the end of 6 months. Materials and Methods: Sixty Miller's Class I or II gingival recession defects (≥3 mm) (n = 30 each) on the labial aspect of anterior teeth were treated by either of the above techniques. Clinical parameters including recession depth (RD), width of keratinized gingiva (WKG), percentage of root coverage (%RC), and complete RC were recorded at baseline and 6 months postoperatively. Data were recorded and statistical analysis was done for both intergroup and intragroup. Statistical Analysis Used: Paired t-test intragroup and Student's t-test intergroup. Results: In LPPG, RD decreased from 4.9 ± 0.99 mm to 1.1 ± 0.3 mm and WKG increased from 0.7 ± 0.87 to 4.5 ± 0.86 mm at 6 months, while in SCTG, RD decreased from 4.67 ± 1.12 mm to 0.46 ± 0.68 mm and WKG increased from 1.1 ± 0.99 to 5.33 ± 0.72 mm at 6 months postoperatively. The values of the soft tissue coverage remained stable for 6 months. Conclusions: Highly significant and effective soft tissue coverage was obtained by both techniques. LPPG resulted in effective soft tissue coverage for isolated deep narrow defects while SCTG in isolated and multiple, deep narrow and wide defects. PMID:26941517

  20. Development and function of pearl-sacs grown from regenerated mantle graft tissue in the black-lip pearl oyster, Pinctada margaritifera (Linnaeus, 1758).

    PubMed

    Kishore, Pranesh; Southgate, Paul C

    2015-08-01

    Current pearl grafting techniques were developed in the early 1900s and have changed little since. They involve the sacrifice of donor pearl oysters to provide graft tissue (saibo) that is implanted into host oysters. This study assessed the feasibility of using regenerated graft tissue for pearl production in the 'black-lip' pearl oyster, Pinctada margaritifera. Twelve days after grafting with regenerated graft tissue, there was complete encapsulation of the nucleus by the fully developed pearl-sac and the first layer of organic matrix had been secreted. Sixteen days after grafting, the pearl-sac was completely integrated with host tissue. The epithelial cells in the pearl-sac continued to secrete the organic matrix layer but there were no signs of nacre deposition at this stage. However, after three months of culture, nuclei in oysters grafted with regenerated mantle tissue were completely covered with nacre. The average nacre thickness on pearls produced from regenerated (0.547 ± 0.01 mm, n = 8) and normal (0.532 ± 0.01 mm, n = 8) mantle tissue did not differ significantly (p > 0.05). Nacre secretion rates, over the 80 day period subsequent to pearl-sac formation were 6.84 ± 0.1 μm day(-1) and 6.66 ± 0.1 μm day(-1) for oysters grafted with regenerated and normal mantle tissue, respectively. These means were not significantly different (p = 0.258). Our results clearly show that regenerated mantle tissue can function successfully as saibo for pearl production in P. margaritifera. This finding could provide significant benefits to pearl farmers and a basis for further development of current pearl grafting practices. PMID:25982400

  1. The first Australian experience of heterotopic grafting of cryopreserved ovarian tissue: evidence of establishment of normal ovarian function.

    PubMed

    Stern, Catharyn J; Toledo, Manuela G; Hale, Lyndon G; Gook, Debra A; Edgar, David H

    2011-06-01

    Cryostorage of reproductive potential, in the form of ovarian cortex, for young women about to undergo cytotoxic therapies has been offered clinically for some time. However, the prospects of re-establishing reproductive function using this tissue remain unclear. We now report reproducible follicular development, oocyte retrieval and embryo development following heterotopic grafting of cryopreserved ovarian cortex which had been stored for over 10 years. PMID:21631450

  2. Surgical treatment of localized gingival recessions using coronally advanced flaps with or without subepithelial connective tissue graft

    PubMed Central

    Bellver-Fernández, Ricardo; Martínez-Rodriguez, Ana-María; Gioia-Palavecino, Claudio; Caffesse, Raul-Guillermo

    2016-01-01

    Background A coronally advanced flap with subepithelial connective tissue graft is the gold standard surgical treatment of gingival recessions, since it offers a higher probability of achieving complete root coverage compared with other techniques. However, optimum short- and middle-term clinical results have also been obtained with coronally advanced flaps alone. The aim of the present study was to evaluate the results obtained by the surgical treatment of localized gingival recessions using coronally advanced flaps with or without subepithelial connective tissue graft. Material and Methods The reduction of recession height was assessed, together with the gain in gingival attachment apical to the recession, and total reduction of recession, in a comparative study of two techniques. Twenty-two gingival recessions were operated upon: 13 in the control group (coronally advanced flap) and 9 in the test group (coronally advanced flap associated to subepithelial connective tissue graft). Results After 18 months, the mean reduction of recession height was 2.2 ± 0.8 mm in the control group and 2.3 ± 0.7 mm in the test group, with a mean gain in gingival attachment of 1.3 ± 0.9 mm and 2.3 ± 1.3 mm, respectively. In percentage terms, the mean reduction of recession height was 84.6 ± 19.6% in the control group and 81.7 ± 17.8% in the test group, with a mean gain in gingival attachment of 20.5 ± 37.4% and 184.4 ± 135.5%, respectively. Conclusions Significant reduction of gingival recession was achieved with both techniques, though the mean gain in gingival attachment (in mm and as a %) was greater in test group. Key words:Gingival recession, coronally advanced flap, subepthelial connective tissue graft. PMID:26595836

  3. TGF-β receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation.

    PubMed

    Lee, Yong-Ung; de Dios Ruiz-Rosado, Juan; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Yi, Tai; Shoji, Toshihiro; Sugiura, Tadahisa; Lee, Avione Y; Robledo-Avila, Frank; Hibino, Narutoshi; Pober, Jordan S; Shinoka, Toshiharu; Partida-Sanchez, Santiago; Breuer, Christopher K

    2016-07-01

    Stenosis is a critical problem in the long-term efficacy of tissue-engineered vascular grafts (TEVGs). We previously showed that host monocyte infiltration and activation within the graft drives stenosis and that TGF-β receptor 1 (TGF-βR1) inhibition can prevent it, but the latter effect was attributed primarily to inhibition of mesenchymal cell expansion. In this study, we assessed the effects of TGF-βR1 inhibition on the host monocytes. Biodegradable TEVGs were implanted as inferior vena cava interposition conduits in 2 groups of C57BL/6 mice (n = 25/group): unseeded grafts and unseeded grafts with TGF-βR1 inhibitor systemic treatment for the first 2 wk. The TGF-βR1 inhibitor treatment effectively improved TEVG patency at 6 mo compared to the untreated control group (91.7 vs. 48%, P < 0.001), which is associated with a reduction in classic activation of mononuclear phagocytes. Consistent with these findings, the addition of rTGF-β to LPS/IFN-γ-stimulated monocytes enhanced secretion of inflammatory cytokines TNF-α, IL-12, and IL-6; this effect was blocked by TGF-βR1 inhibition (P < 0.0001). These findings suggest that the TGF-β signaling pathway contributes to TEVG stenosis by inducing classic activation of host monocytes. Furthermore, blocking monocyte activation by TGF-βR1 inhibition provides a viable strategy for preventing TEVG stenosis while maintaining neotissue formation.-Lee, Y.-U., de Dios Ruiz-Rosado, J., Mahler, N., Best, C. A., Tara, S., Yi, T., Shoji, T., Sugiura, T., Lee, A. Y., Robledo-Avila, F., Hibino, N., Pober, J. S., Shinoka, T., Partida-Sanchez, S., Breuer, C. K. TGF-β receptor 1 inhibition prevents stenosis of tissue-engineered vascular grafts by reducing host mononuclear phagocyte activation. PMID:27059717

  4. Osteochondral Allografts in the Ankle Joint

    PubMed Central

    Vannini, Francesca; Buda, Roberto; Ruffilli, Alberto; Cavallo, Marco; Giannini, Sandro

    2013-01-01

    Purpose: The aim of this systematic review is to report about the clinical use of partial and total fresh osteochondral allograft in the ankle joint. The state of the art of allografts with regard to basic science, procurement and storage methods, immunogenicity, generally accepted indications and contraindications, and the rationale of the allografting procedure have been described. Methods: All studies published in PubMed from 2000 to January 2012 addressing fresh osteochondral allograft procedures in the ankle joint were identified, including those that fulfilled the following criteria: (a) level I-IV evidence addressing the areas of interest outlined above; (b) measures of functional, clinical, or imaging outcome; and (c) outcome related to ankle cartilage lesions or ankle arthritis treated by allografts. Results: The analysis showed a progressively increasing number of articles from 2000. The number of selected articles was 14; 9 of those focused on limited dimension allografts (plugs, partial) and 5 on bipolar fresh osteochondral allografts. The evaluation of evidence level showed 14 case series and no randomized studies. Conclusions: Fresh osteochondral allografts are now a versatile and suitable option for the treatment of different degrees of osteochondral disease in the ankle joint and may even be used as total joint replacement. Fresh osteochondral allografts used for total joint replacement are still experimental and might be considered as a salvage procedure in otherwise unsolvable situations. A proper selection of the patients is therefore a key point. Moreover, the patients should be adequately informed about the possible risks, benefits, and alternatives to the allograft procedure. PMID:26069666

  5. In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering.

    PubMed

    Johnson, Christopher; Sheshadri, Priyanka; Ketchum, Jessica M; Narayanan, Lokesh K; Weinberger, Paul M; Shirwaiker, Rohan A

    2016-06-01

    Infection or damage to the trachea, a thin walled and cartilage reinforced conduit that connects the pharynx and larynx to the lungs, leads to serious respiratory medical conditions which can often prove fatal. Current clinical strategies for complex tracheal reconstruction are of limited availability and efficacy, but tissue engineering and regenerative medicine approaches may provide viable alternatives. In this study, we have developed a new "hybrid graft" approach that utilizes decellularized tracheal tissue along with a resorbable polymer scaffold, and holds promise for potential clinical applications. First, we evaluated the effect of our decellularization process on the compression properties of porcine tracheal segments, and noted approximately 63% decrease in resistance to compression following decellularization. Next we developed four C-shape scaffold designs by varying the base geometry and thickness, and fabricated polycaprolactone scaffolds using a combination of 3D-Bioplotting and thermally-assisted forming. All scaffolds designs were evaluated in vitro under three different environmental testing conditions to determine the design that offered the best resistance to compression. These were further studied to determine the effect of gamma radiation sterilization and cyclic compression loading. Finally, hybrid grafts were developed by securing these optimal design scaffolds to decellularized tracheal segments and evaluated in vitro under physiological testing conditions. Results show that the resistance to compression offered by the hybrid grafts created using gamma radiation sterilized scaffolds was comparable to that of fresh tracheal segments. Given that current clinical attempts at tracheal transplantation using decellularized tissue have been fraught with luminal collapse and complications, our data support the possibility that future embodiments using a hybrid graft approach may reduce the need for intraluminal stenting in tracheal transplant

  6. Biomechanical Comparison of an Intramedullary and Extramedullary Free-Tissue Graft Reconstruction of the Acromioclavicular Joint Complex

    PubMed Central

    Garg, Rishi; Javidan, Pooya; Lee, Thay Q.

    2013-01-01

    Background Several different surgical techniques have been described to address the coracoclavicular (CC) ligaments in acromioclavicular (AC) joint injuries. However, very few techniques focus on reconstructing the AC ligaments, despite its importance in providing stability. The purpose of our study was to compare the biomechanical properties of two free-tissue graft techniques that reconstruct both the AC and CC ligaments in cadaveric shoulders, one with an extramedullary AC reconstruction and the other with an intramedullary AC reconstruction. We hypothesized intramedullary AC reconstruction will provide greater anteroposterior translational stability and improved load to failure characteristics than an extramedullary technique. Methods Six matched cadaveric shoulders underwent translational testing at 10 N and 15 N in the anteroposterior and superoinferior directions, under AC joint compression loads of 10 N, 20 N, and 30 N. After the AC and CC ligaments were transected, one of the specimens was randomly assigned the intramedullary free-tissue graft reconstruction while its matched pair received the extramedullary graft reconstruction. Both reconstructed specimens then underwent repeat translational testing, followed by load to failure testing, via superior clavicle distraction, at a rate of 50 mm/min. Results Intramedullary reconstruction provided significantly greater translational stability in the anteroposterior direction than the extramedullary technique for four of six loading conditions (p < 0.05). There were no significant differences in translational stability in the superoinferior direction for any loading condition. The intramedullary reconstructed specimens demonstrated improved load to failure characteristics with the intramedullary reconstruction having a lower deformation at yield and a higher ultimate load than the extramedullary reconstruction (p < 0.05). Conclusions Intramedullary reconstruction of the AC joint provides greater stability in the

  7. A Bi-Layered Elastomeric Scaffold for Tissue Engineering of Small-Diameter Vascular Grafts

    PubMed Central

    Soletti, Lorenzo; Hong, Yi; Guan, Jianjun; Stankus, John J.; El-Kurdi, Mohammed S.; Wagner, William R.; Vorp, David A.

    2011-01-01

    A major barrier in the development of a clinically-useful small-diameter tissue engineered vascular graft (TEVG) is the scaffold component. Scaffold requirements include matching the mechanical and structural properties with those of native vessels and optimizing the microenvironment to foster cell integration, adhesion, and growth. We have developed a small-diameter, bi-layered, biodegradable, elastomeric scaffold based on a synthetic, biodegradable elastomer. The scaffold incorporates a highly porous inner layer, allowing cell integration and growth, and an external, fibrous reinforcing layer deposited by electrospinning. Scaffold morphology and mechanical properties were assessed, quantified, and compared to those of native vessels. Scaffolds were then seeded with adult stem cells via a rotational vacuum seeding device to obtain a TEVG, cultured in dynamic conditions for 7 days, and evaluated for cellularity. The scaffold showed a firm integration of the two polymeric layers with no delaminations. Mechanical properties were physiologically-consistent showing anisotropy, elastic modulus (1.4±0.4 MPa), and ultimate tensile stress (8.3±1.7 MPa) comparable with native vessels. Compliance and suture retention force were 4.6±0.5×10−4 mmHg−1 and 3.4±0.3 N, respectively. Seeding resulted in a rapid, uniform, bulk integration of cells, with a seeding efficiency of 92±1%. The scaffolds maintained a high level of cellular density throughout dynamic culture. This approach, combining artery-like mechanical properties and a rapid and efficient cellularization, might contribute to the future clinical translation of TEVGs. PMID:19540370

  8. Hip Arthroscopic Osteochondral Autologous Transplantation for Treating Osteochondritis Dissecans of the Femoral Head

    PubMed Central

    Kubo, Takanori; Utsunomiya, Hajime; Watanuki, Makoto; Hayashi, Hidetoshi; Sakai, Akinori; Uchida, Soshi

    2015-01-01

    Osteochondritis dissecans (OCD) of the femoral head is not a common source of hip pain. Hip arthroscopy is becoming a more frequent indication for intra-articular pathologies of the hip. Osteochondral autologous transplantation is a promising technique that theoretically can reconstruct osteochondral lesions of the femoral head. We describe our technique for arthroscopic antegrade osteochondral autologous transplantation for the treatment of OCD of the femoral head. The advantages of this technique include that it is a less invasive method with the ability to assess and treat intra-articular pathologies associated with OCD of the femoral head at same time. Case series and outcomes after this technique are not currently reported in the literature; however, it could be a less invasive method and provide favorable clinical outcomes for patients with OCD lesions of the femoral head. PMID:26870645

  9. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation

    SciTech Connect

    Eppley, B.L.; Connolly, D.T.; Winkelmann, T.; Sadove, A.M.; Heuvelman, D.; Feder, J. )

    1991-07-01

    A study was undertaken to evaluate the potential utility of basic fibroblast growth factor in the induction of angiogenesis and osseous healing in bone previously exposed to high doses of irradiation. Thirty New Zealand rabbits were evaluated by introducing basic fibroblast growth factor into irradiated mandibular resection sites either prior to or simultaneous with reconstruction by corticocancellous autografts harvested from the ilium. The fate of the free bone grafts was then evaluated at 90 days postoperatively by microangiographic, histologic, and fluorochrome bone-labeling techniques. Sequestration, necrosis, and failure to heal to recipient osseous margins was observed both clinically and histologically in all nontreated irradiated graft sites as well as those receiving simultaneous angiogenic stimulation at the time of graft placement. No fluorescent activity was seen in these graft groups. In the recipient sites pretreated with basic fibroblast growth factor prior to placement of the graft, healing and reestablishment of mandibular contour occurred in nearly 50 percent of the animals. Active bone formation was evident at cortical margins adjacent to the recipient sites but was absent in the more central cancellous regions of the grafts.

  10. Comparison of a Closed System to a Standard Open Technique for Preparing Tissue-Engineered Vascular Grafts

    PubMed Central

    Kurobe, Hirotsugu; Maxfield, Mark W.; Naito, Yuji; Cleary, Muriel; Stacy, Mitchel R.; Solomon, Daniel; Rocco, Kevin A.; Tara, Shuhei; Lee, Avione Y.; Sinusas, Albert J.; Snyder, Edward L.; Shinoka, Toshiharu

    2015-01-01

    We developed a prototype for a closed apparatus for assembling tissue-engineered vascular grafts (TEVGs) with the goal of creating a simple operator-independent method for making TEVGs to optimize safety and enable widespread application of this technology. The TEVG is made by seeding autologous bone marrow-derived mononuclear cells onto a biodegradable tubular scaffold and is the first man-made vascular graft to be successfully used in humans. A critical barrier, which has prevented the widespread clinical adoption of the TEVG, is that cell isolation, scaffold seeding, and incubation are performed using an open method. To reduce the risk of contamination, the TEVG is assembled in a clean room. Clean rooms are expensive to build, complex to operate, and are not available in most hospitals. In this investigation, we used an ovine model to compare the safety and efficacy of TEVGs created using either a standard density centrifugation-based open method or the new filter-based closed system. We demonstrated no graft-related complications and maintenance of growth capacity in TEVGs created using the closed apparatus. In addition, the use of the closed system reduced the amount of time needed to assemble the TEVG by ∼50%. Adaptation of similar methodologies may facilitate the safe translation and the widespread use of other tissue engineering technologies. PMID:24866863

  11. Repair Mechanism of Osteochondral Defect Promoted by Bioengineered Chondrocyte Sheet

    PubMed Central

    Kamei, Naosuke; Adachi, Nobuo; Hamanishi, Michio; Kamei, Goki; Mahmoud, Elhussein Elbadry; Nakano, Tomohiro; Iwata, Takanori; Yamato, Masayuki; Okano, Teruo; Ochi, Mitsuo

    2015-01-01

    Cell sheet engineering has developed as a remarkable method for cell transplantation. In the field of cartilage regeneration, several studies previously reported that cartilage defects could be regenerated by transplantation of a chondrocyte sheet using cell sheet engineering. However, it remains unclear how such a thin cell sheet could repair a deep cartilage defect. We, therefore, focused on the mechanism of cartilage repair using cell sheet engineering in this study. Chondrocyte sheets and synovial cell sheets were fabricated using cell sheet engineering, and these allogenic cell sheets were transplanted to cover an osteochondral defect in a rat model. Macroscopic and histological evaluation was performed at 4 and 12 weeks after transplantation. Analysis of the gene expression of each cell sheet and of the regenerated tissue at 1 week after transplantation was performed. In addition, green fluorescent protein (GFP) transgenic rats were used as donors (transplanted chondrocyte sheets) or recipients (osteochondral defect models) to identify the cell origin of regenerated cartilage. Cartilage repair was significantly better in the group implanted with a chondrocyte sheet than in that with a synovial cell sheet. The results of gene expression analysis suggest that the possible factor contributing to cartilage repair might be TGFβ1. Cell tracking experiments using GFP transgenic rats showed that the regenerated cartilage was largely composed of cells derived from the transplanted chondrocyte sheets. PMID:25396711

  12. Bioactive and metal uptake studies of carboxymethyl chitosan-graft-D-glucuronic acid membranes for tissue engineering and environmental applications.

    PubMed

    Jayakumar, R; Rajkumar, M; Freitas, H; Sudheesh Kumar, P T; Nair, S V; Furuike, T; Tamura, H

    2009-08-01

    Carboxymethyl chitosan-graft-D-glucuronic acid (CMCS-g-D-GA) was prepared by grafting D-GA onto CMCS in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and then the membranes were made from it. In this work, the bioactivity studies of CMCS-g-D-GA membranes were carried out and then characterized by SEM, CLSM, XRD and FT-IR. The CMCS-g-D-GA membranes were found to be bioactive. The adsorption of Ni2+, Zn2+ and Cu2+ ions onto CMCS-g-D-GA membranes has also been investigated. The maximum adsorption capacity of CMCS-g-D-GA for Ni2+, Zn2+ and Cu2+ was found to be 57, 56.4 and 70.2 mg/g, respectively. Hence, these membranes were useful for tissue engineering, environmental and water purification applications. PMID:19409415

  13. Development of a Surgically Optimized Graft Insertion Suture Technique to Accommodate a Tissue-Engineered Tendon In Vivo

    PubMed Central

    Sawadkar, Prasad; Alexander, Susan; Tolk, Marten; Wong, Jason; McGrouther, Duncan; Bozec, Laurent

    2013-01-01

    Abstract The traumatic rupture of tendons is a common clinical problem. Tendon repair is surgically challenging because the tendon often retracts, resulting in a gap between the torn end and its bony insertion. Tendon grafts are currently used to fill this deficit but are associated with potential complications relating to donor site morbidity and graft necrosis. We have developed a highly reproducible, rapid process technique to manufacture compressed cell-seeded type I collagen constructs to replace tendon grafts. However, the material properties of the engineered constructs are currently unsuitable to withstand complete load bearing in vivo. A modified suture technique has been developed to withstand physiological loading and off load the artificial construct while integration occurs. Lapine tendons were used ex vivo to test the strength of different suture techniques with different sizes of Prolene sutures and tissue-engineered collagen constructs in situ. The data were compared to standard modified Kessler suture using a standard tendon graft. Mechanical testing was carried out and a finite element analysis stress distribution model constructed using COMSOL 3.5 software. The break point for modified suture technique with a tissue-engineered scaffold was significantly higher (50.62 N) compared to a standard modified Kessler suture (12.49 N, p<0.05). Distributing suture tension further proximally and distally from the tendon ends increased the mechanical strength of the repairs. We now have ex vivo proof of concept that this suture technique is suitable for testing in vivo, and this will be the next stage of our research. PMID:24083088

  14. Kinetic study of the replacement of porcine small intestinal submucosa grafts and the regeneration of meniscal-like tissue in large avascular meniscal defects in dogs.

    PubMed

    Cook, J L; Tomlinson, J L; Arnoczky, S P; Fox, D B; Reeves Cook, C; Kreeger, J M

    2001-06-01

    Porcine small intestinal submucosa (SIS) was used to replace large, avascular defects in the medial menisci of dogs. Twelve dogs received SIS grafts and 3 dogs were left untreated as controls. Dogs were evaluated at 4, 8, and 12 weeks by means of lameness scoring and ultrasonography. Dogs were sacrificed at 1, 6, or 12 weeks after implantation, and the tissue at the site of meniscal resection was evaluated for gross and histologic appearance, cross-sectional and surface area, and collagen types I and II. The femoral and tibial condyles were assessed for articular cartilage damage. Control dogs were significantly more lame than grafted dogs 8 and 12 weeks after instrumentation. Grafted dogs' replacement tissue appeared meniscal-like when evaluated grossly and ultrasonographically 12 weeks after instrumentation. The amount of replacement tissue was significantly greater in both cross-sectional and surface area for grafted dogs than for controls at all time points. Histologically, the SIS biomaterial could be identified in all grafted dogs at 1 week post-implantation, but in none at 6 weeks post-implantation. Subjectively, grafted dogs' replacement tissue was histologically superior to that of controls with respect to tissue type, organization, and architecture. Collagen types I and II immunoreactivity in grafted menisci were similar to that of normal menisci. Control dogs had significantly more articular cartilage damage than grafted dogs. SIS appears to induce regeneration of meniscal-like tissue in large, avascular meniscal defects in dogs, resulting in superior clinical function and articular cartilage protection compared to ungrafted controls. PMID:11429152

  15. Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model.

    PubMed

    Dresing, Iska; Zeiter, Stephan; Auer, Jörg; Alini, Mauro; Eglin, David

    2014-07-01

    The purpose of this study was to evaluate the impact on osteochondral healing of press-fitted multiphasic osteochondral scaffolds consisting of poly(ester-urethane) (PUR) and hydroxyapatite into a cylindric osteochondral defect in the distal non-weight bearing femoral trochlear ridge of the rabbit. Two scaffolds were investigated, one with and one without an intermediate microporous membrane between the cartilage and the bone compartment of the scaffold. A control group without a scaffold placed into the defect was included. After 12 weeks macroscopic and histomorphological analyses were performed. The scaffold was easily press-fitted and provided a stable matrix for tissue repair. The membrane did not demonstrate a detrimental effect on tissue healing compared with the scaffold without membrane. However, the control group had statistically superior healing as reflected by histological differences in the cartilage and subchondral bone compartment between control group and each scaffold group. A more detailed analysis revealed that the difference was localized in the bone compartment healing. The present study demonstrates that an elastomeric PUR scaffold can easily be press-fitted into an osteochondral defect and provides a stable matrix for tissue repair. However, the multi-phasic scaffold did not provide a clear advantage for tissue healing. Future investigations should refine especially the bone phase of the implant to increase its stiffness, biocompatibility and osteoconductive activity. A more precise fabrication technique would be necessary for the matching of tissue organisation. PMID:24668269

  16. The use of a biological graft for the closure of large abdominal wall defects following excision of soft tissue tumours

    PubMed Central

    Illingworth, Emma; Rooney, Paul S.; Heath, Richard; Chandrasekar, Coonoor R.

    2015-01-01

    Primary soft tissue tumours arising from the abdominal wall are uncommon and surgical excision of such tumours can result in large abdominal wall defects. There are many techniques available for abdominal wall repair following tumour excision, each having its own advantages and disadvantages. The options range from direct closure to the use of tissue flap reconstructions and/or prosthetic meshes. Currently, synthetic material such as polypropylene mesh is a common choice for closure of abdominal wall defects after tumour excision. Biological meshes are an alternative option for repair, and this report outlines two cases of abdominal wall repair using the porcine intestinal submucosa biological graft following excision of abdominal wall tumours. There was no evidence of infection, recurrence, seroma or hernias at 2-year follow-up. Following excision of soft tissue tumours of the abdominal wall, biological reconstructions can be successfully used to bridge the defect with minimal morbidity. PMID:26109681

  17. Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone.

    PubMed

    Zhu, Guang-Chang; Gu, Yong-Quan; Geng, Xue; Feng, Zeng-Guo; Zhang, Shu-Wen; Ye, Lin; Wang, Zhong-Gao

    2015-02-01

    Studies on three-dimensional tissue engineered graft (3DTEG) have attracted great interest among researchers as they present a means to meet the pressing clinical demand for tissue engineering scaffolds. To explore the feasibility of 3DTEG, high porosity poly-ε-caprolactone (PCL) was obtained via the co-electrospinning of polyethylene glycol and PCL, and used to construct small-diameter poly-ε-caprolactone-lysine (PCL-LYS-H) scaffolds, whereby heparin was anchored to the scaffold surface by lysine groups. A variety of small-diameter 3DTEG models were constructed with different PCL layers and the mechanical properties of the resulting constructs were evaluated in order to select the best model for 3DTEGs. Bone marrow mononuclear cells were induced and differentiated to endothelial cells (ECs) and smooth muscle cells (SMCs). A 3DTEG (labeled '10-4%') was successfully produced by the dynamic co-culture of ECs on the PCL-LYS-H scaffolds and SMCs on PCL. The fluorescently labeled cells on the 3DTEG were subsequently observed by laser confocal microscopy, which showed that the ECs and SMCs were embedded in the 3DTEG. Nitric oxide and endothelial nitric oxide synthase assays showed that the ECs behaved normally in the 3DTEG. This study consequently provides a new thread to produce small-diameter tissue engineered grafts, with excellent mechanical properties, that are perfusable to vasculature and functional cells. PMID:25665848

  18. A functional chitosan membrane with grafted epigallocatechin-3-gallate and lovastatin enhances periodontal tissue regeneration in dogs.

    PubMed

    Lee, Bor-Shiunn; Lee, Chien-Chen; Lin, Hung-Pin; Shih, Wei-An; Hsieh, Wan-Ling; Lai, Chern-Hsiung; Takeuchi, Yasuo; Chen, Yi-Wen

    2016-10-20

    Currently used guided tissue regeneration (GTR) membranes are mainly used as a barrier to prevent epithelial cells growth into defects before new bone formation. The aim of this study was to develop a tri-layer functional chitosan (CS) membrane with epigallocatechin-3-gallate (EGCG) grafted on the outer layer for bactericidal activity, and lovastatin was included in the middle layer for controlled release. Successful EGCG grafting was demonstrated using Fourier transform infrared spectroscopy and EGCG grafting significantly enhanced adhesion and proliferation of human gingival fibroblasts. The release duration of lovastatin reached 21days. CS-Lovastatin1 produced the highest alkaline phosphatase activity and EGCG14-CS exhibited the best bactericidal activity against periodontopathic bacteria. Finally, the EGCG14-CS-Lovastatin1 membrane showed a higher percentage of bone regeneration than BioMend(®) and control groups in one-walled defects of beagle dogs. These results suggest that the EGCG14-CS-Lovastatin1 membrane has the potential to be used as a novel GTR membrane. PMID:27474626

  19. [Animal experiments on cementing small osteochondral fragments with fibrin glue].

    PubMed

    Zilch, H

    1980-01-01

    An experiment on revascularization of glued osteochondral fragments was carried out. A chiseled part of the medial femoral condyle of the knee joint of the rabbit was fixed on the right side with an acryl adhesive and on the left side with a new fibrinogen adhesive system (FAS), consisting of highly concentrated fibrinogen, thrombin, and factor XIII. The animals were sacrificed after three, six, ten, and twenty eight days. The FAS is changed into granulation tissue rich in vessels and, therefore, there is a quick revascularization of the fragments soon after three days. On the contrary the acryl adhesive is a foreign body and prevents ingrowth of capillaries during the time of investigation. Immobilization with plaster is necessary to prevent the fragment from gliding off. PMID:6972890

  20. Insulin-like growth factor-I and slow, bi-directional perfusion enhance the formation of tissue-engineered cardiac grafts.

    PubMed

    Cheng, Mingyu; Moretti, Matteo; Engelmayr, George C; Freed, Lisa E

    2009-03-01

    Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac grafts. Heart cells were cultured on three-dimensional porous scaffolds in medium with or without supplemental IGF and in the presence or absence of slow, bi-directional perfusion that enhanced transport and provided shear stress. Structural, molecular, and electrophysiologic properties of the resulting grafts were quantified on culture day 8. IGF had independent, beneficial effects on apoptosis (p < 0.01), cellular viability (p < 0.01), contractile amplitude (p < 0.01), and excitation threshold (p < 0.01). Perfusion independently affected the four aforementioned parameters and also increased amounts of cardiac troponin-I (p < 0.01), connexin-43 (p < 0.05), and total protein (p < 0.01) in the grafts. Interactive effects of IGF and perfusion on apoptosis were also present (p < 0.01). Myofibrillogenesis and spontaneous contractility were present only in grafts cultured with perfusion, although contractility was inducible by electrical field stimulation of grafts from all groups. Our findings demonstrate that multi-factorial stimulation of tissue-engineered cardiac grafts using IGF and perfusion resulted in independent and interactive effects on heart cell survival, differentiation, and contractility. PMID:18759675

  1. Role of oxygen as a regulator of stem cell fate during the spontaneous repair of osteochondral defects.

    PubMed

    O'Reilly, Adam; Kelly, Daniel J

    2016-06-01

    The complexity of the in vivo environment makes it is difficult to isolate the effects of specific cues on regulating cell fate during regenerative events such as osteochondral defect repair. The objective of this study was to develop a computational model to explore how joint specific environmental factors regulate mesenchymal stem cell (MSC) fate during osteochondral defect repair. To this end, the spontaneous repair process within an osteochondral defect was simulated using a tissue differentiation algorithm which assumed that MSC fate was regulated by local oxygen levels and substrate stiffness. The developed model was able to predict the main stages of tissue formation observed by a number of in vivo studies. Following this, a parametric study was conducted to better understand why interventions that modulate angiogenesis dramatically impact the outcome of osteochondral defect healing. In the simulations where angiogenesis was reduced, by week 12, the subchondral plate was predicted to remain below the native tidemark, although the chondral region was composed entirely of cartilage and fibrous tissue. In the simulations where angiogenesis was increased, more robust cell proliferation and cartilage formation were observed during the first 4 weeks, however, by week 12 the subchondral plate had advanced above the native tidemark although any remaining tissue was either hypertrophic cartilage or fibrous tissue. These results suggest that osteochondral defect repair could be enhanced by interventions where angiogenesis is promoted but confined to within the subchondral region of the defect. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1026-1036, 2016. PMID:26595173

  2. Silk-Based Electrospun Tubular Scaffolds for Tissue-Engineered Vascular Grafts

    PubMed Central

    Soffer, Leah; Wang, Xianyan; Zhang, Xiaohui; Kluge, Jonathan; Dorfmann, Luis; Kaplan, David L.; Leisk, Gary

    2009-01-01

    Electrospinning was used to fabricate nonwoven nanofibrous tubular structures from Bombyx mori silk fibroin using an all aqueous process. The tubes were prepared for cell studies related to the bioengineering of small diameter vascular grafts. Prior to cell culture, the structures displayed a burst strength of 811±77.2 mmHg, sufficient to withstand arterial pressures. The tensile properties were similar to native vessels, with an ultimate tensile strength of 2.42± 0.48 MPa and a linear modulus of 2.45±0.47 MPa. Human endothelial cells and smooth muscle cells were successfully cultured on the electrospun silk, demonstrating the potential utility of these scaffolds for vascular grafts due to the combination of impressive mechanical properties and biological compatibility. PMID:18419943

  3. Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane

    NASA Astrophysics Data System (ADS)

    Fisher, M.; Nahir, A. M.; Kimel, Sol

    1997-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.

  4. Osteochondral defects in the ankle: why painful?

    PubMed Central

    Reilingh, Mikel L.; Zengerink, Maartje; van Bergen, Christiaan J. A.

    2010-01-01

    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage. PMID:20151110

  5. Osteochondritis Dessicans- Primary Fixation using Bioabsorbable Implants

    PubMed Central

    Galagali, Anand; Rao, Muralidhar

    2012-01-01

    Introduction: Osteochondritis dessicans (OCD) is a localized condition where a section of articular cartilage and underlying subchondral bone separate from the joint surface. It is important to diagnose unstable OCD early and fix the fragments primarily as the results of any surgical management at late presentations are guarded. Use of bioabsorbable implants for fixing OCD is recent and we report one such case in grade IV OCD. Case Report: We present a 14 year old girl who came with a history of acute pain, swelling, inability to bear weight on the right knee following a dance practice. MRI showed stage IV osteochondral fragment measuring 20x 8mm lying free. This was primarily fixed with bioabsorbable implants. 10 months follow up showed excellent clinical and functional results. Conclusion: This case highlights the advantages of early primary fixation whenever possible. By far, to our knowledge, this is the first case of successful treatment of stage IV OCD using bioabsorbable implants.

  6. Real-time immune cell interactions in target tissue during autoimmune-induced damage and graft tolerance

    PubMed Central

    Miska, Jason; Abdulreda, Midhat H.; Devarajan, Priyadharshini; Lui, Jen Bon; Suzuki, Jun; Pileggi, Antonello; Berggren, Per-Olof

    2014-01-01

    Real-time imaging studies are reshaping immunological paradigms, but a visual framework is lacking for self-antigen-specific T cells at the effector phase in target tissues. To address this issue, we conducted intravital, longitudinal imaging analyses of cellular behavior in nonlymphoid target tissues to illustrate some key aspects of T cell biology. We used mouse models of T cell–mediated damage and protection of pancreatic islet grafts. Both CD4+ and CD8+ effector T (Teff) lymphocytes directly engaged target cells. Strikingly, juxtaposed β cells lacking specific antigens were not subject to bystander destruction but grew substantially in days, likely by replication. In target tissue, Foxp3+ regulatory T (Treg) cells persistently contacted Teff cells with or without involvement of CD11c+ dendritic cells, an observation conciliating with the in vitro “trademark” of Treg function, contact-dependent suppression. This study illustrates tolerance induction by contact-based immune cell interaction in target tissues and highlights potentials of tissue regeneration under antigenic incognito in inflammatory settings. PMID:24567447

  7. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, Banu Priya; Mellott, Adam J; Easley, Jeremiah T; Palmer, Ross H; Galbraith, Richard A; Key, Vincent H; Berkland, Cory J; Detamore, Michael S

    2015-01-01

    Background: The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. Aim: The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. Materials & methods: The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. Results: The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. Conclusion: This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture. PMID:26418471

  8. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair.

    PubMed

    Fermor, Hazel L; Russell, Serena L; Williams, Sophie; Fisher, John; Ingham, Eileen

    2015-05-01

    It is proposed that an acellular natural osteochondral scaffold will provide a successful repair material for the early intervention treatment of cartilage lesions, to prevent or slow the progression of cartilage deterioration to osteoarthritis. Here, we investigated the efficacy of methods for the decellularisation of bovine osteochondral plugs. The plugs were subject to four freeze/thaw cycles followed by two cycles of washes in hypotonic solution and low concentration (0.1% w/v) sodium dodecyl sulphate with protease inhibitors. Plugs were treated with nuclease (DNase and RNase) treatment followed by sterilization in peracetic acid. Full tissue decellularisation was achieved as confirmed by histological analysis and DNA quantification, however the resultant acellular matrix had reduced glycosaminoglycan content which led to an increased percent deformation of cartilage. Furthermore, the acellular scaffold was not reproducibly biocompatible. Additional terminal washes were included in the process to improve biocompatibility, however, this led to visible structural damage to the cartilage. This damage was found to be minimised by reducing the cut edge to cartilage area ratio through decellularisation of larger cuts of osteochondral tissue. PMID:25893393

  9. Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant.

    PubMed

    Liu, Xudong; Liu, Shen; Liu, Shenghe; Cui, Wenguo

    2014-10-01

    Osteochondral defects represent a serious clinical problem. Although the cell-scaffold complexes have been reported to be effective for repairing osteochondral defects, a periosteal flap is frequently needed to arrest leakage of the implanted cells into the defect and to contribute to the secretion of cytokines to stimulate cartilage repair. The electrospun mesh mimicking the function of the flap assists tissue regeneration by preventing cell leakage and merits favorable outcomes in the cartilaginous region. In this study, an oriented poly(ε-caprolactone) (PCL) fibrous membrane (OEM) was fabricated by electrospinning as a periosteal scaffold and then freeze-dried with a collagen type I and hyaluronic acid cartilage scaffold (CH) and finally, freeze-dried with a tricalcium phosphate (TCP) bone substratum. Scanning electron microscopic images show obvious microstructure formation of the trilayered scaffolds, and electrospun fibrous membranes have an oriented fibrous network structure for the periosteal phase. Also shown are opened and interconnected pores with well designed three-dimensional structure, able to be bound in the CH (chondral phase) and TCP (osseous phase) scaffolds. In vitro results showed that the OEM can promote the orientation of bone marrow mesenchymal stem cell (BMSCs) and BMSCs can penetrate into the CH and TCP. After successfully combining the BMSCs, the tissue-engineered cartilage which contained the OEM and TCP complex was successfully used to regenerate the osteochondral defects in the rabbit model with greatly improved repair effects. PMID:24644257

  10. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration.

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    Osteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented. The variation in pore shape is determined by varying the angle formed by the fibers of two consequent layers. The fiber deposition patterns are 0-90, which generate squared pores, 0-45, 0-30, and 0-15, that generate rhomboidal pores with an increasing major axis as the deposition angle decreases. Within the gradient construct, squared pores support a better chondrogenic differentiation whereas cells residing in the rhomboidal pores display a better osteogenic differentiation. When cultured under osteochondral conditions the trend in both osteogenic and chondrogenic markers is maintained. Engineering the pore shape, thus creating axial gradients in structural properties, seems to be an instructive strategy to fabricate functional 3D scaffolds that are able to influence hMSCs differentiation for osteochondral tissue regeneration. PMID:27109461

  11. Immediate placement and provisionalization of maxillary anterior single implant with guided bone regeneration, connective tissue graft, and coronally positioned flap procedures.

