Sample records for osteochondritis

  1. Osteochondral Lesions of Major Joints

    PubMed Central

    Durur-Subasi, Irmak; Durur-Karakaya, Afak; Yildirim, Omer Selim

    2015-01-01

    This paper provides information about osteochondral lesions (OCL) and example cases of OCL occurring in major joints, some of which are rarely seen. This simple tutorial is presented in question and answer format. PMID:26180500

  2. Treatment of Unstable Osteochondritis Dissecans Lesions of the Knee Using Autogenous Osteochondral Grafts (Mosaicplasty)

    Microsoft Academic Search

    Gregory C. Berlet; Anthony Mascia; Anthony Miniaci

    1999-01-01

    Summary: Symptomatic osteochondritis dissecans lesions with minimal fragmentation that may be replaced within their crater have classically been treated by reattachment. The choice for internal fixation is varied. This article reports on the treatment of unstable osteochondritis dissecans lesions using autogenous osteochondral plugs as a means of biological internal fixation. The appearance on magnetic resonance imaging of osteochondral plugs at

  3. UTE MRI of the Osteochondral Junction

    PubMed Central

    Biswas, Reni; Chen, Karen; Chang, Eric Y.; Chung, Christine B.

    2014-01-01

    The osteochondral junction is composed of numerous tissue components and serves important functions relating to structural stability and proper nutrition in joints such as the knee and spine. Conventional MR techniques have been inadequate at imaging the tissues of the osteochondral junction primarily because of the intrinsically short T2 nature of these tissues, rendering them “invisible” with the standard acquisitions. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal of osteochondral tissues, thereby allowing direct evaluation. This article reviews the anatomy of the osteochondral junction of the knee and the spine, technical aspects of UTE MRI, and the application of UTE MRI for evaluation of the osteochondral junction. PMID:25061547

  4. Osteochondritis dissecans of the knee

    PubMed Central

    ZANON, GIACOMO; DI VICO, GIOVANNI; MARULLO, MATTEO

    2014-01-01

    Osteochondritis dissecans (OCD) of the knee is a common cause of knee pain and dysfunction among skeletally immature and young adult patients. OCD is increasingly frequently seen in pediatric, adolescent and young adult athletes. If it is not recognized and treated appropriately, it can lead to secondary osteoarthritis with pain and functional limitation. Stable lesions in skeletally immature patients should initially be managed non-operatively. Unstable juvenile lesions and stable juvenile lesions that fail to heal with non-operative treatment require a surgical treatment. By contrast, adult OCD of the knee rarely responds to conservative measures because of limited healing potential. Operative treatment depends on the lesion stage, and there exist several surgical options. PMID:25606539

  5. Preparation of a biphasic scaffold for osteochondral tissue engineering

    Microsoft Academic Search

    Guoping Chen; Takashi Sato; Junzo Tanaka; Tetsuya Tateishi

    2006-01-01

    Tissue engineering has been developed as a prospective approach for the repair of articular cartilage defects. Engineered osteochondral implants can facilitate the fixation and integration with host tissue, and therefore promote the regeneration of osteochondral defects. A biphasic scaffold with a stratified two-layer structure for osteochondral tissue engineering was developed from biodegradable synthetic and naturally derived polymers. The upper layer

  6. Arthroscopic Osteochondral Grafting for Radiocarpal Joint Defects

    PubMed Central

    Ho, Pak-cheong; Tse, Wing-Iim; Wong, Clar Wing-Yee; Chow, Esther Ching-San

    2013-01-01

    Background Focal chondral lesion is a common cause of chronic wrist pain. The best treatment remains unknown. We have developed a technique of arthroscopic transplantation of an osteochondral autograft from the knee joint to the distal radius with satisfactory clinical results. Materials and Methods Between December 2006 and December 2010, four patients (average age 31 years) with posttraumatic osteochondral lesions over the dorsal lunate fossa were treated with arthroscopic osteochondral grafting. Pre- and postoperative motion, grip strength, wrist functional performance score, pain score, and return to work status were charted. Postoperative computed tomography (CT) scan, magnetic resonance imaging (MRI), and second-look arthroscopy were performed to assess graft incorporation. Description of Technique With the arthroscope in the 3-4 portal, synovitis over the dorsal lunate fossa was débrided to uncover the underlying osteochondral lesion. We employed the 6-mm trephine of the Osteoarticular Transfer System (OATS) to remove the osteochondral defect. Osteochondral graft was harvested from the lateral femoral condyle and delivered into the wrist joint arthroscopically. Results In all cases, grafts incorporation was completed by 3-4 months postoperative. All patients showed improvement in the wrist performance score (preoperative 27.5, postoperative 39 out of 40) with no pain on final follow-up at average 48.5 months (range 24-68 months). Grip strength improved from 62.6 to 98.2% of the contralateral side. Motion improved from 115.5 to 131.3°. X-ray images showed preserved joint space. Patient satisfaction was high with no complication. Conclusion An arthroscopic-assisted transfer of an osteochondral graft is a viable treatment option for chondral defects of the distal radius. PMID:24436819

  7. Strategies for osteochondral repair: Focus on scaffolds

    PubMed Central

    Seo, Seog-Jin; Mahapatra, Chinmaya; Singh, Rajendra K; Knowles, Jonathan C

    2014-01-01

    Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.

  8. Osteochondral Allografts in the Ankle Joint

    PubMed Central

    Vannini, Francesca; Buda, Roberto; Ruffilli, Alberto; Cavallo, Marco; Giannini, Sandro

    2013-01-01

    Purpose: The aim of this systematic review is to report about the clinical use of partial and total fresh osteochondral allograft in the ankle joint. The state of the art of allografts with regard to basic science, procurement and storage methods, immunogenicity, generally accepted indications and contraindications, and the rationale of the allografting procedure have been described. Methods: All studies published in PubMed from 2000 to January 2012 addressing fresh osteochondral allograft procedures in the ankle joint were identified, including those that fulfilled the following criteria: (a) level I-IV evidence addressing the areas of interest outlined above; (b) measures of functional, clinical, or imaging outcome; and (c) outcome related to ankle cartilage lesions or ankle arthritis treated by allografts. Results: The analysis showed a progressively increasing number of articles from 2000. The number of selected articles was 14; 9 of those focused on limited dimension allografts (plugs, partial) and 5 on bipolar fresh osteochondral allografts. The evaluation of evidence level showed 14 case series and no randomized studies. Conclusions: Fresh osteochondral allografts are now a versatile and suitable option for the treatment of different degrees of osteochondral disease in the ankle joint and may even be used as total joint replacement. Fresh osteochondral allografts used for total joint replacement are still experimental and might be considered as a salvage procedure in otherwise unsolvable situations. A proper selection of the patients is therefore a key point. Moreover, the patients should be adequately informed about the possible risks, benefits, and alternatives to the allograft procedure.

  9. Osteochondritis dissecans of the knee: pathoanatomy, epidemiology, and diagnosis.

    PubMed

    Grimm, Nathan L; Weiss, Jennifer M; Kessler, Jeffrey I; Aoki, Stephen K

    2014-04-01

    Although several hypotheses have been described to explain the cause of osteochondritis dissecans, no single hypothesis has been accepted in the orthopedic community. Given its increased incidence among athletes, most in the sports medicine community agree that repetitive microtrauma plays at least some role in its development. Knowledge regarding the epidemiology and pathoanatomy of osteochondritis dissecans has helped the understanding of osteochondritis dissecans; however, much is still to be learned about this condition and its cause. This article reviews the history of osteochondritis as it pertains to the current understanding of its pathoanatomy, epidemiology, and diagnostic features. PMID:24698037

  10. Post-traumatic osteochondral ''loose body'' of the olecranon fossa

    SciTech Connect

    Bassett, L.W.; Mirra, J.M.; Forrester, D.M.; Gold, R.H.; Bernstein, M.L.; Rollins, J.S.

    1981-12-01

    Three cases of intra-articular osteochondral bodies with the olecranon fossa are reported. All patients had had severe trauma to the elbow, and in each case an osteochondral fragment, nourished by the synovial fluid, became enlarged and finally lodged within the fossa. The radiological and pathological features and presumed pathogenesis are described.

  11. Multiphasic construct studied in an ectopic osteochondral defect model

    PubMed Central

    Jeon, June E.; Vaquette, Cédryck; Theodoropoulos, Christina; Klein, Travis J.; Hutmacher, Dietmar W.

    2014-01-01

    In vivo osteochondral defect models predominantly consist of small animals, such as rabbits. Although they have an advantage of low cost and manageability, their joints are smaller and more easily healed compared with larger animals or humans. We hypothesized that osteochondral cores from large animals can be implanted subcutaneously in rats to create an ectopic osteochondral defect model for routine and high-throughput screening of multiphasic scaffold designs and/or tissue-engineered constructs (TECs). Bovine osteochondral plugs with 4 mm diameter osteochondral defect were fitted with novel multiphasic osteochondral grafts composed of chondrocyte-seeded alginate gels and osteoblast-seeded polycaprolactone scaffolds, prior to being implanted in rats subcutaneously with bone morphogenic protein-7. After 12 weeks of in vivo implantation, histological and micro-computed tomography analyses demonstrated that TECs are susceptible to mineralization. Additionally, there was limited bone formation in the scaffold. These results suggest that the current model requires optimization to facilitate robust bone regeneration and vascular infiltration into the defect site. Taken together, this study provides a proof-of-concept for a high-throughput osteochondral defect model. With further optimization, the presented hybrid in vivo model may address the growing need for a cost-effective way to screen osteochondral repair strategies before moving to large animal preclinical trials. PMID:24694896

  12. Cylindrical Costal Osteochondral Autograft for Reconstruction of Large Defects of the Capitellum Due to Osteochondritis Dissecans

    PubMed Central

    Shimada, Kozo; Tanaka, Hiroyuki; Matsumoto, Taiichi; Miyake, Junichi; Higuchi, Haruhisa; Gamo, Kazushige; Fuji, Takeshi

    2012-01-01

    Background: There is a need to clarify the usefulness of and problems associated with cylindrical costal osteochondral autograft for reconstruction of large defects of the capitellum due to osteochondritis dissecans. Methods: Twenty-six patients with advanced osteochondritis dissecans of the humeral capitellum were treated with use of cylindrical costal osteochondral autograft. All were males with elbow pain and full-thickness articular cartilage lesions of ?15 mm in diameter. Clinical, radiographic, and magnetic resonance imaging outcomes were evaluated at a mean follow-up of thirty-six months (range, twenty-four to fifty-one months). Results: All patients had rapid functional improvement after treatment with costal osteochondral autograft and returned to their former activities, including sports. Five patients needed additional minor surgical procedures, including screw removal, loose body removal, and shaving of protruded articular cartilage. Mean elbow function, assessed with use of the clinical rating system of Timmerman and Andrews, was 111 points preoperatively and improved to 180 points at the time of follow-up and to 190 points after the five patients underwent the additional operations. Mean elbow motion was 126° of flexion with 16° of extension loss preoperatively and improved to 133° of flexion with 3° of extension loss at the time of follow-up. Osseous union of the graft on radiographs was obtained within three months in all patients. Revascularization of the graft depicted on T1-weighted magnetic resonance imaging and congruity of the reconstructed articular surface depicted on T2-weighted or short tau inversion recovery imaging were assessed at twelve and twenty-four months postoperatively. Functional recovery was good, and all patients were satisfied with the final outcomes. Conclusions: Cylindrical costal osteochondral autograft was useful for the treatment of advanced osteochondritis dissecans of the humeral capitellum. Functional recovery was rapid after surgery. Additional operations were performed for five of the twenty-six patients, whereas the remaining patients showed essentially full recovery within a year. All patients were satisfied with the results at the time of short-term follow-up. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:22637205

  13. Osteochondritis dissecans of the humeral head.

    PubMed

    Lunden, Jason B; Legrand, Alexander B

    2012-10-01

    The patient was a 16-year-old adolescent male who was referred to an orthopaedic surgeon by his pediatrician for a chief complaint of persistent right shoulder pain and crepitus that limited his ability to participate in sporting activities. The patient's progressively worsening right shoulder pain and crepitus, despite no history of injury, was a concern. Therefore, conventional radiographs were completed, which demonstrated an area of radiolucency involving the humeral head. Due to concern for intra-articular pathology, a magnetic resonance arthrogram was ordered, which demonstrated findings consistent with an osteochondritis dissecans lesion of the humeral head. PMID:23023034

  14. Emerging genetic basis of osteochondritis dissecans.

    PubMed

    Bates, J Tyler; Jacobs, John C; Shea, Kevin G; Oxford, Julia Thom

    2014-04-01

    Genome-wide association studies (GWAS) provide an unbiased approach in the identification of genes that increase the risk for osteochondritis dissecans (OCD). Recent GWAS in humans, horses, and pigs are reviewed and genes identified. The identified genes tended to cluster with respect to function and biologic processes. GWAS in humans are a critical next step in the effort to provide a better understanding of the causes of OCD, which will, in turn, allow preventive strategies for treatment of adolescents and young adults who are at risk for the development of degenerative joint disease due to the effects of OCD. PMID:24698039

  15. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses.

    PubMed

    Kon, E; Mutini, A; Arcangeli, E; Delcogliano, M; Filardo, G; Nicoli Aldini, N; Pressato, D; Quarto, R; Zaffagnini, S; Marcacci, M

    2010-06-01

    The present in vivo preliminary experiment is aimed at testing mechanical and biological behaviour of a new nano-structured composite multilayer biomimetic scaffold for the treatment of chondral and osteochondral defects. The three-dimensional biomimetic scaffold (Fin-Ceramica Faenza S.p.A., Faenza-Italy) was obtained by nucleating collagen fibrils with hydroxyapatite nanoparticles, in two configurations, bi- and tri-layered, to reproduce, respectively, chondral and osteochondral anatomy. Chondral defects (lateral condyle) and deep osteochondral defects (medial condyle) were made in the distal epiphysis of the third metacarpal bone of both forelimbs of two adult horses and treated respectively with the chondral and osteochondral grafts. Both animals were euthanised six months follow up. The images obtained at the second look arthroscopy evaluation, performed two months after surgery, demonstrated good filling of the chondral and osteo-chondral defects without any inflammatory reaction around and inside the lesions. At the histological analysis the growth of trabecular bone in the osteochondral lesion was evident. Only in one case, the whole thickness of the osteochondral lesion was filled by fibrocartilaginous tissue. The formation of a tidemark line was evident at the interface with the newly formed bone. Newly formed fibrocartilaginous tissue was present in the area of the chondral defect. Initial alignment of the collagen fibres was recognisable with polarised light in both groups. The results of the present pilot study showed that this novel osteochondral and chondral scaffold may act as a suitable matrix to facilitate orderly regeneration of bone and hyaline-like cartilage. PMID:20049745

  16. Emerging genetic basis of osteochondritis dissecans

    PubMed Central

    Bates, J. Tyler; Jacobs, John C.; Shea, Kevin G.; Oxford, Julia Thom

    2014-01-01

    Genome-wide association studies provide an unbiased approach in the identification of genes that increase the risk for osteochondritis dissecans (OCD). OCD is a disorder of the bone and cartilage that affects humans, horses, pigs, dogs, and other mammals. Recent genome-wide association studies in humans, horses, and pigs are reviewed and genes identified. The identified genes tended to cluster with respect to function and biological processes such as the protein secretion pathway, extracellular matrix molecules, and growth plate maturation. Genome-wide association studies in humans are a critical next step in the effort to provide a better understanding of the causes of OCD, which will, in turn, allow preventive strategies for treatment of adolescent and young adults who are at risk for the development of degenerative joint disease due to the effects of OCD. PMID:24698039

  17. Fluoroquinolone Use in a Child Associated with Development of Osteochondritis Dissecans

    PubMed Central

    Jacobs, John; Shea, Kevin; Oxford, Julia; Carey, James

    2014-01-01

    SUMMARY Several etiological theories have been proposed for the development of osteochondritis dissecans. Cartilage toxicity after fluoroquinolone use has been well documented in vitro. We present a case report of a 10-year-old child who underwent a prolonged 18-month course of ciprofloxacin therapy for chronic urinary tract infections. This patient later developed an osteochondritis dissecans lesion of the medial femoral condyle. We hypothesize that the fluoroquinolone therapy disrupted normal endochondral ossification, resulting in development of osteochondritis dissecans. The etiology of osteochondritis dissecans is still unclear, and this case describes an association between fluoroquinolone use and osteochondritis dissecans development. PMID:25228675

  18. Fluoroquinolone use in a child associated with development of osteochondritis dissecans.

    PubMed

    Jacobs, John C; Shea, Kevin G; Oxford, Julia Thom; Carey, James L

    2014-01-01

    Several aetiological theories have been proposed for the development of osteochondritis dissecans. Cartilage toxicity after fluoroquinolone use has been well documented in vitro. We present a case report of a 10-year-old child who underwent a prolonged 18-month course of ciprofloxacin therapy for chronic urinary tract infections. This patient later developed an osteochondritis dissecans lesion of the medial femoral condyle. We hypothesise that the fluoroquinolone therapy disrupted normal endochondral ossification, resulting in development of osteochondritis dissecans. The aetiology of osteochondritis dissecans is still unclear, and this case describes an association between fluoroquinolone use and osteochondritis dissecans development. PMID:25228675

  19. Fresh osteochondral allograft transplantation for the knee: current concepts.

    PubMed

    Sherman, Seth L; Garrity, Joseph; Bauer, Kathryn; Cook, James; Stannard, James; Bugbee, William

    2014-02-01

    Fresh osteochondral allograft (OCA) transplantation has been used to manage a wide spectrum of chondral and osteochondral knee disorders. Basic science and clinical studies support the safety and efficacy of the procedure. Transplantation of viable, mature hyaline cartilage into the affected area is an advantage of the procedure, which can be used to restore bone stock in complex or salvage scenarios. Indications for OCA transplantation in the knee include primary management of large chondral or osteochondral defects and salvage of previously failed cartilage repair. The procedure also can be used for complex biologic knee reconstruction in the setting of osteonecrosis, fracture malunion, or posttraumatic arthritis. Challenges associated with OCA transplantation include allograft storage and size matching, tissue availability, chondrocyte viability, the possibility of immunologic graft response, and a demanding surgical technique. Future research should focus on optimizing allograft viability and healing and refining current surgical indications and techniques. PMID:24486758

  20. Repair of osteochondral defects by mosaicplasty and allogeneic BMSCs transplantation

    PubMed Central

    Ma, Xin; Sun, Yuan; Cheng, Xiangguo; Gao, Youshui; Hu, Bin; Wen, Gen; Qian, Yebin; Gu, Wenqi; Mao, Yanjie; Liu, Wanjun

    2015-01-01

    Objective: To investigate the feasibility and efficacy of repairing osteochondral defects with mosaicplasty and allogeneic bone marrow mesenchymal stem cells (BMSCs) transplantation. Methods: BMSCs were harvested from rabbits and maintained in vitro. Cells of third passage were mixed with pluronic F-127. Osteochondral defect animal model was established in rabbits and then this defect was treated with autologous osteochondral grafts with or without BMSCs above mentioned. In control group, pure pluronic F-127 was filled in the defect. Histological and immunohistological examinations were performed for the evaluation of therapeutic effectiveness. Results: Autologous osteochondral grafts in both groups were not loose, prolapsed and depressed. In BMSCs group, the tissues in the “death space” became hyaline cartilage. The arrangement of chondrocytes was regular. At 4, 8, 12 and 16 weeks, O’Driscoll and Keeley and Salter score were 14.00±1.00, 16.75±1.71, 18.00±0.82 and 20.50±1.29 in BMSCs group, which were significantly higher than those in control group (7.67±0.58, 8.00±0.82, 8.50±0.58 and 9.00±0.82, respectively). There were significant differences among different treatments (F=584.028, P=0.000), but the score was comparable between right defect and left defect (F=0.028, P=0.890). In addition, significant difference was also observed at different time points (F=18.364, P=0.000), but there was no interaction between time and treatment (F=6.939, P=0.015). Moreover, interactions among other factors were also not observed. Conclusion: Mosaicplasty and BMSC transplantation are effective to repair the osteochondral defects and integrate the “death space”, achieving a better therapeutic efficacy. Thus, this combined therapy may become an effective strategy for the therapy of osteochondral defects.

  1. Isolated osteochondral fracture of the metatarsal head of lesser toes.

    PubMed

    Lui, T H

    2015-06-01

    Isolated fracture of the metatarsal head is very rare and no consensus has been reached regarding their best management. We reported four cases of isolated osteochondral fracture of the metatarsal head with different method of treatment to achieve the common goal of restoration of the congruity of the metatarsal head. PMID:25937421

  2. Glenoid dysplasia and osteochondritis dissecans in a cat.

    PubMed

    Schwarze, Rebecca A; Tano, Cheryl A; Carroll, Vincent W

    2015-07-01

    A 2-year-old Maine coon cat was presented for a right forelimb lameness. Computed tomography of the shoulder revealed a shallow glenoid, osteophyte deposition at the caudal humeral head and medial glenoid, and an intra-articular osseous body. This cat had glenoid dysplasia and osteochondritis dissecans of the glenoid. PMID:26130839

  3. Arthroscopic Allograft Cartilage Transfer for Osteochondral Defects of the Talus

    PubMed Central

    Min, Kyong S.; Ryan, Paul M.

    2015-01-01

    Arthroscopic treatment of osteochondral defects is well established but has had mixed results in larger lesions and revision operations. Particulated allograft cartilage transfer may provide an arthroscopic option for lesions that would otherwise have been treated through open approaches or osteotomies. The procedure is performed under noninvasive distraction with standard arthroscopic portals. PMID:26052496

  4. High tibial osteotomy in the treatment of adult osteochondritis dissecans.

    PubMed

    Slawski, D P

    1997-08-01

    This study reports one surgeon's experience using valgus high tibial osteotomy in the treatment of osteochondritis dissecans of the medial femoral condyle in adult patients. Seven knees in six patients with osteochondritis dissecans were reviewed as the basis of the study. Five patients (five knees) were men, and one patient (two knees) was a woman. The average age at surgery was 32 years. Patients reported medial knee pain, recurrent effusions, and disability. An average of three procedures per knee had been performed previously. Four knees had achieved union of the osteochondral fragments but with overlying articular cartilage degeneration observed at arthroscopy. Three knees had failed attempts at fixation with eventual excision of the fragmented osteochondral lesions. None of the knees showed diffuse medial compartment gonarthrosis by radiographic or arthroscopic examinations. Involved knees had relative varus malalignment with an average femoral and tibial angle of 0 degree compared with the uninvolved knees average of 5 degrees valgus. Preoperative technetium scintigraphy showed isolated uptake in the medial femoral condyle of all involved knees. Preoperative Lysholm scores averaged 39 points. Patients were observed for an average of 30 months after surgery. The average Lysholm score at latest followup was 89 points. Femoral and tibial angles averaged 9 degrees valgus. On subjective questioning, all patients reported marked improvement, satisfaction with the surgery, and said they had no need for additional operative intervention. PMID:9269169

  5. The Treatment of Osteochondral Lesions of the Talus with Autologous Osteochondral Transplantation and Bone Marrow Aspirate Concentrate

    PubMed Central

    Kennedy, John G.; Murawski, Christopher D.

    2011-01-01

    Objective: To present the functional results after autologous osteochondral transplantation with bone marrow aspirate concentrate in 72 patients, while placing an emphasis on the surgical technique. Methods: Between 2005 and 2009, 72 patients underwent autologous osteochondral transplantation under the care of the senior author. The mean patient age at the time of surgery was 34.19 years (range, 16-85 years). All patients were followed for a minimum of 1 year after surgery. The mean follow-up time was 28.02 months (range, 12-64 months). Patient-reported outcome measures were taken preoperatively and at final follow-up using the Foot and Ankle Outcome Score (FAOS) and Short Form–12 (SF-12) general health questionnaire. Identical questionnaires were used in all instances. Results: The mean FAOS scores improved from 52.67 points preoperatively to 86.19 points postoperatively (range, 71-100 points). The mean SF-12 scores also improved from 59.40 points preoperatively to 88.63 points postoperatively (range, 52-98 points). Three patients reported donor site knee pain after surgery, and one patient required the decompression of a cyst that developed beneath the graft site approximately 2 years after the index procedure. Conclusion: Autologous osteochondral transplantation is a reproducible and primary treatment strategy for large osteochondral lesions of the talus.

  6. Osteochondral and Meniscal Allograft Transplantation in the Football (Soccer) Player

    PubMed Central

    Williams, Riley J.; Gersoff, Wayne K.; Bugbee, William D.

    2012-01-01

    Knee injuries are common in football, frequently involving damage to the meniscus and articular cartilage. These injuries can cause significant disability, result in loss of playing time, and predispose players to osteoarthritis. Osteochondral allografting is an increasingly popular treatment option for osteoarticular lesions in athletes. Osteochondral allografts provide mature, orthotopic hyaline cartilage on an osseous scaffold that serves as an attachment vehicle, which is rapidly replaced via creeping substitution, leading to reliable graft integration that allows for simplified rehabilitation and accelerated return to sport. The indications for meniscal replacement in football players are currently still evolving. Meniscus allografts offer potential functional, analgesic, and chondroprotective benefits in the meniscectomized knee. In the player at the end of his or her professional/competitive career, meniscal allografts can play a role in averting progression of chondropenia and facilitating knee function and an active lifestyle. This article is intended to present a concise overview of the limited published results for osteochondral and meniscal allografting in the athletic population and to provide a practical treatment algorithm that is of relevance to the clinician as well as the patient/football player, based on current consensus of opinion.

  7. Suture Bridge Fixation of a Femoral Condyle Traumatic Osteochondral Defect

    PubMed Central

    Bowers, Andrea L.

    2008-01-01

    Internal fixation of a traumatic osteochondral defect presents a challenge in terms of obtaining anatomic reduction, fixation, and adequate compression for healing. Fixation with countersunk intraarticular screws, Herbert screws, bioabsorbable screws and pins, mini-cancellous screws, and glue tissue adhesive have been reported with varying results. We present an alternative fixation method used in two patients for femoral condylar defects that achieved anatomic reduction with compression via a cruciate-shaped suture bridge construct tied down over a bony bridge. This fixation method allowed early passive range of motion and permitted high-quality MRI for followup of fracture healing and articular cartilage integrity. Arthroscopic examination of one of two patients at 6 months followup showed the gross appearance of a healed, anatomically reduced fracture. With 1 year followup for one patient and 2 years for the other, the patients have resumed activity as tolerated with full, painless range of motion at the knee. Longer-term outcomes are unknown. However, the suture bridge is an alternative means of fixation with encouraging early results for treatment of traumatic osteochondral fragments in the knee. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18584263

  8. Follow-Up of Osteochondral Plug Transfers in a Goat ModelA 6Month Study

    Microsoft Academic Search

    Jennifer B. Massie; Scott T. Ball; Michael E. Amiel; Albert C. Chen; Won C. Bae; Robert L. Sah; David Amiel

    2004-01-01

    Background: Osteochondral transfer procedures are increasingly used to resurface full-thickness articular cartilage defects. There has not been long-term assessment\\/description of autogenous donor and recipient sites.Hypothesis: The healing process occurs at the donor\\/host cartilage and bone interfaces.Study Design: Histologic, biochemical, and biomechanical changes were assessed 6 months after an osteochondral transfer in a goat model.Methods: Eight adult goats were studied. In

  9. Magnetic Resonance Imaging Findings of Snowboarding Osteochondral Injuries to the Middle Talocalcaneal Articulation

    PubMed Central

    Clanton, Thomas O.; Chacko, Anna K.; Matheny, Lauren M.; Hartline, Braden E.; Ho, Charles P.

    2013-01-01

    This report presents 2 cases of subtle injuries to the subtalar joint, specifically, osteochondral defects of the middle facet of the talus and concomitant involvement of the middle talocalcaneal articulation sustained while snowboarding. The 3T magnetic resonance image revealed fracture of the lateral talar process with osteochondral lesions of the middle talocalcaneal articulation. This injury can lead to severe and chronic disability if undetected and could ultimately end athletic participation prematurely. PMID:24427420

  10. Biomarkers Affected by Impact Severity during Osteochondral Injury.

    PubMed

    Waters, Nicole Poythress; Stoker, Aaron M; Pfeiffer, Ferris M; Cook, James L

    2015-06-01

    Osteochondral injury elevates the risk for developing posttraumatic osteoarthritis (PTOA). Therefore, our objective was to evaluate the relationship between impact severity during injury to cell viability and biomarkers possibly involved in PTOA. Osteochondral explants (6?mm, n?=?72) were harvested from cadaveric femoral condyles (N?=?6). Using a test machine, each explant (except for No Impact) was subjected to mechanical impact at a velocity of 100 mm/s to 0.25, 0.5, 0.75, 1.0, or 1.25?mm maximum compression corresponding to Low, Low-Moderate, Moderate, Moderate-High, or High impact groups. Cartilage cell viability, collagen content, and proteoglycan content were assessed at either day 0 or after 12 days of culture. Culture media were assessed for prostaglandin E2 (PGE2); nitric oxide; granulocyte macrophage colony-stimulating factor (GM-CSF); interferon gamma (IFN?); interleukin (IL)-2, -4, -6, -7, -8, -10, -15, -18; interferon gamma-induced protein 10 (IP-10); keratinocyte-derived chemoattractant (KC); monocyte chemoattractant protein-1 (MCP-1); tumor necrosis factor alpha (TNF?); and matrix metalloproteinase-2, -3, -8, -9, -13. There was increased impact energy absorbed for the High group compared with the Moderate-High group, Moderate group, and Low-Moderate group (p?=?0.011, 0.048, 0.008, respectively). At day 0, there was decreased area cell viability for the High group compared with the Low-Moderate group (p?=?0.035). At day 1, PGE2 was increased for the High group compared with the Moderate, Low-Moderate, Low, and No Impact groups (p???0.01). Cumulative PGE2 was increased for the Moderate-High and High groups compared with the Moderate, Low-Moderate, Low, and No Impact groups (p???0.036). At day 1, MCP-1 was increased for the Moderate-High and High groups compared with the Low and No Impact groups (p???0.032). Impact to osteochondral explants resulted in multiple levels of severity. PGE2 was sensitive to impact severity which may justify its use as a clinically measurable biomarker after joint injury for monitoring early PTOA. PMID:24858662

  11. Dorsoproximal proximal phalanx osteochondral fragmentation in 117 Warmblood horses.

    PubMed

    Declercq, J; Martens, A; Maes, D; Boussauw, B; Forsyth, R; Boening, K J

    2009-01-01

    The objective of the present study was to determine clinical and arthroscopic characteristics associated with dorsoproximal proximal phalanx (P1) fragments in Warmblood horses, as well as to examine their histopathological appearance. One hundred sixty-eight fragments were removed from 150 fetlocks of 117 Warmblood horses. Details of signalment and results of clinical examination were collected prior to surgery. After arthroscopic fragment removal and joint evaluation for synovial and/or cartilage abnormalities, the fragments were measured and evaluated histopathologically. The vast majority of the fragments (95.2%) were found medially, without predilection for front or hind limbs. In 10% of the joints, more than one fragment was present. The mean size of the fragments was 6.8 +/- 2.6 mm. Only eight horses presented fetlock-related lameness. Horses of seven years of age and older (OR = 13.32; p = 0.033) and the presence of more than one fragment (OR = 11.12; p = 0.016) were significantly associated with lameness. Arthroscopic evaluation revealed one or more abnormalities in 50.7% of the joints. On histopathology, osteochondral fragments presented as a bony center covered with smooth hyaline cartilage on one side and some fibrous tissue on the other side. No clear histopathological signs were indicating precisely their origin. In Warmblood horses with dorsoproximal P1 fragments, the age (seven years and older) and the presence of more than one fragment in a fetlock significantly increased the risk of lameness. The osteochondral dorsoproximal P1 fragments could be defined as a developmental orthopaedic disease. PMID:19151863

  12. Repairing the Osteochondral Defect in Goat with the Tissue-Engineered Osteochondral Graft Preconstructed in a Double-Chamber Stirring Bioreactor

    PubMed Central

    Pei, Yang; Fan, Jun-jun; Zhang, Xiao-qiang; Zhang, Zhi-yong; Yu, Min

    2014-01-01

    To investigate the reparative efficacy of tissue-engineered osteochondral (TEO) graft for repairing the osteochondral defect in goat, we designed a double-chamber stirring bioreactor to construct the bone and cartilage composites simultaneously in one ?-TCP scaffold and observed the reparative effect in vivo. The osteochondral defects were created in goats and all the animals were divided into 3 groups randomly. In groups A, the defect was treated with the TEO which was cultured with mechanical stimulation of stir; in group B, the defect was treated with TEO which was cultured without mechanical stimulation of stir; in groups C, the defect was treated without TEO. At 12 weeks and 24 weeks after operation, the reparative effects in different groups were assessed and compared. The results indicated that the reparative effect of the TEO cultured in the bioreactor was better than the control group, and mechanical stimulation of stir could further improve the reparative effect. We provided a feasible and effective method to construct the TEO for treatment of osteochondral defect using autologous BMSCs and the double-chamber bioreactor. PMID:25061604

  13. Spectrocolorimetric assessment of cartilage plugs after autologous osteochondral grafting: correlations between color indices and histological findings in a rabbit model

    Microsoft Academic Search

    Koji Hattori; Kota Uematsu; Yohei Tanikake; Takashi Habata; Yasuhito Tanaka; Hiroshi Yajima; Yoshinori Takakura

    2007-01-01

    We investigated the use of a commercial spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution) to describe and quantify cartilage plugs in a rabbit model of osteochondral autografting. Osteochondral plugs were removed and then replaced in their original positions in Japanese white rabbits. The rabbits were sacrificed at 4 or 12

  14. Human umbilical cord mesenchymal stromal cells in a sandwich approach for osteochondral tissue engineering

    PubMed Central

    Wang, Limin; Zhao, Liang; Detamore, Michael S.

    2013-01-01

    Cell sources and tissue integration between cartilage and bone regions are critical to successful osteochondral regeneration. In this study, human umbilical cord mesenchymal stromal cells (hUCMSCs), derived from Wharton’s jelly, were introduced to the field of osteochondral tissue engineering and a new strategy for osteochondral integration was developed by sandwiching a layer of cells between chondrogenic and osteogenic constructs before suturing them together. Specifically, hUCMSCs were cultured in biodegradable poly-l-lactic acid scaffolds for 3 weeks in either chondrogenic or osteogenic medium to differentiate cells toward cartilage or bone lineages, respectively. A highly concentrated cell solution containing undifferentiated hUCMSCs was pasted onto the surface of the bone layer at week 3 and the two layers were then sutured together to form an osteochondral composite for another 3 week culture period. Chondrogenic and osteogenic differentiation was initiated during the first 3 weeks, as evidenced by the expression of type II collagen and runt-related transcription factor 2 genes, respectively, and continued with the increase of extracellular matrix during the last 3 weeks. Histological and immunohistochemical staining, such as for glycosaminoglycans, type I collagen and calcium, revealed better integration and transition of these matrices between two layers in the composite group containing sandwiched cells compared to other control composites. These results suggest that hUCMSCs may be a suitable cell source for osteochondral regeneration, and the strategy of sandwiching cells between two layers may facilitate scaffold and tissue integration. PMID:21953869

  15. Viral Inactivation of Human Osteochondral Grafts with Methylene Blue and Light

    PubMed Central

    Zhao, Zhixing; Call, Gazell M.; Gao, Jizong; Yao, Jian Q.

    2014-01-01

    Objective: Cartilage injury is one of the most common disorders of synovial joints. Fresh osteochondral allografts are becoming a standard treatment; however, they are supply constrained with a potential risk of disease transmission. There are no known virucidal processes available for osteochondral allografts and most methods presently available are detrimental to cartilage. Methylene blue light treatment has been shown to be successful in the literature for viral inactivation of fresh frozen plasma. The purpose of this study was to determine the capacity of methylene blue light treatment to inactivate a panel of clinically relevant viruses inoculated onto osteochondral allografts. Design: Osteochondral grafts recovered from human cadaveric knees were inoculated with one of the following viruses: bovine viral diarrhea virus (BVDV), hepatitis A virus (HAV), human immunodeficiency virus type 1 (HIV-1), porcine parvovirus (PPV), and pseudorabies virus (PrV). The samples were processed through a methylene blue light treatment, which consisted of an initial soak in nonilluminated circulating methylene blue at ambient temperature, followed by light exposure with circulating methylene blue at cool temperatures. The final titer was compared with the recovery control for the viral log reduction. Results: HIV-1, BVDV, and PrV were reduced to nondetectable levels while HAV and PPV were reduced by 3.1 and 5.6 logs, respectively. Conclusions: The methylene blue light treatment was effective in reducing (a) enveloped DNA and RNA viruses to nondetectable levels and (b) nonenveloped DNA and RNA viruses of inoculated human osteochondral grafts by 3.1 to 5.6 logs. This study demonstrates the first practical method for significantly reducing viral load in osteochondral implants.

  16. Generation and characterization of osteochondral grafts with human nasal chondrocytes.

    PubMed

    Barandun, Marina; Iselin, Lukas Daniel; Santini, Francesco; Pansini, Michele; Scotti, Celeste; Baumhoer, Daniel; Bieri, Oliver; Studler, Ueli; Wirz, Dieter; Haug, Martin; Jakob, Marcel; Schaefer, Dirk Johannes; Martin, Ivan; Barbero, Andrea

    2015-08-01

    We investigated whether nasal chondrocytes (NC) can be used to generate composite constructs with properties necessary for the repair of osteochondral (OC) lesions, namely maturation, integration and capacity to recover from inflammatory burst. OC grafts were fabricated by combining engineered cartilage tissues (generated by culturing NC or articular chondrocytes - AC - onto Chondro-Gide(®) matrices) with devitalized spongiosa cylinders (Tutobone(®) ). OC tissues were then exposed to IL-1? for three days and cultured for additional 2 weeks in the absence of IL-1?. Cartilage maturation extent was assessed (immune) histologically, biochemically and by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) while cartilage/bone integration was assessed using a peel-off mechanical test. The use of NC as compared to AC allowed for more efficient cartilage matrix accumulation and superior integration of the cartilage/bone layers. dGEMRIC and biochemical analyzes of the OC constructs showed a reduced glycosaminoglycan (GAG) contents upon IL-1? administration. Cartilaginous matrix contents and integration forces returned to baseline up on withdrawal of IL-1?. By having a cartilage layer well developed and strongly integrated to the subchondral layer, OC tissues generated with NC may successfully engraft in an inflammatory post-surgery joint environment. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1111-1119, 2015. PMID:25994595

  17. Proximodorsal first phalanx osteochondral chip fragmentation in 336 horses.

    PubMed

    Kawcak, C E; McIlwraith, C W

    1994-09-01

    The results of arthroscopic surgery in the treatment of osteochondral fragmentation of the proximodorsal aspect of the first phalanx and the influence of other fetlock joint lesions on prognosis were evaluated in 336 horses. Horses were classified as: 1) returning to previous use at the same or higher class of performance; 2) returning to previous use (regardless of class of performance); or 3) failing to return to previous use. Ninety-six horses (29%) had fragmentation alone; 140 horses (42%) had fragmentation and additional fetlock lesions, and 100 horses (29%) underwent concurrent carpal arthroscopy. Of the 100 horses that underwent carpal arthroscopy, 63 had proximodorsal first phalanx fragmentation alone and 37 had other fetlock lesions associated with the fragment. There was significant association between lesion type and return to previous use for the Thoroughbred racehorse group. There was also a significant association between lesion type and return to the same or higher class of racing for the Thoroughbred racehorse group. No significant association in return to previous use existed for racehorses vs. non-racehorses, Thoroughbred racehorses vs. Quarter Horse racehorses, single vs. multiple joint involvement, and single vs multiple fragmentation per joint. The Thoroughbred racehorses in this study were sensitive to additional fetlock or carpal lesions, as was exemplified by the significant effect lesion type had on outcome. PMID:7988543

  18. Osteochondral metatarsophalangeal autografts for traumatic articular metacarpophalangeal defects: a preliminary report.

    PubMed

    Boulas, H J; Herren, A; Büchler, U

    1993-11-01

    Five consecutive patients with saw injuries to the dorsal portion of the index metacarpophalangeal joint and resultant partial osteochondral defects underwent articular reconstruction using contoured metatarsophalangeal osteochondral autografts. At an average follow-up period of 33 months, all patients achieved full metacarpophalangeal extension, with 74 degrees of flexion and grip strength equal to 86% of the contralateral hand. Discomfort was minimal, with crepitus present in one patient. X-ray films revealed joint space narrowing or articular step-off of 1 mm or less. PMID:8294746

  19. The Augmentation of a Collagen/Glycosaminoglycan Biphasic Osteochondral Scaffold with Platelet-Rich Plasma and Concentrated Bone Marrow Aspirate for Osteochondral Defect Repair in Sheep

    PubMed Central

    Henson, Frances; Skelton, Carrie; Herrera, Emilio; Brooks, Roger; Fortier, Lisa A.; Rushton, Neil

    2012-01-01

    Objective: This study investigates the combination of platelet-rich plasma (PRP) or concentrated bone marrow aspirate (CBMA) with a biphasic collagen/glycosaminoglycan (GAG) osteochondral scaffold for the treatment of osteochondral defects in sheep. Design: Acute osteochondral defects were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of 24 sheep (n = 6). Defects were left empty or filled with a 6 × 6-mm scaffold, either on its own or in combination with PRP or CBMA. Outcome measures at 6 months included mechanical testing, International Cartilage Repair Society (ICRS) repair score, modified O’Driscoll histology score, qualitative histology, and immunohistochemistry for type I, II, and VI collagen. Results: No differences in mechanical properties, ICRS repair score, or modified O’Driscoll score were detected between the 4 groups. However, qualitative assessments of the histological architecture, Safranin O content, and collagen immunohistochemistry indicated that in the PRP/scaffold groups, there was a more hyaline cartilage–like tissue repair. In addition, the addition of CBMA and PRP to the scaffold reduced cyst formation in the subchondral bone of healed lesions. Conclusion: There was more hyaline cartilage–like tissue formed in the PRP/scaffold group and less subchondral cystic lesion formation in the CBMA and PRP/scaffold groups, although there were no quantitative differences in the repair tissue formed.

  20. The effect of devitalized trabecular bone on the formation of osteochondral tissue-engineered constructs

    Microsoft Academic Search

    Eric G. Lima; Pen-hsiu Grace Chao; Gerard A. Ateshian; B. Sonny Bal; James L. Cook; Gordana Vunjak-Novakovic; Clark T. Hung

    2008-01-01

    In the current study, evidence is presented demonstrating that devitalized trabecular bone has an inhibitory effect on in vitro chondral tissue development when used as a base material for the tissue-engineering of osteochondral constructs for cartilage repair. Chondrocyte-seeded agarose hydrogel constructs were cultured alone or attached to an underlying bony base in a chemically defined medium formulation that has been

  1. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors

    Microsoft Academic Search

    Nastaran Mahmoudifar; Pauline M. Doran

    2005-01-01

    Chondrocytes isolated from human foetal epiphyseal cartilage were seeded dynamically into polyglycolic acid (PGA) scaffolds and cultured in recirculation column bioreactors to produce tissue-engineered cartilage. Several culture techniques with the potential to provide endogenous growth factors and other conditions beneficial for de novo cartilage synthesis were investigated. Osteochondral composite constructs were generated by seeding separate PGA scaffolds with either foetal

  2. Osteochondritis dissecans of the knee: long-term results of excision of the fragment.

    PubMed

    Wright, Rick W; McLean, Matthew; Matava, Matthew J; Shively, Robert A

    2004-07-01

    Optimal treatment of osteochondritis dissecans of the knee has been controversial. Various treatment methods have resulted in good short-term results. Unfortunately, the age range of the patients who typically require treatment of this disorder is young enough that long-term results become critical. We did a retrospective review to evaluate our hypothesis that simple excision of a loose osteochondritis dissecans fragment results in a higher percentage of unacceptable outcomes when compared with treatment methods that preserve the articular cartilage. Between 1982 and 1993, 30 knees in 29 patients had arthroscopic or arthroscopically assisted surgical excision of a symptomatic loose osteochondritis dissecans lesion of the knee. Seventeen patients who had excision were available for followup. There were 12 males and five females. The average age of the patients at the time of surgery was 26 years (range, 12.5-38 years). The average length of followup was 8.9 years (range, 4-15 years). Results were graded using the Hughston rating scale for osteochondritis dissecans. Only six of 17 patients (35%) had a good or excellent result. Eleven of 17 (65%) had a fair or poor result. We think our results at intermediate followup support our hypothesis, and we recommend aggressive attempts to preserve the articular cartilage and avoid excision of the fragments when possible. PMID:15241178

  3. Arthroscopic treatment of osteochondral lesions of the talus with correlation of outcome scoring systems

    Microsoft Academic Search

    Stephen A. Hunt; Orrin Sherman

    2003-01-01

    Purpose: The goal of this study was to perform a retrospective review of arthroscopically treated osteochondral lesions of the talus (OCLTs) to determine their outcome and to analyze the correlation of 3 subjective outcome scoring systems for the ankle. Methods: Between 1985 and 1999, 37 arthroscopic debridement or subchondral drilling procedures were performed on 33 ankles to treat OCLTs. The

  4. Osteochondral Tissue Cell Viability Is Affected by Total Impulse during Impaction Grafting

    PubMed Central

    Balash, Paul; Kang, Richard W.; Schwenke, Thorsten; Cole, Brian J.; Wimmer, Markus A.

    2010-01-01

    Objective: Osteochondral graft transplantation has garnered significant attention because of its ability to replace the lesion with true hyaline cartilage. However, surgical impaction of the graft to anchor it into the defect site can be traumatic and lead to cell death and cartilage degeneration. This study aimed to test the hypothesis that increasing impulse magnitude during impaction of osteochondral plugs has a direct effect on loss of cell viability. Design: In this controlled laboratory study, the impaction force was kept constant while the impulse was varied. Ninety-six osteochondral plugs were extracted from the trochlea of bovine stifle joints and were randomly assigned into 3 experimental and 1 (nonimpacted) control group. The transferred impulse of the experimental groups reflected the median and the lower and upper quartiles of preceding clinical measurements. Data were obtained at day 0, day 4, and day 8; at each point, cell viability was assessed using the Live/Dead staining kit and histological assessments were performed to visualize matrix structural changes. Results: After impaction, cartilage samples stayed intact and did not show any histological signs of matrix disruption. As expected, higher impulse magnitudes introduced more cell death; however, this relationship was lost at day 8 after impaction. Conclusion: Impulse magnitude has a direct effect on cell viability of the graft. Because impulse magnitude is mostly governed by the press-fit characteristics of the recipient site, this study aids in the definition of optimal insertion conditions for osteochondral grafts.

