Sample records for osteoclast precursor cells

  1. Reactive oxygen species are required for zoledronic acid-induced apoptosis in osteoclast precursors and mature osteoclast-like cells

    PubMed Central

    Tai, Ta-Wei; Chen, Ching-Yu; Su, Fong-Chin; Tu, Yuan-Kun; Tsai, Tsung-Ting; Lin, Chiou-Feng; Jou, I.-Ming

    2017-01-01

    Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as osteoporosis, inflammatory bone loss, and malignant bone metastasis. However, the mechanism by which apoptosis is induced in the osteoclasts and their precursors are not completely understood. Here, we used nitrogen-containing bisphosphonate zoledronic acid (ZA) to induce cell apoptosis in human and murine osteoclast precursors and mature osteoclast-like cells. Caspase-3-mediated cell apoptosis occurred following the ZA (100 μM) treatment. Reactive oxygen species (ROS) were also generated in a time-dependent manner. Following knock-down of the p47phox expression, which is required for ROS activation, or co-treatment with the ROS inhibitor, N-acetyl-L-cysteine, ZA-induced apoptosis was significantly suppressed in both osteoclast precursors and mature osteoclast-like cells. The ROS-activated mitogen-activated protein kinases pathways did not trigger cell apoptosis. However, a ROS-regulated Mcl-1 decrease simultaneously with glycogen synthase kinase (GSK)-3β promoted cell apoptosis. These findings show that ZA induces apoptosis in osteoclast precursors and mature osteoclast-like cells by triggering ROS- and GSK-3β-mediated Mcl-1 down-regulation. PMID:28281643

  2. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    PubMed Central

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  3. CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE

    PubMed Central

    Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.

    2006-01-01

    SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499

  4. Retrovirus-mediated conditional immortalization and analysis of established cell lines of osteoclast precursor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawata, Shigehisa; Suzuki, Jun; Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871

    2006-11-10

    Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types ofmore » cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.« less

  5. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function

    PubMed Central

    Charles, Julia F.; Hsu, Lih-Yun; Niemi, Erene C.; Weiss, Arthur; Aliprantis, Antonios O.; Nakamura, Mary C.

    2012-01-01

    Increased osteoclastic bone resorption leads to periarticular erosions and systemic osteoporosis in RA patients. Although a great deal is known about how osteoclasts differentiate from precursors and resorb bone, the identity of an osteoclast precursor (OCP) population in vivo and its regulatory role in RA remains elusive. Here, we report the identification of a CD11b–/loLy6Chi BM population with OCP activity in vitro and in vivo. These cells, which can be distinguished from previously characterized precursors in the myeloid lineage, display features of both M1 and M2 monocytes and expand in inflammatory arthritis models. Surprisingly, in one mouse model of RA (adoptive transfer of SKG arthritis), cotransfer of OCP with SKG CD4+ T cells diminished inflammatory arthritis. Similar to monocytic myeloid-derived suppressor cells (M-MDSCs), OCPs suppressed CD4+ and CD8+ T cell proliferation in vitro through the production of NO. This study identifies a BM myeloid precursor population with osteoclastic and T cell–suppressive activity that is expanded in inflammatory arthritis. Therapeutic strategies that prevent the development of OCPs into mature bone-resorbing cells could simultaneously prevent bone resorption and generate an antiinflammatory milieu in the RA joint. PMID:23114597

  6. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2007-10-01

    OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c . THIS PAGE U UU 27 19b. TELEPHONE NUMBER...and c -Jun kinase activity in osteoclast precursor cells (4). Our hypothesis is that MVNP expression in osteoclast precursors modulates the status...transcription factors such as c - Fos, NFATc1 critical for OCL differentiation were significantly decreased in OIP-1 transgenic mice derived preosteoclast cells

  7. F-spondin inhibits migration and differentiation of osteoclastic precursors.

    PubMed

    Oka, Hiroko; Mori, Maya; Kihara, Hisae

    2011-12-01

    Clinically, severe cemental resorption is a rare consequence of periodontitis, although alveolar bone resorption by osteoclasts is one of the main pathologic changes. F-spondin is a secreted neuronal glycoprotein that localizes to the cementum. F-spondin is among the cementum-specific factors in periodontal tissue that have been reported. However, the effects of F-spondin on osteoclastogenesis have not yet been established. We examined the effects of F-spondin on stages of osteoclastogenesis, migration, and differentiation in a mouse osteoclastic precursor model, RAW 264 cells. RAW 264 cells were treated with recombinant F-spondin. Macrophage colony stimulating factor (M-CSF)-induced cell migration was examined by migration assay performed with cell culture inserts. Osteoclastic differentiation was measured by counting tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells. In a transmigration assay, F-spondin significantly downregulated M-CSF-induced cell migration. Further, F-spondin significantly reduced the number of receptor activator of nuclear factor-kappa B ligand-induced TRAP-positive multinucleated cells. The receptor-associated protein, an antagonist of the low-density lipoprotein (LDL) receptor family, blocked the effects of F-spondin on M-CSF-induced migration. The suppressive effect of F-spondin on M-CSF-induced cell migration was blocked by knockdown of LDL receptor-related protein 8 (LRP8), a member of the LDL receptor family. Our findings suggest that F-spondin downregulates recruitment to the root side of periodontal tissue via LRP8 and inhibits differentiation of osteoclastic precursors. It is suggested that F-spondin is essential to protect the root surface from resorption.

  8. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr; Yoon, Hye-Jin; Yoon, Kyung-Ae

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstreammore » signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.« less

  9. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen.

    PubMed

    Boraschi-Diaz, Iris; Komarova, Svetlana V

    2016-01-01

    Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics.

  10. Generation of avian cells resembling osteoclasts from mononuclear phagocytes

    NASA Technical Reports Server (NTRS)

    Alvarez, J. I.; Teitelbaum, S. L.; Blair, H. C.; Greenfield, E. M.; Athanasou, N. A.; Ross, F. P.

    1991-01-01

    Several lines of indirect evidence suggest that a monocyte family precursor gives rise to the osteoclast, although this hypothesis is controversial. Starting with a uniform population of nonspecific esterase positive, tartrate-sensitive, acid phosphatase-producing, mannose receptor-bearing mononuclear cells, prepared from dispersed marrow of calcium-deprived laying hens by cell density separation and selective cellular adherence, we generated multinucleated cells in vitro. When cultured with devitalized bone, these cells show, by electron microscopy, the characteristic osteoclast morphology in that they are mitochondria-rich, multinucleated, and, most importantly, develop characteristic ruffled membranes at the matrix attachment site. Moreover, as documented by scanning electron microscopy, these cells pit bone slices in a manner identical to freshly isolated osteoclasts. In addition, isoenzymes of acid phosphatase from generated osteoclasts, separated by 7.5% polyacrylamide gel electrophoresis at pH 4, are identical to those of mature osteoclasts in migration pattern and tartrate resistance, although the precursor cells from which the osteoclasts are generated produce an entirely different isoenzyme, which is tartrate-sensitive and migrates less rapidly at pH 4. The fused cells also exhibit a cAMP response to prostaglandin E2. Therefore, osteoclast-like cells can be derived by in vitro culture of a marrow-derived monocyte cell population.

  11. Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL mediated osteoclastogenesis

    PubMed Central

    Saxena, Ritu; Pan, George; Dohm, Erik D.; McDonald, Jay M.

    2010-01-01

    Mechanical forces are essential to maintain skeletal integrity, and microgravity exposure leads to bone loss. The underlying molecular mechanisms leading to the changes in osteoblasts and osteoclast differentiation and function remain be to fully elucidated. Due to the infrequency of spaceflights and payload constraints, establishing in vitro and in vivo systems that mimic microgravity conditions becomes necessary. We have established a simulated microgravity (modeled microgravity, MMG) system to study the changes induced in osteoclast precursors. We observed that MMG, on its own was unable to induce osteoclastogenesis of osteoclast precursors, however, 24h of MMG activates osteoclastogenesis-related signaling molecules ERK, p38, PLCγ2, and NFATc1. RANKL (and/or M-CSF) stimulation for 3-4 days in gravity of cells that had been exposed to MMG for 24h, enhanced the formation of very large TRAP positive multinucleated (>30 nuclei) osteoclasts accompanied by an upregulation of osteoclast marker genes- TRAP and cathepsin K. To validate the in vitro system, we established the hindlimb unloading system using BALB/c mice and observed a decrease in BMD of femurs and a loss of 3D microstructure of both cortical and trabecular bone as determined by microCT. There was a marked stimulation of osteoclastogenesis as determined by the total number of TRAP positive multinucleated osteoclasts formed and also an increase in RANKL stimulated osteoclastogenesis from precursors removed from the tibias of mice after 28 days of hindlimb unloading. Contrary to earlier reported findings, we did not observe any histomorphometrical changes in the bone formation parameters. Thus, the above observations indicate that microgravity sensitizes osteoclast precursors for increased differentiation. The in vitro model system described here is potentially a valid system for testing drugs for preventing microgravity induced bone loss by targeting the molecular events occurring in microgravity

  12. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors.

    PubMed

    Sugatani, T; Alvarez, U M; Hruska, K A

    2003-09-01

    Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis. Copyright 2003 Wiley-Liss, Inc.

  13. Detection of osteoclastic cell-cell fusion through retroviral vector packaging.

    PubMed

    Kondo, Takako; Ikeda, Kyoji; Matsuo, Koichi

    2004-11-01

    Cell-cell fusion generates multinucleated cells such as osteoclasts in bone, myotubes in muscle, and trophoblasts in placenta. Molecular details governing these fusion processes are still largely unknown. As a step toward identification of fusogenic genes, we tested the concept that retroviral vectors can be packaged as a result of cell-cell fusion. First, we introduced replication-deficient retroviral vectors expressing mCAT-1, which mediates fusogenic interaction with the retroviral envelope protein Env, into Chinese hamster ovary (CHO) cells to generate vector cells. Plasmids expressing virion proteins Gag, Pol, and Env were introduced into a separate culture of CHO cells to generate packaging cells. Co-culturing vector and packaging cells resulted in production of infectious retroviruses carrying the mCAT-1 gene as a consequence of cell-cell fusion. Second, we introduced a retroviral vector into primary osteoclast precursors and co-cultured them with established osteoclast precursor RAW264.7 cells, which turned out to harbor packaging activity. Packaged retroviral vector was detected in culture supernatants only where the osteoclast differentiation factor receptor activator for NF-kappaB ligand (RANKL) induced fusion between these two cell types. These data suggest that retrovirus production can occur as a result of cell-cell fusion. This provides a novel approach for isolating and characterizing fusogenic genes using retroviral expression vectors.

  14. Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites.

    PubMed

    Lehmann, Giorgia; Cacciotti, Ilaria; Palmero, Paola; Montanaro, Laura; Bianco, Alessandra; Campagnolo, Luisa; Camaioni, Antonella

    2012-10-01

    Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation. A systematic and detailed biological characterization is reported, in terms of cell adhesion, viability, proliferation, differentiation and bioresorption, aimed at proposing a complete and reliable picture of bone cell in vitro behavior, comprehensive of both the osteogenesis and the bone resorption processes. In order to achieve this purpose, cytocompatibility, differentiation and gene expression by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were carried out using parietal bone-derived pre-osteoblasts obtained from neonatal mice and the bioresorption capability was assessed by seeding human peripheral blood monocytes, as osteoclast precursors. It resulted that both pure and Si-substituted HAps were able to promote differentiation of precursor cells in mature osteoblasts and osteoclasts. In particular, the Si-HAps enhanced the pre-osteoblast proliferation and showed higher osteoclast-mediated bioresorption capability, as supported by the presence of larger and more numerous resorption lacunae, whereas HAps promoted a more robust cell differentiation in terms of both osteocalcin gene expression by qRT-PCR and cell morphological evaluation by SEM analysis.

  15. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors

    PubMed Central

    Kitano, Victor J.; Shimada, Jun

    2018-01-01

    Inflammatory bone diseases, including rheumatoid arthritis, periodontitis and peri-implantitis, are associated not only with the production of inflammatory cytokines but also with local oxidative status, which is defined by intracellular reactive oxygen species (ROS). Osteoclast differentiation has been reported to be related to increased intracellular ROS levels in osteoclast lineage cells. Sudachitin, which is a polymethoxyflavone derived from Citrus sudachi, possesses antioxidant properties and regulates various functions in mammalian cells. However, the effects of sudachitin on inflammatory bone destruction and osteoclastogenesis remain unknown. In calvaria inflamed by a local lipopolysaccharide (LPS) injection, inflammation-induced bone destruction and the accompanying elevated expression of osteoclastogenesis-related genes were reduced by the co-administration of sudachitin and LPS. Moreover, sudachitin inhibited osteoclast formation in cultures of isolated osteoblasts and osteoclast precursors. However, sudachitin rather increased the expression of receptor activator of NF-κB ligand (RANKL), which is an important molecule triggering osteoclast differentiation, and the mRNA ratio of RANKL/osteoprotegerin that is a decoy receptor for RANKL, in the isolated osteoblasts, suggesting the presence of additional target cells. When osteoclast formation was induced from osteoclast precursors derived from bone marrow cells in the presence of soluble RANKL and macrophage colony-stimulating factor, sudachitin inhibited osteoclastogenesis without influencing cell viability. Consistently, the expression of osteoclast differentiation-related molecules including c-fos, NFATc1, cathepsin K and osteoclast fusion proteins such as DC-STAMP and Atp6v0d2 was reduced by sudachitin. In addition, sudachitin decreased activation of MAPKs such as Erk and JNK and the ROS production evoked by RANKL in osteoclast lineage cells. Our findings suggest that sudachitin is a useful agent for

  16. The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors.

    PubMed

    Ohyama, Yoko; Ito, Junta; Kitano, Victor J; Shimada, Jun; Hakeda, Yoshiyuki

    2018-01-01

    Inflammatory bone diseases, including rheumatoid arthritis, periodontitis and peri-implantitis, are associated not only with the production of inflammatory cytokines but also with local oxidative status, which is defined by intracellular reactive oxygen species (ROS). Osteoclast differentiation has been reported to be related to increased intracellular ROS levels in osteoclast lineage cells. Sudachitin, which is a polymethoxyflavone derived from Citrus sudachi, possesses antioxidant properties and regulates various functions in mammalian cells. However, the effects of sudachitin on inflammatory bone destruction and osteoclastogenesis remain unknown. In calvaria inflamed by a local lipopolysaccharide (LPS) injection, inflammation-induced bone destruction and the accompanying elevated expression of osteoclastogenesis-related genes were reduced by the co-administration of sudachitin and LPS. Moreover, sudachitin inhibited osteoclast formation in cultures of isolated osteoblasts and osteoclast precursors. However, sudachitin rather increased the expression of receptor activator of NF-κB ligand (RANKL), which is an important molecule triggering osteoclast differentiation, and the mRNA ratio of RANKL/osteoprotegerin that is a decoy receptor for RANKL, in the isolated osteoblasts, suggesting the presence of additional target cells. When osteoclast formation was induced from osteoclast precursors derived from bone marrow cells in the presence of soluble RANKL and macrophage colony-stimulating factor, sudachitin inhibited osteoclastogenesis without influencing cell viability. Consistently, the expression of osteoclast differentiation-related molecules including c-fos, NFATc1, cathepsin K and osteoclast fusion proteins such as DC-STAMP and Atp6v0d2 was reduced by sudachitin. In addition, sudachitin decreased activation of MAPKs such as Erk and JNK and the ROS production evoked by RANKL in osteoclast lineage cells. Our findings suggest that sudachitin is a useful agent for

  17. Activation of p38 MAPK-regulated Bcl-xL signaling increases survival against zoledronic acid-induced apoptosis in osteoclast precursors.