    PubMed

    Waki, Tomonori; Kan, Joseph Y K

    2016-01-01

    Immediate implant placement and provisionalization in the esthetic zone have been documented with success. The benefit of immediate implant placement and provisionalization is the preservation of papillary mucosa. However, in cases with osseous defects presenting on the facial bony plate, immediate implant placement procedures have resulted in facial gingival recession. Subepithelial connective tissue grafts for immediate implant placement and provisionalization procedures have been reported with a good esthetic outcome. Biotype conversion around implants with subepithelial connective tissue grafts have been advocated, and the resulting tissues appear to be more resistant to recession. The dimensions of peri-implant mucosa in a thick biotype were significantly greater than in a thin biotype. Connective tissue graft with coronally positioned flap procedures on natural teeth has also been documented with success. This article describes a technique combining immediate implant placement, provisionalization, guided bone regeneration (GBR), connective tissue graft, and a coronally positioned flap in order to achieve more stable peri-implant tissue in facial osseous defect situations. PMID:27092345

  12. Tissue Engineering of Ureteral Grafts: Preparation of Biocompatible Crosslinked Ureteral Scaffolds of Porcine Origin

    PubMed Central

    Koch, Holger; Hammer, Niels; Ossmann, Susann; Schierle, Katrin; Sack, Ulrich; Hofmann, Jörg; Wecks, Mike; Boldt, Andreas

    2015-01-01

    The surgical reconstruction of ureteric defects is often associated with post-operative complications and requires additional medical care. Decellularized ureters originating from porcine donors could represent an alternative therapy. Our aim was to investigate the possibility of manufacturing decellularized ureters, the characteristics of the extracellular matrix (ECM) and the biocompatibility of these grafts in vitro/in vivo after treatment with different crosslinking agents. To achieve these goals, native ureters were obtained from pigs and were decellularized. The success of decellularization and the ECM composition were characterized by (immuno)histological staining methods and a DNA-assay. In vitro: scaffolds were crosslinked either with carbodiimide (CDI), genipin (GP), glutaraldehyde, left chemically untreated or were lyophilized. Scaffolds in each group were reseeded with Caco2, LS48, 3T3 cells, or native rat smooth muscle cells (SMC). After 2 weeks, the number of ingrown cells was quantified. In vivo: crosslinked scaffolds were implanted subcutaneously into rats and the type of infiltrating cells were determined after 1, 9, and 30 days. After decellularization, scaffold morphology and composition of ECM were maintained, all cellular components were removed, DNA destroyed and strongly reduced. In vitro: GP and CDI scaffolds revealed a higher number of ingrown 3T3 and SMC cells as compared to untreated scaffolds. In vivo: at day 30, implants were predominantly infiltrated by fibroblasts and M2 anti-inflammatory macrophages. A maximum of MMP3 was observed in the CDI group at day 30. TIMP1 was below the detection limit. In this study, we demonstrated the potential of decellularization to create biocompatible porcine ureteric grafts, whereas a CDI-crosslink may facilitate the remodeling process. The use of decellularized ureteric grafts may represent a novel therapeutic method in reconstruction of ureteric defects. PMID:26157796

  13. Matching osteochondritis dissecans lesions in identical twin brothers.

    PubMed

    Richie, Lucas B; Sytsma, Mark J

    2013-09-01

    Osteochondritis dissecans is a disorder of unknown etiology that can result in fragmentation of osteochondral surfaces, most commonly of the knee, shoulder, elbow, and ankle. This may lead to sequelae of pain and an inability to participate in desired activities. Multiple theories exist as to the true cause of the disorder, but none have been fully proven. One such proposed etiology is genetic causation. Familial cases of osteochondritis dissecans are rare, yet these cases offer support to growing evidence that may support a genetic link. This article describes osteochondritis dissecans lesions of the femoral trochlea in monozygotic (identical) twins. Both twins presented with similar symptoms 1 year apart. Neither twin had any clear inciting trauma. Magnetic resonance imaging revealed osteochondral lesions in similar positions of the lateral trochlear of the same knee in both brothers. Osteochondral autograft transfer and tibial tubercle anteromedialization were performed on both patients. An identical postoperative protocol was followed, and recovery with full return to sport was comparable for the brothers. To the authors' knowledge, only 1 other case report exists of osteochondritis dissecans lesions in monozygotic twins. Although debate continues regarding the true etiology of this disorder, cases of identical twins presenting with a similar disease process are highly suggestive of a genetic component and may lead to early identification and treatment of these lesions. Continued research in the area of osteochondritis dissecans and its genetic basis is needed to completely understand this disorder. PMID:24025016

  14. Osteochondritis dissecans on the medial aspect of the humeral head

    PubMed Central

    Mima, Yuichiro; Matsumura, Noboru; Ogawa, Kiyohisa; Iwamoto, Takuji; Ochi, Kensuke; Sato, Kazuki; Toyama, Yoshiaki

    2016-01-01

    The case of a 29-year-old man who had osteochondritis dissecans on the medial aspect of the humeral head is reported. Repetitive micro-trauma at a low elevated arm position was thought to have induced the osteochondral lesion. PMID:27186062

  15. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft vs. host disease

    PubMed Central

    Hanash, Alan M.; Dudakov, Jarrod A.; Hua, Guoqiang; O’Connor, Margaret H.; Young, Lauren F.; Singer, Natalie V.; West, Mallory L.; Jenq, Robert R.; Holland, Amanda M.; Kappel, Lucy W.; Ghosh, Arnab; Tsai, Jennifer J.; Rao, Uttam K.; Yim, Nury L.; Smith, Odette M.; Velardi, Enrico; Hawryluk, Elena; Murphy, George F.; Liu, Chen; Fouser, Lynette A.; Kolesnick, Richard; Blazar, Bruce R.; van den Brink, Marcel R.M.

    2012-01-01

    Summary Little is known about the maintenance of intestinal stem cells (ISCs) and progenitors during immune-mediated tissue damage or about the susceptibility of transplant recipients to tissue damage mediated by the donor immune system during graft vs. host disease (GVHD). We demonstrate here that deficiency of recipient-derived IL-22 increased acute GVHD tissue damage and mortality, that ISCs were eliminated during GVHD, and that ISCs as well as their downstream progenitors expressed the IL-22 receptor. Intestinal IL-22 was produced after bone marrow transplant by IL-23-responsive innate lymphoid cells (ILCs) from the transplant recipients, and intestinal IL-22 increased in response to pre-transplant conditioning. However, ILC frequency and IL-22 amounts were decreased by GVHD. Recipient IL-22 deficiency led to increased crypt apoptosis, depletion of ISCs, and loss of epithelial integrity. Our findings reveal IL-22 as a critical regulator of tissue sensitivity to GVHD and a protective factor for ISC during inflammatory intestinal damage. PMID:22921121

  16. Dysplasia Epiphysealis Hemimelica Treated with Osteochondral Allograft: A Case Report

    PubMed Central

    Anthony, Chris A.; Wolf, Brian R.

    2015-01-01

    Background Dysplasia epiphysealis hemimelica (DEH), or Trevor's disease, is a developmental disorder of the pediatric skeleton characterized by asymmetric osteochondral overgrowth. Methods We present the case of a five year old boy with a two year history of right knee pain and evidence of DEH on imaging who underwent initial arthroscopic resection of his lesion with subsequent recurrence. The patient then underwent osteochondral allograft revision surgery and was asymptomatic at two year follow-up with a congruent joint surface. Results To our knowledge, this is the first reported case of a DEH lesion treated with osteochondral allograft and also the youngest reported case of osteochondral allograft placement in the literature. Conclusions Osteochondral allograft may be a viable option in DEH and other deformities of the pediatric knee. Level of Evidence Level V PMID:26361443

  17. Addressing the Potential Need for Coronary Artery Bypass Grafting After Free Tissue Transfer for Breast Reconstruction: An Algorithmic Approach.

    PubMed

    Maher, Janae L; Mahabir, Raman C; Roehl, Kendall R

    2015-08-01

    The number one cause of death in American women is heart disease. Studies have clearly shown the superiority of internal mammary artery (IMA) grafts for coronary revascularization over other conduits or intracoronary techniques. Our goal was to design an algorithm for recipient vessel selection in patients undergoing free tissue transfer breast reconstruction.A review of the literature was performed to identify potential evidence to contribute to a best-practice guideline. The lack of high-level evidence led us to create a guideline based on a workgroup consensus, expert opinion, cadaveric studies, and case reports.As we operate on older patient populations, the need for IMA use for coronary artery bypass grafting (CABG) after autologous breast reconstruction may arise more frequently. We discuss the current literature regarding recipient vessel choices and level of recipient vessel harvest in free flap breast reconstruction to help continually evolve the practices of our specialty to the potential future needs of our patients. We also present a best-practice decision algorithm for vessel selection and harvest, as well as a sample case of CABG using the left IMA 35 days after previous autologous breast reconstruction using the left IMA.As the number of patients we operate on who may later require their IMA for CABG increases, so too must our understanding of the implications of our selection of recipient vessels for free autologous breast reconstruction. PMID:26165568

  18. The saddle connective tissue graft: a periodontal plastic surgery technique to obtain soft tissue coronal gain on immediate implants. A case report.

    PubMed

    González, David; Cabello, Gustavo; Olmos, Gema; Niñoles, Carlos L

    2015-01-01

    Based on recent studies regarding the advantages of flapless immediate implants on the maintenance of the soft tissue architecture (especially at papillae level) in those situations where it is necessary to extract an anterior tooth, this case report describes a clinical procedure designed to replace a hopeless central incisor (2.1) showing root resorption adjacent to an implant-supported crown (1.1), whose gingival margin is 2 mm coronal regarding the hopeless tooth to be replaced. After the extraction of the hopeless tooth (2.1), a flapless immediate implant was placed. The implant-bone gap was then filled with bone substitute and a palatal connective tissue graft was placed ad modum saddle extending at buccal level from apical to the mucogingival line, sealing the socket and extending until 6 mm at palatal level ad modum saddle. This procedure allowed symmetry of the soft tissue margins between the two implants (1.1 and 2.1) to be obtained as well as the preservation of the inter-implant papillae (1.1). PMID:26171446

  19. Fabrication and development of artificial osteochondral constructs based on cancellous bone/hydrogel hybrid scaffold.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Yu; Li, Ruipeng; Wang, Yiwei; Wang, Ling; Wang, Hong; Liu, Tianqing

    2016-06-01

    Using tissue engineering techniques, an artificial osteochondral construct was successfully fabricated to treat large osteochondral defects. In this study, porcine cancellous bones and chitosan/gelatin hydrogel scaffolds were used as substitutes to mimic bone and cartilage, respectively. The porosity and distribution of pore size in porcine bone was measured and the degradation ratio and swelling ratio for chitosan/gelatin hydrogel scaffolds was also determined in vitro. Surface morphology was analyzed with the scanning electron microscope (SEM). The physicochemical properties and the composition were tested by using an infrared instrument. A double layer composite scaffold was constructed via seeding adipose-derived stem cells (ADSCs) induced to chondrocytes and osteoblasts, followed by inoculation in cancellous bones and hydrogel scaffolds. Cell proliferation was assessed through Dead/Live staining and cellular activity was analyzed with IpWin5 software. Cell growth, adhesion and formation of extracellular matrix in composite scaffolds blank cancellous bones or hydrogel scaffolds were also analyzed. SEM analysis revealed a super porous internal structure of cancellous bone scaffolds and pore size was measured at an average of 410 ± 59 μm while porosity was recorded at 70.6 ± 1.7 %. In the hydrogel scaffold, the average pore size was measured at 117 ± 21 μm and the porosity and swelling rate were recorded at 83.4 ± 0.8 % and 362.0 ± 2.4 %, respectively. Furthermore, the remaining hydrogel weighed 80.76 ± 1.6 % of the original dry weight after hydration in PBS for 6 weeks. In summary, the cancellous bone and hydrogel composite scaffold is a promising biomaterial which shows an essential physical performance and strength with excellent osteochondral tissue interaction in situ. ADSCs are a suitable cell source for osteochondral composite reconstruction. Moreover, the bi-layered scaffold significantly enhanced cell proliferation compared to the cells seeded on

  20. Osteochondral interface generation by rabbit bone marrow stromal cells and osteoblasts coculture.

    PubMed

    Chen, Kelei; Teh, Thomas Kok Hiong; Ravi, Sujata; Toh, Siew Lok; Goh, James Cho Hong

    2012-09-01

    Physiological osteochondral interface regeneration is a significant challenge. This study aims to investigate the effect of the coculture of chondrogenic rabbit bone marrow stromal cells (rBMSCs) with rabbit osteoblasts in a specially designed two-dimensional (2D)-three-dimensional (3D) co-interface culture to develop the intermediate osteochondral region in vitro. The 2D-3D coculture system was set up by first independently culturing chondrogenic rBMSCs on a scaffold and osteoblasts in cell culture plates, and subsequently placed in contact and cocultured. As control, samples not cocultured with osteoblasts were used. The regulatory effects exerted by osteoblasts on chondrogenic rBMSCs were quantified by real-time polymerase chain reaction. To study the effect of coculture on cells located in different parts of the scaffold, samples were separated into two parts and significantly different gene expression patterns were found between them. In comparison with the control group, a significant moderate downregulation of chondrogenic marker genes, such as Collagen II and Aggrecan was observed. However, the Sox-9 and Collagen I expression increased. More importantly, chondrogenic rBMSCs in the coculture system were shown to form the osteochondral interface layer by expressing calcified cartilage zone specific extracellular matrix marker Collagen X and the hypertrophic chondrocyte marker MMP-13, which were not observed in the control group. Specifically, only the chondrogenic rBMSC layer in contact with the osteoblasts expressed Collagen X and MMP-13, indicating the positive influence of the coculture upon interface formation. Biochemical analyses, histology results, and immunohistochemical staining further supported this observation. In conclusion, this study revealed that specific regulatory stimulations from osteoblasts in the 2D-3D interface coculture system could induce the formation of ostochondral interface for the purpose of osteochondral tissue engineering. PMID

  1. Matrix-associated autologous chondrocyte transplantation combined with iliac crest bone graft for reconstruction of talus necrosis due to villonodular synovitis.

    PubMed

    Dickschas, Jörg; Welsch, Götz; Strecker, Wolf; Schöffl, Volker

    2012-01-01

    We report the case of a 24-year-old driving instructor with osteonecrosis of the talus and a large articular cartilage and osseous defect. The cystic lesion was caused by villonodular synovitis. After magnetic resonance imaging detection and arthoscopic analysis, the defect was filled with a bone graft, followed by matrix-associated autologous chondrocyte transplantation (MACT) combined with a total synovectomy. In general, lesions similar to the one described in this case are treated using osteochondral autografts, but in our case the osseous defect was too large to perform an osteochondral autograft. Our choice of treatment with an iliac crest bone graft combined with a MACT simultaneously has not yet been published, as far as we know. The patient returned to his former activities of daily living and sport activities, without restrictions or complaints, and with only a slight deficit in range of motion. Morphological and biochemical magnetic resonance imaging 12 months after surgery showed excellent bone healing with no intraosseous edema. The MACT resulted in a good clinical outcome, with 100% defect filling and excellent integration and surface and signal intensity of the cartilage repair tissue, and the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot score increased from 47 to 79 points. PMID:22104171

  2. Osteochondral regeneration using an oriented nanofiber yarn-collagen type I/hyaluronate hybrid/TCP biphasic scaffold.

    PubMed

    Liu, Shen; Wu, Jinglei; Liu, Xudong; Chen, Desheng; Bowlin, Gary L; Cao, Lei; Lu, Jianxi; Li, Fengfeng; Mo, Xiumei; Fan, Cunyi

    2015-02-01

    Osteochondral defects affect both the articular cartilage and the underlying subchondral bone, but poor osteochondral regeneration is still a daunting challenge. Although the tissue engineering technology provides a promising approach for osteochondral repair, an ideal biphasic scaffold is in high demand with regards to proper biomechanical strength. In this study, an oriented poly(l-lacticacid)-co-poly(ε-caprolactone) P(LLA-CL)/collagen type I(Col-I) nanofiber yarn mesh, fabricated by dynamic liquid electrospinning served as a skeleton for a freeze-dried Col-I/Hhyaluronate (HA) chondral phase (SPONGE) to enhance the mechanical strength of the scaffold. In vitro results show that the Yarn Col-I/HA hybrid scaffold (Yarn-CH) can allow the cell infiltration like sponge scaffolds. Using porous beta-tricalcium phosphate (TCP) as the osseous phase, the Yarn-CH/TCP biphasic scaffold was then assembled by freeze drying. After combination of bone marrow mesenchymal stem cells, the biphasic complex was successfully used to repair the osteochondral defects in a rabbit model with greatly improved repairing scores and compressive modulus. PMID:24771686

  3. Wnt/β-catenin signaling of cartilage canal and osteochondral junction chondrocytes and full thickness cartilage in early equine osteochondrosis.

    PubMed

    Kinsley, Marc A; Semevolos, Stacy A; Duesterdieck-Zellmer, Katja F

    2015-10-01

    The objective of this study was to elucidate gene and protein expression of Wnt signaling molecules in chondrocytes of foals having early osteochondrosis (OC) versus normal controls. The hypothesis was that increased expression of components of Wnt signaling pathway in osteochondral junction (OCJ) and cartilage canal (CC) chondrocytes would be found in early OC when compared to controls. Paraffin-embedded osteochondral samples (7 OC, 8 normal) and cDNA from whole cartilage (7 OC, 10 normal) and chondrocytes surrounding cartilage canals and osteochondral junctions captured with laser capture microdissection (4 OC, 6 normal) were obtained from femoropatellar joints of 17 immature horses. Equine-specific Wnt signaling molecule mRNA expression levels were evaluated by two-step real-time qPCR. Spatial tissue protein expression of β-catenin, Wnt-11, Wnt-4, and Dkk-1 was determined by immunohistochemistry. There was significantly decreased Wnt-11 and increased β-catenin, Wnt-5b, Dkk-1, Lrp6, Wif-1, Axin1, and SC-PEP gene expression in early OC cartilage canal chondrocytes compared to controls. There was also significantly increased β-catenin gene expression in early OC osteochondral junction chondrocytes compared to controls. Based on this study, abundant gene expression differences in OC chondrocytes surrounding cartilage canals suggest pathways associated with catabolism and inhibition of chondrocyte maturation are targeted in early OC pathogenesis. PMID:25676127

  4. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue.

    PubMed

    Praet, Jelle; Santermans, Eva; Reekmans, Kristien; de Vocht, Nathalie; Le Blon, Debbie; Hoornaert, Chloé; Daans, Jasmijn; Goossens, Herman; Berneman, Zwi; Hens, Niel; Van der Linden, Annemie; Ponsaerts, Peter

    2014-01-01

    Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and culture eGFP(+) neural and fibroblast(-like) stem cells from embryonic mouse tissue. Second, we describe flow cytometric procedures to determine cell viability, eGFP transgene expression, and the expression of different stem cell lineage markers. Third, we explain how to induce reproducible demyelination in the CNS of mice by means of cuprizone administration, a validated mouse model for human multiple sclerosis. Fourth, the technical procedures for cell grafting in the CNS are explained in detail. Finally, an optimized and validated workflow for the quantitative histological analysis of cell graft survival and endogenous astroglial and microglial responses is provided. PMID:25173390

  5. Comparison of ADM and Connective Tissue Graft as the Membrane in Class II Furcation Defect Regeneration: A Randomized Clinical Trial

    PubMed Central

    Esfahanian, Vahid; Farhad, Shirin; Sadighi Shamami, Mehrnaz

    2014-01-01

    Background and aims. Furcally-involved teeth present unique challenges to the success of periodontal therapy and influence treatment outcomes. This study aimed to assess to compare use of ADM and connective tissue membrane in class II furcation defect regeneration. Materials and methods. 10 patient with 2 bilaterally class II furcation defects in first and/or second maxilla or man-dibular molar without interproximal furcation involvement, were selected. Four weeks after initial phase of treatment, before and thorough the surgery pocket depth (PD), clinical attachment level to stent (CAL-S), free gingival margin to stent(FGM-S) , crestal bone to stent (Crest-S), horizontal defect depth to stent (HDD-S) and vertical defect depth to stent (VDD-S) and crestal bone to defect depth measured from stent margin. Thereafter, one side randomly treated using connective tissue and DFDBA (study group) and opposite side received ADM and DFDBA (control group). After 6 months, soft and hard tissue parameters measured again in re-entry. Results. Both groups presented improvements after therapies (P & 0.05). No inter-group differences were seen in PD re-duction (P = 0.275), CAL gain (P = 0.156), free gingival margin (P = 0.146), crest of the bone (P = 0.248), reduction in horizontal defects depth (P = 0.139) and reduction in vertical defects depth (P = 0.149). Conclusion. Both treatments modalities have potential of regeneration without any adverse effect on healing process. Connective tissue grafts did not have significant higher bone fill compared to that of ADM. PMID:25093054

  6. Insulin-like Growth Factor-I and Slow, Bi-directional Perfusion Enhance the Formation of Tissue-Engineered Cardiac Grafts

    PubMed Central

    Cheng, Mingyu; Moretti, Matteo; Engelmayr, George C.

    2009-01-01

    Biochemical and mechanical signals enabling cardiac regeneration can be elucidated using in vitro tissue-engineering models. We hypothesized that insulin-like growth factor-I (IGF) and slow, bi-directional perfusion could act independently and interactively to enhance the survival, differentiation, and contractile performance of tissue-engineered cardiac grafts. Heart cells were cultured on three-dimensional porous scaffolds in medium with or without supplemental IGF and in the presence or absence of slow, bi-directional perfusion that enhanced transport and provided shear stress. Structural, molecular, and electrophysiologic properties of the resulting grafts were quantified on culture day 8. IGF had independent, beneficial effects on apoptosis (p < 0.01), cellular viability (p < 0.01), contractile amplitude (p < 0.01), and excitation threshold (p < 0.01). Perfusion independently affected the four aforementioned parameters and also increased amounts of cardiac troponin-I (p < 0.01), connexin-43 (p < 0.05), and total protein (p < 0.01) in the grafts. Interactive effects of IGF and perfusion on apoptosis were also present (p < 0.01). Myofibrillogenesis and spontaneous contractility were present only in grafts cultured with perfusion, although contractility was inducible by electrical field stimulation of grafts from all groups. Our findings demonstrate that multi-factorial stimulation of tissue-engineered cardiac grafts using IGF and perfusion resulted in independent and interactive effects on heart cell survival, differentiation, and contractility. PMID:18759675

  7. Covalent immobilization of stem cell inducing/recruiting factor and heparin on cell-free small-diameter vascular graft for accelerated in situ tissue regeneration.

    PubMed

    Shafiq, Muhammad; Jung, Youngmee; Kim, Soo Hyun

    2016-06-01

    The development of cell-free vascular grafts has tremendous potential for tissue engineering. However, thrombus formation, less-than-ideal cell infiltration, and a lack of growth potential limit the application of electrospun scaffolds for in situ tissue-engineered vasculature. To overcome these challenges, here we present development of an acellular tissue-engineered vessel based on electrospun poly(L-lactide-co-ɛ-caprolactone) scaffolds. Heparin was conjugated to suppress thrombogenic responses, and substance P (SP) was immobilized to recruit host cells. SP was released in a sustained manner from scaffolds and recruited human bone marrow-derived mesenchymal stem cells. The biocompatibility and biological performance of the grafts were evaluated by in vivo experiments involving subcutaneous scaffold implantation in Sprague-Dawley rats (n = 12) for up to 4 weeks. Histological analysis revealed a higher extent of accumulative host cell infiltration, neotissue formation, collagen deposition, and elastin deposition in scaffolds containing either SP or heparin/SP than in the control groups. We also observed the presence of a large number of laminin-positive blood vessels, von Willebrand factor (vWF(+) ) cells, and alpha smooth muscle actin-positive cells in the explants containing SP and heparin/SP. Additionally, SP and heparin/SP grafts showed the existence of CD90(+) and CD105(+) MSCs and induced a large number of M2 macrophages to infiltrate the graft wall compared with that observed with the control group. Our cell-free grafts could enhance vascular regeneration by endogenous cell recruitment and by mediating macrophage polarization into the M2 phenotype, suggesting that these constructs may be a promising cell-free graft candidate and are worthy of further in vivo evaluation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1352-1371, 2016. PMID:26822178

  8. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice

    PubMed Central

    Rodriguez-Sosa, Jose R; Bondareva, Alla; Tang, Lin; Avelar, Gleide F.; Coyle, Krysta M.; Modelski, Mark; Alpaugh, Whitney; Conley, Alan; Wynne-Edwards, Katherine; França, Luiz R; Meyers, Stuart; Dobrinski, Ina

    2014-01-01

    Di-n-Butyl (DBP) and Di-(2-EthylHexyl) (DEHP) phthalates can leach from daily-use products resulting in environmental exposure. In male rodents, phthalate exposure results in reproductive effects. To evaluate effects on the immature primate testis, testis fragments from 6-month-old rhesus macaques were grafted subcutaneously to immune-deficient mice, which were exposed to 0, 10, or 500 mg/kg of DBP or DEHP for 14 weeks or 28 weeks (DBP only). DBP exposure reduced the expression of key steroidogenic genes, indicating that Leydig cell function was compromised. Exposure to 500 mg/kg impaired tubule formation and germ cell differentiation and reduced numbers of spermatogonia. Exposure to 10 mg/kg did not affect development, but reduced Sertoli cell number and resulted in increased expression of inhibin B. Exposure to DEHP for 14 week also affected steroidogenic genes expression. Therefore, long-term exposure to phthalate esters affected development and function of the primate testis in a time and dosage dependent manner. PMID:25450860

  9. Immunoisolation to prevent tissue graft rejection: Current knowledge and future use.

    PubMed

    David, Anu; Day, James; Shikanov, Ariella

    2016-05-01

    This review focuses on the concept of immunoisolation and how this method has evolved over the last few decades. The concept of immunoisolation came out of the need to protect allogeneic transplant tissue from the host immune system and avoid systemic side effects of immunosuppression. The latter remains a significant hurdle in clinical translation of using tissue transplants for restoring endocrine function in diabetes, growth hormone deficiency, and other conditions. Herein, we review the most significant works studying the use of hydrogels, specifically alginate and poly (ethylene glycol), and membranes for immunoisolation and discuss how this approach can be applied in reproductive biology. PMID:27188513

  10. The influence of stromal cells on the pigmentation of tissue-engineered dermo-epidermal skin grafts.

    PubMed

    Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Klar, Agnieszka S; Widmer, Daniel S; Pontiggia, Luca; Weber, Andreas D; Weber, Daniel M; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2015-03-01

    It has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal-epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes. These skin substitutes were transplanted onto full-thickness skin wounds of immunoincompetent rats. Four weeks after transplantation the development of skin color was measured and grafts were excised and analyzed with regard to epidermal characteristics, in particular melanocyte number and function. Skin substitutes containing palmar-derived fibroblasts in comparison to nonpalmoplantar-derived fibroblasts showed (a) a significantly lighter pigmentation; (b) a reduced amount of epidermal melanin granules; and (c) a distinct melanosome expression. However, the number of melanocytes in the basal layer remained similar in both transplantation groups. These findings demonstrate that human palmar fibroblasts regulate the function of melanocytes in human pigmented dermo-epidermal skin substitutes after transplantation, whereas the number of melanocytes remains constant. This underscores the influence of site-specific stromal cells and their importance when constructing skin substitutes for clinical application. PMID:25300246

  11. The Influence of Stromal Cells on the Pigmentation of Tissue-Engineered Dermo-Epidermal Skin Grafts

    PubMed Central

    Biedermann, Thomas; Böttcher-Haberzeth, Sophie; Klar, Agnieszka S.; Widmer, Daniel S.; Pontiggia, Luca; Weber, Andreas D.; Weber, Daniel M.; Schiestl, Clemens; Meuli, Martin

    2015-01-01

    It has been shown in vitro that melanocyte proliferation and function in palmoplantar skin is regulated by mesenchymal factors derived from fibroblasts. In this study, we investigated in vivo the influence of mesenchymal–epithelial interactions in human tissue-engineered skin substitutes reconstructed from palmar- and nonpalmoplantar-derived fibroblasts. Tissue-engineered dermo-epidermal analogs based on collagen type I hydrogels were populated with either human palmar or nonpalmoplantar fibroblasts and seeded with human nonpalmoplantar-derived melanocytes and keratinocytes. These skin substitutes were transplanted onto full-thickness skin wounds of immunoincompetent rats. Four weeks after transplantation the development of skin color was measured and grafts were excised and analyzed with regard to epidermal characteristics, in particular melanocyte number and function. Skin substitutes containing palmar-derived fibroblasts in comparison to nonpalmoplantar-derived fibroblasts showed (a) a significantly lighter pigmentation; (b) a reduced amount of epidermal melanin granules; and (c) a distinct melanosome expression. However, the number of melanocytes in the basal layer remained similar in both transplantation groups. These findings demonstrate that human palmar fibroblasts regulate the function of melanocytes in human pigmented dermo-epidermal skin substitutes after transplantation, whereas the number of melanocytes remains constant. This underscores the influence of site-specific stromal cells and their importance when constructing skin substitutes for clinical application. PMID:25300246

  12. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts.

    PubMed

    Elsayed, Y; Lekakou, C; Labeed, F; Tomlins, P

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell-matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8-1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively. PMID:26838874

  13. Osteochondritis dissecans of the temporomandibular joint.

    PubMed

    Campos, P S F; Freitas, C E; Pena, N; Gonzalez, M O D; Almeida, S M; Mariz, A C R; Lorens, F G L

    2005-05-01

    A case is reported of a 43-year-old female patient presenting bilateral osteochondritis dissecans (OCD) of the temporomandibular joint (TMJ), in different stages for each side, associated with avascular necrosis (AVN) of the right condyle. Additionally observed was anterior disk displacement without reduction for both sides. We have proposed an adaptation of the previous classification of OCD for cases affecting the TMJ. We have also stressed the fundamental role of panoramic radiography on the diagnosis of stage 3 and stage 4 OCD of the TMJ. In relation to MRI, we have recommended sagittal (slice thickness of 2 mm) and coronal (slice thickness of 1 mm) fast spin-echo proton density-weighted sequences to better identify bone lesions (stage 1 and 2) and also localize osteochondral loose bodies; and coronal (slice thickness of 1 mm) fat-suppressed fast spin-echo T2 weighted sequence to better evaluate OCD (stable or unstable) and the features of the occasionally associated AVN (acute or chronic). PMID:15897292

  14. Osteochondritis dissecans of the capitellum in adolescents

    PubMed Central

    van Bergen, Christiaan JA; van den Ende, Kimberly IM; ten Brinke, Bart; Eygendaal, Denise

    2016-01-01

    Osteochondritis dissecans (OCD) is a disorder of articular cartilage and subchondral bone. In the elbow, an OCD is localized most commonly at the humeral capitellum. Teenagers engaged in sports that involve repetitive stress on the elbow are at risk. A high index of suspicion is warranted to prevent delay in the diagnosis. Plain radiographs may disclose the lesion but computed tomography and magnetic resonance imaging are more accurate in the detection of OCD. To determine the best treatment option it is important to differentiate between stable and unstable OCD lesions. Stable lesions can be initially treated nonoperatively with elbow rest or activity modification and physical therapy. Unstable lesions and stable lesions not responding to conservative therapy require a surgical approach. Arthroscopic debridement and microfracturing has become the standard initial procedure for treatment of capitellar OCD. Numerous other surgical options have been reported, including internal fixation of large fragments and osteochondral autograft transfer. The aim of this article is to provide a current concepts review of the etiology, clinical presentation, diagnosis, treatment, and outcomes of elbow OCD. PMID:26925381

  15. In vitro generation of whole osteochondral constructs using rabbit bone marrow stromal cells, employing a two-chambered co-culture well design.

    PubMed

    Chen, Kelei; Ng, Kian Siang; Ravi, Sujata; Goh, James C H; Toh, Siew Lok

    2016-04-01

    The regeneration of whole osteochondral constructs with a physiological structure has been a significant issue, both clinically and academically. In this study, we present a method using rabbit bone marrow stromal cells (BMSCs) cultured on a silk-RADA peptide scaffold in a specially designed two-chambered co-culture well for the generation of multilayered osteochondral constructs in vitro. This specially designed two-chambered well can simultaneously provide osteogenic and chondrogenic stimulation to cells located in different regions of the scaffold. We demonstrated that this co-culture approach could successfully provide specific chemical stimulation to BMSCs located on different layers within a single scaffold, resulting in the formation of multilayered osteochondral constructs containing cartilage-like and subchondral bone-like tissue, as well as the intermediate osteochondral interface. The cells in the intermediate region were found to be hypertrophic chondrocytes, embedded in a calcified extracellular matrix containing glycosaminoglycans and collagen types I, II and X. In conclusion, this study provides a single-step approach that highlights the feasibility of rabbit BMSCs as a single-cell source for multilayered osteochondral construct generation in vitro. Copyright © 2013 John Wiley & Sons, Ltd. PMID:23495238

  16. Image-Guided Techniques Improve the Short-Term Outcome of Autologous Osteochondral Cartilage Repair Surgeries

    PubMed Central

    Devlin, Steven M.; Hurtig, Mark B.; Waldman, Stephen D.; Rudan, John F.; Bardana, Davide D.; Stewart, A. James

    2013-01-01

    Objective: Autologous osteochondral cartilage repair is a valuable reconstruction option for cartilage defects, but the accuracy to harvest and deliver osteochondral grafts remains problematic. We investigated whether image-guided methods (optically guided and template guided) can improve the outcome of these procedures. Design: Fifteen sheep were operated to create traumatic chondral injuries in each knee. After 4 months, the chondral defect in one knee was repaired using (a) conventional approach, (b) optically guided method, or (c) template-guided method. For both image-guided groups, harvest and delivery sites were preoperatively planned using custom-made software. During optically guided surgery, instrument position and orientation were tracked and superimposed onto the surgical plan. For the template-guided group, plastic templates were manufactured to allow an exact fit between template and the joint anatomy. Cylindrical holes within the template guided surgical tools according to the plan. Three months postsurgery, both knees were harvested and computed tomography scans were used to compare the reconstructed versus the native pre-injury joint surfaces. For each repaired defect, macroscopic (International Cartilage Repair Society [ICRS]) and histological repair (ICRS II) scores were assessed. Results: Three months after repair surgery, both image-guided surgical approaches resulted in significantly better histology scores compared with the conventional approach (improvement by 55%, P < 0.02). Interestingly, there were no significant differences found in cartilage surface reconstruction and macroscopic scores between the image-guided and the conventional surgeries. PMID:26069658

  17. Development of a Comprehensive Osteochondral Allograft MRI Scoring System (OCAMRISS) With Histopathologic, Micro–Computed Tomography, and Biomechanical Validation

    PubMed Central

    Pallante-Kichura, Andrea L.; Bae, Won C.; Du, Jiang; Statum, Sheronda; Wolfson, Tanya; Gamst, Anthony C.; Cory, Esther; Amiel, David; Bugbee, William D.; Sah, Robert L.; Chung, Christine B.

    2014-01-01

    Objective: To describe and apply a semiquantitative MRI scoring system for multifeature analysis of cartilage defect repair in the knee by osteochondral allografts and to correlate this scoring system with histopathologic, micro–computed tomography (µCT), and biomechanical reference standards using a goat repair model. Design: Fourteen adult goats had 2 osteochondral allografts implanted into each knee: one in the medial femoral condyle and one in the lateral trochlea. At 12 months, goats were euthanized and MRI was performed. Two blinded radiologists independently rated 9 primary features for each graft, including cartilage signal, fill, edge integration, surface congruity, calcified cartilage integrity, subchondral bone plate congruity, subchondral bone marrow signal, osseous integration, and presence of cystic changes. Four ancillary features of the joint were also evaluated, including opposing cartilage, meniscal tears, synovitis, and fat-pad scarring. Comparison was made with histologic and µCT reference standards as well as biomechanical measures. Interobserver agreement and agreement with reference standards was assessed. Cohen’s κ, Spearman’s correlation, and Kruskal-Wallis tests were used as appropriate. Results: There was substantial agreement (κ > 0.6, P < 0.001) for each MRI feature and with comparison against reference standards, except for cartilage edge integration (κ = 0.6). There was a strong positive correlation between MRI and reference standard scores (ρ = 0.86, P < 0.01). Osteochondral allograft MRI scoring system was sensitive to differences in outcomes between the types of allografts. Conclusions: We have described a comprehensive MRI scoring system for osteochondral allografts and have validated this scoring system with histopathologic and µCT reference standards as well as biomechanical indentation testing. PMID:24489999

  18. Pulsed High–Intensity-focused US and Tissue Plasminogen Activator (TPA) Versus TPA Alone for Thrombolysis of Occluded Bypass Graft in Swine

    PubMed Central

    Abi-Jaoudeh, Nadine; Pritchard, William F.; Amalou, Hayet; Linguraru, Marius; Chiesa, Oscar A.; Adams, Joshua D.; Gacchina, Carmen; Wesley, Robert; Maruvada, Subha; McDowell, Briana; Frenkel, Victor; Karanian, John W.; Wood, Bradford J.

    2012-01-01

    Purpose Prosthetic arteriovenous or arterial-arterial bypass grafts can thrombose and be resistant to revascularization. A thrombosed bypass graft model was created to evaluate the potential therapeutic enhancement and safety profile of pulsed high-intensity-focused ultrasound (pHIFU) on pharmaceutical thrombolysis. Materials and Methods In swine, a right carotid-carotid expanded polytetrafluoroethylene bypass graft was surgically constructed, containing a 40% stenosis at its distal end to induce graft thrombosis. The revascularization procedure was performed 7 days after surgery. After model development and dose response experiments (n = 11), two cohorts were studied: pHIFU with tissue plasminogen activator (TPA; n = 4) and sham pHIFU with TPA (n = 3). The experiments were identical in both groups except no energy was delivered in the sham pHIFU group. Serial angiograms were obtained in all cases. The area of graft opacified by contrast medium on angiograms was quantified with digital image processing software. A blinded reviewer calculated the change in the graft area opacified by contrast medium and expressed it as a percentage, representing percentage of thrombolysis. Results Combining pHIFU with 0.5 mg of TPA resulted in a 52% ± 4% increase in thrombolysis on angiograms obtained at 30 minutes, compared with a 9% ± 14% increase with sham pHIFU and 0.5 mg TPA (P = .003). Histopathologic examination demonstrated no differences between the groups. Conclusions Thrombolysis of occluded bypass grafts was significantly increased when combining pHIFU and TPA versus sham pHIFU and TPA. These results suggest that application of pHIFU may augment thrombolysis with a reduced time and dose. PMID:22609287

  19. The Maturation of Synthetic Scaffolds for Osteochondral Donor Sites of the Knee

    PubMed Central

    Bedi, Asheesh; Foo, Li Foong; Williams, Riley J.; Potter, Hollis G.

    2010-01-01

    Objective: The purpose of this study was to analyze the morphological imaging characteristics and incorporation of TruFit bone graft substitute (BGS) plugs using cartilage-sensitive magnetic resonance imaging (MRI) and quantitative T2 mapping. Design: Twenty-six patients (mean age, 28.72 years; range, 11-56 years) underwent osteochondral autologous transplantation (OATS) for chondral defects with filling of the knee joint donor sites using Trufit BGS plugs. The mean follow-up interval between implantation and MRI analysis was 21.3 months (range, 6-39 months). During this period, 43 cartilage-sensitive and 25 quantitative T2-mapping MRI studies were performed. The donor sites were assessed for plug and interface morphology, displacement, hypertrophy, subchondral edema, presence of bony overgrowth, percentage fill, and degree of incorporation. T2 relaxation times were measured for the superficial and deep layers of the repair tissue. A linear regression and correlational analysis was performed with Bonferroni correction, and P < 0.05 was defined as significant. Results: Longitudinal analysis revealed favorable plug appearance at early follow-up (≤6 months), with 75% of plugs demonstrating flush morphology and 78% demonstrating near complete to complete fill. Plug appearance deteriorated at intermediate follow-up (~12 months), with only 26% of plugs demonstrating flush morphology and 52% with near complete or complete fill. Plug appearance substantially improved with longer follow-up (≥16 months), with 70% of plugs demonstrating flush morphology and 90% demonstrating near complete or complete fill. Interface resorption was common at ~12 months (P < 0.0001) and was associated with older age (P = 0.01) or a single-plug configuration (P = 0.04). T2 values for the repair cartilage approached that of normal cartilage with increasing duration after surgery (P < 0.004), more so for single- compared with multiple-plug configurations (P = 0.03). Conclusions: The Trufit BGS

  20. OSTEOCHONDRAL INTERFACE REGENERATION OF THE RABBIT KNEE WITH MACROSCOPIC GRADIENTS OF BIOACTIVE SIGNALS

    PubMed Central

    Dormer, Nathan H.; Singh, Milind; Zhao, Liang; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2011-01-01

    To date, most interfacial tissue engineering approaches have utilized stratified designs, in which there are two or more discrete layers comprising the interface. Continuously-graded interfacial designs, where there is no discrete transition from one tissue type to another, are gaining attention as an alternative to stratified designs. Given that osteochondral regeneration holds the potential to enhance cartilage regeneration by leveraging the healing capacity of the underlying bone, we endeavored to introduce a continuously graded approach to osteochondral regeneration. The purpose of this study was thus to evaluate the performance of a novel gradient-based scaffolding approach to regenerate osteochondral defects in the New Zealand White rabbit femoral condyle. Bioactive plugs were constructed from poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres with a continuous gradient transition between cartilage-promoting and bone-promoting growth factors. At six and 12 weeks of healing, results suggested that the implants provided support for the neo-synthesized tissue, and the gradient in bioactive signaling may have been beneficial for bone and cartilage regeneration compared to the blank control implant, as evidenced by histology. In addition, the effects of pre-seeding gradient scaffolds with umbilical cord mesenchymal stromal cells (UCMSCs) from the Wharton’s jelly of New Zealand White rabbits were evaluated. Results indicated that there may be regenerative benefits to pre-localizing UCMSCs within scaffold interiors. The inclusion of bioactive factors in a gradient-based scaffolding design is a promising new treatment strategy for defect repair in the femoral condyle. PMID:22009693

  1. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    NASA Astrophysics Data System (ADS)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  2. Improving the moisturizing properties of collagen film by surface grafting of chondroitin sulfate for corneal tissue engineering.

    PubMed

    Liu, Yang; Lv, Huilin; Ren, Li; Xue, Guanhua; Wang, Yingjun

    2016-06-01

    Cornea disease is the second cause of blindness and keratoplasty is the most commonly performed option for visual rehabilitation of patients with corneal blindness. However, the clinical treatment has been drastically limited due to a severe shortage of high-quality donor corneas. Although collagen film with outstanding biocompatibility has promising application in corneal tissue engineering, the moisturizing properties of collagen-based materials must be further improved to satisfy the requirements of clinical applications. This paper describes a novel collagen-based film with high moisture capacity reinforced by surface grafting of chondroitin sulfate. The collagen-chondroitin sulfate (abbreviated as Col-CS) film was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy and its hydrophilic property, moisture retention, optical property, and mechanical performance had been tested. The moisture-retaining capacity is found to be improved with the introduction of chondroitin sulfate, and the Col-CS membrane performs better mechanical properties than the collagen film. Moreover, the modified film proves excellent biocompatibility for the proliferation of human corneal epithelial cells in vitro. This Col-CS film with good moisturizing properties can reduce the risk of xerophthalmia and is expected to increase the implant success rate in clinic patients with corneal defects. PMID:26948819

  3. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering.