  5. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model

    Microsoft Academic Search

    Elizaveta Kon; Giuseppe Filardo; Marco Delcogliano; Milena Fini; Francesca Salamanna; Gianluca Giavaresi; Ivan Martin; Maurilio Marcacci

    2010-01-01

    BACKGROUND: Current research aims to develop innovative approaches to improve chondral and osteochondral regeneration. The objective of this study was to investigate the regenerative potential of platelet-rich plasma (PRP) to enhance the repair process of a collagen-hydroxyapatite scaffold in osteochondral defects in a sheep model. METHODS: PRP was added to a new, multi-layer gradient, nanocomposite scaffold that was obtained by

  6. A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model

    Microsoft Academic Search

    Natasa D. Miljkovic; Yen-Chih Lin; Mario Cherubino; Danielle Minteer; Kacey G. Marra

    2009-01-01

    Osteochondral defects are frequent, painful, debilitating and expensive to treat, often resulting in poor results. The goal\\u000a of the present study was to synthesize and characterize a novel biocompatible and biodegradable hydrogel comprised of poly(ethylene\\u000a glycol), gelatin, and genipin, and examine the hydrogel as an injectable biomaterial in combination with a cyanoacrylate-based\\u000a surgical sealant for cartilage repair. An osteochondral knee

  7. Two Patients with Osteochondral Injury of the Weight-Bearing Portion of the Lateral Femoral Condyle Associated with Lateral Dislocation of the Patella

    PubMed Central

    Inoue, Hiroaki; Atsumi, Satoru; Ichimaru, Shohei; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2014-01-01

    Complications of patellar dislocation include osteochondral injury of the lateral femoral condyle and patella. Most cases of osteochondral injury occur in the anterior region, which is the non-weight-bearing portion of the lateral femoral condyle. We describe two patients with osteochondral injury of the weight-bearing surface of the lateral femoral condyle associated with lateral dislocation of the patella. The patients were 18- and 11-year-old females. Osteochondral injury occurred on the weight-bearing surface distal to the lateral femoral condyle. The presence of a free osteochondral fragment and osteochondral injury of the lateral femoral condyle was confirmed on MRI and reconstruction CT scan. Treatment consisted of osteochondral fragment fixation or microfracture, as well as patellar stabilization. Osteochondral injury was present in the weight-bearing portion of the lateral femoral condyle in both patients, suggesting that the injury was caused by friction between the patella and lateral femoral condyle when the patella was dislocated or reduced at about 90° flexion of the knee joint. These findings indicate that patellar dislocation may occur and osteochondral injury may extend to the weight-bearing portion of the femur even in deep flexion, when the patella is stabilized on the bones of the femoral groove. PMID:25506015

  8. Osteochondritis dessicans and subchondral cystic lesions in draft horses: a retrospective study.

    PubMed Central

    Riley, C B; Scott, W M; Caron, J P; Fretz, P B; Bailey, J V; Barber, S M

    1998-01-01

    The clinical features, radiographic findings, treatment, and outcome in 51 draft horses with osteochondritis dessicans (OCD) or subchondral cystic lesions (SC) are reported. Clydesdale and Percheron were the most commonly affected breeds, and affected animals represented only 5% of the hospital population of draft horses. Horses were most frequently affected in the tibiotarsal joints and 73% (24 of 33 cases) of the horses with tibiotarsal effusion were affected bilaterally. Osteochondritis dessicans of the distal intermediate ridge was the most common lesion found in the tibiotarsal joint. The stifle was also frequently affected; 87% (13 of 15 cases) of horses with femoropatellar OCD only were lame, and lesions were most commonly located on the lateral trochlear ridge. Sixteen cases were managed conservatively, 30 received surgery, and 5 were euthanized. Lameness, effusion, or both clinical signs resolved in more than 50% of surgically treated cases, but clinical signs improved in 30% of conservatively-managed cases. PMID:9789673

  9. Osteochondrosis of the capitellum of the humerus (Panner's disease, Osteochondritis Dissecans). Case study.

    PubMed

    Wróblewski, Robert; Urban, Mariusz; Michalik, Dariusz; Zakrzewski, Piotr; Langner, Maciej; Pomianowski, Stanis?aw

    2014-01-01

    The article presents a case of an adolescent patient suffering from osteochondritis of the humeral capitellum. Early symptoms of this disease appeared at an age typically associated with the onset of both Panner's disease and Osteochondritis Dissecans (OCD) of the humeral capitellum. About two years after the onset of the early symptoms, the patient reported to a specialised clinic. He was followed up for almost two years and was hospitalised and underwent surgical treatment during that period. Both diseases bear multiple similarities, which may entail diagnostic errors. The paper presents differences between these two similar clinical entities, in particular in terms of treatment and prognosis. Essential details potentially allowing for early diagnosis and classification of both conditions are described and discussed. Resolving the discussion may significantly contribute to improving performance and quality of life of patients suffering from necrosis of the humeral capitellum. PMID:24728797

  10. Stem Cell-Based Microphysiological Osteochondral System to Model Tissue Response to Interleukin-1?

    PubMed Central

    2015-01-01

    Osteoarthritis (OA) is a chronic degenerative disease of the articular joint that involves both bone and cartilage degenerative changes. An engineered osteochondral tissue within physiological conditions will be of significant utility in understanding the pathogenesis of OA and testing the efficacy of potential disease-modifying OA drugs (DMOADs). In this study, a multichamber bioreactor was fabricated and fitted into a microfluidic base. When the osteochondral construct is inserted, two chambers are formed on either side of the construct (top, chondral; bottom, osseous) that is supplied by different medium streams. These medium conduits are critical to create tissue-specific microenvironments in which chondral and osseous tissues will develop and mature. Human bone marrow stem cell (hBMSCs)-derived constructs were fabricated in situ and cultured within the bioreactor and induced to undergo spatially defined chondrogenic and osteogenic differentiation for 4 weeks in tissue-specific media. We observed tissue specific gene expression and matrix production as well as a basophilic interface suggesting a developing tidemark. Introduction of interleukin-1? (IL-1?) to either the chondral or osseous medium stream induced stronger degradative responses locally as well as in the opposing tissue type. For example, IL-1? treatment of the osseous compartment resulted in a strong catabolic response in the chondral layer as indicated by increased matrix metalloproteinase (MMP) expression and activity, and tissue-specific gene expression. This induction was greater than that seen with IL-1? application to the chondral component directly, indicative of active biochemical communication between the two tissue layers and supporting the osteochondral nature of OA. The microtissue culture system developed here offers novel capabilities for investigating the physiology of osteochondral tissue and pathogenic mechanisms of OA and serving as a high-throughput platform to test potential DMOADS. PMID:24830762

  11. Osseous Integration after Fresh Osteochondral Allograft Transplantation to the Distal Femur

    PubMed Central

    Brown, Dawson; Shirzad, Khalid; Lavigne, Stephanie A.; Crawford, Dennis C.

    2011-01-01

    Objective: Fresh osteochondral allograft transplantation (OCA) is an increasingly available option for patients with damage to the bone-cartilage complex of the distal femur. This study prospectively assesses osseous integration and early clinical results following fresh OCA with single or multiple cylindrical grafts to the femoral condyle. Design: Patients with grade 4 International Cartilage Repair Society (ICRS) defects of the distal femur were treated with OCA. Outcome measures were collected preoperatively and postoperatively at 6, 12, and 24 months. Computed tomography (CT) scans obtained at 6 months were used to assess degree of osseous incorporation regionally. Results: Thirty-four patients, with a mean age of 34.5 years (range, 15-61), with a mean femoral osteochondral lesion of 5.7 cm2 (range, 1.5-15.0) due to focal osteoarthritis, osteochondritis dissecans, and avascular necrosis, are reported. Statistically significant (P < 0.05) mean improvement in outcome scores at 2 years included Knee Injury and Osteoarthritis Outcomes Score (KOOS) pain, sports and recreation, quality of life, and International Knee Documentation Committee (IKDC). CT imaging indicated grafts implanted to direct weightbearing regions had >75% incorporation (20/26 grafts) compared to <50% incorporation in the indirect weightbearing regions (8/14 grafts). A greater degree of incorporation and earlier outcome improvement were found after single (n = 23) compared to multiple (n = 11) grafts. Conclusion: CT scans were used to assess osseous incorporation of fresh osteochondral allografts in a cohort that showed significant improvements after 2 years. Single-graft implantation is associated with stable incorporation of a greater percentage of the graft. Lesser incorporation appears more frequently with grafts in posterior indirect weightbearing regions of the condyle and multiple contiguous grafts.

  12. Mechanical effects of surgical procedures on osteochondral grafts elucidated by osmotic loading and real-time ultrasound

    PubMed Central

    2009-01-01

    Introduction Osteochondral grafts have become popular for treating small, isolated and full-thickness cartilage lesions. It is recommended that a slightly oversized, rather than an exact-sized, osteochondral plug is transplanted to achieve a tight fit. Consequently, impacting forces are required to insert the osteochondral plug into the recipient site. However, it remains controversial whether these impacting forces affect the biomechanical condition of the grafted articular cartilage. The present study aimed to investigate the mechanical effects of osteochondral plug implantation using osmotic loading and real-time ultrasound. Methods A full-thickness cylindrical osteochondral defect (diameter, 3.5 mm; depth, 5 mm) was created in the lateral lower quarter of the patella. Using graft-harvesting instruments, an osteochondral plug (diameter, 3.5 mm as exact-size or 4.5 mm as oversize; depth, 5 mm) was harvested from the lateral upper quarter of the patella and transplanted into the defect. Intact patella was used as a control. The samples were monitored by real-time ultrasound during sequential changes of the bathing solution from 0.15 M to 2 M saline (shrinkage phase) and back to 0.15 M saline (swelling phase). For cartilage sample assessment, three indices were selected, namely the change in amplitude from the cartilage surface (amplitude recovery rate: ARR) and the maximum echo shifts from the cartilage surface and the cartilage-bone interface. Results The ARR is closely related to the cartilage surface integrity, while the echo shifts from the cartilage surface and the cartilage-bone interface are closely related to tissue deformation and NaCl diffusion, respectively. The ARR values of the oversized plugs were significantly lower than those of the control and exact-sized plugs. Regarding the maximum echo shifts from the cartilage surface and the cartilage-bone interface, no significant differences were observed among the three groups. Conclusions These findings demonstrated that osmotic loading and real-time ultrasound were able to assess the mechanical condition of cartilage plugs after osteochondral grafting. In particular, the ARR was able to detect damage to the superficial collagen network in a non-destructive manner. Therefore, osmotic loading and real-time ultrasound are promising as minimally invasive methods for evaluating cartilage damage in the superficial zone after trauma or impact loading for osteochondral grafting. PMID:19725961

  13. Hydrogels for Osteochondral Repair Based on Photo-crosslinkable Carbamate Dendrimers

    PubMed Central

    Degoricija, Lovorka; Bansal, Prashant N.; Söntjens, Serge H. M.; Joshi, Neel; Takahashi, Masaya; Snyder, Brian; Grinstaff, Mark W.

    2009-01-01

    First generation, photo-crosslinkable dendrimers consisting of natural metabolites (i.e. succinic acid, glycerol, and ?-alanine) and non-immunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photo-crosslinked with an eosin-based photo-initiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photo-crosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA)2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10wt%) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages which are more hydrolytically stable than the ester linkages. The hydrogel treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair. PMID:18800810

  14. Peripheral blood mononuclear cells enhance cartilage repair in in vivo osteochondral defect model

    E-print Network

    Hopper, Niina; Wardale, John; Brooks, Roger; Power, Roger; Power, Jonathan; Rushtown, Neil; Henson, Frances

    2015-07-14

    osteochondral repair model. ChondroMimetic comprised an unmineralised top layer mimicking articular cartilage while the base layer was mineralised using calcium phosphate (brushite) [29,30,31]. The material was cross-linked to enhance its mechanical strength... , stained and analysed under a light microscopy. For osteogenic differentiation [32,33,34] the medium consisted of 50 µg/mL L- ascorbic acid 2-phosphate (A8960-5G, Sigma), 10 mM ?-glycerol phosphate (G9422-10G, Sigma), and 10 nM dexamethasone (50...

  15. A review of arthroscopic classification systems for osteochondritis dissecans of the knee.

    PubMed

    Jacobs, John C; Archibald-Seiffer, Noah; Grimm, Nathan L; Carey, James L; Shea, Kevin G

    2015-01-01

    Multiple systems for classifying osteochondritis dissecans (OCD) of the knee have been reported. These existing classification systems have some similar characteristics, such as stable lesion/intact articular cartilage and presence of a loose body. However, variations are found in the number of stages and specific lesion characteristics assessed. Currently, no system has been universally accepted. A future classification system should be developed that reconciles the discrepancies among the current systems and provides a clear, consistent, and reliable method for classifying OCD lesions of the knee during arthroscopy. PMID:25435042

  16. A review of arthroscopic classification systems for osteochondritis dissecans of the knee.

    PubMed

    Jacobs, John C; Archibald-Seiffer, Noah; Grimm, Nathan L; Carey, James L; Shea, Kevin G

    2014-04-01

    Multiple systems for classifying osteochondritis dissecans (OCD) of the knee have been reported. These existing classification systems have some similar characteristics, such as stable lesion/intact articular cartilage and presence of a loose body. However, variations are found in the number of stages and specific lesion characteristics assessed. Currently, no system has been universally accepted. A future classification system should be developed that reconciles the discrepancies among the current systems and provides a clear, consistent, and reliable method for classifying OCD lesions of the knee during arthroscopy. PMID:24698038

  17. Ingrowth of osteochondral grafts under the influence of growth factors: 6-month results of an animal study

    Microsoft Academic Search

    Christian H. Siebert; Ulrich Schneider; Sasa Sopka; Ture Wahner; Oliver Miltner; Christopher Niedhart

    2006-01-01

    Introduction: In the age of growth factors and gene therapy, the induction of cartilage healing remains an unsolved problem. Even in autologous grafting, one of the preferred methods of treatment for focal osteochondral lesions, chondral integration remains difficult. This study aims to define a possible positive influence of growth factor augmentation on the ingrowth of these transplants. Materials and methods:

  18. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    SciTech Connect

    Seebauer, Christian J., E-mail: christian.seebauer@charite.d [Charite - Universitaetsmedizin Berlin, Center for Musculoskeletal Surgery (Germany); Bail, Hermann J., E-mail: hermann-josef.bail@klinikum-nuernberg.d [Clinic Nuremberg, Department of Trauma and Orthopedic Surgery (Germany); Rump, Jens C., E-mail: jens.rump@charite.de; Walter, Thula, E-mail: thula.walter@hotmail.com; Teichgraeber, Ulf K. M., E-mail: ulf.teichgraeber@charite.d [Charite - Universitaetsmedizin Berlin, Department of Radiology (Germany)

    2010-12-15

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesions of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.

  19. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering.

    PubMed

    Khanarian, Nora T; Jiang, Jie; Wan, Leo Q; Mow, Van C; Lu, Helen H

    2012-03-01

    Osteoarthritis is the leading cause of physical disability among Americans, and tissue engineered cartilage grafts have emerged as a promising treatment option for this debilitating condition. Currently, the formation of a stable interface between the cartilage graft and subchondral bone remains a significant challenge. This study evaluates the potential of a hybrid scaffold of hydroxyapatite (HA) and alginate hydrogel for the regeneration of the osteochondral interface. Specifically, the effects of HA on the response of chondrocytes were determined, focusing on changes in matrix production and mineralization, as well as scaffold mechanical properties over time. Additionally, the optimal chondrocyte population for interface tissue engineering was evaluated. It was observed that the HA phase of the composite scaffold promoted the formation of a proteoglycan- and type II collagen-rich matrix when seeded with deep zone chondrocytes. More importantly, the elevated biosynthesis translated into significant increases in both compressive and shear moduli relative to the mineral-free control. Presence of HA also promoted chondrocyte hypertrophy and type X collagen deposition. These results demonstrate that the hydrogel-calcium phosphate composite supported the formation of a calcified cartilage-like matrix and is a promising scaffold design for osteochondral interface tissue engineering. PMID:21919797

  20. Osteochondral fragmentation of the plantar/palmar proximal aspect of the proximal phalanx in racing horses.

    PubMed

    Whitton, R C; Kannegieter, N J

    1994-10-01

    The clinical presentation and outcome of treatment is presented for 26 cases of osteochondral fragmentation of the plantar/palmar proximal aspect of the proximal phalanx. Twenty-three were racing Standardbreds and three were racing Thoroughbreds. The most common reason for presentation was an inability to run straight at high speed. Only eight horses presented for lameness, although on examination 19 were lame. A positive flexion test was recorded in 90% of affected fetlock joints and effusion in 48%. Arthroscopic fragment removal was performed on 23 occasions in 21 horses and arthrotomy in one horse. Of the 16 horses that had returned to racing, 12 had improved their performance, while three showed no improvement, and one was retired for other reasons. In three horses refragmentation occurred after surgery, two of which had improved after initial arthroscopic removal. Degenerative changes within the fetlock joint were detected at surgery in eight horses. Of the four horses treated conservatively, one returned to its previous level of performance temporarily after intra-articular medication, one showed no improvement and two were still resting. Plantar/palmar osteochondral fragmentation of the proximal aspect of the first phalanx is a common cause of low-grade lameness in racing horses, and arthroscopic removal results in improvement in race performance in a high percentage of cases. PMID:7848178

  1. Image-Guided Techniques Improve the Short-Term Outcome of Autologous Osteochondral Cartilage Repair Surgeries

    PubMed Central

    Devlin, Steven M.; Hurtig, Mark B.; Waldman, Stephen D.; Rudan, John F.; Bardana, Davide D.; Stewart, A. James

    2013-01-01

    Objective: Autologous osteochondral cartilage repair is a valuable reconstruction option for cartilage defects, but the accuracy to harvest and deliver osteochondral grafts remains problematic. We investigated whether image-guided methods (optically guided and template guided) can improve the outcome of these procedures. Design: Fifteen sheep were operated to create traumatic chondral injuries in each knee. After 4 months, the chondral defect in one knee was repaired using (a) conventional approach, (b) optically guided method, or (c) template-guided method. For both image-guided groups, harvest and delivery sites were preoperatively planned using custom-made software. During optically guided surgery, instrument position and orientation were tracked and superimposed onto the surgical plan. For the template-guided group, plastic templates were manufactured to allow an exact fit between template and the joint anatomy. Cylindrical holes within the template guided surgical tools according to the plan. Three months postsurgery, both knees were harvested and computed tomography scans were used to compare the reconstructed versus the native pre-injury joint surfaces. For each repaired defect, macroscopic (International Cartilage Repair Society [ICRS]) and histological repair (ICRS II) scores were assessed. Results: Three months after repair surgery, both image-guided surgical approaches resulted in significantly better histology scores compared with the conventional approach (improvement by 55%, P < 0.02). Interestingly, there were no significant differences found in cartilage surface reconstruction and macroscopic scores between the image-guided and the conventional surgeries.

  2. Effects of cryopreservation on the depth-dependent elastic modulus in articular cartilage and implications for osteochondral grafting.

    PubMed

    Kahn, David; Les, Clifford; Xia, Yang

    2015-05-01

    Cryopreservation of articular cartilage is often used in storage of experimental samples and osteochondral grafts, but the depth-dependence and concentration of glycosaminoglycan (GAG) are significantly altered when cryogenically stored without a cryoprotectant, which will reduce cartilage stiffness and affect osteochondral graft function and long-term viability. This study investigates our ability to detect changes due to cryopreservation in the depth-dependent elastic modulus of osteochondral samples. Using a direct-visualization method requiring minimal histological alterations, unconfined stepwise stress relaxation tests were performed on four fresh (never frozen) and three cryopreserved (-20?°C) canine humeral head osteochondral slices 125?±?5??m thick. Applied force was measured and tissue images were taken at the end of each relaxation phase using a 4× objective. Intratissue displacements were calculated by tracking chondrocytes through consecutive images for various intratissue depths. The depth-dependent elastic modulus was compared between fresh and cryopreserved tissue for same-depth ranges using analysis of variance (ANOVA) with Tukey post-test with a 95% confidence interval. Cryopreservation was found to significantly alter the force-displacement profile and reduce the depth-dependent modulus of articular cartilage. Excessive collagen fiber folding occurred at 40-60% relative depth, producing a "black line" in cryopreserved tissue. Force-displacement curves exhibited elongated toe-region in cryopreserved tissue while fresh tissue had nonmeasurable toe-region. Statistical analysis showed significant reduction in the elastic modulus and GAG concentration throughout the tissue between same-depth ranges. This method of cryopreservation significantly reduces the depth-dependent modulus of canine humeral osteochondral samples. PMID:25412272

  3. Growth Factor Gradients via Microsphere Delivery in Biopolymer Scaffolds for Osteochondral Tissue Engineering

    PubMed Central

    Wang, Xiaoqin; Wenk, Esther; Zhang, Xiaohui; Meinel, Lorenz; Vunjak-Novakovic, Gordana; Kaplan, David L.

    2009-01-01

    Temporally and spatially controlled delivery of growth factors in polymeric scaffolds is crucial for engineering composite tissue structures, such as osteochondral constructs. In the present study, microsphere-mediated growth factor delivery in polymer scaffolds and its impact on osteochondral differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) was evaluated. Two growth factors, bone morphogenetic protein 2 (rhBMP-2) and insulin-like growth factor I (rhIGF-I), were incorporated as a single concentration gradient or reverse gradient combining two factors in the scaffolds. To assess the gradient making system and the delivery efficiency of polylactic-co-glycolic acid (PLGA) and silk fibroin microspheres, initially an alginate gel was fabricated into a cylinder shape with microspheres incorporated as gradients. Compared to PLGA microspheres, silk microspheres were more efficient in delivering rhBMP-2, probably due to sustained release of the growth factor, while less efficient in delivering rhIGF-I, likely due to loading efficiency. The growth factor gradients formed were shallow, inducing non-gradient trends in hMSC osteochondral differentiation. Aqueous-derived silk porous scaffolds were used to incorporate silk microspheres using the same gradient process. Both growth factors formed deep and linear concentration gradients in the scaffold, as shown by enzyme-linked immunosorbent assay (ELISA). After seeding with hMSCs and culturing for 5 weeks in a medium containing osteogenic and chondrogenic components, hMSCs exhibited osteogenic and chondrogenic differentiation along the concentration gradients of rhBMP-2 in the single gradient of rhBMP-2 and reverse gradient of rhBMP-2/rhIGF-I, but not the rhIGF-I gradient system, confirming that silk microspheres were more efficient in delivering rhBMP-2 than rhIGF-I for hMSCs osteochondrogenesis. This novel silk microsphere/scaffold system offers a new option for the delivery of multiple growth factors with spatial control in a 3D culture environment for both understanding natural tissue growth process and in vitro engineering complex tissue constructs. PMID:19071168

  4. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.

    PubMed

    Yao, Qingqing; Nooeaid, Patcharakamon; Detsch, Rainer; Roether, Judith A; Dong, Yanming; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation. PMID:24677705

  5. Improved Visualization of the 70° Arthroscope in the Treatment of Talar Osteochondral Defects

    PubMed Central

    Spennacchio, Pietro; Randelli, Pietro; Arrigoni, Paolo; van Dijk, Niek

    2013-01-01

    Osteochondral defects (OCDs) of the talus are a common cause of residual pain after ankle injuries. When conservative treatment fails, arthroscopic debridement combined with drilling/microfracturing of the lesion (bone marrow stimulation [BMS] procedures) has been shown to provide good to excellent outcomes. Not uncommonly, talar OCDs involve the borders of the talar dome. These uncontained lesions are sometimes difficult to visualize with the 30° arthroscope, with potential negative effect on the clinical outcome of an arthroscopic BMS procedure. The use of the 70° arthroscope has been described for a multitude of common knee, shoulder, elbow, and hip procedures. The purpose of this article is to show the usefulness of the 70° arthroscope in arthroscopic BMS procedures, pointing out which kinds of talar OCDs can benefit most from its use. PMID:23875138

  6. Improved visualization of the 70° arthroscope in the treatment of talar osteochondral defects.

    PubMed

    Spennacchio, Pietro; Randelli, Pietro; Arrigoni, Paolo; van Dijk, Niek

    2013-05-01

    Osteochondral defects (OCDs) of the talus are a common cause of residual pain after ankle injuries. When conservative treatment fails, arthroscopic debridement combined with drilling/microfracturing of the lesion (bone marrow stimulation [BMS] procedures) has been shown to provide good to excellent outcomes. Not uncommonly, talar OCDs involve the borders of the talar dome. These uncontained lesions are sometimes difficult to visualize with the 30° arthroscope, with potential negative effect on the clinical outcome of an arthroscopic BMS procedure. The use of the 70° arthroscope has been described for a multitude of common knee, shoulder, elbow, and hip procedures. The purpose of this article is to show the usefulness of the 70° arthroscope in arthroscopic BMS procedures, pointing out which kinds of talar OCDs can benefit most from its use. PMID:23875138

  7. Utility of computed tomography arthrograms in evaluating osteochondral allograft transplants of the distal femur.

    PubMed

    Cook, Cpt Jay B; Shaha, Cpt James S; Rowles, Cdr Douglas R; Tokish, Col John M; Shaha, Steve H; Bottoni, Craig R

    2015-01-01

    Postsurgical evaluation of osteochondral allograft transplant surgery (OATS) of the distal femur most commonly utilizes radiographs or magnetic resonance imaging. This article proposes the utilization of computed tomography (CT) arthrography as an additional option, which allows clear assessment of articular congruity and osseous integration. A retrospective review was performed of 18 patients who underwent an OATS for distal femoral chondral lesions and obtained CT arthrograms postoperatively. CT arthrograms were evaluated for osseous integration and articular congruity. The average age and follow-up were 30.9 years and 4.3 years, respectively. Only 60% of patients were able to remain in the military postoperatively. The articular cartilage was smooth in eight (44.4%); complete bony integration was noted in eight (44.4%) patients. Neither articular congruity nor bony integration was associated with duty status at final follow-up. Although it allows excellent evaluation, similar to other modalities, CT arthrogram does not appear predictive of functional outcome. PMID:25988692

  8. A novel computer navigation system for retrograde drilling of osteochondral lesions.

    PubMed

    Hoffmann, Michael; Schroeder, Malte; Rueger, Johannes M

    2014-12-01

    Osteochondritis dissecans (OCD) represents an important clinical entity in orthopedic sports medicine. Once surgical intervention is required, retrograde drilling for OCD lesions remains technically challenging. A novel electromagnetic navigation system was developed to be a radiation-free navigation tool providing spatiotemporal real-time information to the surgeon without the need for a stationary patient tracker and without relevant setup and calibration times. The novel system was tested for arthroscopically assisted retrograde drilling of cadaveric OCD lesions of the knee and talus and compared with the gold standard fluoroscopy-guided retrograde drilling procedure in a controlled laboratory study setup. The novel method considerably improves on the standard operating procedure in terms of safety, operation time, and radiation exposure and will be available for further surgical indications. PMID:25370876

  9. Treatment of osteochondritis dissecans of the knee with a biomimetic scaffold. A prospective multicenter study

    PubMed Central

    DELCOGLIANO, MARCO; MENGHI, AMERIGO; PLACELLA, GIACOMO; SPEZIALI, ANDREA; CERULLI, GIULIANO; CARIMATI, GIULIA; PASQUALOTTO, STEFANO; BERRUTO, MASSIMO

    2014-01-01

    Purpose the aim of the present study was to evaluate the clinical outcome of the treatment of osteochondritis dissecans (OCD) of the knee with a type-I collagen-hydroxyapatite nanostructural biomimetic osteochondral scaffold. Methods twenty-three patients affected by symptomatic knee OCD of the femoral condyles, grade 3 or 4 of the International Cartilage Repair Society (ICRS) scale, underwent biomimetic scaffold implantation. The site of the defect was the medial femoral condyle in 14 patients, whereas in 9 patients the lateral femoral condyle was involved. The average size of the defects was 3.5±1.43 cm2. All patients were clinically evaluated using the ICRS subjective score, the IKDC objective score, the EQ-VAS and the Tegner Activity Score. Minimum follow-up was two years. MRI was performed at 12 and 24 months after surgery and then every 12 months thereafter. Results the ICRS subjective score improved from the baseline value of 50.93±20.6 to 76.44±18.03 at the 12 months (p<0.0005) and 82.23± 17.36 at the two-year follow-up (p<0.0005). The IKDC objective score confirmed the results. The EQ-VAS showed a significant improvement from 3.15±1.09 to 8.15±1.04 (p<0.0005) at two years of follow-up. The Tegner Activity Score improvement was statistically significant (p<0.0005). Conclusions biomimetic scaffold implantation was a good procedure for treating grade 3 and 4 OCD, in which other classic techniques are burdened by different limitations. This open one-step surgery gave promising stable results at short-term follow-up. Level of evidence Level IV, therapeutic case series. PMID:25606552

  10. Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue.

    PubMed

    Elson, K M; Fox, N; Tipper, J L; Kirkham, J; Hall, R M; Fisher, J; Ingham, E

    2015-01-01

    Organ culture is an increasingly important tool in research, with advantages over monolayer cell culture due to the inherent natural environment of tissues. Successful organ cultures must retain cell viability. The aim of this study was to produce viable and non-viable osteochondral organ cultures, to assess the accumulation of soluble markers in the conditioned medium for predicting tissue viability. Porcine femoral osteochondral plugs were cultured for 20 days, with the addition of Triton X-100 on day 6 (to induce necrosis), camptothecin (to induce apoptosis) or no toxic additives. Tissue viability was assessed by the tissue destructive XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide tetrazolium salt) assay method and LIVE/DEAD® staining of the cartilage at days 0, 6 and 20. Tissue structure was assessed by histological evaluation using haematoxylin & eosin and safranin O. Conditioned medium was assessed every 3-4 days for glucose depletion, and levels of lactate dehydrogenase (LDH), alkaline phosphatase (AP), glycosaminoglycans (GAGs), and matrix metalloproteinase (MMP)-2 and MMP-9. Necrotic cultures immediately showed a reduction in glucose consumption, and an immediate increase in LDH, GAG, MMP-2 and MMP-9 levels. Apoptotic cultures showed a delayed reduction in glucose consumption and delayed increase in LDH, a small rise in MMP-2 and MMP-9, but no significant effect on GAGs released into the conditioned medium. The data showed that tissue viability could be monitored by assessing the conditioned medium for the aforementioned markers, negating the need for tissue destructive assays. Physiologically relevant whole- or part-joint organ culture models, necessary for research and pre-clinical assessment of therapies, could be monitored this way, reducing the need to sacrifice tissues to determine viability, and hence reducing the sample numbers necessary. PMID:26122871

  11. Arthroscopic removal of an osteochondral fragment from the caudal pouch of the lateral femorotibial joint in a colt.

    PubMed

    Stick, J A; Borg, L A; Nickels, F A; Peloso, J G; Perau, D L

    1992-06-01

    An osteochondral fragment was removed from the caudal pouch of the lateral femorotibial joint in a 2-year-old Trakehner colt by use of arthroscopic surgery and a lateral approach. The approach to this aspect of the femorotibial joints was developed in another horse. The fragment was not attached and resembled an osteochondritis dissecans lesion. The intermittent lameness associated with the fragment resolved after surgical removal. A positive response to diagnostic anesthesia of the femorotibial joint in the absence of a confirmed diagnosis (following radiographic and arthroscopic evaluations of the other aspects of the stifle joint) is an indication for arthroscopic exploration of the caudal pouches of the femorotibial joints of stifles in horses. PMID:1624349

  12. Osteochondral Tissue Engineering In Vivo: A Comparative Study Using Layered Silk Fibroin Scaffolds from Mulberry and Nonmulberry Silkworms

    PubMed Central

    Saha, Sushmita; Kundu, Banani; Kirkham, Jennifer; Wood, David; Kundu, Subhas C.; Yang, Xuebin B.

    2013-01-01

    The ability to treat osteochondral defects is a major clinical need. Existing polymer systems cannot address the simultaneous requirements of regenerating bone and cartilage tissues together. The challenge still lies on how to improve the integration of newly formed tissue with the surrounding tissues and the cartilage-bone interface. This study investigated the potential use of different silk fibroin scaffolds: mulberry (Bombyx mori) and non-mulberry (Antheraea mylitta) for osteochondral regeneration in vitro and in vivo. After 4 to 8 weeks of in vitro culture in chondro- or osteo-inductive media, non-mulberry constructs pre-seeded with human bone marrow stromal cells exhibited prominent areas of the neo tissue containing chondrocyte-like cells, whereas mulberry constructs pre-seeded with human bone marrow stromal cells formed bone-like nodules. In vivo investigation demonstrated neo-osteochondral tissue formed on cell-free multi-layer silk scaffolds absorbed with transforming growth factor beta 3 or recombinant human bone morphogenetic protein-2. Good bio-integration was observed between native and neo-tissue within the osteochondrol defect in patellar grooves of Wistar rats. The in vivo neo-matrix formed comprised of a mixture of collagen and glycosaminoglycans except in mulberry silk without growth factors, where a predominantly collagenous matrix was observed. Immunohistochemical assay showed stronger staining of type I and type II collagen in the constructs of mulberry and non-mulberry scaffolds with growth factors. The study opens up a new avenue of using inter-species silk fibroin blended or multi-layered scaffolds of a combination of mulberry and non-mulberry origin for the regeneration of osteochondral defects. PMID:24260335

  13. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model

    PubMed Central

    2010-01-01

    Background Current research aims to develop innovative approaches to improve chondral and osteochondral regeneration. The objective of this study was to investigate the regenerative potential of platelet-rich plasma (PRP) to enhance the repair process of a collagen-hydroxyapatite scaffold in osteochondral defects in a sheep model. Methods PRP was added to a new, multi-layer gradient, nanocomposite scaffold that was obtained by nucleating collagen fibrils with hydroxyapatite nanoparticles. Twenty-four osteochondral lesions were created in sheep femoral condyles. The animals were randomised to three treatment groups: scaffold, scaffold loaded with autologous PRP, and empty defect (control). The animals were sacrificed and evaluated six months after surgery. Results Gross evaluation and histology of the specimens showed good integration of the chondral surface in both treatment groups. Significantly better bone regeneration and cartilage surface reconstruction were observed in the group treated with the scaffold alone. Incomplete bone regeneration and irregular cartilage surface integration were observed in the group treated with the scaffold where PRP was added. In the control group, no bone and cartilage defect healing occurred; defects were filled with fibrous tissue. Quantitative macroscopic and histological score evaluations confirmed the qualitative trends observed. Conclusions The hydroxyapatite-collagen scaffold enhanced osteochondral lesion repair, but the combination with platelet growth factors did not have an additive effect; on the contrary, PRP administration had a negative effect on the results obtained by disturbing the regenerative process. In the scaffold + PRP group, highly amorphous cartilaginous repair tissue and poorly spatially organised underlying bone tissue were found. PMID:20875101

  14. Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model

    Microsoft Academic Search

    S. Løken; R. B. Jakobsen; A. Årøen; S. Heir; A. Shahdadfar; J. E. Brinchmann; L. Engebretsen; F. P. Reinholt

    2008-01-01

    The purpose of this study was to evaluate the efficiency of using mesenchymal stem cells (MSC) in a hyaluronan scaffold for\\u000a repair of an osteochondral defect in rabbit knee. Bone marrow was harvested from the posterior iliac crest in 11 New Zealand\\u000a White rabbits. MSC were isolated and cultured in autologous serum for 28 days and transferred to a hyaluronan scaffold

  15. Systemic Administration of Granulocyte Colony-Stimulating Factor for Osteochondral Defect Repair in a Rat Experimental Model

    PubMed Central

    Okano, Tadashi; Mera, Hisashi; Itokazu, Maki; Okabe, Takahiro; Koike, Tatsuya; Nakamura, Hiroaki

    2014-01-01

    Objective: The objective of this study was to assess the effect of granulocyte colony-stimulating factor (G-CSF) on osteochondral defect repair in the rat knee. Design: Twenty-six 12-week-old male Lewis rats were randomly divided into 2 groups. From day 0 to day 4, the G-CSF group received glycosylated G-CSF, and the control group received phosphate-buffered saline. A 1.5-mm diameter and 1.0-mm deep osteochondral defect was introduced in the patellar groove of the bilateral femur in all rats on day 4. The peripheral blood nucleated cells were counted for 14 days from the first day of injection, the appearance of the cartilage repair was observed histologically and macroscopically for 2, 4, 8, 12, and 24 weeks after surgery. Results: The number of peripheral blood leukocytes increased 3 days and returned to normal levels 7 days after the first injection. Compared with the control group, the G-CSF group had more fibrous and/or bony tissue at earlier points in time. The tissue repair rate, which is defined as the percentage of repaired osteochondral defects, was significantly higher in the G-CSF group 4 weeks after surgery. However, there were no significant differences in the cartilage repair rate and the modified Wakitani score between the 2 groups at each time point. Conclusions: The defect filling was significantly better in the G-CSF group in the early phases. Our findings suggest that G-CSF may promote the repair of osteochondral defects by mediating an increase in the number of peripheral blood nucleated cells. PMID:26069690

  16. The effects of early or late treatment of osteochondral defects on joint homoeostasis: an experimental study in rabbits

    Microsoft Academic Search

    Mehmet Hakan Ozsoy; Semih Aydogdu; Dilek Taskiran; Murat Sezak; Mutlu Hayran; Fikri Oztop; Arzu Ozsoy

    2009-01-01

    A 3.5 × 4 mm tubular osteochondral defect was created on the right medial femoral condyles of 51 adult rabbits. In the control\\u000a group (CG), defects were left untreated. In the early-(ETG) and late-(LTG) treatment groups, defects were treated by an osteoperiosteal\\u000a graft 1 and 12 weeks, respectively, after the index procedure. Synovial fluid (SF) samples were collected regularly and proteoglycan\\u000a fragments (PF), total

  17. Diagnostic sensitivity of radiography, ultrasonography, and magnetic resonance imaging for detecting shoulder osteochondrosis/osteochondritis dissecans in dogs.

    PubMed

    Wall, Corey R; Cook, Cristi R; Cook, James L

    2015-01-01

    Radiography, magnetic resonance imaging (MRI), and ultrasonography are commonly used for diagnosis of shoulder osteochondrosis and osteochondritis dissecans (OC/OCD) in dogs, however there is a lack of published information on the relative diagnostic sensitivities of these modalities. The purpose of this prospective study was to compare diagnostic sensitivities of these modalities for detecting shoulder OC/OCD in a group of dogs, using arthroscopy as the reference standard. Inclusion criteria were history and clinical findings consistent with osteochondrosis and/or osteochondritis dissecans involving at least one shoulder. With informed client consent, both shoulders for all included dogs were examined using standardized radiography, ultrasonography, MRI, and arthroscopy protocols. One of three veterinary surgeons recorded clinical and arthroscopic findings without knowledge of diagnostic imaging findings. One of two veterinary radiologists recorded diagnostic imaging findings without knowledge of clinical and arthroscopic findings. Eighteen client-owned dogs (n = 36 shoulders) met inclusion criteria. Diagnostic sensitivity, specificity, and accuracy (correct classification rate) values for detecting presence or absence of shoulder osteochondrosis/osteochondritis dissecans were as follows: radiography (88.5%, 90%, 88.9%), ultrasonography (92%, 60%, 82.6%), and MRI (96%, 88.9%, 94.4%). Odds of a correct diagnosis for MRI were 3.2 times more than ultrasonography and two times more than radiography. For MRI detection of lesions, the sagittal T2 or PD-FAT SAT sequences were considered to be most helpful. For radiographic detection of lesions, the additional supinated-mediolateral and pronated-mediolateral projections were considered to be most helpful. Findings from the current study support more evidence-based diagnostic imaging recommendations for dogs with clinically suspected shoulder osteochondrosis or osteochondritis dissecans. PMID:24844132

  18. CARTILAGE CONSTRUCTS ENGINEERED FROM CHONDROCYTES OVEREXPRESSING IGF-I IMPROVE THE REPAIR OF OSTEOCHONDRAL DEFECTS IN A RABBIT MODEL

    PubMed Central

    Madry, Henning; Kaul, Gunter; Zurakowski, David; Vunjak-Novakovic, Gordana; Cucchiarini, Magali

    2015-01-01

    Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes over expressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-over expressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects. PMID:23588785

  19. Heritabilities and genetic correlations between fetlock, hock and stifle osteochondrosis and fetlock osteochondral fragments in Hanoverian Warmblood horses.

    PubMed

    Hilla, D; Distl, O

    2014-02-01

    The main objective of this study is to estimate genetic parameters for osteochondrosis (OC) and osteochondrosis dissecans (OCD) in fetlock, hock and stifle joints as well as for palmar or plantar osteochondral fragments (POFs) and dorsodistal osteochondral fragments (DOFs) in fetlock joints. For this purpose, the results of a standardized radiographic examination of 7396 Hanoverian Warmblood horses were used. Heritabilities and genetic correlations were estimated using residual maximum likelihood (REML) under a linear animal model. Heritability estimates for OC at the different joints were at 0.17-0.34, for OCD at 0.16-0.46, for POFs at 0.19 and for DOFs at 0.22 after transformation onto the liability scale. For osteochondral fragments (OFs), lower heritabilities were estimated, especially in fetlock joints. POFs were genetically negatively correlated with OC in each joint. The size of the heritability estimates indicates that the prevalence of these radiographic findings can be reduced by breeding measures. However, differentiation among the different clinical entities is crucial to avoid underestimation of heritabilities. The analysis of genetic parameters performed in this study indicates that OC and OCD in fetlock, OC and OCD in hock, OC and OCD in stifle joints, POFs of the hindlimbs and DOFs may be treated as different traits. PMID:24236645

  20. In Vivo Efficacy of Fresh vs. Frozen Osteochondral Allografts in the Goat at 6 Months is Associated with PRG4 Secretion

    PubMed Central

    Pallante-Kichura, Andrea L.; Chen, Albert C.; Temple-Wong, Michele M.; Bugbee, William D.; Sah, Robert L.

    2014-01-01

    The long-term efficacy of osteochondral allografts is due to the presence of viable chondrocytes within graft cartilage. Chondrocytes in osteochondral allografts, especially those at the articular surface that normally produce the lubricant proteoglycan-4 (PRG4), are susceptible to storage-associated death. The hypothesis of this study was that the loss of chondrocytes within osteochondral grafts leads to decreased PRG4 secretion, after graft storage and subsequent implant. The objectives were to determine the effect of osteochondral allograft treatment (FROZEN vs. FRESH) on secretion of functional PRG4 after (i) storage, and (ii) 6months in vivo in adult goats. FROZEN allograft storage reduced PRG4 secretion from cartilage by ~85% compared to FRESH allograft storage. After 6months in vivo, the PRG4-secreting function of osteochondral allografts was diminished with prior FROZEN storage by ~81% versus FRESH allografts and by ~84% versus non-operated control cartilage. Concomitantly, cellularity at the articular surface in FROZEN allografts was ~96% lower than FRESH allografts and non-operated cartilage. Thus, the PRG4-secreting function of allografts appears to be maintained in vivo based on its state after storage. PRG4 secretion may be not only a useful marker of allograft performance, but also a biological process protecting the articular surface of grafts following cartilage repair. PMID:23362152

  1. Marrow stromal cells embedded in alginate for repair of osteochondral defects.

    PubMed

    Diduch, D R; Jordan, L C; Mierisch, C M; Balian, G

    2000-09-01

    Articular cartilage defects of sufficient size ultimately degenerate with time, leading to arthritic changes. Numerous strategies have been used to address full-thickness cartilage defects, yet none thus far has been successful in restoring the articular surface to its preinjury state. We compared the effects of agarose, alginate, and type I collagen gels on the expression of cartilage-specific markers from rabbit marrow stromal cells and then assessed the in vivo effects of cells seeded in alginate beads on the repair of full-thickness osteochondral defects in the rabbit model. Marrow aspirates from rabbits were cultured and the stromal population selected. Marrow stromal cells were then placed in either 1.2% w/v alginate, type I collagen gels (3 mg/mL), or 0.5% agarose suspension culture. After 2, 5, 10, and 20 days in culture, the RNA was extracted and analyzed by reverse transcription polymerase chain reaction for the cartilage-specific markers aggrecan and type II collagen. The strongest increase in aggrecan and type II collagen gene expression was found in the agarose suspension followed by alginate; type I collagen gels induced the lowest levels. Alginate beads were chondrogenic and maintained their size and consistency over time in culture, whereas the cell-seeded collagen gels invariably contracted. Full-thickness defects measuring 3 x 6 mm x 3 mm deep were then created in the medial femoral condyles of rabbit knees and filled with alginate beads, alginate beads seeded with stromal cells, or left empty. Alginate beads containing stromal cells remained within the defects and progressively filled the defects with regenerate tissue. Histologic analysis showed viable, phenotypically chondrogenic cells in the defects. The matrix stained positive with safranin O, indicating proteoglycan synthesis, and bonding between the regenerate and host tissue was excellent. We have shown quantitative differences in the chondrogenic effects of the biomaterials tested. Alginate induces the chondrogenic phenotype in marrow stromal cells in vitro, and possesses the necessary physical characteristics and handling properties to support cells and serve as a carrier to fill full-thickness osteochondral defects in vivo. PMID:10976116

  2. A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects.

    PubMed

    Russo, Alessandro; Shelyakova, Tatiana; Casino, Daniela; Lopomo, Nicola; Strazzari, Alessandro; Ortolani, Alessandro; Visani, Andrea; Dediu, Valentin; Marcacci, Maurilio

    2012-11-01

    Scaffold fixation represents one of the most serious challenges in osteochondral defect surgery. Indeed, the fixation should firmly hold the scaffold in the implanted position as well as it should guaranty stable bone/scaffold interface for efficient tissue regeneration. Nonetheless successful results have been achieved for small defect repair, the fixation remains really problematic for large defects, i.e. defects with areas exceeding 2cm(2). This paper advances an innovative magnetic fixation approach based on application of magnetic scaffolds. Finite element modeling was exploited to investigate the fixation efficiency. We considered three magnetic configurations: (1) external permanent magnet ring placed around the leg near the joint; (2) four small permanent magnet pins implanted in the bone underlying the scaffold; (3) four similarly implanted stainless steel pins which magnetization was induced by the external magnet. It was found that for most appropriate magnetic materials and optimized magnet-scaffold positioning all the considered configurations provide a sufficient scaffold fixation. In addition to fixation, we analyzed the pressure induced by magnetic forces at the bone/scaffold interface. Such pressure is known to influence significantly the bone regeneration and could be used for magneto-mechanical stimulation. PMID:22381395

  3. Material Properties of Fresh Cold-stored Allografts for Osteochondral Defects at 1 Year

    PubMed Central

    Ranawat, Anil S.; Vidal, Armando F.; Chen, Chris T.; Zelken, Jonathan A.; Turner, A. Simon

    2008-01-01

    Little is known about the long-term properties of fresh cold-stored osteochondral allograft tissue. We hypothesized fresh cold-stored tissue would yield superior material properties in an in vivo ovine model compared to those using freeze-thawed acellular grafts. In addition, we speculated that a long storage time would yield less successful grafts. We created 10-mm defects in medial femoral condyles of 20 sheep. Defects were reconstructed with allograft plugs stored at 4°C for 1, 14, and 42 days; control specimens were freeze-thawed or defect-only. At 52 weeks, animals were euthanized and retrieved grafts were analyzed for cell viability, gross morphology, histologic grade, and biomechanical and biochemical analysis. Explanted cold-stored tissue had superior histologic scores over freeze-thawed and defect-only grafts. Specimens stored for 1 and 42 days had higher equilibrium moduli and proteoglycan content than freeze-thawed specimens. We observed no difference among any of the cold-stored specimens for chondrocyte viability, histology, equilibrium aggregate modulus, proteoglycan content, or hypotonic swelling. Reconstructing cartilage defects with cold-stored allograft resulted in superior histologic and biomechanical properties compared with acellular freeze-thawed specimens; however, storage time did not appear to be a critical factor in the success of the transplanted allograft. PMID:18528743

  4. Lameness and effusion of the tarsocrural joints after arthroscopy of osteochondritis dissecans in horses.

    PubMed

    Brink, P; Dolvik, N I; Tverdal, A

    2009-12-12

    The presence and degree of tarsocrural joint effusion and lameness, and the result of a hindlimb flexion test were scored subjectively in 79 horses before, and six weeks to 20 months after, arthroscopic surgery to remove osteochondritis dissecans fragments. The scores of all three variables improved significantly after surgery. The score reductions for the right and left hindlimbs, respectively, were 82 per cent and 95 per cent for lameness, 48 per cent and 41 per cent for joint effusion, and 89 per cent and 84 per cent for reaction to flexion (P < or = 0.01). The oldest horses reacted more favourably to the operation, as measured by the reaction to the flexion test, but age was not significantly related to changes in lameness or joint effusion. There was no significant correlation between the time of follow-up examination and the effect of surgery on lameness and reaction to flexion, but an increased time to follow-up was associated with decreased joint effusion. PMID:20008343

  5. Can CT determine the site of traumatic osteochondral defects in the paediatric knee?

    PubMed

    Mackay, H E; Cope, M R; Pilling, D; Bruce, C E

    2006-06-01

    Currently the ability of pre-operative CT imaging to determine the origin of traumatic osteochondral lesions (OCL) in the knee in children is yet to be established. The surgical approach to the knee will to some extent be determined by the origin of the lesion. It is important to directly determine the site of the lesion from pre-operative scanning both to facilitate surgery, to have a better cosmetic result for the patient and have a quicker rehabilitation period. In a tertiary referral centre, from May 2004 to April 2005, eight patients were diagnosed as having an OCL. The initial reporting was done by either a senior registrar or consultant paediatric radiologist. Those children that had an OCL underwent an arthroscopy or definitive open surgery. The exact site of the lesion was then determined and recorded in the operative notes. All the original pre-operative CT scans were given to a senior paediatric radiologist. The consultant on this occasion had no access to operative findings, or original CT reports. CTs reported by the paediatric radiology department are only able to correctly identify the site of origin of the OCL 50% of the time. Recent MR scanning techniques have improved the visualization of OCL. We authors therefore feel that in the future MRI should be used to assess the paediatric knee when an acute OCL is suspected. PMID:16620817

  6. Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model.