    PubMed

    Tai, Ta-Wei; Su, Fong-Chin; Chen, Ching-Yu; Jou, I-Ming; Lin, Chiou-Feng

    2014-10-01

    The nitrogen-containing bisphosphonate zoledronic acid (ZA) induces apoptosis in osteoclasts and inhibits osteoclast-mediated bone resorption. It is widely used to treat osteoporosis. However, some patients are less responsive to ZA treatment, and the mechanisms of resistance are still unclear. Here, we identified that murine osteoclast precursors may develop resistance to ZA-induced apoptosis. These resistant cells survived the apoptotic effect of ZA following an increase in anti-apoptotic Bcl-xL. Pharmacologically inhibiting Bcl-xL facilitated ZA-induced apoptosis. Treatment with ZA activated p38 MAPK, increasing Bcl-xL expression and cell survival. Nuclear import of β-catenin regulated by p38 MAPK determined Bcl-xL mRNA expression and cell survival in response to ZA. ZA also inactivated glycogen synthase kinase (GSK)-3β, a negative upstream regulator of β-catenin, in a p38 MAPK-mediated manner. Synergistic pharmacological inhibition of p38 MAPK with ZA attenuated receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and facilitated ZA-induced apoptosis. These results demonstrate that elevated Bcl-xL expression mediated by p38 MAPK-regulated GSK-3β/β-catenin signaling is required for cell survival of ZA-induced apoptosis in both osteoclast precursors and osteoclasts. Finally, we demonstrated that inhibiting p38 MAPK-mediated pathway enhanced ZA effect on increasing the bone mineral density of ovariectomized mice. This result suggests that targeting these pathways may represent a potential therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration.

    PubMed

    Kim, Jin-Man; Kim, Mi Yeong; Lee, Kyunghee; Jeong, Daewon

    2016-12-05

    Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The Multifaceted Osteoclast; Far and Beyond Bone Resorption.

    PubMed

    Drissi, Hicham; Sanjay, Archana

    2016-08-01

    The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.

    PubMed

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I; Davison, Noel L; de Vries, Teun J; Everts, Vincent

    2015-01-01

    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme

  1. The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts

    PubMed Central

    ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent

    2015-01-01

    Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme

  2. Development of an in vitro culture method for stepwise differentiation of mouse embryonic stem cells and induced pluripotent stem cells into mature osteoclasts.

    PubMed

    Nishikawa, Keizo; Iwamoto, Yoriko; Ishii, Masaru

    2014-05-01

    The development of methods for differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) into functional cells have helped to analyze the mechanism regulating cellular processes and to explore cell-based assays for drug discovery. Although several reports have demonstrated methods for differentiation of mouse ESCs into osteoclast-like cells, it remains unclear whether these methods are applicable for differentiation of iPSCs to osteoclasts. In this study, we developed a simple method for stepwise differentiation of mouse ESCs and iPSCs into bone-resorbing osteoclasts based upon a monoculture approach consisting of three steps. First, based on conventional hanging-drop methods, embryoid bodies (EBs) were produced from mouse ESCs or iPSCs. Second, EBs were cultured in medium supplemented with macrophage colony-stimulating factor (M-CSF), and differentiated to osteoclast precursors, which expressed CD11b. Finally, ESC- or iPSC-derived osteoclast precursors stimulated with receptor activator of nuclear factor-B ligand (RANKL) and M-CSF formed large multinucleated osteoclast-like cells that expressed tartrate-resistant acid phosphatase and were capable of bone resorption. Molecular analysis showed that the expression of osteoclast marker genes such as Nfatc1, Ctsk, and Acp5 are increased in a RANKL-dependent manner. Thus, our procedure is simple and easy and would be helpful for stem cell-based bone research.

  3. Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells.

    PubMed

    Sun, Yu-Long; Chen, Zhi-Hao; Chen, Xiao-Hu; Yin, Chong; Li, Di-Jie; Ma, Xiao-Li; Zhao, Fan; Zhang, Ge; Shang, Peng; Qian, Ai-Rong

    2015-03-01

    The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.

  4. Osteoclast Progenitors Reside in the Peroxisome Proliferator-Activated Receptor γ-Expressing Bone Marrow Cell Population ▿

    PubMed Central

    Wei, Wei; Zeve, Daniel; Wang, Xueqian; Du, Yang; Tang, Wei; Dechow, Paul C.; Graff, Jonathan M.; Wan, Yihong

    2011-01-01

    Osteoclasts are bone-resorbing cells essential for skeletal development, homeostasis, and regeneration. They derive from hematopoietic progenitors in the monocyte/macrophage lineage and differentiate in response to RANKL. However, the precise nature of osteoclast progenitors is a longstanding and important question. Using inducible peroxisome proliferator-activated receptor γ (PPARγ)-tTA TRE-GFP (green fluorescent protein) reporter mice, we show that osteoclast progenitors reside specifically in the PPARγ-expressing hematopoietic bone marrow population and identify the quiescent PPARγ+ cells as osteoclast progenitors. Importantly, two PPARγ-tTA TRE-Cre-controlled genetic models provide compelling functional evidence. First, Notch activation in PPARγ+ cells causes high bone mass due to impaired osteoclast precursor proliferation. Second, selective ablation of PPARγ+ cells by diphtheria toxin also causes high bone mass due to decreased osteoclast numbers. Furthermore, PPARγ+ cells respond to both pathological and pharmacological resorption-enhancing stimuli. Mechanistically, PPARγ promotes osteoclast progenitors by activating GATA2 transcription. These findings not only identify the long-sought-after osteoclast progenitors but also establish unprecedented tools for their visualization, isolation, characterization, and genetic manipulation. PMID:21947280

  5. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation.

    PubMed

    Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G

    2009-11-01

    Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.

  6. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    PubMed Central

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  7. An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism

    NASA Technical Reports Server (NTRS)

    Yamakawa, K.; Duncan, R.; Hruska, K. A.

    1994-01-01

    We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.

  8. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts

    PubMed Central

    Nacu, Viorel; Charles, Julia F.; Henne, William M.; McMahon, Harvey T.; Nandi, Sayan; Ketchum, Halley; Harris, Renee; Nakamura, Mary C.

    2012-01-01

    Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)–dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis. PMID:22923495

  9. Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin activity

    PubMed Central

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Ryu, Kyung-Ha; Woo, So-Youn

    2017-01-01

    Th17 cells play a critical role in several autoimmune diseases, including psoriasis and psoriatic arthritis (PsA). Psoriasis is a chronic inflammatory skin disease associated with systemic inflammation and comorbidities, such as PsA. PsA develops in nearly 70% of patients with psoriasis, and osteoclasts associated bone erosion is a hallmark of the disease. Thus far, the effect of Th17 cells on osteoclastogenesis via direct cell-to-cell interactions is less understood. In this study, we observed that Th17 cells directly promote osteoclast differentiation and maturation via expression of receptor activator of nuclear factor-κ β ligand (RANKL) in vitro. We investigated the impact of conditioned medium obtained from human palatine tonsil-derived mesenchymal stem cells (T-CM) on the interactions between osteoclasts and Th17 cells. T-CM effectively blunted the RANK-RANKL interaction between the osteoclast precursor cell line RAW 264.7 and Th17 cells via osteoprotegerin (OPG) activity. The frequency of tartrate-resistant acid phosphatase (TRAP)-positive cells in the bone marrow of an imiquimod (IMQ)-induced psoriasis mouse model was decreased following T-CM injection. Therefore, our data provide novel insight into the therapeutic potential of tonsil-derived mesenchymal stem cell-mediated therapy (via OPG production) for the treatment of pathophysiologic processes induced by osteoclasts under chronic inflammatory conditions such as psoriasis. PMID:29137353

  10. Slight changes in the mechanical stimulation affects osteoblast- and osteoclast-like cells in co-culture.

    PubMed

    Kadow-Romacker, Anke; Duda, Georg N; Bormann, Nicole; Schmidmaier, Gerhard; Wildemann, Britt

    2013-12-01

    Osteoblast- and osteoclast-like cells are responsible for coordinated bone maintenance, illustrated by a balanced formation and resorption. Both parameters appear to be influenced by mechanical constrains acting on each of these cell types individually. We hypothesized that the interactions between both cell types are also influenced by mechanical stimulation. Co-cultures of osteoblast- and osteoclast-like cells were stimulated with 1,100 µstrain, 0.1 or 0.3 Hz for 1-5 min/day over 5 days. Two different setups depending on the differentiation of the osteoclast-like cells were used: i) differentiation assay for the fusion of pre-osteoclasts to osteoclasts, ii) resorption assay to determine the activity level of osteoclast-like cells. In the differentiation assay (co-culture of osteoblasts with unfused osteoclast precursor cells) the mechanical stimulation resulted in a significant decrease of collagen-1 and osteocalcin produced by osteoblast-like cells. Significantly more TRAP-iso5b was measured after stimulation for 3 min with 0.1 Hz, indicating enhanced osteoclastogenesis. In the resorption assay (co-culture of osteoblasts with fused osteoclasts) the stimulation for 3 min with 0.3 Hz significantly increased the resorption activity of osteoclasts measured by the pit formation and the collagen resorption. The same mechanical stimulation resulted in an increased collagen-1 production by the osteoblast-like cells. The ratio of RANKL/OPG was not different between the groups. These findings demonstrate that already small changes in duration or frequency of mechanical stimulation had significant consequences for the behavior of osteoblast- and osteoclast-like cells in co-culture, which partially depend on the differentiation status of the osteoclast-like cells.

  11. Production and Functional Characterization of Murine Osteoclasts Differentiated from ER-Hoxb8-Immortalized Myeloid Progenitor Cells.

    PubMed

    Zach, Frank; Mueller, Alexandra; Gessner, André

    2015-01-01

    In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from wild type or

  12. NAMPT/PBEF1 enzymatic activity is indispensable for myeloma cell growth and osteoclast activity

    PubMed Central

    Venkateshaiah, Sathisha Upparahalli; Khan, Sharmin; Ling, Wen; Bam, Rakesh; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Epstein, Joshua; Yaccoby, Shmuel

    2015-01-01

    Multiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD+) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1. Nicotinamide phos-phoribosyltransferase (NAMPT/PBEF/visfatin, encoded by PBEF1) is a rate-limiting enzyme in NAD+ biosynthesis from nicotinamide. Coculture of primary MM cells with osteoclasts induced PBEF1 upregulation in both cell types. PBEF1 expression was higher in experimental myelomatous bones than in nonmyelomatous bone and higher in MM patients’ plasma cells than in healthy donors’ counterparts. APO866 is a specific PBEF1 inhibitor known to deplete cellular NAD+, APO866 at low nanomolar concentrations inhibited growth of primary MM cells or MM cell lines cultured alone or cocultured with osteoclasts and induced apoptosis in these cells. PBEF1 activity and NAD+ content were reduced in MM cells by APO866, resulting in lower activity of PARP-1 and SIRT-1. The inhibitory effect of APO866 on MM cell growth was abrogated by supplementation of extracellular NAD+ or NAM. APO866 inhibited NF-κB activity in osteoclast precursors and suppressed osteoclast formation and activity. PBEF1 knockdown similarly inhibited MM cell growth and osteoclast formation. In the SCID-rab model, APO866 inhibited growth of primary MM and H929 cells and prevented bone disease. These findings indicate that MM cells and osteoclasts are highly sensitive to NAD+ depletion and that PBEF1 inhibition represents a novel approach to target cellular metabolism and inhibit PARP-1 and bone disease in MM. PMID:23435312

  13. Complex effect of hydroxyapatite nanoparticles on the differentiation and functional activity of human pre-osteoclastic cells.