    PubMed

    Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X

    2015-10-15

    Biomaterials with injectability, conductivity and antibacterial effect simultaneously have been rarely reported. Herein, we developed a new series of in situ forming antibacterial conductive degradable hydrogels using quaternized chitosan (QCS) grafted polyaniline with oxidized dextran as crosslinker. The chemical structures, morphologies, electrochemical property, conductivity, swelling ratio, rheological property, in vitro biodegradation and gelation time of hydrogels were characterized. Injectability was verified by in vivo subcutaneous injection on a Sprague Dawley rat. The antibacterial activity of the hydrogels was firstly evaluated employing antibacterial assay using Escherichia coli and Staphylococcus aureus in vitro. The hydrogels containing polyaniline showed enhanced antibacterial activity compared to QCS hydrogel, especially for hydrogels with 3 wt% polyaniline showing 95 kill% and 90kill% for E. coli and S. aureus, respectively. Compared with QCS hydrogel, the hydrogels with 3 wt% polyaniline still showed enhanced antibacterial activity for E. coli in vivo. The adipose-derived mesenchymal stem cells (ADMSCs) were used to evaluate the cytotoxicity of the hydrogels and hydrogels with polyaniline showed better cytocompatibility than QCS hydrogel. The electroactive hydrogels could significantly enhance the proliferation of C2C12 myoblasts compared to QCS hydrogel. This work opens the way to fabricate in situ forming antibacterial and electroactive degradable hydrogels as a new class of bioactive scaffolds for tissue regeneration applications. PMID:26272777

  4. Subepithelial connective tissue graft with and without the use of plasma rich in growth factors for treating root exposure

    PubMed Central

    Lafzi, Ardeshir; Shirmohammadi, Adileh; Behrozian, Ahmad; Kashefimehr, Atabak; Khashabi, Ehsan

    2012-01-01

    Purpose The aim of this study was to evaluate the clinical efficiency of the subepithelial connective tissue graft (SCTG) with and without plasma rich in growth factor (PRGF) in the treatment of gingival recessions. Methods Twenty bilateral buccal gingival Miller's Class I and II recessions were selected. Ten of the recessions were treated with SCTG and PRGF (test group). The rest ten of the recessions were treated with SCTG (control group). The clinical parameters including recession depth (RD), percentage of root coverage (RC), mucogingival junction (MGJ) position, clinical attachment level (CAL), and probing depth (PD) were measured at the baseline, and 1 and 3 months later. The data were analyzed using the Wilcoxon signed rank and Mann-Whitney U tests. Results After 3 months, both groups showed a significant improvement in all of the mentioned criteria except PD. Although the amount of improvement was better in the SCTG+PRGF group than the SCTG only group, this difference was not statistically significant. The mean RC was 70.85±12.57 in the test group and 75.83±24.68 in the control group. Conclusions Both SCTG+PRGF and SCTG only result in favorable clinical outcomes, but the added benefit of PRGF is not evident. PMID:23346462

  5. Photochemical tissue bonding

    DOEpatents

    Redmond, Robert W.; Kochevar, Irene E.

    2012-01-10

    Photochemical tissue bonding methods include the application of a photosensitizer to a tissue and/or tissue graft, followed by irradiation with electromagnetic energy to produce a tissue seal. The methods are useful for tissue adhesion, such as in wound closure, tissue grafting, skin grafting, musculoskeletal tissue repair, ligament or tendon repair and corneal repair.

  6. Surgical Technique for the Implantation of Tissue Engineered Vascular Grafts and Subsequent In Vivo Monitoring

    PubMed Central

    Koobatian, Maxwell T.; Koenigsknecht, Carmon; Row, Sindhu; Andreadis, Stelios; Swartz, Daniel

    2015-01-01

    The development of Tissue Engineered Vessels (TEVs) is advanced by the ability to routinely and effectively implant TEVs (4-5 mm in diameter) into a large animal model. A step by-step protocol for inter-positional placement of the TEV and real-time digital assessment of the TEV and native carotid arteries is described here. In vivo monitoring is made possible by the implantation of flow probes, catheters and ultrasonic crystals (capable of recording dynamic diameter changes of implanted TEVs and native carotid arteries) at the time of surgery. Once implanted, researchers can calculate arterial blood flow patterns, invasive blood pressure and artery diameter yielding parameters such as pulse wave velocity, augmentation index, pulse pressures and compliance. Data acquisition is accomplished using a single computer program for analysis throughout the duration of the experiment. Such invaluable data provides insight into TEV matrix remodeling, its resemblance to native/sham controls and overall TEV performance in vivo. PMID:25867203

  7. Surgical technique for the implantation of tissue engineered vascular grafts and subsequent in vivo monitoring.

    PubMed

    Koobatian, Maxwell T; Koenigsknecht, Carmon; Row, Sindhu; Andreadis, Stelios; Swartz, Daniel

    2015-01-01

    The development of Tissue Engineered Vessels (TEVs) is advanced by the ability to routinely and effectively implant TEVs (4-5 mm in diameter) into a large animal model. A step by-step protocol for inter-positional placement of the TEV and real-time digital assessment of the TEV and native carotid arteries is described here. In vivo monitoring is made possible by the implantation of flow probes, catheters and ultrasonic crystals (capable of recording dynamic diameter changes of implanted TEVs and native carotid arteries) at the time of surgery. Once implanted, researchers can calculate arterial blood flow patterns, invasive blood pressure and artery diameter yielding parameters such as pulse wave velocity, augmentation index, pulse pressures and compliance. Data acquisition is accomplished using a single computer program for analysis throughout the duration of the experiment. Such invaluable data provides insight into TEV matrix remodeling, its resemblance to native/sham controls and overall TEV performance in vivo. PMID:25867203

  8. Programmed death-1 pathway in host tissues ameliorates Th17/Th1-mediated experimental chronic graft-versus-host disease.

    PubMed

    Fujiwara, Hideaki; Maeda, Yoshinobu; Kobayashi, Koichiro; Nishimori, Hisakazu; Matsuoka, Ken-Ichi; Fujii, Nobuharu; Kondo, Eisei; Tanaka, Takehiro; Chen, Lieping; Azuma, Miyuki; Yagita, Hideo; Tanimoto, Mitsune

    2014-09-01

    Chronic graft-versus-host disease (GVHD) is a major cause of late death and morbidity after allogeneic hematopoietic cell transplantation, but its pathogenesis remains unclear. We investigated the role of the programmed death-1 (PD-1) pathway in chronic GVHD using a well-defined mouse model of B10.D2 (H-2(d)) donor to BALB/c (H-2(d)) recipients. PD-1 expression on allogeneic donor T cells was upregulated continuously in chronic GVHD development, whereas PD-L1 expression in host tissues was transiently upregulated and declined to basal levels in the late posttransplant period. Blockade of the PD-1 pathway by anti-PD-1, anti-PD-L1, or anti-PD-L2 mAbs exacerbated clinical and pathologic chronic GVHD. Chimeric mice revealed that PD-L1 expression in host tissues suppressed expansion of IL-17(+)IFN-γ(+) T cells, and that PD-L1 expression on hematopoietic cells plays a role in the development of regulatory T cells only during the early transplantation period but does not affect the severity of chronic GVHD. Administration of the synthetic retinoid Am80 overcame the IL-17(+)IFN-γ(+) T cell expansion caused by PD-L1 deficiency, resulting in reduced chronic GVHD damage in PD-L1(-/-) recipients. Stimulation of the PD-1 pathway also alleviated chronic GVHD. These results suggest that the PD-1 pathway contributes to the suppression of Th17/Th1-mediated chronic GVHD and may represent a new target for the prevention or treatment of chronic GVHD. PMID:25080485

  9. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage.

    PubMed

    Schwab, Lukas; Goroncy, Luise; Palaniyandi, Senthilnathan; Gautam, Sanjivan; Triantafyllopoulou, Antigoni; Mocsai, Attila; Reichardt, Wilfried; Karlsson, Fridrik J; Radhakrishnan, Sabarinath V; Hanke, Kathrin; Schmitt-Graeff, Annette; Freudenberg, Marina; von Loewenich, Friederike D; Wolf, Philipp; Leonhardt, Franziska; Baxan, Nicoleta; Pfeifer, Dietmar; Schmah, Oliver; Schönle, Anne; Martin, Stefan F; Mertelsmann, Roland; Duyster, Justus; Finke, Jürgen; Prinz, Marco; Henneke, Philipp; Häcker, Hans; Hildebrandt, Gerhard C; Häcker, Georg; Zeiser, Robert

    2014-06-01

    Acute graft-versus-host disease (GVHD) considerably limits wider usage of allogeneic hematopoietic cell transplantation (allo-HCT). Antigen-presenting cells and T cells are populations customarily associated with GVHD pathogenesis. Of note, neutrophils are the largest human white blood cell population. The cells cleave chemokines and produce reactive oxygen species, thereby promoting T cell activation. Therefore, during an allogeneic immune response, neutrophils could amplify tissue damage caused by conditioning regimens. We analyzed neutrophil infiltration of the mouse ileum after allo-HCT by in vivo myeloperoxidase imaging and found that infiltration levels were dependent on the local microbial flora and were not detectable under germ-free conditions. Physical or genetic depletion of neutrophils reduced GVHD-related mortality. The contribution of neutrophils to GVHD severity required reactive oxygen species (ROS) because selective Cybb (encoding cytochrome b-245, beta polypeptide, also known as NOX2) deficiency in neutrophils impairing ROS production led to lower levels of tissue damage, GVHD-related mortality and effector phenotype T cells. Enhanced survival of Bcl-xL transgenic neutrophils increased GVHD severity. In contrast, when we transferred neutrophils lacking Toll-like receptor-2 (TLR2), TLR3, TLR4, TLR7 and TLR9, which are normally less strongly activated by translocating bacteria, into wild-type C57BL/6 mice, GVHD severity was reduced. In humans, severity of intestinal GVHD strongly correlated with levels of neutrophils present in GVHD lesions. This study describes a new potential role for neutrophils in the pathogenesis of GVHD in both mice and humans. PMID:24836575

  10. Emerging genetic basis of osteochondritis dissecans

    PubMed Central

    Bates, J. Tyler; Jacobs, John C.; Shea, Kevin G.; Oxford, Julia Thom

    2014-01-01

    Genome-wide association studies provide an unbiased approach in the identification of genes that increase the risk for osteochondritis dissecans (OCD). OCD is a disorder of the bone and cartilage that affects humans, horses, pigs, dogs, and other mammals. Recent genome-wide association studies in humans, horses, and pigs are reviewed and genes identified. The identified genes tended to cluster with respect to function and biological processes such as the protein secretion pathway, extracellular matrix molecules, and growth plate maturation. Genome-wide association studies in humans are a critical next step in the effort to provide a better understanding of the causes of OCD, which will, in turn, allow preventive strategies for treatment of adolescent and young adults who are at risk for the development of degenerative joint disease due to the effects of OCD. PMID:24698039

  11. Osteochondral Allograft Transplantation in the Knee.

    PubMed

    Zouzias, Ioannis C; Bugbee, William D

    2016-06-01

    The technique of osteochondral allograft (OCA) transplantation has been used to treat a wide spectrum of cartilage deficiencies in the knee. Its use has been supported by basic science and clinical studies that show it is a safe and effective treatment option. What sets fresh OCA transplantation apart from other cartilage procedures in the knee, is the ability to treat large defects with mature hyaline cartilage. Studies looking at transplantation of fresh OCAs in the general population have shown reliable pain relief and return to activities of daily living. Reports of cartilage injuries in athletes have risen over the years and more research is needed in evaluating the successfulness of OCA transplantation in the athletic population. PMID:27135291

  12. Chitosan-graft-beta-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications.

    PubMed

    Prabaharan, M; Jayakumar, R

    2009-05-01

    Biodegradable scaffolds composed of chitosan-g-beta-cyclodextrin (chit-g-beta-CD) were prepared by freeze-drying method as synthetic extracellular matrices to fill the gap during the healing process. Due to the presence of beta-CD, these scaffolds can be used as a matrix for drug loading and controlled release. The morphology, swelling and drug release properties of the scaffolds were found to be dependent on the extent of cross-linking density in the scaffolds. The drug dissolution profile showed that chit-g-beta-CD scaffolds provided a slower release of the entrapped ketoprofen than chitosan scaffold. The MTT assay showed that there is no obvious cytotoxicity of chit-g-beta-CD scaffolds cross-linked with 0.01 M of glutaraldehyde against the fibroblasts (L929) cells. These results suggest that chit-g-beta-CD scaffolds may become a potential biodegradable active filling material with controlled drug release capability, which provide a healthy environment and enhance the surrounding tissue regeneration. PMID:19428461

  13. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model

    PubMed Central

    2010-01-01

    Background Current research aims to develop innovative approaches to improve chondral and osteochondral regeneration. The objective of this study was to investigate the regenerative potential of platelet-rich plasma (PRP) to enhance the repair process of a collagen-hydroxyapatite scaffold in osteochondral defects in a sheep model. Methods PRP was added to a new, multi-layer gradient, nanocomposite scaffold that was obtained by nucleating collagen fibrils with hydroxyapatite nanoparticles. Twenty-four osteochondral lesions were created in sheep femoral condyles. The animals were randomised to three treatment groups: scaffold, scaffold loaded with autologous PRP, and empty defect (control). The animals were sacrificed and evaluated six months after surgery. Results Gross evaluation and histology of the specimens showed good integration of the chondral surface in both treatment groups. Significantly better bone regeneration and cartilage surface reconstruction were observed in the group treated with the scaffold alone. Incomplete bone regeneration and irregular cartilage surface integration were observed in the group treated with the scaffold where PRP was added. In the control group, no bone and cartilage defect healing occurred; defects were filled with fibrous tissue. Quantitative macroscopic and histological score evaluations confirmed the qualitative trends observed. Conclusions The hydroxyapatite-collagen scaffold enhanced osteochondral lesion repair, but the combination with platelet growth factors did not have an additive effect; on the contrary, PRP administration had a negative effect on the results obtained by disturbing the regenerative process. In the scaffold + PRP group, highly amorphous cartilaginous repair tissue and poorly spatially organised underlying bone tissue were found. PMID:20875101

  14. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again

    PubMed Central

    Patterson, Joseph T; Gilliland, Thomas; Maxfield, Mark W; Church, Spencer; Naito, Yuji; Shinoka, Toshiharu; Breuer, Christopher K

    2012-01-01

    Since the first tissue-engineered vascular graft (TEVG) was implanted in a child over a decade ago, growth in the field of vascular tissue engineering has been driven by clinical demand for improved vascular prostheses with performance and durability similar to an autologous blood vessel. Great strides were made in pediatric congenital heart surgery using the classical tissue engineering paradigm, and cell seeding of scaffolds in vitro remained the cornerstone of neotissue formation. Our second-generation bone marrow cell-seeded TEVG diverged from tissue engineering dogma with a design that induces the recipient to regenerate vascular tissue in situ. New insights suggest that neovessel development is guided by cell signals derived from both seeded cells and host inflammatory cells that infiltrate the graft. The identification of these signals and the regulatory interactions that influence cell migration, phenotype and extracellular matrix deposition during TEVG remodeling are yielding a next-generation TEVG engineered to guide neotissue regeneration without the use of seeded cells. These developments represent steady progress towards our goal of an off-the-shelf tissue-engineered vascular conduit for pediatric congenital heart surgery. PMID:22594331

  15. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition

    PubMed Central

    2013-01-01

    Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair. PMID:23324433

  16. Skin graft

    MedlinePlus

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  17. Neutrophil Gelatinase Associated Lipocalin Is an Early and Accurate Biomarker of Graft Function and Tissue Regeneration in Kidney Transplantation from Extended Criteria Donors

    PubMed Central

    Cantaluppi, Vincenzo; Dellepiane, Sergio; Tamagnone, Michela; Medica, Davide; Figliolini, Federico; Messina, Maria; Manzione, Ana Maria; Gai, Massimo; Tognarelli, Giuliana; Ranghino, Andrea; Dolla, Caterina; Ferrario, Silvia; Tetta, Ciro; Segoloni, Giuseppe Paolo; Camussi, Giovanni; Biancone, Luigi

    2015-01-01

    Background Delayed graft function (DGF) is an early complication of kidney transplantation (KT) associated with increased risk of early loss of graft function. DGF increases using kidneys from extended criteria donors (ECD). NGAL is a 25KDa protein proposed as biomarker of acute kidney injury. The aim of this study was to investigate the role of NGAL as an early and accurate indicator of DGF and Tacrolimus (Tac) toxicity and as a mediator of tissue regeneration in KT from ECD. Methods We evaluated plasma levels of NGAL in 50 KT patients from ECD in the first 4 days after surgery or after Tac introduction. Results Plasma levels of NGAL at day 1 were significantly higher in DGF group. In the non DGF group, NGAL discriminated between slow or immediate graft function and decreased more rapidly than serum creatinine. NGAL increased after Tac introduction, suggesting a role as marker of drug toxicity. In vitro, hypoxia and Tac induced NGAL release from tubular epithelial cells (TEC) favoring an autocrine loop that sustains proliferation and inhibits apoptosis (decrease of caspases and Bax/Bcl-2 ratio). Conclusions NGAL is an early and accurate biomarker of graft function in KT from ECD favoring TEC regeneration after ischemic and nephrotoxic injury. PMID:26125566

  18. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model.

    PubMed

    Ho, Saey Tuan Barnabas; Hutmacher, Dietmar Werner; Ekaputra, Andrew Krishna; Hitendra, Doshi; Hui, James Hoi

    2010-04-01

    Conventional clinical therapies are unable to resolve osteochondral defects adequately; hence, tissue engineering solutions are sought to address the challenge. A biphasic implant that was seeded with mesenchymal stem cells (MSCs) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a polycaprolactone (PCL) cartilage scaffold and a PCL-tricalcium phosphate osseous matrix. Autologous MSCs were seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL-collagen electrospun mesh, which served as a substitute for periosteal flap in preventing cell leakage. Controls without either implanted MSCs or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by superior glycosaminoglycan maintenance. This positive morphological outcome was supported by a higher relative Young's modulus, which indicated functional cartilage restoration. Bone ingrowth and remodeling occurred in all groups, with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover, healing was inferior at the patellar groove when compared with the medial condyle and this was attributed to the native biomechanical features. PMID:19863255

  19. Epicardial Adipose Tissue is Associated with Extensive Coronary Artery Lesions in Patients Undergoing Coronary Artery Bypass Grafting: an Observational Study

    PubMed Central

    KAYA, Mehmet; YENITERZI, Mehmet; YAZICI, Pınar; DIKER, Mustafa; CELIK, Omer; ERTÜRK, Mehmet; BAKIR, Ihsan

    2014-01-01

    Objectives: To investigate the relationship between the epicardial adipose tissue (EAT) volume measured by 256-slice dual source computed tomography (DSCT) and the complexity with the presence of significant coronary artery disease (CAD) in patients undergoing coronary artery bypass graft surgery (CABG). Material and methods: Study subjects were enrolled as they were undergoing DSCT for coronary evaluation. Two subgroups were formed according to coronary artery bypass history: Group A (patients with significant CAD), Group B (patients with normal coronary arteries). In both groups, EAT volume was measured by DSCT with the same technique. The complexity of CAD was assessed by using Syntax score (SxS). Group A patients were subdivided into two groups according to these results (Group A1, A2). Outcomes: Ninety-three patients (53 male, 40 female) with a mean age of 55.1 years were enrolled in the study (48 in group A and 45 in Group B). The serum levels of fasting plasma glucose (FPG), total cholesterol (TC) and low-density lipoprotein (LDL) were found statistically higher in Group A. In Group A, mean EAT volume was 44.87±21.28 cm3 while it was in normal range (32.37±17.50 cm3) in control group (p=0.003). Higher EAT volume was found to be related to FPG (r=0.242, p=0.015) and body surface area (BSA) (r =0.268, p=0.009) and also correlated positively with CAD. On the other hand, there was no significant difference between subgroups when considering the complexity of CAD. Conclusions: Our data shows that increased EAT volume is associated with significant CAD. EAT volume contributes to the development of coronary lesions, but it does not affect the complexity of the lesions. PMID:25705268

  20. Intranigral grafts of fetal ventral mesencephalic tissue in adult 6-hydroxydopamine-lesioned rats can induce behavioral recovery.

    PubMed

    Johnston, R E; Becker, J B

    1997-01-01

    Intrastriatal grafts of fetal ventral mesencephalon in rats with unilateral 6-hydroxydopamine lesions can reduce and even reverse rotational behavior in response to direct and indirect dopamine agonists. These grafts can ameliorate deficits on simple spontaneous behaviors, but do not improve complex behaviors that require the skilled integration of the use of both paws. We report here that rats with grafts into the DA-depleted substantia nigra, that receive cyclosporine A, can experience recovery on spontaneous behaviors that mimic those observed in Parkinson's disease. Specific cyclosporine A treatment conditions can differentially affect whether intranigral grafts normalize paw use during initiation or termination of a movement sequence. These findings may have important implications for the treatment of Parkinson's disease. PMID:9171159

  1. Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells

    PubMed Central

    Matsuo, Takehiko; Masumoto, Hidetoshi; Tajima, Shuhei; Ikuno, Takeshi; Katayama, Shiori; Minakata, Kenji; Ikeda, Tadashi; Yamamizu, Kohei; Tabata, Yasuhiko; Sakata, Ryuzo; Yamashita, Jun K.

    2015-01-01

    Poor engraftment of cells after transplantation to the heart is a common and unresolved problem in the cardiac cell therapies. We previously generated cardiovascular cell sheets entirely from pluripotent stem cells with cardiomyocytes, endothelial cells and vascular mural cells. Though sheet transplantation showed a better engraftment and improved cardiac function after myocardial infarction, stacking limitation (up to 3 sheets) by hypoxia hampered larger structure formation and long-term survival of the grafts. Here we report an efficient method to overcome the stacking limitation. Insertion of gelatin hydrogel microspheres (GHMs) between each cardiovascular cell sheet broke the viable limitation via appropriate spacing and fluid impregnation with GHMs. Fifteen sheets with GHMs (15-GHM construct; >1 mm thickness) were stacked within several hours and viable after 1 week in vitro. Transplantation of 5-GHM constructs (≈2 × 106 of total cells) to a rat myocardial infarction model showed rapid and sustained functional improvements. The grafts were efficiently engrafted as multiple layered cardiovascular cells accompanied by functional capillary networks. Large engrafted cardiac tissues (0.8 mm thickness with 40 cell layers) successfully survived 3 months after TX. We developed an efficient method to generate thicker viable tissue structures and achieve long-term survival of the cell graft to the heart. PMID:26585309

  2. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    PubMed Central

    Cortizo, Ana M.; Ruderman, Graciela; Mazzini, Flavia N.; Molinuevo, M. Silvina; Mogilner, Ines G.

    2016-01-01

    Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation). In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering. PMID:27293438

  3. Fluoroquinolone Use in a Child Associated with Development of Osteochondritis Dissecans

    PubMed Central

    Jacobs, John; Shea, Kevin; Oxford, Julia; Carey, James

    2014-01-01

    SUMMARY Several etiological theories have been proposed for the development of osteochondritis dissecans. Cartilage toxicity after fluoroquinolone use has been well documented in vitro. We present a case report of a 10-year-old child who underwent a prolonged 18-month course of ciprofloxacin therapy for chronic urinary tract infections. This patient later developed an osteochondritis dissecans lesion of the medial femoral condyle. We hypothesize that the fluoroquinolone therapy disrupted normal endochondral ossification, resulting in development of osteochondritis dissecans. The etiology of osteochondritis dissecans is still unclear, and this case describes an association between fluoroquinolone use and osteochondritis dissecans development. PMID:25228675

  4. Effect of GaAIAs low-level laser therapy on the healing of human palate mucosa after connective tissue graft harvesting: randomized clinical trial.

    PubMed

    Dias, Stephanie Botti Fernanandes; Fonseca, Marcus Vinícius Alves; Dos Santos, Nídia Cristina Castro; Mathias, Ingrid Fernandes; Martinho, Frederico Canato; Junior, Milton Santamaria; Jardini, Maria Aparecida Neves; Santamaria, Mauro Pedrine

    2015-08-01

    Among the available techniques to treat gingival recession, connective tissue graft (CTG) presents more foreseeability and better results in the long term. However, this technique causes morbidity and discomfort in the palatine region due to graft removal at that site. The aim of this clinical trial was to evaluate the influence of low-level laser therapy (LLLT) on the healing of the donor palatine area after CTG. Thirty-two patients presenting buccal gingival recession were selected and randomly assigned to receive LLLT irradiation (test group) or LLLT sham (control group) in the palatine area after connective graft removal. A diode laser (AsGaAl, 660 nm) was applied to test the sites immediately after surgery and every other day for 7 days. The evaluated parameters were wound remaining area (WRA), scar and tissue colorimetry (TC), tissue thickness (TT), and postoperative discomfort (D). These parameters were evaluated at baseline and 7, 14, 45, 60, and 90 days after surgery. Two-way repeated measures ANOVA was used for analysis. The test group presented statistically significant smaller wounds at days 14 and 45. None of the patients presented a scar at the operated area, and colorimetry analysis revealed that there was no statistically significant difference between groups (p > 0.05). Patients reported mild to moderate discomfort, with low consumption of analgesic pills. We concluded that LLLT irradiation can accelerate wound healing on palatine mucosa after connective tissue removal for root coverage techniques (ClinicalTrial.org NCT02239042). PMID:25373688

  5. Fresh osteochondral allografts in the knee: only a salvage procedure?

    PubMed

    Gobbi, Alberto; Scotti, Celeste; Lane, John G; Peretti, Giuseppe M

    2015-07-01

    The role of fresh allogeneic osteochondral allograft transplantation (OCA) in the cartilage repair algorithm has been long debated and this procedure is primarily considered as a salvage procedure, to be used when other, simple, techniques have failed. Gracitelli et al. in a retrospective comparison of patients who received OCA as primary treatment or as a salvage procedure, demonstrates that the outcome of this procedure is minimally influenced by a previous failed treatment and that OCA represents an effective solution for both primary and revision surgery of chondral and osteochondral lesions of the knee. In particular, optimal indications for OCA seem to be revision of previously failed bone marrow stimulation techniques with an impaired subchondral bone plate and primary treatment of large osteochondral defects. PMID:26261835

  6. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  7. High-dose electron beam sterilization of soft-tissue grafts maintains significantly improved biomechanical properties compared to standard gamma treatment.

    PubMed

    Hoburg, A; Keshlaf, S; Schmidt, T; Smith, M; Gohs, U; Perka, C; Pruss, A; Scheffler, S

    2015-06-01

    Allografts have gained increasing popularity in anterior cruciate ligament (ACL) reconstruction. However, one of the major concerns regarding allografts is the possibility of disease transmission. Electron beam (Ebeam) and Gamma radiation have been proven to be successful in sterilization of medical products. In soft tissue sterilization high dosages of gamma irradiation have been shown to be detrimental to biomechanical properties of grafts. Therefore, it was the objective of this study to compare the biomechanical properties of human bone-patellar tendon-bone (BPTB) grafts after ebeam with standard gamma irradiation at medium (25 kGy) and high doses (34 kGy). We hypothesized that the biomechanical properties of Ebeam irradiated grafts would be superior to gamma irradiated grafts. Paired 10 mm-wide human BPTB grafts were harvested from 20 donors split into four groups following irradiation with either gamma or Ebeam (each n = 10): (A) Ebeam 25 kGy, (B) Gamma 25 kGy, (C) Ebeam 34 kGy (D) Gamma 34 kGy and ten non-irradiated BPTB grafts were used as controls. All grafts underwent biomechanical testing which included preconditioning (ten cycles, 0-20 N); cyclic loading (200 cycles, 20-200 N) and a load-to-failure (LTF) test. Stiffness of non-irradiated controls (199.6 ± 59.1 N/mm) and Ebeam sterilized grafts did not significantly differ (152.0 ± 37.0 N/mm; 192.8 ± 58.0 N/mm), while Gamma-irradiated grafts had significantly lower stiffness than controls at both irradiation dosages (25 kGy: 126.1 ± 45.4 N/mm; 34 kGy: 170.6 ± 58.2 N/mm) (p < 0.05). Failure loads at 25 kGy were significantly lower in the gamma group (1,009 ± 400 N), while the failure load was significantly lower in both study groups at high dose irradiation with 34 kGy (Ebeam: 1,139 ± 445 N, Gamma: 1,073 ± 617 N) compared to controls (1,741 ± 304 N) (p < 0.05). Creep was significantly larger in the gamma irradiated groups (25 kGy: 0.96 ± 1.34 mm; 34 kGy: 1.06 ± 0.58 mm) than in the Ebeam (25 k

  8. Cartilage repair: A review of Stanmore experience in the treatment of osteochondral defects in the knee with various surgical techniques

    PubMed Central

    Vijayan, S; Bentley, G; Briggs, TWR; Skinner, JA; Carrington, RWJ; Pollock, R; Flanagan, AM

    2010-01-01

    Articular cartilage damage in the young adult knee, if left untreated, it may proceed to degenerative osteoarthritis and is a serious cause of disability and loss of function. Surgical cartilage repair of an osteochondral defect can give the patient significant relief from symptoms and preserve the functional life of the joint. Several techniques including bone marrow stimulation, cartilage tissue based therapy, cartilage cell seeded therapies and osteotomies have been described in the literature with varying results. Established techniques rely mainly on the formation of fibro-cartilage, which has been shown to degenerate over time due to shear forces. The implantation of autologous cultured chondrocytes into an osteochondral defect, may replace damaged cartilage with hyaline or hyaline-like cartilage. This clinical review assesses current surgical techniques and makes recommendations on the most appropriate method of cartilage repair when managing symptomatic osteochondral defects of the knee. We also discuss the experience with the technique of autologous chondrocyte implantation at our institution over the past 11 years. PMID:20697474

  9. Arthroscopic Management of Osteochondral Lesions of the Talus.

    PubMed

    Grambart, Sean T

    2016-10-01

    Osteochondral fractures of the ankle are typically caused by traumatic injuries of the ankle. Repetitive trauma can lead to further cartilage damage with subsequent increasing size of the lesion, ultimately leading to severe cartilage disorder and degenerative arthritis of the ankle. Arthroscopic bone marrow stimulation has been shown to be a highly successful option for patients with small osteochondral lesions. Studies show a higher failure rate for larger lesions and cystic changes that disrupt the subchondral plate. The threshold size seems to be 150 mm(2). PMID:27599437

  10. Effect of insulin-like growth factor-1 and hyaluronic acid in experimentally produced osteochondral defects in rats

    PubMed Central

    Alemdar, Celil; Yücel, İstemi; Erbil, Barış; Erdem, Havva; Atiç, Ramazan; Özkul, Emin

    2016-01-01

    Background: The common purpose of almost all methods used to treat the osteochondral injuries is to produce a normal cartilage matrix. However current methods are not sufficient to provide a normal cartilage matrix. For that reason, researchers have studied to increase the effectiveness of this methods using chondrogenic and chondroprotective molecules in recent experimental studies. Insulin-like growth factor-1 (IGF-1) and hyaluronic acid (HA) are two important agents used in this field. This study compared the effects of IGF-1 and HA in an experimental osteochondral defect in rat femora. Materials and Methods: The rats were divided into three groups (n = 15 per group) as follows: The IGF-1 group, HA group, and control group. An osteochondral defect of a diameter of 1.5 mm and a depth of 2 mm was created on the patellar joint side of femoral condyles. The IGF-1 group received an absorbable gelatin sponge soaked with 15 μg/15 μl of IGF-1, and the HA group received an absorbable gelatin sponge soaked with 80 μg HA. The control group received only an absorbable gelatin sponge. Rats were sacrificed at the 6th week, and the femur condyles were evaluated histologically. Results: According to the total Mankin scale, there was a statistically significant difference between IGF-1 and HA groups and between IGF-1 and control groups. There was also a significant statistical difference between HA and control groups. Conclusion: It was shown histopathologically that IGF-1 is an effective molecule for osteochondral lesions. Although it is weaker than IGF-1, HA also strengthened the repair tissue. PMID:27512224

  11. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  12. Cartilage Repair and Subchondral Bone Migration Using 3D Printing Osteochondral Composites: A One-Year-Period Study in Rabbit Trochlea

    PubMed Central

    Li, Dichen; Wang, Kunzheng; Hao, Dingjun; Bian, Weiguo; He, Jiankang; Jin, Zhongmin

    2014-01-01

    Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damage in situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel and β-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a “flow like” manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a “flow like” manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application. PMID:25177697

  13. Comparative evaluation of a bioabsorbable collagen membrane and connective tissue graft in the treatment of localized gingival recession: A clinical study

    PubMed Central

    Babu, Harsha Mysore; Gujjari, Sheela Kumar; Prasad, Deepak; Sehgal, Praveen Kumar; Srinivasan, Aishwarya

    2011-01-01

    Background: Gingival recession (GR) can result in root sensitivity, esthetic concern to the patient, and predilection to root caries. The purpose of this randomized clinical study was to evaluate (1) the effect of guided tissue regeneration (GTR) procedure using a bioabsorbable collagen membrane, in comparison to autogenous subepithelial connective tissue graft (SCTG) for root coverage in localized gingival recession defects; and (2) the change in width of keratinized gingiva following these two procedures. Materials and Methods: A total of 10 cases, showing at least two localized Miller's Class I or Class II gingival recession, participated in this study. In a split mouth design, the pairs of defects were randomly assigned for treatment with either SCTG (SCTG Group) or GTR-based collagen membrane (GTRC Group). Both the grafts were covered with coronally advanced flap. Recession depth (RD), recession width (RW), width of keratinized gingiva (KG), probing depth (PD), relative attachment level (RAL), plaque index (PI), and gingival index (GI) were recorded at baseline, 3 and 6 months postoperatively. Results: Six months following root coverage procedures, the mean root coverage was found to be 84.84% ± 16.81% and 84.0% ± 15.19% in SCTG Group and GTRC Group, respectively. The mean keratinized gingival width increase was 1.50 ± 0.70 mm and 2.30 ± 0.67 mm in the SCTG and GTRC group, respectively, which was not statistically significant. Conclusion: It may be concluded that resorbable collagen membrane can be a reliable alternative to autogenous connective tissue graft in the treatment of gingival recession. PMID:22368359

  14. Short-term studies using ceramic scaffolds in lapine model for osteochondral defect amelioration.

    PubMed

    Fernandez, F B; Shenoy, Sachin; Suresh Babu, S; Varma, H K; John, Annie

    2012-06-01

    This study was undertaken to glean preliminary information on the role of triphasic ceramic coated hydroxyapatite (HASi) and biphasic (alpha-tricalcium phosphate and hydroxyapatite based) calcium phosphate (BCP) for the development of osteochondral constructs. The proposed constructs were tested for performance in vitro with rabbit adipose-derived mesenchymal stem cells (RADMSCs) and further analysed in vivo in a lapine model for osteochondral defect amelioration. Desirable scaffolding architecture ensuring favourable conditions for cell attachment, nutrient exchange and neo-tissue organization was achieved by the synthesis of porous ceramic blocks and characterizations were carried out using x-ray diffraction and Fourier transform infrared spectroscopy. The cytocompatibility of the scaffold-cell combination product was evaluated using microscopy techniques that proved the scaffold to be non-cytotoxic and favourable for cell growth and proliferation. Short-term implantation studies were conducted with bare cylindrical HASi and BCP scaffolds, press fit deep into the bony bed of the median femoral condyles of the rabbit, which resulted in favourable specific in vivo response of de novo cartilage-like cells on the surface and sub-surface bony trabeculae. The generated pilot data will help to assess the severity of proposed procedures before embarking on scaled-up efforts. PMID:22406527

  15. Sinus lift tissue engineering using autologous pulp micro-grafts: A case report of bone density evaluation

    PubMed Central

    Brunelli, Giorgio; Motroni, Alessandro; Graziano, Antonio; D’Aquino, Riccardo; Zollino, Ilaria; Carinci, Francesco

    2013-01-01

    Background: Although autografts are the standard procedure for bone grafting, the use of bone regeneration by means of dental pulp stem cell is an alternative that opens a new era in this field. Rigenera Protocol is a new technique able to provide the surgeon autologous pulp micro-grafts. Materials and Methods: At the Department of Oral Surgery, Don Orione Hospital, Bergamo, Italy, one patient underwent sinus lift elevation with pulp stem micro-grafts gentle poured onto collagen sponge. A CT scan control was performed after 4 months and DICOM data were processed with medical imaging software which gives the possibility to use a virtual probe to extract the bone density. Pearson's Chi-square test was used to investigate difference in bone density (BD) between native and newly formed bone. Results: BD in newly formed bone is about the double of native bone. Conclusion: This report demonstrated that micro-grafts derived from dental pulp poured onto collagen sponge are a useful method for bone regeneration in atrophic maxilla. PMID:24174760

  16. Transmucosal Implant Placement with Submarginal Connective Tissue Graft in Area of Shallow Buccal Bone Dehiscence: A Three-Year Follow-Up Case Series.

    PubMed

    Stefanini, Martina; Felice, Pietro; Mazzotti, Claudio; Marzadori, Matteo; Gherlone, Enrico F; Zucchelli, Giovanni

    2016-01-01

    The aim of the present case series study was to evaluate the short- and long-term (3 years) soft tissue stability of a surgical technique combining transmucosal implant placement with submarginal connective tissue graft (CTG) in an area of shallow buccal bone dehiscence. A sample of 20 patients were treated by positioning a transmucosal implant in an intercalated edentulous area. A CTG sutured to the inner aspect of the buccal flap was used to cover the shallow buccal bone dehiscence. Clinical evaluations were made at 6 months (T₁) and 1 (T₂) and 3 (T₃) years after the surgery. Statistically significant increases in buccal soft tissue thickness and improvement of vertical soft tissue level were achieved at the T₁, T₂, and T₃ follow-ups. A significant increase in keratinized tissue height was also found at T₃. No significant marginal bone loss was recorded. The submarginal CTG technique was able to provide simultaneous vertical and horizontal soft tissue increases around single implants with shallow buccal bone dehiscence and no buccal mucosal recession or clinical signs of mucositis or peri-implantitis at 1 and 3 years. PMID:27560667

  17. Repair of articular osteochondral defects of the knee joint using a composite lamellar scaffold

    PubMed Central

    Lv, Y. M.; Yu, Q. S.

    2015-01-01

    Objectives The major problem with repair of an articular cartilage injury is the extensive difference in the structure and function of regenerated, compared with normal cartilage. Our work investigates the feasibility of repairing articular osteochondral defects in the canine knee joint using a composite lamellar scaffold of nano-ß-tricalcium phosphate (ß-TCP)/collagen (col) I and II with bone marrow stromal stem cells (BMSCs) and assesses its biological compatibility. Methods The bone–cartilage scaffold was prepared as a laminated composite, using hydroxyapatite nanoparticles (nano-HAP)/collagen I/copolymer of polylactic acid–hydroxyacetic acid as the bony scaffold, and sodium hyaluronate/poly(lactic-co-glycolic acid) as the cartilaginous scaffold. Ten-to 12-month-old hybrid canines were randomly divided into an experimental group and a control group. BMSCs were obtained from the iliac crest of each animal, and only those of the third generation were used in experiments. An articular osteochondral defect was created in the right knee of dogs in both groups. Those in the experimental group were treated by implanting the composites consisting of the lamellar scaffold of ß-TCP/col I/col II/BMSCs. Those in the control group were left untreated. Results After 12 weeks of implantation, defects in the experimental group were filled with white semi-translucent tissue, protruding slightly over the peripheral cartilage surface. After 24 weeks, the defect space in the experimental group was filled with new cartilage tissues, finely integrated into surrounding normal cartilage. The lamellar scaffold of ß-TCP/col I/col II was gradually degraded and absorbed, while new cartilage tissue formed. In the control group, the defects were not repaired. Conclusion This method can be used as a suitable scaffold material for the tissue-engineered repair of articular cartilage defects. Cite this article: Bone Joint Res 2015;4:56–64 PMID:25837672

  18. Arthroscopic Allograft Cartilage Transfer for Osteochondral Defects of the Talus

    PubMed Central

    Min, Kyong S.; Ryan, Paul M.

    2015-01-01

    Arthroscopic treatment of osteochondral defects is well established but has had mixed results in larger lesions and revision operations. Particulated allograft cartilage transfer may provide an arthroscopic option for lesions that would otherwise have been treated through open approaches or osteotomies. The procedure is performed under noninvasive distraction with standard arthroscopic portals. PMID:26052496

  19. Glenoid dysplasia and osteochondritis dissecans in a cat

    PubMed Central

    Schwarze, Rebecca A.; Tano, Cheryl A.; Carroll, Vincent W.

    2015-01-01

    A 2-year-old Maine coon cat was presented for a right forelimb lameness. Computed tomography of the shoulder revealed a shallow glenoid, osteophyte deposition at the caudal humeral head and medial glenoid, and an intra-articular osseous body. This cat had glenoid dysplasia and osteochondritis dissecans of the glenoid. PMID:26130839

  20. OSTEOCHONDRITIS DISSECANS OF THE KNEE: DIAGNOSIS AND TREATMENT

    PubMed Central

    Mestriner, Luiz Aurélio

    2015-01-01

    Osteochondritis dissecans (OCD) is a pathological process affecting the subchondral bone of the knee in children and adolescents with open growth plates (juvenile OCD) and young adults with closed growth plates (adult OCD). It may lead to secondary effects on joint cartilage, such as pain, edema, possible formation of free bodies and mechanical symptoms, including joint locking. OCD may lead to degenerative changes may develop if left untreated. This article presents a review and update on this problem, with special emphasis on diagnosis and treatment. The latter may include either conservative methods, which show more predictable results for juvenile OCD, or various surgical methods, which include reparative techniques like isolated removal of the fragment, bone drilling and fixation of the osteochondral fragments, and restorative techniques like microfractures, autologous osteochondral transplantation (mosaicplasty), autologous chondrocyte implantation and fresh osteochondral allograft, depending on lesion stability, lesion viability, skeletal maturity and OCD process location. Recent assessments on the results from several types of treatment have shown that there is a lack of studies with reliable levels of evidence and have suggested that further multicenter prospective randomized and controlled studies on management of this disease should be conducted. PMID:27047865

  1. In Vivo Functional Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human Adipose-Derived Stem Cells from High Cardiovascular Risk Populations.