    PubMed

    Lohan, Anke; Marzahn, Ulrike; El Sayed, Karym; Haisch, Andreas; Müller, Riccarda Dolores; Kohl, Benjamin; Stölzel, Katharina; Ertel, Wolfgang; John, Thilo; Schulze-Tanzil, Gundula

    2014-09-01

    Hypothesizing that the implantation of non-articular (heterotopic) chondrocytes might be an alternative approach to support articular cartilage repair, we analyzed joint cartilage defect healing in the rabbit model after implantation of autologous auricle-derived (auricular) chondrocytes. Autologous lapine articular and auricular chondrocytes were cultured for 3 weeks in polyglycolic acid (PGA) scaffolds before being implanted into critical sized osteochondral defects of the rabbit knee femoropatellar groove. Cell-free PGA scaffolds and empty defects served as controls. Construct quality was determined before implantation and defect healing was monitored after 6 and 12 weeks using vitality assays, macroscopical and histological score systems. Neo-cartilage was formed in the PGA constructs seeded with both articular and auricular chondrocytes in vitro and in vivo. At the histological level, cartilage repair was slightly improved when using autologous articular chondrocyte seeded constructs compared to empty defects and was significantly superior compared to defects treated with auricular chondrocytes 6 weeks after implantation. Although only the immunohistological differences were significant, auricular chondrocyte implantation induced an inferior healing response compared with the empty defects. Elastic auricular chondrocytes might maintain some tissue-specific characteristics when implanted into joint cartilage defects which limit its repair capacity. PMID:24812031

  7. CHONDROCYTE VIABILITY IS HIGHER AFTER PROLONGED STORAGE AT 37°C THAN AT 4°C FOR OSTEOCHONDRAL GRAFTS

    PubMed Central

    Pallante, Andrea L.; Bae, Won C.; Chen, Albert C.; Görtz, Simon; Bugbee, William D.; Sah, Robert L.

    2010-01-01

    Background Osteochondral allografts are currently stored at 4°C for 2–6 weeks before implantation. At 4°C, chondrocyte viability, especially in the superficial zone, deteriorates starting at 2 weeks. Alternative storage conditions could maintain chondrocyte viability beyond 2 weeks, and thereby facilitate increased graft availability and enhanced graft quality. Purpose Determine effects of prolonged 37°C storage compared to traditional 4°C storage on chondrocyte viability and cartilage matrix content. Study Design Controlled Laboratory Study Methods Osteochondral samples from humeral heads of adult goats were analyzed (i) fresh, or after storage in medium for (ii) 14d at 4°C including 10% FBS, (iii) 28d at 4°C including 10% FBS, (iv) 28d at 37°C without FBS, (v) 28d at 37°C including 2% FBS, or (vi) 28d at 37°C including 10% FBS. Portions of samples were analyzed by microscopy after LIVE/DEAD® staining to determine chondrocyte viability and density, both en face (to visualize the articular surface) and vertically (overall and in superficial, middle, and deep zones). The remaining cartilage was analyzed for sulfated-glycosaminoglycan and collagen. Results 37°C storage maintained high chondrocyte viability compared to 4°C storage. Viability of samples after 28d at 37°C was ~80% at the cartilage surface en face, ~65% in the superficial zone, and ~70% in the middle zone, which was much higher than ~45%, ~20%, and ~35%, respectively, in 4°C samples after 28d, and slightly decreased from ~100%, ~85%, and ~95%, respectively, in fresh controls. Cartilage thickness, glycosaminoglycan content, and collagen content were maintained for 37°C and 4°C samples compared to fresh controls. Conclusion 37°C storage of osteochondral grafts supports long-term chondrocyte viability, especially at the vulnerable surface and superficial zone of cartilage. Clinical Relevance Storage of allografts at physiological temperature of 37°C may prolong storage duration, improve graft availability, and improve treatment outcomes. PMID:19861697

  8. Mosaicplasty associated with gene enhanced tissue engineering for the treatment of acute osteochondral defects in a goat model

    Microsoft Academic Search

    Jun Sun; Xiao-Kui Hou; Xu Li; Ting-Ting Tang; Ru-Ming Zhang; Yong Kuang; Meng Shi

    2009-01-01

    Objective  To compare single mosaicplasty, mosaicplasty associated with gene enhanced tissue engineering and mosaicplasty associated\\u000a with the gels of non-gene transduced bone mesenchymal stem cells (BMSCs) in alginate for the treatment of acute osteochondral\\u000a defects in a goat model.\\u000a \\u000a \\u000a \\u000a Methods  The principle and methods of tissue engineering were used. BMSCs were separated and amplified in vitro, and human transforming\\u000a growth factor-?1 (hTGF-?1)

  9. Equine developmental orthopaedic diseases--a genome-wide association study of first phalanx plantar osteochondral fragments in Standardbred trotters.

    PubMed

    Lykkjen, S; Dolvik, N I; McCue, M E; Rendahl, A K; Mickelson, J R; Røed, K H

    2013-12-01

    Palmar/plantar osteochondral fragments (POF) in fetlock joints commonly affect and influence the athletic performance of horses. In this study, we used the Equine SNP50 BeadChip® to perform a genome-wide association study of metatarsophalangeal POF in 176 Norwegian Standardbred trotter yearlings. Putative quantitative trait loci (QTL) for medial and/or lateral POF, and medial POF only were identified on ECA1, 2, 7, 9 and 31, whereas for lateral POF, only on ECA7, 11, 27 and X. The moderate number of QTL evidences a complex inheritance and suggests various genes controlling POF development in medial and lateral locations. PMID:23742657

  10. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair. PMID:25050611

  11. Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach

    PubMed Central

    2014-01-01

    Background Articular cartilage, because of its avascular nature, has little capacity for spontaneous healing, and tissue engineering approaches, employing different biomaterials and cells, are under development. Among the investigated biomaterials are the chitosan-based hydrogels. Although thoroughly studied in other mammalian species, studies are scarce in equines. So, the aim of the present study was to investigate the biocompatibility of chitosan-GP in horse joints submitted to high mechanical loads. Results An osteochondral defect was created by arthroscopy in the medial surface of lateral trochlea of talus of left or right leg, randomly selected, from six healthy geldings. The defect was filled up with chitosan-GP. The contralateral joint received an identical defect with no implant. The chondral fragment removed to produce the defect was collected, processed and used as the “Initial” sample (normal cartilage) for histology, immunohistochemistry, and metabolic labelling of PGs. After 180 days, the repair tissues were collected, and also analyzed. At the end of the experiment (180 days after lesion), the total number of cells per field in repair tissues was equal to control, and macrophages and polymorphonuclear cells were not detected, suggesting that no significant inflammation was present. These cells were able to synthesize type II collagen and proteoglycans (PGs). Nevertheless, the cell population in these tissues, both in presence of chitosan-GP and in untreated controls, were heterogeneous, with a lower proportion of type II collagen-positives cells and some with a fibroblastic aspect. Moreover, the PGs synthesized in repair tissues formed in presence or absence of chitosan-GP were similar to those of normal cartilage. However, the chitosan-GP treated tissue had an disorganized appearance, and blood vessels were present. Conclusions Implanted chitosan-GP did not evoke an important inflammatory reaction, and permitted cell growth. These cells were able to synthesize type II collagen and PGs similar to those synthesized in normal cartilage and in healing tissue without implant, indicating its chondrocyte nature. PMID:25160583

  12. Association between intraarticular cytokine levels and clinical parameters of osteochondritis dissecans in the ankle

    PubMed Central

    2014-01-01

    Background Reliable data about in vivo regulation of cytokines in osteochondritis dissecans (OCD) of the ankle are still missing. Disease-specific regulation patterns were hypothesized. Methods 28 patients with a mean age of 30.7?±?14.8 years undergoing an arthroscopy of the ankle because of OCD were prospectively included in a clinical trial. Lavage fluids were analyzed by ELISA for levels of aggrecan, BMP-2, BMP-7, IGF-1, IGF-1R, bFGF, endoglin, MMP-13, and IL-1?. Additionally, clinical parameters and scores (FFI, CFSS, AOFAS) were evaluated and supplemented by the Kellgren Lawrence Score (KLS) for conventional X-rays and the Ankle Osteoarthritis Scoring System (AOSS) for MRI. Results Grading of OCD lesions statistically significant increased with age and was higher in case of previously performed operations (p?

  13. Effect of IGF-1 and Uncultured Autologous Bone-Marrow-Derived Mononuclear Cells on Repair of Osteochondral Defect in Rabbits

    PubMed Central

    Tiwary, Ramesh; Aithal, Hari Prasad; Kinjavdekar, Prakash; Pawde, Abhijit M.; Singh, Rajendra

    2014-01-01

    Objective: To investigate the utility of bone-marrow-derived mononuclear cells (BMNCs) and insulin like growth factor-1 (IGF-1) in articular cartilage repair. Design: An osteochondral defect of 3 mm diameter and 5 mm depth was created in patellar groove of the left knee joint in each of 36 New Zealand White rabbits. The defect was filled with RPMI-1640 medium in group A (control), autologous BMNCs in group B, and autologous BMNCs plus IGF-1 in group C (n = 12). Healing of the defect was assessed by gross, scanning electron microscopic, radiographic, and histological examinations up to 90 days. Results: Gross and scanning electron microscopic examination of the healing site revealed superior gross morphology and surface architecture of the healing tissue in the animals of group C as compared to other groups. Radiographically on day 90, the defect area was not distinguishable from the surrounding area in group C, but a small circular defect area was still evident in groups A and B. The regenerated tissue was mostly hyaline in group C and fibrocartilage in groups A and B. The cells were well organized and showed better deposition of proteoglycans in groups C and B than in group A. Conclusions: It was concluded that implantation of bone-marrow-derived nucleated cells may facilitate the healing of osteochondral defects; however, the combination of BMNCs and IGF-1 induces faster and histologically better healing than the BMNCs alone.

  14. Interleukin-6 and high mobility group box protein-1 in synovial membranes and osteochondral fragments in equine osteoarthritis.

    PubMed

    Ley, C; Ekman, S; Ronéus, B; Eloranta, M-L

    2009-06-01

    Cytokine production in synovial membranes (SM) and osteochondral fragments (OCF) may influence the development of equine osteoarthritis (OA). In this study, the presence of interleukin (IL)-6 and cytoplasmic and extracellular high mobility group box protein (HMGB)-1 in SM and osteochondral tissue from healthy and diseased equine joints was investigated by immunohistochemistry. Additionally, microscopic synovitis was graded. IL-6 was commonly found in SM cells and in chondrocytes in uncalcified cartilage of OCF, whereas little staining was detected in healthy cartilage. Cytoplasmic and/or extracellular HMGB-1 was widespread only in SM from diseased joints, and also detected in OCF in areas of cartilage damage, fibrous repair tissue, and tidemark reduplication. Joints with OCF and cartilage lesions (without OCF) showed significantly higher median synovitis scores than healthy joints (p=0.013 and p=0.042, respectively). The study identifies OCF as a source of inflammatory mediators in equine OA, as shown by the presence of IL-6 and extracellular HMGB-1 in the fragment. Based upon HMGB-1 release in SM and OCF, further studies to investigate possible involvement of HMGB-1 in the pathogenesis of OA are warranted. PMID:19041991

  15. The Maturation of Synthetic Scaffolds for Osteochondral Donor Sites of the Knee

    PubMed Central

    Bedi, Asheesh; Foo, Li Foong; Williams, Riley J.; Potter, Hollis G.

    2010-01-01

    Objective: The purpose of this study was to analyze the morphological imaging characteristics and incorporation of TruFit bone graft substitute (BGS) plugs using cartilage-sensitive magnetic resonance imaging (MRI) and quantitative T2 mapping. Design: Twenty-six patients (mean age, 28.72 years; range, 11-56 years) underwent osteochondral autologous transplantation (OATS) for chondral defects with filling of the knee joint donor sites using Trufit BGS plugs. The mean follow-up interval between implantation and MRI analysis was 21.3 months (range, 6-39 months). During this period, 43 cartilage-sensitive and 25 quantitative T2-mapping MRI studies were performed. The donor sites were assessed for plug and interface morphology, displacement, hypertrophy, subchondral edema, presence of bony overgrowth, percentage fill, and degree of incorporation. T2 relaxation times were measured for the superficial and deep layers of the repair tissue. A linear regression and correlational analysis was performed with Bonferroni correction, and P < 0.05 was defined as significant. Results: Longitudinal analysis revealed favorable plug appearance at early follow-up (?6 months), with 75% of plugs demonstrating flush morphology and 78% demonstrating near complete to complete fill. Plug appearance deteriorated at intermediate follow-up (~12 months), with only 26% of plugs demonstrating flush morphology and 52% with near complete or complete fill. Plug appearance substantially improved with longer follow-up (?16 months), with 70% of plugs demonstrating flush morphology and 90% demonstrating near complete or complete fill. Interface resorption was common at ~12 months (P < 0.0001) and was associated with older age (P = 0.01) or a single-plug configuration (P = 0.04). T2 values for the repair cartilage approached that of normal cartilage with increasing duration after surgery (P < 0.004), more so for single- compared with multiple-plug configurations (P = 0.03). Conclusions: The Trufit BGS plug demonstrates a predictable pattern of postoperative maturation on MRI images that parallels its biological incorporation. An intermediate postoperative interval can be associated with unfavorable MRI findings. However, the plug appearance significantly improves with greater postoperative duration and has mean T2 relaxation times that approach those of normal articular cartilage.

  16. Searching for Hidden, Painful Osteochondral Lesions of the Ankle in Patients with Chronic Lower Limb Pain - Two Case Reports -

    PubMed Central

    Ri, Hyun Su; Lee, Dong Heon

    2013-01-01

    It is easy to overlook osteochondral lesions (OCLs) of the ankle in patients with chronic lower limb pain, such as complex regional pain syndrome (CRPS) or thromboangiitis obliterans (TAO, Buerger's disease). A 57-year-old woman diagnosed with type 1 CRPS, and a 58-year-old man, diagnosed with TAO, complained of tactile and cold allodynia in their lower legs. After neurolytic lumbar sympathethic ganglion block and titration of medications for neuropathic pain, each subject could walk without the aid of crutches. However, they both complained of constant pain on the left ankle during walking. Focal tenderness was noted; subsequent imaging studies revealed OCLs of her talus and his distal tibia, respectively. Immediately after percutaneous osteoplasties, the patients could walk without ankle pain. It is important to consider the presence of a hidden OCL in chronic pain patients that develop weight-bearing pain and complain of localized tenderness on the ankle. PMID:23614079

  17. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2.

    PubMed

    Taniyama, Takashi; Masaoka, Tomokazu; Yamada, Tsuyoshi; Wei, Xuetao; Yasuda, Hiroaki; Yoshii, Toshitaka; Kozaka, Yuko; Takayama, Tomoji; Hirano, Masahiro; Okawa, Atsushi; Sotome, Shinichi

    2015-06-01

    Articular cartilage has a limited capacity for spontaneous repair, and an effective method to repair damaged articular cartilage has not yet been established. The purpose of this study was to evaluate the effect of transplantation of porous hydroxyapatite collagen (HAp/Col) impregnated with bone morphogenetic protein-2 (BMP-2). To evaluate the characteristics of porous HAp/Col as a drug delivery carrier of recombinant human BMP-2 (rhBMP-2), the rhBMP-2 adsorption capacity and release kinetics of porous HAp/Col were analyzed. Porous HAp/Col impregnated with different amounts of rhBMP-2 (0, 5, and 25??g) was implanted into osteochondral defects generated in the patellar groove of Japanese white rabbits to evaluate the effect on osteochondral defect regeneration. At 3, 6, 12, and 24 weeks after operation, samples were harvested and subjected to micro-computed tomography analysis and histological evaluation of articular cartilage and subchondral bone repair. The adsorption capacity was 329.4??g of rhBMP-2 per cm(3) of porous HAp/Col. Although 36% of rhBMP-2 was released within 24?h, more than 50% of the rhBMP-2 was retained in the porous HAp/Col through the course of the experiment. Defects treated with 5??g of rhBMP-2 showed the most extensive subchondral bone repair and the highest histological regeneration score, and differences against the untreated defect group were significant. The histological regeneration score of defects treated with 25??g of rhBMP-2 increased up to 6 weeks after implantation, but then decreased. Porous HAp/Col, therefore, is an appropriate carrier for rhBMP-2. Implantation of porous HAp/Col impregnated with rhBMP-2 is effective for rigid subchondral bone repair, which is important for the repair of the smooth articular surface. PMID:25865039

  18. Generation of Osteochondral Tissue Constructs with Chondrogenically and Osteogenically Pre-differentiated Mesenchymal Stem Cells Encapsulated in Bilayered Hydrogels

    PubMed Central

    Lam, Johnny; Lu, Steven; Meretoja, Ville V.; Tabata, Yasuhiko; Mikos, Antonios G.; Kasper, F. Kurtis

    2014-01-01

    This study investigated the capacity of chondrogenic and osteogenic pre-differentiation of mesenchymal stem cells (MSCs) for the development of osteochondral tissue constructs using injectable bilayered oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel composites. We hypothesized that the combinatorial approach of encapsulating cell populations of both chondrogenic and osteogenic lineages in a spatially controlled manner within bilayered constructs would enable these cells to maintain their respective phenotypes via the exchange of biochemical factors even without the influence of external growth factors. During monolayer expansion prior to hydrogel encapsulation, it was found that 7 (CG7) and 14 (CG14) days of MSC exposure to TGF-?3 allowed for the generation of distinct cell populations with corresponding chondrogenic maturities as indicated by increasing aggrecan and type II collagen/type I collagen expression. Chondrogenic and osteogenic cells were then encapsulated within their respective (chondral/subchondral) layers in bilayered hydrogel composites to include four experimental groups. Encapsulated CG7 cells within the chondral layer exhibited enhanced chondrogenic phenotype when compared to other cell populations based on stronger type II collagen and aggrecan gene expression and higher glycosaminoglycans-to-hydroxyproline ratios. Osteogenic cells that were co-cultured with chondrogenic cells (in the chondral layer) showed higher cellularity over time, suggesting that chondrogenic cells stimulated the proliferation of osteogenic cells. Groups with osteogenic cells displayed mineralization in the subchondral layer, confirming the effect of osteogenic pre-differentiation. In summary, it was found that MSCs that underwent 7 days, but not 14 days, of chondrogenic pre-differentiation most closely resembled the phenotype of native hyaline cartilage when combined with osteogenic cells in a bilayered OPF hydrogel composite, indicating that the duration of chondrogenic preconditioning is an important factor to control. Furthermore, the respective chondrogenic and osteogenic phenotypes were maintained for 28 days in vitro without the need for external growth factors, demonstrating the exciting potential of this novel strategy for the generation of osteochondral tissue constructs for cartilage engineering applications. PMID:24300948

  19. Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities.

    PubMed

    Ley, C J; Ekman, S; Hansson, K; Björnsdóttir, S; Boyde, A

    2014-01-01

    Osteochondral lesions in the joints of the distal tarsal region of young Icelandic horses provide a natural model for the early stages of osteoarthritis (OA) in low-motion joints. We describe and characterise mineralised and non-mineralised osteochondral lesions in left distal tarsal region joint specimens from twenty-two 30 ±1 month-old Icelandic horses. Combinations of confocal scanning light microscopy, backscattered electron scanning electron microscopy (including, importantly, iodine staining) and three-dimensional microcomputed tomography were used on specimens obtained with guidance from clinical imaging. Lesion-types were described and classified into groups according to morphological features. Their locations in the hyaline articular cartilage (HAC), articular calcified cartilage (ACC), subchondral bone (SCB) and the joint margin tissues were identified and their frequency in the joints recorded. Associations and correlations between lesion-types were investigated for centrodistal joints only. In centrodistal joints the lesion-types HAC chondrocyte loss, HAC fibrillation, HAC central chondrocyte clusters, ACC arrest and ACC advance had significant associations and strong correlations. These lesion-types had moderate to high frequency in centrodistal joints but low frequencies in tarsometatarsal and talocalcaneal-centroquartal joints. Joint margin lesion-types had no significant associations with other lesion-types in the centrodistal joints but high frequency in both the centrodistal and tarsometatarsal joints. The frequency of SCB lesion-types in all joints was low. Hypermineralised infill phase lesion-types were detected. Our results emphasise close associations between HAC and ACC lesions in equine centrodistal joints and the importance of ACC lesions in the development of OA in low-motion compression-loaded equine joints. PMID:24668595

  20. Establishing proof of concept: Platelet-rich plasma and bone marrow aspirate concentrate may improve cartilage repair following surgical treatment for osteochondral lesions of the talus

    PubMed Central

    Smyth, Niall A; Murawski, Christopher D; Haleem, Amgad M; Hannon, Charles P; Savage-Elliott, Ian; Kennedy, John G

    2012-01-01

    Osteochondral lesions of the talus are common injuries in the athletic patient. They present a challenging clinical problem as cartilage has a poor potential for healing. Current surgical treatments consist of reparative (microfracture) or replacement (autologous osteochondral graft) strategies and demonstrate good clinical outcomes at the short and medium term follow-up. Radiological findings and second-look arthroscopy however, indicate possible poor cartilage repair with evidence of fibrous infill and fissuring of the regenerative tissue following microfracture. Longer-term follow-up echoes these findings as it demonstrates a decline in clinical outcome. The nature of the cartilage repair that occurs for an osteochondral graft to become integrated with the native surround tissue is also of concern. Studies have shown evidence of poor cartilage integration, with chondrocyte death at the periphery of the graft, possibly causing cyst formation due to synovial fluid ingress. Biological adjuncts, in the form of platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC), have been investigated with regard to their potential in improving cartilage repair in both in vitro and in vitro settings. The in vitro literature indicates that these biological adjuncts may increase chondrocyte proliferation as well as synthetic capability, while limiting the catabolic effects of an inflammatory joint environment. These findings have been extrapolated to in vitro animal models, with results showing that both PRP and BMAC improve cartilage repair. The basic science literature therefore establishes the proof of concept that biological adjuncts may improve cartilage repair when used in conjunction with reparative and replacement treatment strategies for osteochondral lesions of the talus. PMID:22816065

  1. Changes in synovial fluid biomarker concentrations following arthroscopic surgery in horses with osteochondritis dissecans of the distal intermediate ridge of the tibia.

    PubMed

    Brink, Palle; Smith, Roger K W; Tverdal, Aage; Dolvik, Nils I

    2015-07-01

    OBJECTIVE To quantify concentrations of cartilage oligomeric matrix protein (COMP) and fibromodulin in synovial fluid from the tarsocrural joints (TCJs) of horses with osteochondritis dissecans (OCD) of the distal intermediate ridge of the tibia and determine whether concentrations would change following arthroscopic removal of osteochondral fragments. ANIMALS 115 client-owned horses with OCD of the TCJ and 29 control horses euthanized for unrelated reasons. PROCEDURES COMP and fibromodulin concentrations were measured in synovial fluid from the TCJs of the affected horses before and after osteochondral fragments were removed arthroscopically and in synovial fluid from the TCJs of the control horses after euthanasia. Synovial biopsy specimens from the TCJs of affected and control horses were examined histologically for evidence of inflammation. RESULTS Synovial fluid COMP and fibromodulin concentrations prior to surgery in horses with OCD were not significantly different from concentrations in control horses. Fibromodulin, but not COMP, concentration in horses with OCD was significantly decreased after surgery, compared with the concentration before surgery. Fibromodulin concentration was significantly correlated with joint effusion score but not with lameness score or results of a flexion test and was correlated with histologic score for number of synoviocytes on the surface of the synovium but not with score for degree of infiltration of inflammatory cells in the synovium. Synovial fluid COMP concentration was not significantly correlated with clinical or histologic findings. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that fibromodulin, but not COMP, could potentially be a biomarker of joint inflammation in horses with OCD of the TCJ. PMID:26111089

  2. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system

    NASA Astrophysics Data System (ADS)

    Shim, Jin-Hyung; Lee, Jung-Seob; Kim, Jong Young; Cho, Dong-Woo

    2012-08-01

    The aim of this study was to build a mechanically enhanced three-dimensional (3D) bioprinted construct containing two different cell types for osteochondral tissue regeneration. Recently, the production of 3D cell-laden structures using various scaffold-free cell printing technologies has opened up new possibilities. However, ideal 3D complex tissues or organs have not yet been printed because gel-state hydrogels have been used as the principal material and are unable to maintain the desired 3D structure due to their poor mechanical strength. In this study, thermoplastic biomaterial polycaprolactone (PCL), which shows relatively high mechanical properties as compared with hydrogel, was used as a framework for enhancing the mechanical stability of the bioprinted construct. Two different alginate solutions were then infused into the previously prepared framework consisting of PCL to create the 3D construct for osteochondral printing. For this work, a multi-head tissue/organ building system (MtoBS), which was particularly designed to dispense thermoplastic biomaterial and hydrogel having completely different rheology properties, was newly developed and used to bioprint osteochondral tissue. It was confirmed that the line width, position and volume control of PCL and alginate solutions were adjustable in the MtoBS. Most importantly, dual cell-laden 3D constructs consisting of osteoblasts and chondrocytes were successfully fabricated. Further, the separately dispensed osteoblasts and chondrocytes not only retained their initial position and viability, but also proliferated up to 7 days after being dispensed.

  3. Cell-laden and cell-free biopolymer hydrogel for the treatment of osteochondral defects in a sheep model.

    PubMed

    Schagemann, Jan C; Erggelet, Christoph; Chung, Hsi-Wei; Lahm, Andreas; Kurz, Haymo; Mrosek, Eike H

    2009-01-01

    The objective of the current study was to determine the suitability of cell-laden and cell-free alginate-gelatin biopolymer hydrogel for osteochondral restoration in a sheep model (n = 12). Four femoral defects per animal were filled with hydrogel (cHG) plus autologous chondrocytes (cHG + C) or periosteal cells (cHG + P) or gel only (cHG) or were left untreated (E). In situ solidification enabled instantaneous implant fixation. Sixteen weeks postoperatively, defect sites were processed for light microscopy and immunofluorescence. A modified Mankin and a semi-quantitative immunoreactivity score were used to evaluate histology and immunofluorescence, respectively. Defects after cHG + C were restored with smooth, hyaline-like neo-cartilage and trabecular subchondral bone. cHG + P and cHG treatments revealed slightly inferior regenerate morphology. Undifferentiated tissue was found in E. The histological score showed significant (p < 0.05) differences between all treatment groups. In conclusion, cHG induces satisfactory defect regeneration. Complete filling of the cavity in one step and subsequent rapid in situ solidification was feasible and facilitated graft fixation. Cell implantation might be beneficial, because cells seem to play a key role in histological outcome. Still, their contribution to the repair process remains unresolved because host cell influx takes place. The combination of alginate and gelatin, however, creates an environment capable of serving implanted and host cells for osteo-chondrogenic tissue regeneration. PMID:18783325

  4. In Situ Crosslinking Elastin-Like Polypeptide Gels for Application to Articular Cartilage Repair in a Goat Osteochondral Defect Model

    PubMed Central

    Nettles, Dana L.; Kitaoka, Kenichi; Hanson, Neil A.; Flahiff, Charlene M.; Mata, Brian A.; Hsu, Edward W.; Chilkoti, Ashutosh; Setton, Lori A.

    2012-01-01

    The objective of this study was to evaluate an injectable, in situ crosslinkable elastin-like polypeptide (ELP) gel for application to cartilage matrix repair in critically sized defects in goat knees. One cylindrical, osteochondral defect in each of seven animals was filled with an aqueous solution of ELP and a biocompatible, chemical crosslinker, while the contralateral defect remained unfilled and served as an internal control. Joints were sacrificed at 3 (n = 3) or 6 (n = 4) months for MRI, histological, and gross evaluation of features of biomaterial performance, including integration, cellular infiltration, surrounding matrix quality, and new matrix in the defect. At 3 months, ELP-filled defects scored significantly higher for integration by histological and gross grading compared to unfilled defects. ELP did not impede cell infiltration but appeared to be partly degraded. At 6 months, new matrix in unfilled defects outpaced that in ELP-filled defects and scored significantly better for MRI evidence of adverse changes, as well as integration and proteoglycan-containing matrix via gross and histological grading. The ELP-crosslinker solution was easily delivered and formed stable, well-integrated gels that supported cell infiltration and matrix synthesis; however, rapid degradation suggests that ELP formulation modifications should be optimized for longer-term benefits in cartilage repair applications. PMID:18433311

  5. Arthroscopic surgery for osteochondral fractures of the proximal phalanx of the metacarpophalangeal and metatarsophalangeal (fetlock) joints in horses.

    PubMed

    Yovich, J V; McIlwraith, C W

    1986-02-01

    Arthroscopic surgery for osteochondral fractures of the proximal phalanx was performed on 74 fetlock joints of 63 horses for a total of 87 fractures during a 2-year period. The medial dorsal proximal aspect of the proximal phalanx of the forelimbs was most commonly involved (59 fractures), followed by the lateral aspect (26 fractures), and 2 fractures occurred in the fetlock joint of the right hindlimb. At surgery, 82 fragments were removed and 5 fragments that had healed or were embedded in the joint capsule were not removed. Of the fragments removed, 15 were fixed firmly to the proximal phalanx, 63 were easily movable by arthroscopic instruments (but had soft tissue attachments to the proximal phalanx), and 4 were floating free within the joint. Arthroscopic surgery allowed excellent visualization and appreciation of the attachments of fragments and their stage of healing. Horses returned to full race training at an average of 11 1/2 weeks (range, 6 to 24 weeks). Thirty eight of 46 horses (82.6%) with adequate postoperative follow-up returned to athletic performance at least equal to that before fetlock injury. PMID:2869018

  6. A Novel Ultrasound Technique for Detection of Osteochondral Defects in the Ankle Joint: A Parametric and Feasibility Study

    PubMed Central

    Sarkalkan, Nazli; Loeve, Arjo J.; van Dongen, Koen W. A.; Tuijthof, Gabrielle J. M.; Zadpoor, Amir A.

    2015-01-01

    (Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced. PMID:25609040

  7. Unique combination of patellofemoral joint arthroplasty with Osteochondral Autograft Transfer System (OATS) - a case series of six knees in five patients.

    PubMed

    Unnithan, A; Jimulia, T; Mohammed, R; Learmonth, D J A

    2008-06-01

    Patellofemoral arthroplasty (PFA) is an accepted procedure for the treatment of isolated patellofemoral osteoarthritis. However its failure rate has been attributed to progressive femorotibial arthritis. Autologous osteochondral transplantation is an established procedure for the repair of focal cartilaginous defects on the medial and lateral femoral condyles. We present our case series of six knees in five patients where we combined the two procedures and extended the indication for PFA and delayed the need for total knee arthroplasty (TKA) in all but one patient over a mean follow up period of 3.8 years. PMID:18372179

  8. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery

    PubMed Central

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors. PMID:23249320

  9. Intra-articular administration of hyaluronic acid increases the volume of the hyaline cartilage regenerated in a large osteochondral defect by implantation of a double-network gel.

    PubMed

    Fukui, Takaaki; Kitamura, Nobuto; Kurokawa, Takayuki; Yokota, Masashi; Kondo, Eiji; Gong, Jian Ping; Yasuda, Kazunori

    2014-04-01

    Implantation of PAMPS/PDMAAm double-network (DN) gel can induce hyaline cartilage regeneration in the osteochondral defect. However, it is a problem that the volume of the regenerated cartilage tissue is gradually reduced at 12 weeks. This study investigated whether intra-articular administration of hyaluronic acid (HA) increases the volume of the cartilage regenerated with the DN gel at 12 weeks. A total of 48 rabbits were used in this study. A cylindrical osteochondral defect created in the bilateral femoral trochlea was treated with DN gel (Group DN) or left without any implantation (Group C). In both Groups, we injected 1.0 mL of HA in the left knee, and 1.0 mL of saline solution in the right knee. Quantitative histological evaluations were performed at 2, 4, and 12 weeks, and PCR analysis was performed at 2 and 4 weeks after surgery. In Group DN, the proteoglycan-rich area was significantly greater in the HA-injected knees than in the saline-injected knees at 12 weeks (P = 0.0247), and expression of type 2 collagen, aggrecan, and Sox9 mRNAs was significantly greater in the HA-injected knees than in the saline-injected knees at 2 weeks (P = 0.0475, P = 0.0257, P = 0.0222, respectively). The intra-articular administration of HA significantly enhanced these gene expression at 2 weeks and significantly increased the volume of the hyaline cartilage regenerated by implantation of a DN gel at 12 weeks. This information is important to develop an additional method to increase the volume of the hyaline cartilage tissue in a potential cartilage regeneration strategy using the DN gel. PMID:24394983

  10. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow–Derived Cells for Large Osteochondral Defects in Rabbit Knees

    PubMed Central

    Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-01-01

    Objective: The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells. Methods: Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow–derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O’Driscoll score). Results: The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O’Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. Conclusions: This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  11. Osteochondritis Dissecans (OCD)

    MedlinePLUS

    ... whether it has moved into the joint space. Treatment What is the treatment? If the loose piece is unstable (meaning it ... surgery, but you may need other kinds of treatment, such as resting the affected joint, bracing the ...

  12. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteochondral allografts in dogs.

    PubMed

    Stevenson, S; Li, X Q; Martin, B

    1991-09-01

    After implantation, a massive osteochondral allograft cannot be completely protected from the stresses that are produced by weight-bearing, and it is susceptible to collapse during incorporation, revascularization, and substitution. How these processes are affected by disparities between the tissue antigens of the host and the graft remain unclear. To clarify the role of histocompatibility antigen-matching in the incorporation of cancellous and cortical bone, we orthotopically implanted both fresh and cryopreserved dog leukocyte-antigen-matched and mismatched proximal osteochondral radial allografts in beagles. Four groups of beagle dogs were used; they received (1) a dog leukocyte-antigen-mismatched frozen allograft, (2) a dog leukocyte-antigen-mismatched fresh allograft, (3) a dog leukocyte-antigen-matched fresh allograft, or (4) a dog leukocyte-antigen-matched frozen allograft. In twelve dogs, a sham operation was done in the contralateral limb (the first living donor had a sham operation), and in the remaining ten dogs, the proximal part of the contralateral radius was removed and then replaced as an autogenous (control) graft. The animals were given fluorochromes periodically, and they were killed eleven months after the operation. The osseous portion of the grafts was evaluated radiographically, biomechanically, and histomorphometrically. No dog had grossly obvious clinical abnormalities, all host-graft interfaces healed, and no joints dislocated. Radiographic examination of the allografts frequently showed deformation of the radial head and variable peripheral resorption. No significant difference in the modulus of elasticity at the host-graft interface was found among the groups. The repair process of the cortical bone was similar for all grafted segments. New periosteal and endosteal bone formed, and the cortical bone became porotic as vessels penetrated it. The uptake of fluorochrome was the most active in the autogenous grafts and the least active in the fresh antigen-mismatched grafts. The volume of cancellous bone was significantly greater and the trabeculae were thicker in all allografts compared with the bones on which a sham operation had been done and compared with the autogenous grafts. The volume of intertrabecular fibrous connective tissue was directly proportional to the immunogenicity of the allografts, and the percentage of the surface on which bone was forming tended to be inversely proportional to the immunogenicity of the allografts. The grafts were revascularized by the ingrowth of vessels into the intertrabecular spaces; necrotic trabeculae were not penetrated by vessels. This pattern was particularly pronounced in the antigen-mismatched grafts, regardless of whether they were fresh or frozen.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1890116

  13. Ultrashort Echo Time MR Imaging of Osteochondral Junction of the Knee at 3 T: Identification of Anatomic Structures Contributing to Signal Intensity1

    PubMed Central

    Bae, Won C.; Dwek, Jerry R.; Znamirowski, Richard; Statum, Sheronda M.; Hermida, Juan C.; D’Lima, Darryl D.; Sah, Robert L.; Du, Jiang

    2010-01-01

    Purpose: To image cartilage-bone interfaces in naturally occurring and experimentally prepared human cartilage-bone specimens at 3 T by using ultrashort echo time (TE) (UTE) and conventional pulse sequences to (a) determine the appearance of the signal intensity patterns and (b) identify the structures contributing to signal intensity on the UTE MR images. Materials and Methods: This study was exempted by the institutional review board, and informed consent was not required. Five cadaveric (mean age, 86 years ± 4) patellae were imaged by using proton density–weighted fat-suppressed (repetition time msec/TE msec, 2300/34), T1-weighted (700/10), and UTE (300/0.008, 6.6, with or without dual-inversion preparations at inversion time 1 = 135 msec and inversion time 2 = 95 msec) sequences. The UTE images were compared with proton density–weighted fat-suppressed and T1-weighted images and were evaluated by two radiologists. To identify the sources of signal on the UTE images, samples including specific combinations of tissues (uncalcified cartilage [UCC] only, calcified cartilage [CC] and subchondral bone [bone] [CC/bone], bone only; and UCC, CC, and bone [UCC/CC/bone]) were prepared and imaged by using the UTE sequence. Results: On the UTE MR images, all patellar sections exhibited a high-intensity linear signal near the osteochondral junction, which was not visible on protein density–weighted fat-suppressed or T1-weighted images. In some sections, focal regions of thickened or diminished signal intensity were also found. In the prepared samples, UCC only, CC/bone, and UCC/CC/bone samples exhibited high signal intensity on the UTE images, whereas bone-only samples did not. Conclusion: These results show that the high signal intensity on UTE images of human articular joints originates from the CC and the deepest layer of the UCC, without a definite contribution from subchondral bone. UTE sequences may provide a way of evaluating abnormalities at or near the osteochondral junction. © RSNA, 2010 PMID:20177096

  14. Arthroscopic removal of palmar/plantar osteochondral fragments (POF) in the metacarpo- and metatarso-phalangeal joints of standardbred trotters--outcome and possible genetic background to POF.

    PubMed

    Roneus, B; Arnason, T; Collinder, E; Rasmussen, M

    1998-01-01

    A clinical material of 133 Standardbred horses with palmar/plantar osteochondral fragments (POF) in the metacarpo- and metatarsophalangeal joints were studied. All horses had their fragments removed with arthroscopic surgery. 102 of the horses were 3 years old or younger when surgery was performed. Anatomical localisations of the fragments were in agreement with earlier reports. There was no statistical significant difference in month of birth in the POF--group compared to the total population. Eighty % of the horses that had raced before surgery came back to racing. The racing performance relative to their contemporaries remained the same after the POF operation. 65% of the horses that had not raced before surgery raced after the operation. The breeding index BLUP (Best Linear Unbiased Prediction) was used to evaluate if the POF-horses differed genetically in racing ability from the total population. The average BLUP value of the POF group was 103.4 (+/- 0.65), while the mean BLUP value of the total population was 98.9. This difference was highly significant and indicated that these POF horses belonged to a selected group. A homogeneity test of allele frequencies in blood type systems was performed to evaluate if any genetic difference was persistent between POF horses compared to the total population. The statistical analysis of gene frequencies for alleles in blood type systems indicated a genetic discrimination in blood type systems D and Tf. PMID:9592942

  15. A new arthroscopic-assisted drilling method through the radius in a distal-to-proximal direction for osteochondritis dissecans of the elbow.

    PubMed

    Arai, Yuji; Hara, Kunio; Fujiwara, Hiroyoshi; Minami, Ginjiro; Nakagawa, Shuji; Kubo, Toshikazu

    2008-02-01

    We developed a new arthroscopic-assisted drilling method through the radius in a distal-to-proximal direction for osteochondritis dissecans (OCD) of the elbow. Only 1 drill hole is created in the radius by use of a single 1.8-mm K-wire inserted from the shaft of the radius approximately 3 cm distal to the humeroradial joint into the joint, which allows drilling of the entire OCD lesion. The forearm is supinated so that the tip of the K-wire is at the lateral side of the lesion in the humeral capitellum, and drilling is performed at 30 degrees elbow flexion. The flexion angle is changed from 30 degrees to 60 degrees to 90 degrees to 120 degrees while maintaining supination, to drill in 4 sites (1 site for each angle of flexion) of the lateral side of the OCD lesion. Next, we move the forearm from supination to pronation so that the tip of the K-wire is placed in the medial side of the lesion in the humeral capitellum, and as with the lateral side, drilling is performed in 4 sites. With this technique, the entire OCD lesion can be vertically drilled under arthroscopic guidance. This method is minimally invasive, and an early return to sports could be possible. PMID:18237711

  16. Matrix generation within a macroporous non-degradable implant for osteochondral defects is not enhanced with partial enzymatic digestion of the surrounding tissue: evaluation in an in vivo rabbit model

    PubMed Central

    Krych, Aaron J.; Wanivenhaus, Florian; Ng, Kenneth W.; Doty, Stephen; Warren, Russell F.

    2013-01-01

    Articular cartilage defects are a significant source of pain, have limited ability to heal, and can lead to the development of osteoarthritis. However, a surgical solution is not available. To tackle this clinical problem, non-degradable implants capable of carrying mechanical load immediately after implantation and for the duration of implantation, while integrating with the host tissue, may be viable option. But integration between articular cartilage and non-degradable implants is not well studied. Our objective was to assess the in vivo performance of a novel macroporous, nondegradable, polyvinyl alcohol construct. We hypothesized that matrix generation within the implant would be enhanced with partial digestion of the edges of articular cartilage. Our hypothesis was tested by randomizing an osteochondral defect created in the trochlea of 14 New Zealand white rabbits to treatment with: (i) collagenase or (ii) saline, prior to insertion of the implant. At 1 and 3-month post-operatively, the gross morphology and histologic appearance of the implants and the surrounding tissue were assessed. At 3 months, the mechanical properties of the implant were also quantified. Overall, the hydrogel implants performed favorably; at all time-points and in all groups the implants remained well fixed, did not cause inflammation or synovitis, and did not cause extensive damage to the opposing articular cartilage. Regardless of treatment with saline or collagenase, at 1 month post-operatively implants from both groups had a contiguous interface with adjacent cartilage and were populated with chondrocyte-like cells. At 3 months fibrous encapsulation of all implants was evident, there was no difference between area of aggrecan staining in the collagenase versus saline groups, and implant modulus was similar in both groups; leading us to reject our hypothesis. In summary, a porous PVA osteochondral implant remained well fixed in a short term in vivo osteochondral defect model; however, matrix generation within the implant was not enhanced with partial digestion of adjacent articular cartilage. PMID:23846837

  17. Examining the relation of osteochondral lesions of the talus to ligamentous and lateral ankle tendinous pathologic features: a comprehensive MRI review in an asymptomatic lateral ankle population.

    PubMed

    Galli, Melissa M; Protzman, Nicole M; Mandelker, Eiran M; Malhotra, Amit D; Schwartz, Edward; Brigido, Stephen A

    2014-01-01

    Given the frequency and burden of ankle sprains, the pathologic features identified on magnetic resonance imaging (MRI) scans are widely known in the symptomatic population. Ankle MRI pathologic features in the asymptomatic population, however, are poorly understood. Such examinations are rarely undertaken unless an ankle has been injured or is painful. We report the systematic MRI findings from the reports of 108 consecutive asymptomatic lateral ankles (104 patients). Our purpose was to (1) report the prevalence of osteochondral lesions of the talus (OLTs) and pathologic features of the medial and lateral ligaments, peroneal tendons, and superior peroneal retinaculum (SPR); (2) correlate the presence of OLTs with the pathologic features of the medial and lateral ligaments, peroneal tendons, and SPR; and (3) correlate ligamentous discontinuity with the peroneal pathologic features, OLTs, and SPR pathologic features. A total of 16 OLTs (14.81%) were present (13 medial and 3 lateral). Of the 16 patients with OLTs, 8 (50.00%) had concomitant peroneal pathologic findings. Healthy medial and lateral ligaments were noted in 41 patients (37.96%), and ligamentous discontinuity was grade I in 25 (23.15%), II in 32 (29.63%), III in 5 (4.63%), and grade IV in 5 patients (4.63%). A weak positive correlation was found between attenuation or tears of the superficial deltoid and medial OLTs (phi coefficient = 0.23, p = .0191) and a moderate positive correlation between tears of the posterior talofibular ligament and lateral OLTs (phi coefficient = 0.30, p = .0017). Additionally, a moderate positive correlation between ligamentous discontinuity and tendinopathy of the peroneus brevis was noted [Spearman's coefficient(106) = 0.29, p = .0024]. These findings add to the evidence of concomitant pathologic features in the asymptomatic population. To definitively assess causation and evaluate the clinical evolution of radiologic findings, future, prospective, longitudinal cohort studies are necessary. PMID:24796886

  18. Bone Cysts After Osteochondral Allograft Repair of Cartilage Defects in Goats Suggest Abnormal Interaction Between Subchondral Bone and Overlying Synovial Joint Tissues

    PubMed Central

    Pallante-Kichura, Andrea L.; Cory, Esther; Bugbee, William D.; Sah, Robert L.

    2013-01-01

    The efficacy of osteochondral allografts (OCA) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12 months in vivo. The objectives of this study were to further analyze OCA and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral (ScB) and trabecular (TB) bone structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCA was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCA was lower than Non-Op and other OCA. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCA did not vary compared to Non-Op, but BS/TV was lower. (2) OCA contained “basal” cysts, localized to deeper regions, some “subchondral” cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal ?CT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These findings suggest that cysts occurring after OCA may result from aberrant mechanobiology due to (1) altered compartmentalization that normally separates overlying cartilage and subchondral bone, either from distinct ScB channels or more general ScB plate deterioration, and (2) bone resorption at the basal graft-host interface. PMID:23958821

  19. Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: Short-term results

    PubMed Central

    2013-01-01

    Background A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N’-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Methods Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne’s gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. Results According to the total Wayne’s score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p?