    PubMed

    Costa-Rodrigues, João; Silva, Ana; Santos, Catarina; Almeida, Maria Margarida; Costa, Maria Elisabete; Fernandes, Maria Helena

    2014-12-01

    Nanosized hydroxyapatite (HA) is a promising material in clinical applications targeting the bone tissue. NanoHA is able to modulate bone cellular events, which accounts for its potential utility, but also raises safety concerns regarding the maintenance of the bone homeostasis. This work analyses the effects of HA nanoparticles (HAnp) on osteoclastic differentiation and activity, an issue that has been barely addressed. Rod-like HAnp, produced by a hydrothermal precipitation method, were tested on peripheral blood mononuclear cells (PBMC), which contains the CD14+ osteoclastic precursors, in unstimulated or osteoclastogenic-induced conditions. HAnp were added at three time-points during the osteoclastic differentiation pathway, and cell response was evaluated for osteoclastic related parameters. Results showed that HAnp modulated the differentiation and function of osteoclastic cells in a dose- and time-dependent manner. In addition, the effects were dependent on the stage of osteoclastic differentiation. In unstimulated PBMC, HAnp significantly increased osteoclastogenesis, leading to the formation of mature osteoclasts, as evident by the significant increase of TRAP activity, number of TRAP-positive multinucleated cells, osteoclastic gene expression and resorbing ability. However, in a population of mature osteoclasts (formed in osteoclastogenic-induced PBMC cultures), HAnp caused a dose-dependent decrease on the osteoclastic-related parameters. These results highlight the complex effects of HAnp in osteoclastic differentiation and activity, and suggest the possibility of HAnp to modulate/disrupt osteoclastic behavior, with eventual imbalances in the bone metabolism. This should be carefully considered in bone-related and other established and prospective biomedical applications of HAnp.

  14. In vivo visualisation of different modes of action of biological DMARDs inhibiting osteoclastic bone resorption.

    PubMed

    Matsuura, Yoshinobu; Kikuta, Junichi; Kishi, Yuika; Hasegawa, Tetsuo; Okuzaki, Daisuke; Hirano, Toru; Minoshima, Masafumi; Kikuchi, Kazuya; Kumanogoh, Atsushi; Ishii, Masaru

    2018-04-28

    Osteoclasts play critical roles in inflammatory bone destruction. Precursor cell migration, cell differentiation, and functional cell activation are all in play. Biological disease-modifying antirheumatic drugs (DMARDs) have been shown to significantly inhibit both bone erosion as well as synovitis, although how such agents reduce osteoclastic bone destruction in vivo has not been fully explained. Here, we used an intravital time-lapse imaging technique to directly visualise mature osteoclasts and their precursors, and explored how different biological DMARDs acted in vivo . Lipopolysaccharide (LPS) was injected into the calvarial periosteum of fluorescent reporter mice to induce inflammatory bone destruction. Time-lapse imaging was performed via intravital multiphoton microscopy 5 days after LPS injection. Biological DMARDs, including monoclonal antibodies (mAbs) against the interleukin (IL) 6 receptor (IL-6R) and tumour necrosis factor α (TNFα), or cytotoxic T-lymphocyte-associated protein 4 (CTLA4)-Ig, were intraperitoneally administered at the time of LPS injection. We determined CD80/86 expression levels in mature osteoclasts and their precursors by flow cytometry, quantitative PCR and immunohistochemistry. Of the biologicals tested, anti-IL-6R and anti-TNFα mAbs affected mature osteoclasts and switched bone-resorbing osteoclasts to non-resorbing cells. CTLA4-Ig had no action on mature osteoclasts but mobilised osteoclast precursors, eliminating their firm attachment to bone surfaces. In agreement with these results, CD80/86 (the target molecules of CTLA4-Ig) were prominently expressed only in osteoclast precursor cells, being suppressed during osteoclast maturation. Intravital imaging revealed that various biological DMARDs acted at specific therapeutic time points during osteoclastic bone destruction, with different efficacies. These results enable us to grasp the real modes of action of drugs, optimising the usage of drug regimens. © Article author

  15. Suppression of T cell-induced osteoclast formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens aremore » being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.« less

  16. Incorporation of RANKL promotes osteoclast formation and osteoclast activity on β-TCP ceramics.

    PubMed

    Choy, John; Albers, Christoph E; Siebenrock, Klaus A; Dolder, Silvia; Hofstetter, Wilhelm; Klenke, Frank M

    2014-12-01

    β-Tricalcium phosphate (β-TCP) ceramics are approved for the repair of osseous defects. In large defects, however, the substitution of the material by authentic bone is inadequate to provide sufficient long-term mechanical stability. We aimed to develop composites of β-TCP ceramics and receptor activator of nuclear factor κ-B ligand (RANKL) to enhance the formation of osteoclasts and promote cell mediated calcium phosphate resorption. RANKL was adsorbed superficially onto β-TCP ceramics or incorporated into a crystalline layer of calcium phosphate by the use of a co-precipitation technique. Murine osteoclast precursors were seeded onto the ceramics. After 15 days, the formation of osteoclasts was quantified cytologically and colorimetrically with tartrate-resistant acidic phosphatase (TRAP) staining and TRAP activity measurements, respectively. Additionally, the expression of transcripts encoding the osteoclast gene products cathepsin K, calcitonin receptor, and of the sodium/hydrogen exchanger NHA2 were quantified by real-time PCR. The activity of newly formed osteoclasts was evaluated by means of a calcium phosphate resorption assay. Superficially adsorbed RANKL did not induce the formation of osteoclasts on β-TCP ceramics. When co-precipitated onto β-TCP ceramics RANKL supported the formation of mature osteoclasts. The development of osteoclast lineage cells was further confirmed by the increased expression of cathepsin K, calcitonin receptor, and NHA2. Incorporated RANKL stimulated the cells to resorb crystalline calcium phosphate. Our in vitro study shows that RANKL incorporated into β-TCP ceramics induces the formation of active, resorbing osteoclasts on the material surface. Once formed, osteoclasts mediate the release of RANKL thereby perpetuating their differentiation and activation. In vivo, the stimulation of osteoclast-mediated resorption may contribute to a coordinated sequence of material resorption and bone formation. Further in vivo studies

  17. Comparison of direct and indirect radiation effects on osteoclast formation from progenitor cells derived from different hemopoietic sources.

    PubMed

    Scheven, B A; Wassenaar, A M; Kawilarang-de Haas, E W; Nijweide, P J

    1987-07-01

    Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.

  18. Natural uranium impairs the differentiation and the resorbing function of osteoclasts.

    PubMed

    Gritsaenko, Tatiana; Pierrefite-Carle, Valérie; Lorivel, Thomas; Breuil, Véronique; Carle, Georges F; Santucci-Darmanin, Sabine

    2017-04-01

    Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. We describe cellular and molecular effects of uranium that potentially affect bone homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bropirimine inhibits osteoclast differentiation through production of interferon-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hiroaki; Mochizuki, Ayako; Yoshimura, Kentaro

    Bropirimine is a synthetic agonist for toll-like receptor 7 (TLR7). In this study, we investigated the effects of bropirimine on differentiation and bone-resorbing activity of osteoclasts in vitro. Bropirimine inhibited osteoclast differentiation of mouse bone marrow-derived macrophages (BMMs) induced by receptor activator of nuclear factor κB ligand (RANKL) in a concentration-dependent manner. Furthermore, it suppressed the mRNA expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), a master transcription factor for osteoclast differentiation, without affecting BMM viability. Bropirimine also inhibited osteoclast differentiation induced in co-cultures of mouse bone marrow cells (BMCs) and mouse osteoblastic UAMS-32 cells in the presencemore » of activated vitamin D{sub 3}. Bropirimine partially suppressed the expression of RANKL mRNA in UAMS-32 cells induced by activated vitamin D{sub 3}. Finally, the anti-interferon-β (IFN-β) antibody restored RANKL-dependent differentiation of BMMs into osteoclasts suppressed by bropirimine. These results suggest that bropirimine inhibits differentiation of osteoclast precursor cells into osteoclasts via TLR7-mediated production of IFN-β.« less

  20. Osteoclastogenesis and Osteoclastic Resorption of Tricalcium Phosphate: Effect of Strontium and Magnesium Doping

    PubMed Central

    Roy, Mangal; Bose, Susmita

    2012-01-01

    Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study we have evaluated the effects of 1.0 wt% strontium (Sr) and 1.0 wt% magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr doped β-TCP samples at day 8 which was absent on Mg doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor αvβ3 integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell mediated degradation, however; significantly restricted for Mg doped β-TCP samples. Our present results indicated substrate chemistry controlled osteoclast differentiation and resorptive activity which can be used in designing TCP based resorbable bone substitutes with controlled degradation properties. PMID:22566212

  1. Osteoclastogenesis and osteoclastic resorption of tricalcium phosphate: effect of strontium and magnesium doping.

    PubMed

    Roy, Mangal; Bose, Susmita

    2012-09-01

    Bone substitute materials are required to support the remodeling process, which consists of osteoclastic resorption and osteoblastic synthesis. Osteoclasts, the bone-resorbing cells, generate from differentiation of hemopoietic mononuclear cells. In the present study, we have evaluated the effects of 1.0 wt % strontium (Sr) and 1.0 wt % magnesium (Mg) doping in beta-tricalcium phosphate (β-TCP) on the differentiation of mononuclear cells into osteoclast-like cells and its resorptive activity. In vitro osteoclast-like cell formation, adhesion, and resorption were studied using osteoclast precursor RAW 264.7 cell, supplemented with receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast-like cell formation was noticed on pure and Sr-doped β-TCP samples at day 8, which was absent on Mg-doped β-TCP samples indicating decrease in initial osteoclast differentiation due to Mg doping. After 21 days of culture, osteoclast-like cell formation was evident on all samples with osteoclastic markers such as actin ring, multiple nuclei, and presence of vitronectin receptor α(v)β(3) integrin. After osteoclast differentiation, all substrates showed osteoclast-like cell-mediated degradation, however, significantly restricted for Mg-doped β-TCP samples. Our present results indicated that substrate chemistry controlled osteoclast differentiation and resorptive activity, which can be used in designing TCP-based resorbable bone substitutes with controlled degradation properties. Copyright © 2012 Wiley Periodicals, Inc.

  2. Integrin αMβ2 is differently expressed by subsets of human osteoclast precursors and mediates adhesion of classical monocytes to bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam

    Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less

  3. Osteoclast size heterogeneity in rat long bones is associated with differences in adhesive ligand specificity.

    PubMed

    Hu, Yingwei; Ek-Rylander, Barbro; Karlström, Erik; Wendel, Mikael; Andersson, Göran

    2008-02-01

    Prothrombin (PT) is an RGD-containing bone-residing precursor to the serine protease thrombin (TH), which acts as an agonist for a variety of cellular responses in osteoblasts and osteoclasts. We show here that PT, TH, osteopontin (OPN) and fibronectin (FN) promoted adhesion of isolated neonatal rat long bone osteoclasts. However, the cells that adhered to PT and TH were smaller in size, rounded and contained 3-4 nuclei, in comparison to the cells adhering to OPN and FN, which were larger with extended cytoplasmic processes and 6-7 nuclei. Attachment of the larger osteoclasts to OPN and FN was inhibited by antibodies towards beta 3 and beta 1 integrin subunits, respectively. Whereas an RGD-containing peptide inhibited adhesion of the smaller osteoclasts to PT and TH, this was not seen with the beta 3 or beta 1 antibodies. In contrast, the beta 1 antibody augmented osteoclast adhesion to PT and TH in an RGD-dependent manner. Small osteoclasts were less efficient in resorbing mineralized bovine bone slices, as well as expressed lower mRNA levels of MMP-9 and the cathepsins K and L compared to large osteoclasts. The small osteoclast adhering to PT and TH may represent either an immature, less functional precursor to the large osteoclast or alternatively constitute a distinct osteoclast population with a specific role in bone.

  4. Interleukin-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting the osteoclastogenic process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Huixian; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294; Shi, Zhenqi

    2013-11-01

    Highlights: •IL-3 treatment of bone marrow cells generates a population of hematopoietic cells. •IL-3-dependent hematopoietic cells are capable of differentiating into osteoclasts. •Osteoclasts derived from IL-3-dependent hematopoietic cells are functional. •IL-3 promotes the development of osteoclast progenitors. •IL-3 inhibits the osteoclastogenic process. -- Abstract: Interleukin (IL)-3, a multilineage hematopoietic growth factor, is implicated in the regulation of osteoclastogenesis. However, the role of IL-3 in osteoclastogenesis remains controversial; whereas early studies showed that IL-3 stimulates osteoclastogenesis, recent investigations demonstrated that IL-3 inhibits osteoclast formation. The objective of this work is to further address the role of IL-3 in osteoclastogenesis. We foundmore » that IL-3 treatment of bone marrow cells generated a population of cells capable of differentiating into osteoclasts in tissue culture dishes in response to the stimulation of the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of nuclear factor kappa B ligand (RANKL). The IL-3-dependent hematopoietic cells were able to further proliferate and differentiate in response to M-CSF stimulation and the resulting cells were also capable of forming osteoclasts with M-CSF and RANKL treatment. Interestingly, IL-3 inhibits M-CSF-/RANKL-induced differentiation of the IL-3-dependent hematopoietic cells into osteoclasts. The flow cytometry analysis indicates that while IL-3 treatment of bone marrow cells slightly affected the percentage of osteoclast precursors in the surviving populations, it considerably increased the percentage of osteoclast precursors in the populations after subsequent M-CSF treatment. Moreover, osteoclasts derived from IL-3-dependent hematopoietic cells were fully functional. Thus, we conclude that IL-3 plays dual roles in osteoclastogenesis by promoting the development of osteoclast progenitors but inhibiting

  5. Non-Small Cell Carcinoma of the Lung With Osteoclast-Like Giant Cells.

    PubMed

    Dahm, Hans Helmut

    2017-05-01

    Carcinomas of the lung with benign osteoclast-like giant cells are rare. A literature search showed only 8 previously reported examples. These tumors resemble a giant cell tumor of bone. Many of these tumors, which occur in most epithelium-containing organs, are composed of an undifferentiated, sarcomatoid component that contains benign osteoclast-like giant cells and a conventional carcinoma. In some tumors the epithelial origin may be revealed by immunohistochemistry only; others lack any evidence of an epithelial component. A 59-year-old man had an inoperable tumor in the upper lobe of the left lung. The tumor did not respond to radiation therapy, and chemotherapy resulted in minimal relief of symptoms. Light microscopy of biopsy samples showed benign osteoclast-like giant cells distributed irregularly between proliferations of undifferentiated medium-sized tumor cells. Approximately one third of the undifferentiated tumor cells were cytokeratin AE1/AE3-positive, and a minor alveolar clear cell component of the tumor was cytokeratin 7-positive. The osteoclast-like giant cells were strongly CD68-positive. The clinical and histologic findings supported the diagnosis of a non-small cell carcinoma of the lung with benign osteoclast-like giant cells. The differential diagnosis is composed of giant cell carcinoma, carcinosarcoma, and mesenchymal tumors of the lung.