    PubMed

    Krawiec, Jeffrey T; Weinbaum, Justin S; Liao, Han-Tsung; Ramaswamy, Aneesh K; Pezzone, Dominic J; Josowitz, Alexander D; D'Amore, Antonio; Rubin, J Peter; Wagner, William R; Vorp, David A

    2016-05-01

    Many preclinical evaluations of autologous small-diameter tissue-engineered vascular grafts (TEVGs) utilize cells from healthy humans or animals. However, these models hold minimal relevance for clinical translation, as the main targeted demographic is patients at high cardiovascular risk such as individuals with diabetes mellitus or the elderly. Stem cells such as adipose-derived mesenchymal stem cells (AD-MSCs) represent a clinically ideal cell type for TEVGs, as these can be easily and plentifully harvested and offer regenerative potential. To understand whether AD-MSCs sourced from diabetic and elderly donors are as effective as those from young nondiabetics (i.e., healthy) in the context of TEVG therapy, we implanted TEVGs constructed with human AD-MSCs from each donor type as an aortic interposition graft in a rat model. The key failure mechanism observed was thrombosis, and this was most prevalent in grafts using cells from diabetic patients. The remainder of the TEVGs was able to generate robust vascular-like tissue consisting of smooth muscle cells, endothelial cells, collagen, and elastin. We further investigated a potential mechanism for the thrombotic failure of AD-MSCs from diabetic donors; we found that these cells have a diminished potential to promote fibrinolysis compared to those from healthy donors. Together, this study served as proof of concept for the development of a TEVG based on human AD-MSCs, illustrated the importance of testing cells from realistic patient populations, and highlighted one possible mechanistic explanation as to the observed thrombotic failure of our diabetic AD-MSC-based TEVGs. PMID:27079751

  2. Subepithelial Connective Tissue Graft in Combination with a Tunnel Technique for the Treatment of Miller Class II and III Gingival Recessions in Mandibular Incisors: Clinical and Esthetic Results.

    PubMed

    Nart, Jose; Valles, Cristina

    2016-01-01

    There is limited evidence regarding the effect of the subepithelial connective tissue graft (SCTG) on root coverage in the mandibular anterior region. A sample of 15 Miller Class II and III recessions were treated in 15 patients using a SCTG with a tunnel technique. After a mean follow-up of 20.53 months, the mean percentage of root coverage was 83.25% for all treated recessions. Furthermore, a statistically significant increase of keratinized tissue was observed at the end of the evaluation period (2.66 mm; P = .001). The combination of tunnel technique and SCTG should be considered a treatment option to obtain root coverage in mandibular incisors with Class II and III recession defects. PMID:27333018

  3. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Kasálková, Nikola Slepičková; Slepička, Petr; Kolská, Zdeňka; Hodačová, Petra; Kučková, Štěpánka; Švorčík, Václav

    2014-04-01

    In this work, an influence of bovine serum albumin proteins grafting on the surface properties of plasma-treated polyethylene and poly- l-lactic acid was studied. The interaction of the vascular smooth muscle cells with the modified polymer surface was determined. The surface properties were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, nano-LC-ESI-Q-TOF mass spectrometry, electrokinetic analysis, and goniometry. One of the motivations for this work is the idea that by the interaction of the cell with substrate surface, the proteins will form an interlayer between the cell and the substrate. It was proven that when interacting with the plasma-treated high-density polyethylene and poly- l-lactic acid, the bovine serum albumin protein is grafted on the polymer surface. Since the proteins are bonded to the substrate surface, they can stimulate cell adhesion and proliferation.

  4. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.

    PubMed

    Zhang, Chunmei; Wang, Liwei; Zhai, Tianliang; Wang, Xinchao; Dan, Yi; Turng, Lih-Sheng

    2016-01-01

    Graphene oxide (GO) was incorporated into poly(lactic acid) (PLA) as a reinforcing nanofiller to produce composite nanofibrous scaffolds using the electrospinning technique. To improve the dispersion of GO in PLA and the interfacial adhesion between the filler and matrix, GO was surface-grafted with poly(ethylene glycol) (PEG). Morphological, thermal, mechanical, and wettability properties, as well as preliminary cytocompatibility with Swiss mouse NIH 3T3 cells of PLA, PLA/GO, and PLA/GO-g-PEG electrospun nanofibers, were characterized. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers decreased with filler content. Both GO and GO-g-PEG improved the thermal stability of PLA, but GO-g-PEG was more effective. The water contact angle test of the nanofiber mats showed that the addition of GO in PLA did not change the surface wettability of the materials, but PLA/GO-g-PEG samples exhibited improved wettability with lower water contact angles. The tensile strength of the composite nanofiber mats was improved with the addition of GO, and it was further enhanced when GO was surface grafted with PEG. This suggested that improved interfacial adhesion between GO and PLA was achieved by grafting PEG onto the GO. The cell viability and proliferation results showed that the cytocompatibility of PLA was not compromised with the addition of GO and GO-g-PEG. With enhanced mechanical properties as well as good wettability and cytocompatibility, PLA/GO-g-PEG composite nanofibers have the potential to be used as scaffolds in tissue engineering. PMID:26409231

  5. Comparative evaluation of recession coverage with sub-epithelial connective tissue graft using macrosurgical and microsurgical approaches: A randomized split mouth study

    PubMed Central

    Jindal, Uditi; Pandit, Nymphea; Bali, Deepika; Malik, Rajvir; Gugnani, Shalini

    2015-01-01

    Aims: The aim was to compare the recession coverage outcomes when done macrosurgically and microsurgically. Background: Increasing interest in esthetics and the related problems such as hypersensitivity and root caries have favored the development of many root coverage procedures. Recession coverage up to a certain extent has solved these problems, but these procedures need good maintenance after the surgery for long-term benefits. With increasing advances in the field of recession coverage, microscope has added another dimension in undertaking the surgical procedure. Materials and Methods: Thirty Miller's Class I and II recession were treated using the sub-epithelial connective tissue graft from the palate. In 15 sites, the graft was placed at the recipient site with unaided eye (Group A) and in other 15 sites the graft was placed using surgical microscope (Group B). Clinical evaluation was done at baseline, 12 weeks and 24 weeks postoperatively using plaque index, gingival index, vertical recession (VR), probing depth, clinical attachment level (CAL), width of attached gingiva, papilla height (PH) and width, malalignment index (MI) and esthetic appearance. Statistical Analysis Used: Paired and unpaired Student's t-test along with Wilcoxon Z-test were used to analyze the results and probability of P < 0.05 were accepted to reject the null hypothesis. Pearson correlation was used to correlate two parameters such as VR and CAL and MI and VR. Results: Both the techniques demonstrated predictable mean root coverage (Group A 61.78% and Group B 67.58%) at 6 months postsurgery. CAL gain was slightly better in Group B patients when compared to Group A patients. A moderate positive correlation for Group A while a mild correlation in Group B was seen between the MI and VR. Conclusion: The use of the microscope enhances the results, but obtaining an expertise in using needs a lot of practice. The periodontal healing by both techniques should be evaluated histologically. PMID

  6. Promoting Long-Term Survival of Insulin-Producing Cell Grafts That Differentiate from Adipose Tissue-Derived Stem Cells to Cure Type 1 Diabetes

    PubMed Central

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Background Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Methodology/Principal Findings Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Conclusions/Significance Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. PMID:22216347

  7. State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients.

    PubMed

    Guillaume-Jugnot, P; Daumas, A; Magalon, J; Sautereau, N; Veran, J; Magalon, G; Sabatier, F; Granel, B

    2016-01-01

    Systemic sclerosis is an autoimmune disease characterized by sclerosis (hardening) of the skin and deep viscera associated with microvascular functional and structural alteration, which leads to chronic ischemia. In the hands of patients, ischemic and fibrotic damages lead to both pain and functional impairment. Hand disability creates a large burden in professional and daily activities, with social and psychological consequences. Currently, the proposed therapeutic options for hands rely mainly on hygienic measures, vasodilatator drugs and physiotherapy, but have many constraints and limited effects. Developing an innovative therapeutic approach is crucial to reduce symptoms and improve the quality of life. The discovery of adult stem cells from adipose tissue has increased the interest to use adipose tissue in plastic and regenerative surgery. Prepared as freshly isolated cells for immediate autologous transplantation, adipose tissue-derived stem cell therapy has emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. We aim to update literature in the interest of autologous fat graft or adipose derived from stromal vascular fraction cell-based therapy for the hands of patients who suffer from systemic sclerosis. PMID:27140597

  8. A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery

    NASA Astrophysics Data System (ADS)

    Madeo, Angela; Lekszycki, Tomasz; dell'Isola, Francesco

    2011-10-01

    We introduce a two-constituent porous continuum as a model describing the long-term growth/resorption phenomena in bone tissues grafted with bio-resorbable materials as driven by mechanical loads. The proposed model is able to account for the interplay between mechanical and biological phenomena which are known to be important for the bone tissue synthesis and the resorption of both bone tissue and bio-material. In particular, in the presented model the Lagrangian apparent mass densities of the natural bone and of the artificial material evolve in time according to precise ordinary differential equations. These latter are obtained by postulating a growth/resorption law and suitable constitutive equations conceived to account for the influence on bone resorption and synthesis of the action of different applied external loads as mediated by biological stimulus. The considered constitutive equations are chosen on the basis of the known biological phenomena occurring in bone resorption and synthesis. We present some numerical simulations for rod-bones subjected to axial external load. These numerical simulations allow for the description of the most desirable situation in which a gradual resorption of the artificial material takes place together with the contemporary formation of new bone, finally giving rise to an almost complete replacement of the artificial material with natural living tissue.

  9. Fat Grafting for Facial Filling and Regeneration.

    PubMed

    Coleman, Sydney R; Katzel, Evan B

    2015-07-01

    Plastic surgeons have come to realize that fat grafting can rejuvenate an aging face by restoring or creating fullness. However, fat grafting does much more than simply add volume. Grafted fat can transform or repair the tissues into which it is placed. Historically, surgeons have hesitated to embrace the rejuvenating potential of fat grafting because of poor graft take, fat necrosis, and inconsistent outcomes. This article describes fat grafting techniques and practices to assist readers in successful harvesting, processing, and placement of fat for optimal graft retention and facial esthetic outcomes. PMID:26116934

  10. Reengineered graft copolymers as a potential alternative for the bone tissue engineering application by inducing osteogenic markers expression and biocompatibility.

    PubMed

    Thangavelu, Muthukumar; R Narasimha, Raghavan; Adithan, Aravinthan; A, Chandrasekaran; Jong-Hoon, Kim; Thotapalli Parvathaleswara, Sastry

    2016-07-01

    Composite scaffolds of nano-hydroxyapatite with demineralized bone matrix were prepared and they were graft copolymerized for better bone regeneration and drug delivery applications. The graft copolymers were characterized for their physiochemical properties using conventional methods like FTIR, TGA, XRD and SEM. The scaffolds were seeded with 3T3 and MG63 cells for studying their biocompatibility and their temporal expression of ALP activity, the rate of calcium deposition and their gene expression of collagen type I (Coll-1), osteopontin (OP), osteonectin (ON), and osteocalcin (OC) were studied. In vivo studies were conducted using sub-cutaneous implantation models in male Wister rats for 6 months. Periodic radiography and post-autopsy histopathology was analysed at 15days, 1, 2, 3, 4, 5, and 6 months. The obtained in vitro results clearly confirm that the bone scaffolds prepared in this study are biocompatible, superior osteoinductivity, capable of supporting growth, maturation of MG 63 osteoblast like cells; the gene expression profile revealed that the material is capable of supporting the in vitro growth and maturation of osteoblast-like cells and maturation. The in vivo results stand a testimony to the in vitro results in proving the biocompatibility and osteoinductivity of the materials. PMID:26998863

  11. Survival and Reoperation Rate Following Osteochondral Allograft Transplantation

    PubMed Central

    Frank, Rachel M.; Levy, David; Scalise, Pamela Nina; Smith, Margaret Elizabeth; Cole, Brian J.

    2016-01-01

    Objectives: The purpose of this study was to quantify survival for osteochondral allograft transplantation (OAT) and report findings at reoperation. Methods: A retrospective review of a prospectively collected database of patients who underwent OAT by a single surgeon with a minimum follow-up duration of 2-years was conducted. The reoperation rate, timing of reoperation, procedure performed at reoperation, and findings at surgery were reviewed. Failure was defined by revision OAT, conversion to knee arthroplasty, or gross appearance of graft failure at 2ndlook arthroscopy. Descriptive statistics, log-rank testing, cross-tabulation, and chi-square testing were performed, with P<0.05 set as significant. Results: 100 patients (average age 32.7±10.2 years; 53 males, 47 females) who underwent OAT at an average follow-up of 4.9±2.5 years (range, 2.0 to 11.3) were included. Ninety-five patients (95%) underwent an average of 2.7±1.7 prior surgical procedures on the ipsilateral knee prior to OAT. The average defect size was 452.7±181.6 mm2 and was located on the medial femoral condyle in 63 patients (63%). Fifty-one percent of OATs were isolated, while 49% were performed with concomitant procedures including meniscus allograft transplantation (MAT) in 27 (27%). Fifty-three patients (53%) returned to the operating room at an average 2.8±2.7 years, with 26% of these patients (14/53) undergoing additional reoperations (range, 1-3 additional reoperations). Arthroscopic debridement was performed in 91% of the initial reoperations (48/53); 55% of reoperations (29/53) were performed within 2 years of the index OAT. Twenty patients (20%) were considered failures at an average 4.0±2.7 years following index OAT either due to revision OAT (N=6), conversion to arthroplasty (N=10), or appearance of poorly incorporated allograft at arthroscopy (N=4). Patients requiring multiple reoperations had an odds ratio of 7.25 (95% CI, 1.85 to 28.37) of OAT failure (P=0.004), while patients

  12. Dose-dependent variations in blood flow evaluation of canine nerve, nerve graft, tendon, and ligament tissue by the radiolabeled-microsphere technique

    SciTech Connect

    Riggi, K.; Wood, M.B.; Ilstrup, D.M. )

    1990-11-01

    This study evaluates the dose-dependent accuracy of the radionuclide-labeled microsphere technique for blood flow evaluation in nerve, tendon, and ligament. In eight dogs, blood flows were determined for nerve, nerve graft, tendon, and ligament tissue by simultaneous injection of high- and low-dose microspheres with different radiolabels. The results demonstrated no significant differences in blood flow as measured from the small number of microspheres (less than 400) and the high number (more than 400) for nerve and tendon tissue. For nerve tissue, microsphere counts of 50 to 100, 100 to 200, 200 to 300, and more than 300 produced mean percentage errors of 12.74% (n = 5, SEM = 4.52), 5.45% (n = 13, SEM = 1.22), 10.22% (n = 6, SEM = 4.37), and 17.08% (n = 12, SEM = 3.30), respectively. For tendon tissue, the same microsphere subdivisions had mean percentage errors of 7.47% (n = 4, SEM = 2.66), 3.63% (n = 6, SEM = 1.34), 15.54% (n = 4, SEM = 4.43), and 12.91% (n = 1), respectively. For ligament tissue, percentage errors were consistently higher; microsphere counts of 30 to 100, 100 to 200, and 200 to 300 produced mean errors of 20.14% (n = 4, SEM = 6.38), 18.66% (n = 4, SEM = 6.24), and 25.78% (n = 2, SEM = 1.97), respectively. Although there was no direct relationship between percentage error and number of microspheres retrieved, we suggest that microsphere counts in the range of 100 to 200 should be considered acceptable for nerve and tendon in the canine. Ligament tissue seems to be less well suited to the microsphere technique; however, further study is warranted.

  13. Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit.

    PubMed

    Qu, Dan; Li, Jihua; Li, Yubao; Khadka, Ashish; Zuo, Yi; Wang, Hang; Liu, Yiming; Cheng, Lin

    2011-01-01

    In this work, the novel poly vinyl alcohol/gelatin-nano-hydroxyapatite/polyamide6 (PVA-n-HA/PA6) bilayered scaffold with biomimetic properties for articular cartilage and subchondral bone is developed. Furthermore, when these osteochondral scaffolds were seeded with induced bone mesenchymal stem cells (BMSCs) and implanted at ectopic sites, showed the potential for an engineered cartilage tissue and the corresponding subchondral bone. BMSCs were expanded in vitro and induced to chondrogenic or osteogenic potential by culturing in suitable media for 14 days. Subsequently, these induced cells were seeded into PVA-n-HA/PA6 separately, and the constructs were implanted into the rabbit muscle pouch for upto 12 weeks. Ectopic neocartilage formation in the PVA layer and reconstitution of the subchondral bone which remained confined within the n-HA/PA6 layer with the alteration of the cellular phenotype were identified with Masson's trichrome stain. Simultaneously, the RT-PCR results confirmed the expression of specific extracellular matrix (ECM) markers for cartilaginous tissue, such as collagen type II (Col-II), or alternatively, markers for osteoid tissue, such as collagen type I (Col-I) at the corresponding layers. During ectopic implantation, the underlying subchondral bone layer was completely integrated with the cartilage layer. The result from the ectopic osteochondral scaffolds implantation suggests that PVA-n-HA/PA6 with induced BMSCs is a possible substitute with potential in cartilage repair strategies. PMID:20967773

  14. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model.

    PubMed

    Fukunishi, Takuma; Best, Cameron A; Sugiura, Tadahisa; Shoji, Toshihiro; Yi, Tai; Udelsman, Brooks; Ohst, Devan; Ong, Chin Siang; Zhang, Huaitao; Shinoka, Toshiharu; Breuer, Christopher K; Johnson, Jed; Hibino, Narutoshi

    2016-01-01

    Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient's own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically results in limited host cell infiltration, poor remodeling, stenosis, and calcification. The purpose of this study is to evaluate the feasibility of novel small diameter arterial TEVGs created using fast degrading material. A 1.0mm and 5.0mm diameter TEVGs were fabricated with electrospun polycaprolactone (PCL) and chitosan (CS) blend nanofibers. The 1.0mm TEVGs were implanted in mice (n = 3) as an unseeded infrarenal abdominal aorta interposition conduit., The 5.0mm TEVGs were implanted in sheep (n = 6) as an unseeded carotid artery (CA) interposition conduit. Mice were followed with ultrasound and sacrificed at 6 months. All 1.0mm TEVGs remained patent without evidence of thrombosis or aneurysm formation. Based on small animal outcomes, sheep were followed with ultrasound and sacrificed at 6 months for histological and mechanical analysis. There was no aneurysm formation or calcification in the TEVGs. 4 out of 6 grafts (67%) were patent. After 6 months in vivo, 9.1 ± 5.4% remained of the original scaffold. Histological analysis of patent grafts demonstrated deposition of extracellular matrix constituents including elastin and collagen production, as well as endothelialization and organized contractile smooth muscle cells, similar to that of native CA. The mechanical properties of TEVGs were comparable to native CA. There was a significant positive correlation between TEVG wall thickness and CD68+ macrophage infiltration into the scaffold (R2 = 0.95, p = 0.001). The fast degradation of CS in our novel TEVG promoted excellent cellular infiltration and neotissue formation

  15. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model

    PubMed Central

    Fukunishi, Takuma; Best, Cameron A.; Sugiura, Tadahisa; Shoji, Toshihiro; Yi, Tai; Udelsman, Brooks; Ohst, Devan; Ong, Chin Siang; Zhang, Huaitao; Shinoka, Toshiharu; Breuer, Christopher K.; Johnson, Jed; Hibino, Narutoshi

    2016-01-01

    Tissue engineered vascular grafts (TEVGs) have the potential to overcome the issues faced by existing small diameter prosthetic grafts by providing a biodegradable scaffold where the patient’s own cells can engraft and form functional neotissue. However, applying classical approaches to create arterial TEVGs using slow degrading materials with supraphysiological mechanical properties, typically results in limited host cell infiltration, poor remodeling, stenosis, and calcification. The purpose of this study is to evaluate the feasibility of novel small diameter arterial TEVGs created using fast degrading material. A 1.0mm and 5.0mm diameter TEVGs were fabricated with electrospun polycaprolactone (PCL) and chitosan (CS) blend nanofibers. The 1.0mm TEVGs were implanted in mice (n = 3) as an unseeded infrarenal abdominal aorta interposition conduit., The 5.0mm TEVGs were implanted in sheep (n = 6) as an unseeded carotid artery (CA) interposition conduit. Mice were followed with ultrasound and sacrificed at 6 months. All 1.0mm TEVGs remained patent without evidence of thrombosis or aneurysm formation. Based on small animal outcomes, sheep were followed with ultrasound and sacrificed at 6 months for histological and mechanical analysis. There was no aneurysm formation or calcification in the TEVGs. 4 out of 6 grafts (67%) were patent. After 6 months in vivo, 9.1 ± 5.4% remained of the original scaffold. Histological analysis of patent grafts demonstrated deposition of extracellular matrix constituents including elastin and collagen production, as well as endothelialization and organized contractile smooth muscle cells, similar to that of native CA. The mechanical properties of TEVGs were comparable to native CA. There was a significant positive correlation between TEVG wall thickness and CD68+ macrophage infiltration into the scaffold (R2 = 0.95, p = 0.001). The fast degradation of CS in our novel TEVG promoted excellent cellular infiltration and neotissue formation

  16. [Patellar osteochondral injury as onset of patellar instability].

    PubMed

    Cepero-Campà, S; Ullot-Font, R; Pérez-López, L M

    2012-01-01

    Patellar osteochondral fractures with no dislocation are uncommon and usually affect the centromedial facet of the patella. We present the case of a 10 year-old, overweight, female patient. She was seen in the emergency room after suffering an accidental fall, assessed as an osteochondral fracture-dislocation of the right patella with upper-outer displaced free fragments. By patient interview, she referred to no previous episodes of patellar dislocation. To complete the study, we performed an MRI which showed a medial facet patellar fracture, with two osteochondral fragments located in the sub-quadricipital recess, associated with other lesions suggesting patellar subluxation. We considered that the best treatment was surgery, so the following was performed: an open reduction and internal fixation with absorbable bars, lateral patellar release (Ficat technique), patellar coverage by medial portion of quadriceps (Insall technique) and internal moving of the lateral half of the patellar tendon (Goldwaith technique). The injury was checked one year later using arthroscopy. It confirmed a good reconstruction of the articular surface, and right patellar centering. At follow-up, during the physiotherapy period, the patient began to have repeated episodes of instability in the contralateral patella. The CT scan confirmed the patellar lateralisation (TAGT 17). Centering surgery was indicated due to the occurrence of multiple dislocation episodes. The patient currently carries out normal physical activity and she has a complete range of movement. Patellar osteochondral fracture is an injury frequently associated with patellar instability, which may onset in the first episode. The medial location of the lesions and the involvement of the system of medial knee stability is a fundamental finding. This fact reinforces the diagnosis of pre-fracture patellar dislocation. This is not a fracture-dislocation, but a dislocation-fracture. We may, therefore, treat the injury and its

  17. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model.

    PubMed

    Zhao, Yang; He, Yi; Zhou, Zhe; Guo, Jian-hua; Wu, Jia-sheng; Zhang, Ming; Li, Wei; Zhou, Juan; Xiao, Dong-dong; Wang, Zhong; Sun, Kang; Zhu, Ying-jian; Lu, Mu-jun

    2015-09-01

    With advances in tissue engineering, various synthetic and natural biomaterials have been widely used in tissue regeneration of the urinary bladder in rat models. However, reconstructive procedures remain insufficient due to the lack of appropriate scaffolding, which should provide a waterproof barrier function and support the needs of various cell types. To address these problems, we have developed a bilayer scaffold comprising a porous network (silk fibroin [SF]) and an underlying natural acellular matrix (bladder acellular matrix graft [BAMG]) and evaluated its feasibility and potential for bladder regeneration in a rat bladder augmentation model. Histological (hematoxylin and eosin and Masson's trichrome staining) and immunohistochemical analyses demonstrated that the bilayer BAMG-SF scaffold promoted smooth muscle, blood vessel, and nerve regeneration in a time-dependent manner. At 12weeks after implantation, bladders reconstructed with the BAMG-SF matrix displayed superior structural and functional properties without significant local tissue responses or systemic toxicity. These results demonstrated that the bilayer BAMG-SF scaffold may be a promising scaffold with good biocompatibility for bladder regeneration in the rat bladder augmentation model. PMID:26049152

  18. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells.

    PubMed

    Weber, Benedikt; Kehl, Debora; Bleul, Ulrich; Behr, Luc; Sammut, Sébastien; Frese, Laura; Ksiazek, Agnieszka; Achermann, Josef; Stranzinger, Gerald; Robert, Jérôme; Sanders, Bart; Sidler, Michele; Brokopp, Chad E; Proulx, Steven T; Frauenfelder, Thomas; Schoenauer, Roman; Emmert, Maximilian Y; Falk, Volkmar; Hoerstrup, Simon P

    2016-01-01

    Amniotic fluid cells (AFCs) have been proposed as a valuable source for tissue engineering and regenerative medicine. However, before clinical implementation, rigorous evaluation of this cell source in clinically relevant animal models accepted by regulatory authorities is indispensable. Today, the ovine model represents one of the most accepted preclinical animal models, in particular for cardiovascular applications. Here, we investigate the isolation and use of autologous ovine AFCs as cell source for cardiovascular tissue engineering applications. Fetal fluids were aspirated in vivo from pregnant ewes (n = 9) and from explanted uteri post mortem at different gestational ages (n = 91). Amniotic non-allantoic fluid nature was evaluated biochemically and in vivo samples were compared with post mortem reference samples. Isolated cells revealed an immunohistochemical phenotype similar to ovine bone marrow-derived mesenchymal stem cells (MSCs) and showed expression of stem cell factors described for embryonic stem cells, such as NANOG and STAT-3. Isolated ovine amniotic fluid-derived MSCs were screened for numeric chromosomal aberrations and successfully differentiated into several mesodermal phenotypes. Myofibroblastic ovine AFC lineages were then successfully used for the in vitro fabrication of small- and large-diameter tissue-engineered vascular grafts (n = 10) and cardiovascular patches (n = 34), laying the foundation for the use of this relevant pre-clinical in vivo assessment model for future amniotic fluid cell-based therapeutic applications. PMID:23881794

  19. Evaluation of biomarkers following autologous osteochondral transplantation in the equine stifle joint - An experimental study.

    PubMed

    Tuska, Pál; Tóth, Balázs; Vásárhelyi, Gábor; Hangody, László; Papp, Miklós; Bodó, Gábor

    2016-06-01

    The purpose of this study was to evaluate changes in biomarker and synovial parameters following autologous osteochondral transplantation (AOT) in the equine stifle joint, to test the hypothesis whether synovial parameters would show significant differences at selected time points following the surgery (at days 3, 14, 60 and 180) compared to baseline level (at day 0). Surgical intervention was performed in both stifles of nine horses (n = 18). The joints were randomly assigned to operated and sham-operated groups. Grafts 8.5 mm in diameter were harvested from the femoropatellar (FP) joint under arthroscopic control and the medial femorotibial (MFT) joints had AOT using mosaicplasty (MP) instrumentation, while the sham FP and sham MFT joints underwent arthroscopy and miniarthrotomy without transplantation, respectively. Synovial fluid (SF) parameters were evaluated at days 4, 14, 60 and 180. Data were analysed by two-way repeated- measures analysis of variance (ANOVA), and P < 0.05 was considered significant. During the first 10-14 days after surgery, lameness of degree 2-3/5 [American Association of Equine Practitioners (AAEP) scores] was present, which disappeared after 60 days. Joints with transplantation showed significant increases in synovial white blood cell count (WBC), total protein (TP), substance P, C1,2C and CS846 epitope concentration at day 3 compared to baseline and shamoperated joints (P < 0.05). These parameters returned to the baseline values by two months after surgery and remained within normal levels at 6 months postoperatively. PMID:27342088

  20. [Fixing of osteochondral fragments with fibrinogen glue. Clinical experiences (author's transl)].

    PubMed

    Zilch, H; Friedebold, G

    1981-08-01

    Small osteochondral fragments are well fixed with the fibrinogen glue. This method is really a progress in comparison with the traditional fixation by screws or K-wires. The fragments were revascularized early. This is demonstrated by 31 glued osteochondral fragments which healed well. The joints must be immobilized during a period of 3 weeks. PMID:6118021

  1. Osteochondritis dissecans and Osgood Schlatter disease in a family with Stickler syndrome

    PubMed Central

    Al Kaissi, Ali; Klaushofer, Klaus; Grill, Franz

    2009-01-01

    Purpose Stickler syndrome is among the most common autosomal dominant connective tissue disorders but is often unrecognised and therefore not diagnosed by clinicians. Despite much speculation, the cause of osteochondrosis in general and osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) in particular remain unclear. Etiological understanding is essential. We describe a pair of family subjects presented with OCD and OSS as a symptom complex rather than a diagnosis. Methods Detailed clinical and radiographic examinations were undertaken with emphasis on the role of MRI imaging. Magnetic resonance imaging may allow early prediction of articular lesion healing potential in patients with Stickler syndrome. Results The phenotype of Stickler syndrome can be diverse and therefore misleading. The expectation that the full clinical criteria of any given genetic disorder such as Stickler syndrome will always be present can easily lead to an underestimation of these serious inheritable disorders. We report here two family subjects, a male proband and his aunt (paternal sister), both presented with the major features of Stickler syndrome. Tall stature with marfanoid habitus, astigmatism/congenital vitreous abnormality and submucus cleft palate/cleft uvula, and enlarged painful joints with early onset osteoarthritis. Osteochondritis dissecans (OCD) and Osgood Schlatter syndrome (OSS) were the predominating joint abnormalities. Conclusion We observed that the nature of the articular and physeal abnormalities was consistent with a localised manifestation of a more generalised epiphyseal dysplasia affecting the weight-bearing joints. In these two patients, OCD and OSS appeared to be the predominant pathologic musculoskeletal consequences of an underlying Stickler's syndrome. It is empirical to consider generalised epiphyseal dysplasia as a major underlying causation that might drastically affect the weight-bearing joints. PMID:19193224

  2. Chemical and morphological gradient scaffolds to mimic hierarchically complex tissues: From theoretical modeling to their fabrication.

    PubMed

    Marrella, Alessandra; Aiello, Maurizio; Quarto, Rodolfo; Scaglione, Silvia

    2016-10-01

    Porous multiphase scaffolds have been proposed in different tissue engineering applications because of their potential to artificially recreate the heterogeneous structure of hierarchically complex tissues. Recently, graded scaffolds have been also realized, offering a continuum at the interface among different phases for an enhanced structural stability of the scaffold. However, their internal architecture is often obtained empirically and the architectural parameters rarely predetermined. The aim of this work is to offer a theoretical model as tool for the design and fabrication of functional and structural complex graded scaffolds with predicted morphological and chemical features, to overcome the time-consuming trial and error experimental method. This developed mathematical model uses laws of motions, Stokes equations, and viscosity laws to describe the dependence between centrifugation speed and fiber/particles sedimentation velocity over time, which finally affects the fiber packing, and thus the total porosity of the 3D scaffolds. The efficacy of the theoretical model was tested by realizing engineered graded grafts for osteochondral tissue engineering applications. The procedure, based on combined centrifugation and freeze-drying technique, was applied on both polycaprolactone (PCL) and collagen-type-I (COL) to test the versatility of the entire process. A functional gradient was combined to the morphological one by adding hydroxyapatite (HA) powders, to mimic the bone mineral phase. Results show that 3D bioactive morphologically and chemically graded grafts can be properly designed and realized in agreement with the theoretical model. Biotechnol. Bioeng. 2016;113: 2286-2297. © 2016 Wiley Periodicals, Inc. PMID:27093435

  3. Developments at the graft interface in homo- and hetero-grafts

    PubMed Central

    Clemente Moreno, Maria José; Hevin, Cyril; Ollat, Nathalie; Cookson, Sarah Jane

    2014-01-01

    Gene expression changes induced during graft union formation (the first month after grafting) in grapevine have been studied using whole genome microarrays. The genes differentially expressed between the rootstock and graft interface tissues of homo-grafts (Cabernet Sauvignon (CS) grafted onto CS) were compared at 3 and 28 days after grafting (dag). Graft union formation was associated with the upregulation of genes involved in secondary metabolism, cell wall, wound responses and hormone signaling. These gene expression differences were associated with the accumulation of lignin, cellulose and callose in the callus cells. Superimposed upon this, hetero-grafting between two different grapevine genotypes resulted in the further upregulation of stress and/or defense responses at the graft interface. Here we discuss the limitations of the techniques used to study the developments at the graft interface to date and future research directions to understand graft union formation in plants. PMID:24770337

  4. Nonprocessed adipose tissue graft in the treatment of peri-implant osseous defects in the rabbit's tibiae: a pilot study.

    PubMed

    Zanicotti, Diogo Godoy; Matsubara, Fernanda Brugin; Zielak, João César; Giovanini, Allan Fernando; Urban, Cícero de Andrade; Deliberador, Tatiana Miranda

    2014-02-01

    We hypothesized that a new technique using nonprocessed adipose tissue could regenerate bone around dental implants. Eighteen rabbits received 1 implant per tibia surrounded by a surgically created osseous defect. The defects were assigned for treatment into 3 groups: C, AT, and AB. The percentages of bone-to-implant contact were 17.64% ± 16.22% (AB), 3.54% ± 7.08% (AT), and 12.71% ± 10.11% (C) (ρ = 0.25). The use of adipose tissue around surgically created peri-implant osseous defects interferes with bone formation. PMID:22103760

  5. Use of a strontium-enriched calcium phosphate cement in accelerating the healing of soft-tissue tendon graft within the bone tunnel in a rabbit model of anterior cruciate ligament reconstruction.

    PubMed

    Kuang, G M; Yau, W P; Lu, W W; Chiu, K Y

    2013-07-01

    We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft-bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL-bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft. PMID:23814244

  6. Meniscoplasty for stable osteochondritis dissecans of the lateral femoral condyle combined with a discoid lateral meniscus: a case report

    PubMed Central

    2011-01-01

    Introduction Osteochondritis dissecans of the lateral femoral condyle is relatively rare, and it is reported to often be combined with a discoid lateral meniscus. Given the potential for healing, conservative management is indicated for stable osteochondritis dissecans in patients who are skeletally immature. However, patients with osteochondritis dissecans of the lateral femoral condyle combined with a discoid lateral meniscus often have persistent symptoms despite conservative management. Case presentation We present the case of a seven-year-old Korean girl who had osteochondritis dissecans of the lateral femoral condyle combined with a discoid lateral meniscus, which healed after meniscoplasty for the symptomatic lateral discoid meniscus without surgical intervention for the osteochondritis dissecans. In addition, healing of the osteochondritis dissecans lesion was confirmed by an MRI scan five months after the operation. Conclusions Meniscoplasty can be recommended for symptomatic stable juvenile osteochondritis dissecans of the lateral femoral condyle combined with a discoid lateral meniscus when conservative treatment fails. PMID:21896174

  7. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications.

    PubMed

    Xie, Hui; Wang, Zhenxing; Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai; Chen, Zhichao; Zhang, WenJie

    2016-01-01

    One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs) has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL) constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering. PMID:27231660

  8. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications

    PubMed Central

    Zhang, Liming; Lei, Qian; Zhao, Aiqi; Wang, Hongxiang; Li, Qiubai

    2016-01-01

    One of the major challenges of bone tissue engineering applications is to construct a fully vascularized implant that can adapt to hypoxic environments in vivo. The incorporation of proangiogenic factors into scaffolds is a widely accepted method of achieving this goal. Recently, the proangiogenic potential of mesenchymal stem cell-derived microvesicles (MSC-MVs) has been confirmed in several studies. In the present study, we incorporated MSC-MVs into alginate-polycaprolactone (PCL) constructs that had previously been developed for bone tissue engineering applications, with the aim of promoting angiogenesis and bone regeneration. MSC-MVs were first isolated from the supernatant of rat bone marrow-derived MSCs and characterized by scanning electron microscopic, confocal microscopic, and flow cytometric analyses. The proangiogenic potential of MSC-MVs was demonstrated by the stimulation of tube formation of human umbilical vein endothelial cells in vitro. MSC-MVs and osteodifferentiated MSCs were then encapsulated with alginate and seeded onto porous three-dimensional printed PCL scaffolds. When combined with osteodifferentiated MSCs, the MV-alginate-PCL constructs enhanced vessel formation and tissue-engineered bone regeneration in a nude mouse subcutaneous bone formation model, as demonstrated by micro-computed tomographic, histological, and immunohistochemical analyses. This MV-alginate-PCL construct may offer a novel, proangiogenic, and cost-effective option for bone tissue engineering. PMID:27231660

  9. Continuous multilayered composite hydrogel as osteochondral substitute.

    PubMed

    Leone, G; Volpato, M D; Nelli, N; Lamponi, S; Boanini, E; Bigi, A; Magnani, A

    2015-08-01

    Cartilage is a highly organized avascular soft tissue that assembles from nano-to macro-scale to produce a complex structural network. To mimic cartilage tissue, we developed a stable multilayered composite material, characterized by a tailored gradient of mechanical properties. The optimized procedure implies chemical crosslinking of each layer directly onto the previous one and ensures a drastic reduction of the material discontinuities and brittleness. The multilayered composite was characterized by infrared spectroscopy, differential scanning calorimetry, thermogravimetry, and scanning electron microscopy in order to compare its physico-chemical characteristics with those of cartilage tissue. The rheological behavior of the multilayered composite was similar to that of human cartilage. Finally its cytocompatibility toward chondrocytes and osteoblasts was evaluated. PMID:25504681

  10. A spun elastomeric graft for dialysis access.

    PubMed

    Drasler, W J; Wilson, G J; Stenoien, M D; Jenson, M L; George, S A; Dutcher, R G; Possis, Z C

    1993-01-01

    A new composite vascular graft was developed using electrostatic spinning technology. The graft is primarily microfibrous polydimethylsiloxane spun onto a mandrel; a small diameter polyester yarn provides additional strength while minimizing wall thickness, and a helical bead provides crush and kink resistance. Eighteen grafts were implanted in a mongrel canine arteriovenous shunt model for 12 months. The grafts were implanted in femoral artery to femoral vein loops and were cannulated using three pairs of 16 gauge dialysis needles per week. Grafts were evaluated during each puncture session, and also followed using angiography. Histologic study of explanted grafts, regional lymph nodes, and lungs was performed. The grafts provided excellent handling and puncture characteristics, with no bleeding through the graft wall at puncture sites. Cumulative patency of these punctured grafts was 88% at 6 months and 80% at 1 year. Histologic study showed external fibroconnective tissue encapsulation of the grafts, with tissue growth through the interstices of the graft consisting of a microvascular network surrounded predominantly by histiocytes, many multinucleated foreign body giant cells, with some fibroblasts and collagen formation also present. Little luminal thrombus was seen at puncture sites in the patent grafts, and there was no evidence of pulmonary thromboemboli. This new elastomeric graft shows excellent promise for dialysis access; similar grafts under development may also find application for small diameter peripheral vascular reconstruction. PMID:8324257

  11. One-Step Surgical Procedure for the Treatment of Osteochondral Defects with Adipose-Derived Stem Cells in a Caprine Knee Defect: A Pilot Study

    PubMed Central

    Jurgens, Wouter J.F.M.; Kroeze, Robert Jan; Zandieh-Doulabi, Behrouz; van Dijk, Annemieke; Renders, Greetje A.P.; Smit, Theo H.; van Milligen, Florine J.; Ritt, Marco J.P.F.

    2013-01-01

    Abstract Regenerative therapies offer attractive alternatives for the treatment of osteochondral defects. Adipose-derived stromal vascular fraction (SVF) cells allow the development of one-step surgical procedures by their abundant availability and high frequency. In this pilot study we evaluated the in vivo safety, feasibility, and efficacy of this concept using scaffolds seeded with freshly isolated (SVF) or cultured adipose stem cells (ASCs), and compared these to their acellular counterparts. Osteochondral defects were created in medial condyles and trochlear grooves in knees of eight goats. Defects were filled with acellular collagen I/III scaffolds or scaffolds seeded with SVF cells or cultured ASCs. Osteochondral regeneration was evaluated after 1 and 4 months by macroscopy, immunohistochemistry, biomechanical analysis, microCT analysis, and biochemistry. After 1 month, no adverse effects were noted. Microscopic, but not macroscopic evaluation showed considerable yet not significant differences, with cell-loaded constructs showing more extensive regeneration. After 4 months, acellular constructs displayed increased regeneration, however, to a lesser degree than cell-treated constructs. The latter exhibited more extensive collagen type II, hyaline-like cartilage, and higher elastic moduli, and their glycosaminoglycan content in the cartilaginous layer better approached native tissue values. Moreover, their defect regions contained higher levels of regenerated, mature subchondral bone with more intense collagen type I staining. SVF cells tended to perform best on all parameters. In summary, this pilot study demonstrated the preclinical safety and feasibility of a one-step surgical procedure for osteochondral defect regeneration. Similar regeneration was found between freshly isolated SVF cells and cultured ASCs. Larger studies with longer follow-up are required to substantiate these findings. PMID:23914338

  12. [Bone grafts in orthopedic surgery].

    PubMed

    Zárate-Kalfópulos, Barón; Reyes-Sánchez, Alejandro

    2006-01-01

    In orthopedic surgery the demand for the use of bone grafts increases daily because of the increasing quantity and complexity of surgical procedures. At present, the gold standard is the autologous bone graft but the failure rate, morbidity of the donor site and limited availability have stimulated a proliferation for finding materials that work as bone graft substitutes. In order to have good success, we must know the different properties of these choices and the environment where the graft is going to be used. As bone graft substitutes and growth factors become clinical realities, a new gold standard will be defined. Tissue engineering and gene therapy techniques have the objective to create an optimum bone graft substitute with a combination of substances with properties of osteconduction, osteogenesis and osteoinduction. PMID:16875525

  13. Vascular grafting strategies in coronary intervention

    NASA Astrophysics Data System (ADS)

    Knight, Darryl; Gillies, Elizabeth; Mequanint, Kibret

    2014-06-01

    With the growing need for coronary revascularizations globally, several strategies to restore blood flow to the heart have been explored. Bypassing the atherosclerotic coronary arteries with autologous grafts, synthetic prostheses and tissue-engineered vascular grafts continue to be evaluated in search of a readily available vascular graft with clinically acceptable outcomes. The development of such a vascular graft including tissue engineering approaches both in situ and in vitro is herein reviewed, facilitating a detailed comparison on the role of seeded cells in vascular graft patency.

  14. Classification of histologically scored human knee osteochondral plugs by quantitative analysis of magnetic resonance images at 3T.