  20. Genetics Home Reference: Familial osteochondritis dissecans

    MedlinePLUS

    ... affects the joints and is associated with abnormal cartilage. Cartilage is a tough but flexible tissue that covers ... of bone damage (lesions) caused by detachment of cartilage and a piece of the underlying bone from ...

  1. Engineering custom-designed osteochondral tissue grafts

    PubMed Central

    Grayson, Warren L.; Chao, Pen-Hsiu Grace; Marolt, Darja; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2009-01-01

    Tissue engineering is expected to help us outlive the failure of our organs by enabling the creation of tissue substitutes capable of fully restoring the original tissue function. Degenerative joint disease, which affects one-fifth of the US population and is the country’s leading cause of disability, drives current research of actively growing, functional tissue grafts for joint repair. Toward this goal, living cells are used in conjunction with bio-material scaffolds (serving as instructive templates for tissue development) and bioreactors (providing environmental control and molecular and physical regulatory signals). In this review, we discuss the requirements for engineering customized, anatomically-shaped, stratified grafts for joint repair and the challenges of designing these grafts to provide immediate functionality (load bearing, structural support) and long-term regeneration (maturation, integration, remodeling). PMID:18299159

  2. An in vitro tissue-engineered model for osteochondral repair

    Microsoft Academic Search

    G. M. Peretti; M. Buragas; C. Scotti; L. Mangiavini; C. Sosio; A. Di Giancamillo; C. Domeneghini; G. Fraschini

    2006-01-01

    One of the main topics of regenerative medicine and tissue engineering is to address the problem of lesions involving articular\\u000a cartilage. In fact, these lesions do not heal spontaneously and often lead to osteoarthritis, which causes chronic pain and\\u000a worsens quality of life. Moreover, the only available treatment for osteoarthritis is symptomatic therapy and prosthetic replacement,\\u000a with far from satisfactory

  3. Osteochondral Interface Tissue Engineering using Macroscopic Gradients of Physicochemical Signals

    E-print Network

    Dormer, Nathan Henry

    2011-04-25

    The field of tissue engineering has continually been described as "cells, signals, and scaffolds." The current thesis work describes the evaluation of a continuously-graded microsphere-based scaffold technology for the ...

  4. Harnessing cell–biomaterial interactions for osteochondral tissue regeneration.

    PubMed

    Kim, Kyobum; Yoon, Diana M; Mikos, Antonios; Kasper, F Kurtis

    2012-01-01

    Articular cartilage that is damaged or diseased often requires surgical intervention to repair the tissue; therefore, tissue engineering strategies have been developed to aid in cartilage regeneration. Tissue engineering approaches often require the integration of cells, biomaterials, and growth factors to direct and support tissue formation. A variety of cell types have been isolated from adipose, bone marrow, muscle, and skin tissue to promote cartilage regeneration. The interaction of cells with each other and with their surrounding environment has been shown to play a key role in cartilage engineering. In tissue engineering approaches, biomaterials are commonly used to provide an initial framework for cell recruitment and proliferation and tissue formation. Modifications of the properties of biomaterials, such as creating sites for cell binding, altering their physicochemical characteristics, and regulating the delivery of growth factors, can have a significant influence on chondrogenesis. Overall, the goal is to completely restore healthy cartilage within an articular cartilage defect. This chapter aims to provide information about the importance of cell–biomaterial interactions for the chondrogenic differentiation of various cell populations that can eventually produce functional cartilage matrix that is indicative of healthy cartilage tissue. PMID:21975954

  5. Detection of intra-articular osteochondral bodies in the knee using computed arthrotomography

    SciTech Connect

    Sartoris, D.J.; Kursunoglu, S.; Pineda, C.; Kerr, R.; Pate, D.; Resnick, D.

    1985-05-01

    A new technique using air arthrography followed by computed tomography enables identification of free osteocartilaginous fragments in the knee joint. Clinical examples with useful diagnostic information are presented, and potential pitfalls in the interpretation of this information are discussed.

  6. The Potential of Encapsulating “Raw Materials” in 3D Osteochondral Gradient Scaffolds

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, BanuPriya; Sutherland, Amanda; Detamore, Michael S.

    2015-01-01

    Scaffolds with continuous gradients in material composition and bioactive signals enable a smooth transition of properties at the interface. Components like chondroitin sulfate (CS) and bioactive glass (BG) in 3D scaffolds may serve as “raw materials” for synthesis of new extracellular matrix (ECM), and may have the potential to completely or partially replace expensive growth factors. We hypothesized that scaffolds with gradients of ECM components would enable superior performance of engineered constructs. Raw material encapsulation altered the appearance, structure, porosity, and degradation of the scaffolds. They allowed the scaffolds to better retain their 3D structure during culture and provided a buffering effect to the cells in culture. Following seeding of rat mesenchymal stem cells, there were several instances where glycosaminoglycan (GAG), collagen, or calcium contents were higher with the scaffolds containing raw materials (CS or BG) than with those containing transforming growth factor (TGF)-?3 or bone morphogenetic protein (BMP)-2. It was also noteworthy that a combination of both CS and TGF-?3 increased the secretion of collagen type II. Moreover, cells seeded in scaffolds containing opposing gradients of CS/TGF-?3 and BG/BMP-2 produced clear regional variations in the secretion of tissue-specific ECM. The study demonstrated raw materials have the potential to create a favorable microenvironment for cells; they can significantly enhance the synthesis of certain extracellular matrix (ECM) components when compared to expensive growth factors; either alone or in combination with growth factors they can enhance the secretion of tissue specific matrix proteins. Raw materials are promising candidates that can be used to either replace or be used in combination with growth factors. Success with raw materials in lieu of growth factors could have profound implications in terms of lower cost and faster regulatory approval for more rapid translation of regenerative medicine products to the clinic. PMID:24293388

  7. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    E-print Network

    Sutherland, Amanda J.; Beck, Emily C.; Detamore, Michael S.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory

    2015-05-12

    , rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-?), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage...

  8. Decellularized Cartilage May Be a Chondroinductive Material for Osteochondral Tissue Engineering

    PubMed Central

    Sutherland, Amanda J.; Beck, Emily C.; Dennis, S. Connor; Converse, Gabriel L.; Hopkins, Richard A.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM)-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs) were cultured in cell pellets containing cells only (control), chondrogenic differentiation medium (TGF-?), chemically decellularized cartilage particles (DCC), or physically devitalized cartilage particles (DVC). The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG) within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-? in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the ‘raw material’ building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration. PMID:25965981

  9. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral

    E-print Network

    Buschmann, Michael

    . BMC Musculoskeletal Disorders 2013, 14:27 http://www.biomedcentral.com/1471-2474/14/27 #12;RESEARCH Musculoskeletal Disorders 2013, 14:27 http://www.biomedcentral.com/1471-2474/14/27 #12;Background Marrow

  10. The Use of MRI Modeling to Enhance Osteochondral Transfer in Segmental Kienböck’s Disease

    PubMed Central

    Barber, Lauren; Virtue, Patrick; Lipman, Joseph P.; Hotchkiss, Robert J.; Potter, Hollis G.

    2012-01-01

    Kienböck’s disease, defined as avascular necrosis of the lunate, is a relatively rare condition with a poorly understood etiology. Conservative and invasive treatments for Kienböck’s disease exist, including wrist immobilization, surgical joint-leveling procedures, vascularized bone grafting, proximal row carpectomy, and total wrist arthrodesis. Staging Kienböck’s disease using radiography assumes near complete avascularity of the lunate. The staging distinguishes only the “state of collapse” in an ordinal classification scheme and does not allow localization or indicate partial involvement of the lunate, which the image contrast from MRI may provide. In this short communication, we report the treatment of a patient’s Kienböck’s disease by combining MRI with mathematical modeling to optimize the congruency between the curvature of donor and recipient sites of an autologous osteoarticular plug transfer. Follow-up MRI and radiographs at 1 year postoperatively demonstrated gradual graft incorporation and bone healing. The purpose of this study was to describe the feasibility of a novel surgical technique. The results indicate that donor site selection for autologous osteoarticular transfer using a quantitative evaluation of articular surface curvature may be beneficial for optimizing the likelihood for restoring the radius of curvature and thus joint articulation following cartilage repair.

  11. Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs

    Microsoft Academic Search

    Jan O Gordeladze; Farida Djouad; Jean-Marc Brondello; Daniele Noël; Isabelle Duroux-Richard; Florence Apparailly; Christian Jorgensen

    2009-01-01

    Bone and cartilage are being generated de novo through concerted actions of a plethora of signals. These act on stem cells (SCs) recruited for lineage-specific differentiation, with cellular phenotypes representing various functions throughout their life span. The signals are rendered by hormones and growth factors (GFs) and mechanical forces ensuring proper modelling and remodelling of bone and cartilage, due to

  12. Arthroscopic removal of osteochondral fragments of the palmar/plantar aspect of the metacarpo/metatarsophalangeal joints.

    PubMed

    Houttu, J

    1991-05-01

    This paper presents the results of arthroscopic surgery in 42 Standardbred trotters and three Finnish horses. Forty-five horses were operated on. The age range was one to seven years; 73 per cent of the horses were three years old or younger. Horses showed a variety of clinical signs ranging from moderate to severe lameness at slow speeds, to obscure lameness manifesting only at high speeds. Synovial effusion of the fetlock joint was rare. In this series, 44 horses that had Type I fragments and one horse that had Type III fragments were operated on. Of the 45 horses operated on, 23 (51 per cent) returned to speed training in three months and 41 (91 per cent) returned to speed training in six months. Three of 45 (6 per cent) were lame three months after the surgery when the trainer attempted to start speed training. One of those was sound six months after the operation. The remaining two (4 per cent) stayed lame due to a lesion in the affected joint. Two of 45 (4 per cent) discontinued training for other reasons. The horse with Type III fragments returned to speed training in three months. PMID:1884695

  13. Expression of transforming growth factor beta 1 in mesenchymal stem cells: potential utility in molecular tissue engineering for osteochondral repair.

    PubMed

    Guo, Xiaodong; Du, Jingyuan; Zheng, Qixin; Yang, Shuhua; Liu, Yong; Duan, Deyu; Yi, Chengqing

    2002-01-01

    The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor (TGF)-beta 1 genes in bone marrow-derived mesenchymal stem cells (MSCs) in vitro. The full-length rat TGF-beta 1 cDNA was transfected to MSCs mediated by lipofectamine and then selected with G418, a synthetic neomycin analog. The transient and stable expression of TGF-beta 1 by MSCs was detected by using immunohistochemical staining. The lipofectamine-mediated gene therapy efficiently transfected MSCs in vitro with the TGF-beta 1 gene causing a marked up-regulation in TGF-beta 1 expression as compared with the vector-transfected control groups, and the increased expression persisted for at least 4 weeks after selected with G418. It was suggested that bone marrow-derived MSCs were susceptible to in vitro lipofectamine mediated TGF-beta 1 gene transfer and that transgene expression persisted for at least 4 weeks. Having successfully combined the existing techniques of tissue engineering with the novel possibilities offered by modern gene transfer technology, an innovative concept, i.e. molecular tissue engineering, are put forward for the first time. As a new branch of tissue engineering, it represents both a new area and an important trend in research. Using this technique, we have a new powerful tool with which: (1) to modify the functional biology of articular tissue repair along defined pathways of growth and differentiation and (2) to affect a better repair of full-thickness articular cartilage defects that occur as a result of injury and osteoarthritis. PMID:12658748

  14. Image-Guided Techniques Improve the Short-term Outcome of Autologous Osteochondral Cartilage Repair Surgeries -An

    E-print Network

    Stewart, James

    operated to create traumatic chondral injuries in each knee. After four months, the chondral defect in one surface of the knee are injuries frequently en- countered in clinical practice (1) (2). Due knee was repaired using a: (A) conventional ap- proach, (B) optically-guided method, or (C) template

  15. Up-regulation of the chemo-attractive receptor ChemR23 and occurrence of apoptosis in human chondrocytes isolated from fractured calcaneal osteochondral fragments.

    PubMed

    Sena, Paola; Manfredini, Giuseppe; Benincasa, Marta; Mariani, Francesco; Smargiassi, Alberto; Catani, Fabio; Palumbo, Carla

    2014-06-01

    To study the expression level of a panel of pro/anti-apoptotic factors and inflammation-related receptors in chondral fragments from patients undergoing surgical treatment for intra-articular calcaneal fractures, cartilage fragments were retrieved from calcaneal fractures of 20 patients subjected to surgical treatment. Primary cultures were performed using chondral fragments from fractured and control patients. Chondrocyte cultures from each patient of the fractured and control groups were subjected to immunofluorescence staining and quantitatively analyzed under confocal microscopy. Proteins extracted from the cultured chondrocytes taken from the fractured and control groups were processed for Western blot experiments and densitometric analysis. The percentage of apoptotic cells was determined using the cleaved PARP-1 antibody. The proportion of labelled cells was 35% for fractured specimens, compared with 7% for control samples. Quantification of caspase-3 active and Bcl-2 proteins in chondrocyte cultures showed a significant increase of the apoptotic process in fractured specimens compared with control ones. Fractured chondrocytes were positively stained for ChemR23 with statistically significant differences with respect to control samples. Densitometric evaluation of the immunoreactive bands confirmed these observations. Human articular chondrocytes obtained from patients with intra-articular calcaneal fractures express higher levels of pivotal pro-apoptotic factors, and of the chemo-attractive receptor ChemR23, compared with control cultures. On the basis of these observations, the authors hypothesize that consistent prolonged chondrocyte death, associated with the persistence of high levels of pro-inflammatory factors, could enhance the deterioration of cartilage tissue with consequent development of post-traumatic arthritis following intra-articular bone fracture. PMID:24689495

  16. Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP7 in an ovine model

    E-print Network

    Getgood, Alan; Henson, Frances; Skelton, Carrie; Brooks, Roger; Guehring, Hans; Fortier, Lisa A.; Rushton, Neil

    2014-09-26

    mm) were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of the stifle joint of 24 female sheep. Sheep were randomly assigned to four groups (n?=?6); 1) empty defect, 2) scaffold only, 3) scaffold?+?rhFGF-18 (30 ?g...

  17. Evaluation and analysis of graft hypertrophy by means of arthroscopy, biochemical MRI and osteochondral biopsies in a patient following autologous chondrocyte implantation for treatment of a full-thickness-cartilage defect of the knee.

    PubMed

    Niemeyer, Philipp; Uhl, Markus; Salzmann, Gian M; Morscheid, Yannik P; Südkamp, Norbert P; Madry, Henning

    2015-06-01

    Graft hypertrophy represents a characteristic complication following autologous chondrocyte implantation (ACI) for treatment of cartilage defects. Although some epidemiological data suggest that incidence is associated with first-generation ACI using autologous chondrocyte implantation, it has also been reported in other technical modifications of ACI using different biomaterials. Nevertheless, it has not been described in autologous, non-periosteum, implant-free associated ACI. In addition, little is known about histological and T2-relaxation appearance of graft hypertrophy. The present case report provides a rare case of extensive graft hypertrophy following ACI using an autologous spheres technique with clinical progression over time. Detailed clinical, MR tomographic and histological evaluation has been performed, which demonstrates a high quality of repair tissue within the hypertrophic as well as non-hypertrophic transplanted areas of the repair tissue. No expression of collagen type X (a sign of chondrocyte hypertrophy), only slight changes of the subchondral bone and a nearly normal cell-matrix ratio suggest that tissue within the hypertrophic area does not significantly differ from intact and high-quality repair tissue and therefore seems not to cause graft hypertrophy. This is in contrast to the assumption that histological hypertrophy might cause or contribute to an overwhelming growth of the repair tissue within the transplantation site. Data presented in this manuscript might contribute to further explain the etiology of graft hypertrophy following ACI. PMID:25762093

  18. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition

    PubMed Central

    2013-01-01

    Background In this study we evaluated a novel approach to guide the bone marrow-driven articular cartilage repair response in skeletally aged rabbits. We hypothesized that dispersed chitosan particles implanted close to the bone marrow degrade in situ in a molecular mass-dependent manner, and attract more stromal cells to the site in aged rabbits compared to the blood clot in untreated controls. Methods Three microdrill hole defects, 1.4 mm diameter and 2 mm deep, were created in both knee trochlea of 30 month-old New Zealand White rabbits. Each of 3 isotonic chitosan solutions (150, 40, 10 kDa, 80% degree of deaceylation, with fluorescent chitosan tracer) was mixed with autologous rabbit whole blood, clotted with Tissue Factor to form cylindrical implants, and press-fit in drill holes in the left knee while contralateral holes received Tissue Factor or no treatment. At day 1 or day 21 post-operative, defects were analyzed by micro-computed tomography, histomorphometry and stereology for bone and soft tissue repair. Results All 3 implants filled the top of defects at day 1 and were partly degraded in situ at 21 days post-operative. All implants attracted neutrophils, osteoclasts and abundant bone marrow-derived stromal cells, stimulated bone resorption followed by new woven bone repair (bone remodeling) and promoted repair tissue-bone integration. 150 kDa chitosan implant was less degraded, and elicited more apoptotic neutrophils and bone resorption than 10 kDa chitosan implant. Drilled controls elicited a poorly integrated fibrous or fibrocartilaginous tissue. Conclusions Pre-solidified implants elicit stromal cells and vigorous bone plate remodeling through a phase involving neutrophil chemotaxis. Pre-solidified chitosan implants are tunable by molecular mass, and could be beneficial for augmented marrow stimulation therapy if the recruited stromal cells can progress to bone and cartilage repair. PMID:23324433

  19. Chondrocyte death in injured articular cartilage – in vitro evaluation of chondroprotective strategies using confocal laser scanning microscopy 

    E-print Network

    Amin, Anish Kiritkumar

    2011-07-05

    A reproducible in vitro model of mechanically injured (scalpel cut) articular cartilage was developed in this work utilising bovine and human osteochondral tissue. Using fluorescence-mode confocal laser scanning microscopy ...

  20. Tissue Engineering Approaches for the Treatment of Knee Joint Damage

    E-print Network

    McMahon, Rebecca Erin

    2012-07-16

    Ti. Engineered ligaments have generally failed to achieve mechanical properties sufficiently similar to their native counterparts, but also lack the osteochondral interface critical to the transfer of load between ligament and bone. The osteochondral interface...-like cells (bone to cartilage- like). A composite scaffold composed of an electrospun mesh with either a hydrogel component or extracellular matrix (ECM) produced by the cells may be a suitable tissue engineered ligament graft. The non-linear stress...

  1. Chondrocyte Apoptosis after Simulated Intraarticular Fracture: A Comparison of Histologic Detection Methods

    Microsoft Academic Search

    Alexis C. Dang; Hubert T. Kim

    2009-01-01

    Accurate evaluation of programmed cell death, or apoptosis, in chondrocytes is essential to studying cartilage injury. We\\u000a evaluated four methods of detecting chondrocyte-programmed cell death in formalin-fixed, paraffin-embedded cartilage after\\u000a experimental osteochondral fracture. Human osteochondral explants were subjected to experimental fracture in a manner known\\u000a to induce high levels of chondrocyte-programmed cell death. After 4 days in culture, specimens were fixed

  2. Osteochondrosis in the horse. II. Pathology.

    PubMed

    Rejnö, S; Strömberg, B

    1978-01-01

    An investigation was made of the pathology of osteochondritis dissecans of young foals and horses with clinical signs of the lesion. A randomly selected material of fetuses and young foals without clinical signs was also examined. It was demonstrated that osteochondritis dissecans is primarily a cartilaginous disease, as previously described in pigs and dogs. Thickening, disturbance of endochondral ossification, degeneration and necrosis of the cartilage were the four main features of osteochondritis dissecans. Cracks and fissures occurred in the degenerated and necrotic parts of the cartilage. This led to formation of cartilage flaps and eventually to loose bodies. It was shown that small pieces of subchondral bone could be ripped off when a cartilage flap was formed. This was one explanation as to why many flaps and loose bodies contained bone in contrast to the findings in pigs and dogs. Endochondral ossification could also take place in the thickened joint cartilage in some cases. Even some loose bodies could undergo endochondral ossification if they were well nourished. Osteochondritis dissecans was often found bilaterally in the knee and hock joint and this was interpreted as an indication that osteochondritis dissecans is a manifestation of a generalized condition called osteochondrosis. Simultaneous occurrence of lesions in joints other than the knee and hock and in several metaphyseal growth plates was another indication of the generalized nature. PMID:233595

  3. Penetrating Blast Injury to the Knee of a United States Soldier Treated with Allograft Mosaicplasty

    PubMed Central

    Eichinger, Maj. Josef K.; Bluman, Eric M.; Arrington, Col. Edward D.

    2011-01-01

    Objective: This is the first report of successful allograft mosaicplasty treatment of a large osteochondral lesion of the knee caused by a blast fragment sustained during combat operations. The patient was able to return to active duty following rehabilitation. Methods: An active-duty infantryman sustained an osteochondral lesion of the medial femoral condyle caused by a metallic fragment of an explosively formed projectile. Initial treatment consisted of removal of the foreign body and primary closure. The patient continued to experience pain, mechanical symptoms, and repeated effusions after initial nonoperative treatment. Allograft mosaicplasty of the lesion utilizing two 18-mm-diameter fresh allograft osteochondral plugs was performed at 6 months post-injury. Results: At 2-year follow-up, the patient remains on active duty with marked improvement in symptoms. Two years postoperatively, his outcome scores are 72 of 100 on the Western Ontario and McMaster University osteoarthritis scoring index (WOMAC) and 60 of 100 on the Knee Injury and Osteoarthritis Outcome Score (KOOS). His follow-up x-rays and MRI demonstrate intact articular cartilage and subchondral bone incorporation. Conclusion: Penetrating injuries to joints are commonplace in the battlefield environment. Combat injuries to the knee are frequently associated with articular cartilage injury. While numerous cartilage restoration techniques have been used with success for the treatment of osteochondral injuries to the femoral condyles, no published reports describe the use of allograft mosaicplasty in this location for open, penetrating injuries with focal cartilage loss. This is the first documented use of allograft mosaicplasty for a traumatic osteochondral defect of the medial femoral condyle caused by a metallic projectile. The patient was able to return to active duty following rehabilitation. We demonstrate a high level of functioning is possible following allograft mosaicplasty of a large osteochondral lesion caused by penetrating ballistic trauma.

  4. Autologous Matrix-Induced Chondrogenesis (AMIC)

    PubMed Central

    Benthien, J. P.; Behrens, P.

    2010-01-01

    Options for the treatment of cartilage defects include chondral resurfacing with abrasion, debridement, autologous chondrocyte transplantation (ACT), matrix-induced chondrocyte transplantation (MACI), or osteochondral autologous transplantation (OATS). This article describes the new method of autologous matrix-induced chondrogenesis (AMIC), a 1-step procedure combining subchondral microfracture with the fixation of a collagen I/III membrane by a partially autologous fibrin glue. Indications and contraindications are provided; a technical note is given. This method is primarily applied in osteochondral lesions of the knee and ankle joints; other joints may qualify.

  5. Arthroscopic assessment of human cartilage stiffness of the femoral condyles and the patella with a new tactile sensor

    Microsoft Academic Search

    Y Uchio; M Ochi; N Adachi; K Kawasaki; J Iwasa

    2002-01-01

    We measured the stiffness of the cartilage of the human femoral condyles via an ultrasonic tactile sensor under arthroscopic control. The stiffness and the degeneration of articular cartilage were assessed in 105 knees in 74 patients (39 men, 35 women, age: 9–72 years) who underwent arthroscopic observation or surgery. Twenty-five knees suffered from traumatic cartilage injury, 14 from osteochondritis dissecans,

  6. Assessment of morphological, acoustic and mechanical properties of enzymatically-degraded articular cartilage using high frequency ultrasound

    Microsoft Academic Search

    Yong-Ping Zheng; Shu-Zhe Wang; Yan-Ping Huang

    2009-01-01

    In this study, high frequency ultrasound and ultrasound-assisted mechanical testing systems were used to quantitatively measure the morphological, acoustic and mechanical properties of normal and enzymatically degraded bovine articular cartilages in vitro, in order to assess its potential application in assessing the early osteoarthritis (OA) related cartilage degeneration. Forty (n = 20 ?? 2) osteochondral cartilage disks were prepared from

  7. Recent Advances in Cartilage Tissue Engineering: From the Choice of Cell Sources to the Use of Bioreactors

    Microsoft Academic Search

    Ivan Martin; Olivier Démarteau; Alessandra Braccini

    2002-01-01

    Grafting engineered cartilage tissues represents a promising approach for the repair of joint injuries. Recent animal experiments have demonstrated that tissues engineered by culturing chondrocytes on 3D scaffolds in bioreactors provide functional templates for orderly repair of large osteochondral lesions. To date, however, a reproducible generation of uniform cartilage tissues of predefined size starting from adult human cells has not

  8. Nutritional Management of Metabolic Disorders

    Microsoft Academic Search

    JOE D. PAGAN

    2009-01-01

    I N T R O D U C T I O N Several metabolic disorders are common in modern breeds of horses. Many of these disorders such as equine Cushing's disease (ECD), equine metabolic syndrome (EMS), osteochondritis dissecans (OCD), recur- rent equine rhabdomyolysis (RER), and polysaccharide storage myopathy (PSSM) can be managed nutritionally by careful regulation of caloric intake with

  9. Mechanical properties of native and tissue-engineered cartilage depend on carrier permeability: a bioreactor study.

    PubMed

    Hoenig, Elisa; Leicht, Uta; Winkler, Thomas; Mielke, Gabriela; Beck, Katharina; Peters, Fabian; Schilling, Arndt F; Morlock, Michael M

    2013-07-01

    The implantation of osteochondral constructs-tissue-engineered (TE) cartilage on a bone substitute carrier-is a promising method to treat defects in articular cartilage. Currently, however, the TE cartilage's mechanical properties are clearly inferior to those of native cartilage. Their improvement has been the subject of various studies, mainly focusing on growth factors and physical loading during cultivation. With the approach of osteochondral constructs another aspect arises: the permeability of the carrier materials. The purpose of this study was to investigate whether and how the permeability of the subchondral bone influences the properties of native cartilage and whether the bone substitute carrier's permeability influences the TE cartilage of osteochondral constructs accordingly. Consequently, the influence of the subchondral bone's permeability on native cartilage was determined: Native porcine cartilage-bone cylinders were cultivated for 2 weeks in a bioreactor under mechanical loading with and without restricted permeability of the bone. For the TE cartilage these two permeability conditions were investigated using permeable and impermeable tricalciumphosphate carriers under equivalent cultivation conditions. All specimens were evaluated mechanically, biochemically, and histologically. The restriction of the bone's permeability significantly decreased the Young's modulus of native cartilage in vitro. No biochemical differences were found. This finding was confirmed for TE cartilage: While the biochemical parameters were not affected, a permeable carrier improved the cell morphology and mechanical properties in comparison to an impermeable one. In conclusion, the carrier permeability was identified as a determining factor for the mechanical properties of TE cartilage of osteochondral constructs. PMID:23387321

  10. Particulated Juvenile Articular Cartilage Implantation in the Knee

    PubMed Central

    Stevens, Hazel Y.; Shockley, Blake E.; Willett, Nick J.; Lin, Angela S.P.; Raji, Yazdan; Labib, Sameh A.

    2014-01-01

    Objective: The goal of this report is to describe the outcome of sequential particulated cartilage allograft and autologous osteochondral transfer treatments for an osteochondral lesion of the medial femoral condyle. Methods: A 44-year-old woman was treated with a particulated juvenile articular cartilage allograft (DeNovo NT) for a chondral lesion of the knee. As a result of continued pain, she had 2 further surgeries, including an autologous osteochondral transfer system procedure and finally a unicondylar knee arthroplasty. At the final procedure, the areas of the allograft and autograft tissue were biopsied for histological evaluation. The quality of the residual cartilage tissue was assessed first by equilibrium partitioning of an ionic contrast agent via micro–computed tomography (EPIC-µCT), and then by hematoxylin and eosin, Safranin O staining, and polarized light microscopy. Results: Despite showing good healing at 7 months postsurgery by MRI, at 28 months post DeNovo NT tissue implantation the excised cartilage tissue was heterogeneous, with some regions of hyaline-like cartilage and some regions of fibrocartilage. The later mosaicplasty may have helped maintain hyaline-like cartilage of the DeNovo NT tissue in its vicinity. Conclusion: This case report describes the cartilage repair tissue produced by DeNovo NT implantation and compares it with autologous osteochondral plug tissue.

  11. Tratamiento de Afecciones Músculo-Esqueléticas con Ondas de Choque Extracorpóreas

    Microsoft Academic Search

    Juan Luis

    Summary Extracorporeal shock waves are pressure waves used to treat certain musculoskeletal conditions. Focused wave therapy, the same that is used in lithotripsy, but acting through a different mechanism, is used to treat pseudoar- thritis and delayed consolidation, avascular necrosis of large joints, osteochondritis dissecans, calcific tendoni - tis and enthesopathies. We study its use in myocardial infarction. Results are

  12. Nutraceutical Therapies for Degenerative Joint Diseases: A Critical Review

    Microsoft Academic Search

    Robert Goggs; Anne Vaughan-Thomas; Peter D. Clegg; Stuart D. Carter; John F. Innes; Ali Mobasheri; Mehdi Shakibaei; Wolfgang Schwab; Carolyn A. Bondy

    2005-01-01

    There is growing recognition of the importance of nutritional factors in the maintenance of bone and joint health, and that nutritional imbalance combined with endocrine abnormalities may be involved in the pathogenesis of osteoarthritis (OA) and osteochondritis dissecans (OCD). Despite this, dietary programs have played a secondary role in the management of these connective tissue disorders. Articular cartilage is critically

  13. 254. Resorbierbare Knochendübel —Indikation — Technik — Ergebnisse

    Microsoft Academic Search

    H.-P. Bruch; E. Schmidt; B. Gay; S. Galandiuk; M. Greulich; W. Romen

    1981-01-01

    Summary In cooperation with Dr. Braun (Melsungen) special dowels made of polyglycolic acid were developed. All operations were performed in the hind limbs of rabbits (n = 12) and dogs (n = 12). In 24 extremities the medial collateral ligament of the knee was removed and replaced by a tendon. In 12 extremities the cartilage or osteochondral fragment was shorn

  14. New developments in osteoarthritis. Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options

    Microsoft Academic Search

    Martin K Lotz

    2010-01-01

    Joint trauma can lead to a spectrum of acute lesions, including osteochondral fractures, ligament or meniscus tears and damage to the articular cartilage. This is often associated with intraarticular bleeding and causes posttraumatic joint inflammation. Although the acute symptoms resolve and some of the lesions can be surgically repaired, joint injury triggers a chronic remodeling process in cartilage and other

  15. Synovial osteochondromatosis in hereditary arthro-ophthalmopathy (Wagner-Stickler syndrome)

    Microsoft Academic Search

    Bernhard Tins; Victor Cassar-Pullicino

    2003-01-01

    A case of bilateral synovial osteochondromatosis in a patient with hereditary arthro-ophthalmopathy is presented. The osteochondral lesions were largely calcified in one joint and largely chondromatous in the other. Typical features of hereditary arthro-ophthalmopathy are reviewed and it is hypothesised that the abnormal collagen in this syndrome is responsible for the development of synovial osteochondromatosis. Synovial manifestations of skeletal dysplasias

  16. Arthroscopic Distal Clavicular Autograft for Treating Shoulder Instability With Glenoid Bone Loss

    PubMed Central

    Tokish, John M.; Fitzpatrick, Kelly; Cook, Jay B.; Mallon, William J.

    2014-01-01

    Glenoid bone loss is a significant risk factor for failure after arthroscopic shoulder stabilization. Multiple options are available to reconstruct this bone loss, including coracoid transfer, iliac crest bone graft, and osteoarticular allograft. Each technique has strengths and weaknesses. Coracoid grafts are limited to anterior augmentation and, along with iliac crest, do not provide an osteochondral reconstruction. Osteochondral allografts do provide a cartilage source but are challenged by the potential for graft rejection, infection, cost, and availability. We describe the use of a distal clavicular osteochondral autograft for bony augmentation in cases of glenohumeral instability with significant bone loss. This graft has the advantages of being readily available and cost-effective, it provides an autologous osteochondral transplant with minimal donor-site morbidity, and it can be used in both anterior and posterior bone loss cases. The rationale and technical aspects of arthroscopic performance will be discussed. Clinical studies are warranted to determine the outcomes of the use of the distal clavicle as a graft in shoulder instability. PMID:25264509

  17. Osteomyelitis of the head and neck: sequential radionuclide scanning in diagnosis and therapy

    SciTech Connect

    Strauss, M.; Kaufman, R.A.; Baum, S.

    1985-01-01

    Sequential technetium and gallium scans of the head and neck were used to confirm the diagnosis of osteomyelitis and as an important therapeutic aid to delineate the transformation of active osteomyelitis to inactive osteomyelitis in 11 cases involving sites in the head and neck. Illustrative cases are presented of frontal sinus and cervical spine osteomyelitis and laryngeal osteochondritis.

  18. Comparative study of elbow disorders in young high-performance gymnasts.

    PubMed

    Dexel, J; Marschner, K; Beck, H; Platzek, I; Wasnik, S; Schuler, M; Nasreddin, A; Kasten, P

    2014-10-01

    The study aimed to investigate the prognosis of osteochondral affection (e.g., osteochondritis dissecans (OCD), cartilage lesions, fractures and bone edema in the elbows of high-performance gymnasts (n=30) compared to prognosis results with athletes not undergoing excessive stress on the upper extremity (n=29). The study also tested a novel isotropic 3D-FSE-sequence (CUBE) technique as an early diagnostic modality. Standard protocol was used to conduct the MRI examinations, which were then compared to results from the CUBE - sequence. The gymnast group (p=0.012) presented a significantly higher prevalence of complaints in the elbow joint compared to the other athlete group. Furthermore, osteochondral lesions in MRIs appeared more frequently in the group of gymnasts (n=10, 33%, p=0.033), including 7 cases (23%) of OCD. In the control athlete group 2 asymptomatic cases of OCD and one case of bone edema were detected. The MRI investigation with the CUBE - sequence showed similar results as the standard MRI protocol in terms of the diagnosis sensitivity. The current study indicates that juvenile gymnasts are at a higher risk for osteochondral lesions of the elbow than athletes without excessive stress on the upper extremities. PMID:24863726

  19. Spinal stenosis subsequent to juvenile lumbar osteochondrosis

    Microsoft Academic Search

    Kaj Tallroth; Dietrich Schlenzka

    1990-01-01

    This paper describes eight patients with spinal stenosis associated with marked osteochondrous changes in the vertebral bodies due to juvenile lumbar osteochondrosis (Scheuermann's disease). In no case was the midsagittal or interpedicular diameter of the spinal canal indicative of bony stenosis. On the other hand, in the myelograms the sagittal diameter of the dural sac was in all cases significantly

  20. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering.

    PubMed

    Wei, Bo; Yao, Qingqiang; Guo, Yang; Mao, Fengyong; Liu, Shuai; Xu, Yan; Wang, Liming

    2015-08-01

    The goal of this study was to investigate the chondrogenic potential of three-dimensional polycaprolactone-hydroxyapatite (PCL-HA) scaffolds loaded with bone marrow cells in vitro and the effect of PCL-HA scaffolds on osteochondral repair in vivo. Here, bone marrow was added to the prepared PCL-HA scaffolds and cultured in chondrogenic medium for 10 weeks. Osteochondral defects were created in the trochlear groove of 29 knees in 17 New Zealand white rabbits, which were then divided into four groups that underwent: implantation of PCL-HA scaffolds (left knee, n?=?17; Group 1), microfracture (right knee, n?=?6; Group 2), autologous osteochondral transplantation (right knee, n?=?6; Group 3), and no treatment (right knee, n?=?5; Control). Extracellular matrix produced by bone marrow cells covered the surface and filled the pores of PCL-HA scaffolds after 10 weeks in culture. Moreover, many cell-laden cartilage lacunae were observed, and cartilage matrix was concentrated in the PCL-HA scaffolds. After a 12-week repair period, Group 1 showed excellent vertical and lateral integration with host bone, but incomplete cartilage regeneration and matrix accumulation. An uneven surface of regenerated cartilage and reduced distribution of cartilage matrix were observed in Group 2. In addition, abnormal bone growth and unstable integration between repaired and host tissues were detected. For Group 3, the integration between transplanted and host cartilage was interrupted. Our findings indicate that the PCL-HA scaffolds loaded with bone marrow cells improved chondrogenesis in vitro and implantation of PCL-HA scaffolds for osteochondral repairenhanced integration with host bone. However, cartilage regeneration remained unsatisfactory. The addition of trophic factors or the use of precultured cell-PCL-HA constructs for accelerated osteochondral repair requires further investigation. PMID:25766036

  1. Clinical experiences with cartilage repair techniques: outcomes, indications, contraindications and rehabilitation.

    PubMed

    Berta, Á; Duska, Zsofia; Tóth, Ferenc; Hangody, Laszlo

    2015-08-01

    Untreated articular cartilage defects may lead to chronic joint degeneration and functional disability. In the past decade, several cartilage repair techniques have emerged for the treatment of cartilage lesions. Among these techniques, mosaicplasty was introduced by the senior author into the clinical practice in 1992. This article does not intend to give a review or a comparison of currently existing surgical techniques which aim to repair symptomatic focal defects; however, it focuses on the procedures used in the everyday practice in the authors' institute, namely microfracture, mosaicplasty, autologous chondrocyte implantation (ACI), osteochondral allograft transplantation and biodegradable osteochondral scaffolds. It gives a brief summary of these well-described techniques, summarizes the authors' clinical experience and available data on the clinical outcome, and the rehabilitation protocol following different procedures, with a special emphasis on mosaicplasty. PMID:26165712

  2. Success Rates and Immunologic Responses of Autogenic, Allogenic, and Xenogenic Treatments to Repair Articular Cartilage Defects

    PubMed Central

    Revell, Christopher M.

    2009-01-01

    This review examines current approaches available for articular cartilage repair, not only in terms of their regeneration potential, but also as a function of immunologic response. Autogenic repair techniques, including osteochondral plug transplantation, chondrocyte implantation, and microfracture, are the most widely accepted clinical treatment options due to the lack of immunogenic reactions, but only moderate graft success rates have been reported. Although suspended allogenic chondrocytes are shown to evoke an immune response upon implantation, allogenic osteochondral plugs and tissue-engineered grafts using allogenic chondrocytes exhibit a tolerable immunogenic response. Additionally, these repair techniques produce neotissue with success rates approaching those of currently available autogenic repair techniques, while simultaneously obviating their major hindrance of donor tissue scarcity. To date, limited research has been performed with xenogenic tissue, although several studies demonstrate the potential for its long-term success. This article focuses on the various treatment options for cartilage repair and their associated success rates and immunologic responses. PMID:19063664

  3. Autologous Chondrocyte Implantation: Current Surgery and Rehabilitation

    Microsoft Academic Search

    CHERYL L. RIEGGER-KRUGH; ERIC C. MCCARTY; MITCHEL S. ROBINSON; DAVID A. WEGZYN

    2008-01-01

    RIEGGER-KRUGH, C. L., E. C. MCCARTY, M. S. ROBINSON, and D. A. WEGZYN. Autologous Chondrocyte Implantation: Current Surgery and Rehabilitation. Med. Sci. Sports Exerc., Vol. 40, No. 2, pp. 206-214, 2008. Autologous chondrocyte implantation (ACI) is a treatment option for full-thickness chondral, or osteochondral injuries that are painful, debilitating, and progressive. Goals of surgery and rehabilitation include replacement of damaged

  4. [Surgical anatomy of the nose].

    PubMed

    Nguyen, P S; Bardot, J; Duron, J B; Jallut, Y; Aiach, G

    2014-12-01

    Thorough knowledge of the anatomy of the nose is an essential prerequisite for preoperative analysis and the understanding of surgical techniques. Like a tent supported by its frame, the nose is an osteo-chondral structure covered by a peri-chondroperiosteal envelope, muscle and cutaneous covering tissues. For didactic reasons, we have chosen to treat this chapter in the form of comments from eight key configurations that the surgeon should acquire before performing rhinoplasty. PMID:25159815

  5. Predicting the effects of knee focal articular surface injury with a patient-specific finite element model.

    PubMed

    Papaioannou, George; Demetropoulos, Constantine K; King, Yang H

    2010-01-01

    Successful focal articular surface injury (FAI) repair depends on appropriate matching of the geometrical/material properties of the repaired site, and on the overall dynamic response of the knee to in-vivo loading. There is evidence linking the pathogenesis of lesion progression (e.g. osteoarthritis) to weightbearing site and defect size. The paper investigates further this link by studying the effects of osteochondral defect size on the load distribution at the human knee. Experimental data from cadaver knees (n=8) loaded at 30 degrees of flexion was used as input to a validated finite element (FE) model. Contact pressure was assessed for the intact knees and over a range of circular osteochondral defects (5 mm to 20 mm) at 30 degrees of flexion with 700 N axial load. Patient specific FE models and the specific boundary conditions of the experimental set-up were used to analyze the osteochondral defects. Stress concentration around the rims of defects 8 mm and smaller was not significant and pressure distribution was dominated by the menisci. Experimental data was confirmed by the model. For defects 10 mm and greater, distribution of peak pressures followed the rim of the defect with a mean distance from the rim of 2.64 mm on the medial condyle and 2.90 mm on the lateral condyle (model predictions were 2.63 and 2.87 mm respectively). Statistical significance was reported when comparing defects that differed by 4 mm or greater (except for the 5 mm case). Peak rim pressure did not significantly increase as defects were enlarged from 10 mm to 20 mm. Peak values were always significantly higher over the medial femoral condyle. Although the decision to treat osteochondral lesions is multifactorial, the results of this finite element analysis indicate that a size threshold of 10 mm, may be a useful early adjunct to guide clinical decision-making. This modified FE method can be employed for in-vivo studies. PMID:19477131

  6. Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy

    Microsoft Academic Search

    C J Brew; P D Clegg; R P Boot-Handford; J G Andrew; T Hardingham

    2010-01-01

    Objectives:To investigate changes in gene expression in fibrillated and intact human osteoarthritis (OA) cartilage for evidence of an altered chondrocyte phenotype and hypertrophy.Methods:Paired osteochondral samples were taken from a high-load site and a low-load site from 25 OA joints and were compared with eight similar paired samples from age-matched controls. Gene expression of key matrix and regulatory genes was analysed

  7. [Differential diagnosis of secondary chondrosarcoma of the bones].

    PubMed

    Petrovichev, N N; Karata, D I; Glazkova, T G; Spiridonova, T A; Khmelev, O N; Zatsepin, S T; Lipkin, S I

    1990-01-01

    A procedure based on multifactorial evaluation of the most important clinical and X-ray signs was suggested to differentiate between secondary bone chondrosarcoma and such benign lesions as chondroma and osteochondrous exostosis. The analysis included 100 patients with secondary bone chondrosarcoma and 36 of those with benign lesions. The study used complex parameters derived from two, three or four simple ones. The method described assured a 95% credibility of differential diagnosis. PMID:2305571

  8. Intra-articular plica causing ankle impingement in a young handball player: a case report.

    PubMed

    Somorjai, Nicolaas; Jong, Bob; Draijer, W F

    2013-01-01

    Ankle sprains are common injuries that respond well to rehabilitation. In the case of persisting symptoms, the differential diagnosis should include osteochondral defects, tendon injury, mechanical instability, and ankle impingement. In the present case report, we describe a 16-year-old male handball player who presented with persisting pain and locking in the right ankle 3 years after having sustained multiple minor inversion trauma. The clinical examination and conventional radiography showed no abnormalities. On magnetic resonance imaging, a flake fracture at the anteromedial talar dome and/or loose body was assumed. Arthroscopic examination revealed an intra-articular plica originating from an osteochondral fossa at the anteromedial tibial plafond. The plica was debrided. Retrospectively, the arthroscopic findings matched the radiographs and magnetic resonance images. The postoperative protocol consisted of early mobilization. At 6 weeks of follow-up, the patient had no pain and had returned to his sports activities. The present case report illustrates, to the best of our knowledge, the first case of ankle impingement due to a, most likely congenital, intra-articular plica arising from an osteochondral fossa at the anteromedial tibial plafond. This rare clinical condition can be diagnosed with magnetic resonance imaging. Arthroscopic debridement will effectively relieve the symptoms. PMID:24160722

  9. Role of Demineralized Allograft Subchondral Bone in the Treatment of Shoulder Lesions of the Talus: Clinical Results With Two-Year Follow-Up.

    PubMed

    Galli, Melissa M; Protzman, Nicole M; Bleazey, Scott T; Brigido, Stephen A

    2015-01-01

    Cystic osteochondral lesions of the talus present a considerable challenge for foot and ankle surgeons. The purpose of the present study was to evaluate the effect of a medial malleolar osteotomy and implantation of demineralized allograft subchondral bone on pain and function 2 years after surgery. For inclusion, patients demonstrated radiographic evidence of a medial cystic full-thickness osteochondral defect of the talus and previously failed microfracture (N = 12). We hypothesized that improvements in pain and disability would be maintained across time. Compared with the preoperative values, 2 years after surgery, pain and disability had significantly reduced (p < .001). Significant reductions had occurred in postoperative pain from 6 months to 1 year (p = .001) and from 6 months to 2 years (p = .005). Similarly, significant reductions had occurred in postoperative disability from 6 months to 1 year (p = .008) and from 6 months to 2 years (p = .03). The reductions in postoperative pain and disability were maintained from 1 year to 2 years (p ? .79). Multiple regression analyses identified depression as a predictor of 2-year postoperative pain (R(2) = 0.36, p = .04). No variables were identified as significant predictors of postoperative disability at 2 years. Other than 1 previously reported peroneal deep venous thrombosis, no additional complications occurred. With successful graft incorporation, no inflammatory response, and no additional complications, the allograft subchondral plug appears to successfully treat osteochondral lesions of the talus and maintain improvements in pain and disability at intermediate follow-up. PMID:25022615

  10. Diagnostic accuracy of ultrasound for assessment of hemophilic arthropathy: MRI correlation.

    PubMed

    Doria, Andrea S; Keshava, Shyamkumar N; Mohanta, Arun; Jarrin, Jose; Blanchette, Victor; Srivastava, Alok; Moineddin, Rahim; Kavitha, M L; Hilliard, Pamela; Poonnoose, Pradeep; Gibikote, Sridhar

    2015-03-01

    OBJECTIVE. The purpose of this article is to assess the reliability of interpretation of ultrasound findings according to data blinding in maturing hemophilic joints and to determine the diagnostic accuracy of ultrasound compared with MRI for assessing joint components. SUBJECTS AND METHODS. Ankles (n = 34) or knees (n = 25) of boys with hemophilia or von Willebrand disease (median age, 13 years; range, 5-17 years) were imaged by ultrasound, MRI, and radiography in two centers (Toronto, Canada, and Vellore, India). Ultrasound scans were performed by two operators (one blinded and one unblinded to MRI data) and were reviewed by four reviewers who were unblinded to corresponding MRI findings according to a proposed 0- to 14-item scale that matches 14 of 17 items of the corresponding MRI scale. MRI examinations were independently reviewed by two readers. RESULTS. When data were acquired by radiologists, ultrasound was highly reliable for assessing soft-tissue changes (intraclass correlation coefficient [ICC], 0.98 for ankles and 0.97 for knees) and substantially to highly reliable for assessing osteochondral changes (ICC, 0.61 for ankles and 0.89 for knees). Ultrasound was highly sensitive (> 92%) for assessing synovial hypertrophy and hemosiderin in both ankles and knees but had borderline sensitivity for detecting small amounts of fluid in ankles (70%) in contrast to knees (93%) and variable sensitivity for evaluating osteochondral abnormalities (sensitivity range, 86-100% for ankles and 12-100% for knees). CONCLUSION. If it is performed by experienced radiologists using a standardized protocol, ultrasound is highly reliable for assessing soft-tissue abnormalities of ankles and knees and substantially to highly reliable for assessing osteochondral changes in these joints. PMID:25714320

  11. The Biological Response following Autogenous Bone Grafting for Large-Volume Defects of the Knee

    PubMed Central

    DeLano, Mark C.; Spector, Myron; Jeng, Lily; Pittsley, Andrew; Gottschalk, Alexander

    2012-01-01

    Objective: This report focuses on the biological events occurring at various intervals following autogenous bone grafting of large-volume defects of the knee joint’s femoral condyle secondary to osteochondritis dissecans (OCD) or osteonecrosis (ON). It was hypothesized that the autogenous bone graft would integrate and the portion exposed to the articular surface would form fibrocartilage, which would endure for years. Methods: Between September 29, 1987 and August 8, 1994, there were 51 patients treated with autogenous bone grafting for large-volume osteochondral defects. Twenty-five of the 51 patients were available for long-term follow-up up to 21 years. Patient follow-up was accomplished by clinical opportunity and intentional research. Videotapes were available on all index surgeries for review and comparison. All had preoperative and postoperative plain film radiographs. Long-term follow-up included MRI up to 21 years. Second-look arthroscopy and biopsy were obtained on 14 patients between 8 weeks and 20 years. Results: Radiological assessment showed the autogenous bone grafts integrated with the host bone. The grafts retained the physical geometry of the original placement. MRI showed soft tissue covering the grafts in all cases at long-term follow-up. Interval biopsy showed the surface covered with fibrous tissue at 8 weeks and subsequently converted to fibrocartilage with hyaline cartilage at 20 years. Conclusion: Autogenous bone grafting provides a matrix for large osteochondral defects that integrates with the host bone and results in a surface repair of fibrocartilage and hyaline cartilage that can endure for up to 20 years.