  6. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    PubMed Central

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  7. Identification of an osteoclast transcription factor that binds to the human T cell leukemia virus type I-long terminal repeat enhancer element.

    PubMed

    Inoue, D; Santiago, P; Horne, W C; Baron, R

    1997-10-03

    Transgenic mice expressing human T cell leukemia virus type I (HTLV-I)-tax under the control of HTLV-I-long terminal repeat (LTR) promoter develop skeletal abnormalities with high bone turnover and myelofibrosis. In these animals, Tax is highly expressed in bone with a pattern of expression restricted to osteoclasts and spindle-shaped cells within the endosteal myelofibrosis. To test the hypothesis that lineage-specific transcription factors promote transgene expression from the HTLV-I-LTR in osteoclasts, we first examined tax expression in transgenic bone marrow cultures. Expression was dependent on 1alpha,25-dihydroxycholecalciferol and coincided with tartrate-resistant acid phosphatase (TRAP) expression, a marker of osteoclast differentiation. Furthermore, Tax was expressed in vitronectin receptor-positive mononuclear precursors as well as in mature osteoclast-like cells (OCLs). Consistent with our hypothesis, electrophoretic mobility shift assays revealed the presence of an OCL nuclear factor (NFOC-1) that binds to the LTR 21-base pair direct repeat, a region critical for the promoter activity. This binding is further enhanced by Tax. Since NFOC-1 is absent in macrophages and conserved in osteoclasts among species including human, such a factor may play a role in lineage determination and/or in expression of the differentiated osteoclast phenotype.

  8. Arctigenin Inhibits Osteoclast Differentiation and Function by Suppressing Both Calcineurin-Dependent and Osteoblastic Cell-Dependent NFATc1 Pathways

    PubMed Central

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  9. Arctigenin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and osteoblastic cell-dependent NFATc1 pathways.

    PubMed

    Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki; Li, Feng; Kadota, Shigetoshi; Esumi, Hiroyasu; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2014-01-01

    Arctigenin, a lignan-derived compound, is a constituent of the seeds of Arctium lappa. Arctigenin was previously shown to inhibit osteoclastogenesis; however, this inhibitory mechanism has yet to be elucidated. Here, we showed that arctigenin inhibited the action of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), a key transcription factor for osteoclastogenesis. NFATc1 in osteoclast precursors was activated through two distinct pathways: the calcineurin-dependent and osteoblastic cell-dependent pathways. Among the several lignan-derived compounds examined, arctigenin most strongly inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast-like cell formation in mouse bone marrow macrophage (BMM) cultures, in which the calcineurin-dependent NFATc1 pathway was activated. Arctigenin suppressed neither the activation of nuclear factor κB and mitogen-activated protein kinases nor the up-regulation of c-Fos expression in BMMs treated with RANKL. However, arctigenin suppressed RANKL-induced NFATc1 expression. Interestingly, the treatment of osteoclast-like cells with arctigenin converted NFATc1 into a lower molecular weight species, which was translocated into the nucleus even in the absence of RANKL. Nevertheless, arctigenin as well as cyclosporin A (CsA), a calcineurin inhibitor, suppressed the NFAT-luciferase reporter activity induced by ionomycin and phorbol 12-myristate 13-acetate in BMMs. Chromatin immunoprecipitation analysis confirmed that arctigenin inhibited the recruitment of NFATc1 to the promoter region of the NFATc1 target gene. Arctigenin, but not CsA suppressed osteoclast-like cell formation in co-cultures of osteoblastic cells and bone marrow cells, in which the osteoblastic cell-dependent NFATc1 pathway was activated. The forced expression of constitutively active NFATc1 rescued osteoclastogenesis in BMM cultures treated with CsA, but not that treated with arctigenin. Arctigenin also suppressed the pit

  10. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts*

    PubMed Central

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-01-01

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608

  11. IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation

    PubMed Central

    Gao, Yuhao; Grassi, Francesco; Ryan, Michaela Robbie; Terauchi, Masakazu; Page, Karen; Yang, Xiaoying; Weitzmann, M. Neale; Pacifici, Roberto

    2006-01-01

    T cell–produced cytokines play a pivotal role in the bone loss caused by inflammation, infection, and estrogen deficiency. IFN-γ is a major product of activated T helper cells that can function as a pro- or antiresorptive cytokine, but the reason why IFN-γ has variable effects in bone is unknown. Here we show that IFN-γ blunts osteoclast formation through direct targeting of osteoclast precursors but indirectly stimulates osteoclast formation and promotes bone resorption by stimulating antigen-dependent T cell activation and T cell secretion of the osteoclastogenic factors RANKL and TNF-α. Analysis of the in vivo effects of IFN-γ in 3 mouse models of bone loss — ovariectomy, LPS injection, and inflammation via silencing of TGF-β signaling in T cells — reveals that the net effect of IFN-γ in these conditions is that of stimulating bone resorption and bone loss. In summary, IFN-γ has both direct anti-osteoclastogenic and indirect pro-osteoclastogenic properties in vivo. Under conditions of estrogen deficiency, infection, and inflammation, the net balance of these 2 opposing forces is biased toward bone resorption. Inhibition of IFN-γ signaling may thus represent a novel strategy to simultaneously reduce inflammation and bone loss in common forms of osteoporosis. PMID:17173138

  12. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells?

    PubMed

    Miron, Richard J; Zohdi, Hamoon; Fujioka-Kobayashi, Masako; Bosshardt, Dieter D

    2016-12-01

    Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often

  13. Microfluidic co-culture platform for investigating osteocyte-osteoclast signalling during fluid shear stress mechanostimulation.

    PubMed

    Middleton, K; Al-Dujaili, S; Mei, X; Günther, A; You, L

    2017-07-05

    Bone cells exist in a complex environment where they are constantly exposed to numerous dynamic biochemical and mechanical stimuli. These stimuli regulate bone cells that are involved in various bone disorders, such as osteoporosis. Knowledge of how these stimuli affect bone cells have been utilised to develop various treatments, such as pharmaceuticals, hormone therapy, and exercise. To investigate the role that bone loading has on these disorders in vitro, bone cell mechanotransduction studies are typically performed using parallel plate flow chambers (PPFC). However, these chambers do not allow for dynamic cellular interactions among different cell populations to be investigated. We present a microfluidic approach that exposes different cell populations, which are located at physiologically relevant distances within adjacent channels, to different levels of fluid shear stress, and promotes cell-cell communication between the different channels. We employed this microfluidic system to assess mechanically regulated osteocyte-osteoclast communication. Osteoclast precursors (RAW264.7 cells) responded to cytokine gradients (e.g., RANKL, OPG, PGE-2) developed by both mechanically stimulated (fOCY) and unstimulated (nOCY) osteocyte-like MLO-Y4 cells simultaneously. Specifically, we observed increased osteoclast precursor cell densities and osteoclast differentiation towards nOCY. We also used this system to show an increased mechanoresponse of osteocytes when in co-culture with osteoclasts. We envision broad applicability of the presented approach for microfluidic perfusion co-culture of multiple cell types in the presence of fluid flow stimulation, and as a tool to investigate osteocyte mechanotransduction, as well as bone metastasis extravasation. This system could also be applied to any multi-cell population cross-talk studies that are typically performed using PPFCs (e.g. endothelial cells, smooth muscle cells, and fibroblasts). Copyright © 2017 Elsevier Ltd. All

  14. Effects of Silicon on Osteoclast Cell Mediated Degradation, In Vivo Osteogenesis and Vasculogenesis of Brushite Cement.

    PubMed

    Vahabzadeh, Sahar; Roy, Mangal; Bose, Susmita

    2015-12-14

    Calcium phosphate cements (CPCs) are being widely used for treating small scale bone defects. Among the various CPCs, brushite (dicalcium phosphate dihydrate, DCPD) cement is widely used due to its superior solubility and ability to form new bone. In the present study, we have studied the physical, mechanical, osteoclast-like-cells differentiation and in vivo osteogenic and vasculogenic properties of silicon (Si) doped brushite cements. Addition of Si did not alter the phase composition of final product and regardless of Si level, all samples included β-tricalcium phosphate (β-TCP) and DCPD. 1.1 wt. % Si addition increased the compressive strength of undoped brushite cement from 4.78±0.21 MPa to 5.53±0.53 MPa, significantly. Cellular activity was studied using receptor activator of nuclear factor κβ ligand (RANKL) supplemented osteoclast-like-cells precursor RAW 264.7 cell. Phenotypic expressions of the cells confirmed successful differentiation of RAW264.7 monocytes to osteoclast-like-cells on undoped and doped brushite cements. An increased activity of osteoclast-like cells was noticed due to Si doping in the brushite cement. An excellent new bone formation was found in all cement compositions, with significant increase in Si doped brushite samples as early as 4 weeks post implantation in rat femoral model. After 4 weeks of implantation, no significant difference was found in blood vessel formation between the undoped and doped cements, however, a significant increase in vasculgenesis was found in 0.8 and 1.1 wt. % Si doped brushite cements after 8 weeks. These results show the influence of Si dopant on physical, mechanical, in vitro osteoclastogenesis and in vivo osteogenic and vasculogenic properties of brushite cements.

  15. Identification, characterization and isolation of a common progenitor for osteoclasts, macrophages and dendritic cells from murine bone marrow and periphery

    PubMed Central

    Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector

    2012-01-01

    Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930

  16. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts.

    PubMed

    Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon

    2016-02-12

    Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Osteoclasts in the dental microenvironment: a delicate balance controls dental histogenesis.

    PubMed

    Berdal, A; Castaneda, B; Aïoub, M; Néfussi, J R; Mueller, C; Descroix, V; Lézot, F

    2011-01-01

    The impact of osteoclast activity on dental development has been previously analyzed but in the context of severe osteopetrosis. The present study sought to investigate the effects of osteoclast hypofunction,present in Msx2 gene knockin mutant mice (Msx2-/-), and hyperfunction, in transgenic mice driving RANK over-expression in osteoclast precursors (RANK(Tg)), on tooth development. In Msx2-/- mice, moderate osteopetrosis was observed, occurring exclusively in the periodontal region. Microradiographical and histological analyses revealed an abnormal dental epithelium histogenesis that gave rise to odontogenic tumor-like structures. This led to impaired tooth eruption, especially of the third mandibular molars. In RANK(Tg) mice, root histogenesis showed site-specific upregulation of dental cell proliferation and differentiation rates. This culminated in roots with a reduced diameter and pulp size albeit of normal length. These two reverse experimental systems will enable the investigation of distinctive dental cell and osteoclast communication in normal growth and tumorigenesis. Copyright © 2011 S. Karger AG, Basel.

  18. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells

    PubMed Central

    KIM, JAE-HYUN; KIM, EUN-YOUNG; LEE, BINA; MIN, JU-HEE; SONG, DEA-UK; LIM, JEONG-MIN; EOM, JI WHAN; YEOM, MIJUNG; JUNG, HYUK-SANG; SOHN, YOUNGJOO

    2016-01-01

    Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post-menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase II (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis. PMID:26848104

  19. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling.

    PubMed

    Nishioku, Tsuyoshi; Terasawa, Mariko; Baba, Misaki; Yamauchi, Atsushi; Kataoka, Yasufumi

    2016-04-29

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreased CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Inhibition of differentiation and function of osteoclasts by dimethyl sulfoxide (DMSO).

    PubMed

    Yang, Chunxi; Madhu, Vedavathi; Thomas, Candace; Yang, Xinlin; Du, Xeujun; Dighe, Abhijit S; Cui, Quanjun

    2015-12-01

    Dimethyl sulfoxide (DMSO) is an FDA-approved organosulfur solvent that is reported to have therapeutic value in osteoarthritis and osteopenia. DMSO is used as a cryoprotectant for the cryopreservation of bone grafts and mesenchymal stem cells which are later used for bone repair. It is also used as a solvent in the preparation of various scaffolds used for bone tissue engineering purposes. DMSO has been reported to inhibit osteoclast formation in vitro but the mechanism involved has remained elusive. We investigated the effect of DMSO on osteoclast differentiation and function using a conventional model system of RAW 264.7 cells. The differentiation of RAW 264.7 cells was induced by adding 50 ng/ml RANKL and the effect of DMSO (0.01 and 1% v/v) on RANKL-induced osteoclastogenesis was investigated. Addition of 1% DMSO significantly inhibited RANKL-induced formation of TRAP+, multinucleated, mature osteoclasts and osteoclast late-stage precursors (c-Kit(-) c-Fms(+) Mac-1(+) RANK(+)). While DMSO did not inhibit proliferation per se, it did inhibit the effect of RANKL on proliferation of RAW 264.7 cells. Key genes related to osteoclast function (TRAP, Integrin αVβ3, Cathepsin K and MMP9) were significantly down-regulated by DMSO. RANKL-induced expression of RANK gene was significantly reduced in the presence of DMSO. Our data, and reports from other investigators, that DMSO enhances osteoblastic differentiation of mesenchymal stem cells and also prevents bone loss in ovarietcomized rats, suggest that DMSO has tremendous potential in the treatment of osteoporosis and bone diseases arising from uncontrolled activities of the osteoclasts.

  1. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD.