    PubMed

    Lukas, Vanessa A; Fishbein, Kenneth W; Lin, Ping-Chang; Schär, Michael; Schneider, Erika; Neu, Corey P; Spencer, Richard G; Reiter, David A

    2015-05-01

    This work evaluates the ability of quantitative MRI to discriminate between normal and pathological human osteochondral plugs characterized by the Osteoarthritis Research Society International (OARSI) histological system. Normal and osteoarthritic human osteochondral plugs were scored using the OARSI histological system and imaged at 3 T using MRI sequences producing T1 and T2 contrast and measuring T1, T2, and T2* relaxation times, magnetization transfer, and diffusion. The classification accuracies of quantitative MRI parameters and corresponding weighted image intensities were evaluated. Classification models based on the Mahalanobis distance metric for each MRI measurement were trained and validated using leave-one-out cross-validation with plugs grouped according to OARSI histological grade and score. MRI measurements used for classification were performed using a region-of-interest analysis which included superficial, deep, and full-thickness cartilage. The best classifiers based on OARSI grade and score were T1- and T2-weighted image intensities, which yielded accuracies of 0.68 and 0.75, respectively. Classification accuracies using OARSI score-based group membership were generally higher when compared with grade-based group membership. MRI-based classification--either using quantitative MRI parameters or weighted image intensities--is able to detect early osteoarthritic tissue changes as classified by the OARSI histological system. These findings suggest the benefit of incorporating quantitative MRI acquisitions in a comprehensive clinical evaluation of OA. PMID:25641500

  15. Repair of osteochondral defects with adipose stem cells and a dual growth factor-releasing scaffold in rabbits.

    PubMed

    Im, Gun-Il; Lee, Jin Ho

    2010-02-01

    The purpose of this work was to evaluate the in vivo effectiveness of a TGF-beta(2) and bone morphogenetic protein (BMP)-7-immobilized porous polycaprolactone (PCL)/F127 scaffold to enhance the healing of cartilage defect. An osteochondral defect was created on the patellar groove of the right distal femur of 12 rabbits and managed by one of the following methods: filling it with the scaffold only (Group I); the scaffold seeded with adipose stem cells (ASCs) (Group II); a TGF-beta(2) and BMP-7-immobilized scaffold (Group III); and a TGF-beta(2) and BMP-7-immobilized scaffold seeded with ASCs (Group IV). Each group had three rabbits. Nine weeks after the implantation, the implanted scaffolds were filled with yellowish, dense tissue, and had distinct margins with adjacent normal cartilage. The histological findings showed infiltration of foreign-body giant cells and blood vessel, more prominently in Groups III and IV. The presence of growth factor significantly increased the ICRS Macroscopic Score (p = 0.045) while the presence of ASC did not. The ICRS Visual Histological Score was not significantly affected by the presence of either growth factors or ASCs, showing similar values in all groups. In conclusion, the use of TGF-beta(2) and BMP-7-immobilized PCL/F127 scaffolds improved gross appearances of the osteochondral defects while not actually leading to better histological results and induced a greater degree of foreign body reaction. PMID:19957354

  16. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization.

    PubMed

    Díaz Lantada, Andrés; Alarcón Iniesta, Hernán; García-Ruíz, Josefa Predestinación

    2016-02-01

    Articular repair is a relevant and challenging area for the emerging fields of tissue engineering and biofabrication. The need of significant gradients of properties, for the promotion of osteochondral repair, has led to the development of several families of composite biomaterials and scaffolds, using different effective approaches, although a perfect solution has not yet been found. In this study we present the design, modeling, rapid manufacturing and in vitro testing of a composite scaffold aimed at osteochondral repair. The presented composite scaffold stands out for having a functional gradient of density and stiffness in the bony phase, obtained in titanium by means of computer-aided design combined with additive manufacture using selective laser sintering. The chondral phase is obtained by sugar leaching, using a PDMS matrix and sugar as porogen, and is joined to the bony phase during the polymerization of PDMS, therefore avoiding the use of supporting adhesives or additional intermediate layers. The mechanical performance of the construct is biomimetic and the stiffness values of the bony and chondral phases can be tuned to the desired applications, by means of controlled modifications of different parameters. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is used for improving scaffold response. Cell culture results provide relevant information regarding the viability of the composite scaffolds used. PMID:26652367

  17. The effect of polystyrene sodium sulfonate grafting on polyethylene terephthalate artificial ligaments on in vitro mineralisation and in vivo bone tissue integration.

    PubMed

    Vaquette, Cédryck; Viateau, Véronique; Guérard, Sandra; Anagnostou, Fani; Manassero, Mathieu; Castner, David G; Migonney, Véronique

    2013-09-01

    This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseo-integration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the non-grafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing. PMID:23790438

  18. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute

    SciTech Connect

    Abbah, S.A.; Lu, W.W. . E-mail: wwlu@hkusua.hku.hk; Chan, D.; Cheung, K.M.C.; Liu, W.G.; Zhao, F.; Li, Z.Y.; Leong, J.C.Y.; Luk, K.D.K.

    2006-08-18

    This study aims to investigate the survival and osteogenic behavior of murine-derived adipose-tissue stromal cells (ATSCs) encapsulated in alginate microcapsules thereby instigating further studies in this cell delivery strategy for in vivo osteogenesis. Cell viability was quantified using a tetrazolium-based assay and osteogenic differentiation was evaluated by both alkaline-phosphatase (ALP) histochemistry and osteocalcin mRNA analysis. Following microencapsulation, cell numbers increased from 3.9 x 10{sup 3} on day 1 to 7.8 x 10{sup 3} on day 7 and maintained excellent viability in the course of 21-day culture. ALP was 6.9, 5.5, and 3.2 times higher than monolayer cultures on days 7, 14, and 21, respectively. In addition, osteocalcin mRNA was detectable in encapsulated cultures earlier (day 14) than monolayer cultures. We conclude that alginate microcapsules can act as three-dimensional matrix for ATSC proliferation and has potential for use as injectable, biodegradable scaffold in bone tissue engineering.

  19. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel

    PubMed Central

    2011-01-01

    Background Functional repair of articular osteochondral defects remains a major challenge not only in the field of knee surgery but also in tissue regeneration medicine. The purpose is to clarify whether the spontaneous hyaline cartilage regeneration can be induced in a large osteochondral defect created in the femoral condyle by means of implanting a novel double-network (DN) gel at the bottom of the defect. Methods Twenty-five mature rabbits were used in this study. In the bilateral knees of each animal, we created an osteochondral defect having a diameter of 2.4-mm in the medial condyle. Then, in 21 rabbits, we implanted a DN gel plug into a right knee defect so that a vacant space of 1.5-mm depth (in Group I), 2.5-mm depth (in Group II), or 3.5-mm depth (in Group III) was left. In the left knee, we did not apply any treatment to the defect to obtain the control data. All the rabbits were sacrificed at 4 weeks, and the gross and histological evaluations were performed. The remaining 4 rabbits underwent the same treatment as used in Group II, and real-time PCR analysis was performed at 4 weeks. Results The defect in Group II was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type-2 collagen. The Wayne's gross appearance and histology scores showed that Group II was significantly greater than Group I, III, and Control (p < 0.012). The relative expression level of type-2 collagen, aggrecan, and SOX9 mRNAs was significantly greater in Group II than in the control group (p < 0.023). Conclusions This study demonstrated that spontaneous hyaline cartilage regeneration can be induced in vivo in an osteochondral defect created in the femoral condyle by means of implanting the DN gel plug at the bottom of the defect so that an approximately 2-mm deep vacant space was intentionally left in the defect. This fact has prompted us to propose an innovative strategy without cell culture to repair osteochondral lesions in the femoral

  20. Late-diagnosed large osteochondral fracture of the lateral femoral condyle in an adolescent: a case report.

    PubMed

    Enea, Davide; Busilacchi, Alberto; Cecconi, Stefano; Gigante, Antonio

    2013-07-01

    In this case report, we describe a large osteochondral fracture of the anterolateral femoral condyle in an adolescent athlete while dancing. At 3 months after the misdiagnosed injury, the condylar defect was covered by a layer of disorganized fibrous tissue rich in blood vessels. To achieve good repair, an accurate curettage of the fractured surfaces, a precise reduction, and a stable internal fixation of the fragments were performed. Two poly-L-lactic acid bioabsorbable screws were used to obtain appropriate compression. At the 2-year follow-up, the patient was asymptomatic and had resumed her previous dancing activity. An MRI scan showed no interruptions of the cartilage layer at the boundary with the healthy tissue, but cartilage thinning and extensive subchondral remodeling were detected. PMID:23511583

  1. Biology of polypropylene/polyglactin 910 grafts.

    PubMed

    Barbolt, Thomas A

    2006-06-01

    The biological evaluation of polypropylene (PP)/polyglactin 910 grafts was reviewed including regulatory considerations, biocompatibility assessment, tissue reaction and integration, and infection potentiation of these synthetic materials used in urogynecological surgical procedures. The physical characteristics of the grafts including base composition, monofilament vs multifilament, and non-absorbable vs absorbable materials were compared. Grafts were implanted in rats to evaluate the tissue reaction and integration characteristics of the materials over time. Grafts were also implanted in mice and inoculated with Staphylococcus aureus to assess the potential for bacterial attachment and growth. The tissue reaction to PP/polyglactin 910 grafts was characterized by minimal to mild inflammation with some qualitative differences related to the physical construction of the different grafts. The tissue reaction to polyglactin 910 mesh was also mild but resolved after the material was absorbed 70 days post-implantation. The integration of PP/polyglactin 910 grafts by fibrosis with surrounding tissue was initially mild for all materials but decreased over time for the lightweight and multifilament PP-based grafts, including a graft with an absorbable polyglactin 910 component. Residual fibrosis was not observed for the graft constructed from polyglactin 910 alone. Grafts constructed from PP did not potentiate infection after inoculation with S. aureus whereas the number of bacteria recovered from naturally derived collagen-based materials increased by three to four logs. The biological performance of PP/polyglactin 910 grafts is dependent on multiple factors including the composition and physical construction of the base materials, the overall biocompatibility of the materials, particularly tissue reaction and integration of the grafts, and the resistance of the grafts to bacterial attachment and growth. PMID:16738744

  2. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo.

    PubMed

    Schantz, Jan-Thorsten; Hutmacher, Dietmar Werner; Lam, Christopher Xu Fu; Brinkmann, Maik; Wong, Kit Mui; Lim, Thiam Chye; Chou, Ning; Guldberg, Robert Erling; Teoh, Swee Hin

    2003-01-01

    We have demonstrated in Part I of this study [see Schantz, J.-T., et al., Tissue Eng. 2003;9(Suppl. 1): S-113-S-126; this issue] that bone marrow-derived progenitor cells and calvarial osteoblasts could be successfully directed into the osteogenic lineage and cultured in three-dimensional (3-D) polycaprolactone (PCL) scaffolds. The objective of the second part of the study was to evaluate and to compare tissue engineered cell-polymer constructs using calvarial osteoblasts (group I) and mesenchymal progenitor cells (MPCs; group II) for the reconstruction of critical-size and three-dimensionally complex cranial defects. In 30 New Zealand White rabbits, bilateral parietal critical-size defects were created. On the basis of computed tomography scans, customized PCL scaffolds with precisely controlled microarchitecture were fabricated, using a rapid prototyping technology. Bone marrow-derived progenitor cells and osteoblasts were isolated and expanded in culture. Osteoblasts (group I) and mesenchymal progenitor cells (group II) were seeded in combination with a fibrin glue suspension into 40 PCL scaffolds. After incubating for 3 days in static culture, the PCL scaffold-cell constructs as well as nonseeded PCL scaffolds (control group) were implanted into 15-mm-diameter calvarial defects. Reconstruction of the cranium and bone formation were evaluated after 3 months. In vivo results indicated osseous tissue integration within the implant and functionally stable restoration of the calvarium. Islands of early bone formation could be observed in X-ray radiographs and in histological sections. Implants showed a high cell:ECM ratio and a dense vascular network. Mechanical testing of the reconstructed area revealed partial integration with the surrounding corticocancellous calvarial bone. The amount (area) of calcification, measured by clinical computed tomography, indicated that cell-seeded constructs measured about 60% more than unrepaired or unseeded scaffolds. Mechanical

  3. A 12 Months Clinical and Radiographic Study to Assess the Efficacy of Open Flap Debridement and Subepithelial Connective Tissue Graft in Management of Supracrestal Defects

    PubMed Central

    Chhina, Shivjot

    2015-01-01

    Background: An improvement in clinical parameters along with regeneration is the desired outcome of periodontal therapy. The aim of this study was to analyze and contrast the efficaciousness of combined open flap debridement (OFD) and subepithelial connective tissue graft (SECTG) to OFD in the management of periodontal supracrestal defects. Materials and Methods: Totally, 20 paired sites exhibiting supracrestal defects were subjected to surgical treatment adopting the split mouth design. The defects were divided randomly for treatment with OFD and SECTG (test) or OFD alone (control). The clinical effectiveness of the two arms of treatment was evaluated at 6 months and 12 months post-operatively by assessing clinical and radiographic parameters. The measurements carried out included probing pocket depth (PPD), relative attachment level (RAL), gingival marginal level, radiographic bone level (BL). Results: The mean reduction in PPD at 0-12 months was 3.20 ± 0.82 mm and RAL gain of 3.10 ± 1.51 mm was observed, the OFD and SECTG (test) group; corresponding observations for OFD (control) were 2.10 ± 0.63 mm and 1.90 ± 0.57 mm. However, BL changes did not follow the pattern of clinical improvement on the radiographic assessment of either treatment group. Post-operative evaluation was made. Improvement in different clinical parameters was statistically significant (P < 0.01). Conclusion: Treatment of supracrestal defects with a combination of OFD and SECTG led to significantly better clinical results compared to OFD alone. PMID:26464551

  4. Comparative evaluation of management of gingival recession using subepithelial connective tissue graft and collagen membrane by periodontal microsurgical technique: A clinical study of 40 cases

    PubMed Central

    Thankkappan, Prasanth; Roy, Subrata; Mandlik, Vivek Bapurao

    2016-01-01

    Background: New technologies, instruments, and surgical techniques are necessary to help the clinician ensure the best result and satisfy the patient's expectations, and surgical microscope has been thoroughly demonstrated as a useful tool. A clinical study was carried out to compare 2 different types of root coverage procedures using periodontal microsurgical procedure. Materials and Methods: Forty patients were selected and divided into Group A and Group B. Group A subjects were treated with subepithelial connective tissue graft (CTG) whereas Group B subjects were treated using a resorbable collagen membrane. The procedures were performed with the help of an operating microscope using 250 mm objective lens and ×6 magnification. Results: A comparison between baseline, 1, 3, and 12 months have been done between groups among all parameters. It has been noticed that the root coverage was better in Group A subjects at all time. At 12 months, Group A showed 81.42% coverage where in Group B it was 70.08%. Similarly, increase in the width of keratinized gingiva and attached gingiva were more in Group A. Conclusions: The present study showed that use of microsurgical instrument helped to deliver precise incision, better visual acuity, and improved illumination which facilitate to gain a better final outcome. Root coverage was better in the patients using CTG. PMID:27143833

  5. Bone transplantation and tissue engineering, part III: allografts, bone grafting and bone banking in the twentieth century.

    PubMed

    Hernigou, Philippe

    2015-03-01

    During the 20th century, allograft implantation waned in popularity as a clinical activity. Reports appeared in the literature describing several small series of patients in whom bone was obtained from amputation specimens or recently deceased individuals. The concept of bone banking became a reality during and after World War II when the National Naval Tissue Bank was established in Bethesda and a number of small banks sprang up in hospitals throughout the world. Small fragments, either of cortical or medullary bone, from these banks were used heterotopically to augment spinal fusions, to implant into cyst cavities, or to serve as a scaffolding for repair of non- or delayed union of fractures of the long bones. PMID:25720358

  6. Root coverage using subepithelial connective tissue graft with platelet-rich plasma in the treatment of gingival recession: A clinical study

    PubMed Central

    Srinivas, B. V. V.; Rupa, N.; Halini Kumari, K. V.; Prasad, S. S. V.; Varalakshmi, U.; Sudhakar, K.

    2015-01-01

    Introduction: The presence of gingival recession associated with an insufficient amount of keratinized tissue may indicate gingival augmentation procedure. It is a multifaceted problem for which several treatment options are available. The most predictable technique used for gingival augmentation is the subepithelial connective tissue graft (SCTG). Platelet-rich plasma (PRP) is an enhanced source of growth factors and helps in accelerated periodontal repair and regeneration. Aims: The aim of this study was to evaluate the efficacy of SCTG along with PRP in the treatment of Miller's class I and II gingival recessions. Materials and Methods: Eleven subjects with Miller's class I and II gingival recessions were treated using SCTG with PRP. Clinical variables, including plaque index, gingival index, recession depth (RD), Recession width (RW), width of the keratinized gingiva, probing pocket depth (PD) and clinical attachment level (CAL) were recorded. Patients were recalled at baseline, 3 months, 6 months and 1-year after surgery and clinical recordings were taken. Root coverage percentage (%) was measured at the end of 1-year. Results: The clinical parameters were analyzed during the follow-up period by repeated measures ANOVA test. Twelve months follow-up results showed significant improvements in all the clinical parameters. Reduction of recession resulted in a significant decrease in CAL, PD, RW and RD at the end of 12 months. A statistically significant gain in width of keratinized gingiva and a mean root coverage of 84.72 ± 19.10 was obtained at the end of 12 months. Conclusion: From the results of this study, it may be concluded that SCTG with PRP is an effective and predictable method to treat miller's class I and II gingival recession. PMID:26538912

  7. Enamel matrix proteins (Emdogain) in combination with coronally advanced flap or subepithelial connective tissue graft in the treatment of shallow gingival recessions.

    PubMed

    Berlucchi, Ignazio; Francetti, Luca; Del Fabbro, Massimo; Testori, Tiziano; Weinstein, Roberto L

    2002-12-01

    This article describes two different surgical techniques of root coverage using Emdogain and shows preliminary results on 26 shallow recessions in 14 patients. For the treatment of 13 recessions, Emdogain was used in combination with a coronally advanced flap (CAF+EMD group). In the other 13 recessions, Emdogain and the flap were used in combination with a subepithelial connective tissue graft (CAF+CTG+EMD group). For the CAF+EMD group, the root coverage at 6 months was 93.97%, with an attachment gain of 3.2 mm; for the CAF+CTG+EMD group, the root coverage was 93.59%, with an attachment gain of 3.4 mm (no statistically significant difference between groups). When complete root coverage was not achieved, the residual recession was 1 mm in four cases and 2 mm in one case. Keratinized gingiva was increased for both groups, but more for the CAF+CTG+EMD group (1.38 mm versus 0.69 mm; statistically significant difference). Clinical attachment level decreased significantly in both groups, from 4.46 to 1.23 mm in the CAF+EMD group, and from 4.62 to 1.23 mm in the CAF+CTG+EMD group. Preliminary results show that Emdogain, in combination with CAF or CAF+CTG for the treatment of Miller Class I or II gingival recessions, displays good clinical results, with percentage of root coverage comparable or superior to other techniques. Further experimental studies on the dynamics of wound healing are needed to prove that EMD is really responsible for improving the percentage of regenerated versus repaired tissues with respect to other techniques. PMID:12516830

  8. Management of Osteochondritis Dissecans of the Femoral Condyle.

    PubMed

    Shea, Kevin G; Carey, James L; Brown, Gregory A; Murray, Jayson N; Pezold, Ryan; Sevarino, Kaitlyn S

    2016-09-01

    The American Academy of Orthopaedic Surgeons has developed the Appropriate Use Criteria (AUC) document Management of Osteochondritis Dissecans of the Femoral Condyle. Evidence-based information, in conjunction with the clinical expertise of physicians, was used to develop the criteria to improve patient care and obtain the best outcomes while considering the subtleties and distinctions necessary in making clinical decisions. The AUC clinical patient scenarios were derived from patient indications that generally accompany osteochondritis dissecans of the femoral condyle, as well as from current evidence-based clinical practice guidelines and supporting literature. The 64 patient scenarios and 12 treatments were developed by the Writing Panel, a group of clinicians who are specialists in this AUC topic. Lastly, a separate, multidisciplinary Voting Panel (made up of specialists and nonspecialists) rated the appropriateness of treatment of each patient scenario using a 9-point scale to designate a treatment as Appropriate (median rating, 7 to 9), May Be Appropriate (median rating, 4 to 6), or Rarely Appropriate (median rating, 1 to 3). PMID:27479835

  9. OSTEOCHONDRAL AUTOLOGOUS TRANSPLANTATION FOR TREATING CHONDRAL LESIONS IN THE PATELLA

    PubMed Central

    Cohen, Moises; Amaro, Joicemar Tarouco; Fernandes, Ricardo de Souza Campos; Arliani, Gustavo Gonçalves; Astur, Diego da Costa; Kaleka, Camila Cohen; Skaf, Abdalla

    2015-01-01

    Objective: The primary aim of this study was to assess the clinical and functional evolution of patients with total-thickness symptomatic cartilaginous injury of the patellar joint surface, treated by means of osteochondral autologous transplantation. Methods: This prospective study was conducted from June 2008 to March 2011 and involved 17 patients. The specific questionnaires of Lysholm, Kujala and Fulkerson were completed preoperatively and one year postoperatively in order to assess the affected knee, and SF-36 was used to assess these patients’ general quality of life. The nonparametric paired Wilcoxon test was used for statistical analysis on the pre and postoperative questionnaires. The data were analyzed using the SPSS for Windows software, version 16.0, and a significance level of 5% was used. Results: The Lysholm preoperative and postoperative average scores were 54.59 and 75.76 points (p < 0.05). The Fulkerson pre and postoperative average scores were 52.53 and 78.41 points (p < 0.05). Conclusions: We believe that autologous osteochondral transplantation is a good treatment method for total-thickness symptomatic chondral lesions of the joint surface of the patella. PMID:27042645

  10. Diagnosis of Knee Osteochondral Lesions With Ultrasound Imaging

    PubMed Central

    Penttilä, Pekko; Liukkonen, Jukka; Joukainen, Antti; Virén, Tuomas; Jurvelin, Jukka S.; Töyräs, Juha; Kröger, Heikki

    2015-01-01

    Evaluation of articular cartilage and subchondral bone is essential in the diagnosis of joint diseases and injuries. Interobserver and intraobserver reproducibilities of arthroscopic grading are only poor to moderate. Thus, for quantitative and objective evaluation of cartilage and subchondral bone, ultrasound arthroscopy (UA) has been introduced to clarify this dilemma. Assessment of the clinical feasibility of high-frequency ultrasonography (US) during 6 knee arthroscopies was conducted, and the surgical technique is presented. US imaging was conducted with a flexible 9-MHz US catheter inserted into the joint through conventional portals. US and arthroscopy videos were synchronously recorded, and US parameters for cartilage and subchondral bone characteristics were measured. Arthroscopy and US imaging were combined to perform cartilage grading. UA produced quantitative data on lesion size, as well as cartilage quality, and showed subchondral bone changes. Visualization of an osteochondritis dissecans lesion not detected by conventional arthroscopy and US-guided retrograde drilling were possible with UA. To conclude, UA proved to be clinically feasible and aided in the diagnosis when assessing knee osteochondral lesions. PMID:26697300

  11. OSTEOCHONDRAL INTERFACE REGENERATION OF THE RABBIT MANDIBULAR CONDYLE WITH BIOACTIVE SIGNAL GRADIENTS

    PubMed Central

    Dormer, Nathan H.; Busaidy, Kamal; Berkland, Cory J.; Detamore, Michael S.

    2011-01-01

    PURPOSE Tissue engineering solutions focused on the temporomandibular joint (TMJ) have expanded in number and variety over the past decade to address the treatment of TMJ disorders. The existing literature on approaches for healing small defects in the TMJ condylar cartilage and subchondral bone, however, is sparse. The purpose of this study was thus to evaluate the performance of a novel gradient-based scaffolding approach to regenerate osteochondral defects in the rabbit mandibular condyle. MATERIALS AND METHODS Miniature bioactive plugs for regeneration of small mandibular condylar defects in New Zealand White rabbits were fabricated. The plugs were constructed from poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres with a gradient transition between cartilage-promoting and bone-promoting growth factors. RESULTS At six weeks of healing, results suggested that the implants provided support for the neo-synthesized tissue as evidenced by histology and 9.4T magnetic resonance imaging. CONCLUSION The inclusion of bioactive factors in a gradient-based scaffolding design is a promising new treatment strategy for focal defect repair in the TMJ. PMID:21470747

  12. Bone Grafts

    MedlinePlus

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  13. Polyvinyl Alcohol Hydrogel Irradiated and Acetalized for Osteochondral Defect Repair: Mechanical, Chemical, and Histological Evaluation after Implantation in Rat Knees

    PubMed Central

    Batista, N. A.; Rodrigues, A. A.; Bavaresco, V. P.; Mariolani, J. R. L.; Belangero, W. D.

    2012-01-01

    Polyvinyl Alcohol (PVA) hydrogel plugs were implanted in artificial osteochondral defects on the trochlear groove of rat knees. After 0, 3, 6, 12, and 24 weeks of followup, samples containing the implants were mechanically evaluated by creep indentation test, chemically, and histologically by optical microscopy. The mechanical test pointed towards an increase of the implant creep modulus and the chemical analysis exhibited an increasing concentration of calcium and phosphorus within the implants over time. Optical microscopy showed no foreign body reaction and revealed formation, differentiation, and maintenance of new tissue at the defect/implant interface. The absence of implant wear indicated that the natural articular lubrication process was not disturbed by the implant. The performance of the irradiated and acetalized PVA was considered satisfactory for the proposed application. PMID:23197982

  14. Development of a Large Animal Model of Osteochondritis Dissecans of the Knee

    PubMed Central

    Pfeifer, Christian G.; Kinsella, Stuart D.; Milby, Andrew H.; Fisher, Matthew B.; Belkin, Nicole S.; Mauck, Robert L.; Carey, James L.

    2015-01-01

    Background: Treatment of osteochondritis dissecans (OCD) of the knee is challenging, and evidence for stage-dependent treatment options is lacking. Basic science approaches utilizing animal models have provided insight into the etiology of OCD but have yet to produce a reliable and reproducible large animal model of the disease on which to test new surgical strategies. Purpose/Hypotheses: The purpose of this study was to develop an animal model featuring an OCD-like lesion in terms of size, location, and International Cartilage Repair Society (ICRS) grading. The hypothesis was that surgical creation of an osteochondral defect followed by placement of a barrier between parent bone and progeny fragment would generate a reproducible OCD-like lesion. Study Design: Controlled laboratory study. Methods: Bilateral osteochondral lesions were created in the medial femoral condyles of 9 Yucatan minipigs. After lesion creation, a biodegradable membrane was interposed between the progeny and parent bone. Five different treatment groups were evaluated at 2 weeks: a control with no membrane (ctrl group; n = 4), a slowly degrading nanofibrous poly(∊-caprolactone) membrane (PCL group; n = 4), a fenestrated PCL membrane with 1.5-mm holes covering 25% of surface area (fenPCL group; n = 4), a collagen membrane (Bio-Gide) (CM group; n = 3), and a fenestrated CM (fenCM group; n = 3). Five unperturbed lateral condyles (1 from each treatment group) served as sham controls. After euthanasia on day 14, the lesion was evaluated by gross inspection, fluoroscopy, micro–computed tomography (micro-CT), and histology. To quantify changes between groups, a scoring system based on gross appearance (0-2), fluoroscopy (0-2), and micro-CT (0-6) was established. Micro-CT was used to quantify bone volume per total volume (BV/TV) in a defined region surrounding and inclusive of the defect. Results: The no scaffold group showed healing of the subchondral bone at 2 weeks, with continuity of

  15. Osteochondral Fractures of the Lateral Femoral Trochlea in Young Athletes

    PubMed Central

    Walsh, Stewart

    2016-01-01

    Method: Between May 2012 and September 2014 cluster of five patients with large osteochondral fractures of the lateral femoral trochlea were treated at our institution. These all occurred in high level male athletes, one at a decathlete and the other four soccer players. The MRI scan showed a characteristic appearance of a large subchondral fracture involving most of the lateral femoral trochlea. All patients were symptomatic. The patients were treated with open reduction and internal fixation using headless compression screws. The operative technique and short term results will be outlined. Results: Fixation appears successful in most cases. Conclusion: This appears to be a repetitive trauma related injury that occurs in young high-level athletes.

  16. Plant grafting: new mechanisms, evolutionary implications.

    PubMed

    Goldschmidt, Eliezer E

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The 'graft hybrid' historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating

  17. Plant grafting: new mechanisms, evolutionary implications

    PubMed Central

    Goldschmidt, Eliezer E.

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The ‘graft hybrid’ historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species

  18. Cartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect.

    PubMed

    Caminal, M; Peris, D; Fonseca, C; Barrachina, J; Codina, D; Rabanal, R M; Moll, X; Morist, A; García, F; Cairó, J J; Gòdia, F; Pla, A; Vives, J

    2016-08-01

    Current developments in tissue engineering strategies for articular cartilage regeneration focus on the design of supportive three-dimensional scaffolds and their use in combination with cells from different sources. The challenge of translating initial successes in small laboratory animals into the clinics involves pilot studies in large animal models, where safety and efficacy should be investigated during prolonged follow-up periods. Here we present, in a single study, the long-term (up to 1 year) effect of biocompatible porous scaffolds non-seeded and seeded with fresh ex vivo expanded autologous progenitor cells that were derived from three different cell sources [cartilage, fat and bone marrow (BM)] in order to evaluate their advantages as cartilage resurfacing agents. An ovine model of critical size osteochondral focal defect was used and the test items were implanted arthroscopically into the knees. Evidence of regeneration of hyaline quality tissue was observed at 6 and 12 months post-treatment with variable success depending on the cell source. Cartilage and BM-derived mesenchymal stromal cells (MSC), but not those derived from fat, resulted in the best quality of new cartilage, as judged qualitatively by magnetic resonance imaging and macroscopic assessment, and by histological quantitative scores. Given the limitations in sourcing cartilage tissue and the risk of donor site morbidity, BM emerges as a preferential source of MSC for novel cartilage resurfacing therapies of osteochondral defects using copolymeric poly-D,L-lactide-co-glycolide scaffolds. PMID:25595211

  19. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery

    PubMed Central

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors. PMID:23249320

  20. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.

    PubMed

    Dahlin, Rebecca L; Kinard, Lucas A; Lam, Johnny; Needham, Clark J; Lu, Steven; Kasper, F Kurtis; Mikos, Antonios G

    2014-08-01

    This work investigated the ability of co-cultures of articular chondrocytes and mesenchymal stem cells (MSCs) to repair articular cartilage in osteochondral defects. Bovine articular chondrocytes and rat MSCs were seeded in isolation or in co-culture onto electrospun poly(ɛ-caprolactone) (PCL) scaffolds and implanted into an osteochondral defect in the trochlear groove of 12-week old Lewis rats. Additionally, a blank PCL scaffold and untreated defect were investigated. After 12 weeks, the extent of cartilage repair was analyzed through histological analysis, and the extent of bone healing was assessed by quantifying the total volume of mineralized bone in the defect through microcomputed tomography. Histological analysis revealed that the articular chondrocytes and co-cultures led to repair tissue that consisted of more hyaline-like cartilage tissue that was thicker and possessed more intense Safranin O staining. The MSC, blank PCL scaffold, and empty treatment groups generally led to the formation of fibrocartilage repair tissue. Microcomputed tomography revealed that while there was an equivalent amount of mineralized bone formation in the MSC, blank PCL, and empty treatment groups, the defects treated with chondrocytes or co-cultures had negligible mineralized bone formation. Overall, even with a reduced number of chondrocytes, co-cultures led to an equal level of cartilage repair compared to the chondrocyte samples, thus demonstrating the potential for the use of co-cultures of articular chondrocytes and MSCs for the in vivo repair of cartilage defects. PMID:24927682

  1. Grafting techniques for Peyronie's disease.

    PubMed

    Hatzichristodoulou, Georgios

    2016-06-01

    Peyronie's disease (PD) is a benign fibrotic condition of the penile tunica albuginea. PD can be associated with penile pain, curvature, shortening, and erectile dysfunction (ED). The predominant and most bothersome symptom in affected patients is penile curvature, which can lead to inability to have sexual intercourse. In such cases, surgical correction of the curvature may be required. Plication techniques to correct curvature can cause penile shortening and therefore are generally reserved for curvatures <60°. Penile prosthesis implantation with simultaneous correction of curvature by various means is recommended in PD patients with ED not responding to medical therapy. Grafting techniques are the preferred surgical treatment in patients with penile curvatures >60°, short penis, or hourglass deformity. Patients scheduled for grafting surgery are required to have satisfactory erectile rigidity preoperatively. There are various grafting materials that can be used for closure of the tunica albuginea defect following plaque incision/excision. Both autologous and non-autologous grafts have been used for PD reconstructive surgery, and each graft has its advantages and disadvantages. Novel grafting materials are presented and discussed in this review. A major advantage of the available "off-the-shelf" grafts is that there is no harvesting from a donor site and, thus, morbidity is reduced, and operative times are minimized. Further investigations in regard to tissue-engineered grafts to improve surgical handling and postoperative outcomes are ongoing. Surgeon experience, careful patient selection, patient preference and type of penile deformity affect the choice of graft. This review summarizes the literature within the past 5 years regarding grafting techniques in PD. Surgical outcomes and limitations of grafting techniques are reported. A major objective of this review is dedicated to preoperative considerations and indications for grafting procedures, with the aim

  2. Gene signatures of postoperative atrial fibrillation in atrial tissue after coronary artery bypass grafting surgery in patients receiving β-blockers.

    PubMed

    Kertai, Miklos D; Qi, Wenjing; Li, Yi-Ju; Lombard, Frederick W; Liu, Yutao; Smith, Michael P; Stafford-Smith, Mark; Newman, Mark F; Milano, Carmelo A; Mathew, Joseph P; Podgoreanu, Mihai V

    2016-03-01

    Atrial tissue gene expression profiling may help to determine how differentially expressed genes in the human atrium before cardiopulmonary bypass (CPB) are related to subsequent biologic pathway activation patterns, and whether specific expression profiles are associated with an increased risk for postoperative atrial fibrillation (AF) or altered response to β-blocker (BB) therapy after coronary artery bypass grafting (CABG) surgery. Right atrial appendage (RAA) samples were collected from 45 patients who were receiving perioperative BB treatment, and underwent CABG surgery. The isolated RNA samples were used for microarray gene expression analysis, to identify probes that were expressed differently in patients with and without postoperative AF. Gene expression analysis was performed to identify probes that were expressed differently in patients with and without postoperative AF. Gene set enrichment analysis (GSEA) was performed to determine how sets of genes might be systematically altered in patients with postoperative AF. Of the 45 patients studied, genomic DNA from 42 patients was used for target sequencing of 66 candidate genes potentially associated with AF, and 2,144 single-nucleotide polymorphisms (SNPs) were identified. We then performed expression quantitative trait loci (eQTL) analysis to determine the correlation between SNPs identified in the genotyped patients, and RAA expression. Probes that met a false discovery rate<0.25 were selected for eQTL analysis. Of the 17,678 gene expression probes analyzed, 2 probes met our prespecified significance threshold of false discovery rate<0.25. The most significant probe corresponded to vesicular overexpressed in cancer - prosurvival protein 1 gene (VOPP1; 1.83 fold change; P=3.47×10(-7)), and was up-regulated in patients with postoperative AF, whereas the second most significant probe, which corresponded to the LOC389286 gene (0.49 fold change; P=1.54×10(-5)), was down-regulated in patients with

  3. Dynamic mechanical analysis and biomineralization of hyaluronan-polyethylene copolymers for potential use in osteochondral defect repair.

    PubMed

    Oldinski, Rachael A; Ruckh, Timothy T; Staiger, Mark P; Popat, Ketul C; James, Susan P

    2011-03-01

    Treatment options for damaged articular cartilage are limited due to its lack of vasculature and its unique viscoelastic properties. This study was the first to fabricate a hyaluronan (HA)-polyethylene copolymer for potential use in the replacement of articular cartilage and repair of osteochondral defects. Amphiphilic graft copolymers consisting of HA and high-density polyethylene (HA-co-HDPE) were fabricated with 10, 28 and 50 wt.% HA. Dynamic mechanical analysis was used to assess the effect of varying constituent weight ratios on the viscoelastic properties of HA-co-HDPE materials. The storage moduli of HA-co-HDPE copolymers ranged from 2.4 to 15.0 MPa at physiological loading frequencies. The viscoelastic properties of the HA-co-HDPE materials were significantly affected by varying the wt.% of HA and/or crosslinking of the HA constituent. Cytotoxicity and the ability of the materials to support mineralization were evaluated in the presence of bone marrow stromal cells. HA-co-HDPE materials were non-cytotoxic, and calcium and phosphorus were present on the surface of the HA-co-HDPE materials 2 weeks after osteogenic differentiation of the bone marrow stromal cells. This study is the first to measure the viscoelastic properties and osseocompatibility of HA-co-HDPE for potential use in orthopedic applications. PMID:21095243

  4. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Leonardi, Rosalia; Trovato, Francesca Maria; Szychlinska, Marta Anna; Di Giunta, Angelo; Loreto, Carla; Castorina, Sergio

    2014-01-01

    In this paper review we describe benefits and disadvantages of the established methods of cartilage regeneration that seem to have a better long-term effectiveness. We illustrated the anatomical aspect of the knee joint cartilage, the current state of cartilage tissue engineering, through mesenchymal stem cells and biomaterials, and in conclusion we provide a short overview on the rehabilitation after articular cartilage repair procedures. Adult articular cartilage has low capacity to repair itself, and thus even minor injuries may lead to progressive damage and osteoarthritic joint degeneration, resulting in significant pain and disability. Numerous efforts have been made to develop tissue-engineered grafts or patches to repair focal chondral and osteochondral defects, and to date several researchers aim to implement clinical application of cell-based therapies for cartilage repair. A literature review was conducted on PubMed, Scopus and Google Scholar using appropriate keywords, examining the current literature on the well-known tissue engineering methods for the treatment of knee osteoarthritis. PMID:24829869

  5. Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial

    PubMed Central

    van Bergen, Christiaan JA; Blankevoort, Leendert; de Haan, Rob J; Sierevelt, Inger N; Meuffels, Duncan E; d'Hooghe, Pieter RN; Krips, Rover; van Damme, Geert; van Dijk, C Niek

    2009-01-01

    Background Osteochondral talar defects usually affect athletic patients. The primary surgical treatment consists of arthroscopic debridement and microfracturing. Although this is mostly successful, early sport resumption is difficult to achieve, and it can take up to one year to obtain clinical improvement. Pulsed electromagnetic fields (PEMFs) may be effective for talar defects after arthroscopic treatment by promoting tissue healing, suppressing inflammation, and relieving pain. We hypothesize that PEMF-treatment compared to sham-treatment after arthroscopy will lead to earlier resumption of sports, and aim at 25% increase in patients that resume sports. Methods/Design A prospective, double-blind, randomized, placebo-controlled trial (RCT) will be conducted in five centers throughout the Netherlands and Belgium. 68 patients will be randomized to either active PEMF-treatment or sham-treatment for 60 days, four hours daily. They will be followed-up for one year. The combined primary outcome measures are (a) the percentage of patients that resume and maintain sports, and (b) the time to resumption of sports, defined by the Ankle Activity Score. Secondary outcome measures include resumption of work, subjective and objective scoring systems (American Orthopaedic Foot and Ankle Society – Ankle-Hindfoot Scale, Foot Ankle Outcome Score, Numeric Rating Scales of pain and satisfaction, EuroQol-5D), and computed tomography. Time to resumption of sports will be analyzed using Kaplan-Meier curves and log-rank tests. Discussion This trial will provide level-1 evidence on the effectiveness of PEMFs in the management of osteochondral ankle lesions after arthroscopy. Trial registration Netherlands Trial Register (NTR1636) PMID:19591674

  6. The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold.

    PubMed

    Zhang, Wei; Chen, Jialin; Tao, Jiadong; Hu, Changchang; Chen, Longkun; Zhao, Hongshi; Xu, Guowei; Heng, Boon C; Ouyang, Hong Wei

    2013-08-01

    The repair of osteochondral defects can be enhanced with scaffolds but is often accompanied with undesirable terminal differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Parathyroid hormone-related protein (PTHrP) has been shown to inhibit aberrant differentiation, but administration at inappropriate time points would have adverse effects on chondrogenesis. This study aims to develop an effective tissue engineering strategy by combining PTHrP and collagen-silk scaffold for osteochondral defect repair. The underlying mechanisms of the synergistic effect of combining PTHrP administration with collagen-silk scaffold implantation for rabbit knee joint osteochondral defect repair were investigated. In vitro studies showed that PTHrP treatment significantly reduced Alizarin Red staining and expression of terminal differentiation-related markers. This is achieved in part through blocking activation of the canonical Wnt/β-catenin signaling pathway. For the in vivo repair study, intra-articular injection of PTHrP was carried out at three different time windows (4-6, 7-9 and 10-12 weeks) together with implantation of a bi-layer collagen-silk scaffold. Defects treated with PTHrP at the 4-6 weeks time window exhibited better regeneration (reconstitution of cartilage and subchondral bone) with minimal terminal differentiation (hypertrophy, ossification and matrix degradation), as well as enhanced chondrogenesis (cell shape, Col2 and GAG accumulation) compared with treatment at other time windows. Furthermore, the timing of PTHrP administration also influenced PTHrP receptor expression, thus affecting the treatment outcome. Our results demonstrated that intra-articular injection of PTHrP at 4-6 weeks post-injury together with collagen-silk scaffold implantation is an effective strategy for inhibiting terminal differentiation and enhancing chondrogenesis, thus improving cartilage repair and regeneration in a rabbit model. PMID:23702148

  7. Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy.

    PubMed

    Han, Jianyu; Xia, Hongping; Wu, Yafeng; Kong, Shik Nie; Deivasigamani, Amudha; Xu, Rong; Hui, Kam M; Kang, Yuejun

    2016-04-21

    A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency. PMID:27035265

  8. Citrate cross-linked gels with strain reversibility and viscoelastic behavior accelerate healing of osteochondral defects in a rabbit model.

    PubMed

    Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Dhara, Santanu

    2014-07-22

    Most living tissues are viscoelastic in nature. Self-repair due to the dissipation of energy by reversible bonds prevents the rupture of the molecular backbone in these tissues. Recent studies, therefore, have aimed to synthesize biomaterials that approximate the mechanical performance of biological materials with self-recovery properties. We report an environmentally friendly method for the development of ionotropically cross-linked viscoelastic chitosan gels with a modulus comparable to that of living tissues. The strain recovery property was found to be highest for the gels with the lowest cross-linking density. The force-displacement curve showed significant hysteresis due to the presence of reversible bonds in the cross-linked gels. Nanoindentation studies demonstrated the creep phenomenon for the cross-linked chitosan gels. Creep, hysteresis, and plasticity index confirmed the viscoelastic behavior of the cross-linked gels. The viscoelastic gels were implanted at osteochondral defect sites to assess the tissue regeneration ability. In vivo results demonstrated early cartilage formation and woven bone deposition for defects filled with the gels compared to nontreated defects. PMID:24971647

  9. [Autologous Fat Grafting in Scar Revision].