  12. Imaging biopsy composition at ACL reconstruction

    PubMed Central

    Pedersen, Douglas R; Martin, James A; Thedens, Daniel R; Klocke, Noelle F; Roberts, Nathaniel H; Goetz, Jessica E; Amendola, Annunziato

    2013-01-01

    Purpose Early-stage osteoarthritis (OA) includes glycosaminoglycan (GAG) loss and collagen disruption that cannot be seen on morphological magnetic resonance imaging (MRI). T1? MRI is a measurement that probes the low-frequency rate of exchange between protons of free water and those from water associated with macromolecules in the cartilage’s extracellular matrix. While it has been hypothesized that increased water mobility resulting from early osteoarthritic changes cause elevated T1? MRI values, there remain several unknown mechanisms influencing T1? measurements in cartilage. The purpose of this work was to relate histological and biochemical metrics directly measured from osteochondral biopsies and fluid specimens with quantitative MRI-detected changes of in vivo cartilage composition. Patients and methods Six young patients were enrolled an average of 41 days after acute anterior cruciate ligament (ACL) rupture. Femoral trochlear groove osteochondral biopsies, serum, and synovial fluid were harvested during ACL reconstruction to complement a presurgery quantitative MRI study (T1?, T2, delayed gadolinium-enhanced MRI of cartilage [dGEMRIC] relaxation times). A high-resolution MRI scan of the excised osteochondral biopsy was also collected. Analyses of in vivo T1? images were compared with ex vivo T1? imaging, GAG assays and histological GAG distribution in the osteochondral biopsies, and direct measures of bone and cartilage turnover markers and “OA marker” 3B3 in serum and synovial fluid samples. Conclusion T1? relaxation times in patients with a torn ACL were elevated from normal, indicating changes consistent with general fluid effusion after blunt joint trauma. Increased chondrogenic progenitor cell (CPC) production of chondroprotective lubricin may relate to cartilage surface disruption by blunt trauma and CPC amplification of joint inflammation. Disparity between ex vivo and matched in vivo MRI of trochlear cartilage suggests MRI signal differences that may be related to the synovial fluid environment. T1? is emerging as a promising MRI biomarker to relate noninvasive measures of whole-joint condition and cartilage composition to direct measures of cartilage changes in the acute phase of joint injuries. PMID:24855396

  13. Magnetic resonance imaging of the knee

    SciTech Connect

    Mink, J.H.; Reicher, M.A.; Crues, J.V.

    1987-01-01

    Introducing a comprehensive, practical guide to the use of magnetic resonance imaging (MRI) in detecting and evaluating knee disorders and planning arthroscopic surgery) This book integrates MRI findings with pertinent anatomy, physiology, and clinical signs to assist radiologists in selecting imaging protocols and interpreting scans. Detailed chapters focus on magnetic resonance imaging of the menisci and ligaments and evaluation of osteonecrosis, osteochondrosis, and osteochondritis. The authors demonstrate the potential of MRI for diagnosing various knee disorders such as arthritis, fractures, popliteal cysts, synovial disease, plicae, popliteal artery aneurysms, tumors, and bone marrow disorders.

  14. Human Periosteum Is a Source of Cells for Orthopaedic Tissue Engineering: A Pilot Study

    Microsoft Academic Search

    Michael D. Ball; Ian C. Bonzani; Melissa J. Bovis; Andrew Williams; Molly M. Stevens

    Background  Periosteal cells are important in embryogenesis, fracture healing, and cartilage repair and could provide cells for osteochondral\\u000a tissue engineering.\\u000a \\u000a \\u000a \\u000a \\u000a Questions\\/purpose  We determined whether a population of cells isolated from human periosteal tissue contains cells with a mesenchymal stem cell\\u000a (MSC) phenotype and whether these cells can be expanded in culture and used to form tissue in vitro.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  We obtained periosteal tissue

  15. Patellofemoral Arthralgia, Overuse Syndromes of the Knee, and Chondromalacia Patella

    PubMed Central

    Welsh, R. Peter

    1985-01-01

    Patellofemoral arthralgia is a very common syndrome affecting athletes. Most often, examination fails to define true pathology. Conservative treatment, an active exercise program, and sports may be undertaken without harm to the knee. The patellofemoral arthralgia syndrome must be differentiated from true chondromalacia patella, where there is actual degeneration of the patella's articular cartilage, and from other sources of internal derangement such as meniscal disease or osteochondral lesions. Careful attention to the history of onset, and provoking activities such as climbing stairs, kneeling, and crouching, will allow the physician to recognize patellofemoral arthralgia. Other common overuse syndromes also should be looked for, and differentiated from problems due to true internal derangement. PMID:21274228

  16. Surgical versus conservative management of osteochondrosis.

    PubMed

    McIlwraith, C Wayne

    2013-07-01

    The paper reviews current knowledge on conservative versus surgical options for the treatment of osteochondrosis entities in the horse. Clinical and radiographic signs of each significant osteochondrosis entity in the horse are presented, followed by the value of conservative treatment versus arthroscopic surgery options as well as the results for each option with the various entities. The entities presented in detail include, osteochondritis dissecans (OCD) of the femoropatellar, tarsocrural, metacarpophalangeal and metatarsophalangeal, and glenohumural articulations. The various treatment options for subchondral cystic lesions of the medial femoral condyle are detailed with evidence for the value of various treatments and subchondral cystic lesions in other locations are briefly reviewed. PMID:23746868

  17. Autograft replacement of small joint defects in the hand.

    PubMed

    Boulas, H J

    1996-06-01

    Intraarticular injuries to the small joints of the hand with attendant loss of cartilage can result in the development of posttraumatic arthritis with functional disability due to pain and loss of motion. Traditional treatment options often have yielded suboptimal results in terms of functional return, particularly when applied once contracture or arthritic change already has developed. Acute management of cartilage loss by osteochondral reconstruction with restitution of the articular surface may diminish the likelihood or severity of potential post-traumatic degenerative changes. PMID:8641084

  18. Anterior ankle arthroscopy: indications, pitfalls, and complications.

    PubMed

    Epstein, David M; Black, Brandee S; Sherman, Seth L

    2015-03-01

    Anterior ankle arthroscopy is a useful, minimally invasive technique for diagnosing and treating ankle conditions. Arthroscopic treatment offers the benefit of decreased surgical morbidity, less postoperative pain, and earlier return to activities. Indications for anterior ankle arthroscopy continue to expand, including ankle instability, impingement, management of osteochondritis dissecans, synovectomy, and loose body removal. Anterior ankle arthroscopy has its own set of inherent risks and complications. Surgeons can decrease the risk of complications through mastery of ankle anatomy and biomechanics, and by careful preoperative planning and meticulous surgical technique. PMID:25726482

  19. Osteochondrosis of the accessory ossification centre of the medial malleolus.

    PubMed

    Farsetti, Pasquale; Dragoni, Massimiliano; Potenza, Vito; Caterini, Roberto

    2015-01-01

    We report a case of a painful accessory ossification centre of the medial malleolus in an 11-year-old girl who was not involved in sports activities. The patient was treated conservatively, with complete clinical and radiographic healing of the medial malleolus 6 months after the first presentation. We ruled out the uncommon pathological conditions causing chronic pain in the medial malleolus during skeletal growth, such as traction apophysitis of the medial malleolus, osteochondrosis, osteochondritis or avascular necrosis of the distal tibial epiphysis. We speculate that this painful condition may be classified as an osteochondrosis of the accessory ossification centre of the medial malleolus. PMID:25438106

  20. A new pathological classification of lumbar disc protrusion and its clinical significance.

    PubMed

    Ma, Xin-long

    2015-02-01

    Lumbar disc protrusion is common. Its clinical manifestations and treatments are closely related to the pathological changes; however, the pathological classification of lumbar disc protrusion is controversial. This article introduces a new pathological classification comprising four types of lumbar disc protrusion according to intraoperative findings. The damage-herniation type is probably caused by injury and is characterized by soft herniation, the capsule can easily be cut and the broken disc tissue blocks overflow or is easily removed. The broken disc substances should be completely removed; satisfactory results can be achieved by minimally invasive endoscopic surgery. The degeneration-protrusion type is characterized by hard and tough protrusions and the pathological process by degeneration and proliferative reaction. The nerve should be decompressed and relaxed with minimally invasive removal of the posterior wall; the bulged or protruded disc often need not be excised. The posterior vertebral osteochondrosis with disc protrusion type is characterized by deformity of the posterior vertebral body, osteochondral nodules and intervertebral disc protrusion. The herniated and fragmented disc tissue should be removed with partially protruding osteochondral nodules. Intervertebral disc cyst is of uncertain pathogenesis and is characterized by a cyst that communicates with the disc. Resection of the cyst under microscopic or endoscopic control can achieve good results; and whether the affected disc needs to be simultaneously resected is controversial. The new pathological classification proposed here is will aid better understanding of pathological changes and pathogenesis of lumbar disc protrusion and provides a reference for diagnosis and treatment. PMID:25708029

  1. Outcome of combined autologous chondrocyte implantation and anterior cruciate ligament reconstruction

    PubMed Central

    Dhinsa, Baljinder S; Nawaz, Syed Z; Gallagher, Kieran R; Skinner, John; Briggs, Tim; Bentley, George

    2015-01-01

    Background: Instability of the knee joint, after anterior cruciate ligament (ACL) injury, is contraindication to osteochondral defect repair. This prospective study is to investigate the role of combined autologous chondrocyte implantation (ACI) with ACL reconstruction. Materials and Methods: Three independent groups of patients with previous ACL injuries undergoing ACI were identified and prospectively followed up. The first group had ACI in combination with ACL reconstruction (combined group); the 2nd group consisted of individuals who had an ACI procedure having had a previously successful ACL reconstruction (ACL first group); and the third group included patients who had an ACI procedure to a clinically stable knee with documented nonreconstructed ACL disruption (No ACL group). Their outcomes were assessed using the modified cincinnati rating system, the Bentley functional (BF) rating system (BF) and a visual analog scale (VAS). Results: At a mean followup of 64.24 months for the ACL first group, 63 months for combined group and 78.33 months for the No ACL group; 60% of ACL first patients, 72.73% of combined group and 83.33% of the No ACL group felt their outcome was better following surgery. There was no significant difference demonstrated in BF and VAS between the combined and ACL first groups. Results revealed a significant affect of osteochondral defect size on outcome measures. Conclusion: The study confirms that ACI in combination with ACL reconstruction is a viable option with similar outcomes as those patients who have had the procedures staged. PMID:26015603

  2. Attachment, proliferation, and chondroinduction of mesenchymal stem cells on porous chitosan-calcium phosphate scaffolds.

    PubMed

    Elder, Steven; Gottipati, Anuhya; Zelenka, Hilary; Bumgardner, Joel

    2013-01-01

    Symptomatic osteochondral lesions occur frequently, but relatively few treatment options are currently available. The purpose of this study was to conduct a preliminary investigation into a new tissue engineering approach to osteochondral regeneration. The concept is a biphasic construct consisting of a porous, osteoconductive chitosan-calcium phosphate scaffold supporting a layer of neocartilage formed by marrow-derived mesenchymal stem cells. Two experiments were conducted to assess the feasibility of this approach. The first experiment characterized the attachment efficiency and proliferation of primary human marrow-derived mesenchymal stem cells seeded relatively sparely onto the scaffold's surface. The second experiment compared two different methods of creating a biphasic construct using a much higher density of primary porcine marrow stromal cells. About 40% of the sparsely seeded human cells attached and proliferated rapidly. Constructs formed by one of the two experimental techniques exhibited a layer of cartilaginous tissue which only partially covered the scaffold's surface due to inadequate adhesion between the cells and the scaffold. This study demonstrates some potential for the approach to yield an implantable biphasic construct, but further development is required to improve cell-scaffold adhesion. PMID:23986794

  3. Attachment, Proliferation, and Chondroinduction of Mesenchymal Stem Cells on Porous Chitosan-Calcium Phosphate Scaffolds

    PubMed Central

    Elder, Steven; Gottipati, Anuhya; Zelenka, Hilary; Bumgardner, Joel

    2013-01-01

    Symptomatic osteochondral lesions occur frequently, but relatively few treatment options are currently available. The purpose of this study was to conduct a preliminary investigation into a new tissue engineering approach to osteochondral regeneration. The concept is a biphasic construct consisting of a porous, osteoconductive chitosan-calcium phosphate scaffold supporting a layer of neocartilage formed by marrow-derived mesenchymal stem cells. Two experiments were conducted to assess the feasibility of this approach. The first experiment characterized the attachment efficiency and proliferation of primary human marrow-derived mesenchymal stem cells seeded relatively sparely onto the scaffold’s surface. The second experiment compared two different methods of creating a biphasic construct using a much higher density of primary porcine marrow stromal cells. About 40% of the sparsely seeded human cells attached and proliferated rapidly. Constructs formed by one of the two experimental techniques exhibited a layer of cartilaginous tissue which only partially covered the scaffold’s surface due to inadequate adhesion between the cells and the scaffold. This study demonstrates some potential for the approach to yield an implantable biphasic construct, but further development is required to improve cell-scaffold adhesion. PMID:23986794

  4. Chondral repair of the knee joint using mosaicplasty.

    PubMed

    Robert, H

    2011-06-01

    Mosaicplasty grafting is performed by transferring one or more cylindral osteochondral autografts from a low weight-bearing area of the knee towards the defective site, usually the femoral condyle. Numerous biomechanical, histological, animal and clinical studies have evaluated the different technical aspects of this procedure. The preoperative work-up encompasses an evaluation of functional disturbances, alignment, knee stability and imaging (CT arthrography or MRI with cartilage sequences). The surgical procedure includes harvesting the grafts by mini-arthrotomy of the medial or lateral trochlea and a stage for arthroscopic graft insertion. The ICRS classification is used to describe the defect (area, depth, location) before and then after debridement. A few, large diameter grafts are harvested from the trochlea across from the defect. The graft plugs are transplanted by press-fit, flush with the cartilage, along a convergent plane in recipient sockets of exactly the same depth. Each stage, harvesting, drilling and insertion is repeated until all the full-thickness gap region has been covered. Postoperative movement is free but weight-bearing is delayed for 2 to 4 weeks. Mosaicplasty is indicated in young patients (under 50), with symptomatic chondral or osteochondral defects of less than 3 cm in the weight-bearing part of the femoral condyle. Pre-osteoarthritis is an absolute contraindictation for this procedure. Any misalignment (of more than 5°) or sagittal instability is treated simultaneously. This is a difficult and demanding procedure. PMID:21602114

  5. Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering

    PubMed Central

    2014-01-01

    Background Osteochondral interface regeneration is challenging for functional and integrated cartilage repair. Various layered scaffolds have been used to reconstruct the complex interface, yet the influence of the permeability of the layered structure on cartilage defect healing remains largely unknown. Methods We designed and fabricated a novel bilayered scaffold using articular cartilage extracellular matrix (ACECM) and hydroxyapatite (HAp), involving a porous, oriented upper layer and a dense, mineralised lower layer. By optimising the HAp/ACECM ratio, differing pore sizes and porosities were obtained simultaneously in the two layers. To evaluate the effects of permeability on cell behaviour, rabbit chondrocytes were seeded. Results Morphological observations demonstrated that a gradual interfacial region was formed with pore sizes varying from 128.2?±?20.3 to 21.2?±?3.1 ?m. The permeability of the bilayered scaffold decreased with increasing compressive strain and HAp content. Mechanical tests indicated that the interface was stable to bearing compressive and shear loads. Accordingly, the optimum HAp/ACECM ratio (7 w/v%) in the layer to mimic native calcified cartilage was found. Chondrocytes could not penetrate the interface and resided only in the upper layer, where they showed high cellularity and abundant matrix deposition. Conclusions Our findings suggest that a bilayered scaffold with low permeability, rather than complete isolation, represents a promising candidate for osteochondral interface tissue engineering. PMID:24950704

  6. The amelioration of cartilage degeneration by ADAMTS-5 inhibitor delivered in a hyaluronic acid hydrogel.

    PubMed

    Chen, Pengfei; Zhu, Shouan; Wang, Yanyan; Mu, Qin; Wu, Yan; Xia, Qingqing; Zhang, Xiaolei; Sun, Heng; Tao, Jiadong; Hu, Hu; Lu, Ping; Ouyang, Hongwei

    2014-03-01

    Degradation of proteoglycan is the key early event in the development of osteoarthritis (OA). The aggrecanase ADAMTS-5 has been identified as the major enzyme responsible for the degradation and thus is an attractive therapeutic target for OA. However, currently there is no report on using an ADAMTS-5 inhibition strategy for OA treatment. The present study aimed to investigate the synergic effect of combining an ADAMTS-5 inhibitor (114810) with a hyaluronic acid hydrogel (HAX) for OA therapeutics. Two OA models were induced by surgically creating an osteochondral defect or removing the anterior cruciate ligament (ACL) in Sprague-Dawley rats. Human OA cartilage was obtained from total joint replacement patients. Both human and rat OA cartilage showed marked proteoglycan loss with significantly increased ADAMTS-5 expression. The effectiveness of ADAMTS-5 inhibition by 114810 was confirmed by a cartilage explants assay in vitro, which showed that the 114810 halted the aggrecanase-mediated (374)ARGS neoepitope released from aggrecan induced by IL-1? stimulation. The in vivo effect of ADAMTS-5 inhibition was assessed by the articular injection of HAX with 114810 into OA knee joints. Evaluated eight weeks after injection, 114810 with HAX significantly promoted the in vivo cartilage healing in the osteochondral defect model, and prevented the progression of degenerative changes in the ACL model. Our results confirmed that ADAMTS-5 is an effective target for OA treatment, and the intra-articular injection of an ADAMTS-5 inhibitor within HAX gel could be a promising strategy for OA treatment. PMID:24424207

  7. Effects of Freeze–Thaw Cycle with and without Proteolysis Inhibitors and Cryopreservant on the Biochemical and Biomechanical Properties of Articular Cartilage

    PubMed Central

    Hirviniemi, Mikko; Tiitu, Virpi; Jurvelin, Jukka S.; Töyräs, Juha; Lammi, Mikko J.

    2014-01-01

    Objective: We investigated the effects of freeze-thawing on the properties of articular cartilage. Design: The reproducibility of repeated biomechanical assay of the same osteochondral sample was first verified with 11 patellar plugs from 3 animals. Then, 4 osteochondral samples from 15 bovine patellae were divided into 4 groups. The reference samples were immersed in phosphate-buffered saline (PBS) containing proteolysis inhibitors and biomechanically tested before storage for further analyses. Samples of group 1 were biomechanically tested before and after freeze-thawing in PBS in the absence and those of group 2 in the presence of inhibitors. Samples of the group 3 were biomechanically tested in PBS-containing inhibitors, but frozen in 30% dimethyl sulfoxide/PBS and subsequently tested in PBS supplemented with the inhibitors. Glycosaminoglycan contents of the samples and immersion solutions were analyzed, and proteoglycan structures examined with SDS-agarose gel electrophoresis. Results: Freeze-thawing decreased slightly dynamic moduli in all 3 groups. The glycosaminoglycan contents and proteoglycan structures of the cartilage were similar in all experimental groups. Occasionally, the diffused proteoglycans were partly degraded in group 1. Digital densitometry revealed similar staining intensities for the glycosaminoglycans in all groups. Use of cryopreservant had no marked effect on the glycosaminoglycan loss during freeze-thawing. Conclusion: The freeze-thawed cartilage samples appear suitable for the biochemical and biomechanical studies.

  8. A Review of Arthroscopic Bone Marrow Stimulation Techniques of the Talus

    PubMed Central

    Murawski, Christopher D.; Foo, Li Foong; Kennedy, John G.

    2010-01-01

    Osteochondral lesions of the talus are common injuries following acute and chronic ankle sprains. Numerous surgical treatment strategies have been employed for treating these lesions; arthroscopic bone marrow stimulation is recognized as the first-line technique to provide fibrocartilage infill of the defect site. While the short- and medium-term outcomes of this technique are good, the long-term outcomes are not yet known. An increasing number of studies, however, show a cause for concern in employing this technique, including declining outcome scores over time. The current authors have therefore developed a treatment strategy based on previously established guidelines in addition to morphological cartilage-sensitive fast spin echo techniques and quantitative T2 mapping magnetic resonance imaging (MRI). Accordingly, the authors advocate arthroscopic bone marrow stimulation in lesion sizes up to 8 mm in diameter and osteochondral autograft transplant (OATS) in lesion sizes greater than 8 mm in diameter. In the absence of long-term studies, confining the use of arthroscopic bone marrow stimulation to smaller lesions may support prolonged joint life by decreasing the rate at which the fibrocartilage ultimately degenerates over time. Employing the OATS procedure in larger lesions has the advantage of replacing “like with like.” The current review examines the role of arthroscopic bone marrow stimulation techniques of the talus. PMID:26069545

  9. Fiber-optic Raman Spectroscopy of Joint Tissues

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.

    2011-01-01

    In this study, we report adaptation of Raman spectroscopy for arthroscopy of joint tissues using a custom-built fiber optic probe. Differentiation of healthy and damaged tissue or examination of subsurface tissue, such as subchondral bone, is a challenge in arthroscopy because visual inspection may not provide sufficient contrast. Discrimination of healthy versus damaged tissue may be improved by incorporating point spectroscopy or hyperspectral imaging into arthroscopy where contrast is based on molecular structure or chemical composition. Articular joint surfaces of knee cadaveric human tissue and tissue phantoms were examined using a custom-designed Raman fiber optic probe. Fiber-optic Raman spectra were compared against reference spectra of cartilage, subchondral bone and cancellous bone collected using Raman microspectroscopy. In fiber-optic Raman spectra of the articular surface, there was an effect of cartilage thickness on recovery of signal from subchondral bone. At sites with intact cartilage, the bone mineralization ratio decreased but there was a minimal effect in the bone mineral chemistry ratios. Tissue phantoms were prepared as experimental models of the osteochondral interface. Raman spectra of tissue phantoms suggested that optical scattering of cartilage has a large effect on the relative cartilage and bone signal. Finite element analysis modeling of light fluence in the osteochondral interface confirmed experimental findings in human cadaveric tissue and tissue phantoms. These first studies demonstrate proof of principle for Raman arthroscopic measurement of joint tissues and provide a basis for future clinical or animal model studies. PMID:21359366

  10. Scientific Evidence Base for Cartilage Injury and Repair in the Athlete

    PubMed Central

    Engebretsen, L.; Brophy, R.H.

    2012-01-01

    Soccer players and athletes in high-impact sports are frequently affected by knee injuries. Injuries to the anterior cruciate ligament and menisci are frequently observed in soccer players and may increase the risk of developing an articular cartilage lesion. In high-level athletes, the overall prevalence of knee articular cartilage lesions has been reported to be 36% to 38%. The treatment for athletic patients with articular cartilage lesions is often challenging because of the high demands placed on the repair tissue by impact sports. Cartilage defects in athletes can be treated with microfracture, osteochondral grafting, and autologous chondrocyte implantation. There is increasing scientific evidence for cartilage repair in athletes, with more extensive information available for microfracture and autologous chondrocyte implantation than for osteochondral grafting. The reported rates and times to return to sport at the preinjury level are variable in recreational players, with the best results seen in younger and high-level athletes. Better return to sport is consistently observed for all repair techniques with early cartilage repair. Besides minimizing sensorimotor deficits and addressing accompanying pathologies, the quality of the repair tissue may be a significant factor for the return to sport.

  11. Novel nano-composite biomimetic biomaterial allows chondrogenic and osteogenic differentiation of bone marrow concentrate derived cells.

    PubMed

    Grigolo, Brunella; Cavallo, Carola; Desando, Giovanna; Manferdini, Cristina; Lisignoli, Gina; Ferrari, Andrea; Zini, Nicoletta; Facchini, Andrea

    2015-04-01

    In clinical orthopedics suitable materials that induce and restore biological functions together with the right mechanical properties are particularly needed for the regeneration of osteochondral lesions. For this purpose, the ideal scaffold should possess the right properties with respect to degradation, cell binding, cellular uptake, non-immunogenicity, mechanical strength, and flexibility. In addition, it should be easy to handle and serve as a template for chondrocyte and bone cells guiding both cartilage and bone formation. The aim of the present study was to estimate the chondrogenic and osteogenic capability of bone marrow concentrated derived cells seeded onto a novel nano-composite biomimetic material. These properties have been evaluated by means of histological, immunohistochemical and electron microscopy analyses. The data obtained demonstrated that freshly harvested cells obtained from bone marrow were able, once seeded onto the biomaterial, to differentiate either down the chondrogenic and osteogenic pathways as evaluated by the expression and production of specific matrix molecules. These findings support the use, for the repair of osteochondral lesions, of this new nano-composite biomimetic material together with bone marrow derived cells in a "one step" transplantation procedure. PMID:25804305

  12. Interleukin-6 and tumour necrosis factor in synovial fluid from horses with carpal joint pathology.

    PubMed

    Ley, C; Ekman, S; Elmén, A; Nilsson, G; Eloranta, M-L

    2007-09-01

    The carpal joints are common sites of traumatic arthritis and osteoarthritis (OA) in athletic horses. The pro-inflammatory cytokines interleukin (IL)-6 and tumour necrosis factor (TNF) may be of great importance in the development of intra-articular lesions. The aim of the present study was to investigate possible associations between synovial fluid levels of bioactive IL-6 and TNF and different types of joint lesions seen in traumatic arthritis and OA. Synovial fluid was collected from horses with carpal lameness immediately before arthroscopic surgery. Articular cartilage, synovial membranes and intra-articular ligaments were assessed macroscopically at arthroscopy. Synovial fluid levels of IL-6 and TNF were determined by bioassays, and the cytokine levels between different grades of morphologic changes in each type of assessed tissue were compared. The highest levels of IL-6 were detected in joints with chip fractures. All joints with chip fractures also showed some degree of synovitis. Tumour necrosis factor bioactivity was low and not associated with any joint lesion. Hence, TNF is not useful as a biomarker indicating a specific joint lesion in equine traumatic arthritis or OA. We conclude that a dramatic increase of IL-6 in synovial fluid indicates the presence of osteochondral fragmentation, although low or undetectable levels of IL-6 do not exclude chip fractures. The role of IL-6 in the disease process of osteochondral fragmentation needs further investigation. PMID:17718806

  13. Osteochondrosis lesions of the lateral trochlear ridge of the distal femur in four ponies.

    PubMed

    Voute, L C; Henson, F M D; Platt, D; Jeffcott, L B

    2011-03-12

    Lesions of the lateral trochlear ridge (LTR) of the distal femur were investigated in four pony or pony cross horses. The animals were all geldings and were six to 15 months of age. Lesions were bilateral in three ponies and unilateral in one. Femoropatellar joint effusion and lameness were present in two ponies; clinical signs were absent in the others. The proximal LTR was affected in all four animals. The radiographic appearance of the lesions was a subchondral defect containing mineralised bodies. Arthroscopic and postmortem examination findings included an osteochondral flap, a fissured or irregular articular surface and a smooth surface overlying focally thickened cartilage that extended into subchondral bone. Thickened articular cartilage was a histological feature of all the lesions. Among the other histological features, the most common were chondronecrosis, chondrocyte clusters, phenotypically abnormal chondrocytes, horizontal fissures at the osteochondral junction and retained blood vessels. The signalment of the four ponies, their clinical signs and the pathological features of their lesions were consistent with osteochondrosis of the LTR in horses. The use of multiple criteria was considered to be important in making a specific diagnosis. PMID:21498177

  14. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques

    PubMed Central

    Dewan, Ashvin K.; Gibson, Matthew A.; Elisseeff, Jennifer H.; Trice, Michael E.

    2014-01-01

    Articular cartilage defects have been addressed using microfracture, abrasion chondroplasty, or osteochondral grafting, but these strategies do not generate tissue that adequately recapitulates native cartilage. During the past 25 years, promising new strategies using assorted scaffolds and cell sources to induce chondrocyte expansion have emerged. We reviewed the evolution of autologous chondrocyte implantation and compared it to other cartilage repair techniques. Methods. We searched PubMed from 1949 to 2014 for the keywords “autologous chondrocyte implantation” (ACI) and “cartilage repair” in clinical trials, meta-analyses, and review articles. We analyzed these articles, their bibliographies, our experience, and cartilage regeneration textbooks. Results. Microfracture, abrasion chondroplasty, osteochondral grafting, ACI, and autologous matrix-induced chondrogenesis are distinguishable by cell source (including chondrocytes and stem cells) and associated scaffolds (natural or synthetic, hydrogels or membranes). ACI seems to be as good as, if not better than, microfracture for repairing large chondral defects in a young patient's knee as evaluated by multiple clinical indices and the quality of regenerated tissue. Conclusion. Although there is not enough evidence to determine the best repair technique, ACI is the most established cell-based treatment for full-thickness chondral defects in young patients. PMID:25210707

  15. Histological confirmation and biological significance of cartilage canals demonstrated using high field MRI in swine at predilection sites of osteochondrosis.

    PubMed

    Tóth, Ferenc; Nissi, Mikko J; Zhang, Jinjin; Benson, Michael; Schmitter, Sebastian; Ellermann, Jutta M; Carlson, Cathy S

    2013-12-01

    Cartilage canal vessels in epiphyseal cartilage have a pivotal role in the pathogenesis of osteochondrosis/osteochondritis dissecans. The present study aimed to validate high field magnetic resonance imaging (MRI) methods to visualize these vessels in young pigs. Osteochondral samples from the distal femur and distal humerus (predilection sites of osteochondrosis) of piglets were imaged post-mortem: (1) using susceptibility-weighted imaging (SWI) in an MRI scanner, followed by histological evaluation; and (2) after barium perfusion using µCT, followed by clearing techniques. In addition, both stifle joints of a 25-day-old piglet were imaged in vivo using SWI and gadolinium enhanced T1-weighted MRI, after which distal femoral samples were harvested and evaluated using µCT and histology. Histological sections were compared to corresponding MRI slices, and three-dimensional visualizations of vessels identified using MRI were compared to those obtained using µCT and to the cleared specimens. Vessels contained in cartilage canals were identified using MRI, both ex vivo and in vivo; their locations matched those observed in the histological sections, µCT images, and cleared specimens of barium-perfused tissues. The ability to visualize cartilage canal blood vessels by MRI, without using a contrast agent, will allow future longitudinal studies to evaluate their role in developmental orthopedic disease. PMID:23939946

  16. Chondral fragment of the lateral femoral trochlea of the knee in adolescents.

    PubMed

    Uchida, Ryohei; Toritsuka, Yukiyoshi; Yoneda, Kenji; Hamada, Masayuki; Ohzono, Kenji; Horibe, Shuji

    2012-10-01

    Most injuries to the osteochondral region in adolescents have generally been believed to occur as osteochondral fractures. However, we report three cases of pure chondral fragments of the knee in adolescents. The patients were injured during sports activities and as a result had acute limitation of ROM of the knee joint. Only one case out of three could be diagnosed by MRI, and arthroscopic examinations were needed to make a final diagnosis in the remaining two cases. Re-fixation of the fragments was performed using bio-absorbable pins. All the patients were eventually able to return to their previous level of sports activity. Two years after the operation they experienced no symptoms and MRI showed that the re-fixed fragments were continuous to the bed without any abnormal intervening signal area, suggesting successful healing. Moreover, the arthroscopic integration between the re-fixed fragment and the surrounding articular cartilage was acceptable. Chondral fragment of the lateral femoral trochlea in active adolescents should be recognized as a clear entity that can be successfully treated by re-fixation. PMID:22321389

  17. Midterm Results of a Combined Biological and Mechanical Approach for the Treatment of a Complex Knee Lesion

    PubMed Central

    Filardo, G.; Di Martino, A.; Delcogliano, M.; Marcacci, M.

    2012-01-01

    Objective: Complex fractures of the tibial plateau are difficult to treat and present a high complication rate. The goal of this report is to describe a combined biological and mechanical approach to restore all morphological and functional knee properties. Methods: We treated a 50-year-old woman, who was affected by a posttraumatic osteochondral lesion and depression of the lateral tibial plateau with knee valgus deviation. The mechanical axis was corrected with a lateral tibial plateau elevation osteotomy, the damaged joint surface was replaced by a recently developed biomimetic osteochondral scaffold, and a hinged dynamic external fixator was applied to protect the graft and at the same time to allow postoperative joint mobilization. Results: A marked clinical improvement was documented at 12 months and further improved up to 5 years, with pain-free full range of motion and return to previous activities. The MRI evaluation at 12 and 24 months showed that the implant remained in site with a hyaline-like signal and restoration of the articular surface. Conclusion: This case report describes a combined surgical approach for complex knee lesions that could represent a treatment option to avoid or at least delay posttraumatic osteoarthritis and more invasive procedures.

  18. Ultrasound Backscattering Is Anisotropic in Bovine Articular Cartilage.

    PubMed

    Inkinen, Satu I; Liukkonen, Jukka; Tiitu, Virpi; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2015-07-01

    Collagen, proteoglycans and chondrocytes can contribute to ultrasound scattering in articular cartilage. However, anisotropy of ultrasound scattering in cartilage is not fully characterized. We investigate this using a clinical intravascular ultrasound device with ultrasound frequencies of 9 and 40 MHz. Osteochondral samples were obtained from intact bovine patellas, and cartilage was imaged in two perpendicular directions: through articular and lateral surfaces. At both frequencies, ultrasound backscattering was higher (p < 0.05) when measured through the lateral surface of cartilage. In addition, the composition and structure of articular cartilage were investigated with multiple reference methods involving light microscopy, digital densitometry, polarized light microscopy and Fourier infrared imaging. Reference methods indicated that acoustic anisotropy of ultrasound scattering arises mainly from non-uniform distribution of chondrocytes and anisotropic orientation of collagen fibers. To conclude, ultrasound backscattering in articular cartilage was found to be anisotropic and dependent on the frequency in use. PMID:25933711

  19. Effect of bone loss in anterior shoulder instability

    PubMed Central

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-01-01

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  20. The often-missed Kocher-Lorenz elbow fracture.

    PubMed

    Cottalorda, J; Bourelle, S

    2009-11-01

    The authors report a case of an undiagnosed Kocher-Lorenz fracture in a 12-year-old adolescent. The Kocher-Lorenz type fracture involves a superficial osteochondral shell of the capitellum with little underlying bone. Three years after trauma, the patient still complained of throbbing and occasional elbow pain. Radiographic examination revealed a large intra-articular bone fragment mimicking the shape of a "second radial head", between the lateral condyle's ossification center and the radial head. Surgical treatment by fragment excision was performed. Eight years postoperatively, the patient had fully recovered with complete relief of pain. The patient demonstrated full range of motion in all planes. The authors offer a review of the literature on this rare fracture which diagnosis is often delayed. PMID:19837021

  1. Screw fixation of an OCD loose body: 21-year results.

    PubMed

    Cvetanovich, Gregory L; Mall, Nathan A; Van Thiel, Geoffrey S; Chahal, Jaskarndip; Bach, Bernard

    2013-12-01

    Osteochondritis dissecans (OCD) lesions can progress to loose body formation for which treatment is controversial and may involve excision or fixation. There is a paucity of published data regarding long-term outcomes following OCD loose body fixation. This case report presents an interval follow-up of a patient from a previous small case series of individuals who underwent open reduction internal fixation of large, lateral OCD loose bodies. At 21-year follow-up the patient has full, pain-free range of motion, and has not required subsequent surgery. This case, to our knowledge, is the first to report over 20-year follow-up from fixation of an OCD loose body and demonstrates a good long-term outcome. Clinicians should consider replacement and fixation of an OCD loose body when possible, as this may provide the best chance of long-term function. PMID:23288769

  2. Closed Sagittal Band Injury of the Metacarpophalangeal Joint.

    PubMed

    Kleinhenz, Benjamin P; Adams, Brian D

    2015-07-01

    Although it is an uncommon injury, traumatic rupture of the sagittal band often results in subluxation or dislocation of the extensor digitorum communis tendon. The radial sagittal band prevents ulnar subluxation of the extensor tendon at the metacarpophalangeal joint. Injury may result from a direct blow to the hand or from relatively low-energy mechanisms. Symptoms range from metacarpophalangeal joint pain and edema to dislocation of the extensor tendon. Associated injuries include collateral ligament sprains, capsular injury, and osteochondral fractures. Many acute injuries can be managed nonsurgically with extension splints. Optimal management of subacute or chronic injuries remains undefined. Surgical management consists of repair or reconstruction of the radial sagittal band. Numerous adjunctive surgical techniques have been described to prevent subluxation of the extensor tendon. PMID:26111875

  3. Experiences in diagnostic and surgical arthroscopy in the horse.

    PubMed

    McIlwraith, C W

    1984-01-01

    This paper reviews the current status of diagnostic and surgical arthroscopy in the horse. Arthroscopy has been used as a diagnostic aid since 1974 and is useful for evaluation of abnormalities in synovial membrane and articular cartilage. Surgical arthroscopy is a more recent advance that has replaced conventional arthrotomy in 90 per cent of the author's cases. Clinical conditions currently being treated using arthroscopic techniques rather than arthrotomy include all chip fractures in the carpus, chip fractures of the first phalanx, chronic proliferative synovitis in the fetlock and osteochondritis dissecans of the femoropatellar and tibiotarsal joints. The equipment requirements and basic techniques are reviewed. Convalescent time following surgery is decreased and the cosmetic appearance improved compared to arthrotomy. Considerable experience is required for competent surgery which, in turn, is necessary for this method to have advantage over previous conventional techniques. PMID:6714199

  4. Arthroscopic distal metaphyseal ulnar shortening osteotomy for ulnar impaction syndrome: a different technique.

    PubMed

    Yin, Hua-Wei; Qiu, Yan-Qun; Shen, Yun-Dong; Xu, Jian-Guang; Gu, Yu-Dong; Xu, Wen-Dong

    2013-11-01

    Ulnar impaction syndrome generally occurs with positive ulnar variance. The solution to the problem is to unload the ulnocarpal joint. Effective surgical options include diaphyseal ulnar shortening osteotomy, open wafer osteotomy, and arthroscopic wafer osteotomy. Recently, Slade and Gillon described an open procedure of ulnar shortening in the osteochondral region of the ulnar head. The procedure minimizes the risk of hemarthrosis and does not require hardware removal, which are problems with other surgical options. This article introduces a new arthroscopic technique of distal metaphyseal ulnar shortening osteotomy for ulnar impaction syndrome. This technique offers the advantages of minimizing surgical injury to the dorsal capsule of the distal radoulnar joint and so protects its stability. PMID:24206993

  5. Multipotent Adult Progenitor Cells from Bone Marrow Differentiate into Chondrocyte-Like Cells.

    PubMed

    Yu, Lele; Weng, Yimin; Shui, Xiaolong; Fang, Wenlai; Zhang, Erge; Pan, Jun

    2015-07-01

    Cartilage tissue engineering has great potential for treating chondral and osteochondral injuries. Efficient seed cells are the key to cartilage tissue engineering. Multipotent adult progenitor cells (MAPCs) have greater differentiation ability than other bone-marrow stem cells, and thus may be candidate seed cells. We attempted to differentiate MAPCs into chondrocyte-like cells to evaluate their suitability as seed cells for cartilage tissue engineering. Toluidine blue and Alcian blue staining suggested that glycosaminoglycan was expressed in differentiated cells. Immunofluorostaining indicated that differentiated human MAPCs (hMAPCs) expressed collagen II. Based on these results, we concluded that bone-marrow-derived hMAPCs could differentiate into chondrocyte-like cells in vitro. PMID:25703771

  6. Platelet rich plasma: a valid augmentation for cartilage scaffolds? A systematic review.

    PubMed

    Perdisa, Francesco; Filardo, Giuseppe; Di Matteo, Berardo; Marcacci, Maurilio; Kon, Elizaveta

    2014-07-01

    It has been shown that modern regenerative scaffold-based procedures for the treatment of articular cartilage defects offer good clinical results, although the properties of native healthy cartilage have not yet been matched by any substitute. Several implants have been tested and clinically used over the years to promote articular surface restoration, some of them producing a hyaline-like reparative tissue. There has been an increase in the number of new biological strategies, alone and in combination with scaffolds, to enhance the clinical outcome in patients with chondral disease. Among these innovative methods, one of the most widely used is Platelet-rich Plasma (PRP), based on the rationale of using the growth factors contained in platelet alpha granules to promote tissue regeneration. The aim of the present manuscript is to review systematically the current evidence in pre-clinical and clinical studies for the use of PRP augmented scaffolds to treat chondral or osteochondral disorders. PMID:24458849

  7. Chondral Injury in Patellofemoral Instability

    PubMed Central

    Lustig, Sébastien; Servien, Elvire; Neyret, Philippe

    2014-01-01

    Objective: Patellofemoral instability is common and affects a predominantly young age group. Chondral injury occurs in up to 95%, and includes osteochondral fractures and loose bodies acutely and secondary degenerative changes in recurrent cases. Biomechanical abnormalities, such as trochlear dysplasia, patella alta, and increased tibial tuberosity-trochlear groove distance, predispose to both recurrent dislocations and patellofemoral arthrosis. Design: In this article, we review the mechanisms of chondral injury in patellofemoral instability, diagnostic modalities, the distribution of lesions seen in acute and episodic dislocation, and treatments for articular cartilage lesions of the patellofemoral joint. Results: Little specific evidence exists for cartilage treatments in patellofemoral instability. In general, the results of reparative and restorative procedures in the patellofemoral joint are inferior to those observed in other compartments of the knee. Conclusion: Given the increased severity of chondral lesions and progression to osteoarthritis seen with recurrent dislocations, careful consideration should be given to early stabilisation in patients with predisposing factors. PMID:26069693

  8. The effect of a gelatin ?-tricalcium phosphate sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2, and platelet-rich plasma (PRP) on equine articular cartilage defect

    PubMed Central

    Tsuzuki, Nao; Seo, Jong-pil; Yamada, Kazutaka; Haneda, Shingo; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-01-01

    We evaluated the curative efficacy of a gelatin ?-tricalcium phosphate (?-TCP) sponge loaded with mesenchymal stem cells (MSC), bone morphogenic protein-2 (BMP-2), and platelet-rich plasma (PRP) by insertion into an experimentally induced osteochondral defect. A hole of 10 mm diameter and depth was drilled in the bilateral medial femoral condyles of 7 thoroughbred horses, and into each either a loaded sponge (treatment) or a saline-infused ?-TCP sponge (control) was inserted. After 16 weeks, defects were examined by computed tomography, macroscopic analyses, and histological analyses. The median subchondral bone density and macroscopic subscores for joint healing were significantly higher in the treatment legs (P < 0.05). Although there was no significant difference in total histological scores between groups, hyaline cartilaginous tissue was observed across a wider area in the treatment group. Equine joint healing can be enhanced by inserting a BMP-2-, MSC-, and PRP-impregnated ?-TCP sponge at the lesion site. PMID:24155448

  9. Cartilage healing: A review with emphasis on the equine model

    PubMed Central

    Desjardins, Marc R.; Hurtig, Mark B.

    1990-01-01

    Articular cartilage is a remarkably resilient tissue capable of withstanding considerable stress and repeated loading. Since this tissue has no blood vessels, nerve elements, or lymphatics, it is not surprising that it has a limited capacity for repair when damaged. In the horse, cartilage damage occurs as an occupational hazard. Furthermore, developmental defects such as osteochondrosis can lead to osteochondritis dissecans. Resultant cartilage flaps, fissures, and poorly organized subchondral bone produce disruption of joint surfaces. Veterinarians are often called upon to intervene when damaged cartilage has healed incompletely. Basic understanding of the physiology and repair mechanisms of cartilage is paramount to successfully managing such injuries. This literature review gives a brief overview of recently published clinical and experimental studies on the healing of cartilage. The discussion centers on the equine model. PMID:17423644

  10. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists.

  11. Effect of bone loss in anterior shoulder instability.

    PubMed

    Garcia, Grant H; Liu, Joseph N; Dines, David M; Dines, Joshua S

    2015-06-18

    Anterior shoulder instability with bone loss can be a difficult problem to treat. It usually involves a component of either glenoid deficiency or a Hill-Sachs lesion. Recent data shows that soft tissue procedures alone are typically not adequate to provide stability to the shoulder. As such, numerous surgical procedures have been described to directly address these bony deficits. For glenoid defects, coracoid transfer and iliac crest bone block procedures are popular and effective. For humeral head defects, both remplissage and osteochondral allografts have decreased the rates of recurrent instability. Our review provides an overview of current literature addressing these treatment options and others for addressing bone loss complicating anterior glenohumeral instability. PMID:26085984

  12. Chondral fracture of the lateral trochlea of the femur occurring in an adolescent: mechanism of injury.

    PubMed

    Oohashi, Yoshikazu; Oohashi, Yoshinori

    2007-11-01

    The trochlea of the femur is a very unusual site for chondral fracture. Little is known of the mechanism of injuries confined to the articular cartilage of the trochlea of the femur. A very unusual case of chondral fracture of the lateral trochlea of the femur occurring in an adolescent is reported here. The mechanism by which this injury occurred could be evaluated in this patient. The cartilage on the convex surface of the lateral trochlea was likely avulsed proximally by shear force of the patella during rapid extension of the weight-bearing knee from a flexed position. From a viewpoint of mechanism, this injury differs from the more usual osteochondral or chondral fractures of the weight bearing area of the femoral condyle, which are usually accompanied by twisting forces. PMID:17024462

  13. Subtalar dislocation secondary to a low energy injury.

    PubMed

    McKeag, Philip; Lyske, Jonathan; Reaney, Jonathan; Thompson, Neville

    2015-01-01

    An 18-year-old young man presented with an ankle injury, after landing on a supinated right foot following jumping while playing football. A plain X-ray revealed a medial subtalar dislocation. Despite obvious ankle deformity, the surrounding skin remained intact. Closed reduction of the subtalar joint was successfully performed under general anaesthesia in theatre. A CT of the ankle, after reduction, demonstrated a non-displaced fracture of the neck of the talus; no osteochondral defect was observed. This was successfully managed conservatively, with immobilisation of the ankle, in a non-weight bearing cast for 6 weeks. This case highlights that subtalar dislocation may follow a low-energy mechanism and that such injuries can be managed without open reduction. PMID:25650063

  14. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years.