    PubMed

    Ciucci, Thomas; Ibáñez, Lidia; Boucoiran, Agathe; Birgy-Barelli, Eléonore; Pène, Jérôme; Abou-Ezzi, Grazia; Arab, Nadia; Rouleau, Matthieu; Hébuterne, Xavier; Yssel, Hans; Blin-Wakkach, Claudine; Wakkach, Abdelilah

    2015-07-01

    Under both physiological and pathological conditions, bone volume is determined by the rate of bone formation by osteoblasts and bone resorption by osteoclasts. Excessive bone loss is a common complication of human IBD whose mechanisms are not yet completely understood. Despite the role of activated CD4(+) T cells in inflammatory bone loss, the nature of the T cell subsets involved in this process in vivo remains unknown. The aim of the present study was to identify the CD4(+) T cell subsets involved in the process of osteoclastogenesis in vivo, as well as their mechanism of action. CD4(+) T cells were studied in IL10-/- mice and Rag1-/- mice adoptively transferred with naive CD4(+)CD45RB(high) T cells, representing two well-characterised animal models of IBD and in patients with Crohn's disease. They were phenotypically and functionally characterised by flow cytometric and gene expression analysis, as well as in in vitro cocultures with osteoclast precursors. In mice, we identified bone marrow (BM) CD4(+) T cells producing interleukin (IL)-17 and tumour necrosis factor (TNF)-α as an osteoclastogenic T cell subset referred to as Th17 TNF-α(+) cells. During chronic inflammation, these cells migrate to the BM where they survive in an IL-7-dependent manner and where they promote the recruitment of inflammatory monocytes, the main osteoclast progenitors. A population equivalent to the Th17 TNF-α(+) cells was also detected in patients with Crohn's disease. Our results highlight the osteoclastogenic function of the Th17 TNF-α(+) cells that contribute to bone loss in vivo in IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Lysophosphatidic Acid Receptor Type 1 (LPA1) Plays a Functional Role in Osteoclast Differentiation and Bone Resorption Activity*

    PubMed Central

    David, Marion; Machuca-Gayet, Irma; Kikuta, Junichi; Ottewell, Penelope; Mima, Fuka; Leblanc, Raphael; Bonnelye, Edith; Ribeiro, Johnny; Holen, Ingunn; Vales, Rùben Lopez; Jurdic, Pierre; Chun, Jerold; Clézardin, Philippe; Ishii, Masaru; Peyruchaud, Olivier

    2014-01-01

    Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1–6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1−/− mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1−/− mice but not in Lpar2−/− and Lpar3−/− animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1−/− osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP+ osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss. PMID:24429286

  3. Tetraspanin 7 regulates sealing zone formation and the bone-resorbing activity of osteoclasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jun-Oh; Lee, Yong Deok; Kim, Haemin

    Tetraspanin family proteins regulate morphology, motility, fusion, and signaling in various cell types. We investigated the role of the tetraspanin 7 (Tspan7) isoform in the differentiation and function of osteoclasts. Tspan7 was up-regulated during osteoclastogenesis. When Tspan7 expression was reduced in primary precursor cells by siRNA-mediated gene knock-down, the generation of multinuclear osteoclasts was not affected. However, a striking cytoskeletal abnormality was observed: the formation of the podosome belt structure was inhibited and the microtubular network were disrupted by Tspan7 knock-down. Decreases in acetylated microtubules and levels of phosphorylated Src and Pyk2 in Tspan7 knock-down cells supported the involvement ofmore » Tspan7 in cytoskeletal rearrangement signaling in osteoclasts. This cytoskeletal defect interfered with sealing zone formation and subsequently the bone-resorbing activity of mature osteoclasts on dentin surfaces. Our results suggest that Tspan7 plays an important role in cytoskeletal organization required for the bone-resorbing function of osteoclasts by regulating signaling to Src, Pyk2, and microtubules. - Highlights: • Tspan7 expression is up-regulated during osteoclastogenesis. • Tspan7 regulates podosome belt organization in osteoclasts. • Tspan7 is crucial for sealing zone formation and bone-resorption by osteoclasts. • Src and Pyk2 phosphorylation and microtubule acetylation mediate Tspan7 function.« less

  4. TULA-2, a novel histidine phosphatase regulates bone remodeling by modulating osteoclast function

    PubMed Central

    Back, Steven H.; Adapala, Naga Suresh; Barbe, Mary F.; Carpino, Nick C.; Tsygankov, Alexander Y.; Sanjay, Archana

    2013-01-01

    Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The novel protein T-cell Ubiquitin Ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO Mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of Immune-receptor-Tyrosine-based-Activation-Motif (ITAM)–mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function. PMID:23149425

  5. TULA-2, a novel histidine phosphatase, regulates bone remodeling by modulating osteoclast function.

    PubMed

    Back, Steven H; Adapala, Naga Suresh; Barbe, Mary F; Carpino, Nick C; Tsygankov, Alexander Y; Sanjay, Archana

    2013-04-01

    Bone is a dynamic tissue that depends on the intricate relationship between protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP) for maintaining homeostasis. PTKs and PTPs act like molecular on and off switches and help modulate differentiation and the attachment of osteoclasts to bone matrix regulating bone resorption. The protein T cell ubiquitin ligand-2 (TULA-2), which is abundantly expressed in osteoclasts, is a novel histidine phosphatase. Our results show that of the two family members, only TULA-2 is expressed in osteoclasts and that its expression is sustained throughout the course of osteoclast differentiation, suggesting that TULA-2 may play a role during early as well late stages of osteoclast differentiation. Skeletal analysis of mice that do not express TULA or TULA-2 proteins (DKO mice) revealed that there was a decrease in bone volume due to increased osteoclast numbers and function. Furthermore, in vitro experiments indicated that bone marrow precursor cells from DKO mice have an increased potential to form osteoclasts. At the molecular level, the absence of TULA-2 in osteoclasts results in increased Syk phosphorylation at the Y352 and Y525/526 residues and activation of phospholipase C gamma 2 (PLCγ2) upon engagement of immune-receptor-tyrosine-based-activation-motif (ITAM)-mediated signaling. Furthermore, expression of a phosphatase-dead TULA-2 leads to increased osteoclast function. Taken together, these results suggest that TULA-2 negatively regulates osteoclast differentiation and function.

  6. Phosphatidylinositol 3-kinase coordinately activates the MEK/ERK and AKT/NFkappaB pathways to maintain osteoclast survival.

    PubMed

    Gingery, Anne; Bradley, Elizabeth; Shaw, Aubie; Oursler, Merry Jo

    2003-05-01

    We have examined highly purified osteoclasts that were generated in vitro from murine co-culture of marrow precursors with stromal support cells and have found evidence of activation of the MEK/ERK and AKT/NFkappaB survival pathways. Many mature marrow-derived osteoclasts survived for at least 48 h in culture whether or not they are maintained with stromal cells. Moreover, supplementing purified osteoclasts with RANKL and/or M-CSF had no impact on their survival pattern. In addition, spleen-derived osteoclasts generated with RANKL and M-CSF treatment exhibited a similar survival pattern. Blocking MEK, AKT, or NFkappaB activity resulted in apoptosis of many, but not all, of the osteoclasts in purified marrow-derived osteoclasts, marrow-derived osteoclasts co-cultured with stromal cells, and spleen-derived osteoclasts maintained with RANKL and M-CSF. These data support that both the MEK/ERK and AKT/NFkappaB pathways contribute to osteoclast survival. Since PI3K has been shown to activate either of these pathways, we have examined its role in osteoclast survival. PI3K inhibition caused apoptosis of nearly all osteoclasts in purified and co-cultured marrow-derived osteoclasts and spleen-derived osteoclasts maintained with RANKL and M-CSF. Interestingly, in marrow-derived co-cultures, the apoptotic response was restricted to osteoclasts as there was no evidence of stromal support cell apoptosis. PI3K inhibition also blocked MEK1/2, ERK1/2, and AKT phosphorylation and NFkappaB activation in purified osteoclasts. Simultaneous blockage of both AKT and MEK1/2 caused rapid apoptosis of nearly all osteoclasts, mimicking the response to PI3K inhibition. These data reveal that PI3K coordinately activates two distinct survival pathways that are both important in osteoclast survival. Copyright 2003 Wiley-Liss, Inc.

  7. CD147 promotes the formation of functional osteoclasts through NFATc1 signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioku, Tsuyoshi, E-mail: nishiokut@niu.ac.jp; Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180; Terasawa, Mariko

    CD147, a membrane glycoprotein of the immunoglobulin superfamily, is highly upregulated during dynamic cellular events including tissue remodelling. Elevated CD147 expression is present in the joint of rheumatoid arthritis patients. However, the role of CD147 in bone destruction remains unclear. To determine whether CD147 is involved in osteoclastogenesis, we studied its expression in mouse osteoclasts and its role in osteoclast differentiation and function. CD147 expression was markedly upregulated during osteoclast differentiation. To investigate the role of CD147 in receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption activity, osteoclast precursor cells were transfected with CD147 siRNA. Decreasedmore » CD147 expression inhibited osteoclast formation and bone resorption, inhibited RANKL-induced nuclear translocation of the nuclear factor of activated T cells (NFAT) c1 and decreased the expression of the d2 isoform of vacuolar ATPase Vo domain and cathepsin K. Therefore, CD147 plays a critical role in the differentiation and function of osteoclasts by upregulating NFATc1 through the autoamplification of its expression in osteoclastogenesis. - Highlights: • CD147 expression was markedly upregulated during osteoclast differentiation. • Downregulation of CD147 expression inhibited osteoclastgenesis and bone resorption. • Decreased CD147 expression inhibited RANKL-induced nuclear translocation of NFATc1.« less

  8. Interleukin-6 and soluble interleukin-6 receptor suppress osteoclastic differentiation by inducing PGE(2) production in chondrocytes.

    PubMed

    Honda, Kazuhiro

    2011-03-01

    This study examined how interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6r) influence osteoclastic differentiation through the function of chondrocytes. Chondrocytes were cultured with or without IL-6 and/or sIL-6r in the presence or absence of NS398, a specific inhibitor of cyclooxygenase (COX)-2, for up to 28 days. Chondrocytes were also cultured with or without IL-6 and sIL-6r for 28 days, and the conditioned medium from cells cultured without IL-6 and sIL-6r was used to induce differentiation of RAW264.7 cells into osteoclast precursors. Osteoclastic differentiation was assessed by tartrate-resistant acid phosphatase (TRAP) staining. Expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), COX-2, and prostaglandin E(2) (PGE(2)) increased in cells exposed to IL-6 and sIL-6r, whereas expression of macrophage colony-stimulating factor (M-CSF) and bone resorption-related enzymes decreased. NS398 blocked the stimulatory/suppressive effects of IL-6 and sIL-6r on the expression of OPG, RANKL, and M-CSF. Fewer TRAP-positive multinucleated cells were detected after treatment with conditioned medium from IL-6- and sIL-6r-treated chondrocytes than after treatment with conditioned medium from untreated chondrocytes. These results suggest that IL-6 and sIL-6r interfere with osteoclast function through the involvement of chondrocytes. Specifically, they appear to suppress the differentiation of osteoclast precursors into osteoclasts by inducing chondrocytic PGE(2) production, which, in turn, increases OPG secretion and decreases M-CSF secretion by chondrocytes.

  9. Compressive force induces osteoclast differentiation via prostaglandin E(2) production in MC3T3-E1 cells.

    PubMed

    Sanuki, Rina; Shionome, Chieko; Kuwabara, Akiko; Mitsui, Narihiro; Koyama, Yuki; Suzuki, Naoto; Zhang, Fan; Shimizu, Noriyoshi; Maeno, Masao

    2010-04-01

    In orthodontic tooth movement, prostaglandin E(2) (PGE(2)) released from osteoblasts can alter the normal process of bone remodeling. We previously showed that compressive force (CF) controls bone formation by stimulating the production of PGE(2) and Ep2 and/or Ep4 receptors in osteoblasts. The present study was undertaken to examine the effect of CF on the production of PGE(2), cyclooxygenase-2 (COX-2), macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) using osteoblastic MC3T3-E1 cells and to examine the indirect effect of CF on osteoclast differentiation using RAW264.7 cells as osteoclast precursors. MC3T3-E1 cells were cultured with or without continuous CF (1.0 or 3.0 g/cm(2)) for 24 hr, and PGE(2) production was determined using ELISA. The expression of COX-2, M-CSF, RANKL, and OPG genes and proteins was determined using real-time PCR and ELISA, respectively. Osteoclast differentiation was estimated using tartrate-resistant acid phosphatase (TRAP) staining of RAW 264.7 cells cultured for 10 days with conditioned medium from CF-treated MC3T3-E1 cells and soluble RANKL. As CF increased, PGE(2) production and the expression of COX-2, M-CSF, and RANKL increased, whereas OPG expression decreased. The number of TRAP-positive cells increased as CF increased. Celecoxib, a specific inhibitor of COX-2, blocked the stimulatory effect of CF on TRAP staining and the production of PGE(2), M-CSF, RANKL, and OPG. These results suggest that CF induces osteoclast differentiation by increasing M-CSF production and decreasing OPG production via PGE(2) in osteoblasts.