    PubMed

    Yu, Pan-xi; Cai, Jing-long

    2016-04-01

    Regenerative medicine is an emerging discipline. Adipose tissue is a rich source of fat cells and mesenchymal stem cells, and autologous fat grafting has increasingly been applied in plastic surgeries and dermatological treatments. This paper reviews the latest advances in autologous fat grafting in scar revision. PMID:27181904

  10. Acute Osteochondral Fractures in the Lower Extremities - Approach to Identification and Treatment

    PubMed Central

    Pedersen, M.E; DaCambra, M.P; Jibri, Z; Dhillon, S; Jen, H; Jomha, N.M

    2015-01-01

    Chondral and osteochondral fractures of the lower extremities are important injuries because they can cause pain and dysfunction and often lead to osteoarthritis. These injuries can be misdiagnosed initially which may impact on the healing potential and result in poor long-term outcome. This comprehensive review focuses on current pitfalls in diagnosing acute osteochondral lesions, potential investigative techniques to minimize diagnostic errors as well as surgical treatment options. Acute osteochondral fractures are frequently missed and can be identified more accurately with specific imaging techniques. A number of different methods can be used to fix these fractures but attention to early diagnosis is required to limit progression to osteoarthritis. These fractures are common with joint injuries and early diagnosis and treatment should lead to improved long term outcomes. PMID:26587063

  11. TREATMENT OF OSTEOCHONDRAL LESIONS OF THE TALUS BY MEANS OF THEARTHROSCOPY-ASSISTED MICROPERFORATION TECHNIQUE

    PubMed Central

    de Lima, Everton; de Queiroz, Felipe; Lopes, Osmar Valadão; Spinelli, Leandro de Freitas

    2015-01-01

    Objective: To evaluate patients affected by osteochondral fractures of the talus who were treated surgically by means of arthroscopy-assisted microperforation. Methods: A retrospective study was carried out on 24 patients with osteochondral lesions of the talus who underwent microperforation assisted by videoarthroscopy of the ankle. They were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) score system before and after the operation. Results: There were 19 men and 5 women, with a mean age of 35.3 years (minimum of 17 years and maximum of 54 years). The minimum follow-up was two years (maximum of 39 months). All the patients showed an improvement in AOFAS score after surgery, with an average improvement of around 22.5 points. Conclusion: Videoarthroscopy-assisted microperforation is a good option for treating osteochondral lesions of the talus and provides good functional results. PMID:27027076

  12. Osteochondritis Dissecans Involving the Trochlear Groove Treated With Retrograde Drilling

    PubMed Central

    Kaji, Yoshio; Nakamura, Osamu; Yamaguchi, Konosuke; Yamamoto, Tetsuji

    2015-01-01

    Abstract Osteochondritis dissecans (OCD) occurs frequently in the humeral capitellum of the upper extremity, whereas OCD involving the trochlear groove (trochlear groove OCD) is rarely reported. A standard treatment for trochlear groove OCD has therefore not been determined, although several methods have been tried. The case of a 14-year-old male gymnast with bilateral trochlear groove OCD is presented. Retrograde drilling from the lateral condyle of the humerus was applied for the OCD lesion of the left elbow, since it was larger in size than that in the right elbow and was symptomatic. Conversely, since the right lesion was small and asymptomatic, it was managed conservatively. After treatment, consolidation of the OCD lesions was observed in both elbows. However, the time to healing was shorter in the left elbow treated surgically than in the right elbow managed conservatively. In conclusion, retrograde drilling is a very simple and minimally invasive treatment. This case suggests that retrograde drilling for trochlear groove OCD may be a useful procedure that may accelerate the healing process for OCD lesions. PMID:26356703

  13. Effects of a synovial flap and gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, bone morphogenetic protein-2, and platelet rich plasma on equine osteochondral defects.

    PubMed

    Seo, Jong-Pil; Kambayashi, Yoshinori; Itho, Megumi; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2015-08-01

    This study aimed to evaluate the efficacy of a synovial flap and gelatin/β-tricalcium phosphate (GT) sponge loaded with mesenchymal stem cells (MSCs), bone morphogenetic protein-2 (BMP-2), and platelet rich plasma (PRP) for repairing of osteochondral defects in horses. Osteochondral defects were created on the medial condyle of both femurs (n=5). In the test group, a GT sponge loaded with MSCs, BMP-2, and PRP (GT/MSCs/BMP-2/PRP) was inserted into the defect and then covered with a synovial flap. In the control group, the defect was treated only with the GT/MSCs/BMP-2/PRP. The test group showed significantly higher macroscopic scores than the control group. In addition, hyaline cartilaginous tissue was detected in the test group in areas larger than those in the control group. This study demonstrated that the combination of a synovial flap and GT sponge loaded with MSCs, BMP-2, and PRP promoted osteochondral regeneration in an equine model. PMID:26267104

  14. Chondroblastoma of the Knee Treated with Resection and Osteochondral Allograft Reconstruction

    PubMed Central

    Fitzgerald, Judd; Broehm, Cory; Treme, Gehron

    2014-01-01

    Case. This case report describes the operative management of 16-year-old male with a symptomatic chondroblastoma of the distal femur with breach of the chondral surface. Following appropriate imaging and core needle biopsy, the diagnosis was confirmed histologically. The patient then underwent intralesional curettage and osteochondral allograft reconstruction of the defect. At one-year follow-up the patient was pain-free and has obtained excellent range of motion. There is radiographic evidence of allograft incorporation and no evidence of local recurrence. Conclusion. Osteochondral allograft reconstruction is an effective option following marginal resection and curettage of chondroblastoma involving the chondral surface of the distal femur. PMID:25548701

  15. Lateral femoral condyle osteochondral fracture combined to patellar dislocation: a case report.

    PubMed

    Callewier, A; Monsaert, A; Lamraski, G

    2009-02-01

    The authors report the case of an osteochondral fracture involving the weight-bearing portion of the lateral femoral condyle in a 23-year-old sportsman. The defect was concomitant to a lateral patellar dislocation involving a rare injury mechanism. Fixation of the osteochondral fragment was performed with bioabsorbable pins and healing was achieved within an acceptable time. Clinical and radiographic outcome at one year is highly satisfactory and bioabsorbable implant fixation reveals to be a worthwhile option in such a case. This rare lesion is diagnostically challenging and requires an adapted and prompt treatment. PMID:19251243

  16. Osteochondritis dissecans of the lateral humeral condyle in a table tennis player.

    PubMed

    Pintore, E; Maffulli, N

    1991-08-01

    The case of a table tennis player suffering from intra-articular loose bodies of the elbow is reported. The patient developed the first signs of osteochondritis dissecans of the right lateral humeral condyle at age 16 but underwent surgery only 6 yr later. He has now resumed training and competition, despite some residual stiffness due to early osteoarthritis. This is the first case of osteochondritis dissecans of the elbow ascribed to this sport. It was probably due to repetitive valgus compressive stresses at the radiocapitellar joint during the forced movements imposed by high-level table tennis in a young athlete. PMID:1956260

  17. [Fibrinogen glue in osteochondral fractures with small fragments of the upper limb].

    PubMed

    Zilch, H; Talke, M

    1987-01-01

    Fibrin sealant presents a satisfactory possibility for reconstruction of the joint surface, especially in cases of little osteochondral fragments. Our experience in 16 patients is detailed. The patients average age was 23 years. 34 osteochondral fragments had been glued in these 16 cases, 10 times at the finger joints, 4 times at the caput radii and 2 times at the trochlea humeri. The patients, who had been operated on from June 1979 to December 1984 have been followed up at an average of 2,1 years after the fibrin gluing. This method can avoid an early arthrodesis or oversized osteosynthetic material. PMID:2447845

  18. Single-layer MoS2 nanosheet grafted upconversion nanoparticles for near-infrared fluorescence imaging-guided deep tissue cancer phototherapy

    NASA Astrophysics Data System (ADS)

    Han, Jianyu; Xia, Hongping; Wu, Yafeng; Kong, Shik Nie; Deivasigamani, Amudha; Xu, Rong; Hui, Kam M.; Kang, Yuejun

    2016-04-01

    A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency.A multifunctional nanostructure is prepared by covalently grafting upconversion nanoparticles (UCNPs) with chitosan functionalized MoS2 (MoS2-CS) and folic acid (FA) and then loading phthalocyanine (ZnPc) on the surface of MoS2, which integrates photodynamic therapy (PDT) with photothermal therapy (PTT) and upconversion luminescence imaging into one system for enhanced antitumor efficiency. Electronic supplementary information (ESI) available: Experimental details and figures. See DOI: 10.1039/c6nr00150e

  19. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration.

    PubMed

    Di Luca, Andrea; Longoni, Alessia; Criscenti, Giuseppe; Lorenzo-Moldero, Ivan; Klein-Gunnewiek, Michel; Vancso, Julius; van Blitterswijk, Clemens; Mota, Carlos; Moroni, Lorenzo

    2016-03-01

    Swift progress in biofabrication technologies has enabled unprecedented advances in the application of developmental biology design criteria in three-dimensional scaffolds for regenerative medicine. Considering that tissues and organs in the human body develop following specific physico-chemical gradients, in this study, we hypothesized that additive manufacturing (AM) technologies would significantly aid in the construction of 3D scaffolds encompassing such gradients. Specifically, we considered surface energy and stiffness gradients and analyzed their effect on adult bone marrow derived mesenchymal stem cell differentiation into skeletal lineages. Discrete step-wise macroscopic gradients were obtained by sequentially depositing different biodegradable biomaterials in the AM process, namely poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymers. At the bulk level, PEOT/PBT homogeneous scaffolds supported a higher alkaline phosphatase (ALP) activity compared to PCL, PLA, and gradient scaffolds, respectively. All homogeneous biomaterial scaffolds supported also a significantly higher amount of glycosaminoglycans (GAGs) production compared to discrete gradient scaffolds. Interestingly, the analysis of the different material compartments revealed a specific contribution of PCL, PLA, and PEOT/PBT to surface energy gradients. Whereas PEOT/PBT regions were associated to significantly higher ALP activity, PLA regions correlated with significantly higher GAG production. These results show that cell activity could be influenced by the specific spatial distribution of different biomaterial chemistries in a 3D scaffold and that engineering surface energy discrete gradients could be considered as an appealing criterion to design scaffolds for osteochondral regeneration. PMID:26924824

  20. Treatment of Osteochondral Lesions of the Talus With Bone Marrow Stimulation and Chitosan–Glycerol Phosphate/Blood Implants (BST-CarGel)

    PubMed Central

    Vilá y Rico, Jesús; Dalmau, Antonio; Chaqués, Francisco Javier; Asunción, Jordi

    2015-01-01

    Bone marrow stimulation (BMS) techniques represent the first-line treatment for unstable osteochondral lesions of the talus or after conservative treatment failure. These techniques are intended to penetrate the subchondral bone to elicit bleeding and allow precursor cells and cytokines from bone marrow to populate the lesion. However, the fibrocartilaginous repair tissue arising after marrow stimulation confers inferior mechanical and biological properties compared with the original hyaline cartilage. The limitations of BMS can be overcome by the use of the soluble chitosan-based polymer BST-CarGel (Piramal Life Sciences, Laval, Quebec, Canada). When mixed with freshly drawn autologous whole blood and applied to a lesion surgically prepared by BMS, BST-CarGel acts as a natural bioscaffold that increases the quantity and improves the residency of the blood clot formed in the cartilage lesion, enhancing the local healing response. The use of BST-CarGel has been previously described in the knee and hip joints with successful results. We describe the arthroscopic technique for BST-CarGel application in combination with BMS techniques for the treatment of osteochondral lesions of the talus. PMID:26870643

  1. Endothelial Outgrowth Cells: Function and Performance in Vascular Grafts

    PubMed Central

    Glynn, Jeremy J.

    2014-01-01

    The clinical need for vascular grafts continues to grow. Tissue engineering strategies have been employed to develop vascular grafts for patients lacking sufficient autologous vessels for grafting. Restoring a functional endothelium on the graft lumen has been shown to greatly improve the long-term patency of small-diameter grafts. However, obtaining an autologous source of endothelial cells for in vitro endothelialization is invasive and often not a viable option. Endothelial outgrowth cells (EOCs), derived from circulating progenitor cells in peripheral blood, provide an alternative cell source for engineering an autologous endothelium. This review aims at highlighting the role of EOCs in the regulation of processes that are central to vascular graft performance. To characterize EOC performance in vascular grafts, this review identifies the characteristics of EOCs, defines functional performance criteria for EOCs in vascular grafts, and summarizes the existing work in developing vascular grafts with EOCs. PMID:24004404

  2. Return to Sport and Recreational Activity Following Osteochondral Allograft Transplantation in the Knee

    PubMed Central

    Bugbee, William; Nielsen, Evan Scott; McCauley, Julie C.; Pulido, Pamela

    2016-01-01

    Objectives: Osteochondral allograft (OCA) transplantation is an integral part of the cartilage repair paradigm. There is little data regarding return to sport or recreational activity after OCA. The purpose of the present study was to 1) determine if athletic patients undergoing OCA returned to sport, 2) assess reason(s) why in those who did not, 3) and ascertain patient and graft-related characteristics that differed between those who returned or did not return to sport. Methods: Our institution’s OCA database was used to identify 149 knees in 142 patients who participated in sport or recreational activity prior to cartilage injury (45% highly-competitive athletes and 55% well-trained and frequently sporting) and had a minimum follow-up of 1 year (Table 1). The average age was 31 years and 59% were male. The majority of patients (68%) sustained a sports-related injury to their knee and 89% had undergone previous surgery (mean 2.1). Median time from onset of symptoms to OCA transplantation was 2.7 years. Pre-injury and postoperative participation in sport or recreational activity was collected. Patients not returning to their pre-injury level of sport were mailed a questionnaire to assess why, which included knee and lifestyle-related reason(s). Standard objective and subjective outcome measures were also obtained. Further surgery on the operative knee was documented. Results: At a mean follow-up of 6 years, 76% (113 of 149 knees) returned to sport or recreational activity. Among the 113, 28% returned to the same level of pre-injury sport, 48% partially returned (returned to one or more but not all of the same sports or activities), and 25% returned to a different sport or activity. Among the 24% (36 of 149 knees) who did not return to sport or activity, reasons included lifestyle events such as starting a family, changing careers, end of organized sports, knee-related issues, and worry about re-injuring the knee. Postoperatively, 79% of knees were able to

  3. Osteochondral Autograft Transfer for Treatment of Metacarpophalangeal and Interphalangeal Cartilage Defects.

    PubMed

    Micev, Alan J; Gaspar, Michael P; Culp, Randall W

    2016-09-01

    There is no general consensus regarding the optimal surgical treatment for cartilage defects of the metacarpophalangeal and interphalangeal joints in active patients who wish to preserve motion and functionality. We describe our technique of arthroscopically harvested femoral osteochondral autograft for treatment of metacarpophalangeal and interphalangeal cartilage defects. PMID:27280753

  4. Osteochondral defects of the upper extremity treated with particulated juvenile cartilage transfer.

    PubMed

    Dunn, John C; Kusnezov, Nicholas; Orr, Justin; Mitchell, Justin S

    2015-12-01

    We present the novel use of particulated juvenile cartilage transfer in the upper extremity. Our patient is an active duty solider with an osteochondral defect (OCD) of the capitellum that he sustained after an improvised explosive devise injury to his left elbow. PMID:26568723

  5. Cartilage restoration of the hip using fresh osteochondral allograft: resurfacing the potholes.

    PubMed

    Khanna, V; Tushinski, D M; Drexler, M; Backstein, D B; Gross, A E; Safir, O A; Kuzyk, P R

    2014-11-01

    Cartilage defects of the hip cause significant pain and may lead to arthritic changes that necessitate hip replacement. We propose the use of fresh osteochondral allografts as an option for the treatment of such defects in young patients. Here we present the results of fresh osteochondral allografts for cartilage defects in 17 patients in a prospective study. The underlying diagnoses for the cartilage defects were osteochondritis dissecans in eight and avascular necrosis in six. Two had Legg-Calve-Perthes and one a femoral head fracture. Pre-operatively, an MRI was used to determine the size of the cartilage defect and the femoral head diameter. All patients underwent surgical hip dislocation with a trochanteric slide osteotomy for placement of the allograft. The mean age at surgery was 25.9 years (17 to 44) and mean follow-up was 41.6 months (3 to 74). The mean Harris hip score was significantly better after surgery (p<0.01) and 13 patients had fair to good outcomes. One patient required a repeat allograft, one patient underwent hip replacement and two patients are awaiting hip replacement. Fresh osteochondral allograft is a reasonable treatment option for hip cartilage defects in young patients. PMID:25381401

  6. Development of novel three-dimensional printed scaffolds for osteochondral regeneration.

    PubMed

    Holmes, Benjamin; Zhu, Wei; Li, Jiaoyan; Lee, James D; Zhang, Lijie Grace

    2015-01-01

    As modern medicine advances, various methodologies are being explored and developed in order to treat severe osteochondral defects in joints. However, it is still very challenging to cure the osteochondral defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The objective of this study is to create novel three-dimensional (3D) printed osteochondral scaffolds with both excellent interfacial mechanical properties and biocompatibility for facilitating human bone marrow mesenchymal stem cell (MSC) growth and chondrogenic differentiation. For this purpose, we designed and 3D printed a series of innovative bi-phasic 3D models that mimic the osteochondral region of articulate joints. Our mechanical testing results showed that our bi-phasic scaffolds with key structures have enhanced mechanical characteristics in compression (a maximum Young's modulus of 31 MPa) and shear (a maximum fracture strength of 5768 N/mm(2)) when compared with homogenous designs. These results are also correlated with numerical simulation. In order to improve their biocompatibility, the scaffolds' surfaces were further modified with acetylated collagen (one of the main components in osteochondral extracellular matrix). MSC proliferation results demonstrated that incorporation of a collagen, along with biomimetically designed micro-features, can greatly enhance MSC growth after 5 days in vitro. Two weeks' chondrogenic differentiation results showed that our novel scaffolds (dubbed "key" scaffolds), both with and without surface collagen modification, displayed enhanced chondrogenesis (e.g., 130%, 114%, and 236% increases in glycosaminoglycan, type II collagen deposition, and total protein content on collagen-modified key scaffolds when compared with homogeneous controls). PMID:25088966

  7. Development of Novel Three-Dimensional Printed Scaffolds for Osteochondral Regeneration

    PubMed Central

    Holmes, Benjamin; Zhu, Wei; Li, Jiaoyan; Lee, James D.

    2015-01-01

    As modern medicine advances, various methodologies are being explored and developed in order to treat severe osteochondral defects in joints. However, it is still very challenging to cure the osteochondral defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The objective of this study is to create novel three-dimensional (3D) printed osteochondral scaffolds with both excellent interfacial mechanical properties and biocompatibility for facilitating human bone marrow mesenchymal stem cell (MSC) growth and chondrogenic differentiation. For this purpose, we designed and 3D printed a series of innovative bi-phasic 3D models that mimic the osteochondral region of articulate joints. Our mechanical testing results showed that our bi-phasic scaffolds with key structures have enhanced mechanical characteristics in compression (a maximum Young's modulus of 31 MPa) and shear (a maximum fracture strength of 5768 N/mm2) when compared with homogenous designs. These results are also correlated with numerical simulation. In order to improve their biocompatibility, the scaffolds' surfaces were further modified with acetylated collagen (one of the main components in osteochondral extracellular matrix). MSC proliferation results demonstrated that incorporation of a collagen, along with biomimetically designed micro-features, can greatly enhance MSC growth after 5 days in vitro. Two weeks' chondrogenic differentiation results showed that our novel scaffolds (dubbed “key” scaffolds), both with and without surface collagen modification, displayed enhanced chondrogenesis (e.g., 130%, 114%, and 236% increases in glycosaminoglycan, type II collagen deposition, and total protein content on collagen-modified key scaffolds when compared with homogeneous controls). PMID:25088966

  8. Operative Technique and Clinical Outcome in Endoscopic Core Decompression of Osteochondral Lesions of the Talus: A Pilot Study

    PubMed Central

    Beck, Sascha; Claßen, Tim; Haversath, Marcel; Jäger, Marcus; Landgraeber, Stefan

    2016-01-01

    Background Revitalizing the necrotic subchondral bone and preserving the intact cartilage layer by retrograde drilling is the preferred option for treatment of undetached osteochondral lesions of the talus (OLT). We assessed the effectiveness of Endoscopic Core Decompression (ECD) in treatment of OLT. Material/Methods Seven patients with an undetached OLT of the medial talar dome underwent surgical treatment using an arthroscopically-guided transtalar drill meatus for core decompression of the lesion. Under endoscopic visualization the OLT was completely debrided while preserving the cartilage layer covering the defect. The drill tunnel and debrided OLT were filled using an injectable bone graft substitute. Various clinical scores, radiographic imaging, and MRI were evaluated after a mean follow-up of 24.1 months. Results The American Orthopedic Foot and Ankle Society Score significantly improved from 71.0±2.4 to 90.3±5.9, and the Foot and Ankle Disability Index improved from 71.8±11.1 to 91.7±4.8. Radiographically, we observed good bone remodelling of the medial talar dome contour within 3 months. In MRI, an alteration of the bony signal of the drill tunnel and the excised OLT remained for more than 12 months. Conclusions First follow-up results for the surgical technique described in this study are highly promising for treatment of undetached stable OLT grade II or transitional stage II–III according to the Pritsch classification. Even lesions larger than 150 mm2 showed good clinical scores, with full restoration of the medial talar dome contour in radiographic imaging. PMID:27362485

  9. Operative Technique and Clinical Outcome in Endoscopic Core Decompression of Osteochondral Lesions of the Talus: A Pilot Study.

    PubMed

    Beck, Sascha; Claßen, Tim; Haversath, Marcel; Jäger, Marcus; Landgraeber, Stefan

    2016-01-01

    BACKGROUND Revitalizing the necrotic subchondral bone and preserving the intact cartilage layer by retrograde drilling is the preferred option for treatment of undetached osteochondral lesions of the talus (OLT). We assessed the effectiveness of Endoscopic Core Decompression (ECD) in treatment of OLT. MATERIAL AND METHODS Seven patients with an undetached OLT of the medial talar dome underwent surgical treatment using an arthroscopically-guided transtalar drill meatus for core decompression of the lesion. Under endoscopic visualization the OLT was completely debrided while preserving the cartilage layer covering the defect. The drill tunnel and debrided OLT were filled using an injectable bone graft substitute. Various clinical scores, radiographic imaging, and MRI were evaluated after a mean follow-up of 24.1 months. RESULTS The American Orthopedic Foot and Ankle Society Score significantly improved from 71.0±2.4 to 90.3±5.9, and the Foot and Ankle Disability Index improved from 71.8±11.1 to 91.7±4.8. Radiographically, we observed good bone remodelling of the medial talar dome contour within 3 months. In MRI, an alteration of the bony signal of the drill tunnel and the excised OLT remained for more than 12 months. CONCLUSIONS First follow-up results for the surgical technique described in this study are highly promising for treatment of undetached stable OLT grade II or transitional stage II-III according to the Pritsch classification. Even lesions larger than 150 mm2 showed good clinical scores, with full restoration of the medial talar dome contour in radiographic imaging. PMID:27362485

  10. 3D Printing and Biofabrication for Load Bearing Tissue Engineering.

    PubMed

    Jeong, Claire G; Atala, Anthony

    2015-01-01

    Cell-based direct biofabrication and 3D bioprinting is becoming a dominant technological platform and is suggested as a new paradigm for twenty-first century tissue engineering. These techniques may be our next step in surpassing the hurdles and limitations of conventional scaffold-based tissue engineering, and may offer the industrial potential of tissue engineered products especially for load bearing tissues. Here we present a topically focused review regarding the fundamental concepts, state of the art, and perspectives of this new technology and field of biofabrication and 3D bioprinting, specifically focused on tissue engineering of load bearing tissues such as bone, cartilage, osteochondral and dental tissue engineering. PMID:26545741

  11. Treatment of equine leg wounds using skin grafts: Thirty-five cases, 1975-1988.

    PubMed

    French, D A; Fretz, P B

    1990-11-01

    A retrospective study was conducted on 35 equine patients with lower leg wounds that were managed utilizing skin graft procedures. Two pinch graft, five punch graft, seven tunnel graft, eight split-thickness mesh graft and thirteen full-thickness mesh expansion graft procedures were performed in the initial treatment. The average wound size was 188 cm(2). Twentyfour cases had pregrafting complications: 10 wounds developed sequestra; three wounds were grossly contaminated and infected; and 11 cases developed granulation tissue complications prior to grafting. Graft failure following the initial procedure was seen in 12 cases and occurred with all techniques except pinch grafting. Graft failure was often attributable to poor quality of granulation tissue as well as anatomic site, especially the dorsal surface of the tarsus. An average of two additional grafting procedures was required to successfully treat initial failures. Pinch grafts took the longest time to epithelialize (70 days), followed by punch grafts (47 days). Both were similar in terms of being the least durable and least cosmetically acceptable of all techniques used. Split-thickness and full-thickness mesh expansion grafts were technically the most difficult, but showed the most rapid epithelialization (28 days), greatest durability, and the best cosmetic appearance. Tunnel grafts provided a practical technique for grafting cases which were either not suited for, or which had failed with, mesh expansion grafts. PMID:17423690

  12. Skin graft storage and keratinocyte viability.

    PubMed

    Fahmy, F S; Navsaria, H A; Frame, J D; Jones, C R; Leigh, I M

    1993-06-01

    The viability of human split skin grafts stored in four solutions has been assessed by monitoring the percentage of viable keratinocytes in the stored grafts. Skin grafts stored in RM+ (Ready Mix) tissue culture medium remained more viable than those stored in Hartmann's, Marshall's or saline solutions. By day 10 (postoperative), the percentage of viable keratinocytes of those grafts stored in RM+ was around 85%, compared to a value of around 10% for the other media. By day 30, RM+ achieved a value of around 60% keratinocyte viability compared to a value approaching 1% in the other storage media under investigation. RM+ provides mitogens, nutrients, growth factors and physiological pH, all of which are important factors for successful skin graft storage. PMID:8330085

  13. Technique in Cleft Rhinoplasty: The Foundation Graft.

    PubMed

    Gassner, Holger G; Schwan, Franziska; Haubner, Frank; Suárez, Gustavo A; Vielsmeier, Veronika

    2016-04-01

    Secondary cleft rhinoplasty represents a particular surgical challenge. The authors have identified the deficit in skeletal projection of the cleft-sided piriform rim as an important contributor to the pathology. A graft is described to augment the piriform crest on the cleft side. This foundation graft is suture fixated to the piriform crest after complete release of all soft tissue attachments to the alar base. The foundation graft is articulated with a long alar strut graft, which allows for powerful projection of the cleft-sided nasal tip. An advancement flap of vestibular skin is described to correct the vestibular stenosis. A transplant of diced cartilage in fascia is added to augment maxillary soft tissue volume. Subjective and objective measures of form and function are presented in a retrospective series of five cases, illustrating the efficacy of the techniques described. PMID:27097143

  14. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues.

    PubMed

    Ferraro, Giuseppe A; De Francesco, Francesco; Nicoletti, Gianfranco; Paino, Francesca; Desiderio, Vincenzo; Tirino, Virginia; D'Andrea, Francesco

    2013-05-01

    Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine. PMID:23129214

  15. Osteochondral Regeneration: Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration (Adv. Healthcare Mater. 14/2016).

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    A combination of human mesenchymal stem cells with additive manufacturing technology for the fabrication of scaffolds with instructive properties is presented by Lorenzo Moroni and co-workers on page 1753. This new fiber deposition pattern allows the generation of pores of different shapes within the same construct. The most rhomboidal pore geometry sustained enhances alkaline phosphatase activity and osteogenic related genes expression with respect to the other gradient zones when the gradient scaffold is cultured in a medium supporting both osteogenic and chondrogenic differentiation. This may contribute to enhance osteochondral regeneration in orthopedic treatments. PMID:27436107

  16. Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.

  17. Treatment of a Lateral Tibial Plateau Osteochondritis Dissecans Lesion With Subchondral Injection of Calcium Phosphate

    PubMed Central

    Abrams, Geoffrey D.; Alentorn-Geli, Eduard; Harris, Joshua D.; Cole, Brian J.

    2013-01-01

    Osteochondritis dissecans lesions occur frequently in children and adolescents. Treatment can be challenging and depends on the status of the articular cartilage and subchondral bone. Injection of calcium phosphate bone substitute into the area of subchondral bone edema (Subchondroplasty; Knee Creations, West Chester, PA) may be an option. We present a case of a lateral tibial plateau osteochondritis dissecans lesion treated with subchondral injection of nanocrystalline calcium phosphate. Preoperative magnetic resonance imaging is used to determine the area of subchondral edema, and intraoperative fluoroscopy is used to localize this area with the injection cannula. Calcium phosphate is injected by use of a series of syringes until the appropriate fill is obtained. Treatment of concomitant cartilage defects may also be carried out at this time. PMID:24265997

  18. Osteochondrosis of the capitellum of the humerus (Panner's disease, Osteochondritis Dissecans). Case study.

    PubMed

    Wróblewski, Robert; Urban, Mariusz; Michalik, Dariusz; Zakrzewski, Piotr; Langner, Maciej; Pomianowski, Stanisław

    2014-01-01

    The article presents a case of an adolescent patient suffering from osteochondritis of the humeral capitellum. Early symptoms of this disease appeared at an age typically associated with the onset of both Panner's disease and Osteochondritis Dissecans (OCD) of the humeral capitellum. About two years after the onset of the early symptoms, the patient reported to a specialised clinic. He was followed up for almost two years and was hospitalised and underwent surgical treatment during that period. Both diseases bear multiple similarities, which may entail diagnostic errors. The paper presents differences between these two similar clinical entities, in particular in terms of treatment and prognosis. Essential details potentially allowing for early diagnosis and classification of both conditions are described and discussed. Resolving the discussion may significantly contribute to improving performance and quality of life of patients suffering from necrosis of the humeral capitellum. PMID:24728797

  19. Steroid-induced femoral head osteonecrosis in immune thrombocytopenia treatment with osteochondral autograft transplantation.

    PubMed

    Fotopoulos, Vasileios Ch; Mouzopoulos, George; Floros, Themistoklis; Tzurbakis, Matthaios

    2015-09-01

    Osteonecrosis of the femoral head is a devastating complication of steroid administration and has rarely been observed in the treatment of immune thrombocytopenia. The treatment of osteochondral defects in advanced stages of avascular necrosis (AVN), characterized by collapse of the subchondral bone, remains an unsolved burden in orthopedic surgery. In this report, we present a case of a 19-year-old female that was admitted in the Emergency Department with walking disability and painful hip joint movement due to steroid-induced femoral head osteonecrosis. Two years before she was diagnosed with immune thrombocytopenia, for which she received pulse steroid therapy with high dose of dexamethasone and underwent a splenectomy. This case report is the first to describe the use of osteochondral autograft transplantation as a treatment of steroid-induced AVN of the femoral head due to immune thrombocytopenia at the age of 19 years with very good clinical and radiological results 3 years postoperatively. PMID:25173503

  20. Percutaneous CT-Guided Treatment of Osteochondritis Dissecans of the Sacroiliac Joint

    SciTech Connect

    Becce, Fabio; Mouhsine, Elyazid; Mosimann, Pascal John; Anaye, Anass; Letovanec, Igor; Theumann, Nicolas

    2012-08-15

    Osteochondritis dissecans (OCD) is a joint disorder that affects the articular cartilage and subchondral bone, most commonly at the knee. OCD of the sacroiliac joint is extremely rare. Management of OCD remains controversial, and surgery is often needed, especially when conservative treatment fails. We present a rare case of OCD involving the left sacroiliac joint successfully treated by percutaneous computed tomography-guided retrograde drilling and debridement.

  1. [Cementing of small osteochondral fragments in hand surgery using a fibrin glue--clinical experiences].

    PubMed

    Zilch, H; Talke, M

    1980-01-01

    A short historical review of the development of a new fibrinogen adhesive system, consisting of highly concentrated fibrinogen, thrombin, and factor XIII, is given. Small osteochondral fragments are well fixed with this system. This was demonstrated in five cases with good success, the fragments being early revascularized. Some of these patients have had severe damage to the finger joint surface. The problems of a prematured fibrinolysis were discussed. PMID:6972891

  2. Grafting techniques for Peyronie’s disease

    PubMed Central

    2016-01-01

    Peyronie’s disease (PD) is a benign fibrotic condition of the penile tunica albuginea. PD can be associated with penile pain, curvature, shortening, and erectile dysfunction (ED). The predominant and most bothersome symptom in affected patients is penile curvature, which can lead to inability to have sexual intercourse. In such cases, surgical correction of the curvature may be required. Plication techniques to correct curvature can cause penile shortening and therefore are generally reserved for curvatures <60°. Penile prosthesis implantation with simultaneous correction of curvature by various means is recommended in PD patients with ED not responding to medical therapy. Grafting techniques are the preferred surgical treatment in patients with penile curvatures >60°, short penis, or hourglass deformity. Patients scheduled for grafting surgery are required to have satisfactory erectile rigidity preoperatively. There are various grafting materials that can be used for closure of the tunica albuginea defect following plaque incision/excision. Both autologous and non-autologous grafts have been used for PD reconstructive surgery, and each graft has its advantages and disadvantages. Novel grafting materials are presented and discussed in this review. A major advantage of the available “off-the-shelf” grafts is that there is no harvesting from a donor site and, thus, morbidity is reduced, and operative times are minimized. Further investigations in regard to tissue-engineered grafts to improve surgical handling and postoperative outcomes are ongoing. Surgeon experience, careful patient selection, patient preference and type of penile deformity affect the choice of graft. This review summarizes the literature within the past 5 years regarding grafting techniques in PD. Surgical outcomes and limitations of grafting techniques are reported. A major objective of this review is dedicated to preoperative considerations and indications for grafting procedures, with

  3. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    strength, showed that the multilayer graft possessed properties mimicking those of native vessels. Achieving these FDA-required functional properties is essential because they play critical roles in graft performances in vivo such as thrombus formation, occlusion, healing, and bleeding. In addition, cell studies and animal studies have been performed on the multilayer graft. Our results show that the multilayer graft support mimetic vascular culture of cells and the acellular graft serves as an artery equivalent in vivo to sustain the physiological conditions and promote appropriate cellular activity. In conclusion, the newly-developed hybrid multilayer graft provides a proper balance of biomechanical and biochemical properties and demonstrates the potential for the use of vascular tissue engineering and regeneration.

  4. Quantification of C4d deposition and hepatitis C virus RNA in tissue in cases of graft rejection and hepatitis C recurrence after liver transplantation

    PubMed Central

    Song, Alice Tung Wan; de Mello, Evandro Sobroza; Alves, Venâncio Avancini Ferreira; Cavalheiro, Norma de Paula; Melo, Carlos Eduardo; Bonazzi, Patricia Rodrigues; Tengan, Fatima Mitiko; Freire, Maristela Pinheiro; Barone, Antonio Alci; D'Albuquerque, Luiz Augusto Carneiro; Abdala, Edson

    2015-01-01

    Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection. PMID:25742264

  5. Knee salvage procedures: The indications, techniques and outcomes of large osteochondral allografts

    PubMed Central

    Chui, Karen; Jeys, Lee; Snow, Martyn

    2015-01-01

    The overall incidence of osteochondral defect in the general population is estimated to be 15 to 30 per 100000 people. These lesions can become symptomatic causing pain, swelling and decreased function of the knee, and may eventually progress to osteoarthritis. In the young and active population, partial or total knee arthroplasty (TKA) is rarely the treatment of choice due to risk of early failure. Osteochondral allograft transplantation has been demonstrated to be a safe and effective treatment of large osteochondral and chondral defects of the knee in appropriately selected patients. The treatment reduces pain, improves function and is a viable limb salvage procedure for patients, especially young and active patients for whom TKA is not recommended. Either large dowels generated with commercially available equipment or free hand shell allografts can be implanted in more posterior lesions. Current recommendations for fresh allografts stored at 4C advise implantation within 21-28 d of procurement for optimum chondrocyte viability, following screening and testing protocols. Higher rates of successful allograft transplantation are observed in younger patients, unipolar lesions, normal or corrected malalignment, and defects that are treated within 12 mo of symptom onset. Patients with bipolar lesions, uncorrectable malalignment, advanced osteoarthritis, and those over 40 tend to have less favourable outcomes. PMID:25893177

  6. Arthroscopic retrograde osteochondral autologous transplantation to chondral lesion in femoral head.

    PubMed

    Cetinkaya, Sarper; Toker, Berkin; Taser, Omer

    2014-06-01

    This report describes the treatment of 2 cases of full-thickness cartilage defect of the femoral head. The authors performed osteochondral autologous transplantation with a different technique that has not been reported to date. One patient was 37 years old, and the other was 42 years old. Both presented with hip pain. In both patients, radiograph and magnetic resonance imaging scan showed a focal chondral defect on the weight-bearing area of the femoral head and acetabular impingement. A retrograde osteochondral autologous transplantation technique combined with hip arthroscopy and arthroscopic impingement treatment was performed. After a 2-month recovery period, the symptoms were resolved. In the first year of follow-up, Harris Hip scores improved significantly (case 1, 56.6 to 87.6; case 2, 58.6 to 90). The technique described yielded good short- and midterm clinical and radiologic outcomes. To the authors' knowledge, this report is the first to describe a retrograde osteochondral transplantation technique performed with hip arthroscopy in the femoral head. PMID:24972445

  7. A review of terminology for equine juvenile osteochondral conditions (JOCC) based on anatomical and functional considerations.

    PubMed

    Denoix, J-M; Jeffcott, L B; McIlwraith, C W; van Weeren, P R

    2013-07-01

    This manuscript describes a new classification of the various joint-related lesions that can be seen in the young, growing horse based on their anatomical and functional aetiopathogenesis. Juvenile osteochondral conditions (JOCC) is a term that brings together specific disorders according to their location in the joint and their biomechanical origin. When a biomechanical insult affects the process of endochondral ossification different types of osteochondrosis (OC) lesions may occur, including osteochondral fragmentation of the articular surface or of the periarticular margins, or the formation of juvenile subchondral bone cysts. In severe cases, osteochondral collapse of the articular surface or the epiphysis or even an entire small bone may occur. Tension on ligament attachments may cause avulsion fractures of epiphyseal (or metaphyseal) ossifying bone, which are classified as JOCC, but do not result from a disturbance of the process of endochondral ossification and are not therefore classified as a form of OC. The same applies to 'physitis' which can result from damage to the physeal growth plate. PMID:23683533

  8. Cartilage defect of lunate facet of distal radius after fracture treated with osteochondral autograft from knee.

    PubMed

    Mall, Nathan A; Rubin, David A; Brophy, Robert H; Goldfarb, Charles A

    2013-07-01

    We describe using an osteochondral autograft from the lateral femoral condyle of the knee to treat a symptomatic die-punch lesion of the lunate facet of the distal radius. An 18-year-old woman who sustained a distal radius fracture remained symptomatic after nonoperative treatment and diagnostic wrist arthroscopy with microfracture. We used a commercial harvesting system to transfer an osteochondral plug into a cartilage defect involving the lunate facet of the distal radius. At final follow-up, 34 months after surgery, the patient was assessed with a visual analog scale (VAS) and Disabilities of the Arm, Shoulder, and Hand (DASH) scores and with a comprehensive physical examination. Magnetic resonance arthrogram was used to assess articular cartilage status. VAS pain score improved from 7 before surgery to 0.5 after surgery. Postoperative DASH score was 0. The patient was asymptomatic and had satisfactory wrist motion without mechanical symptoms. Magnetic resonance arthrogram showed the transferred osteochondral autograft incorporated in excellent position. PMID:24078947

  9. Juvenile Osteochondritis Dissecans in a 13-year-old male athlete: A case report

    PubMed Central

    D’Angelo, Kevin; Kim, Peter; Murnaghan, M. Lucas

    2014-01-01

    Objective: To present the clinical management of juvenile osteochondritis dissecans (OCD) of the knee and highlight the importance of a timely diagnosis to optimize the time needed for less invasive, non-operative therapy. Clinical Features: A 13-year-old provincial level male soccer player presenting with recurrent anterior knee pain despite ongoing manual therapy. Intervention and Outcome: A multidisciplinary, non-operative treatment approach was utilized to promote natural healing of the osteochondral lesion. The plan of management consisted of patient education, activity modification, manual therapy, passive modalities and rehabilitation, while being overseen by an orthopaedic surgeon. Conclusions: Considering the serious consequences of misdiagnosing osteochondritis dissecans, such as the potential for future joint instability and accelerated joint degeneration, a high degree of suspicion should be considered with young individuals presenting with nonspecific, recurrent knee pain. A narrative review of the literature is provided to allow practitioners to apply current best practices to appropriately manage juvenile OCD and become more cognizant of the common knee differential diagnoses in the young athletic population. PMID:25550663

  10. Age-related differential gene and protein expression in postnatal cartilage canal and osteochondral junction chondrocytes.

    PubMed

    Duesterdieck-Zellmer, Katja; Semevolos, Stacy; Kinsley, Marc; Riddick, Tara

    2015-01-01

    Wnt/β-catenin, Indian hedgehog (Ihh)/Parathyroid-related peptide (PTHrP) and retinoid signaling pathways regulate cartilage differentiation, growth, and function during development and play a key role in endochondral ossification. The objective of this study was to elucidate the gene and protein expression of signaling molecules of these regulatory pathways in chondrocytes surrounding cartilage canals and the osteochondral junction during neonatal and pre-adolescent development. This study revealed cell-specific and age-related differences in gene and protein expression of signaling molecules of these regulatory pathways. A trend for higher gene expression of PTHrP along the cartilage canals and Ihh along the osteochondral junction suggests the presence of paracrine feedback in articular-epiphyseal cartilage. Differential expression of canonical (β-catenin, Wnt-4, Lrp4, Lrp6) and noncanonical Wnt signaling (Wnt-5b, Wnt-11) and their inhibitors (Dkk1, Axin1, sFRP3, sFRP5, Wif-1) surrounding the cartilage canals and osteochondral junction provides evidence of the complex interactions occurring during endochondral ossification. PMID:25479004

  11. Traumatic Osteochondral Injury of the Femoral Head Treated by Mosaicplasty: A Report of Two Cases

    PubMed Central

    Shindle, Michael K.; Buly, Robert L.; Kelly, Bryan T.; Lorich, Dean G.