    PubMed

    Philippart, Anahí; Boccaccini, Aldo R; Fleck, Claudia; Schubert, Dirk W; Roether, Judith A

    2015-01-01

    Inorganic scaffolds with high interconnected porosity based on bioactive glasses and ceramics are prime candidates for applications in bone tissue engineering. These materials however exhibit relatively low fracture strength and high brittleness. A simple and effective approach to improve the toughness is to combine the basic scaffold structure with polymer coatings or through the formation of interpenetrating polymer-bioactive ceramic microstructures. The polymeric phase can additionally serve as a carrier for growth factors and therapeutic drugs, thus adding biological functionalities. The present paper reviews the state-of-the art in the field of polymer coated and infiltrated bioactive inorganic scaffolds. Based on the notable combination of bioactivity, improved mechanical properties and drug or growth factor delivery capability, this scaffold type is a candidate for bone and osteochondral regeneration strategies. Remaining challenges for the improvement of the materials are discussed and opportunities to broaden the application potential of this scaffold type are also highlighted. PMID:25331196

  15. The knee: Surface-coil MR imaging at 1. 5 T

    SciTech Connect

    Beltran, J.; Noto, A.M.; Mosure, J.C.; Weiss, K.L.; Zuelzer, W.; Christoforidis, A.J.

    1986-06-01

    Seven normal knees (in five volunteers) and seven injured knees (in seven patients) were examined by high-resolution magnetic resonance (MR) imaging at 1.5 T with a surface coil. Seven medial meniscal tears, three anterior cruciate ligament tears, one posterior cruciate ligament avulsion, an old osteochondral fracture, femoral condylar chondro-malacia, and one case of semimembranous tendon reinsertion were identified. MR images correlated well with recent double-contrast arthrograms or results of surgery. All tears were identified in both the sagittal and coronal planes. Because of its ability to demonstrate small meniscal lesions and ligamentous injuries readily, MR imaging with a surface coil may eventually replace the more invasive arthrography.

  16. Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: Comparisons with the normal articular cartilage

    PubMed Central

    2011-01-01

    Background We have recently found a phenomenon that spontaneous regeneration of a hyaline cartilage-like tissue can be induced in a large osteochondral defect by implanting a double-network (DN) hydrogel plug, which was composed of poly-(2-Acrylamido-2-methylpropanesulfonic acid) and poly-(N, N'-Dimetyl acrylamide), at the bottom of the defect. The purpose of this study was to clarify gene expression profile of the regenerated tissue in comparison with that of the normal articular cartilage. Methods We created a cylindrical osteochondral defect in the rabbit femoral grooves. Then, we implanted the DN gel plug at the bottom of the defect. At 2 and 4 weeks after surgery, the regenerated tissue was analyzed using DNA microarray and immunohistochemical examinations. Results The gene expression profiles of the regenerated tissues were macroscopically similar to the normal cartilage, but showed some minor differences. The expression degree of COL2A1, COL1A2, COL10A1, DCN, FMOD, SPARC, FLOD2, CHAD, CTGF, and COMP genes was greater in the regenerated tissue than in the normal cartilage. The top 30 genes that expressed 5 times or more in the regenerated tissue as compared with the normal cartilage included type-2 collagen, type-10 collagen, FN, vimentin, COMP, EF1alpha, TFCP2, and GAPDH genes. Conclusions The tissue regenerated by using the DN gel was genetically similar but not completely identical to articular cartilage. The genetic data shown in this study are useful for future studies to identify specific genes involved in spontaneous cartilage regeneration. PMID:21955995

  17. The Long-Term Clinical Outcomes Following Autogenous Bone Grafting for Large-Volume Defects of the Knee

    PubMed Central

    Delano, Mark; Spector, Myron; Pittsley, Andrew; Gottschalk, Alexander

    2014-01-01

    Objective: We report the long-term clinical outcomes of patients who underwent autogenous bone grafting of large-volume osteochondral defects of the knee due to osteochondritis dessicans (OCD) and osteonecrosis (ON). This is the companion report to one previous published on the biological response. We hypothesized that these grafts would integrate with host bone and the articular surface would form fibrocartilage providing an enduring clinical benefit. Design: Three groups (patients/knees) were studied: OCD without a fragment (n = 12/13), OCD with a partial fragment (n = 14/16), and ON (n = 25/26). Twenty-five of 52 patients were available for clinical follow-up between 12 and 21 years. Electronic medical records provided comparison clinical information. In addition, there were plain film radiographs, MRIs, plus repeat arthroscopy and biopsy on 14 patients. Results: Autogenous bone grafts integrated with the host bone. MRI showed soft tissue covering all the grafts at long-term follow-up. Biopsy showed initial surface fibrocartilage that subsequently converted to fibrocartilage and hyaline cartilage at 20 years. OCD patients had better clinical outcomes than ON patients. No OCD patients were asymptomatic at anytime following surgery. Half of the ON patients came to total knee replacement within 10 years. Conclusions: Autogenous bone grafting provides an alternative biological matrix to fill large-volume defects in the knee as a singular solution integrating with host bone and providing an enduring articular cartilage surface. The procedure is best suited for those with OCD. The treatment for large-volume articular defects by this method remains salvage in nature and palliative in outcome.

  18. Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury

    PubMed Central

    Boyce, Mary K.; Trumble, Troy N.; Carlson, Cathy S.; Groschen, Donna M.; Merritt, Kelly A.; Brown, Murray P.

    2013-01-01

    Objective Develop a non-terminal animal model of acute joint injury that demonstrates clinical and morphological evidence of early post-traumatic osteoarthritis (PTOA). Methods An osteochondral (OC) fragment was created arthroscopically in one metacarpophalangeal (MCP) joint of 11 horses and the contralateral joint was sham operated. Eleven additional horses served as unoperated controls. Every 2 weeks, force plate analysis, flexion response, joint circumference, and synovial effusion scores were recorded. At weeks 0 and 16, radiographs (all horses) and arthroscopic videos (OC injured and sham joints) were graded. At week 16, synovium and cartilage biopsies were taken arthroscopically from OC injured and sham joints for histologic evaluation and the OC fragment was removed. Results Osteochondral fragments were successfully created and horses were free of clinical lameness after fragment removal. Forelimb gait asymmetry was observed at week 2 (P=0.0012), while joint circumference (P<0.0001) and effusion scores (P<0.0001) were increased in injured limbs compared to baseline from weeks 2 to 16. Positive flexion response of injured limbs was noted at multiple time points. Capsular enthesophytes were seen radiographically in injured limbs. Articular cartilage damage was demonstrated arthroscopically as mild wear-lines and histologically as superficial zone chondrocyte death accompanied by mild proliferation. Synovial hyperemia and fibrosis were present at the site of OC injury. Conclusion Acute OC injury to the MCP joint resulted in clinical, imaging, and histologic changes in cartilage and synovium characteristic of early PTOA. This model will be useful for defining biomarkers of early osteoarthritis and for monitoring response to therapy and surgery. PMID:23467035

  19. Animal Models for Cartilage Regeneration and Repair

    PubMed Central

    Szczodry, Michal; Bruno, Stephen

    2010-01-01

    Articular cartilage injury and degeneration are leading causes of disability. Animal studies are critically important to developing effective treatments for cartilage injuries. This review focuses on the use of animal models for the study of the repair and regeneration of focal cartilage defects. Animals commonly used in cartilage repair studies include murine, lapine, canine, caprine, porcine, and equine models. There are advantages and disadvantages to each model. Small animal rodent and lapine models are cost effective, easy to house, and useful for pilot and proof-of-concept studies. The availability of transgenic and knockout mice provide opportunities for mechanistic in vivo study. Athymic mice and rats are additionally useful for evaluating the cartilage repair potential of human cells and tissues. Their small joint size, thin cartilage, and greater potential for intrinsic healing than humans, however, limit the translational value of small animal models. Large animal models with thicker articular cartilage permit study of both partial thickness and full thickness chondral repair, as well as osteochondral repair. Joint size and cartilage thickness for canine, caprine, and mini-pig models remain significantly smaller than that of humans. The repair and regeneration of chondral and osteochondral defects of size and volume comparable to that of clinically significant human lesions can be reliably studied primarily in equine models. While larger animals may more closely approximate the human clinical situation, they carry greater logistical, financial, and ethical considerations. A multifactorial analysis of each animal model should be carried out when planning in vivo studies. Ultimately, the scientific goals of the study will be critical in determining the appropriate animal model. PMID:19831641

  20. Contrast-Enhanced Micro–Computed Tomography in Evaluation of Spontaneous Repair of Equine Cartilage

    PubMed Central

    Pulkkinen, H.J.; Rieppo, L.; Tiitu, V.; Kiviranta, I.; Brünott, A.; Brommer, H.; van Weeren, R.; Brama, P.A.J.; Mikkola, M.T.; Korhonen, R.K.; Jurvelin, J.S.; Töyräs, J.

    2012-01-01

    Objective: Contrast-enhanced computed tomography (CECT) has been introduced for the evaluation of cartilage integrity. Furthermore, CECT enables imaging of the structure and density of subchondral bone. In this laboratory study, we investigate the potential of microCECT to simultaneously image cartilage and subchondral bone for the evaluation of tissue healing. Design: Osteochondral lesions (Ø = 6 mm) were surgically created in equine intercarpal joints (n = 7). After spontaneous healing for 12 months, the horses were sacrificed and osteochondral plugs (Ø = 14 mm), including the repair cartilage and adjacent intact tissue, were harvested. The nonfibrillar and fibrillar moduli and the permeability of cartilage were determined using indentation testing. Contrast agent diffusion into the samples was imaged for 36 hours using high-resolution CT. Results from CECT, mechanical testing, and microscopic analyses were compared and correlated. Results: The contrast agent diffusion coefficient showed a significant (P < 0.05) difference between the repair and adjacent intact tissue. MicroCECT revealed altered (P < 0.05) bone volume fraction, mineral density, and microstructure of subchondral bone at the repair site. The contrast agent diffusion coefficient correlated with the moduli of the nonfibrillar matrix (R = ?0.662, P = 0.010), collagen fibril parallelism index (R = ?0.588, P = 0.035), and glycosaminoglycan content (R = ?0.503, P = 0.067). The repair cartilage was mechanically and structurally different from adjacent intact tissue (P < 0.05). Conclusions: MicroCECT enabled simultaneous quantitative evaluation of subchondral bone and monitoring of cartilage repair, distinguishing quantitatively the repair site from the adjacent intact tissue. As the only technique able to simultaneously image cartilage and determine subchondral bone mineral density and microstructure, CECT has potential clinical value. PMID:26069636

  1. Bone-Induced Chondroinduction in Sheep Jamshidi Biopsy Defects with and without Treatment by Subchondral Chitosan-Blood Implant

    PubMed Central

    Bell, Angela D.; Lascau-Coman, Viorica; Sun, Jun; Chen, Gaoping; Lowerison, Mark W.; Hurtig, Mark B.

    2013-01-01

    Objective: Delivery of chitosan to subchondral bone is a novel approach for augmented marrow stimulation. We evaluated the effect of 3 presolidified chitosan-blood implant formulations on osteochondral repair progression compared with untreated defects. Design: In N = 5 adult sheep, six 2-mm diameter Jamshidi biopsy holes were created bilaterally in the medial femoral condyle and treated with presolidified chitosan-blood implant with fluorescent chitosan tracer (10 kDa, 40 kDa, or 150k Da chitosan, left knee) or left to bleed (untreated, right knee). Implant residency and osteochondral repair were assessed at 1 day (N = 1), 3 weeks (N = 2), or 3 months (N = 2) postoperative using fluorescence microscopy, histomorphometry, stereology, and micro–computed tomography. Results: Chitosan implants were retained in 89% of treated Jamshidi holes up to 3 weeks postoperative. At 3 weeks, biopsy sites were variably covered by cartilage flow, and most bone holes contained cartilage flow fragments and heterogeneous granulation tissues with sparse leukocytes, stromal cells, and occasional adipocytes (volume density 1% to 3%). After 3 months of repair, most Jamshidi bone holes were deeper, remodeling at the edges, filled with angiogenic granulation tissue, and lined with variably sized chondrogenic foci fused to bone trabeculae or actively repairing bone plate. The 150-kDa chitosan implant elicited more subchondral cartilage formation compared with 40-kDa chitosan-treated and control defects (P < 0.05, N = 4). Treated defects contained more mineralized repair tissue than control defects at 3 months (P < 0.05, N = 12). Conclusion: Bone plate–induced chondroinduction is an articular cartilage repair mechanism. Jamshidi biopsy repair takes longer than 3 months and can be influenced by subchondral chitosan-blood implant.

  2. In vitro targeted magnetic delivery and tracking of superparamagnetic iron oxide particles labeled stem cells for articular cartilage defect repair.

    PubMed

    Feng, Yong; Jin, Xuhong; Dai, Gang; Liu, Jun; Chen, Jiarong; Yang, Liu

    2011-04-01

    To assess a novel cell manipulation technique of tissue engineering with respect to its ability to augment superparamagnetic iron oxide particles (SPIO) labeled mesenchymal stem cells (MSCs) density at a localized cartilage defect site in an in vitro phantom by applying magnetic force. Meanwhile, non-invasive imaging techniques were use to track SPIO-labeled MSCs by magnetic resonance imaging (MRI). Human bone marrow MSCs were cultured and labeled with SPIO. Fresh degenerated human osteochondral fragments were obtained during total knee arthroplasty and a cartilage defect was created at the center. Then, the osteochondral fragments were attached to the sidewalls of culture flasks filled with phosphate-buffered saline (PBS) to mimic the human joint cavity. The SPIO-labeled MSCs were injected into the culture flasks in the presence of a 0.57 Tesla (T) magnetic force. Before and 90 min after cell targeting, the specimens underwent T2-weighted turbo spin-echo (SET2WI) sequence of 3.0 T MRI. MRI results were compared with histological findings. Macroscopic observation showed that SPIO-labeled MSCs were steered to the target region of cartilage defect. MRI revealed significant changes in signal intensity (P<0.01). HE staining exibited that a great number of MSCs formed a three-dimensional (3D) cell "sheet" structure at the chondral defect site. It was concluded that 0.57 T magnetic force permits spatial delivery of magnetically labeled MSCs to the target region in vitro. High-field MRI can serve as an very sensitive non-invasive technique for the visualization of SPIO-labeled MSCs. PMID:21505986

  3. Activity-Related Outcomes of Articular Cartilage Surgery

    PubMed Central

    Chalmers, Peter N.; Vigneswaran, Hari; Harris, Joshua D.

    2013-01-01

    Objective: The purpose of this systematic review was to compare activity-based outcomes after microfracture, autologous chondrocyte implantation (ACI), and osteochondral autograft (OAT). Design: Multiple databases were searched with specific inclusion and exclusion criteria for level III and higher studies with activity outcomes after microfracture, OAT, osteochondral allograft, and ACI. Activity-based outcomes included the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Tegner Score, the Cincinnati Knee scores, the International Knee Documentation Committee (IKDC) subjective knee score, the Marx activity score, and/or the rate of return-to-sport. Results: Twenty studies were included (1,375 patients). Although results were heterogeneous, significant advantages were seen for ACI and OAT as compared with microfracture in Tegner scores at 1 year (ACI vs. microfracture, P = 0.0016), IKDC scores at 2 years (ACI vs microfracture, P = 0.046), Lysholm scores at 1 year (OAT vs microfracture, P = 0.032), and Marx scores at 2 years (OAT vs microfracture, P < 0.001). The only score or time point to favor microfracture was Lysholm score at 1 year (ACI vs microfracture, P = 0.037). No other standardized outcome measures or time points were significantly different. Several studies demonstrated significantly earlier return to competition with microfracture. Overall reoperation rates were similar, but of reoperations, a higher proportion of those following ACI were unplanned with the majority of performed for graft delamination or hypertrophy. Conclusions: ACI and OAT may have some benefits over microfracture, although return-to-sport is fastest following microfracture. Heterogeneity in technique, outcome measures, and patient populations hampers systematic comparison within the current literature.

  4. Bone bruises in anterior cruciate ligament injured knee and long-term outcomes. A review of the evidence

    PubMed Central

    Papalia, Rocco; Torre, Guglielmo; Vasta, Sebastiano; Zampogna, Biagio; Pedersen, Douglas R; Denaro, Vincenzo; Amendola, Annunziato

    2015-01-01

    Background Bone bruises are frequently associated with anterior cruciate ligament (ACL) tears as a result of trauma or direct shear stress of the bone. Purpose To review the evidence regarding the characteristics of the bone bruise associated with ACL tears, its relevance on clinical outcomes, and its progression over time. In particular, the long-term effects of the bone bruise on the knee osteochondral architecture and joint function were evaluated. Study design Review; level of evidence: 4. Methods An electronic search was performed on PubMed. Combinations of keywords included: “bone bruise AND knee”; “bone bruise AND anterior cruciate ligament”; “bone bruise AND osteo-chondral defects”. Any level of evidence studies concerning bone bruises in patients with partial or complete ACL tears were retrieved. Results A total of 25 studies were included; three of them investigated biomechanical parameters, seven were concerned with clinical outcomes, and 15 were radiological studies. Evaluation of the bone bruise is best performed using a fat-saturated T2-weighted fast spin echo exam or a short tau inversion recovery sequence where fat saturation is challenging. The location of the injury has been demonstrated to be more frequent in the lateral compartment of the joint (lateral femoral condyle and lateral tibial plateau). It is associated with ACL tears in approximately 70% of cases, often with collateral ligament or meniscal tears. Mid- and long-term outcomes demonstrated a complete healing of the marrow lesions at magnetic resonance imaging, but chondral defects detected with T1? sequences are still present 1 year after the ACL injury. Functional examination of the knee, through clinical International Knee Documentation Committee scores, did not show any correlation with the bone bruise. Conclusion Although bone bruise presence yields to higher pain levels, no correlation with functional outcomes was reported. Most studies have a short-term follow-up (<2 years) compared to the length of time it takes to develop post-traumatic osteoarthritis, so it still remains unclear whether the initial joint injury and bone bruise have a direct relationship to long-term function. PMID:25733936

  5. The Transient Chondrocyte Phenotype in Human Osteophytic Cartilage

    PubMed Central

    Klinger, Patricia; Beyer, Christian; Ekici, Arif B.; Carl, Hans-Dieter; Schett, Georg; Swoboda, Bernd; Hennig, Friedrich F.

    2013-01-01

    Objective: To identify factors that are responsible for the phenotypic differences between transient chondrocytes within human osteophytes prone to endochondral ossification and permanent chondrocytes within articular cartilage persisting for decades. Methods: Differential gene expression of chondrocytes from human osteophytes or from articular cartilage was detected by cDNA microarray analysis. The expression of pigment epithelium-derived factor (PEDF), one of the most impressively differentially expressed genes, was validated by quantitative reverse transcriptase polymerase chain reaction as well as immunohistochemistry. The mode of action of PEDF was explored by cell viability assays and by detecting target genes. Results: PEDF mRNA expression was upregulated by 118.5-fold (P = 0.01) in human osteophytic cartilage compared with articular cartilage, which was reflected by strong immunostaining for PEDF in the cartilaginous layer of osteophytes but largely negative staining in articular cartilage. Elevated levels of PEDF in osteophytes were associated with enhanced apoptosis. PEDF increased the expression of the proapoptotic factor FasL and induced cell death in cell culture. Osteochondral progenitor cells were more responsive to PEDF than differentiated articular chondrocytes. Conclusions: The induction of the proapoptotic factor PEDF within the osteophyte cartilage suggests a molecular concept for the transient chondrocyte phenotype that arises from progenitor cells and is prone to terminal differentiation and cell death.

  6. Response of Chondrocytes to Local Mechanical Injury in an Ex Vivo Model

    PubMed Central

    Lyman, Jeffrey R.; Chappell, Jonathan D.; Kelley, Scott S.; Lee, Greta M.

    2012-01-01

    Background: Our goal was to set up an ex vivo culture system to assess whether cartilage wounding (partial-thickness defects) can induce morphological changes in neighboring chondrocytes and whether these cells can translocate to the surface of the defect. Methods: Two-millimeter partial-depth defects were created in human osteochondral explants followed by culture for up to 4 weeks. Frozen sections of defects and defect-free regions were labeled using immunofluorescence for a plasma membrane protein, CD44, and actin with TRITC-phalloidin. Viable nuclei were detected with Hoechst 33342. Differential interference contrast (DIC), confocal, and transmission electron microscopy (TEM) were used to examine process extension. Results: Significant changes in cell morphology occurred in response to wounding in the superficial and deep cartilage zones. These included cell flattening, polarization of the actin cytoskeleton, extension of pseudopods projecting towards the edge of the defect, and interactions of these filopodia with collagen fibers. Cell density decreased progressively in the 300-µm zone adjacent to the defect to an average of approximately 25% to 35% after 3 weeks. Concomitant increases in cell density in the defect margin were observed. By contrast, minimal changes were seen in the middle cartilage zone. Conclusions: These novel observations strongly suggest active cartilage cell responses and movements in response to wounding. It is proposed that cartilage cells use contact guidance on fibrillated collagen to move into and populate defect areas in the superficial and deep zones.

  7. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering.

    PubMed

    Lee, Ju-Yeon; Choi, Bogyu; Wu, Benjamin; Lee, Min

    2013-12-01

    Three-dimensional printing (3DP) is a rapid prototyping technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient's external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone and chitosan for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication. PMID:24060622

  8. Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon repair.

    PubMed

    Goomer, R S; Maris, T M; Gelberman, R; Boyer, M; Silva, M; Amiel, D

    2000-10-01

    Heretofore, nonviral methods have been used primarily for in vitro transfection of cultured cell lines. These methods were substantially less efficient when compared with the use of viruses, particularly when used in vivo. Herein a three-step, highly efficient method of nonviral gene delivery is presented. Using this method, genes have been delivered successfully into tissues of orthopaedic importance with high-efficiency by nonviral means. Transforming growth factor-beta 1, parathyroid hormone related protein, and a marker gene were transfected into primary perichondrium and cartilage cells with efficiencies in excess of 70%. They overexpressed their cognate gene products showing efficacy of expression in a rabbit model of osteochondral defect repair. Using the same method, a marker gene was delivered into a canine model for intrasynovial flexor tendon injury and repair. This was achieved by direct gene delivery during surgery. An estimated 5 additional minutes were required during surgery to complete the transfection steps. High efficiency gene delivery was achieved in the flexor tendons, tendon sheaths, tendon pulleys, surrounding tissues, and skin. The efficiency of transfection approached 100% in the exposed superficial tissue layers and transfected cells were found several layers below the exposed tissue surfaces. The data show the potential of direct nonviral gene therapy in orthopaedics for ex vivo and in vivo applications. PMID:11039769

  9. Development of an Equine Groove Model to Induce Metacarpophalangeal Osteoarthritis: A Pilot Study on 6 Horses

    PubMed Central

    Maninchedda, Ugo; Lepage, Olivier M.; Gangl, Monika; Hilairet, Sandrine; Remandet, Bernard; Meot, Francoise; Penarier, Geraldine; Segard, Emilie; Cortez, Pierre; Jorgensen, Christian; Steinberg, Régis

    2015-01-01

    The aim of this work was to develop an equine metacarpophalangeal joint model that induces osteoarthritis that is not primarily mediated by instability or inflammation. The study involved six Standardbred horses. Standardized cartilage surface damage or “grooves” were created arthroscopically on the distal dorsal aspect of the lateral and medial metacarpal condyles of a randomly chosen limb. The contralateral limb was sham operated. After 2 weeks of stall rest, horses were trotted 30 minutes every other day for 8 weeks, then evaluated for lameness and radiographed. Synovial fluid was analyzed for cytology and biomarkers. At 10 weeks post-surgery, horses were euthanized for macroscopic and histologic joint evaluation. Arthroscopic grooving allowed precise and identical damage to the cartilage of all animals. Under the controlled exercise regime, this osteoarthritis groove model displayed significant radiographic, macroscopic, and microscopic degenerative and reactive changes. Histology demonstrated consistent surgically induced grooves limited to non-calcified cartilage and accompanied by secondary adjacent cartilage lesions, chondrocyte necrosis, chondrocyte clusters, cartilage matrix softening, fissuring, mild subchondral bone inflammation, edema, and osteoblastic margination. Synovial fluid biochemistry and cytology demonstrated significantly elevated total protein without an increase in prostaglandin E2, neutrophils, or chondrocytes. This equine metacarpophalangeal groove model demonstrated that standardized non-calcified cartilage damage accompanied by exercise triggered altered osteochondral morphology and cartilage degeneration with minimal or inefficient repair and little inflammatory response. This model, if validated, would allow for assessment of disease processes and the effects of therapy. PMID:25680102

  10. Development of an equine groove model to induce metacarpophalangeal osteoarthritis: a pilot study on 6 horses.

    PubMed

    Maninchedda, Ugo; Lepage, Olivier M; Gangl, Monika; Hilairet, Sandrine; Remandet, Bernard; Meot, Francoise; Penarier, Geraldine; Segard, Emilie; Cortez, Pierre; Jorgensen, Christian; Steinberg, Régis

    2015-01-01

    The aim of this work was to develop an equine metacarpophalangeal joint model that induces osteoarthritis that is not primarily mediated by instability or inflammation. The study involved six Standardbred horses. Standardized cartilage surface damage or "grooves" were created arthroscopically on the distal dorsal aspect of the lateral and medial metacarpal condyles of a randomly chosen limb. The contralateral limb was sham operated. After 2 weeks of stall rest, horses were trotted 30 minutes every other day for 8 weeks, then evaluated for lameness and radiographed. Synovial fluid was analyzed for cytology and biomarkers. At 10 weeks post-surgery, horses were euthanized for macroscopic and histologic joint evaluation. Arthroscopic grooving allowed precise and identical damage to the cartilage of all animals. Under the controlled exercise regime, this osteoarthritis groove model displayed significant radiographic, macroscopic, and microscopic degenerative and reactive changes. Histology demonstrated consistent surgically induced grooves limited to non-calcified cartilage and accompanied by secondary adjacent cartilage lesions, chondrocyte necrosis, chondrocyte clusters, cartilage matrix softening, fissuring, mild subchondral bone inflammation, edema, and osteoblastic margination. Synovial fluid biochemistry and cytology demonstrated significantly elevated total protein without an increase in prostaglandin E2, neutrophils, or chondrocytes. This equine metacarpophalangeal groove model demonstrated that standardized non-calcified cartilage damage accompanied by exercise triggered altered osteochondral morphology and cartilage degeneration with minimal or inefficient repair and little inflammatory response. This model, if validated, would allow for assessment of disease processes and the effects of therapy. PMID:25680102

  11. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes

    PubMed Central

    2013-01-01

    Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed. PMID:24321104

  12. Chondrogenesis of Infrapatellar Fat Pad Derived Adipose Stem Cells in 3D Printed Chitosan Scaffold

    PubMed Central

    Ye, Ken; Felimban, Raed; Traianedes, Kathy; Moulton, Simon E.; Wallace, Gordon G.; Chung, Johnson; Quigley, Anita; Choong, Peter F. M.; Myers, Damian E.

    2014-01-01

    Infrapatellar fat pad adipose stem cells (IPFP-ASCs) have been shown to harbor chondrogenic potential. When combined with 3D polymeric structures, the stem cells provide a source of stem cells to engineer 3D tissues for cartilage repair. In this study, we have shown human IPFP-ASCs seeded onto 3D printed chitosan scaffolds can undergo chondrogenesis using TGF?3 and BMP6. By week 4, a pearlescent, cartilage-like matrix had formed that penetrated the top layers of the chitosan scaffold forming a ‘cap’ on the scaffold. Chondrocytic morphology showed typical cells encased in extracellular matrix which stained positively with toluidine blue. Immunohistochemistry demonstrated positive staining for collagen type II and cartilage proteoglycans, as well as collagen type I. Real time PCR analysis showed up-regulation of collagen type II, aggrecan and SOX9 genes when IPFP-ASCs were stimulated by TGF?3 and BMP6. Thus, IPFP-ASCs can successfully undergo chondrogenesis using TGF?3 and BMP6 and the cartilage-like tissue that forms on the surface of 3D-printed chitosan scaffold may prove useful as an osteochondral graft. PMID:24918443

  13. Flexor Digitorum Accessorius Longus: Importance of Posterior Ankle Endoscopy

    PubMed Central

    Batista, Jorge Pablo; del Vecchio, Jorge Javier; Golanó, Pau; Vega, Jordi

    2015-01-01

    Endoscopy for the posterior region of the ankle through two portals is becoming more widespread for the treatment of a large number of conditions which used to be treated with open surgery years ago. The tendon of the flexor hallucis longus (FHL) travels along an osteofibrous tunnel between the posterolateral and posteromedial tubercles of the talus. Chronic inflammation of this tendon may lead to painful stenosing tenosynovitis. The aim of this report is to describe two cases depicting an accessory tendon which is an anatomical variation of the flexor hallucis longus in patients with posterior friction syndrome due to posterior ankle impingement and associated with a posteromedial osteochondral lesion of the talus. The anatomical variation (FDAL) described was a finding during an endoscopy of the posterior region of the ankle, and we have spared it by sectioning the superior flexor retinaculum only. The accessory flexor digitorum longus is an anatomical variation and should be taken into account when performing an arthroscopy of the posterior region of the ankle. We recommend this treatment on this type of injury although we admit this does not make a definite conclusion.

  14. Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene

    SciTech Connect

    Lin, Huey [Department of Biochemistry, SUNY at Buffalo, 3435 Main Street, Buffalo, NY 14214 (United States); Shabbir, Arsalan [Department of Biochemistry, SUNY at Buffalo, 3435 Main Street, Buffalo, NY 14214 (United States); Molnar, Merced [Department of Biochemistry, SUNY at Buffalo, 3435 Main Street, Buffalo, NY 14214 (United States); Lee, Techung [Department of Biochemistry, SUNY at Buffalo, 3435 Main Street, Buffalo, NY 14214 (United States)]. E-mail: chunglee@buffalo.edu

    2007-03-30

    Multiple pseudogenes have been proposed for embryonic stem (ES) cell-specific genes, and their abundance suggests that some of these potential pseudogenes may be functional. ES cell-specific expression of Oct4 regulates stem cell pluripotency and self-renewing state. Although Oct4 expression has been reported in adult tissues during gene reprogramming, the detected Oct4 signal might be contributed by Oct4 pseudogenes. Among the multiple Oct4 transcripts characterized here is a {approx}1 kb clone derived from P19 embryonal carcinoma stem cells, which shares a {approx}87% sequence homology with the parent Oct4 gene, and has the potential of encoding an 80-amino acid product (designated as Oct4P1). Adenoviral expression of Oct4P1 in mesenchymal stem cells promotes their proliferation and inhibits their osteochondral differentiation. These dual effects of Oct4P1 are reminiscent of the stem cell regulatory function of the parent Oct4, and suggest that Oct4P1 may be a functional pseudogene or a novel Oct4-related gene with a unique function in stem cells.

  15. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells

    PubMed Central

    Kutikov, Artem B.; Song, Jie

    2013-01-01

    Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as PLA are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity, and biological performance of the composite. To overcome this challenge, we incorporated a hydrophilic polyethylene glycol (PEG) block to poly(D,L-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25 wt% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain >200% vs. <40% for HA-PLA), superhydrophilic (~0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenesis upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications. PMID:23791675

  16. Development and evaluation of a device for simultaneous uniaxial compression and optical imaging of cartilage samples in vitro

    NASA Astrophysics Data System (ADS)

    Steinert, Marian; Kratz, Marita; Jaedicke, Volker; Hofmann, Martin R.; Jones, David B.

    2014-10-01

    In this paper, we present a system that allows imaging of cartilage tissue via optical coherence tomography (OCT) during controlled uniaxial unconfined compression of cylindrical osteochondral cores in vitro. We describe the system design and conduct a static and dynamic performance analysis. While reference measurements yield a full scale maximum deviation of 0.14% in displacement, force can be measured with a full scale standard deviation of 1.4%. The dynamic performance evaluation indicates a high accuracy in force controlled mode up to 25 Hz, but it also reveals a strong effect of variance of sample mechanical properties on the tracking performance under displacement control. In order to counterbalance these disturbances, an adaptive feed forward approach was applied which finally resulted in an improved displacement tracking accuracy up to 3 Hz. A built-in imaging probe allows on-line monitoring of the sample via OCT while being loaded in the cultivation chamber. We show that cartilage topology and defects in the tissue can be observed and demonstrate the visualization of the compression process during static mechanical loading.

  17. International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials

    PubMed Central

    Hoemann, Caroline; Kandel, Rita; Roberts, Sally; Saris, Daniel B.F.; Creemers, Laura; Mainil-Varlet, Pierre; Méthot, Stephane; Hollander, Anthony P.; Buschmann, Michael D.

    2011-01-01

    Cartilage repair strategies aim to resurface a lesion with osteochondral tissue resembling native cartilage, but a variety of repair tissues are usually observed. Histology is an important structural outcome that could serve as an interim measure of efficacy in randomized controlled clinical studies. The purpose of this article is to propose guidelines for standardized histoprocessing and unbiased evaluation of animal tissues and human biopsies. Methods were compiled from a literature review, and illustrative data were added. In animal models, treatments are usually administered to acute defects created in healthy tissues, and the entire joint can be analyzed at multiple postoperative time points. In human clinical therapy, treatments are applied to developed lesions, and biopsies are obtained, usually from a subset of patients, at a specific time point. In striving to standardize evaluation of structural endpoints in cartilage repair studies, 5 variables should be controlled: 1) location of biopsy/sample section, 2) timing of biopsy/sample recovery, 3) histoprocessing, 4) staining, and 5) blinded evaluation with a proper control group. Histological scores, quantitative histomorphometry of repair tissue thickness, percentage of tissue staining for collagens and glycosaminoglycan, polarized light microscopy for collagen fibril organization, and subchondral bone integration/structure are all relevant outcome measures that can be collected and used to assess the efficacy of novel therapeutics. Standardized histology methods could improve statistical analyses, help interpret and validate noninvasive imaging outcomes, and permit cross-comparison between studies. Currently, there are no suitable substitutes for histology in evaluating repair tissue quality and cartilaginous character.

  18. Intra-articular loose body removal during hip arthroscopy.

    PubMed

    Randelli, Filippo; Randelli, Pietro; Banci, Lorenzo; Arrigoni, Paolo

    2010-07-01

    Loose bodies are common findings in hip arthroscopy. Loose body removal can be challenging because of the inner position of the acetabulum in which the loose bodies tend to accumulate. Moreover, the standard removal procedure of a considerable number of loose bodies may need a long time under limb traction, thereby increasing the risk of complications. This article describes a new easy method for intra-articular loose body removal. A flexible endotracheal catheter, connected with suction system, is inserted via the anterior or midanterior portal. The catheter can easily be directed toward the inner parts of the joint in proximity of loose bodies. The suction system allows the loose body to be captured in contact with the tip of the catheter, which is then retrieved carrying the loose body outside the cannula. We performed this technique on 4 consecutive patients with synovial chondromatosis. Patients were evaluated preoperatively and 1 month postoperatively by completing self-administered questionnaires. The technique effectiveness was evaluated in terms of overall surgery time, traction time, radiographic appearance of loose bodies left in situ, and postoperative complications. Mean overall surgery time and central time was 175 and 78 minutes, respectively. All patients showed improvement in the operated hip. All radiographs showed hip joint space free of osteochondral loose bodies. No patients reported paraesthesia, nerve palsy, or other postoperative complications. This technique allows for retrieval of a greater amount of loose bodies in a short time, reducing the possibility of undesirable complications. PMID:20608628

  19. [Acute knee block. Assessment with magnetic resonance, correlated with arthroscopy].

    PubMed

    Perin, B; Nardacchione, R; Bonaga, S; Angelini, F; Girotto, A; Giovagnoni, A; Valeri, G

    1997-01-01

    Posttraumatic acute articular blocks of the knee may be caused by "mechanical" factors, such as the interposition of some osteochondral, meniscal or ligamentous fragments between condyles and tibial plateau or by non-mechanical ("functional") factors, such as the pain associated with capsular-ligamentous structure injuries or with intraosseous bruises involving the synovia. From January, 1994, to January, 1996, we examined 751 patients for posttraumatic knee injuries. The patients were submitted to MRI with a dedicated unit and we selected 86 of them who had an acute articular block as the major symptom. The block had a mechanical cause in 36 patients of the selected group (41.8%), as confirmed at arthroscopy, while the other 50 patients (58.2%) had a functional block. Fifteen of the latter patients had only intraosseous bruising, with no ligament or meniscus damage, while the other 35 had isolated or variously associated menisco-ligamentous injuries, as confirmed at arthroscopy. All the patients also had some intraosseous bruises which were clearly depicted at MRI. This study demonstrates that MRI is an extremely valuable tool in assessing the cause of articular blocks, allowing a prompt appropriate choice to be made between therapeutic arthroscopy and weight-free limb immobilization. PMID:9380865

  20. [Classification, significance and sequelae of posttraumatic "occult" bone and cartilage fractures of the knee. The role of magnetic resonance].

    PubMed

    Macarini, L; Zaccheo, N; Garribba, A P; Angelelli, G; Rotondo, A

    1995-12-01

    Magnetic Resonance Imaging (MRI) shows, in the post-traumatic knee, a fairly high number of bone and cartilage injuries missed by conventional radiography and therefore called occult. Our aim is to classify these injuries, to correlate their site and distribution with associated menisco-ligamentous injuries and with trauma mechanisms. Thirty-eight patients with a history of acute knee trauma and negative X-ray findings were examined with MRI within 15 days of trauma. 1.5- and 0.5-T units and SE T1-weighted GE T2*-weighted and SE T2-weighted sequences were used. The injuries were classified as intraosseous and osteochondral bruises or fractures. Twenty-three patients with menisco-ligamentous injuries were submitted to therapeutic arthroscopy; the sites of bone and cartilage injuries depicted with MRI were studied with arthroscopy. Seven patients were followed-up with MRI at 6-12 months to investigate subchondral injury evolution: 5 of 7 patients were also submitted to arthroscopy. MRI showed a statistically significant correlation between site and distribution of bone and cartilage injuries and between internal derangement and trauma mechanisms, i.e., contusion, distortion, stress. In our experience, MRI could identify and characterize occult subchondral injuries, thus allowing appropriate treatment. PMID:8685452

  1. Imaging of cartilage repair procedures.

    PubMed

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-07-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts. PMID:25114387

  2. Imaging of cartilage repair procedures

    PubMed Central

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-01-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts. PMID:25114387

  3. Osteonecrosis of the knee: review

    PubMed Central

    Karim, Ammar R.; Cherian, Jeffrey J.; Jauregui, Julio J.; Pierce, Todd

    2015-01-01

    Osteonecrosis is a devastating disease that can lead to end-stage arthritis of various joint including the knee. There are three categories of osteonecrosis that affect the knee: spontaneous osteonecrosis of the knee (SONK), secondary, and post-arthroscopic. Regardless of osteonecrosis categories, the treatment of this disease aims to halt further progression or delay the onset of end-stage arthritis of the knee. However, once substantial joint surface collapse has occurred or there are sign of degenerative arthritis, joint arthroplasty is the most appropriate treatment option. Currently, the non-operative treatment options consist of observation, non-steroidal anti-inflammatory drugs (NSAIDs), protected weight bearing, and analgesia as needed. Operative interventions include joint preserving surgery, unilateral knee arthroplasty (UKA), or total knee arthroplasty (TKA) depending on the extent and type of disease. Joint preserving procedures (i.e., arthroscopy, core decompression, osteochondral autograft, and bone grafting) are usually attempted in pre-collapse and some post-collapse lesions, when the articular cartilage is generally intact with only the underlying subchondral bone being affected. Conversely, after severe subchondral collapse has occurred, procedures that attempt to salvage the joint are rarely successful and joint arthroplasty are necessary to relieve pain. The purpose of this article is to highlight the recent evidence concerning the treatment options across the spectrum of management of osteonecrosis of the knee including lesion observation, medications, joint preserving techniques, and total joint arthroplasties. PMID:25705638

  4. In vitro observation of cartilage-degeneration progression by Fourier-domain OCT

    NASA Astrophysics Data System (ADS)

    Marx, Ulrich; Schmitt, Robert; Nebelung, Sven; Tingart, Markus; Lüring, Christian; Rath, Björn

    2012-03-01

    Optical Coherence Tomography (OCT) as emerging clinical diagnostic imaging technology for dermatology and other semitransparent tissues has shown high potential in monitoring and evaluating the inner structure of articular cartilages. Since novel therapies for the limitation of cartilage degeneration in early stages of osteoarthritis are available, the early minimal invasive diagnosis of cartilage degradation is clinically essential for further treatment options. With the advancing performance and thus diagnostic opportunities of 3D-OCT devices, we carried out a systematic study by monitoring arthrotic alterations of porcine osteochondral explants that are mechanically induced under traumatic impaction. As for in-vitro tomographic imaging we utilized two OCT devices, a Thorlabs FD-OCT device with 92KHz A-scan rate and 1310nm as central wavelength and a self-developed FD-OCT device at 840nm central wavelength. This allows the comparison in image contrast and optical penetration of cartilage tissue between these two spectral bandwidths. Further we analyzed human biopsies of articular cartilages with various degrees of osteoarthritis. The 2D and 3D OCT tomograms are characterized qualitatively regarding the inner tissue structure and quantitatively regarding the tissue absorption parameters. Therefore, we are developing image processing algorithms for the automated monitoring of cartilage tissue. A scoring system for 3D-monitoring allows the characterization of the probe volume regarding the morphological structure and tissue compactness by processing the C - scan data.

  5. Regulatory Challenges for Cartilage Repair Technologies

    PubMed Central

    Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)–approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product’s attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  6. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering

    PubMed Central

    Lee, Ju-Yeon; Choi, Bogyu; Wu, Benjamin; Lee, Min

    2013-01-01

    Three-dimensional printing (3DP) is a rapid prototyping (RP) technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient’s external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone (PCL) and chitosan (CH) for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design (CAD) models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite-coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication. PMID:24060622

  7. Improved approach for chondrogenic differentiation of human induced pluripotent stem cells.

    PubMed

    Nejadnik, Hossein; Diecke, Sebastian; Lenkov, Olga D; Chapelin, Fanny; Donig, Jessica; Tong, Xinming; Derugin, Nikita; Chan, Ray C F; Gaur, Amitabh; Yang, Fan; Wu, Joseph C; Daldrup-Link, Heike E

    2015-04-01

    Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for hyaline cartilage regeneration. However, current approaches for chondrogenic differentiation of hiPSCs are complicated and inefficient primarily due to intermediate embryoid body formation, which is required to generate endodermal, ectodermal, and mesodermal cell lineages. We report a new, straightforward and highly efficient approach for chondrogenic differentiation of hiPSCs, which avoids embryoid body formation. We differentiated hiPSCs directly into mesenchymal stem /stromal cells (MSC) and chondrocytes. hiPSC-MSC-derived chondrocytes showed significantly increased Col2A1, GAG, and SOX9 gene expression compared to hiPSC-MSCs. Following transplantation of hiPSC-MSC and hiPSC-MSC-derived chondrocytes into osteochondral defects of arthritic joints of athymic rats, magnetic resonance imaging studies showed gradual engraftment, and histological correlations demonstrated hyaline cartilage matrix production. Results present an efficient and clinically translatable approach for cartilage tissue regeneration via patient-derived hiPSCs, which could improve cartilage regeneration outcomes in arthritic joints. PMID:25578634

  8. Mosaic arthroplasty of the medial femoral condyle in horses - An experimental study.

    PubMed

    Bodó, Gábor; Vásárhelyi, Gábor; Hangody, László; Módis, László

    2014-06-01

    One Arabian and 5 Hungarian half-bred horses were used to study the macroscopic and microscopic survival of autologous osteochondral grafts in the weight-bearing surface of the medial femoral condyle (MFC). Grafts were harvested from the cranial surface of the medial femoral trochlea (MFT) under arthroscopic control. Three of them were transplanted into the weight-bearing surface of the contralateral MFC using an arthrotomy approach. Three months later this transplantation procedure was repeated on the opposite stifle joints in the same animals, but at that time transplantation was performed arthroscopically. Follow-up arthroscopy was carried out 12 months after the first operations, and biopsies were taken from both the recipient and the donor sites for histological examination. During follow-up arthroscopy, the transplanted areas looked congruent and smooth. Microscopically, the characteristics of hyaline cartilage were present in 5 out of the 10 biopsies examined; however, in the other half of biopsies glycosaminoglycan (GAG) loss and change in the architecture of the transplanted cartilage was observed. In a 16-year-old horse, all grafts broke during harvesting, and thus transplantation was not performed. No radiological signs of osteoarthritic changes were detected 9 to 12 months after the operations in the donor and recipient joints. Clinically, no lameness or effusion was present three months after the transplantations. PMID:24334083

  9. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage.

    PubMed

    Virén, T; Huang, Y P; Saarakkala, S; Pulkkinen, H; Tiitu, V; Linjama, A; Kiviranta, I; Lammi, M J; Brünott, A; Brommer, H; Van Weeren, R; Brama, P A J; Zheng, Y P; Jurvelin, J S; Töyräs, J

    2012-04-01

    The aim of this study was to compare sensitivity of ultrasound and optical coherence tomography (OCT) techniques for the evaluation of the integrity of spontaneously repaired horse cartilage. Articular surfaces of horse intercarpal joints, featuring both intact tissue and spontaneously healed chondral or osteochondral defects, were imaged ex vivo with arthroscopic ultrasound and laboratory OCT devices. Quantitative ultrasound (integrated reflection coefficient (IRC), apparent integrated backscattering coefficient (AIB) and ultrasound roughness index (URI)) and optical parameters (optical reflection coefficient (ORC), optical roughness index (ORI) and optical backscattering (OBS)) were determined and compared with histological integrity and mechanical properties of the tissue. Spontaneously healed tissue could be quantitatively discerned from the intact tissue with ultrasound and OCT techniques. Furthermore, several significant correlations (p?