  10. Alpinia officinarum Stimulates Osteoblast Mineralization and Inhibits Osteoclast Differentiation.

    PubMed

    Shim, Ki-Shuk; Lee, Chung-Jo; Yim, Nam-Hui; Gu, Min Jung; Ma, Jin Yeul

    2016-01-01

    Alpinia officinarum rhizome has been used as a traditional herbal remedy to treat inflammatory and internal diseases. Based on the previously observed inhibitory effect of A. officinarum rhizome in an arthritis model, we evaluated whether a water extract of A. officinarum rhizome (WEAO) would enhance in vitro osteoblast mineralization using calvarial osteoblast precursor cells or would inhibit in vitro osteoclast differentiation and bone resorption using bone marrow derived macrophages. In osteoblasts, WEAO enhanced the mRNA levels of transcription factor (runt-related transcription factor 2, smad1, smad5, and junB) and marker (bone morphogenetic protein-2, collagen type 1alpha1, and osteocalcin) genes related to osteoblast mineralization, consistent with increased alizarin red S staining intensity. WEAO markedly inhibited osteoclast differentiation by suppressing the receptor activator for nuclear factor-[Formula: see text]B ligand-induced downregulation of inhibitor of DNA binding 2 and V-maf musculoaponeurotic fibrosarcoma oncogene homolog B and the phosphorylation of c-Jun N-terminal kinase, p38, nuclear factor-[Formula: see text]B, c-Src, and Bruton's tyrosine kinase to induce nuclear factor of activated T cells cytoplasmic 1 expression. WEAO also suppressed the resorbing activity of mature osteoclasts by altering actin ring formation. Therefore, the results of this study demonstrate that WEAO stimulates osteoblast mineralization and inhibits osteoclast differentiation. Thus, WEAO may be a promising herbal candidate to treat or prevent pathological bone diseases by regulating the balance between osteoclast and osteoblast activity.

  11. Differentiation of osteoclast precursors on gellan gum-based spongy-like hydrogels for bone tissue engineering.

    PubMed

    Maia, F Raquel; Musson, David S; Naot, Dorit; da Silva, Lucilia P; Bastos, Ana R; Costa, João B; Oliveira, Joaquim M; Correlo, Vitor M; Reis, Rui L; Cornish, Jillian

    2018-03-16

    Bone tissue engineering with cell-scaffold constructs has been attracting a lot of attention, in particular as a tool for the efficient guiding of new tissue formation. However, the majority of the current strategies used to evaluate novel biomaterials focus on osteoblasts and bone formation, while osteoclasts are often overlooked. Consequently, there is limited knowledge on the interaction between osteoclasts and biomaterials. In this study, the ability of spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels to support osteoclastogenesis was investigated in vitro. First, the spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels were characterized in terms of microstructure, water uptake and mechanical properties. Then, bone marrow cells isolated from the long bones of mice and cultured in spongy-like hydrogels were treated with 1,25-dihydroxyvitamin D3 to promote osteoclastogenesis. It was shown that the addition of HAp to spongy-like gellan gum hydrogels enables the formation of larger pores and thicker walls, promoting an increase in stiffness. Hydroxyapatite-reinforced spongy-like gellan gum hydrogels support the formation of the aggregates of tartrate-resistant acid phosphatase-stained cells and the expression of genes encoding DC-STAMP and Cathepsin K, suggesting the differentiation of bone marrow cells into pre-osteoclasts. The hydroxyapatite-reinforced spongy-like gellan gum hydrogels developed in this work show promise for future use in bone tissue scaffolding applications.

  12. The role of TGFβ receptor 1-smad3 signaling in regulating the osteoclastic mode affected by fluoride.

    PubMed

    Yu, Haolan; Jiang, Ningning; Yu, XiuHua; Zhao, Zhitao; Zhang, Xiuyun; Xu, Hui

    2018-01-15

    Studies that have focused on the role TGFβ signaling plays in osteoclast activity are gradually increasing; however, literature is rare in terms of fluorosis. The aim of this study is to observe the role the TβR1/Smad3 pathway plays in fluoride regulating cellsosteoclast-like cells that are under the treatment of TGFβ receptor 1 kinase. The RANKL-mediated osteoclast-like cells from RAW264.7 cells were used as osteoclast precursor model. The profile of miRNA expression in fluoride-treated osteoclast-like cells exhibited 303 upregulated miRNAs, 61 downregulated miRNAs, and further drew 37 signaling pathway maps by KEGG and Biocarta pathway enrichment analysis. TGFβ and its downstream effectors were included among them. Osteoclast viability, formation and function were detected via MTT method, bone resorption pit and tartrate-resistant acid phosphatase (TRACP) staining, respectively. Results demonstrated that different doses of fluoride exhibited a biphasic effect on osteoclast cell viability, differentiation, formation and function. It indicated that a low dose of fluoride treatment stimulated them, but high dose inhibited them. SB431542 acted as TβR1 kinase inhibitor and blocked viability, formation and function of osteoclast-like cells regulated by fluoride. The expression of the osteoclast marker, RANK, and TβR1/Smad3 at gene and protein level was analyzed under fluoride with and without SB431542 treatment. Fluoride treatment indicated little effect on the RANK protein expression; however it significantly influenced TRACP expression in osteoclast-like cells. The stimulation of fluoride on the expression of Smad3 gene and phosphorylated Smad3 protein exhibited dose-dependent manner. SB431542 significantly impeded phosphorylation of Smad3 protein and TRACP expression in osteoclast-like cells that were exposed to fluoride. Our work demonstrated that TGFβ signaling played a key role in fluoride regulating osteoclast differentiation, formation and function. It

  13. Differences in responses to X-ray exposure between osteoclast and osteoblast cells

    PubMed Central

    Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan

    2017-01-01

    Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506

  14. A novel role for cathepsin K in periosteal osteoclast precursors during fracture repair.

    PubMed

    Walia, Bhavita; Lingenheld, Elizabeth; Duong, Le; Sanjay, Archana; Drissi, Hicham

    2018-03-01

    Osteoporosis management is currently centered around bisphosphonates, which inhibit osteoclast (OC) bone resorption but do not affect bone formation. This reduces fracture risk, but fails to restore healthy bone remodeling. Studies in animal models showed that cathepsin K (CatK) inhibition by genetic deletion or chemical inhibitors maintained bone formation while abrogating resorption during bone remodeling and stimulated periosteal bone modeling. Recently, periosteal mononuclear tartrate-resistant acid phosphatase-positive (TRAP + ) osteoclast precursors (OCPs) were shown to augment angiogenesis-coupled osteogenesis. CatK gene deletion increased osteoblast differentiation via enhanced OCP and OC secretion of platelet-derived growth factor (PDGF)-BB and sphingosine 1 phosphate. The effects of periosteum-derived OCPs on bone remodeling are unknown, particularly with regard to fracture repair. We hypothesized that periosteal OCPs derived from CatK-null (Ctsk -/- ) mice may enhance periosteal bone formation during fracture repair. We found fewer periosteal OCPs in Ctsk -/- mice under homeostatic conditions; however, after fracture, this population increased in number relative to that seen in wild-type (WT) mice. Enhanced TRAP staining and greater expression of PDGF-BB were observed in fractured Ctsk -/- femurs relative to WT femurs. This early pattern of augmented PDGF-BB expression in Ctsk -/- mice may contribute to improved fracture healing by enhancing callus mineralization in Ctsk -/- mice. © 2018 New York Academy of Sciences.

  15. Inositol Hexakisphosphate Inhibits Osteoclastogenesis on RAW 264.7 Cells and Human Primary Osteoclasts

    PubMed Central

    Arriero, María del Mar; Ramis, Joana M.; Perelló, Joan; Monjo, Marta

    2012-01-01

    Background Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown. Methodology/Principal Findings The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts. Conclusions/Significance Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis. PMID:22905230

  16. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.

    PubMed

    Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent

    2017-08-01

    Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.

  17. Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells.

    PubMed

    Yamashita, T; Asano, K; Takahashi, N; Akatsu, T; Udagawa, N; Sasaki, T; Martin, T J; Suda, T

    1990-12-01

    Experiments have been carried out to determine the mechanisms involved in the formation of osteoclast-like cells from spleen cells in mice. Osteoclasts were defined as tartrate-resistant acid phosphatase-positive multinucleated cells (TRACP-positive MNCs) in which specific calcitonin receptors were identified by autoradiography with labeled salmon calcitonin. Furthermore, cultures rich in these cells produced resorption pits when grown on dentine slices. Several clonal cell lines were obtained from fetal mouse calvariae and screened for their ability to induce TRACP-positive MNCs in response to 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3] in co-cultures with spleen cells. A cell line, KS-4, was identified with the greatest potency in inducing osteoclast-like cell formation in co-culture with spleen cells. The capacity of KS-4 cells to produce this effect was much greater than that of two bone marrow-derived stromal cell lines (MC3T3-G2/PA6 and ST2 cells), which we have previously shown to be effective in this system but to require treatment with dexamethasone in addition to 1 alpha, 25(OH)2D3 (Udagawa et al.: Endocrinology 125:1805-1813, 1989). Parathyroid hormone (PTH) increased cAMP production in KS-4 cells, and PTH and interleukin-1 alpha also induced TRACP-positive MNCs in co-cultures with spleen cells. Contact between living KS-4 and spleen cells was necessary for osteoclast formation to take place, since this did not occur when the two populations were separated by a membrane filter, or when the KS-4 cells were killed by fixation. Separate cultures of either spleen cells or KS-4 cells formed no TRACP-positive MNCs. KS-4 cells synthesized predominantly type I collagen, formed bone nodules without added of beta-glycerophosphate in a long-term culture, and expressed increasing alkaline phosphatase activity after confluence in culture. These results indicate that the KS-4 cells have properties consistent with progression toward the osteoblast phenotype

  18. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion.

    PubMed

    Shanmugarajan, Srinivasan; Zhang, Ye; Moreno-Villanueva, Maria; Clanton, Ryan; Rohde, Larry H; Ramesh, Govindarajan T; Sibonga, Jean D; Wu, Honglu

    2017-11-18

    The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase ( Trap ) and dendritic cell-specific transmembrane protein ( Dcstamp ). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein ( Ocstamp ) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the

  19. Biocorrosion and uptake of titanium by human osteoclasts.

    PubMed

    Cadosch, Dieter; Al-Mushaiqri, Mohamed S; Gautschi, Oliver P; Meagher, James; Simmen, Hans-Peter; Filgueira, Luis

    2010-12-15

    All metals in contact with a biological system undergo corrosion through an electrochemical redox reaction. This study investigated whether human osteoclasts (OC) are able to grow on titanium and aluminum, and directly corrode the metals leading to the release of corresponding metal ions, which are believed to cause inflammatory reactions and activate osteoclastic differentiation. Scanning electron microscopy analysis demonstrated long-term viable OC cultures on the surface of titanium and aluminum foils. Atomic emission spectrometry investigations showed significantly increased levels of aluminum in the supernatant of OC cultured on aluminum; however, all measurements in the supernatants of cell cultures on titanium were below detection limits. Despite this, confocal microscopy analysis with Newport Green DCF diacetate ester staining depicted intense fluorescence throughout the cytoplasm and nucleolus of OC cultured on titanium foils. Comparable fluorescence intensities were not observed in monocytes and control cells cultured on glass. The present study demonstrated that human osteoclast precursors are able to grow and differentiate toward mature OC on titanium and aluminum. Furthermore, it established that the mature cells are able to directly corrode the metal surface and take up corresponding metal ions, which subsequently may be released and thereby induce the formation of osteolytic lesions in the periprosthetic bone, contributing to the loosening of the implant. Copyright © 2010 Wiley Periodicals, Inc.

  20. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate

    PubMed Central

    Pederson, Larry; Ruan, Ming; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2008-01-01

    Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways. PMID:19075223

  1. Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells.

    PubMed

    Andersen, Thomas L; Søe, Kent; Sondergaard, Teis E; Plesner, Torben; Delaisse, Jean-Marie

    2010-02-01

    Osteolytic lesions are a hallmark of multiple myeloma. They are due to the hyperactivity of bone resorbing osteoclasts and hypoactivity of bone forming osteoblasts, in response to neighbouring myeloma cells. This study identified a structure that deeply affects this response, because of its impact on the physical organisation of the myeloma cell microenvironment. The proximity between myeloma cells and osteoclasts or osteoblasts was shown to be conditioned by the recently discovered layer of flat cells that separates the osteoclasts and osteoblasts from the bone marrow, by forming a canopy over bone remodelling compartment (BRC). These canopies are frequently disrupted in myeloma, and this disruption correlates with increased proximity and density of myeloma cells. In vitro evidence indicates that this disruption may be due to direct contact between myeloma and BRC canopy cells. Importantly, this disruption and increased proximity and density of myeloma cells coincides with key myeloma-induced bone events, such as osteolytic lesions, impaired bone formation despite increased bone resorption, and fusion of myeloma cells with osteoclasts thereby forming myeloma-osteoclast hybrid cells. These findings strongly support a critical role of BRC canopies in myeloma-induced bone disease. BRC canopies could therefore be considered as a new therapeutic target.

  2. Extremely High Expression of Antisense RNA for Wilms' Tumor 1 in Active Osteoclasts: Suppression of Wilms' Tumor 1 Protein Expression during Osteoclastogenesis.

    PubMed

    Li, Yin-Ji; Kukita, Akiko; Kyumoto-Nakamura, Yukari; Kukita, Toshio

    2016-09-01

    Wilms' tumor 1 (WT1), a zinc-finger transcription regulator of the early growth response family, identified as the product of a tumor suppressor gene of Wilms' tumors, bears potential ability to induce macrophage differentiation in blood cell differentiation. Herein, we examined the involvement of WT1 in the regulation of osteoclastogenesis. We detected a high level of WT1 protein expression in osteoclast precursors; however, WT1 expression was markedly suppressed during osteoclastogenesis. We examined expression of WT1 transcripts in bone tissue by RNA in situ hybridization. We found a high level of antisense transcripts in osteoclasts actively resorbing bone in mandible of newborn rats. Expression of antisense WT1 RNA in mandible was also confirmed by Northern blot analysis and strand-specific RT-PCR. Overexpression of antisense WT1 RNA in RAW-D cells, an osteoclast precursor cell line, resulted in a marked enhancement of osteoclastogenesis, suggesting that antisense WT1 RNA functions to suppress expression of WT1 protein in osteoclastogenesis. High level expression of antisense WT1 RNA may contribute to commitment to osteoclastogenesis, and may allow osteoclasts to maintain or stabilize their differentiation state. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway.

    PubMed

    Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L

    2017-07-01

    Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.