    2010-01-01

    The increased risk of symptomatic progression towards osteoarthritis after chondral damage has led to the development of multiple treatment options for cartilage repair. These procedures have evolved from arthroscopic lavage and debridement, to marrow stimulation techniques, and more recently, to osteochondral autograft and allograft transplants, and autogenous chondrocyte implantation. The success of mosaicplasty procedures in the knee has led to its application to other surfaces, including the talus, tibial plateau, patella, and humeral capitellum. In this report, we present two cases of a chondral defect to the femoral head after a traumatic hip dislocation, treated with an osteochondral autograft (OATS) from the ipsilateral knee, and the inferior femoral head, respectively, combined with a surgical dislocation of the hip. At greater than 1 year and greater than 5 years of follow-up, MRI studies have demonstrated good autograft incorporation with maintenance of articular surface conformity, and both patients clinically continue to have no pain and full active range of motion of their respective hips. In our opinion, treatment of osteochondral defects in the femoral head surface using a surgical dislocation combined with an OATS procedure is a promising approach, as full exposure of the femoral head can be obtained while preserving its vasculature, thus enabling adequate restoration of the articular cartilage surface. PMID:21886541

  12. Diffusion and Perfusion: The Keys to Fat Grafting

    PubMed Central

    Khouri, Roger K.; Khouri, Raoul-Emil R.; Lujan-Hernandez, Jorge R.; Khouri, Khalil R.; Lancerotto, Luca

    2014-01-01

    Background: Fat grafting is now widely used in plastic surgery. Long-term graft retention can be unpredictable. Fat grafts must obtain oxygen via diffusion until neovascularization occurs, so oxygen delivery may be the overarching variable in graft retention. Methods: We studied the peer-reviewed literature to determine which aspects of a fat graft and the microenvironment surrounding a fat graft affect oxygen delivery and created 3 models relating distinct variables to oxygen delivery and graft retention. Results: Our models confirm that thin microribbons of fat maximize oxygen transport when injected into a large, compliant, well-vascularized recipient site. The “Microribbon Model” predicts that, in a typical human, fat injections larger than 0.16 cm in radius will have a region of central necrosis. Our “Fluid Accommodation Model” predicts that once grafted tissues approach a critical interstitial fluid pressure of 9 mm Hg, any additional fluid will drastically increase interstitial fluid pressure and reduce capillary perfusion and oxygen delivery. Our “External Volume Expansion Effect Model” predicts the effect of vascular changes induced by preoperative external volume expansion that allow for greater volumes of fat to be successfully grafted. Conclusions: These models confirm that initial fat grafting survival is limited by oxygen diffusion. Preoperative expansion increases oxygen diffusion capacity allowing for additional graft retention. These models provide a scientific framework for testing the current fat grafting theories. PMID:25426403

  13. Autologous Mesenchymal Stem Cells Produce Concordant Improvements in Regional Function, Tissue Perfusion and Fibrotic Burden when Administered to Patients Undergoing Coronary Artery Bypass Grafting – The PROMETHEUS Trial

    PubMed Central

    Karantalis, Vasileios; DiFede, Darcy L.; Gerstenblith, Gary; Pham, Si; Symes, James; Zambrano, Juan Pablo; Fishman, Joel; Pattany, Pradip; McNiece, Ian; Conte, John; Schulman, Steven; Wu, Katherine; Shah, Ashish; Breton, Elayne; Davis-Sproul, Janice; Schwarz, Richard; Feigenbaum, Gary; Mushtaq, Muzammil; Suncion, Viky Y.; Lardo, Albert C.; Borrello, Ivan; Mendizabal, Adam; Karas, Tomer Z.; Byrnes, John; Lowery, Maureen; Heldman, Alan W.; Hare, Joshua M.

    2014-01-01

    Rationale While accumulating data support the efficacy of intramyocardial cell-based therapy to improve LV function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial.Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including: reducing fibrosis, neoangiogenesis and neomyogenesis. Objective To test the hypothesis that the impact on cardiac structure and function following intramyocardial injections of autologous MSCs results from a concordance of pro-recovery phenotypic effects. Methods and Results Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness and contractility at baseline, 3, 6 and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LVEF (+9.4±1.7%, p=0.0002) and decreased scar mass (-47.5±8.1%; p<0.0001) compared to baseline. MSC-injected segments had concordant reduction in scar size, perfusion and contractile improvement (concordant score: 2.93±0.07), whereas revascularized (0.5±0.21) and non-treated segments (-0.07±0.34) demonstrated non-concordant changes (p<0.0001 vs. injected segments). Conclusions Intramyocardial injection of autologous MSCs into akinetic yet non-revascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive due to lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications. PMID:24565698

  14. Do Stem Cells Have an Effect When We Fat Graft?

    PubMed

    Rinker, Brian D; Vyas, Krishna S

    2016-06-01

    Fat grafting has become a widely accepted modality of soft tissue restoration and has found applications in many areas of aesthetic and reconstructive plastic surgery. Numerous claims have been made regarding the regenerative effects of fat grafting on the recipient bed. The purpose of this paper is to survey the available literature to answer the question of whether fat grafting has a positive effect on the surrounding tissues. It has been convincingly demonstrated that fat grafts contain viable adipose-derived stem cells (ASCs). The fate of these cells is determined by the microenvironment of the recipient bed, but animal studies have shown that a large fraction of ASCs survive engraftment. Numerous clinical studies have demonstrated the positive effects of fat grafting on recipient tissues. Improvement in validated scar scores as well as scar stiffness measurements have been documented after fat grafting of burn scars. Fat grafting has also been convincingly demonstrated to improve the quality of irradiated tissues, as measured by validated clinical scales and staged histology. It is ultimately unclear whether ASCs are responsible for these effects, but the circumstantial evidence is weighty. Fat grafting is effective for volumizing and improving skin quality in the setting of radiation, burns, and other scars. The observed effects are likely due to ASCs, but the evidence does not support the routine use of ASC-enriched fat grafts. PMID:26545225

  15. Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography.

    PubMed

    Ishii, Daizo; Enmi, Jun-Ichiro; Moriwaki, Takeshi; Ishibashi-Ueda, Hastue; Kobayashi, Mari; Iwana, Shinichi; Iida, Hidehiro; Satow, Tetsu; Takahashi, Jun C; Kurisu, Kaoru; Nakayama, Yasuhide

    2016-09-01

    Biotubes, i.e., in vivo tissue-engineered connective tubular tissues, are known to be effective as vascular replacement grafts with a diameter greater than several millimeters. However, the performance of biotubes with smaller diameters is less clear. In this study, MicroBiotubes with diameters <1 mm were prepared, and their patency was evaluated noninvasively by optical coherence tomography (OCT) and magnetic resonance angiography (MRA). MicroBiotube molds, containing seven stainless wires (diameter 0.5 mm) covered with silicone tubes (outer diameter 0.6 mm) per mold, were embedded into the dorsal subcutaneous pouches of rats. After 2 months, the molds were harvested with the surrounding capsular tissues to obtain seven MicroBiotubes (internal diameter 0.59 ± 0.015 mm, burst pressure 4190 ± 1117 mmHg). Ten-mm-long MicroBiotubes were allogenically implanted into the femoral arteries of rats by end-to-end anastomosis. Cross-sectional OCT imaging demonstrated the patency of the MicroBiotubes immediately after implantation. In a 1-month follow-up MRA, high patency (83.3 %, n = 6) was observed without stenosis, aneurysmal dilation, or elongation. Native-like vascular structure was reconstructed with completely endothelialized luminal surfaces, mesh-like elastin fiber networks, regular circumferential orientation of collagen fibers, and α-SMA-positive cells. Although the long-term patency of MicroBiotubes still needs to be confirmed, they may be useful as an alternative ultra-small-caliber vascular substitute. PMID:27003431

  16. Tendon graft substitutes-rotator cuff patches.

    PubMed

    Coons, David A; Alan Barber, F

    2006-09-01

    Over the past few years, many biologic patches have been developed to augment repairs of large or complex tendon tears. These patches include both allograft and xenografts. Regardless of their origins, these products are primarily composed of purified type I collagen. Many factors should be considered when choosing an augmentation patch including tissue origin, graft processing, cross-linking, clinical experience, and physical properties. The purpose of this article is to familiarize the sports medicine community with several tendon augmentation grafts: GraftJacket (Wright Medical Technology, Arlington, TN), CuffPatch (Organogenesis, Canton, MA, licensed to Arthrotek, Warsaw, IN), Restore (Depuy, Warsaw, IN), Zimmer Collagen Repair (Permacol) patch (Tissue Science Laboratories Covington, GA, licensed to Zimmer, Warsaw, IN), TissueMend (TEI Biosciences, Boston, MA, licensed to Stryker Howmedica Osteonics, Kalamazoo, MI), OrthoADAPT (Pegasus Biologics, Irvine, CA), and BioBlanket (Kensey Nash, Exton, PA). PMID:17135966

  17. Treatment of osteochondral lesions of the talus with autologous collagen-induced chondrogenesis: clinical and magnetic resonance evaluation at one-year follow-up

    PubMed Central

    USUELLI, FEDERICO GIUSEPPE; GRASSI, MIRIAM; MANZI, LUIGI; GUARRELLA, VINCENZO; BOGA, MICHELE; DE GIROLAMO, LAURA

    2016-01-01

    Purpose the aim of this study is to report the clinical and imaging results recorded by a series of patients in whom osteochondral lesions of the talus (OLTs) were repaired using the autologous collagen-induced chondrogenesis (ACIC) technique with a completely arthroscopic approach. Methods nine patients (mean age 37.4±10 years) affected by OLTs (lesion size 2.1±0.9 cm2) were treated with the ACIC technique. The patients were evaluated clinically both preoperatively and at 12 months after surgery using the American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale (AOFAS) and a visual analog scale (VAS). For morphological evaluation, the magnetic resonance observation of cartilage repair tissue (MOCART) score was used. Results the AOFAS score improved from 51.4±11.6 preoperatively to 71.8±20.6 postoperatively, while the VAS value decreased from 6.9±1.8 to 3.2±1.9. The mean MOCART score was 51.7±16.6 at 12 months of follow-up; these scores did not directly correlate with the clinical results. Conclusion use of the ACIC technique for arthroscopic repair of OLTs allowed satisfactory clinical results to be obtained in most of the patients as soon as one year after surgery, with no major complications or delayed revision surgery. ACIC is a valid and low-invasive surgical technique for the treatment of chondral and osteochondral defects of the talus. Level of evidence therapeutic case series, level IV. PMID:27602347

  18. Rotational osteoplasty and bioabsorbable polylactate pin fixation in Pipkin type 2 fracture with acute osteochondral defect: a case report.

    PubMed

    Maluta, Tommaso; Micheloni, Gian Mario; Sandri, Andrea; Regis, Dario; Costanzo, Alessandro; Magnan, Bruno

    2016-01-01

    Pipkin fractures are relative rare high-energy lesions characterized by an intra-articular fracture of the femoral head after posterior hip dislocation. Early anatomic reduction and stable fixation are the main goals of treatment. This case evaluates the outcome of managing Pipkin type 2 fracture with acute osteochondral defect of the femoral head using "rotational osteoplasty" and bioabsorbable polylactate pin fixation. 24-year-old male patient was involved in a motorcycle accident, suffering from a left hip fracture-dislocation, and pelvic Computed Tomography revealed a Pipkin type 2 lesion. An open urgent treatment was performed. After  anatomic reduction of the femoral head fragment a large osteochondral defect in the anterior-superior weight bearing surface was evident. The pattern of the fracture allowed us to perform a "rotational osteoplasty" including rotation of the femoral head fragment, to obtain an osteochondral cartilage congruence of the anterior-superior surface. Stable fixation was obtained by three bioabsorbable polylactate pins. At four-year follow up the patient had an excellent outcome and Magnetic Resonance Imaging (MRI) showed fracture healing, minimal signs of arthritis, excluding osteonecrosis of the femoral head. The reported case confirms that Pipkin fractures are very insidious surgical urgencies. In selected cases, "rotational osteoplasty" may be an alternative to osteochondral transplant for acute osteochondral defect of the femoral head. Bioabsorbable polylactate pin fixation allowed us to have a stable fixation evaluating the bone healing process and vitality of femoral head by MRI. PMID:27104330

  19. Excellent Aesthetic and Functional Outcome After Fractionated Carbon Dioxide Laser Skin Graft Revision Surgery: Case Report and Review of Laser Skin Graft Revision Techniques.

    PubMed

    Ho, Derek; Jagdeo, Jared

    2015-11-01

    Skin grafts are utilized in dermatology to reconstruct a defect secondary to surgery or trauma of the skin. Common indications for skin grafts include surgical removal of cutaneous malignancies, replacement of tissue after burns or lacerations, and hair transplantation in alopecia. Skin grafts may be cosmetically displeasing, functionally limiting, and significantly impact patient's quality-of-life. There is limited published data regarding skin graft revision to enhance aesthetics and function. Here, we present a case demonstrating excellent aesthetic and functional outcome after fractionated carbon dioxide (CO2) laser skin graft revision surgery and review of the medical literature on laser skin graft revision techniques. PMID:26580878

  20. Bone grafts in dentistry

    PubMed Central

    Kumar, Prasanna; Vinitha, Belliappa; Fathima, Ghousia

    2013-01-01

    Bone grafts are used as a filler and scaffold to facilitate bone formation and promote wound healing. These grafts are bioresorbable and have no antigen-antibody reaction. These bone grafts act as a mineral reservoir which induces new bone formation. PMID:23946565

  1. Expression of MMP-2 and TIMP-1 in Renal Tissue of Patients with Chronic Active Antibody-mediated Renal Graft Rejection

    PubMed Central

    2012-01-01

    Objective To investigate the expression of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metallopropteinase-1 (TIMP-1) in the renal allografts of patients with chronic active antibody-mediated rejection (AMR), and to explore their role in the pathogenesis of AMR. Methods Immunohistochemistry assay and computer-assisted image analysis were used to detect the expression of MMP-2 and TIMP-1 in the renal allografts with interstitial fibrosis and tubular atrophy (IF/TA) in 46 transplant recipients and 15 normal renal tissue specimens as the controls. The association of the expression level of either MMP-2 or TIMP-1 with the pathological grade of IF/TA in AMR was analyzed. Results The expression of either MMP-2 or TIMP-1 was significantly increased in the renal allografts of the recipients as compared with the normal renal tissue (P < 0.05). MMP-2 expression tended to decrease, while TIMP-1 and serum creatinine increased along with the increase of pathological grade of IF/TA (P < 0.05). In IF/TA groups, the expression of TIMP-1 was positively correlated to serum creatinine level (r = 0.718, P < 0.05). Conclusions It is suggested by the results that abnormal expressions of MMP-2 and TIMP-1 might play roles in the development of renal fibrosis in chronic AMR. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1128474926172838 PMID:23057632

  2. Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization.

    PubMed

    Mrázová, H; Koller, J; Kubišová, K; Fujeríková, G; Klincová, E; Babál, P

    2016-06-01

    Sterilization is an important step in the preparation of biological material for transplantation. The aim of the study is to compare morphological changes in three types of biological tissues induced by different doses of gamma and electron beam radiation. Frozen biological tissues (porcine skin xenografts, human skin allografts and human amnion) were irradiated with different doses of gamma rays (12.5, 25, 35, 50 kGy) and electron beam (15, 25, 50 kGy). Not irradiated specimens served as controls. The tissue samples were then thawn and fixed in 10 % formalin, processed by routine paraffin technique and stained with hematoxylin and eosin, alcian blue at pH 2.5, orcein, periodic acid Schiff reaction, phosphotungstic acid hematoxylin, Sirius red and silver impregnation. The staining with hematoxylin and eosin showed vacuolar cytoplasmic changes of epidermal cells mainly in the samples of xenografts irradiated by the lowest doses of gamma and electron beam radiation. The staining with orcein revealed damage of fine elastic fibers in the xenograft dermis at the dose of 25 kGy of both radiation types. Disintegration of epithelial basement membrane, especially in the xenografts, was induced by the dose of 15 kGy of electron beam radiation. The silver impregnation disclosed nuclear chromatin condensation mainly in human amnion at the lowest doses of both radiation types and disintegration of the fine collagen fibers in the papillary dermis induced by the lowest dose of electron beam and by the higher doses of gamma radiation. Irradiation by both, gamma rays and the electron beam, causes similar changes on cells and extracellular matrix, with significant damage of the basement membrane and of the fine and elastic and collagen fibers in the papillary dermis, the last caused already by low dose electron beam radiation. PMID:26649556

  3. Grafted dopamine neurons: Morphology, neurochemistry, and electrophysiology.

    PubMed

    Strömberg, Ingrid; Bickford, Paula; Gerhardt, Greg A

    2010-02-01

    Grafting of dopamine-rich tissue to counteract the symptoms in Parkinson's disease became a promising tool for future treatment. This article discusses how to improve the functional outcome with respect to graft outgrowth and functions of dopamine release and electrophysiological responses to graft implantation in the host brain striatal target. It has been documented that a subpopulation of the dopamine neurons innervates the host brain in a target-specific manner, while some of the grafted dopamine neurons never project to the host striatum. Neurochemical studies have demonstrated that the graft-induced outgrowth synthesize, store, metabolize and release dopamine and possibly other neurotransmitters such as 5-HT. Furthermore, the released dopamine affects the dopamine-depleted brain in areas that are larger than the graft-derived nerve fibers reach. While stem cells will most likely be the future source of cells to be used in grafting, it is important to find the guiding cues for how to reinnervate the dopamine-depleted striatum in a proper way with respect to the dopamine subpopulations of A9 and A10 to efficiently treat the motor abnormalities seen in Parkinson's disease. PMID:19853009

  4. Retrograde Percutaneous Drilling for Osteochondritis Dissecans of the Head of the Talus: Case Report and Review of the Literature.

    PubMed

    Corominas, Laura; Sanpera, Ignacio; Masrouha, Karim; Sanpera-Iglesias, Julia

    2016-01-01

    Osteochondral lesions of the talus might be a more common cause of pain than previously recognized, especially among those involved in athletic activities. However, the location of an osteochondral lesion on the talar head is much less common than such lesions localized to the dome of the talus and can pose diagnostic difficulties. We present the case of a 14-year-old soccer player who complained of longstanding pain in his left foot. After unsuccessful conservative treatment consisting of rest and bracing, he was ultimately treated with retrograde percutaneous drilling of the talar head performed by a medial approach. This was followed by casting and non-weightbearing for 6 weeks, after which physical therapy was undertaken. He was able to return to full activity and remained asymptomatic during a 5-year observation period. Although rare, osteochondritis dissecans of the talar head should be considered in young athletes with persistent foot pain that is unresponsive to reasonable therapy. PMID:25459089

  5. 3D-Printed Biodegradable Polymeric Vascular Grafts.

    PubMed

    Melchiorri, Anthony J; Hibino, Narutoshi; Best, C A; Yi, T; Lee, Y U; Kraynak, C A; Kimerer, Lucas K; Krieger, A; Kim, P; Breuer, Christopher K; Fisher, John P

    2016-02-01

    Congenital heart defect interventions may benefit from the fabrication of patient-specific vascular grafts because of the wide array of anatomies present in children with cardiovascular defects. 3D printing is used to establish a platform for the production of custom vascular grafts, which are biodegradable, mechanically compatible with vascular tissues, and support neotissue formation and growth. PMID:26627057

  6. Vein graft in stapes surgery.

    PubMed

    Kamal, S A

    1996-03-01

    Sealing the opening of the oval window during stapes surgery is essential; it prevents postoperative complications, such as perilymph fistula and sensorineural hearing loss. In this small series of 269 cases with otosclerosis, tympanosclerosis, and congenital ossicular abnormality, vein grafting was used to seal the opening of the footplate. Hearing improvement after surgery was acceptable, and none had total hearing loss or perilymphatic fistula. World literature from the last half of this century on grafting the oval window is reviewed. Absorbable gelatin sponge (Gelfoam) seems to be causing more complications, so its use is highly discouraged. Temporalis fascia, fat, and perivenous loose areolar tissue have been used by different authors at different times in footplate surgery. The opening created in the oval window during stapes surgery must not be left uncovered. PMID:8723953

  7. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.

    PubMed

    Schantz, Jan-Thorsten; Teoh, Swee Hin; Lim, Thiam Chye; Endres, Michaela; Lam, Christopher Xu Fu; Hutmacher, Dietmar Werner

    2003-01-01

    Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the

  8. Graft of a Tissue-Engineered Neural Scaffold Serves as a Promising Strategy to Restore Myelination after Rat Spinal Cord Transection

    PubMed Central

    Lai, Bi-Qin; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang

    2014-01-01

    Remyelination remains a challenging issue in spinal cord injury (SCI). In the present study, we cocultured Schwann cells (SCs) and neural stem cells (NSCs) with overexpression of neurotrophin-3 (NT-3) and its high affinity receptor tyrosine kinase receptor type 3 (TrkC), respectively, in a gelatin sponge (GS) scaffold. This was aimed to generate a tissue-engineered neural scaffold and to investigate whether it could enhance myelination after a complete T10 spinal cord transection in adult rats. Indeed, many NT-3 overexpressing SCs (NT-3-SCs) in the GS scaffold assumed the formation of myelin. More strikingly, a higher incidence of NSCs overexpressing TrkC differentiating toward myelinating cells was induced by NT-3-SCs. By transmission electron microscopy, the myelin sheath showed distinct multilayered lamellae formed by the seeded cells. Eighth week after the scaffold was transplanted, some myelin basic protein (MBP)-positive processes were observed within the transplantation area. Remarkably, certain segments of myelin derived from NSC-derived myelinating cells and NT-3-SCs were found to ensheath axons. In conclusion, we show here that transplantation of the GS scaffold promotes exogenous NSC-derived myelinating cells and SCs to form myelins in the injury/transplantation area of spinal cord. These findings thus provide a neurohistological basis for the future application or transplantation using GS neural scaffold to repair SCI. PMID:24325427

  9. Protective constriction of coronary vein grafts with knitted nitinol

    PubMed Central

    Moodley, Loven; Franz, Thomas; Human, Paul; Wolf, Michael F.; Bezuidenhout, Deon; Scherman, Jacques; Zilla, Peter

    2013-01-01

    OBJECTIVES Different flow patterns and shear forces were shown to cause significantly more luminal narrowing and neointimal tissue proliferation in coronary than in infrainguinal vein grafts. As constrictive external mesh support of vein grafts led to the complete suppression of intimal hyperplasia (IH) in infrainguinal grafts, we investigated whether mesh constriction is equally effective in the coronary position. METHODS Eighteen senescent Chacma baboons (28.8 ± 3.6 kg) received aorto-coronary bypass grafts to the left anterior descending artery (LAD). Three groups of saphenous vein grafts were compared: untreated controls (CO); fibrin sealant-sprayed controls (CO + FS) and nitinol mesh-constricted grafts (ME + FS). Meshes consisted of pulse-compliant, knitted nitinol (eight needles; 50 μm wire thickness; 3.4 mm resting inner diameter, ID) spray attached to the vein grafts with FS. After 180 days of implantation, luminal dimensions and IH were analysed using post-explant angiography and macroscopic and histological image analysis. RESULTS At implantation, the calibre mismatch between control grafts and the LAD expressed as cross-sectional quotient (Qc) was pronounced [Qc = 0.21 ± 0.07 (CO) and 0.18 ± 0.05 (CO + FS)]. Mesh constriction resulted in a 29 ± 7% reduction of the outer diameter of the vein grafts from 5.23 ± 0.51 to 3.68 ± 0 mm, significantly reducing the calibre discrepancy to a Qc of 0.41 ± 0.17 (P < 0.02). After 6 months of implantation, explant angiography showed distinct luminal irregularities in control grafts (ID difference between widest and narrowest segment 74 ± 45%), while diameter variations were mild in mesh-constricted grafts. In all control grafts, thick neointimal tissue was present [600 ± 63 μm (CO); 627 ± 204 μm (CO + FS)] as opposed to thin, eccentric layers of 249 ± 83 μm in mesh-constricted grafts (ME + FS; P < 0.002). The total wall thickness had increased by 363 ± 39% (P < 0.00001) in CO and 312 ± 61% (P < 0

  10. Osteochondral lesion of the talus in a recreational athlete: a case report

    PubMed Central

    deGraauw, Chris

    1999-01-01

    A 23-year-old recreational male athlete presented with intermittent pain of three weeks duration, localized to the left ankle. Pain was aggravated by walking, although his symptoms had not affected the patient’s jogging activity which was performed three times per week. Past history revealed an inversion sprain of the left ankle, sustained fifteen months previously. Examination showed mild swelling anterior to the ankle mortise joint while other tests including range of motion, strength and motion palpation of specific joints of the ankle were noted to be unremarkable. Radiographic findings revealed a defect in the medial aspect of the talus. An orthopaedic referral was made for further evaluation. Tomography revealed a Grade III osteochondral lesion of the talus. It was determined that follow-up views be taken in three months to demonstrate if the lesion was progressing or healing. Within the three month period, activity modifications and modalities for pain control were indicated. Surgery was considered a reasonable option should conservative measures fail. The present case illustrates an osteochondral lesion of the talus, a condition which has not previously been reported in the chiropractic literature. A review of the pertinent orthopaedic literature has indicated an average delay of three years in diagnosing the existence of this lesion. Although considered rare, the diagnostic frequency of the condition appears to be on the rise due to increased awareness and the use of bone and CT scans. The osteochondral lesion of the talus deserves particular consideration by practitioners working with athletes due to its higher incidence within this group. This diagnosis should be considered in patients presenting with chronic ankle pain particularly when a history of an inversion sprain exists. The purpose of this report is to increase awareness of this condition, and review diagnosis and management strategies. ImagesFigure 1Figure 2

  11. COMPARATIVE MACROSCOPIC STUDY OF OSTEOCHONDRAL DEFECTS PRODUCED IN FEMURS OF RABBITS REPAIRED WITH BIOPOLYMER GEL CANE SUGAR

    PubMed Central

    de Albuquerque, Paulo Cezar Vidal Carneiro; dos Santos, Saulo Monteiro; de Andrade Aguiar, José Lamartine; Filho, Nicodemus Pontes; de Mello, Roberto José Vieira; Costa, Mariana Lúcia Correia Ramos; de Albuquerque Olbertz, Clarissa Miranda Carneiro; de Souza Almeida, Tarciana Mendonça; da Silva Santos, Alessandro Henrique; da Silva, Joacil Carlos

    2015-01-01

    Objective: To study the surface, coloring, consistency, continuity and healing of osteochondral defects produced in the femoral condyles of rabbits and filled with sugar cane biopolymer gel (SCBG), after 90, 120 and 180 days, and in comparison with a control group. Method: Sixteen adult New Zealand white rabbits aged 6 to 7 months, weighing between 2 and 2.5 kg and without locomotor system abnormalities were studied. In all the animals, a defect was made in the femoral condyles of the right and left knees, measuring 3.2 mm in diameter and 4 mm in depth, using a trephine. The animals were divided into two groups: study group formed by the right knees, in which the medial and lateral condyles received implants of SCBG; and control group formed by the left knees, in which the medial and lateral condyles were allowed to heal naturally. The knees were assessed 90, 120 and 180 days after the operation. After the animals had been sacrificed, the anatomical specimens were resected and placed in Bouin's solution. They were then photographed with a Nikon Coolpix 5400® coupled to a Nikon SM2800® stereoscopic loupe, to analyze the surface, coloring, consistency, continuity and healing. Results: The results were evaluated using the chi-square test. There were no significant differences in the macroscopic assessments of healing between the study and control groups. Conclusion: With regard to the surface, coloring, consistency, continuity and healing of the defects, the macroscopic appearance of the tissue repaired with SCBG was similar to that of the control group. PMID:27027057

  12. An Unexpected Complication after Headless Compression Screw Fixation of an Osteochondral Fracture of Patella

    PubMed Central

    Aydoğmuş, Suavi; Keçeci, Tolga

    2016-01-01

    This study evaluated complications associated with implant depth in headless compression screw treatment of an osteochondral fracture associated with a traumatic patellar dislocation in a 21-year-old woman. Computed tomography and X-rays showed one lateral fracture fragment measuring 25 × 16 mm. Osteosynthesis was performed with two headless compression screws. Five months later, the screws were removed because of patella-femoral implant friction. We recommend that the screw heads be embedded to a depth of at least 3 mm below the cartilage surface. Further clinical studies need to examine the variation in cartilage thickness in the fracture fragment. PMID:27051547

  13. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  14. Does platelet-rich plasma enhance the survival of grafted fat? An update review.

    PubMed

    Jin, Rong; Zhang, Lu; Zhang, Yu-Guang

    2013-01-01

    Autologous fat grafting enables repair and augmentation of soft tissues and is increasingly used in plastic and reconstructive surgery. The main limitation of fat grafting is unpredictable graft resorption. To obviate this disadvantage, several studies have searched for new ways of increasing the viability of the transplanted tissue. One promising approach has been to mix the fat graft with Platelet-Rich Plasma (PRP) before transplantation. The purpose of this article is to review systematically the available comparative evidence about PRP-assisted fat grafting. PMID:23641301

  15. Lewy body pathology in fetal grafts.

    PubMed

    Chu, Yaping; Kordower, Jeffrey H

    2010-01-01

    Although fetal nigral transplants have been shown to survive grafting into the striatum, increased [(18)F]6-fluroro-L-3,4-dihydroxyphenylalanine ((18)F-DOPA) uptake and improved motor function in open-label assessments have failed to establish any clinical benefits in double-blind, sham-controlled studies. To understand morphological and neurochemical alterations of grafted neurons, we performed postmortem analyses on six Parkinson's disease (PD) patients who had received fetal tissue transplantation 18-19 months, 4 years, and 14 years previously. These studies revealed robust neuronal survival with normal dopaminergic phenotypes in 18-month-old grafts and decreased dopamine transporter and increased cytoplasmic alpha-synuclein in 4-year-old grafts. We also found a decline of both dopamine transporter and tyrosine hydroxylase and the formation of Lewy body-like inclusions in 14-year-old grafts, which stained positive for alpha-synuclein and ubiquitin proteins. These pathological changes suggest that PD is an ongoing process that affects grafted cells in the striatum in a manner similar to how resident dopamine neurons are affected in the substantia nigra. PMID:20146690

  16. A long term comparison between Denacol EX-313-treated bovine jugular vein graft and ultrafine polyester fiber graft for reconstruction of tight ventricular outflow tract in dogs.

    PubMed

    Matsumoto, Hideki; Sugiyama, Shino; Shibazaki, Akira; Tanaka, Ryou; Takashima, Kazuaki; Noishiki, Yasuharu; Yamane, Yoshihisa

    2003-03-01

    A Denacol EX-313 (Denacol)-treated bovine venous graft and an ultrafine polyester fiber (UFPF) graft were transplanted as patch graft into the right ventricular outflow tract under extracorporeal circulation in six dogs each experimentally. Hemodynamics in right heart and histological findings around the graft were compared between both groups over a period of one year after grafting. Pressure measurements and angiocardiography were performed through a cardiac catheter. Right ventricular pressure, pulmonary artery pessure, and right ventricle to pulmonary artery gradient were within normal limits in both groups at 1, 2, 3, 4, 6, and 12 months or more after grafting. No difference were seen between the values for the Denacol and the UFPF group. Histologically, the medial surface at the site of grafting was covered with vascular endothelial cells at one month after grafting in both groups. The density of the vascular endothelial cells increased with time after grafting, showing no clear difference between the two groups. Subendothelial layers comprised of collagen fibers, elastic fibers, and inflammatory cells decreased with time in both groups, but there was less cell infiltration in the Denacol group than in the UFPF group at all time points after grafting. In addition, the central cut thickness value of the graft tended to be thinner in the Denacol group than in the UFPF group at all observation time points after grafting. In the Denacol group, very slight metaplasia of cartilage was noted in a portion of the graft margin at six months or more after grafting, but no other abnormalities were observed. These results suggest that the Denacol-treated bovine venous graft has better grafting characteristics than the UFPF graft with easier intra-operative handlings and less tissue reactions after grafting. PMID:12679567

  17. Engineering anatomically shaped human bone grafts

    PubMed Central

    Grayson, Warren L.; Fröhlich, Mirjam; Yeager, Keith; Bhumiratana, Sarindr; Chan, M. Ete; Cannizzaro, Christopher; Wan, Leo Q.; Liu, X. Sherry; Guo, X. Edward; Vunjak-Novakovic, Gordana

    2009-01-01

    The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a “biomimetic” scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle—in vitro cultivation of viable bone grafts of complex geometries—to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions. PMID:19820164

  18. Lapidus arthrodesis plus osteochondral autograft transplantation in the management of hallux rigidus with an elevated first ray.

    PubMed

    Klos, Kajetan; Simons, Paul

    2014-04-01

    The range of joint-sparing treatments for advanced hallux rigidus is still very limited. The authors describe an osteochondral autograft transplantation technique combined with Lapidus arthrodesis as a novel method of obtaining a relatively symptom-free first metatarsophalangeal joint function in patients with hallux rigidus and first-ray elevation. PMID:24379451

  19. The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction.

    PubMed

    Villalvilla, Amanda; García-Martín, Adela; Largo, Raquel; Gualillo, Oreste; Herrero-Beaumont, Gabriel; Gómez, Rodolfo

    2016-01-01

    Obesity and osteoarthritis (OA) form a vicious circle in which obesity contributes to cartilage destruction in OA, and OA-associated sedentary behaviour promotes weight gain. Lipocalin-2 (LCN2), a novel adipokine with catabolic activities in OA joints, contributes to the obesity and OA pathologies and is associated with other OA risk factors. LCN2 is highly induced in osteoblasts in the absence of mechanical loading, but its role in osteoblast metabolism is unclear. Therefore, because osteochondral junctions play a major role in OA development, we investigated the expression and role of LCN2 in osteoblasts and chondrocytes in the OA osteochondral junction environment. Our results showed that LCN2 expression in human osteoblasts and chondrocytes decreased throughout osteoblast differentiation and was induced by catabolic and inflammatory factors; however, TGF-β1 and IGF-1 reversed this induction. LCN2 reduced osteoblast viability in the presence of iron and enhanced the activity of MMP-9 released by osteoblasts. Moreover, pre-stimulated human osteoblasts induced LCN2 expression in human chondrocytes, but the inverse was not observed. Thus, LCN2 is an important catabolic adipokine in osteoblast and chondrocyte metabolism that is regulated by differentiation, inflammation and catabolic and anabolic stimuli, and LCN2 expression in chondrocytes is regulated in a paracrine manner after osteoblast stimulation. PMID:27385438

  20. Osteochondritis dissecans of the lateral femoral condyle of the knee joint.

    PubMed

    Mitsuoka, T; Shino, K; Hamada, M; Horibe, S

    1999-01-01

    Differences in the features of osteochondritis dissecans (OCD) affecting the lateral and medial femoral condyles were investigated in 13 patients (14 knees) treated from 1991 to 1994. OCD affected the lateral femoral condyle in 6 knees (lateral group) and the medial condyle in 8 knees (medial group). The lateral group was younger (mean age, 14 v. 20 years). The radiological stage (Brückl) of the lateral group was stage 2 in 3 knees and stage 3 in 3. The lateral menisci were all discoid and the condylar articular surface of the lesions was normal in two knees, softened in 3 and detached in 1. The medial group comprised 1 knee in stage 2, 1 in stage 3, 1 in stage 4, and 5 in stage 5. The OCD lesion showed softening in 2 knees and detachment in 6. Repetitive abnormal stress on weaker osteochondral structures in the growing period produced by a discoid meniscus during growth may cause OCD of the lateral femoral condyle. PMID:10024029

  1. Osteochondritis Dissecans of the Talar Dome in a Collegiate Swimmer: A Case Report

    PubMed Central

    Smith, Michelle; Chang, Cindy J.

    1998-01-01

    Objective: To present the case of an intercollegiate swimmer with a stage IV lateral talar dome injury and associated bony fragments. Background: Lack of distinct diagnostic symptoms, low index of clinical suspicion, and the difficulty of visualizing the early stages of this injury on standard x-rays cause frequent misdiagnosis of talar dome lesions. Differential Diagnosis: Ganglion cyst, with inflammatory synovitis secondary to rupture of cyst; loose bodies from previous occult fracture; osteochondral fracture. Treatment: Initial treatment with nonsteroidal antiinflammatory drugs and a posterior splint for comfort, followed by arthroscopic excision of loose bodies with abrasion and drilling arthroplasty. Uniqueness: Patient presented to the team physician for care of acute left medial ankle pain after the athletic trainer had attempted to rupture a ganglion cyst on the anterolateral aspect of the patient's ankle. Conclusions: Increased clinical suspicion is necessary to correctly diagnose osteochondral lesions, particularly in the early stages. Aggressive treatment of talar dome lesions has a good success rate and may be an attractive option for competitive athletes. ImagesFigure 2.Figure 3.Figure 4.Figure 5. PMID:16558537

  2. Osteochondral repair in hemophilic ankle arthropathy: from current options to future perspectives

    PubMed Central

    BUDA, ROBERTO; CAVALLO, MARCO; CASTAGNINI, FRANCESCO; FERRANTI, ENRICO; NATALI, SIMONE; GIANNINI, SANDRO

    2015-01-01

    Young hemophilic patients are frequently affected by ankle arthropathy. At the end stage of the disease, the current treatments are arthrodesis and arthroplasty, which have significant drawbacks. Validated procedures capable of slowing down or even arresting the progression towards the end stage are currently lacking. This review aims to discuss the rationale for and feasibility of applying, in mild hemophilic ankle arthropathy, the main techniques currently used to treat osteochondral defects, focusing in particular on ankle distraction, chondrocyte implantation, mesenchymal stem cell transplantation, allograft transplantation and the use of growth factors. To date, ankle distraction is the only procedure that has been successfully used in hemophilic ankle arthropathy. The use of mesenchymal stem cells have recently been evaluated as feasible for osteochondral repair in hemophilic patients. There may be a rationale for the use of growth factors if they are combined with the previous techniques, which could be useful to arrest the progression of the degeneration or delay end-stage procedures. PMID:26904526

  3. The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction

    PubMed Central

    Villalvilla, Amanda; García-Martín, Adela; Largo, Raquel; Gualillo, Oreste; Herrero-Beaumont, Gabriel; Gómez, Rodolfo

    2016-01-01

    Obesity and osteoarthritis (OA) form a vicious circle in which obesity contributes to cartilage destruction in OA, and OA-associated sedentary behaviour promotes weight gain. Lipocalin-2 (LCN2), a novel adipokine with catabolic activities in OA joints, contributes to the obesity and OA pathologies and is associated with other OA risk factors. LCN2 is highly induced in osteoblasts in the absence of mechanical loading, but its role in osteoblast metabolism is unclear. Therefore, because osteochondral junctions play a major role in OA development, we investigated the expression and role of LCN2 in osteoblasts and chondrocytes in the OA osteochondral junction environment. Our results showed that LCN2 expression in human osteoblasts and chondrocytes decreased throughout osteoblast differentiation and was induced by catabolic and inflammatory factors; however, TGF-β1 and IGF-1 reversed this induction. LCN2 reduced osteoblast viability in the presence of iron and enhanced the activity of MMP-9 released by osteoblasts. Moreover, pre-stimulated human osteoblasts induced LCN2 expression in human chondrocytes, but the inverse was not observed. Thus, LCN2 is an important catabolic adipokine in osteoblast and chondrocyte metabolism that is regulated by differentiation, inflammation and catabolic and anabolic stimuli, and LCN2 expression in chondrocytes is regulated in a paracrine manner after osteoblast stimulation. PMID:27385438

  4. Repair of articular cartilage in rabbit osteochondral defects promoted by extracorporeal shock wave therapy

    NASA Astrophysics Data System (ADS)

    Chu, C.-H.; Yen, Y.-S.; Chen, P.-L.; Wen, C.-Y.

    2015-03-01

    This study investigated the stimulative effect of extracorporeal shock wave therapy (ESWT) on the articular cartilage regeneration in the rabbit osteochondral defect model for the first time. An osteochondral defect, 3 mm in diameter and 3 mm in depth, was drilled in the patellar groove at the distal end of each femur in 24 mature New Zealand rabbits. The right patellar defects received 500 impulses of shock waves of (at 14 kV) at 1 week after surgery and were designated as the experimental samples; the left patellar defects served as control. At 4, 8, and 12 weeks after ESWT, cartilage repair was evaluated macroscopically and histologically using a semiquantitative grading scale. The total scores of the macroscopic evaluation at 4, 8, and 12 weeks in the experimental group were superior to those in the control group (statistical significance level ). As to the total scores of the histologic evaluation, the experimental group showed a tendency toward a better recovery than the control group at 4 weeks (). At 8 and 12 weeks the differences between the experimental and control groups became mild and had no significance on statistical analysis. These findings suggested that regeneration of articular cartilage defects might be promoted by ESWT, especially at the early stage. The easy and safe ESWT is potentially viable for clinical application.

  5. Improvement of tomato local varieties by grafting in organic farming

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Villena, Jaime; Moreno, Carmen; García, Arántzazu M.; Mancebo, Ignacio; Meco, Ramón

    2015-04-01

    Grafting is the union of two or more pieces of living plant tissue that grow as a single plant. The early use of grafted vegetables was associated with protected cultivation which involves successive cropping (Lee et al., 2010). For this reason, in the past, grafting was used with vegetable crops to limit the effects of soil-borne diseases. However, the reasons for grafting as well as the kinds of vegetable grafted have increased considerably over the years. In tomato (Solanum lycopersicum L.), one of the most important horticultural crops in the world, the effect of grafting has also been widely studied. These effects on commercial tomato varieties can be summarized in increasing plant vigor and crop yield or inducing tolerance to abiotic stresses, although the effects on tomato fruit quality or on the sensory properties are not so patent (David et al., 2008). However, a few studies about the effect of grafting on local tomato varieties, which are especially recommended for organic production in spite of their lower yields in many cases, have been developed. In this work we evaluated the effect of grafting on tomato local varieties under organic management using vigorous commercial rootstocks, and aspects related to vigor, yield and tomato fruit composition were analyzed. In general terms, grafting increased the plant vigor, the crop yield and the fruit antioxidant content, although no modification of morphological fruit attributes was observed. Keywords: grafting, Solanum lycopersicum L., local varieties, organic farming. References: Davis A.R., Perkins-Veazie P., Hassell R., Levi A., King S.R., Zhang X. 2008. Grafting effects on vegetable quality. HortScience 43(6): 1670-1671. Lee J.M., Kubota C., Tsao S.J., Bie Z., Hoyos-Echevarría P., Morra L., Oda M. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae 127: 93-105.