  10. Ferumoxytol: a new, clinically applicable label for stem-cell tracking in arthritic joints with MRI

    PubMed Central

    Khurana, Aman; Nejadnik, Hossein; Chapelin, Fanny; Lenkov, Olga; Gawande, Rakhee; Lee, Sungmin; Gupta, Sandeep N; Aflakian, Nooshin; Derugin, Nikita; Messing, Solomon; Lin, Guiting; Lue, Tom F; Pisani, Laura; Daldrup-Link, Heike E

    2013-01-01

    Aim To develop a clinically applicable MRI technique for tracking stem cells in matrix-associated stem-cell implants, using the US FDA-approved iron supplement ferumoxytol. Materials & methods Ferumoxytol-labeling of adipose-derived stem cells (ADSCs) was optimized in vitro. A total of 11 rats with osteochondral defects of both femurs were implanted with ferumoxytol- or ferumoxides-labeled or unlabeled ADSCs, and underwent MRI up to 4 weeks post matrix-associated stem-cell implant. The signal-to-noise ratio of different matrix-associated stem-cell implant was compared with t-tests and correlated with histopathology. Results An incubation concentration of 500 µg iron/ml ferumoxytol and 10 µg/ml protamine sulfate led to significant cellular iron uptake, T2 signal effects and unimpaired ADSC viability. In vivo, ferumoxytol-and ferumoxides-labeled ADSCs demonstrated significantly lower signal-to-noise ratio values compared with unlabeled controls (p < 0.01). Histopathology confirmed engraftment of labeled ADSCs, with slow dilution of the iron label over time. Conclusion Ferumoxytol can be used for in vivo tracking of stem cells with MRI. PMID:23534832

  11. Interactions between structural and chemical biomimetism in synthetic stem cell niches.

    PubMed

    Nava, Michele M; Raimondi, Manuela T; Credi, Caterina; De Marco, Carmela; Turri, Stefano; Cerullo, Giulio; Osellame, Roberto

    2015-02-01

    Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect. PMID:25594262

  12. Increasing the Osmolarity of Joint Irrigation Solutions May Avoid Injury to Cartilage: A Pilot Study

    PubMed Central

    Huntley, James S.; Simpson, A. Hamish R. W.; Hall, Andrew C.

    2009-01-01

    Saline (0.9%, 285 mOsm) and Hartmann’s solution (255 mOsm) are two commonly used joint irrigation solutions that alter the extracellular osmolarity of in situ chondrocytes during articular surgery. We asked whether varying the osmolarity of these solutions influences in situ chondrocyte death in mechanically injured articular cartilage. We initially exposed osteochondral tissue harvested from the metacarpophalangeal joints of 3-year-old cows to solutions of 0.9% saline and Hartmann’s solution of different osmolarity (100–600 mOsm) for 2 minutes to allow in situ chondrocytes to respond to the altered osmotic environment. The full thickness of articular cartilage then was “injured” with a fresh scalpel. Using confocal laser scanning microscopy, in situ chondrocyte death at the injured cartilage edge was quantified spatially as a function of osmolarity at 2.5 hours. Increasing the osmolarity of 0.9% saline and Hartmann’s solution to 600 mOsm decreased in situ chondrocyte death in the superficial zone of injured cartilage. Compared with 0.9% saline, Hartmann’s solution was associated with greater chondrocyte death in the superficial zone of injured cartilage, but not when the osmolarity of both solutions was increased to 600 mOsm. These experiments may have implications for the design of irrigation solutions used during arthroscopic and open articular surgery. PMID:19641975

  13. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Jin, Xiaobing; Ma, Peter X.

    2011-05-01

    To repair complexly shaped tissue defects, an injectable cell carrier is desirable to achieve an accurate fit and to minimize surgical intervention. However, the injectable carriers available at present have limitations, and are not used clinically for cartilage regeneration. Here, we report nanofibrous hollow microspheres self-assembled from star-shaped biodegradable polymers as an injectable cell carrier. The nanofibrous hollow microspheres, integrating the extracellular-matrix-mimicking architecture with a highly porous injectable form, were shown to efficiently accommodate cells and enhance cartilage regeneration, compared with control microspheres. The nanofibrous hollow microspheres also supported a significantly larger amount of, and higher-quality, cartilage regeneration than the chondrocytes-alone group in an ectopic implantation model. In a critical-size rabbit osteochondral defect-repair model, the nanofibrous hollow microspheres/chondrocytes group achieved substantially better cartilage repair than the chondrocytes-alone group that simulates the clinically available autologous chondrocyte implantation procedure. These results indicate that the nanofibrous hollow microspheres are an excellent injectable cell carrier for cartilage regeneration.

  14. Hip Microfracture

    PubMed Central

    McGill, Kevin C.; Bush-Joseph, Charles A.; Nho, Shane J.

    2010-01-01

    Microfracture is a marrow-stimulating technique used in the hip to treat cartilage defects associated with femoro-acetabular impingement, instability, or traumatic hip injury. These defects have a low probability of healing spontaneously and therefore often require surgical intervention. Originally adapted from the knee, microfracture is part of a spectrum of cartilage repair options that include palliative procedures such as debridement and lavage, reparative procedures such as marrow-stimulating techniques (abrasion arthroplasty and microfracture), and restorative procedures such as autologous chondrocyte implantation and osteochondral allograft/autografts. The basic indications for microfracture of the hip include focal and contained lesions typically less than 4 cm in diameter, full-thickness (Outerbridge grade IV) defects in weightbearing areas, unstable lesions with intact subchondral bone, and focal lesions without evidence of surrounding chondromalacia. Although not extensively studied in the hip, there are some small clinical series with promising early outcomes. Although the widespread use of microfracture in the hip is hindered by difficulties in identifying lesions on preoperative imaging and instrumentation to circumvent the femoral head, this technique continues to gain acceptance as an initial treatment for small, focal cartilage defects.

  15. Passaged Adult Chondrocytes Can Form Engineered Cartilage with Functional Mechanical Properties: A Canine Model

    PubMed Central

    Ng, Kenneth W.; Lima, Eric G.; Bian, Liming; O'Conor, Christopher J.; Jayabalan, Prakash S.; Stoker, Aaron M.; Kuroki, Keiichi; Cook, Cristi R.; Ateshian, Gerard A.; Cook, James L.

    2010-01-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-?3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects. PMID:19845465

  16. The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering.

    PubMed

    Baah-Dwomoh, Adwoa; Rolong, Andrea; Gatenholm, Paul; Davalos, Rafael V

    2015-06-01

    This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and leads to cell death. We hypothesized that using IRE to kill the bacteria at specific locations and particular times, we could introduce conduits in the overall scaffold by preventing cellulose biosynthesis locally. Through mathematical modeling and experimental techniques, electrical effects were investigated and the parameters for IRE of G. xylinus were determined. We found that for a specific set of parameters, an applied electric field of 8 to 12.5 kV/cm, producing a local field of 3 kV/cm, was sufficient to kill most of the bacteria and create a localized pore. However, an applied electric field of 17.5 kV/cm was required to kill all. Results suggest that IRE may be an effective tool to create scaffolds with appropriate porosity for orthopedic applications. Ideally, these engineered scaffolds could be used to successfully treat osteochondral defects. PMID:25690311

  17. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures*

    PubMed Central

    Zhang, Shao-zhi; Yu, Xiao-yi; Chen, Guang-ming

    2012-01-01

    Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. Vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me2SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me2SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (?10, ?20, and ?30 °C). The Me2SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10?6, 0.48×10?6, and 0.27×10?6 cm2/s at ?10, ?20, and ?30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me2SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics. PMID:22374614

  18. Permeation of dimethyl sulfoxide into articular cartilage at subzero temperatures.

    PubMed

    Zhang, Shao-Zhi; Yu, Xiao-Yi; Chen, Guang-Ming

    2012-03-01

    Osteochondral allografting has been proved to be a useful method to treat diseased or damaged areas of joint surfaces. Operational long-term stocks of grafts which supply a buffer between procurement and utilization would contribute to the commercialization or industrialization of this technology. Vitrification has been thought to be a promising method for successful preservation of articular cartilage (AC), but high concentration cryoprotectants (CPAs) are used which may cause high cellular toxicity. An effective way to reduce CPA toxicity is to increase CPA concentration gradually while the temperature is lowered. Understanding the mechanism of CPA permeation at subzero temperatures is important for designing the cryopreservation protocol. In this research, the permeation of dimethyl sulfoxide (Me(2)SO) in ovine AC at subzero temperatures was studied experimentally. Pretreated AC discs were exposed in Me(2)SO solutions for different time (0, 5, 15, 30, 50, 80, and 120 min) at three temperature levels (-10, -20, and -30 °C). The Me(2)SO concentration within the tissue was determined by ultraviolet (UV) spectrophotometry. The diffusion coefficients were estimated to be 0.85×10(-6), 0.48×10(-6), and 0.27×10(-6) cm(2)/s at -10, -20, and -30 °C, respectively, and the corresponding activation energy was 29.23 kJ/mol. Numerical simulation was performed to compare two Me(2)SO addition protocols, and the results demonstrated that the total loading duration could be effectively reduced with the knowledge of permeation kinetics. PMID:22374614

  19. Surgical Treatment Options for the Young and Active Middle-Aged Patient with Glenohumeral Arthritis

    PubMed Central

    Bhatia, Sanjeev; Hsu, Andrew; Lin, Emery C.; Chalmers, Peter; Ellman, Michael; Cole, Brian J.; Verma, Nikhil N.

    2012-01-01

    The diagnosis and treatment of symptomatic chondral lesions in young and active middle-aged patients continues to be a challenging issue. Surgeons must differentiate between incidental chondral lesions from symptomatic pathology that is responsible for the patient's pain. A thorough history, physical examination, and imaging work up is necessary and often results in a diagnosis of exclusion that is verified on arthroscopy. Treatment of symptomatic glenohumeral chondral lesions depends on several factors including the patient's age, occupation, comorbidities, activity level, degree of injury and concomitant shoulder pathology. Furthermore, the size, depth, and location of symptomatic cartilaginous injury should be carefully considered. Patients with lower functional demands may experience success with nonoperative measures such as injection or anti-inflammatory pharmacotherapy. When conservative management fails, surgical options are broadly classified into palliative, reparative, restorative, and reconstructive techniques. Patients with lower functional demands and smaller lesions are best suited for simpler, lower morbidity palliative procedures such as debridement (chondroplasty) and cartilage reparative techniques (microfracture). Those with higher functional demands and large glenohumeral defects will usually benefit more from restorative techniques including autograft or allograft osteochondral transfers and autologous chondrocyte implantation (ACI). Reconstructive surgical options are best suited for patients with bipolar lesions. PMID:22536515

  20. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration.

    PubMed

    Bailey, Brennan M; Nail, Lindsay N; Grunlan, Melissa A

    2013-09-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior, including regeneration. Thus a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight "hybrid" hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer (methacrylated star polydimethylsiloxane, PDMSstar-MA) and organic macromer (poly(ethylene glycol)diacrylate, PEG-DA) as well as both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt.% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt.% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four "zones" perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. PMID:23707502

  1. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration

    PubMed Central

    Bailey, Brennan M.; Nail, Lindsay N.; Grunlan, Melissa A.

    2013-01-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior including regeneration. Thus, a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight “hybrid” hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer [methacrylated star polydimethylsiloxane, PDMSstar-MA] and organic macromer [poly(ethylene glycol)diacrylate, PEG-DA] as well both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four “zones” perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well-suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. PMID:23707502

  2. Absence of the medial sesamoid bone associated with metatarsophalangeal pain.

    PubMed

    Kanatli, Ulunay; Ozturk, Akif Muhtar; Ercan, Nil Gulizar Tokgoz; Ozalay, Metin; Daglar, Bulent; Yetkin, Haluk

    2006-10-01

    Pain at the first metatarsophalangeal (MTP) joint can result from inflammation, chondromalacia, flexor hallucis brevis tendinitis, osteochondritis dessecans, fracture of a sesamoid bone, avascular necrosis of sesamoids, inflamed bursae, intractable keratoses, infection, sesamoiditis, gout arthropathy, and rheumatoid arthritis. Congenital absence of a sesamoid bone is extremely rare. We present a 17-year-old male patient with pain at the plantar aspect of the right MTP joint associated with congenital absence of the medial sesamoid. There was tenderness and the range of motion was minimally restricted. He described the pain as necessitating changes in his social life. On radiographs, the medial hallucial sesamoid was absent on the right side. The MTP joint was also evaluated using magnetic resonance imaging (MRI). A metatarsal pad was prescribed and the patient was satisfied with the treatment at the 2 months follow-up period. MRI revealed no pathological tissue at the medial sesamoid site. Hallucial sesamoids absorb pressure, reduce friction, protect the tendons, act like a fulcrum to increase the mechanical force of the tendons, and provide a dynamic function to the great toe by elevating first metatarsal head. Congenital absence of these bones is very rare but we must consider it in a patient with MTP joint pain. PMID:16506237

  3. Cell-tissue interactions in osteoarthritic human hip joint articular cartilage.

    PubMed

    Huttu, Mari R J; Puhakka, Jani; Mäkelä, Janne T A; Takakubo, Yuya; Tiitu, Virpi; Saarakkala, Simo; Konttinen, Yrjö T; Kiviranta, Ilkka; Korhonen, Rami K

    2014-08-01

    Volume and morphology of chondrocytes in osteoarthritic human hip joint articular cartilage were characterized, and their relationship to tissue structure and function was determined. Human osteochondral articular cartilage samples (n=16) were obtained from the femoral heads of nine patients undergoing total hip arthroplasty due to osteoarthritis (OA). Superficial chondrocytes (N=65) were imaged in situ with a confocal laser scanning microscope at 37?°C. This was followed by the determination of the mechanical properties of the tissue samples, depth-wise characterization of cell morphology (height, width; N=385) as well as structure and composition of the tissues using light microscopy, digital densitometry, Fourier transform infrared microspectroscopy and polarized light microscopy. Significant correlations were found between the cell volume and the orientation angle associated with the collagen fibers (r=0.320, p=0.009) as well as between the cell volume and the initial dynamic modulus of the tissue (r=-0.305, p=0.013). Furthermore, the depth-dependent chondrocyte aspect ratio (height/width) correlated significantly with the orientation angle of the collagen fibers and with the tissue's proteoglycan content (r=0.261 and r=0.228, respectively, p<0.001). Our findings suggest that the orientation angle of the collagen fibers primarily controls chondrocyte volume and shape in osteoarthritic human hip joint articular cartilage. PMID:24702070

  4. High Density Infill in Cracks and Protrusions from the Articular Calcified Cartilage in Osteoarthritis in Standardbred Horse Carpal Bones

    PubMed Central

    Laverty, Sheila; Lacourt, Mathieu; Gao, Chan; Henderson, Janet E.; Boyde, Alan

    2015-01-01

    We studied changes in articular calcified cartilage (ACC) and subchondral bone (SCB) in the third carpal bones (C3) of Standardbred racehorses with naturally-occurring repetitive loading-induced osteoarthritis (OA). Two osteochondral cores were harvested from dorsal sites from each of 15 post-mortem C3 and classified as control or as showing early or advanced OA changes from visual inspection. We re-examined X-ray micro-computed tomography (µCT) image sets for the presence of high-density mineral infill (HDMI) in ACC cracks and possible high-density mineralized protrusions (HDMP) from the ACC mineralizing (tidemark) front (MF) into hyaline articular cartilage (HAC). We hypothesized and we show that 20-µm µCT resolution in 10-mm diameter samples is sufficient to detect HDMI and HDMP: these are lost upon tissue decalcification for routine paraffin wax histology owing to their predominant mineral content. The findings show that µCT is sufficient to discover HDMI and HDMP, which were seen in 2/10 controls, 6/9 early OA and 8/10 advanced OA cases. This is the first report of HDMI and HDMP in the equine carpus and in the Standardbred breed and the first to rely solely on µCT. HDMP are a candidate cause for mechanical tissue destruction in OA. PMID:25927581

  5. Micro-anatomical response of cartilage-on-bone to compression: mechanisms of deformation within and beyond the directly loaded matrix

    PubMed Central

    Thambyah, Ashvin; Broom, Neil

    2006-01-01

    The biomechanical function of articular cartilage relies crucially on its integration with both the subchondral bone and the wider continuum of cartilage beyond the directly loaded contact region. This study was aimed at visualizing, at the microanatomical level, the deformation response of cartilage including that of the non-directly loaded continuum. Cartilage-on-bone samples from bovine patellae were loaded in static compression until a near-equilibrium deformation was achieved, and then chemically fixed in this deformed state. Full-depth cartilage–bone sections, incorporating the indentation profile and beyond, were studied in their fully hydrated state using differential interference contrast microscopy. Morphometric measurements of the indented profile were used in combination with a force analysis of the tangential layer to investigate the extent to which the applied force is attenuated in moving away from the directly loaded region. This study provides microscopic evidence of a structure-related response in the transitional zone of the cartilage matrix. It is manifested as an intense chevron-type shear discontinuity arising from the constraints provided by both the strain-limiting articular surface and the osteochondral attachment. The discontinuity persists well into the non-directly loaded continuum of cartilage and is proposed as a force attenuation mechanism. The structural and biomechanical analyses presented in this study emphasize the important role of the complex microanatomy of cartilage, highlighting the interconnectivity and optimal recruitment of the load-bearing elements throughout the zonally differentiated cartilage depth. PMID:17062019

  6. Ossification defects detected in CT scans represent early osteochondrosis in the distal femur of piglets.

    PubMed

    Olstad, Kristin; Kongsro, Jørgen; Grindflek, Eli; Dolvik, Nils Ivar

    2014-08-01

    The purpose of the current study was to validate the use of CT for selection against osteochondrosis in pigs by calculating positive predictive value and comparing it to the positive predictive value of macroscopic evaluation, using histological examination as the reference standard. Eighteen male, hereditarily osteochondrosis-predisposed piglets underwent terminal examination at biweekly intervals from the ages of 82-180 days old, including CT scanning, macroscopic, and histological evaluation of the left distal femur. Areas of ischemic chondronecrosis (osteochondrosis) were confirmed in histological sections from 44/56 macroscopically suspected lesions, resulting in a positive predictive value of 79% (95% CI: 67-84%). Suspected lesions, that is; focal, radiolucent defects in the ossification front in CT scans corresponded to areas of ischemic chondronecrosis in 36/36 histologically examined lesions, resulting in a positive predictive value of 100% (95% CI: 90-100%). CT was superior to macroscopic evaluation for diagnosis of early stages of osteochondrosis in the distal femur of piglets. The current histologically validated observations can potentially be extrapolated to diagnostic monitoring of juvenile osteochondritis dissecans in children, or to animal models of human juvenile articular cartilage injury and repair. PMID:24740876

  7. Complex and elementary histological scoring systems for articular cartilage repair.

    PubMed

    Orth, Patrick; Madry, Henning

    2015-08-01

    The repair of articular cartilage defects is increasingly moving into the focus of experimental and clinical investigations. Histological analysis is the gold standard for a valid and objective evaluation of cartilaginous repair tissue and predominantly relies on the use of established scoring systems. In the past three decades, numerous elementary and complex scoring systems have been described and modified, including those of O'Driscoll, Pineda, Wakitani, Sellers and Fortier for entire defects as well as those according to the International Cartilage Repair Society (ICRS-I/II) for osteochondral tissue biopsies. Yet, this coexistence of different grading scales inconsistently addressing diverse parameters may impede comparability between reported study outcomes. Furthermore, validation of these histological scoring systems has only seldom been performed to date. The aim of this review is (1) to give a comprehensive overview and to compare the most important established histological scoring systems for articular cartilage repair, (2) to describe their specific advantages and pitfalls, and (3) to provide valid recommendations for their use in translational and clinical studies of articular cartilage repair. PMID:25876650

  8. The modified Broström-Gould procedure--early results using a newly described surgical technique.

    PubMed

    Molloy, Andy P; Ajis, Adam; Kazi, Hussain

    2014-09-01

    Ankle lateral ligament injuries are one of the most common sporting injuries, with the majority being successfully treated conservatively. However, reconstruction is required if this fails. We present the clinical results of a newly described surgical technique of triple-breasting the lateral ligament complex using suture anchors. Sixteen patients (18 ankles) were treated with this new technique. The mean duration of symptoms was 77 months. The mean follow-up was 25 months. All patients underwent an arthroscopy followed by lateral ligament reconstruction by this new technique. Additional pathology included osteoarthritis (2), ankle impingement due to anterior cheilus (2), osteochondral defects (3) and non-union of fracture of anterior process of calcaneus. Additional procedures above diagnostic arthroscopy, soft tissue debridement and modified Broström-Gould repair included debridement and microfracture (3), open excision of anterior calcaneal process (1) and arthroscopic anterior ankle cheilectomy (2). At final follow-up, all ankles were subjectively and objectively stable. Mean AOFAS score improved from 53 to 88. This was statistically significant (p<0.05). Eight patients had resumed normal pre-injury level of activities (including sports), 8 had some reduction in normal level of activity. The early results of our modification show it to be safe, successful and comparable with previously published series with all patients having objectively and subjectively stable ankles at final follow-up. PMID:25103713

  9. Development and evaluation of a device for simultaneous uniaxial compression and optical imaging of cartilage samples in vitro

    SciTech Connect

    Steinert, Marian; Kratz, Marita; Jones, David B. [Department of Experimental Orthopaedics and Biomechanics, Philipps University Marburg, Baldingerstr., 35043 Marburg (Germany); Jaedicke, Volker; Hofmann, Martin R. [Photonics and Terahertz Technology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum (Germany)

    2014-10-15

    In this paper, we present a system that allows imaging of cartilage tissue via optical coherence tomography (OCT) during controlled uniaxial unconfined compression of cylindrical osteochondral cores in vitro. We describe the system design and conduct a static and dynamic performance analysis. While reference measurements yield a full scale maximum deviation of 0.14% in displacement, force can be measured with a full scale standard deviation of 1.4%. The dynamic performance evaluation indicates a high accuracy in force controlled mode up to 25 Hz, but it also reveals a strong effect of variance of sample mechanical properties on the tracking performance under displacement control. In order to counterbalance these disturbances, an adaptive feed forward approach was applied which finally resulted in an improved displacement tracking accuracy up to 3 Hz. A built-in imaging probe allows on-line monitoring of the sample via OCT while being loaded in the cultivation chamber. We show that cartilage topology and defects in the tissue can be observed and demonstrate the visualization of the compression process during static mechanical loading.

  10. In vivo telemetric determination of shear and axial loads on a regenerative cartilage scaffold following ligament disruption.

    PubMed

    Szivek, John A; Heden, Gregory J; Geffre, Christopher P; Wenger, Karl H; Ruth, John T

    2014-10-01

    Recent interest in repair of chondral and osteochondral cartilage defects to prevent osteoarthritis caused by ligament disruption has led to the research and development of biomimetic scaffolds combined with cell-based regeneration techniques. Current clinical focal defect repair strategies have had limited success. New scaffold-based approaches may provide solutions that can repair extensive damage and prevent osteoarthritis. This study utilized a novel scaffold design that accommodated strain gauges for shear and axial load monitoring in the canine stifle joint through implantable telemetry technology. Loading changes induced by ligament disruption are widely implicated in the development of injury-related osteoarthritis. Seeding the scaffold end with progenitor cells resulted in higher shear stress than without cell seeding and histology showed significantly more bone and cartilage formation. Biomechanically, the effect of transecting the anterior cruciate ligament was a significant reduction in braking load in shear, but no change axially, and conversely a significant reduction in push-off load axially, but no change in shear. This is the first study to report shear loads measured directly in knee joint tissue. Further, advances of these measurement techniques are critical to developing improved regeneration strategies and personalizing reliable rehabilitation protocols. PMID:24678004

  11. Histopomorphic Evaluation of Radiofrequency Mediated Débridement Chondroplasty

    PubMed Central

    Ganguly, Kumkum; McRury, Ian D; Goodwin, Peter M; Morgan, Roy E; Augé II, Wayne K

    2010-01-01

    The use of radiofrequency devices has become widespread for surgical ablation procedures. When ablation devices have been deployed in treatment settings requiring tissue preservation like débridement chondroplasty, adoption has been limited due to the collateral damage caused by these devices in healthy tissue surrounding the treatment site. Ex vivo radiofrequency mediated débridement chondroplasty was performed on osteochondral specimens demonstrating surface fibrillation obtained from patients undergoing knee total joint replacement. Three radiofrequency systems designed to perform débridement chondroplasty were tested each demonstrating different energy delivery methods: monopolar ablation, bipolar ablation, and non-ablation energy. Treatment outcomes were compared with control specimens as to clinical endpoint and histopomorphic characteristics. Fibrillated cartilage was removed in all specimens; however, the residual tissue remaining at the treatment site displayed significantly different characteristics attributable to radiofrequency energy delivery method. Systems that delivered ablation-based energies caused tissue necrosis and collateral damage at the treatment site including corruption of cartilage Superficial and Transitional Zones; whereas, the non-ablation system created a smooth articular surface with Superficial Zone maintenance and without chondrocyte death or tissue necrosis. The mechanism of radiofrequency energy deposition upon tissues is particularly important in treatment settings requiring tissue preservation. Ablation-based device systems can cause a worsened state of articular cartilage from that of pre-treatment. Non-ablation energy can be successful in modifying/preconditioning tissue during débridement chondroplasty without causing collateral damage. Utilizing a non-ablation radiofrequency system provides the ability to perform successful débridement chondroplasty without causing additional articular cartilage tissue damage and may allow for other cartilage intervention success. PMID:20721322

  12. LOW-INTENSITY PULSED ULTRASOUND PROMOTES CHONDROGENIC PROGENITOR CELL MIGRATION VIA FOCAL ADHESION KINASE PATHWAY

    PubMed Central

    Jang, Kee W.; Ding, Lei; Seol, Dongrim; Lim, Tae-hong; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Low-intensity pulsed ultrasound (LIPUS) has been frequently studied for its beneficial effects on the repair of injured articular cartilage. Here, we hypothesized that these effects are due to stimulation of chondrogenic progenitor cell (CPC) migration toward injured areas in cartilage through focal adhesion kinase (FAK) activation. CPC chemotaxis in bluntly impacted osteochondral explants was examined by confocal microscopy and migratory activity of cultured CPCs was measured in trans-well and monolayer scratch assays. FAK activation by LIPUS was analyzed in cultured CPCs by western blot. LIPUS effects were compared with the effects of two known chemotactic factors; formylated-methionine peptides (fMLF), and high-mobility group box 1 (HMGB1) protein. LIPUS significantly enhanced CPC migration on explants and in cell culture assays. Phosphorylation of FAK at the kinase domain (Tyr 576/577) was maximized by 5 minute exposure to LIPUS at a dose of 27.5 mW/cm2 and at a frequency of 3.5 MHz. Treatment with fMLF, but not HMBG1 enhanced FAK activation to a degree similar to LIPUS, but neither fMLF nor HMGB1 enhanced the LIPUS effect. LIPUS-induced CPC migration was blocked by suppressing FAK phosphorylation with a Src family kinases (SFKs) inhibitor that blocks FAK phosphorylation. Our results imply that LIPUS might be utilized to promote cartilage healing by inducing the migration of CPCs to injured sites, which could delay or prevent the onset of post-traumatic osteoarthritis (PTOA). PMID:24612644

  13. Investigation of Localized Delivery of Diclofenac Sodium from Poly(D,L-Lactic Acid-co-Glycolic Acid)/Poly(Ethylene Glycol) Scaffolds Using an In Vitro Osteoblast Inflammation Model

    PubMed Central

    Sidney, Laura E.; Heathman, Thomas R.J.; Britchford, Emily R.; Abed, Arif; Rahman, Cheryl V.

    2015-01-01

    Nonunion fractures and large bone defects are significant targets for osteochondral tissue engineering strategies. A major hurdle in the use of these therapies is the foreign body response of the host. Herein, we report the development of a bone tissue engineering scaffold with the ability to release anti-inflammatory drugs, in the hope of evading this response. Porous, sintered scaffolds composed of poly(D,L-lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) were prepared with and without the anti-inflammatory drug diclofenac sodium. Analysis of drug release over time demonstrated a profile suitable for the treatment of acute inflammation with ?80% of drug released over the first 4 days and a subsequent release of around 0.2% per day. Effect of drug release was monitored using an in vitro osteoblast inflammation model, comprised of mouse primary calvarial osteoblasts stimulated with proinflammatory cytokines interleukin-1? (IL-1?), tumor necrosis factor-? (TNF-?), and interferon-? (IFN-?). Levels of inflammation were monitored by cell viability and cellular production of nitric oxide (NO) and prostaglandin E2 (PGE2). The osteoblast inflammation model revealed that proinflammatory cytokine addition to the medium reduced cell viability to 33%, but the release of diclofenac sodium from scaffolds inhibited this effect with a final cell viability of ?70%. However, releasing diclofenac sodium at high concentrations had a toxic effect on the cells. Proinflammatory cytokine addition led to increased NO and PGE2 production; diclofenac-sodium-releasing scaffolds inhibited NO release by ?64% and PGE2 production by ?52%, when the scaffold was loaded with the optimal concentration of drug. These observations demonstrate the potential use of PLGA/PEG scaffolds for localized delivery of anti-inflammatory drugs in bone tissue engineering applications. PMID:25104438

  14. Poly(2-acrylamido-2-methylpropanesulfonic acid) gel induces articular cartilage regeneration in vivo: comparisons of the induction ability between single- and double-network gels.

    PubMed

    Ogawa, Munehiro; Kitamura, Nobuto; Kurokawa, Takayuki; Arakaki, Kazunobu; Tanaka, Yasuhito; Gong, Jian Ping; Yasuda, Kazunori

    2012-09-01

    The purpose of this study was to determine the in vivo cartilage induction effect of the poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) single-network (SN) gel and poly(N,N'-dimethyl acrylamide) (PDMAAm) SN gel in comparison with that of the PAMPS/PDMAAm double-network (DN) gel. An osteochondral defect created in rabbit trochlea was treated with PAMPS/PDMAAm DN, PAMPS SN, or PDMAAm SN gel implantation or left untreated. The gel was implanted into the defect so that a 2-mm depth remained. The defects were examined by histologic and immunohistochemical evaluations, surface assessment using confocal laser scanning microscopy, and real-time polymerase chain reaction analysis at 4 weeks. Samples were quantitatively evaluated with a scoring system reported by Wayne et al. The PAMPS/PDMAAm DN gel-implanted defect was filled with the hyaline-like cartilage tissue. The PAMPS SN gel-implanted defect was filled inhomogenously with hyaline/fibrocartilage tissue. The histology score of the defect treated with PAMPS/PDMAAm DN gel was significantly higher than those treated with PAMPS and PDMAAm SN gels, and the untreated defect (p = 0.0408, p < 0.0001, and p < 0.0001, respectively) and the scores of the defect treated with PAMPS SN gel were significantly higher than those treated with PDMAAm SN gel and the untreated defect (p = 0.0026 and p = 0.0026, respectively). These results suggested that the PAMPS SN gel has an ability that can induce hyaline cartilage regeneration in vivo, but that the PDMAAm SN gel does not. The current study indicates that the chondrogenic potential of a negatively charged PAMPS gel component plays an important role in the cartilage regeneration ability of the PAMPS/PDMAAm DN gel in vivo. PMID:22492713

  15. Acute Osteoclast Activity following Subchondral Drilling Is Promoted by Chitosan and Associated with Improved Cartilage Repair Tissue Integration

    PubMed Central

    Chen, G.; Sun, J.; Lascau-Coman, V.; Chevrier, A.; Marchand, C.; Hoemann, Caroline D.

    2011-01-01

    Objective: Cartilage-bone integration is an important functional end point of cartilage repair therapy, but little is known about how to promote integration. We tested the hypothesis that chitosan-stabilized blood clot implant elicits osteoclasts to drilled cartilage defects and promotes repair and cartilage-bone integration. Design: Bilateral trochlear defects in 15 skeletally mature rabbit knees were microdrilled and then treated with chitosan–glycerol phosphate (GP)/blood implant with fluorescent chitosan tracer and thrombin to accelerate in situ solidification or with thrombin alone. Chitosan clearance, osteoclast density, and osteochondral repair were evaluated at 1, 2, and 8 weeks at the outside, edge, and through the proximal microdrill holes. Results: Chitosan was retained at the top of the drill holes at 1 week as extracellular particles became internalized by granulation tissue cells at 2 weeks and was completely cleared by 8 weeks. Osteoclasts burst-accumulated at microdrill hole edges at 1 week, in new woven bone at the base of the drill holes at 2 weeks, and below endochondral cartilage repair at 8 weeks. Implants elicited 2-fold more osteoclasts relative to controls (P < 0.001), a more complete drill hole bone repair, and improved cartilage-bone integration and histological tissue quality. Treated and control 8-week cartilage repair tissues contained 85% collagen type II. After 8 weeks of repair, subchondral osteoclast density correlated positively with bone-cartilage repair tissue integration (P < 0.0005). Conclusions: Chitosan-GP/blood implant amplified the acute influx of subchondral osteoclasts through indirect mechanisms, leading to significantly improved repair and cartilage-bone integration without inducing net bone resorption. Osteoclasts are cellular mediators of marrow-derived cartilage repair integration.

  16. Of Mice, Men and Elephants: The Relation between Articular Cartilage Thickness and Body Mass

    PubMed Central

    Malda, Jos; de Grauw, Janny C.; Benders, Kim E. M.; Kik, Marja J. L.; van de Lest, Chris H. A.; Creemers, Laura B.; Dhert, Wouter J. A.; van Weeren, P. René

    2013-01-01

    Mammalian articular cartilage serves diverse functions, including shock absorption, force transmission and enabling low-friction joint motion. These challenging requirements are met by the tissue’s thickness combined with its highly specific extracellular matrix, consisting of a glycosaminoglycan-interspersed collagen fiber network that provides a unique combination of resilience and high compressive and shear resistance. It is unknown how this critical tissue deals with the challenges posed by increases in body mass. For this study, osteochondral cores were harvested post-mortem from the central sites of both medial and lateral femoral condyles of 58 different mammalian species ranging from 25 g (mouse) to 4000 kg (African elephant). Joint size and cartilage thickness were measured and biochemical composition (glycosaminoclycan, collagen and DNA content) and collagen cross-links densities were analyzed. Here, we show that cartilage thickness at the femoral condyle in the mammalian species investigated varies between 90 µm and 3000 µm and bears a negative allometric relationship to body mass, unlike the isometric scaling of the skeleton. Cellular density (as determined by DNA content) decreases with increasing body mass, but gross biochemical composition is remarkably constant. This however need not affect life-long performance of the tissue in heavier mammals, due to relatively constant static compressive stresses, the zonal organization of the tissue and additional compensation by joint congruence, posture and activity pattern of larger mammals. These findings provide insight in the scaling of articular cartilage thickness with body weight, as well as in cartilage biochemical composition and cellularity across mammalian species. They underscore the need for the use of appropriate in vivo models in translational research aiming at human applications. PMID:23437402

  17. Mechano growth factor (MGF) and transforming growth factor (TGF)-?3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.

    PubMed

    Luo, Ziwei; Jiang, Li; Xu, Yan; Li, Haibin; Xu, Wei; Wu, Shuangchi; Wang, Yuanliang; Tang, Zhenyu; Lv, Yonggang; Yang, Li

    2015-06-01

    Damaged cartilage has poor self-healing ability and usually progresses to scar or fibrocartilaginous tissue, and finally degenerates to osteoarthritis (OA). Here we demonstrated that one of alternative isoforms of IGF-1, mechano growth factor (MGF) acted synergistically with transforming growth factor ?3 (TGF-?3) embedded in silk fibroin scaffolds to induce chemotactic homing and chondrogenic differentiation of mesenchymal stem cells (MSCs). Combination of MGF and TGF-?3 significantly increased cell recruitment up to 1.8 times and 2 times higher than TGF-?3 did in vitro and in vivo. Moreover, MGF increased Collagen II and aggrecan secretion of TGF-?3 induced hMSCs chondrogenesis, but decreased Collagen I in vitro. Silk fibroin (SF) scaffolds have been widely used for tissue engineering, and we showed that methanol treated pured SF scaffolds were porous, similar to compressive module of native cartilage, slow degradation rate and excellent drug released curves. At 7 days after subcutaneous implantation, TGF-?3 and MGF functionalized silk fibroin scaffolds (STM) recruited more CD29+/CD44+cells (P<0.05). Similarly, more cartilage-like extracellular matrix and less fibrillar collagen were detected in STM scaffolds than that in TGF-?3 modified scaffolds (ST) at 2 months after subcutaneous implantation. When implanted into articular joints in a rabbit osteochondral defect model, STM scaffolds showed the best integration into host tissues, similar architecture and collagen organization to native hyaline cartilage, as evidenced by immunostaining of aggrecan, collagen II and collagen I, as well as Safranin O and Masson's trichrome staining, and histological evalution based on the modified O'Driscoll histological scoring system (P<0.05), indicating that MGF and TGF-?3 might be a better candidate for cartilage regeneration. This study demonstrated that TGF-?3 and MGF functionalized silk fibroin scaffolds enhanced endogenous stem cell recruitment and facilitated in situ articular cartilage regeneration, thus providing a novel strategy for cartilage repair. PMID:25818452

  18. Insight into the 3D-trabecular architecture of the human patella.

    PubMed

    Hoechel, Sebastian; Schulz, Georg; Müller-Gerbl, Magdalena

    2015-07-01

    The subchondral bone plate (SBP), a dynamic component of the osteochondral unit, shows functional adaptation to long-term loading by distribution of the mineral content in a manner best serving the mechanical demands. Since the received joint-load is transmitted into the trabecular system, the spongy bone also exhibits differences in strain energy density which models it for optimal support. To evaluate the regional variations in trabecular architecture, in accordance with the density distribution of the SBP revealing its long-term load intake, CT- and ?CT-datasets of ten physiologic patellae were analysed for defined parameters of bony structure. For the SBP, the density distributions as well as area measurements were used. The trabecular architecture was described using parameters of bone morphology comprising the first 5mm (examined in 1mm steps) below the SBP. The obtained measurements are: Bone volume fraction (BV/TV); Bone surface density (BS/TV); Trabecular number (Tb.N); Trabecular separation (Tb.Sp); Trabecular thickness (Tb.Th); structure model index (SMI); and the Degree of anisotropy (DA). The evaluated architectural parameters varied within the trabecular system and showed an inhomogeneous distribution pattern. It proved to be distinctive with maxima of material and stability situated below areas of the highest long-term load intake. With increasing depth, the pattern of distribution was persistent but lessened in intensity. The parameters significantly correlated with the density distribution of the SBP within the first and second millimetres. With increasing depth down to the fifth millimetre, the coefficients of correlation decreased for all values. The trabecular network adapts to its mechanical needs and is therefore not homogenously built. Dependent upon the long-term load intake, the trabecular model optimizes the support with significant correlation to the density distribution of the SBP. PMID:25835353

  19. Key Pathways to Prevent Posttraumatic Arthritis for Future Molecule-Based Therapy

    PubMed Central

    Wimmer, Markus A.

    2013-01-01

    Joint injuries are common, especially among young adults aged 18 to 44 years. They are accompanied by a cascade of events that increase the risk of posttraumatic osteoarthritis (PTOA). Therefore, understanding of biological responses that predispose to PTOA should help in determining treatment modalities to delay and/or prevent the onset and progression of the disease. The vast majority of the literature pointed to chondrocyte death and apoptosis, inflammation and matrix damage/fragmentation being the earliest events that follow joint trauma. Together these events lead to the development of osteoarthritis-like focal cartilage lesions that if untreated have a tendency to expand and progress to fully developed disease. Currently, the only treatments available for joint trauma are surgical interventions. Experimental biologic approaches involve engineering of cartilage with the use of cells (stem cells or chondrocytes), juvenile or adult cartilage pieces, scaffolds, and various polymeric matrices. The major challenge for all of them is regeneration of normal functional mature hyaline cartilage that can sustain the load, resist compression, and most important, integrate with the host tissue. If the tissue is spontaneously repaired it fails to reproduce original structure and function and thus, may be more susceptible to re-injury. Thus, there is a critical need to develop novel molecular mechanism-based therapeutic approaches to biologic chondral and/or osteochondral repair. The focus of this review is on the earliest molecular and cellular manifestations of injury that can be grouped based on the following therapeutic options for PTOA: chondroprotection, anti-inflammatory, matrix protection, and matrix remodeling/matrix synthesis.

  20. Continuous Passive Motion, Early Weight Bearing, and Active Motion following Knee Articular Cartilage Repair

    PubMed Central

    Howard, Jennifer S.; Mattacola, Carl G.; Romine, Spencer E.; Lattermann, Christian

    2010-01-01

    Objective: To systematically review the literature regarding postoperative rehabilitation for articular cartilage repair: (1) does the use of continuous passive motion (CPM) enhance healing, and if so, what parameters should be applied? (2) Can active range of motion (AROM) be used in place of or with CPM? (3) When can individuals safely resume weight bearing (WB) following repair? Data Sources: A search using Medline, SportsDiscus, and CINAHL databases was performed with the following keywords: articular cartilage, AROM, CPM, microfracture, osteochondral allograft, autologous chondrocyte implantation, rehabilitation, weight bearing, and knee. Study Selection: Basic science or clinical outcomes examining the effects of CPM, AROM, or WB on knee articular cartilage healing. Data Extraction: Selected articles were rated using the Strength of Recommendation Taxonomy (SORT) to determine evidence for clinical application. Data Synthesis: Sixteen articles met selection criteria: 12 were basic science studies; 4 were clinical studies. Basic science evidence supporting CPM exists. However, few patient-oriented outcomes have been documented resulting in a SORT rating of C. Early WB and AROM received a SORT rating of B based on limited clinical research and patient-oriented outcomes. Conclusions: Basic science evidence supports CPM to maintain ROM, reduce pain, and promote healing. Patient-oriented research is needed to strengthen CPM’s recommendation. Limited evidence exists regarding early WB and AROM post cartilage repair. There is insufficient evidence to confidently address when to begin WB for maximum healing. Appropriate basic science and patient-oriented research are needed for rehabilitation protocols to maximize benefits of cartilage repair procedures.

  1. Cartilage Shear Kinematics During Tibio-Femoral Articulation: Effect of Acute Joint Injury & Tribosupplementation on Synovial Fluid Lubrication

    PubMed Central

    Wong, Benjamin L.; Kim, Seung Hyun Chris; Antonacci, Jennifer M.; McIlwraith, C. Wayne; Sah, Robert L.

    2009-01-01

    Objective To determine the effects of acute injury and tribosupplementation by hyaluronan (HA) on synovial fluid (SF) modulation of cartilage shear during tibio-femoral articulation. Methods Human osteochondral blocks from the lateral femoral condyle (LFC) and tibial plateau (LTP) were apposed, compressed 13%, and subjected to sliding under video microscopy. Tests were conducted with equine SF from normal joints (NL-SF), SF from acutely injured joints (AI-SF), and AI-SF to which HA was added (AI-SF+HA). Local and overall shear strain (Exz) and the lateral displacement (?x) at which Exz reached 50% of peak values (?x1/2) were determined. Results During articulation, LFC and LTP cartilage Exz increased with ?x and peaked when surfaces slid, with peak Exz being maintained during sliding. With AI-SF as lubricant, surface and overall ?x1/2 were ~40% and ~20% higher, respectively than values with NL-SF and AI-SF+HA as lubricant. Also, peak Exz was markedly higher with AI-SF as lubricant than with NL-SF as lubricant, both near the surface (~80%) and overall (50–200%). Following HA supplementation to AI-SF, Exz was reduced from values with AI-SF alone by 30–50% near the surface and 20–30% overall. Magnitudes of surface and overall Exz were markedly (~50–80%) higher in LTP cartilage than LFC cartilage for all lubricants. Conclusion Acute injury impairs SF function, elevating cartilage Exz markedly during tibio-femoral articulation; such elevated Exz may contribute to post-injury associated cartilage degeneration. Since HA partially restores the function of AI-SF, as indicated by Exz, tribosupplements may be beneficial in restoring cartilage mechanobiology. PMID:20004636

  2. Multiple Recombinant Adeno-Associated Viral Vector Serotypes Display Persistent In Vivo Gene Expression in Vector-Transduced Rat Stifle Joints

    PubMed Central

    Gurda, Brittney L.; Engiles, Julie B.; Hankenson, Kurt D.; Wilson, James M.; Richardson, Dean W.

    2013-01-01

    Abstract Our aim was to investigate serotype-specific cell and tissue-transduction tropisms, transgene expression levels and longevity, and immunogenicity of candidate rAAV serotypes in rat osteochondral cells, tissues, and stifle joints. In vitro, we used six rAAV serotypes and two promoters to transduce synoviocytes and chondrocytes. Serotypes rAAV2/5 and 2/2 yielded the highest transduction efficiency 4 days after transduction. No differences were detected between cytomegalovirus and chicken ?-actin promoters. In vivo, intra-articular injection was used to introduce four rAAV serotypes into 4-month-old rats in the left stifle joint. Eleven months later, serotype 2/5 vector, diluted with saline or surfactant, was injected into the right stifle joint of the same rats. Rats were analyzed up to 12 months after initial injection. Bioluminescence was detected at 7 days and all serotypes tested displayed bioluminescence above controls after 1 year in the left stifle. Gene expression was detected in the right stifle joints of all rats with the exception of rats previously injected with serotype 2/5. We observed no difference irrespective of whether the luciferin was injected subcutaneously or intraperitoneally. However, surfactant-diluted vectors led to increased gene expression compared with saline-diluted vectors. Cell- and tissue-specific transduction was observed in rat stifles injected with an nLacZ-containing rAAV. Transduction was greatest in stromal tissues and mesenchymal cell types. Exposure to a specific serotype did not inhibit subsequent transduction with a different serotype at a second vector injection. Including surfactant as a vector diluent increased gene expression within the stifle joint and should be considered for in vivo gene therapy applications. PMID:23659250

  3. Mild degenerative changes of hip cartilage in elderly patients: an available sample representative of early osteoarthritis

    PubMed Central

    Wei, Bo; Gu, Qiangrong; Li, Dong; Yan, Junwei; Guo, Yang; Mao, Fengyong; Xu, Yan; Zang, Fengchao; Wang, Liming

    2014-01-01

    This study investigated the cellular and molecular changes which occur in cartilage from adults with femoral neck fracture (FNF) and osteoarthritis (OA), and explored the similarities in hip cartilage obtained from elderly patients and patients with early OA. Femoral heads were retrieved from 23 female patients undergoing total hip arthroplasty (THA). This group included 7 healthy patients with FNF (hFNF), 8 elderly adults with FNF (eFNF), and 8 elderly patients with hip OA (OA). After high-field MRI T2 mapping, osteochondral plugs were harvested from the weight-bearing area of femoral heads for subsequent macroscopic, histologic, and immunochemical evaluation. Additionally, the contents of cartilage matrix were analyzed, and gene expression was detected. The surface of cartilage from hFNF and eFNF patients appeared smooth, regular, and elastic, whereas it showed irregularities, thinning, and defects in OA patients. Elevated T2 values and decreased accumulation of glycosaminoglycans (GAGs) were detected in cartilage from eFNF patients. Furthermore, type I collagen accumulation was slightly increased and type X collagen concentration was obviously elevated in eFNF patients; however, type II collagen distribution and the contents and anisotropy of collagen fibrils in eFNF patients showed no significant changes. Consistent with histology and immunohistochemical results, aggrecan was downregulated and type X collagen was upregulated, while collagens types I and II showed no significant changes in eFNF patients. The cellular and molecular characteristics of hip cartilage in eFNF patients who showed no symptoms of OA were similar to those in patients with mild OA. Thus, eFNF cartilage can serve as a comparative specimen for use in studies investigating early OA. PMID:25400727

  4. Hyaluronic acid-binding scaffold for articular cartilage repair.

    PubMed

    Unterman, Shimon A; Gibson, Matthew; Lee, Janice H; Crist, Joshua; Chansakul, Thanissara; Yang, Elaine C; Elisseeff, Jennifer H

    2012-12-01

    Hyaluronic acid (HA) is an extracellular matrix molecule with multiple physical and biological functions found in many tissues, including cartilage. HA has been incorporated in a number of biomaterial and scaffold systems. However, HA in the material may be difficult to control if it is not chemically modified and chemical modification of HA may negatively impact biological function. In this study, we developed a poly(ethylene glycol) hydrogel with noncovalent HA-binding capabilities and evaluated its ability to support cartilage formation in vitro and in an articular defect model. Chondrogenic differentiation of mesenchymal stem cells encapsulated in the HA-interactive scaffolds containing various amounts of exogenous HA was evaluated. The HA-binding hydrogel without exogenous HA produced the best cartilage as determined by biochemical content (glysocaminoglycan and collagen), histology (Safranin O and type II collagen staining), and gene expression analysis for aggrecan, type I collagen, type II collagen, and sox-9. This HA-binding formulation was then translated to an osteochondral defect model in the rat knee. After 6 weeks, histological analysis demonstrated improved cartilage tissue production in defects treated with the HA-interactive hydrogel compared to noninteractive control scaffolds and untreated defects. In addition to the tissue repair in the defect space, the Safranin O staining in cartilage tissue surrounding the defect was greater in treatment groups where the HA-binding scaffold was applied. In sum, incorporation of a noncovalent HA-binding functionality into biomaterials provides an ability to interact with local or exogenous HA, which can then impact tissue remodeling and ultimately new tissue production. PMID:22724901

  5. Identification of Cold-Temperature-Regulated Genes in Flavobacterium psychrophilum ?

    PubMed Central

    Hesami, Shohreh; Metcalf, Devon S.; Lumsden, John S.; MacInnes, Janet I.