  4. Osteoclast differentiation inhibitors: a patent review (2008 - 2012).

    PubMed

    Kim, Seong Hwan; Moon, Seong-Hee

    2013-12-01

    Mononuclear macrophage/monocyte-lineage hematopoietic precursors differentiate into multinucleated osteoclasts. Abnormally increased numbers and/or overactivation of osteoclasts can lead to bone loss. Therefore, pharmaceutical inhibition of osteoclast differentiation is one therapeutic strategy for mitigating the occurrence of bone loss-associated disorders and related fractures. This review surveys the patents and patent applications from 2008 to 2012 that are related to inventions of therapeutics and/or methods for inhibiting osteoclast differentiation. Over the past 20 years, the identification and validation of signaling molecules involved in osteoclast differentiation has led to a better understanding of the molecular mechanism, and to the development of new therapeutic agents for treating bone loss-associated disorders. Since 2008, 34 WO patents or patent applications have been filed that relate to inventions of therapeutics and/or methods for chemical-based, natural product-based, or biological-based inhibitors of osteoclast differentiation. Here, analysis of these patents and patent applications is presented, and summarize the disclosed osteoclast differentiation-inhibiting target molecules. This report can support further advances in the development of anti-osteoclastogenic therapeutics for bone loss-associated disorders, including osteoporosis, rheumatoid arthritis, Paget's disease, periodontal disease, osteosarcoma, and cancer bone metastasis.

  5. Tet2 Regulates Osteoclast Differentiation by Interacting with Runx1 and Maintaining Genomic 5-Hydroxymethylcytosine (5hmC).

    PubMed

    Chu, Yajing; Zhao, Zhigang; Wayne Sant, David; Zhu, Ganqian; Greenblatt, Sarah M; Liu, Lin; Wang, Jinhuan; Cao, Zeng; Cheng Tho, Jeanette; Chen, Shi; Liu, Xiaochen; Zhang, Peng; Maciejewski, Jaroslaw P; Nimer, Stephen; Wang, Gaofeng; Yuan, Weiping; Yang, Feng-Chun; Xu, Mingjiang

    2018-06-13

    As a dioxygenase, Ten-eleven translocation 2 (TET2) catalyzes subsequent steps of 5-methylcytosine (5mC) oxidation. Tet2 plays a critical role in the self-renewal, proliferation, and differentiation of hematopoietic stem cells, but its impact on mature hematopoietic cells is not well-characterized. Here we show that Tet2 plays an essential role in osteoclastogenesis. Deletion of Tet2 impairs the differentiation of osteoclast precursor cells (macrophages) and their maturation into bone-resorbing osteoclasts in vitro. Furthermore, Tet2 -/- mice exhibit mild osteopetrosis, accompanied by decreased number of osteoclasts in vivo. Tet2 loss in macrophages results in the altered expression of a set of genes implicated in osteoclast differentiation, such as Cebpa, Mafb, and Nfkbiz. Tet2 deletion also leads to a genome-wide alteration in the level of 5-hydroxymethylcytosine (5hmC) and altered expression of a specific subset of macrophage genes associated with osteoclast differentiation. Furthermore, Tet2 interacts with Runx1 and negatively modulates its transcriptional activity. Our studies demonstrate a novel molecular mechanism controlling osteoclast differentiation and function by Tet2, that is, through interactions with Runx1 and the maintenance of genomic 5hmC. Targeting Tet2 and its pathway could be a potential therapeutic strategy for the prevention and treatment of abnormal bone mass caused by the deregulation of osteoclast activities. Copyright © 2018. Production and hosting by Elsevier B.V.

  6. Osteoclast cytosolic calcium, regulated by voltage-gated calcium channels and extracellular calcium, controls podosome assembly and bone resorption

    NASA Technical Reports Server (NTRS)

    Miyauchi, A.; Hruska, K. A.; Greenfield, E. M.; Duncan, R.; Alvarez, J.; Barattolo, R.; Colucci, S.; Zambonin-Zallone, A.; Teitelbaum, S. L.; Teti, A.

    1990-01-01

    The mechanisms of Ca2+ entry and their effects on cell function were investigated in cultured chicken osteoclasts and putative osteoclasts produced by fusion of mononuclear cell precursors. Voltage-gated Ca2+ channels (VGCC) were detected by the effects of membrane depolarization with K+, BAY K 8644, and dihydropyridine antagonists. K+ produced dose-dependent increases of cytosolic calcium ([Ca2+]i) in osteoclasts on glass coverslips. Half-maximal effects were achieved at 70 mM K+. The effects of K+ were completely inhibited by dihydropyridine derivative Ca2+ channel blocking agents. BAY K 8644 (5 X 10(-6) M), a VGCC agonist, stimulated Ca2+ entry which was inhibited by nicardipine. VGCCs were inactivated by the attachment of osteoclasts to bone, indicating a rapid phenotypic change in Ca2+ entry mechanisms associated with adhesion of osteoclasts to their resorption substrate. Increasing extracellular Ca2+ ([Ca2+]e) induced Ca2+ release from intracellular stores and Ca2+ influx. The Ca2+ release was blocked by dantrolene (10(-5) M), and the influx by La3+. The effects of [Ca2+]e on [Ca2+]i suggests the presence of a Ca2+ receptor on the osteoclast cell membrane that could be coupled to mechanisms regulating cell function. Expression of the [Ca2+]e effect on [Ca2+]i was similar in the presence or absence of bone matrix substrate. Each of the mechanisms producing increases in [Ca2+]i, (membrane depolarization, BAY K 8644, and [Ca2+]e) reduced expression of the osteoclast-specific adhesion structure, the podosome. The decrease in podosome expression was mirrored by a 50% decrease in bone resorptive activity. Thus, stimulated increases of osteoclast [Ca2+]i lead to cytoskeletal changes affecting cell adhesion and decreasing bone resorptive activity.

  7. Predictors of osteoclast activity in patients with sickle cell disease

    PubMed Central

    Nouraie, Mehdi; Cheng, Kevin; Niu, Xiaomei; Moore-King, Evadne; Fadojutimi-Akinsi, Margaret F.; Minniti, Caterina P.; Sable, Craig; Rana, Sohail; Dham, Niti; Campbell, Andrew; Ensing, Gregory; Kato, Gregory J.; Gladwin, Mark T.; Castro, Oswaldo L.; Gordeuk, Victor R.

    2011-01-01

    Background Bone changes are common in sickle cell disease, but the pathogenesis is not fully understood. Tartrate-resistant acid phosphatase (TRACP) type 5b is produced by bone-resorbing osteoclasts. In other forms of hemolytic anemia, increased iron stores are associated with osteoporosis. We hypothesized that transfusional iron overload would be associated with increased osteoclast activity in patients with sickle cell disease. Design and Methods We examined tartrate-resistant acid phosphatase 5b concentrations in patients with sickle cell disease and normal controls of similar age and sex distribution at steady state. Serum tartrate-resistant acid phosphatase 5b concentration was measured using an immunocapture enzyme assay and plasma concentrations of other cytokines were assayed using the Bio-Plex suspension array system. Tricuspid regurgitation velocity, an indirect measure of systolic pulmonary artery pressure, was determined by echocardiography. Results Tartrate-resistant acid phosphatase 5b concentrations were higher in 58 adults with sickle cell disease than in 22 controls (medians of 4.4 versus 2.4 U/L, respectively; P=0.0001). Among the patients with sickle cell disease, tartrate-resistant acid phosphatase 5b independently correlated with blood urea nitrogen (standardized beta=0.40, P=0.003), interleukin-8 (standardized beta=0.30, P=0.020), and chemokine C-C motif ligand 5 (standardized beta=−0.28, P=0.031) concentrations, but not with serum ferritin concentration. Frequent blood transfusions (>10 units in life time) were not associated with higher tartrate-resistant acid phosphatase 5b levels in multivariate analysis. There were strong correlations among tartrate-resistant acid phosphatase 5b, alkaline phosphatase and tricuspid regurgitation velocity (r>0.35, P<0.001). Conclusions Patients with sickle cell disease have increased osteoclast activity as reflected by serum tartrate-resistant acid phosphatase 5b concentrations. Our results may support a

  8. Low-Magnitude High-Frequency Vibration Inhibits RANKL-Induced Osteoclast Differentiation of RAW264.7 Cells

    PubMed Central

    Wu, Song-Hui; Zhong, Zhao-Ming; Chen, Jian-Ting

    2012-01-01

    Osteoclasts are the key participants in regulation of bone mass. Low-magnitude high-frequency vibration (LMHFV) has been found to be anabolic to bone in vivo. This study aimed to investigate the effect of LMHFV on osteoclast differentiation in vitro. Murine monocyte cell line RAW264.7 cells in the presence of receptor activator of nuclear factor-kappaB ligand (RANKL) were treated with or without LMHFV at 45 Hz (0.3 g) for 15 min day−1. Tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) and actin ring formation were evaluated. Expression of the osteoclast-specific genes, such as cathepsin K, matrix metallopeptidase-9 (MMP-9) and TRAP, were analyzed using real time-PCR. c-Fos, an osteoclast-specific transcription factor, was determined using Western blot. We found that LMHFV significantly decreased the number of RANKL-induced TRAP-positive MNCs (P<0.01), and inhibited the actin ring formation. The mRNA expression of the cathepsin K, MMP-9 and TRAP were down-regulated by LMHFV intervention (all P<0.001). Furthermore, LMHFV also inhibited the expression of c-Fos protein in the RANKL-treated RAW264.7 cells (P<0.05). Our results suggest that LMHFV can inhibit the RANKL-induced osteoclast differentiation of RAW264.7 cells, which give some new insight into the anabolic effects of LMHFV on bone. PMID:23136544

  9. [Effects of calcitonin on osteoclast].

    PubMed

    Suzuki, H; Takahashi, N

    2001-09-01

    Osteoclasts are cells that resorb bone, and calcitonin potently inhibits this bone resorptive activity. While calcitonin does not affect primary osteoclastic differentiation, it does manifest an inhibitory effect on the bone resorptive activity of osteoclasts. It is believed that calcitonin, acting upon calcitonin receptors and through PKA and PKC signal transduction pathways, destroys cytoskeleton components such as podosomes. The "escape phenomenon" seen with osteoclasts is a known issue occurring with the use of calcitonin, and is also believed to arise due to calcitonin receptors and the PKA and PKC signal transduction pathways.

  10. Relationship between fluoride exposure and osteoclast markers during RANKL-induced osteoclast differentiation.

    PubMed

    Junrui, Pei; Bingyun, Li; Yanhui, Gao; Xu, Jiaxun; Darko, Gottfried M; Dianjun, Sun

    2016-09-01

    Skeletal fluorosis is a metabolic bone disease caused by excessive accumulation of fluoride. Although the cause of this disease is known, the mechanism by which fluoride accumulates on the bone has not been clearly defined, thus there are no markers that can be used for screening skeletal fluorosis in epidemiology. In this study, osteoclasts were formed from bone marrow cells of C57BL/6 mice-treated with macrophage colony stimulating factor and receptor activator of nuclear factor kappa-B ligand. The mRNA expression of tartrate-resistant acid phosphatase 5b (TRAP5b), osteoclast-associated receptor (OSCAR), calcitonin receptor (CTR), matrix metalloproteinase 9 (MMP9) and cathepsin K (CK) were detected using real-time PCR (RT-PCR). Results showed that fluoride between 0.5 and 8mg/l had no effect on osteoclast formation. However fluoride at 0.5mg/l level significantly decreased the activity of osteoclast bone resorption. Fluoride concentration was negatively correlated with the activity of osteoclast bone resorption. On day 5 of osteoclast differentiation maturity, MMP9 and CK mRNA expression were not only negatively correlated with fluoride concentration, but directly correlated with the activity of osteoclast bone resorption. TRAP5b, CTR and OSCAR mRNA expression were positively correlated with the number of osteoclast and they had no correlation with the activity of osteoclast bone resorption. Thus, it can be seen that MMP9 and CK may reflect the change of activity of bone resorption as well the degree of fluoride exposure. TRAP5b, CTR and OSCAR can represent the change of number of osteoclast formed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Osteopontin Signals through Calcium and Nuclear Factor of Activated T Cells (NFAT) in Osteoclasts

    PubMed Central

    Tanabe, Natsuko; Wheal, Benjamin D.; Kwon, Jiyun; Chen, Hong H.; Shugg, Ryan P. P.; Sims, Stephen M.; Goldberg, Harvey A.; Dixon, S. Jeffrey

    2011-01-01

    Osteopontin (OPN), an integrin-binding extracellular matrix glycoprotein, enhances osteoclast activity; however, its mechanisms of action are elusive. The Ca2+-dependent transcription factor NFATc1 is essential for osteoclast differentiation. We assessed the effects of OPN on NFATc1, which translocates to nuclei upon activation. Osteoclasts from neonatal rabbits and rats were plated on coverslips, uncoated or coated with OPN or bovine albumin. OPN enhanced the proportion of osteoclasts exhibiting nuclear NFATc1. An RGD-containing, integrin-blocking peptide prevented the translocation of NFATc1 induced by OPN. Moreover, mutant OPN lacking RGD failed to induce translocation of NFATc1. Thus, activation of NFATc1 is dependent on integrin binding through RGD. Using fluorescence imaging, OPN was found to increase the proportion of osteoclasts exhibiting transient elevations in cytosolic Ca2+ (oscillations). OPN also enhanced osteoclast survival. The intracellular Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) suppressed Ca2+ oscillations and inhibited increases in NFATc1 translocation and survival induced by OPN. Furthermore, a specific, cell-permeable peptide inhibitor of NFAT activation blocked the effects of OPN on NFATc1 translocation and osteoclast survival. This is the first demonstration that OPN activates NFATc1 and enhances osteoclast survival through a Ca2+-NFAT-dependent pathway. Increased NFATc1 activity and enhanced osteoclast survival may account for the stimulatory effects of OPN on osteoclast function in vivo. PMID:21940634

  12. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  13. Osteoclasts prefer aged bone.