  6. Tissue engineering in urethral reconstruction—an update

    PubMed Central

    Mangera, Altaf; Chapple, Christopher R

    2013-01-01

    The field of tissue engineering is rapidly progressing. Much work has gone into developing a tissue engineered urethral graft. Current grafts, when long, can create initial donor site morbidity. In this article, we evaluate the progress made in finding a tissue engineered substitute for the human urethra. Researchers have investigated cell-free and cell-seeded grafts. We discuss different approaches to developing these grafts and review their reported successes in human studies. With further work, tissue engineered grafts may facilitate the management of lengthy urethral strictures requiring oral mucosa substitution urethroplasty. PMID:23042444

  7. Evaluation of the Early In Vivo Response of a Functionally Graded Macroporous Scaffold in an Osteochondral Defect in a Rabbit Model.

    PubMed

    Barron, Valerie; Neary, Martin; Mohamed, Khalid Merghani Salid; Ansboro, Sharon; Shaw, Georgina; O'Malley, Grace; Rooney, Niall; Barry, Frank; Murphy, Mary

    2016-05-01

    Cartilage tissue engineering is a multifactorial problem requiring a wide range of material property requirements from provision of biological cues to facilitation of mechanical support in load-bearing diarthrodial joints. The study aim was to design, fabricate and characterize a template to promote endogenous cell recruitment for enhanced cartilage repair. A polylactic acid poly-ε-caprolactone (PLCL) support structure was fabricated using laser micromachining technology and thermal crimping to create a functionally-graded open pore network scaffold with a compressive modulus of 9.98 ± 1.41 MPa and a compressive stress at 50% strain of 8.59 ± 1.35 MPa. In parallel, rabbit mesenchymal stem cells were isolated and their growth characteristics, morphology and multipotency confirmed. Sterilization had no effect on construct chemical structure and cellular compatibility was confirmed. After four weeks implantation in an osteochondral defect in a rabbit model to assess biocompatibility, there was no evidence of inflammation or giant cells. Moreover, acellular constructs performed better than cell-seeded constructs with endogenous progenitor cells homing through microtunnels, differentiating to form neo-cartilage and strengthening integration with native tissue. These results suggest, albeit at an early stage of repair, that by modulating the architecture of a macroporous scaffold, pre-seeding with MSCs is not necessary for hyaline cartilage repair. PMID:26438451

  8. TruFit Plug for Repair of Osteochondral Defects—Where Is the Evidence? Systematic Review of Literature

    PubMed Central

    Clockaerts, S.; Van Osch, G.J.V.M.; Somville, J.; Verdonk, P.; Mertens, P.

    2015-01-01

    Objective: Treatment of osteochondral defects remains a challenge in orthopedic surgery. The TruFit plug has been investigated as a potential treatment method for osteochondral defects. This is a biphasic scaffold designed to stimulate cartilage and subchondral bone formation. The aim of this study is to investigate clinical, radiological, and histological efficacy of the TruFit plug in restoring osteochondral defects in the joint. Design: We performed a systematic search in five databases for clinical trials in which patients were treated with a TruFit plug for osteochondral defects. Studies had to report clinical, radiological, or histological outcome data. Quality of the included studies was assessed. Results: Five studies describe clinical results, all indicating improvement at follow-up of 12 months compared to preoperative status. However, two studies reporting longer follow-up show deterioration of early improvement. Radiological evaluation indicates favorable MRI findings regarding filling of the defect and incorporation with adjacent cartilage at 24 months follow-up, but conflicting evidence exists on the properties of the newly formed overlying cartilage surface. None of the included studies showed evidence for bone ingrowth. The few histological data available confirmed these results. Conclusion: There are no data available that support superiority or equality of TruFit compared to conservative treatment or mosaicplasty/microfracture. Further investigation is needed to improve synthetic biphasic implants as therapy for osteochondral lesions. Randomized controlled clinical trials comparing TruFit plugs with an established treatment method are needed before further clinical use can be supported. PMID:26069706

  9. Allograft Replacement for Absent Native Tissue

    PubMed Central

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.

    2013-01-01

    Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387

  10. Staged tendon grafts and soft tissue coverage

    PubMed Central

    Elliot, David

    2011-01-01

    The objective of the two-staged flexor tendon method is to improve the predictability of final results in difficult problems dealing with tendon reconstruction. This article reviews the evolution and benefits of this procedure. It also considers the use of the technique to help deal with problems requiring pulley and skin reconstruction simultaneously with re-constituting the flexor tendon system. PMID:22022043

  11. Systematic Review and Meta-analysis of Osteochondral Autograft Transplantation versus Debridement in the Treatment of Osteochondritis Dessicans of the Capitellum

    PubMed Central

    Bowman, Seth; Braunstein, Jacob; Rabinowitz, Justin; Barfield, William R.; Chhabra, Bobby; Haro, Marc Scott

    2016-01-01

    Objectives: The purpose of this systematic review and meta- analysis is to compare clinical results and functional outcomes in patients with osteochondritis dessicans (OCD) lesions of the capitellum treated with either osteochondral autograft transplantation (OATS) or debridement with or without microfracture. Methods: Systematic review of multiple medical databases was performed after PROSPERO registration and using PRISMA guidelines. A literature search was performed using the multiple medical databases and the methodological quality of the individual studies was assessed by two review authors using the Cochrane Collaboration’s “Risk of Bias” tool. Case reports were excluded and only case series of more than five patients and higher level of evidence were included. All study, subject, and surgery parameters were collected. Data was analyzed using statistical software. Odds ratios (OR) were calculated when possible. Data were compared using Pearson Chi-Square and independent sample T tests when applicable. Results: Fifteen studies were included involving 368 patients (326 males and 42 females). There were a total of 197 patients in the debridement group and 171 patients in the OATS group. The mean age was 16.9 +/-4.1 for the debridement group and 14.6 +/-1.2 for the OATS group. Mean follow up was 29.0 +/-24.3 and 38.0 +/-12.8 for the debridement and OATS groups, respectively. Patients that underwent an OATS procedure had a statistically significant improvement in overall arc range of motion compared to patients that had a debridement (P≤0.001). When compared to patients with debridement, patients with OATS were 5.6 times more likely to return to at least their pre-injury level of sports participation (p≤0.002). Conclusion: Post-operative range of motion was significantly improved in patients undergoing an OATS procedure versus a debridement for OCD lesions of the capitellum. Patients with an OATS were 5.7 times more likely to return to at least the pre

  12. An unusual complication associated with hard palate mucosal grafts: presumed minor salivary gland secretion.

    PubMed

    Pelletier, C R; Jordan, D R; Brownstein, S; Li, S

    1998-07-01

    Hard palate grafts are commonly used in eyelid reconstructive procedures as a replacement for posterior lamellar defects. Four patients are presented with an unusual complication after placement of a hard palate graft: presumed minor salivary gland secretion. They were experiencing stringy mucous discharge over the graft and along the eyelids, causing visual blurring. Removal of the graft in one patient and cryotherapy to the grafts in the others (presumably causing atrophy of the minor salivary gland tissue found within the grafts) allowed resolution of symptoms. The authors propose the application of cryotherapy to the graft surface to atrophy the salivary glands, prevent any further production of mucus, and return the tear film to a more normal consistency. Alternatively, surgical removal of the grafts can be performed. To our knowledge, this complication (saliva-like mucoid discharge) has not been previously reported. PMID:9700733

  13. Biology of cancellous bone grafts.

    PubMed

    Heiple, K G; Goldberg, V M; Powell, A E; Bos, G D; Zika, J M

    1987-04-01

    Despite 30 years of experimental bone grafting research, the fresh cancellous bone graft remains the most osteogenic and reliable bone grafting material. Recent experimental data suggest that modification of the graft-host interaction by antigen matching or immune manipulation may allow increasingly successful use of allografts. PMID:3550570

  14. Late fiber deterioration in Dacron arterial grafts.

    PubMed Central

    Berger, K; Sauvage, L R

    1981-01-01

    The occurrence of late fiber deterioration was examined in 493 Dacron arterial prostheses. Grafts implanted were of four types: 137 Meadox Wesolowski Weavenit (WN), 71 Golaski Microknit (MK), 70 USCI Sauvage(Tm) external velour non-crimped (EVNC), and 215 USCI Sauvage external velour random-crimped (EVRC). Prostheses had been implanted for three to 15.3 years; no defects were detected prior to three years. Deterioration occurred in 15 of 493 grafts (mean incidence: 3%). Between 4.9% and 5.8% of patients had graft deterioration-nearly the same incidence in all four types of grafts. Deterioration consisted of thinning and breakage of yarn filaments, causing development of holes and, in some cases, graft dilatation. Dilatation did not always precede filament breakage. Broken filament ends were either tapered or square-ended, suggesting that modes of breakage. Tensile strength tests howed that fibers sometimes weakened nonuniformly within a specimen. Fiber breakage was associated with crimp ridges. The findings suggest that manufacturing variations probably reduce fiber resistance to mechanical fatigue. Other contributing factors may include storage conditions, sterilization methods, handling, and the degradative effects of tissue fluids and enzymes. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:6452101

  15. Osteochondritis Dissecans of the Knee in Children and Adolescents: Our Experience with Transchondral Drilling.

    PubMed

    Shaikh, Hasour Hassan; Vícha, Jan; Proček, Tomáš; Pavlata, Jaroslav; Kučera, Tomáš

    2015-01-01

    Osteochondritis dissecans(OCD) of the knee is identified with increasing frequency in the adolescent patient. Left untreated, OCD can cause significant impairment and restriction in physical activity and development of osteoarthritis at an early age. The diagnosis of lesions of OCD can be confirmed on plain radiographs. MRI has emerged as the gold standard to evaluate the stability of the lesion and the integrity of the overlying articular cartilage. Treatment of OCD lesions depend on the stability of the lesion. Stable lesions can be treated conservatively by physical activity modification and immobilization. Unstable lesions and stable lesions not responding to conservative measures should be treated surgically. Surgical options range from arthroscopic drilling, either transarticular or extra-articular drilling for stable lesions or salvage procedures such as autologous chondrocyte transplantation (ACT), mosaicplasty to restore joint and cartilage congruency. PMID:26686950

  16. Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers.

    PubMed

    Bruder, S P; Gazit, D; Passi-Even, L; Bab, I; Caplan, A I

    1990-11-01

    The osteochondral potential and emergence of osteogenic cell-surface molecules by avian marrow cells was evaluated in in vivo diffusion chamber cultures. The chambers were inoculated with unselected marrow cells from young chick tibiae and implanted intraperitoneally into athymic mice. At the light microscopic level, morphologic evidence of de novo bone and cartilage formation, including specific immunostaining by antibody probes, was observed in 14 out of 16 chambers incubated for 20 days or longer. In order to monitor the osteogenic differentiation of the marrow-derived cells, indirect immunofluorescence was performed with monoclonal antibodies against stage-specific cell surface antigens on cells of the embryonic osteogenic lineage. The binding of these and other specific monoclonal antibodies in the developing tissue indicates that the cell surface and extracellular matrix molecules expressed by descendants of marrow-derived mesenchymal progenitor cells are indistinguishable from their in vivo counterparts found in embryonic skeletal structures. Furthermore, the experiments reported here describe the first molecular identification of osteogenic cells by probes which are selective for stage-specific surface antigens on cells of the osteogenic lineage. Importantly, bone formation by these marrow-derived cells appears to occur through a lineage progression which is similar to that observed for embryonic tibial osteoblasts. In summary, these data support the use of diffusion chambers inoculated with avian marrow to study aspects of osteogenic and chondrogenic differentiation. PMID:2268743

  17. Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair.

    PubMed

    Altamura, Davide; Pastore, Stella G; Raucci, Maria G; Siliqi, Dritan; De Pascalis, Fabio; Nacucchi, Michele; Ambrosio, Luigi; Giannini, Cinzia

    2016-04-01

    This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model. PMID:27020229

  18. Return to Sport After Operative Management of Osteochondritis Dissecans of the Capitellum

    PubMed Central

    Westermann, Robert W.; Hancock, Kyle J.; Buckwalter, Joseph A.; Kopp, Benjamin; Glass, Natalie; Wolf, Brian R.

    2016-01-01

    Background: Capitellar osteochondritis dissecans (OCD) is commonly managed surgically in symptomatic adolesent throwers and gymnasts. Little is known about the impact that surgical technique has on return to sport. Purpose: To evaluate the clinical outcomes and return-to-sport rates after operative management of OCD lesions in adolescent athletes. Study Design: Systematic review; Level of evidence, 4. Methods: The PubMed, CINAHL, EMBASE, SPORTDiscus (EBSCO), and Cochrane Central Register of Controlled Trials databases were queried for studies evaluating outcomes and return to sport after surgical management of OCD of the capitellum. Two independent reviewers conducted a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies reporting patient outcomes with return-to-sport data and minimum 6-month follow-up were included in the review. Results: After review, 24 studies reporting outcomes in 492 patients (mean age ± SD, 14.3 ± 0.9 years) were analyzed. The overall return-to-sport rate was 86% at a mean 5.6 months. Return to the highest preoperative level of sport was most common after osteochondral autograft procedures (94%) compared with debridement and marrow stimulation procedures (71%) or OCD fixation surgery (64%). Elbow range of motion improved by 15.9° after surgery. The Timmerman-Andrews subjective and objective scores significantly improved after surgery. Complications were low (<5%), with 2 cases of donor site morbidity after osteoarticular autograft transfer (OAT) autograft harvest. The most common indications for reoperation were repeat debridement/loose body removal. Conclusion: A high rate of return to sport was observed after operative management of capitellar OCD. Patients were more likely to return to their highest level of preoperative sport after OAT autograft compared with debridement or fixation. Significant improvements in elbow range of motion and patient outcomes are

  19. Treatment of osteochondritis dissecans of the knee with a biomimetic scaffold. A prospective multicenter study

    PubMed Central

    DELCOGLIANO, MARCO; MENGHI, AMERIGO; PLACELLA, GIACOMO; SPEZIALI, ANDREA; CERULLI, GIULIANO; CARIMATI, GIULIA; PASQUALOTTO, STEFANO; BERRUTO, MASSIMO

    2014-01-01

    Purpose the aim of the present study was to evaluate the clinical outcome of the treatment of osteochondritis dissecans (OCD) of the knee with a type-I collagen-hydroxyapatite nanostructural biomimetic osteochondral scaffold. Methods twenty-three patients affected by symptomatic knee OCD of the femoral condyles, grade 3 or 4 of the International Cartilage Repair Society (ICRS) scale, underwent biomimetic scaffold implantation. The site of the defect was the medial femoral condyle in 14 patients, whereas in 9 patients the lateral femoral condyle was involved. The average size of the defects was 3.5±1.43 cm2. All patients were clinically evaluated using the ICRS subjective score, the IKDC objective score, the EQ-VAS and the Tegner Activity Score. Minimum follow-up was two years. MRI was performed at 12 and 24 months after surgery and then every 12 months thereafter. Results the ICRS subjective score improved from the baseline value of 50.93±20.6 to 76.44±18.03 at the 12 months (p<0.0005) and 82.23± 17.36 at the two-year follow-up (p<0.0005). The IKDC objective score confirmed the results. The EQ-VAS showed a significant improvement from 3.15±1.09 to 8.15±1.04 (p<0.0005) at two years of follow-up. The Tegner Activity Score improvement was statistically significant (p<0.0005). Conclusions biomimetic scaffold implantation was a good procedure for treating grade 3 and 4 OCD, in which other classic techniques are burdened by different limitations. This open one-step surgery gave promising stable results at short-term follow-up. Level of evidence Level IV, therapeutic case series. PMID:25606552

  20. Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD).

    PubMed

    Desjardin, Clémence; Chat, Sophie; Gilles, Mailys; Legendre, Rachel; Riviere, Julie; Mata, Xavier; Balliau, Thierry; Esquerré, Diane; Cribiu, Edmond P; Betch, Jean-Marc; Schibler, Laurent

    2014-06-01

    Osteochondrosis (OC) is a developmental bone disorder affecting several mammalian species including the horse. Equine OC is described as a focal disruption of endochondral ossification, leading to osteochondral lesions (osteochondritis dissecans, OCD) that may release free bodies within the joint. OCD lesions trigger joint swelling, stiffness and lameness and affects about 30% of the equine population. OCD is considered as multifactorial but its physiopathology is still poorly understood and genes involved in genetic predisposition are still unknown. Our study compared two healthy and two OC-affected 18-month-old French Trotters diagnosed with OCD lesions at the intermediate ridge of the distal tibia. A comparative shot-gun proteomic analysis of non-wounded cartilage and sub-chondral bone from healthy (healthy samples) and OC-affected foals (predisposed samples) identified 83 and 53 modulated proteins, respectively. These proteins are involved in various biological pathways including matrix structure and maintenance, protein biosynthesis, folding and transport, mitochondrial activity, energy and calcium metabolism. Transmission electron microscopy revealed typical features of mitochondrial swelling and ER-stress, such as large, empty mitochondria, and hyper-dilated rough endoplasmic reticulum, in the deep zone of both OC lesions and predisposed cartilage. Abnormal fibril organization surrounding chondrocytes and abnormal features at the ossification front were also observed. Combining these findings with quantitative trait loci and whole genome sequencing results identified about 140 functional candidate genes carrying putative damaging mutations in 30 QTL regions. In summary, our study suggests that OCD lesions may result from defective hypertrophic terminal differentiation associated with mitochondrial dysfunction and ER-stress, leading to impaired cartilage and bone biomechanical properties, making them prone to fractures. In addition, 11 modulated proteins and

  1. Proximal Tibial Bone Graft

    MedlinePlus

    ... Complications Potential problems after a PTBG include infection, fracture of the proximal tibia and pain related to the procedure. Frequently Asked Questions If proximal tibial bone graft is taken from my knee, will this prevent me from being able to ...

  2. Epidermal skin grafting.

    PubMed

    Herskovitz, Ingrid; Hughes, Olivia B; Macquhae, Flor; Rakosi, Adele; Kirsner, Robert

    2016-09-01

    Autologous skin grafts, such as full- and split-thickness, have long been part of the reconstructive ladder as an option to close skin defects. Although they are effective in providing coverage, they require the need for a trained surgeon, use of anaesthesia and operating room and creation of a wound at the donor site. These drawbacks can be overcome with the use of epidermal skin grafts (ESGs), which can be harvested without the use of anaesthesia in an office setting and with minimal to no scarring at the donor site. ESGs consist only of the epidermal layer and have emerged as an appealing alternative to other autologous grafts for the treatment of acute and chronic wounds. In this article, we provide an overview of epidermal grafting and its role in wound management. PMID:27547964

  3. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n = 17; Group 1), microfracture (right knee, n = 6; Group 2), autologous osteochondral transplantation (right knee, n = 6; Group 3), and no treatment (right knee, n = 5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. PMID:25766036

  4. Novel no touch technique of saphenous vein harvesting: Is great graft patency rate provided?

    PubMed Central

    Papakonstantinou, Nikolaos A.; Baikoussis, Nikolaos G.; Goudevenos, John; Papadopoulos, George; Apostolakis, Efstratios

    2016-01-01

    Coronary artery bypass grafting surgery effectively relieves signs and symptoms of myocardial ischemia. The left internal thoracic artery (LITA) graft is the gold standard having 90–95% patency rate at 10 years, whereas only 50% of saphenous vein (SV) grafts are patent at 10 years. However, there is a novel “no touch” technique in order to harvest an SV complete with its cushion of surrounding tissue, thus maintaining its endothelium-intact. Significantly superior short- and long-term graft patency rates comparable to LITA grafts can be achieved. Consequently, the SV may be revived as an important conduit in coronary artery bypass surgery. PMID:27397453

  5. Effects of Negative Pressure Wound Therapy on Healing of Free Full-Thickness Skin Grafts in Dogs

    PubMed Central

    STANLEY, BRYDEN J.; PITT, KATHRYN A.; WEDER, CHRISTIAN D.; FRITZ, MICHELE C.; HAUPTMAN, JOE G.; STEFICEK, BARBARA A.

    2013-01-01

    Objective To compare healing of free, full-thickness, meshed skin grafts under negative pressure wound therapy (NPWT) with bolster dressings in dogs. Study design Randomized, controlled experimental study, paired design. Animals Dogs (n =5) Methods Full-thickness skin wounds (4 cm ×1.5cm) were created bilaterally on the antebrachia of 5 dogs (n = 10). Excised skin was grafted to the contralateral limb. Grafts were randomized to NPWT or bolster dressings (control; CON). NPWT was applied continuously for 7 days. Grafts were evaluated on days 2, 4, 7, 10, 14 and 17, biopsied on days 0, 4, 7, and 14, and had microbial culture on day 7. Outcome variables were: time to first appearance of granulation tissue, percent graft necrosis, and percent open mesh. Significance was set at P<.05. Histologic findings, culture results, and graft appearance were reported. Results Granulation tissue appeared earlier in the NPWT grafts compared with CON grafts. Percent graft necrosis and remaining open mesh area were both greater in CON grafts compared with NPWT grafts at most time points. Histologic results showed no significant difference in all variables measured, and all cultures were negative. Conclusions Variables of graft acceptance were superior when NPWT was used in the first week post-grafting. Fibroplasia was enhanced, open meshes closed more rapidly and less graft necrosis occurred with NPWT application. More preclinical studies are required to evaluate histologic differences. PMID:23550662

  6. Sizing of crimped Dacron grafts.

    PubMed

    Reid, J D; Sladen, J G

    1992-05-01

    The aim of this study was to correlate the stated size of Dacron grafts (Microvel) with their actual internal diameter and to compare this with measurements by ultrasound in the early postoperative period. Grafts of stated diameters of 7, 8, 9, and 10 mm were studied. Grafts were measured by graded probes and by measuring the width of the longitudinally opened graft and calculating the diameter. Each graft accepted a probe 1 mm larger than its stated size very easily and 2 mm greater when stretched. By open measurement, the grafts were 1.3 to 1.8 mm greater than their stated diameter without stretching. Twenty grafts were studied by duplex ultrasound for diameter and peak systolic velocity within 3 months of implantation. The grafts were 12% larger than their stated graft size. Some of the larger grafts showed low velocity and wall thrombus. We conclude that Microvel grafts are larger than their stated diameter. The same size discrepancy was seen in in vitro measurements of Vascutek (Dacron) grafts but not in polytetrafluoroethylene (Gortex) grafts. Since flow velocity is related to the diameter of the graft, this information should be useful when choosing the diameter of a prosthetic vascular graft. PMID:1533494

  7. [Zaidemberg's vascularized radial graft].

    PubMed

    Saint-Cast, Y

    2010-12-01

    In 1991, Carlos Zaidemberg described a new technique to repair scaphoid non-unions with a vascularized bone graft harvested from the radial styloid process. An anatomic study based on 30 dissections after colorized latex injection established the constancy of the radial styloid process's artery, while showing that its origin, course and length were subject to variations. In a retrospective series of 38 cases over a period of 10 years, the vascularized bone graft was indicated for: (1) scaphoid non-union with the presence of avascular changes of the proximal fragment (23 cases); (2) failed prior reconstruction with bone graft and internal fixation (nine cases); (3) degenerative styloid-scaphoid arthritis (three cases); (4) fracture on Preiser dystrophy (three cases). The five steps of the simplified operative technique without dissection of the vascular pedicle include: (1) longitudinal dorso-radial approach, identification of the periosteal portion of the radial styloid process artery; (2) incision of the first and second compartments, longitudinal arthrotomy under the second compartment; (3) styloidectomy and transversal resection of the scaphoid non-union and sclerotic bone; (4) elevation of the vascularized bone graft; (5) transversal and radial insertion of the vascularized bone graft, osteosynthesis by two or three K-wire touching the scaphoid's radial edge. Scaphoid union was obtained in 33 cases out of 38. The only postoperative complications were two transient radial paresthesia. The standardized surgical procedure using vascularized bone graft harvested from the radial styloid process provides an efficient scaphoid reconstruction. PMID:21087882

  8. Radioguided parathyroidectomy in forearm graft for recurrent hyperparathyroidism

    PubMed Central

    Ardito, G; Revelli, L; Giustozzi, E; Giordano, A

    2012-01-01

    We report a peculiar case of recurrent hyperparathyroidism caused by hyperplasia of a forearm graft implanted following a total parathyroidectomy in a 38-year-old patient with chronic renal failure. The forearm graft hyperplasia was detected using 99Tcm-sestamibi scanning, which identified hyperplastic transplanted parathyroid tissue in the forearm of the patient. During the initial surgery, the surgeon failed to mark the parathyroid tissue with sutures or clips to facilitate locating it. Therefore, we referred the patient for radioguided surgery. This surgical procedure allowed us to locate and completely remove the hyperfunctioning transplanted parathyroid tissue. PMID:22190754

  9. Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model

    PubMed Central

    Araki, Susumu; Imai, Shinji; Ishigaki, Hirohito; Mimura, Tomohiro; Nishizawa, Kazuya; Ueba, Hiroaki; Kumagai, Kousuke; Kubo, Mitsuhiko; Mori, Kanji; Ogasawara, Kazumasa; Matsusue, Yoshitaka

    2015-01-01

    Background and purpose Integration of repaired cartilage with surrounding native cartilage is a major challenge for successful tissue-engineering strategies of cartilage repair. We investigated whether incorporation of mesenchymal stem cells (MSCs) into the collagen scaffold improves integration and repair of cartilage defects in a cynomolgus macaque model. Methods Cynomolgus macaque bone marrow-derived MSCs were isolated and incorporated into type-I collagen gel. Full-thickness osteochondral defects (3 mm in diameter, 5 mm in depth) were created in the patellar groove of 36 knees of 18 macaques and were either left untreated (null group, n = 12), had collagen gel alone inserted (gel group, n = 12), or had collagen gel incorporating MSCs inserted (MSC group, n = 12). After 6, 12, and 24 weeks, the cartilage integration and tissue response were evaluated macroscopically and histologically (4 null, 4 gel, and 4 MSC knees at each time point). Results The gel group showed most cartilage-rich reparative tissue covering the defect, owing to formation of excessive cartilage extruding though the insufficient subchondral bone. Despite the fact that a lower amount of new cartilage was produced, the MSC group had better-quality cartilage with regular surface, seamless integration with neighboring naïve cartilage, and reconstruction of trabecular subchondral bone. Interpretation Even with intensive investigation, MSC-based cell therapy has not yet been established in experimental cartilage repair. Our model using cynomolgus macaques had optimized conditions, and the method using MSCs is superior to other experimental settings, allowing the possibility that the procedure might be introduced to future clinical practice. PMID:25175660

  10. The Science of Hyperbaric Oxygen for Flaps and Grafts.

    PubMed

    Gould, Lisa J; May, Todd

    2016-04-01

    Hyperbaric oxygen (HBO) therapy is a versatile modality that has applications across several medical fields. HBO therapy has become a valuable asset in the management of compromised tissue grafts and flaps. Although classified together, grafts and flaps are distinctly different, in that grafts depend on the wound bed for revascularization, whereas flaps have an inherent blood supply. Evidence has shown that in a compromised graft suffering from hypoxia, HBO can maximize viability and reduce the need for repeat grafting. By comparison, compromised flaps can suffer from both ischemic and reperfusion injury, which can also be attenuated by HBOT to maximize viability. The beneficial effects of HBO occur by several mechanisms, including hyper-oxygenation, fibroblast proliferation, collagen deposition, angiogenesis, and vasculogenesis. Animal studies have demonstrated several of these mechanisms, including an increase in the number, size, and growth distance of blood vessels after HBO. Likewise, clinical studies have found positive responses in multiple types of tissue grafts and flaps, with some cases involving irradiated fields. Altogether, the data emphasizes that early identification of flap or graft compromise is absolutely critical, with maximized chance for viability when HBO is initiated as soon as possible. PMID:27042776

  11. Response of canine bone to a synthetic bone graft material.

    PubMed

    St John, K R; Zardiackas, L D; Black, R J; Armstrong, R

    1993-01-01

    A model simulating a spiral diaphyseal fracture with butterfly fragments and bone loss was utilized to evaluate an hydroxyapatite/tricalcium phosphate, and collagen composite bone graft substitute in twelve dogs. The resultant grafted and contralateral control femora were tested in torsion at one year. This study examines the histological response to the graft material as well as crack propagation and fracture surface morphology using light microscopy and SEM. SEM and gross evaluation of the grafted bones revealed that 8/12 had fractured through bone outside the osteotomy site and all fractures included bone outside the graft site. No graft material was demonstrated at the points of initiation or termination of fracture for any of the bones. It was apparent that recorticalization had begun to occur at the graft site but the canal had not yet fully formed. The HA/TCP was seen to be tightly bound in tissue which had the appearance of new bone. Bone was found to be in direct apposition to the surface of the ceramic and within pores with no intervening soft tissue. Much of the new bone had remodeled into well organized Haversian systems with some patchy areas of woven bone and osteoid seen with polarized light illumination. PMID:10148784

  12. Penetrating keratoplasty and graft rejection in eight horses.

    PubMed

    Makra, Zita; Tuboly, Tamás; Bodó, Gábor

    2013-06-01

    The aim of this study was to describe long-term follow-up and difference in immune reactions in the tear film following penetrating keratoplasty (PK) in horses when differently preserved corneas were utilised. This report describes for the first time the use of corneal grafts preserved in tissue culture media in equine PK. Eight experimental horses with normal eyes were included and freshly harvested, frozen or preserved corneal grafts were used for the PK. The graft-taking technique and storage, PK surgery, postoperative treatments and complications are described. The mean postoperative follow-up time was 286 days. Tear film samples taken before and periodically after surgery were measured for IgM, IgG and IgA contents by direct ELISA. All grafts were incorporated into the donor horse but were rejected to some degree. The differently harvested corneal grafts healed in the same manner and looked similar. Preoperatively, the clear corneas meant low risk for graft failure, and the fresh or stored tissues provided intact endothelium, although there were no clear graft sites postoperatively. The presence of IgA, IgG and IgM was demonstrated in the tear film from the early postoperative period. IgG levels were lower than IgA or IgM and had a constant baseline in every case, as IgA and IgM had great variability with time and an individual pattern in each eye. PMID:23661385

  13. Graft-related endocarditis caused by Neosartorya fischeri var. spinosa.

    PubMed Central

    Summerbell, R C; de Repentigny, L; Chartrand, C; St Germain, G

    1992-01-01

    The first case of endocarditis caused by Neosartorya fischeri var. spinosa is reported. The patient was a child who received a calf pericardium graft after removal of a previously inserted Dacron graft associated with deterioration of adjacent tissue. Copious vegetations removed from the heart were found to be composed of septate hyaline fungal filaments. The fungus was recognized in culture by its bivalved, winged, spiny ascospores, its Aspergillus fischerianus anamorph, and its thermotolerance. Images PMID:1624579

  14. Autologous Fat Grafting Improves Facial Nerve Function

    PubMed Central

    Klinger, Marco; Lisa, Andrea; Caviggioli, Fabio; Maione, Luca; Murolo, Matteo; Vinci, Valeriano; Klinger, Francesco Maria

    2015-01-01

    We describe the case of a 45-year-old male patient who presented a retractile and painful scar in the nasolabial fold due to trauma which determined partial motor impairment of the mouth movements. We subsequently treated him with autologous fat grafting according to Coleman's technique. Clinical assessments were performed at 5 and 14 days and 1, 3, and 6 months after surgical procedure and we observed a progressive release of scar retraction together with an important improvement of pain symptoms. A second procedure was performed 6 months after the previous one. We observed total restoration of mimic movements within one-year follow-up. The case described confirms autologous fat grafting regenerative effect on scar tissue enlightening a possible therapeutic effect on peripheral nerve activity, hypothesizing that its entrapment into scar tissue can determine a partial loss of function. PMID:26167327

  15. Effect of tenascin-C on the repair of full-thickness osteochondral defects of articular cartilage in rabbits.

    PubMed

    Ikemura, Shigeto; Hasegawa, Masahiro; Iino, Takahiro; Miyamoto, Keiichi; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro

    2015-04-01

    The purpose of this study was to examine the effect of tenascin-C (TNC) on the repair of full-thickness osteochondral defects of articular cartilage in vivo. We used a gellan-gellan-sulfate sponge (Gellan-GS) to maintain a TNC-rich environment in the cartilage defects. We implanted Gellan-GS soaked in PBS only (Group 1), Gellan-GS soaked in 10 µg/ml of TNC (Group 2), and Gellan-GS soaked in 100 µg/ml of TNC (Group 3) into a full-thickness osteochondral defect of the patellar groove of rabbits. The defect area was examined grossly and histologically 4-12 weeks after surgery. Sections of synovium were also immunohistochemically investigated. Histologically as well as macroscopically, the defects in Group 2 showed better repair than the other groups at 8 and 12 weeks after surgery. Inflammation of the synovium tended to diminish over time in all groups, and the degree of synovitis was the same for all three groups at each time point. In conclusion, Gellan-GS soaked in TNC can be used as a novel scaffold for the repair of articular cartilage defects. This study also indicates that TNC promotes the repair of full-thickness osteochondral defects in vivo. PMID:25428773

  16. Osteochondritis dissecans of the lateral femoral condyle in a patient affected by osteogenesis imperfecta: a case report.

    PubMed

    Persiani, Pietro; Di Domenica, Marica; Martini, Lorena; Ranaldi, Filippo M; Zambrano, Anna; Celli, Mauro; Villani, Ciro

    2015-11-01

    Osteochondritis dissecans is a very uncommon phenomenon in osteogenesis imperfecta (OI). A 14-year-old boy, affected by OI and followed in our Center for Congenital Osteodystrophies, had a knee trauma and MRI indicated a hollowed area of 2.5×1.5 cm in the lateral femoral condyle, which was classified as grade III. The patient underwent surgery, performed as a one-step surgical treatment: the osteochondral fragment was removed, curettage of lesion's bottom was performed, and a biphasic scaffold was used to fill the defect, implanted with a press-fit technique. MRI at 12 and 24 months after surgery showed scaffold integration. At the final follow-up, the patient did not feel any pain or articular limitations. It is difficult to provide a guideline on osteochondritis dissecans in patients affected by OI because of the lack of literature reports on this rare disorder in a rare disease. According to our experience, in these patients, osteosynthesis of the bone fragment and the use of autograft are not recommended because of the patient's bone weakness and osteoporosis. Moreover, compared with two-step surgery, one-step surgery is preferred to reduce the risk related to anesthesia, often observed to be higher in these patients. PMID:25919806

  17. The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat.

    PubMed

    Lane, E L; Winkler, C; Brundin, P; Cenci, M A

    2006-05-01

    Intrastriatal transplants of embryonic ventral mesencephalon can cause dyskinesia in patients with Parkinson's disease (PD). We assessed the impact of transplant size on the development of graft-induced dyskinesia. Rats with unilateral 6-hydroxydopamine lesions were primed to exhibit L-DOPA-induced dyskinesia. They were then intrastriatally grafted with different quantities of embryonic ventral mesencephalic tissue to give small and large grafts. Without drug treatment, discrete dyskinetic-like movements were observed in most rats with large grafts 2-6 weeks after transplantation, but disappeared later. Amphetamine evoked severe abnormal involuntary movements (AIMs) in grafted animals, which were more striking with large grafts. The AIMs coincided with contralateral rotation, but displayed a different temporal profile and pharmacological properties. Thus, selective dopamine uptake blockade elicited rotational behavior, whereas coadministration of both dopamine and serotonin uptake blockers was required to evoke significant orolingual and limb AIMs. In conclusion, robust and reproducible AIMs were evoked in rats with large grafts by blockade of monoamine reuptake. These AIMs may provide a new tool for assessing dyskinetic effects of neural grafting. PMID:16406222

  18. Ulnar Nerve Injury after Flexor Tendon Grafting.

    PubMed

    McCleave, Michael John

    2016-10-01

    A 43-year-old female is presented who underwent a two-stage tendon reconstruction and developed a low ulnar nerve palsy postoperatively. Exploration found that the tendon graft was passing through Guyon's canal and that the ulnar nerve was divided. This is a previously unreported complication. The reconstruction is discussed, the literature reviewed and a guide is given on how to identify the correct tissue plane when passing a tendon rod. PMID:27595967

  19. High intensity focused ultrasound as a tool for tissue engineering: Application to cartilage.

    PubMed

    Nover, Adam B; Hou, Gary Y; Han, Yang; Wang, Shutao; O'Connell, Grace D; Ateshian, Gerard A; Konofagou, Elisa E; Hung, Clark T

    2016-02-01

    This article promotes the use of High Intensity Focused Ultrasound (HIFU) as a tool for affecting the local properties of tissue engineered constructs in vitro. HIFU is a low cost, non-invasive technique used for eliciting focal thermal elevations at variable depths within tissues. HIFU can be used to denature proteins within constructs, leading to decreased permeability and potentially increased local stiffness. Adverse cell viability effects remain restricted to the affected area. The methods described in this article are explored through the scope of articular cartilage tissue engineering and the fabrication of osteochondral constructs, but may be applied to the engineering of a variety of different tissues. PMID:26724968

  20. Multimodal imaging of vascular grafts using time-resolved fluorescence and ultrasound

    NASA Astrophysics Data System (ADS)

    Fatakdawala, Hussain; Griffiths, Leigh G.; Wong, Maelene L.; Humphrey, Sterling; Marcu, Laura

    2015-02-01

    The translation of engineered tissues into clinic requires robust monitoring of tissue development, both in vitro and in vivo. Traditional methods for the same are destructive, inefficient in time and cost and do not allow time-lapse measurements from the same sample or animal. This study reports on the ability of time-resolved fluorescence and ultrasound measurements for non-destructive characterization of explanted tissue engineered vascular grafts. Results show that TRFS and FLIm are able to assess alterations in luminal composition namely elastin, collagen and cellular (hyperplasia) content via changes in fluorescence lifetime values between normal and grafted tissue. These observations are complemented by structural changes observed in UBM pertaining to graft integration and intimal thickness over the grafted region. These results encourage the future application of a catheter-based technique that combines these imaging modalities for non-destructive characterization of vascular grafts in vivo.

  1. Sepsis after autologous fat grafting.

    PubMed

    Talbot, Simon G; Parrett, Brian M; Yaremchuk, Michael J

    2010-10-01

    Autologous fat grafting is an increasingly popular technique, with numerous examples of excellent results. Adherence to key principles, including sterile technique and low-volume injection throughout layers of tissue, appears to be critical to obtaining good results. Reports of adverse outcomes are infrequent, but several case reports document both infectious and aesthetic complications. This case report represents an extreme complication, including abscess formation, life-threatening sepsis, and residual deformity. It serves as yet another reminder that early adoption of surgical procedures by those without a sound understanding of the underlying principles and techniques can have disastrous consequences. Furthermore, physicians operating on any patient must understand the potential for complications and be able to manage these appropriately when they occur. PMID:20885205

  2. Fabrication of Custom-Shaped Grafts for Cartilage Regeneration

    PubMed Central

    Koo, Seungbum; Hargreaves, Brian A.; Gold, Garry E.; Dragoo, Jason L.

    2011-01-01

    Transplantation of engineered cartilage grafts is a promising method to treat diseased articular cartilage. The interfacial areas between the graft and the native tissues play an important role in the successful integration of the graft to adjacent native tissues. The purposes of the study were to create a custom shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4±0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04±0.19 mm. Custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology, which may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in

  3. Development of tissue bank.

    PubMed

    Narayan, R P

    2012-05-01

    The history of tissue banking is as old as the use of skin grafting for resurfacing of burn wounds. Beneficial effects of tissue grafts led to wide spread use of auto and allograft for management of varied clinical conditions like skin wounds, bone defects following trauma or tumor ablation. Availability of adequate amount of tissues at the time of requirement was the biggest challenge that forced clinicians to find out techniques to preserve the living tissue for prolonged period of time for later use and thus the foundation of tissue banking was started in early twentieth century. Harvesting, processing, storage and transportation of human tissues for clinical use is the major activity of tissue banks. Low temperature storage of processed tissue is the best preservation technique at present. Tissue banking organization is a very complex system and needs high technical expertise and skilled personnel for proper functioning in a dedicated facility. A small lapse/deviation from the established protocol leads to loss of precious tissues and or harm to recipients as well as the risk of transmission of deadly diseases and tumors. Strict tissue transplant acts and stringent regulations help to streamline the whole process of tissue banking safe for recipients and to community as whole. PMID:23162240

  4. Accelerated adhesion of grafted skin by laser-induced stress wave-based gene transfer of hepatocyte growth factor

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Tsuda, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2009-11-01

    Gene therapy using wound healing-associated growth factor gene has received much attention as a new strategy for improving the outcome of tissue transplantation. We delivered plasmid DNA coding for human hepatocyte growth factor (hHGF) to rat free skin grafts by the use of laser-induced stress waves (LISWs); autografting was performed with the grafts. Systematic analysis was conducted to evaluate the adhesion properties of the grafted tissue; angiogenesis, cell proliferation, and reepithelialization were assessed by immunohistochemistry, and reperfusion was measured by laser Doppler imaging as a function of time after grafting. Both the level of angiogenesis on day 3 after grafting and the increased ratio of blood flow on day 4 to that on day 3 were significantly higher than those in five control groups: grafting with hHGF gene injection alone, grafting with control plasmid vector injection alone, grafting with LISW application alone, grafting with LISW application after control plasmid vector injection, and normal grafting. Reepithelialization was almost completed on day 7 even at the center of the graft with LISW application after hHGF gene injection, while it was not for the grafts of the five control groups. These findings demonstrate the validity of our LISW-based HGF gene transfection to accelerate the adhesion of grafted skins.

  5. Fluorescence spectroscopy for assessment of liver transplantation grafts concerning graft viability and patient survival

    NASA Astrophysics Data System (ADS)

    Vollet Filho, José D.; da Silveira, Marina R.; Castro-e-Silva, Orlando; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Evaluating transplantation grafts at harvest is essential for its success. Laser-induced fluorescence spectroscopy (LIFS) can help monitoring changes in metabolic/structural conditions of tissue during transplantation. The aim of the present study is to correlate LIFS