    2011-01-01

    Flavobacterium psychrophilum is the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS). It causes disease primarily in fresh water-reared salmonids, but other fish species can also be affected. A diverse array of clinical conditions is associated with BCWD, including tail rot (peduncle disease), necrotic myositis, and cephalic osteochondritis. Degradation of connective and muscular tissues by extracellular proteases is common to all of these presentations. There are no effective vaccines to prevent BCWD or RTFS, and antibiotics are often used to prevent and control disease. To identify virulence factors that might permit development of an efficacious vaccine, cDNA suppression subtractive hybridization (SSH) was used to identify cold-regulated genes in a virulent strain of F. psychrophilum. Genes predicted to encode a two-component system sensor histidine kinase (LytS), an ATP-dependent RNA helicase, a multidrug ABC transporter permease/ATPase, an outer membrane protein/protective antigen OMA87, an M43 cytophagalysin zinc-dependent metalloprotease, a hypothetical protein, and four housekeeping genes were upregulated at 8°C versus the level of expression at 20°C. Because no F. psychrophilum gene was known to be suitable as an internal standard in reverse transcription-quantitative real-time PCR (RT-qPCR) experiments, the expression stability of nine commonly used reference genes was evaluated at 8°C and 20°C. Expression of the 16S rRNA was equivalent at both temperatures, and this gene was used in RT-qPCR experiments to verify the SSH findings. With the exception of the ATCC 49513 strain, similar patterns of gene expression were obtained with 11 other representative strains of F. psychrophilum. PMID:21216906

  6. Native Chondrocyte Viability during Cartilage Lesion Progression

    PubMed Central

    Ganguly, Kumkum; McRury, Ian D.; Goodwin, Peter M.; Morgan, Roy E.; Augé, Wayne K.

    2010-01-01

    Objective: Early surgical intervention for articular cartilage disease is desirable before full-thickness lesions develop. As early intervention treatments are designed, native chondrocyte viability at the treatment site before intervention becomes an important parameter to consider. The purpose of this study is to evaluate native chondrocyte viability in a series of specimens demonstrating the progression of articular cartilage lesions to determine if the chondrocyte viability profile changes during the evolution of articular cartilage disease to the level of surface fibrillation. Design: Osteochondral specimens demonstrating various degrees of articular cartilage damage were obtained from patients undergoing knee total joint replacement. Three groups were created within a patient harvest based on visual and tactile cues commonly encountered during surgical intervention: group 1, visually and tactilely intact surfaces; group 2, visually intact, tactilely soft surfaces; and group 3, surface fibrillation. Confocal laser microscopy was performed following live/dead cell viability staining. Results: Groups 1 to 3 demonstrated viable chondrocytes in all specimens, even within the fibrillated portions of articular cartilage, with little to no evidence of dead chondrocytes. Chondrocyte viability profile in articular cartilage does not appear to change as disease lesion progresses from normal to surface fibrillation. Conclusions: Fibrillated partial-thickness articular cartilage lesions are a good therapeutic target for early intervention. These lesions retain a high profile of viable chondrocytes and are readily diagnosed by visual and tactile cues during surgery. Early intervention should be based on matrix failure rather than on more aggressive procedures that further corrupt the matrix and contribute to chondrocyte necrosis of contiguous untargeted cartilage.

  7. Identification of cartilage injury using quantitative multiphoton microscopy

    PubMed Central

    Novakofski, Kira D.; Williams, Rebecca M.; Fortier, Lisa A.; Mohammed, Hussni O.; Zipfel, Warren R.; Bonassar, Lawrence J.

    2014-01-01

    Objective Cartilage injury can lead to post-traumatic osteoarthritis (PTOA). Immediate post-trauma cellular and structural changes are not widely understood. Furthermore, current cellular-resolution cartilage imaging techniques require sectioning of cartilage and/or use of dyes not suitable for patient imaging. In this study, we used multiphoton microscopy (MPM) data with FDA-approved sodium fluorescein to identify and evaluate the pattern of chondrocyte death after traumatic injury. Method Mature equine distal metacarpal or metatarsal osteochondral blocks were injured by 30 MPa compressive loading delivered over 1 sec. Injured and control sites were imaged unfixed and in situ 1 hour post-injury with sodium fluorescein using rasterized z-scanning. MPM data was quantified in MATLAB, reconstructed in 3-D, and projected in 2-D to determine the damage pattern. Results MPM images (600 per sample) were reconstructed and analyzed for cell death. The overall distribution of cell death appeared to cluster into circular (n=7) or elliptical (n=4) patterns (p=0.006). Dead cells were also prevalent near cracks in the matrix, with only 26.3% (SE=5.0%, p<0.0001) of chondrocytes near cracks being viable. Conclusion This study demonstrates the first application of MPM for evaluating cellular-scale cartilage injury in situ in live tissue, with clinical potential for detecting early cartilage damage. With this technique, we were able to uniquely observe two death patterns resulting from the same compressive loading, which may be related to local variability in matrix structure. These results also demonstrate proof-of-concept MPM diagnostic use in detecting subtle and early cartilage damage not detectable in any other way. PMID:24185113

  8. Comparison of magnetic resonance contrast arthrography and arthroscopic anatomy of the equine palmar lateral outpouching of the middle carpal joint.

    PubMed

    Getman, Liberty M; McKnight, Alexia L; Richardson, Dean W

    2007-01-01

    The objective of this report was to provide an anatomic description of the equine palmar lateral outpouching of the middle carpal joint by comparing its arthroscopic and magnetic resonance (MR) contrast arthrography appearance and to define the structures within the palmar lateral outpouching of the middle carpal joint that can be assessed arthroscopically. MR contrast arthrography was performed on seven cadaveric limbs; images were compared with those obtained during arthroscopic exploration of the palmar lateral outpouching of the middle carpal joint. Gross dissection was performed to confirm identification of intra-articular structures. The MR images compared well with the arthroscopic and gross appearance of the palmar lateral outpouching of the middle carpal joint. Portions of the ulnar carpal bone, fourth carpal bone, fourth metacarpal bone, lateral palmar intercarpal ligament, and lateral collateral ligament of the carpus were identified within the palmar lateral outpouching of the middle carpal joint in all limbs. In addition, in three limbs areas of the third carpal bone and intermediate carpal bone could be seen. MR arthrography was a useful tool for helping to define the anatomy of the palmar lateral outpouching of the middle carpal joint. The arthroscopic approach to the palmar lateral outpouching of the middle carpal joint is technically easy, but the intra-articular anatomy can be confusing. Use of a motorized arthroscopic blade to remove excess synovial tissue is necessary to view all of the structures within the palmar lateral outpouching of the middle carpal joint. Arthroscopic removal of osteochondral fragments from this location may be facilitated by the information obtained from this study. PMID:18018719

  9. Multipotency of equine mesenchymal stem cells derived from synovial fluid.

    PubMed

    Murata, D; Miyakoshi, D; Hatazoe, T; Miura, N; Tokunaga, S; Fujiki, M; Nakayama, K; Misumi, K

    2014-10-01

    Cartilage regeneration with cell therapy following arthroscopic surgery could be used in racehorses with intra-articular fractures (IAF) and osteochondritis dissecans (OCD). The aims of this study were to investigate the origin and multipotency of stromal cells in the synovial fluid (SF) of horses with intra-articular injury and synovitis, and to provide a new strategy for regeneration of lost articular cartilage. Mesenchymal stromal cells were isolated from SF of horses with IAF and OCD. Multipotency was analysed by RT-PCR for specific mRNAs and staining for production of specific extracellular matrices after induction of differentiation. The total number of SF-derived mesenchymal stromal cells reached >1?×?10(7) by the fourth passage. SF-derived cells were strongly positive (>90% cells positive) for CD44, CD90 and major histocompatibility complex (MHC) class I, and moderately positive (60-80% cells positive) for CD11a/CD18, CD105 and MHC class II by flow cytometry. SF-derived cells were negative for CD34 and CD45. Under specific nutrient conditions, SF-derived cells differentiated into osteogenic, chondrogenic, adipogenic and tenogenic lineages, as indicated by the expression of specific marker genes and by the production of specific extracellular matrices. Chondrogenic induction in culture resulted in a change in cell shape to a 'stone-wall' appearance and formation of a gelatinous sheet that was intensely stained with Alcian blue. SF may be a novel source of multipotent mesenchymal stem cells with the ability to regenerate chondrocytes. PMID:25151209

  10. Immature articular cartilage and subchondral bone covered by menisci are potentially susceptive to mechanical load

    PubMed Central

    2014-01-01

    Background The differences of mechanical and histological properties between cartilage covered by menisci and uncovered by menisci may contribute to the osteoarthritis after meniscectomy and these differences are not fully understood. The purpose of this study is to investigate potential differences in the mechanical and histological properties, and in particular the collagen architecture, of the superficial cartilage layer and subchondral bone between regions covered and uncovered by menisci using immature knee. Methods Osteochondral plugs were obtained from porcine tibial cartilage that was either covered or uncovered by menisci. Investigation of the thickness, mechanical properties, histology, and water content of the cartilage as well as micro-computed tomography analysis of the subchondral bone was performed to compare these regions. Collagen architecture was also assessed by using scanning electron microscopy. Results Compared to the cartilage uncovered by menisci, that covered by menisci was thinner and showed a higher deformity to compression loading and higher water content. In the superficial layer of cartilage in the uncovered regions, collagen fibers showed high density, whereas they showed low density in covered regions. Furthermore, subchondral bone architecture varied between the 2 regions, and showed low bone density in covered regions. Conclusions Cartilage covered by menisci differed from that uncovered in both its mechanical and histological properties, especially with regards to the density of the superficial collagen layer. These regional differences may be related to local mechanical environment in normal condition and indicate that cartilage covered by menisci is tightly guarded by menisci from extreme mechanical loading. Our results indicate that immature cartilage degeneration and subchondral microfracture may occur easily to extreme direct mechanical loading in covered region after meniscectomy. PMID:24669849

  11. Effect of a novel synthesized sulfonamido-based gallate-SZNTC on chondrocytes metabolism in vitro.

    PubMed

    Liu, Qin; Li, Mu-Yan; Lin, Xiao; Lin, Cui-Wu; Liu, Bu-Ming; Zheng, Li; Zhao, Jin-Min

    2014-09-25

    The ideal therapeutic agent for treatment of osteoarthritis (OA) should have not only potent anti-inflammatory effect but also favorable biological properties to restore cartilage function. Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on OA (Singh et al., 2003) [1]. However, GA has much weaker antioxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel sulfonamido-based gallate named sodium salt of 3,4,5-trihydroxy-N-[4-(thiazol-2-ylsulfamoyl)-phenyl]-benzamide (SZNTC) and analyzed its chondro-protective and pharmacological effects. Comparison of SZNTC with GA and sulfathiazole sodium (ST-Na) was also performed. Results showed that SZNTC could effectively inhibit the Interleukin-1 (IL-1)-mediated induction of metalloproteinase-1 (MMP-1) and MMP-3 and could induce the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), which demonstrated ability to reduce the progression of OA. SZNTC can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Expression of the collagen I gene was effectively down-regulated, revealing the inhibition of chondrocytes dedifferentiation by SZNTC. Hypertrophy that may lead to chondrocyte ossification was also undetectable in SZNTC groups. The recommended dose of SZNTC ranges from 3.91?g/ml to 15.64?g/ml, among which the most profound response was observed with 7.82?g/ml. In contrast, its source products of GA and ST-Na have a weak effect in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed SZNTC as a promising novel agent in the treatment of chondral and osteochondral lesions. PMID:25130855

  12. A Novel Synthesized Sulfonamido-Based Gallate-JEZ-C as Potential Therapeutic Agents for Osteoarthritis.

    PubMed

    Wei, Shixiu; Lu, Zhenhui; Zou, Yunfeng; Lin, Xiao; Lin, Cuiwu; Liu, Buming; Zheng, Li; Zhao, Jinmin

    2015-01-01

    Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on osteoarthritis (OA). However, GA has much weaker anti-oxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel compound named JEZ-C and analyzed its anti-arthritis and chondro-protective effects. Comparison of JEZ-C with its sources i.e. GA and Sulfamethoxazole (SMZ) was also performed. Results showed that JEZ-C could effectively inhibit the IL-1-mediated induction of MMP-1 and MMP-13 and could induce the expression of TIMP-1, which demonstrated its ability to reduce the progression of OA. JEZ-C can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Meanwhile, expression of the collagen I gene was effectively downregulated, revealing the inhibition of chondrocytes dedifferentiation by JEZ-C. Hypertrophy that may lead to chondrocyte ossification was also undetectable in JEZ-C groups. The recommended dose of JEZ-C ranges from 6.25×10-7 ?g/ml to 6.25×10-5 ?g/ml, among which the most profound response was observed with 6.25×10-6 ?g/ml. In contrast, its source products of GA and SMZ have a weak effect not only in the inhibition of OA but also in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed JEZ-C as a promising novel agent in the treatment of chondral and osteochondral lesions. PMID:26107568

  13. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    PubMed Central

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differentiation of rat bone marrow–derived stromal cells. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized ECM by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG), collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface.

  14. Cartilage Repair Using Human Embryonic Stem Cell-Derived Chondroprogenitors

    PubMed Central

    Kapacee, Zoher; Peng, Jiang; Lu, Shibi; Lucas, Robert J.; Hardingham, Timothy E.

    2014-01-01

    In initial work, we developed a 14-day culture protocol under potential GMP, chemically defined conditions to generate chondroprogenitors from human embryonic stem cells (hESCs). The present study was undertaken to investigate the cartilage repair capacity of these cells. The chondrogenic protocol was optimized and validated with gene expression profiling. The protocol was also applied successfully to two lines of induced pluripotent stem cells (iPSCs). Chondrogenic cells derived from hESCs were encapsulated in fibrin gel and implanted in osteochondral defects in the patella groove of nude rats, and cartilage repair was evaluated by histomorphology and immunocytochemistry. Genes associated with chondrogenesis were upregulated during the protocol, and pluripotency-related genes were downregulated. Aggregation of chondrogenic cells was accompanied by high expression of SOX9 and strong staining with Safranin O. Culture with PluriSln1 was lethal for hESCs but was tolerated by hESC chondrogenic cells, and no OCT4-positive cells were detected in hESC chondrogenic cells. iPSCs were also shown to generate chondroprogenitors in this protocol. Repaired tissue in the defect area implanted with hESC-derived chondrogenic cells was stained for collagen II with little collagen I, but negligible collagen II was observed in the fibrin-only controls. Viable human cells were detected in the repair tissue at 12 weeks. The results show that chondrogenic cells derived from hESCs, using a chemically defined culture system, when implanted in focal defects were able to promote cartilage repair. This is a first step in evaluating these cells for clinical application for the treatment of cartilage lesions. PMID:25273540

  15. A Novel Synthesized Sulfonamido-Based Gallate—JEZ-C as Potential Therapeutic Agents for Osteoarthritis

    PubMed Central

    Lin, Xiao; Lin, Cuiwu; Liu, Buming; Zheng, Li; Zhao, Jinmin

    2015-01-01

    Gallic acid (GA) and its derivatives are anti-inflammatory agents reported to have an effect on osteoarthritis (OA). However, GA has much weaker anti-oxidant effects and inferior bioactivity compared with its derivatives. We modified GA with the introduction of sulfonamide to synthesize a novel compound named JEZ-C and analyzed its anti-arthritis and chondro-protective effects. Comparison of JEZ-C with its sources i.e. GA and Sulfamethoxazole (SMZ) was also performed. Results showed that JEZ-C could effectively inhibit the IL-1-mediated induction of MMP-1 and MMP-13 and could induce the expression of TIMP-1, which demonstrated its ability to reduce the progression of OA. JEZ-C can also exert chondro-protective effects by promoting cell proliferation and maintaining the phenotype of articular chondrocytes, as evidenced by improved cell growth, enhanced synthesis of cartilage specific markers such as aggrecan, collagen II and Sox9. Meanwhile, expression of the collagen I gene was effectively downregulated, revealing the inhibition of chondrocytes dedifferentiation by JEZ-C. Hypertrophy that may lead to chondrocyte ossification was also undetectable in JEZ-C groups. The recommended dose of JEZ-C ranges from 6.25×10-7 ?g/ml to 6.25×10-5 ?g/ml, among which the most profound response was observed with 6.25×10-6 ?g/ml. In contrast, its source products of GA and SMZ have a weak effect not only in the inhibition of OA but also in the bioactivity of chondrocytes, which indicated the significance of this modification. This study revealed JEZ-C as a promising novel agent in the treatment of chondral and osteochondral lesions. PMID:26107568

  16. Identification of cold-temperature-regulated genes in Flavobacterium psychrophilum.

    PubMed

    Hesami, Shohreh; Metcalf, Devon S; Lumsden, John S; Macinnes, Janet I

    2011-03-01

    Flavobacterium psychrophilum is the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome (RTFS). It causes disease primarily in fresh water-reared salmonids, but other fish species can also be affected. A diverse array of clinical conditions is associated with BCWD, including tail rot (peduncle disease), necrotic myositis, and cephalic osteochondritis. Degradation of connective and muscular tissues by extracellular proteases is common to all of these presentations. There are no effective vaccines to prevent BCWD or RTFS, and antibiotics are often used to prevent and control disease. To identify virulence factors that might permit development of an efficacious vaccine, cDNA suppression subtractive hybridization (SSH) was used to identify cold-regulated genes in a virulent strain of F. psychrophilum. Genes predicted to encode a two-component system sensor histidine kinase (LytS), an ATP-dependent RNA helicase, a multidrug ABC transporter permease/ATPase, an outer membrane protein/protective antigen OMA87, an M43 cytophagalysin zinc-dependent metalloprotease, a hypothetical protein, and four housekeeping genes were upregulated at 8°C versus the level of expression at 20°C. Because no F. psychrophilum gene was known to be suitable as an internal standard in reverse transcription-quantitative real-time PCR (RT-qPCR) experiments, the expression stability of nine commonly used reference genes was evaluated at 8°C and 20°C. Expression of the 16S rRNA was equivalent at both temperatures, and this gene was used in RT-qPCR experiments to verify the SSH findings. With the exception of the ATCC 49513 strain, similar patterns of gene expression were obtained with 11 other representative strains of F. psychrophilum. PMID:21216906

  17. Chondrogenesis and Mineralization During In Vitro Culture of Human Mesenchymal Stem Cells on Three-Dimensional Woven Scaffolds

    PubMed Central

    Abrahamsson, Christoffer K.; Yang, Fan; Park, Hyoungshin; Brunger, Jonathan M.; Valonen, Piia K.; Langer, Robert; Welter, Jean F.; Caplan, Arnold I.; Guilak, Farshid

    2010-01-01

    Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(?-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(?-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p?osteochondral defect repair. PMID:20673022

  18. Arthroscopy of the subtalar joint and arthroscopic subtalar arthrodesis.

    PubMed

    Tasto, James P

    2006-01-01

    Subtalar arthroscopy has become a valuable adjunct to the tools used in lower extremity surgery. For the past 25 years, ankle arthroscopy has been in vogue for treating a variety of conditions. Subtalar arthroscopy has more treatment limitations and is more technically difficult to perform than ankle arthroscopy because of the anatomic confines and structure of the subtalar joint. Most procedures are performed on the posterior aspect of the subtalar joint. The subtalar joint is composed of three articulations (posterior, middle, and anterior facets) and is surrounded by a variety of intra-articular and extra-articular ligaments, whose anatomy must be fully understood before attempting this procedure. Subtalar arthroscopy may be indicated for diagnostic purposes and for débridement of synovial impingement syndromes in the sinus tarsi. It may be used to examine loose bodies or osteochondral lesions, to address fractures of the lateral process of the talus, and to evaluate subtalar instability to determine appropriate stabilization methods. Arthroscopic subtalar arthrodesis also has gained credibility over the past 10 years as an acceptable surgical procedure. Arthroscopic evaluation of subtalar instability is useful in planning the appropriate stabilization. Subtalar arthroscopy is usually performed with the patient in the lateral decubitus position without traction. Anterior and posterior portals as well as an accessory anterior portal are usually necessary to perform all of the above procedures. Because of the limited confines of the joint, care must be taken to prevent any articular cartilage damage. When performing subtalar arthroscopy in conjunction with ankle arthroscopy, the subtalar arthroscopy should be performed first to avoid excessive extravasation from the ankle arthroscopy, which could obscure entry to the subtalar joint. Complications of subtalar arthroscopy are similar to those encountered in ankle arthroscopy, such as damage to the sural and superficial peroneal nerves. PMID:16958488

  19. Associations between the properties of the cartilage matrix and findings from quantitative MRI in human osteoarthritic cartilage of the knee

    PubMed Central

    Wei, Bo; Du, Xiaotao; Liu, Jun; Mao, Fengyong; Zhang, Xiang; Liu, Shuai; Xu, Yan; Zang, Fengchao; Wang, Liming

    2015-01-01

    The aim of this study was to investigate the associations between the properties of the cartilage matrix and the results of T2 mapping and delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) in human knee osteoarthritic cartilage. Osteochondral samples were harvested from the middle part of the femoral condyle and tibial plateaus of 20 patients with knee osteoarthritis (OA) during total knee arthroplasty. Sagittal T2 mapping, T1pre, and T1Gd were performed using 7.0T magnetic resonance imaging (MRI). Gycosaminoglycan (GAG) distribution was evaluated by OARSI, collagen anisotropy was assessed by polarized light microscopy (PLM), and biochemical analyses measured water, GAG, and collagen content. Associations between properties of the cartilage matrix and T2 and ?R1 (1/T1Gd-1/T1pre) values were explored using correlation analysis. T2 and ?R1 values were significantly correlated with the degree of cartilage degeneration (OARSI grade; ? = 0.53 and 0.77). T2 values were significantly correlated with water content (r = 0.69; P < 0.001), GAG content (r = -0.43; P < 0.001), and PLM grade (r = 0.47; P < 0.001), but not with collagen content (r = -0.02; P = 0.110). ?R1 values were significantly correlated with GAG content (r = -0.84; P < 0.001) and PLM grade (r = 0.41; P < 0.001). Taken together, T2 mapping and dGEMRIC results were correlated with the properties of the cartilage matrix in human knee osteoarthritic cartilage. Combination T2 mapping and dGEMRIC represents a potential non-invasive monitoring technique to detect the progress of knee OA. PMID:26097577

  20. Local Morphological Response of the Distal Femoral Articular–Epiphyseal Cartilage Complex of Young Foals to Surgical Stab Incision and Potential Relevance to Cartilage Injury and Repair in Children

    PubMed Central

    Hendrickson, Eli H.S.; Ekman, Stina; Carlson, Cathy S.; Dolvik, Nils I.

    2013-01-01

    Objective: Describe the local morphological response of the articular–epiphyseal cartilage complex to surgical stab incision in the distal femur of foals, with emphasis on the relationship between growth cartilage injury, enchondral ossification, and repair. Design: Nine foals were induced into general anesthesia at the age of 13 to 15 days. Four full-thickness stab incision defects were created in the cartilage on the lateral aspect of the lateral trochlear ridge of the left distal femur. Follow-up examination was carried out from 1 to 49 days postoperatively, including examination of intact bones, sawed slabs, and histological sections. Results: Incision defects filled with cells displaying fibroblast-, chondrocyte-, and osteoblast-like characteristics, potentially validating the rationale behind the drilling of stable juvenile osteochondritis dissecans lesions in children. Incisions induced necrosis within the cartilage on the margins at all depths of the defects. Sharp dissection may therefore be contraindicated in cartilage repair in young individuals. Incisions caused a focal delay in enchondral ossification in 2 foals, apparently related to the orientation of the incision defect relative to the direction of ossification. Defects became progressively surrounded by subchondral bone, in which granulation tissue containing clasts and foci of osteoblast-like cells was observed. Continued enchondral ossification was therefore likely to result in healing of uncomplicated defects to morphologically normal bone. Conclusions: Epiphyseal growth cartilage injury had the potential to exert a negative effect on enchondral ossification. Enchondral ossification exerted a beneficial effect on repair. This relationship warrants consideration in future studies of cartilage injury and repair within the articular–epiphyseal cartilage complex of all species.

  1. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  2. Lateral Ligament Repair and Reconstruction Restore Neither Contact Mechanics of the Ankle Joint nor Motion Patterns of the Hindfoot

    PubMed Central

    Prisk, Victor R.; Imhauser, Carl W.; O'Loughlin, Padhraig F.; Kennedy, John G.

    2010-01-01

    Background: Ankle sprains may damage both the lateral ligaments of the hindfoot and the osteochondral tissue of the ankle joint. When nonoperative treatment fails, operative approaches are indicated to restore both native motion patterns at the hindfoot and ankle joint contact mechanics. The goal of the present study was to determine the effect of lateral ligament injury, repair, and reconstruction on ankle joint contact mechanics and hindfoot motion patterns. Methods: Eight cadaveric specimens were tested with use of robotic technology to apply combined compressive (200-N) and inversion (4.5-Nm) loads to the hindfoot at 0° and 20° of plantar flexion. Contact mechanics at the ankle joint were simultaneously measured. A repeated-measures experiment was designed with use of the intact condition as control, with the other conditions including sectioned anterior talofibular and calcaneofibular ligaments, the Broström and Broström-Gould repairs, and graft reconstruction. Results: Ligament sectioning decreased contact area and caused a medial and anterior shift in the center of pressure with inversion loads relative to those with the intact condition. There were no significant differences in inversion or coupled axial rotation with inversion between the Broström repair and the intact condition; however, medial translation of the center of pressure remained elevated after the Broström repair relative to the intact condition. The Gould modification of the Broström procedure provided additional support to the hindfoot relative to the Broström repair, reducing inversion and axial rotation with inversion beyond that of intact ligaments. There were no significant differences in center-of-pressure excursion patterns between the Broström-Gould repair and the intact ligament condition, but this repair increased contact area beyond that with the ligaments intact. Graft reconstruction more closely restored inversion motion than did the Broström-Gould repair at 20° of plantar flexion but limited coupled axial rotation. Graft reconstruction also increased contact areas beyond the lateral ligament-deficient conditions but altered center-of-pressure excursion patterns relative to the intact condition. Conclusions: No lateral ankle ligament reconstruction completely restored native contact mechanics of the ankle joint and hindfoot motion patterns. Clinical Relevance: Our results provide a rationale for conducting long-term, prospective, comparative, in vivo studies to assess the impact of altered mechanics following lateral ligament injury, and its nonoperative and operative treatment, on the development of ankle osteoarthritis. PMID:20962188

  3. Comparison of Three Methods to Quantify Repair Cartilage Collagen Orientation

    PubMed Central

    Ross, Keir A.; Williams, Rebecca M.; Schnabel, Lauren V.; Mohammed, Hussni O.; Potter, Hollis G.; Bradica, Gino; Castiglione, Emme; Pownder, Sarah L.; Satchell, Patrick W.; Saska, Ryan A.

    2013-01-01

    Objective: The aim of this study was to determine if the noninvasive or minimally invasive and nondestructive imaging techniques of quantitative T2-mapping or multiphoton microscopy (MPM) respectively, could detect differences in cartilage collagen orientation similar to polarized light microscopy (PLM). It was hypothesized that MRI, MPM, and PLM would all detect quantitative differences between repair and normal cartilage tissue. Methods: Osteochondral defects in the medial femoral condyle were created and repaired in 5 mature goats. Postmortem, MRI with T2-mapping and histology were performed. T2 maps were generated and a mean T2 value was calculated for each region of interest. Histologic slides were assessed using MPM with measurements of autocorrelation ellipticity, and by PLM with application of a validated scoring method. Collagen orientation using each of the 3 modalities (T2-mapping, MPM, and PLM) was measured in the center of the repair tissue and compared to remote, normal cartilage. Results: MRI, MPM, and PLM were able to detect a significant difference between repair and normal cartilage (n = 5). The average T2 value was longer for repair tissue (41.43 ± 9.81 ms) compared with normal cartilage (27.12 ± 14.22 ms; P = 0.04); MPM autocorrelation ellipticity was higher in fibrous tissue (3.75 ± 1.17) compared with normal cartilage (2.24 ± 0.51; P = 0.01); the average PLM score for repair tissue was lower (1.6 ± 1.02) than the score for remote normal cartilage (4.4 ± 0.42; P = 0.002). The strongest correlation among the methods was between MRI and PLM (r = ?0.76; P = 0.01), followed by MPM and PLM (r = ?0.58; P = 0.08), with the weakest correlation shown between MRI and MPM (r = 0.35; P = 0.31). Conclusion: All 3 imaging methods quantitatively measured differences in collagen orientation between repair and normal cartilage, but at very different levels of resolution. PLM is destructive to tissue and requires euthanasia, but because MPM can be used arthroscopically, both T2-mapping and MPM can be performed in vivo, offering nondestructive means to assess collagen orientation that could be used to obtain longitudinal data in cartilage repair studies.

  4. Surgical treatment of subchondral cystic lesions of the third metacarpal bone: results in 15 horses (1986-1994).

    PubMed

    Hogan, P M; McIlwraith, C W; Honnas, C M; Watkins, J P; Bramlage, L R

    1997-11-01

    Subchondral cystic lesions (SCLs) in the condyle of the third metacarpal bone (MCIII) were surgically treated in 15 horses. The median age at presentation was 18 months (range 10 months-12 years) with 10 of 15 horses less than age 2 years. The SCLs were confined to the front limbs in all cases with 2 horses having bilateral lesions. Lesions were isolated to the medial condyle(s) of MCIII in 13 of 15 horses; a cystic lesion occurred in the lateral condyle in one horse and in the sagittal ridge in one horse. One horse with bilateral lesions had an additional cystic lesion located in the right medial femoral condyle. Fourteen of 15 horses had a history of moderate lameness attributable to the metacarpophalangeal joint; the lesion was an incidental finding in one horse. Duration of lameness ranged from 4 weeks to 8 months and was either acute in onset, or occurred intermittently and was associated with exercise. Fetlock flexion significantly exacerbated the lameness in all cases. Synovial effusion was absent in 8 (53%) cases. Cystic lesions were curetted arthroscopically in 12 horses, and through a dorsal pouch arthrotomy in 3 horses. Concurrent osteostixis of the cystic cavity was performed in 7 horses. Two horses were treated arthroscopically for osteochondral fragmentation of the proximodorsal aspect of the proximal phalanx one year following surgical curettage of the SCL. Twelve of 15 horses (80%) were sound for intended use following surgical treatment. Two horses did not regain soundness and follow-up information was unavailable for one horse. Total period of follow-up was 1-6 years. Follow-up radiographic examinations were available for 9 horses. Mild periarticular osteophyte formation and enthesiophyte formation at the dorsal joint capsular attachments was present in 5 of the 9 horses. Bony ingrowth of the cystic lesion was detectable in 8 horses and enlargement of the cystic cavity was observed in one horse. Based on the information gained from this study, it would appear that surgical treatment of SCLs in the distal metacarpus can result in a favourable outcome for athletic use. PMID:9413722

  5. Ultrasound speed varies in articular cartilage under indentation loading.

    PubMed

    Lötjönen, Pauno; Julkunen, Petro; Tiitu, Virpi; Jurvelin, Jukka S; Töyräs, Juha

    2011-12-01

    In ultrasound elastography, tissue strains are determined by localizing changes in ultrasound echoes during mechanical loading. The technique has been proposed for arthroscopic quantification of the mechanical properties of cartilage. The accuracy of ultrasound elastography depends on the invariability of sound speed in loaded tissue. In unconfined geometry, mechanical compression has been shown to induce variation in sound speed, leading to errors in the determined mechanical properties. This phenomenon has not been confirmed in indentation geometry, the only loading geometry applicable in situ or in vivo. In the present study, ultrasound speed during indentation of articular cartilage was characterized and the effect of variable sound speed on the strain measurements was investigated. Osteochondral samples (n = 7, diameter = 25.4 mm), prepared from visually intact bovine patellae (n = 7), were indented with a plane-ended ultrasound transducer (diameter = 5.6 mm, peak frequency: 8.1 MHz). A sequence of three compression tests (strain-rate = 10%/s, 2700-s relaxation) was applied using the mean strains of 2.2%, 4.5%, and 6.4%. Then, ultrasound speed during the ramp and stress-relaxation phases was determined using the time-of- flight technique. To investigate the role of cartilage structure and composition for sound speed in loaded articular cartilage, a sample-specific fibril-reinforced poroviscoelastic (FRPVE) finite element model was constructed and fitted to experimental mechanical data. Ultrasound speed in articular cartilage decreased significantly during dynamic indentation (p <; 0.05). The magnitude of the decrease in speed during indentation was related to the applied strain. However, the relative error in acoustically determined tissue strain was inversely related to the magnitude of true strain. The modeling results suggested that the compression-related variation in sound speed is controlled by changes in the collagen architecture during dynamic indentation. To conclude, variation in sound speed during dynamic indentation of articular cartilage may lead to significant errors in the values of measured mechanical parameters. Because the relative errors are inversely proportional to applied strain, higher strains should be used to minimize the errors in, e.g., in vivo measurements. PMID:23443716

  6. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    NASA Astrophysics Data System (ADS)

    Paietta, Rachel C.

    The objective of this dissertation is to understand the influences of material structure on the properties, function and failure of biological connective tissues. Biological interfaces are becoming an increasingly studied system within mechanics and tissue engineering as a model for attaching dissimilar materials. The elastic modulus of bone (? 20 GPa) and cartilage (? 0.1-1 MPa) differ over orders of magnitude, which should intuitively create high stress concentrations and failure at the interface. Yet, these natural interface systems rarely fail in vivo, and the mechanism by which loads are transferred between tissues has not yet been established. Tissue quality is one major contributor to the mechanical behavior of bone and cartilage, and is defined by properties such as collagen orientation, mineral volume fraction, porosity and tissue geometry. These properties have yet to be established at the bone-cartilage interface in the spine, and the lack of quantitative data on material microstructure and behavior limits treatments and tissue engineering construct design. In this dissertation, second harmonic generation imaging, quantitative backscattered scanning electron imaging and nanoindentation are combined to characterize micrometer scale tissue quality and modulus in both bone and calcified cartilage. These techniques are utilized to: 1) determine the hierarchical micrometer to millimeter scale properties of lamellar bone, 2) quantify changes throughout development and aging at the human intervertebral disc-vertebral body junction, and 3) explore compressive fractures at this interface. This work is the first to provide quantitative data on the mineral volume fraction, collagen orientation and modulus from the same, undecalcified sections of tissue to corroborate tissue structure and mineralization and describe quantitative parameters of the interface. The principal findings from this work indicate that the underlying matrix, or collagen, organization in mineralized biological tissues and at the bone-cartilage interface plays an important mechanical role. Nanoindentation measurements in osteonal bone are affected by location within the lamellar structure, even though mineral volume fraction within a single osteon is relatively consistent compared to the differences observed between bone and calcified cartilage. While increasing mineral volume fraction contributes to increases in modulus in the calcified cartilage layer of the vertebral body-intervertebral disc interface, significant scatter remains. The collagenous matrix structure and type of collagen appear to have a significant influence on modulus as well. Collagen fibers of the disc mineralize adjacent to the bone of the vertebral body, and the persistence of this attachment zone from adolescence through senescence indicates that it likely serves a mechanical function. Fiber insertions into thick calcified cartilage regions likely create mechanically robust anchor points at the osteochondral interface.

  7. Metacarpophalangeal joint synovial pad fibrotic proliferation in 63 horses.

    PubMed

    Dabareiner, R M; White, N A; Sullins, K E

    1996-01-01

    Medical records, radiographs, and sonograms of 63 horses with metacarpophalangeal joint synovial pad proliferation were examined retrospectively. All horses had lameness, joint effusion, or both signs associated with one or both metacarpophalangeal joints. Bony remodeling and concavity of the distodorsal aspect of the third metacarpal bone (Mc3) just proximal to the metacarpal condyles was identified by radiography in 71 joints (93%); 24 joints (32%) had radiographic evidence of a chip fracture located at the proximal dorsal aspect of the proximal phalanx. Fifty-four joints (71%) were examined by ultrasound. The mean +/- SD sagittal thickness of the synovial pad was 11.3 +/- 2.8 mm. Seventy-nine percent of the horses had single joint involvement with equal distribution, between the right and left forelimbs. Sixty-eight joints in 55 horses were treated by arthroscopic surgery. Sixty joints (88%) had debridement of chondral or osteochondral fragmentation from the dorsal surface of Mc3 beneath the synovial pad and 30 joints (44%) had a bone chip fracture removed from the medial or lateral proximal dorsal eminence of the proximal phalanx. Complete or partial excision of both medial and lateral synovial pads was completed in 42 joints. Only the medial synovial pad was excised or trimmed in 21 joints, and 5 joints had only the lateral pad removed. Eight joints in eight horses were treated by stall rest, administration of intra-articular medication and systemic nonsteroidal anti-inflammatory drugs. Follow-up information was obtained for 50 horses treated surgically and for eight horses treated medically. Forty-three (86%) that had surgery returned to racing; 34 (68%) raced at an equivalent or better level than before surgery. Three (38%) of the medically treated horses returned to racing; only one horse raced better than the preinjury level. Horses that returned to racing at a similar or equal level of performance were significantly younger in age than horses returning at a lower level or not racing (P < or = .05). Overall, horses with synovial pad proliferation treated by arthroscopic surgery had a good prognosis for return to racing at a level equal or better than before injury. PMID:9012104

  8. Functionally graded scaffolds for the engineering of interface tissues using hybrid twin screw extrusion/electrospinning technology

    NASA Astrophysics Data System (ADS)

    Erisken, Cevat

    Tissue engineering is the application of the principles of engineering and life sciences for the development of biological alternatives for improvement or regeneration of native tissues. Native tissues are complex structures with functions and properties changing spatially and temporally, and engineering of such structures requires functionally graded scaffolds with composition and properties changing systematically along various directions. Utilization of a new hybrid technology integrating the controlled feeding, compounding, dispersion, deaeration, and pressurization capabilities of extrusion process with electrospinning allows incorporation of liquids and solid particles/nanoparticles into polymeric fibers/nanofibers for fabrication of functionally graded non-woven meshes to be used as scaffolds in engineering of tissues. The capabilities of the hybrid technology were demonstrated with a series of scaffold fabrication and cell culturing studies along with characterization of biomechanical properties. In the first study, the hybrid technology was employed to generate concentration gradations of beta-tricalcium phosphate (beta-TCP) nanoparticles in a polycaprolactone (PCL) binder, between two surfaces of nanofibrous scaffolds. These scaffolds were seeded with pre-osteoblastic cell line (MC3T3-E1) to attempt to engineer cartilage-bone interface, and after four weeks, the tissue constructs revealed formation of continuous gradations in extracellular matrix akin to cartilage-bone interface in terms of distributions of mineral concentrations and biomechanical properties. In a second demonstration of the hybrid technology, graded differentiation of stem cells was attempted by using insulin, a known stimulator of chondrogenic differentiation, and beta-glycerol phosphate (beta-GP), for mineralization. Concentrations of insulin and beta-GP in PCL were controlled to monotonically increase and decrease, respectively, along the length of scaffolds, which were then seeded with adipose derived stromal cells (h-ADSCs). Analysis of resulting tissue constructs revealed chondrocytic differentiation of h-ADSCs, with both the chondrocytic cell concentration and mineralization varying as a function of distributions of concentrations of insulin and beta-GP, respectively. The investigation also covered characterization of biomechanical properties of native bovine osteochondral tissue samples, which were then compared with biomechanical properties of tissue constructs at different stages of development. The hybrid technology developed in this thesis should provide another enabling platform for the fabrication of functionally graded scaffolds that aim to mimic the elegant gradations found in myriad native tissues.

  9. Subcapital Correction Osteotomy for Malunited Slipped Capital Femoral Epiphysis

    PubMed Central

    Anderson, Lucas A.; Gililland, Jeremy; Pelt, Christoper; Peters, Christopher L.

    2013-01-01

    Background Slipped capital femoral epiphysis (SCFE), causing posterior and inferior displacement and retroversion of the femoral head, is a well-recognized etiology for femoroacetabular impingement (FAI) and can lead to premature arthritis in the young adult. The treatment of malunited SCFE remains controversial. Surgical dislocation and subcapital correction osteotomy (SCO) has been described as a powerful method to correct the proximal femoral deformity. Methods Between January 2003 and January 2010, 11 patients (12 hips) with closed femoral physes and symptomatic FAI from malunited SCFE were treated with surgical dislocation and SCO. We performed a retrospective review of patient histories, physical exams, operative findings, and pre and postoperative anteroposterior (AP) and groin lateral (GLat) radiographs. Mean follow-up was 61 months. Results There were 4 female and 7 male patients with an average age of 15 years at the time of SCO. On the AP radiograph the mean inferior femoral head displacement (AP epiphyseal-neck angle) was significantly improved (-26° to -6°, p<0.001). On the groin lateral radiograph the mean posterior femoral head displacement (Lateral epiphyseal-neck angle) was significantly improved (-45° to -3°, p<0.001). The mean alpha angle was also significantly improved on both views (AP: 85° to 56°, P<0.001; GLat: 85° to 46°, p<0.001). Operative findings included one femoral osteochondral defect, 8 Outerbridge grade 3-4 acetabular cartilage lesions, and 10 labral lesions. Significant improvement of the mean Harris hip score (HHS) was seen at latest follow-up (54 to 77, p=0.016). Complications occurred in 4 of the 12 cases with AVN in two patients, a worse postoperative HHS in one patient, and failure of fixation treated successfully with revision open reduction internal fixation in one patient. Conclusions Subcapital correction osteotomy as an adjunct to surgical dislocation and osteochondroplasty can be used to correct the deformity of the proximal femur associated with malunited SCFE. Normalization of proximal femoral anatomy may postpone progression to severe osteoarthritis and thus delay the need for arthroplasty in this young patient population. However, surgeons and patients should be aware that the risks of this procedure in this population are significant. PMID:23653020

  10. A history of lumbar disc herniation from hippocrates to the 1990s.

    PubMed

    Truumees, Eeric

    2015-06-01

    In ancient times, a supernatural understanding of the syndrome of lumbar radiculopathy often involved demonic forces vexing the individual with often crippling pain. The ancient Greeks and Egyptians began to take a more naturalistic view and, critically, suspected a relationship between lumbar spinal pathology and leg symptoms. Relatively little then changed for those with sciatica until the classic works by Cotugno and Kocher arrived in the late 18th century. Early lumbar canal explorations were performed in the late 1800s and early 1900s by MacEwen, Horsley, Krause, Taylor, Dandy, and Cushing, among others. In these cases, when compressive pathologies were found and removed, the lesions typically were (mis-)identified as enchondromas or osteochondritis dissecans. To better understand the history, learn more about the first treatments of lumbar disc herniation, and evaluate the impact of the early influences on modern spine practice, searches of PubMed and Embase were performed using the search terms discectomy, medical history, lumbar spine surgery, herniated disc, herniated nucleus pulposus, sciatica, and lumbar radiculopathy. Additional sources were identified from the reference lists of the reviewed papers. Many older and ancient sources including De Ischiade Nervosa are available in English translations and were used. When full texts were not available, English abstracts were used. The first true, intentional discectomy surgery was performed by Mixter and Barr in 1932. Early on, a transdural approach was favored. In 1938, Love described the intralaminar, extradural approach. His technique, although modified with improved lighting, magnification, and retractors, remains a staple approach to disc herniations today. Other modalities such as chymopapain have been investigated. Some remain a part of the therapeutic armamentarium, whereas others have disappeared. By the 1970s, CT scanning after myelography markedly improved the clinical evaluation of patients with lumbar disc herniation. In this era, use of discectomy surgery increased rapidly. Even patients with very early symptoms were offered surgery. Later work, especially by Weber and Hakelius, showed that many patients with lumbar disc herniation would improve without surgical intervention. In the ensuing decades, the debate over operative indications and timing continued, reaching another pivotal moment with the 2006 publication of the initial results of Spine Patient Outcomes Research Trial. PMID:24752913

  11. Effects of glucosamine and risedronate alone or in combination in an experimental rabbit model of osteoarthritis

    PubMed Central

    2014-01-01

    Background The osteoarthritis (OA) treatment in humans and in animals is a major orthopaedic challenge because there is not an ideal drug for preserving the joint structure and function. The aim of this study was to assess the effects of the treatment with oral glucosamine and risedronate alone or in combination on articular cartilage, synovial membrane and subchondral bone in an experimental rabbit model of OA. Osteoarthritis was surgically induced on one knee of 32 New Zealand White rabbits using the contralateral as healthy controls. Three weeks later treatments were started and lasted 8 weeks. Animal were divided in four groups of oral treatment: the first group received only saline, the second 21.5 mg/kg/day of glucosamine sulfate, the third 0.07 mg/kg/day of risedronate; and the fourth group both drugs simultaneously at the same dosages. Following sacrifice femurs were removed and osteochondral cylinders and synovial membrane were obtained for its histological and micro-CT evaluation. Results Sample analysis revealed that the model induced osteoarthritic changes in operated knees. OA placebo group showed a significant increase in cartilage thickness respect to the control and inflammatory changes in synovial membrane; whereas subchondral bone structure and volumetric bone mineral density remained unchanged. All the treated animals showed an improvement of the cartilage swelling independent of the drug used. Treatment with glucosamine alone seemed to have no effect in the progression of cartilage pathology while risedronate treatment had better results in superficial fibrillation and in resolving the inflammatory changes of the tissues, as well as modifying the orientation of trabecular lattice. The combination of both compounds seemed to have additive effects showing better results than those treated with only one drug. Conclusions The results of this animal study suggested that glucosamine sulfate and risedronate treatment alone or in combination may be able to stop cartilage swelling. The risedronate treatment could partially stop the fibrillation and the inflammation of synovial membrane as well as modify the orientation of trabeculae in healthy and in osteoarthritic knees. PMID:24766775