    PubMed

    Henriksen, K; Leeming, D J; Byrjalsen, I; Nielsen, R H; Sorensen, M G; Dziegiel, M H; Martin, T John; Christiansen, C; Qvist, P; Karsdal, M A

    2007-06-01

    We investigated whether the age of the bones endogenously exerts control over the bone resorption ability of the osteoclasts, and found that osteoclasts preferentially develop and resorb bone on aged bone. These findings indicate that the bone matrix itself plays a role in targeted remodeling of aged bones. Osteoclasts resorb aging bone in order to repair damage and maintain the quality of bone. The mechanism behind the targeting of aged bone for remodeling is not clear. We investigated whether bones endogenously possess the ability to control osteoclastic resorption. To biochemically distinguish aged and young bones; we measured the ratio between the age-isomerized betaCTX fragment and the non-isomerized alphaCTX fragment. By measurement of TRACP activity, CTX release, number of TRACP positive cells and pit area/pit number, we evaluated osteoclastogenesis as well as osteoclast resorption on aged and young bones. We found that the alphaCTX/betaCTX ratio is 3:1 in young compared to aged bones, and we found that both alpha and betaCTX are released by osteoclasts during resorption. Osteoclastogenesis was augmented on aged compared to young bones, and the difference was enhanced under low serum conditions. We found that mature osteoclasts resorb more on aged than on young bone, despite unchanged adhesion and morphology. These data indicate that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones.

  14. Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Tsygankov, Alexander Y; Sanjay, Archana

    2010-03-01

    The Cbl protein is a key player in macrophage colony-stimulating factor (M-CSF)-induced signaling. To examine the role of Cbl in M-CSF-mediated cellular events, we used Cbl(YF/YF) knockin mice in which the regulatory tyrosine 737, which when phosphorylated binds to the p85 subunit of phosphatidylinositol 3 kinase (PI3K), is substituted to phenylalanine. In ex vivo cultures, M-CSF and receptor activator of nuclear factor-kappaB ligand-mediated differentiation of bone marrow precursors from Cbl(YF/YF) mice generated increased number of osteoclasts; however, osteoclast numbers in Cbl(YF/YF) cultures were unchanged with increasing doses of M-CSF. We found that Cbl(YF/YF) osteoclasts have enhanced intrinsic ability to survive, and this response was further augmented upon exposure to M-CSF. Treatment of osteoclasts with M-CSF-induced actin reorganization and lamellipodia formation in wild-type osteoclasts; however, in Cbl(YF/YF) osteoclasts lamellipodia formation was compromised. Collectively, these results indicate that abrogation of the Cbl-PI3K interaction, although not affecting M-CSF-induced proliferation and differentiation of precursors, is required for regulation of survival and actin cytoskeletal reorganization of mature osteoclasts.

  15. Arctigenin suppresses receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast differentiation in bone marrow-derived macrophages.

    PubMed

    Kim, A-Ram; Kim, Hyuk Soon; Lee, Jeong Min; Choi, Jung Ho; Kim, Se Na; Kim, Do Kyun; Kim, Ji Hyung; Mun, Se Hwan; Kim, Jie Wan; Jeon, Hyun Soo; Kim, Young Mi; Choi, Wahn Soo

    2012-05-05

    Osteoclasts, multinucleated bone-resorbing cells, are closely associated with bone diseases such as rheumatoid arthritis and osteoporosis. Osteoclasts are derived from hematopoietic precursor cells, and their differentiation is mediated by two cytokines, including macrophage colony stimulating factor and receptor activator of nuclear factor κB ligand (RANKL). Previous studies have shown that arctigenin exhibits an anti-inflammatory effect. However, the effect of arctigenin on osteoclast differentiation is yet to be elucidated. In this study, we found that arctigenin inhibited RANKL-mediated osteoclast differentiation in bone marrow macrophages in a dose-dependent manner and suppressed RANKL-mediated bone resorption. Additionally, the expression of typical marker proteins, such as NFATc1, c-Fos, TRAF6, c-Src, and cathepsin K, were significantly inhibited. Arctigenin inhibited the phosphorylation of Erk1/2, but not p38 and JNK, in a dose-dependent manner. Arctigenin also dramatically suppressed immunoreceptor tyrosine-based activation motif-mediated costimulatory signaling molecules, including Syk and PLCγ2, and Gab2. Notably, arctigenin inhibited the activation of Syk through RANKL stimulation. Furthermore, arctigenin prevented osteoclast differentiation in the calvarial bone of mice following stimulation with lipopolysaccharide. Our results show that arctigenin inhibits osteoclast differentiation in vitro and in vivo. Therefore, arctigenin may be useful for treating rheumatoid arthritis and osteoporosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Macrophage migration inhibitory factor (MIF) supports homing of osteoclast precursors to peripheral osteolytic lesions

    PubMed Central

    Movila, Alexandru; Ishii, Takenobu; Albassam, Abdullah; Wisitrasameewong, Wichaya; Howait, Mohammed; Yamaguchi, Tsuguno; Ruiz-Torruella, Montserrat; Bahammam, Laila; Nishimura, Kazuaki; Van Dyke, Thomas; Kawai, Toshihisa

    2016-01-01

    By binding to its chemokine receptor CXCR4 on osteoclast precursor cells (OCPs), it is well known that SDF-1 promotes the chemotactic recruitment of circulating OCPs to the homeostatic bone remodeling site. However, the engagement of circulating OCPs in pathogenic bone resorption remains to be elucidated. The present study investigated a possible chemoattractant role of MIF, another ligand for CXCR4, in the recruitment of circulating OCPs to the bone lytic lesion. To accomplish this, we used Csf1r-eGFP-KI mice to establish an animal model of Polymethyl methacrylate (PMMA) particle-induced calvarial osteolysis. In the circulating Csf1r-eGFP+ cells of healthy Csf1r-eGFP-KI mice, Csf1r+/CD11b+ cells showed a greater degree of RANKL-induced osteoclastogenesis compared to a subset of Csf1r+/RANK+ cells in vitro. Therefore, Csf1r-eGFP+/CD11b+ cells were targeted as functionally relevant OCPs in the present study. While expression of the two cognate receptors for MIF, CXCR2 and CXCR4, was elevated on Csf1r+/CD11b+ cells, transmigration of OCPs toward recombinant MIF in vitro was facilitated by ligation with CXCR4, but not CXCR2. Meanwhile, the level of PMMA-induced bone resorption in calvaria was markedly greater in wild-type mice compared to that detected in MIF-KO mice. Interestingly, in contrast to the elevated MIF, diminished SDF-1 was detected in a particle-induced bone lytic lesion of wild-type mice in conjunction with an increased number of infiltrating CXCR4+ OCPs. However, such diminished SDF-1 was not found in the PMMA-injected calvaria of MIF-KO mice. Furthermore, stimulation of osteoblasts with MIF in vitro suppressed their production of SDF-1, suggesting that MIF can down-modulate SDF-1 production in bone tissue. Systemically administered anti-MIF neutralizing mAb inhibited the homing of CXCR4+ OCPs, as well as bone resorption, in the PMMA-injected calvaria, while increasing locally produced SDF-1. Collectively, these data suggest that locally produced MIF in

  17. Fas/S1P1 crosstalk via NF-κB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis.

    PubMed

    Hutami, Islamy Rahma; Izawa, Takashi; Mino-Oka, Akiko; Shinohara, Takehiro; Mori, Hiroki; Iwasa, Akihiko; Tanaka, Eiji

    2017-09-02

    Enhanced turnover of subchondral trabecular bone is a hallmark of rheumatoid arthritis (RA) and it results from an imbalance between bone resorption and bone formation activities. To investigate the formation and activation of osteoclasts which mediate bone resorption, a Fas-deficient MRL/lpr mouse model which spontaneously develops autoimmune arthritis and exhibits decreased bone mass was studied. Various assays were performed on subchondral trabecular bone of the temporomandibular joint (TMJ) from MRL/lpr mice and MRL+/+ mice. Initially, greater osteoclast production was observed in vitro from bone marrow macrophages obtained from MRL/lpr mice due to enhanced phosphorylation of NF-κB, as well as Akt and MAPK, to receptor activator of nuclear factor-κB ligand (RANKL). Expression of sphingosine 1-phosphate receptor 1 (S1P 1 ) was also significantly upregulated in the condylar cartilage. S1P 1 was found to be required for S1P-induced migration of osteoclast precursor cells and downstream signaling via Rac1. When SN50, a synthetic NF-κB-inhibitory peptide, was applied to the MRL/lpr mice, subchondral trabecular bone loss was reduced and both production of osteoclastogenesis markers and sphingosine kinase (Sphk) 1/S1P 1 signaling were reduced. Thus, the present results suggest that Fas/S1P 1 signaling via activation of NF-κB in osteoclast precursor cells is a key factor in the pathogenesis of RA in the TMJ. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Continuous application of compressive force induces fusion of osteoclast-like RAW264.7 cells via upregulation of RANK and downregulation of LGR4.

    PubMed

    Matsuike, Rieko; Tanaka, Hideki; Nakai, Kumiko; Kanda, Mai; Nagasaki, Maki; Murakami, Fumiko; Shibata, Chika; Mayahara, Kotoe; Nakajima, Akira; Tanabe, Natsuko; Kawato, Takayuki; Maeno, Masao; Shimizu, Noriyoshi

    2018-05-15

    During orthodontic treatment, facilitating osteoclastic bone resorption in the alveolar bone exposed to the compressive force (CF) is an important factor for tooth movement. The present study investigated the effect of CF stimulation on the differentiation of RAW264.7 cells from precursors to mature osteoclasts. The cells were continuously stimulated with 0.3, 0.6, or 1.1 g/cm 2 CF-which was generated by increasing the volume of culture medium in the wells of a 96-well plate-in the presence or absence of receptor activator of nuclear factor κB (RANK) ligand (RANKL) for 4 days. In the presence of RANKL, the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and the mRNA levels of dendritic cell-specific transmembrane protein (DC-STAMP) and osteoclast-stimulatory transmembrane protein (OC-STAMP) were increased by application of 0.6 and 1.1 g/cm 2 CF as compared to 0.3 g/cm 2 CF. The mRNA level of RANK was upregulated whereas that of leucine-rich repeat-containing G-protein-coupled receptor (LGR)4-another RANKL receptor was downregulated by 0.6 and 1.1 g/cm 2 CF as compared to 0.3 g/cm 2 CF in the absence of RANKL. The proportion of cells with nuclear translocation of the nuclear translocation of nuclear factor of activated T cells (NFAT)c1 was increased by 0.6 and 1.1 g/cm 2 CF in the presence of RANKL. Continuous application of CF induced the differentiation of RAW264.7 cells into TRAP-positive multinuclear cells by enhancing the expression of DC- and OC-STAMP and the nuclear translocation of NFATc1. This may result from the CF-induced increase in RANK and decrease in LGR4 expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Rare sugar D-allose strongly induces thioredoxin-interacting protein and inhibits osteoclast differentiation in Raw264 cells.

    PubMed

    Yamada, Kana; Noguchi, Chisato; Kamitori, Kazuyo; Dong, Youyi; Hirata, Yuko; Hossain, Mohammad A; Tsukamoto, Ikuko; Tokuda, Masaaki; Yamaguchi, Fuminori

    2012-02-01

    Oxidative stress modulates the osteoclast differentiation via redox systems, and thioredoxin 1 (Trx) promotes the osteoclast formation by regulating the activity of transcription factors. The function of Trx is known to be regulated by its binding partner, thioredoxin-interacting protein (TXNIP). We previously reported that the expression of TXNIP gene is strongly induced by a rare sugar D-allose. In this study, we tested the hypothesis that D-allose could inhibit the osteoclast differentiation by regulating the Trx function. We used a murine Raw264 cell line that differentiates to the osteoclast by the receptor activator of nuclear factor-κB ligand (RANKL) treatment. The effect of sugars was evaluated by tartrate-resistant acid phosphatase staining. The expression and localization of TXNIP and Trx protein were examined by Western blotting and immunohistochemisty. The activity of the nuclear factor-κB, nuclear factor of activated T cells, and activator protein 1 transcription factors was measured by the luciferase reporter assay. The addition of D-allose (25 mmol/L) inhibited the osteoclast differentiation down to 9.53% ± 1.27% of a receptor activator of nuclear factor-κB ligand-only treatment. During the osteoclast differentiation, a significant increase of TNXIP was observed by D-allose treatment. The immunohistochemical analysis showed that both Trx and TXNIP existed in the nucleus in preosteoclasts and osteoclasts. Overexpression of TXNIP by plasmid transfection also inhibited the osteoclast formation, indicating the functional importance of TXNIP for the osteoclast differentiation. Transcriptional activity of the activator protein 1, nuclear factor-κB, and nuclear factor of activated T cells, known to be modulated by Trx, were inhibited by D-allose. In conclusion, our data indicate that D-allose is a strong inhibitor of the osteoclast differentiation, and this effect could be caused by TXNIP induction and a resulting inhibition of the Trx function

  20. Osteoclasts and giant cells: macrophage–macrophage fusion mechanism

    PubMed Central

    Vignery, Agnès

    2000-01-01

    Membrane fusion is a ubiquitous event that occurs in a wide range of biological processes. While intracellular membrane fusion mediating organelle trafficking is well understood, much less is known about cell–cell fusion mediating sperm cell–oocyte, myoblast–myoblast and macrophage–macrophage fusion. In the case of mononuclear phagocytes, their fusion is not only associated with the differentiation of osteoclasts, cells which play a key role in the pathogenesis of osteoporosis, but also of giant cells that are present in chronic inflammatory reactions and in tumours. Despite the biological and pathophysiological importance of intercellular fusion events, the actual molecular mechanism of macrophage fusion is still unclear. One of the main research themes in my laboratory has been to investigate the molecular mechanism of mononuclear phagocyte fusion. Our hypothesis has been that macrophage–macrophage fusion, similar to virus–cell fusion, is mediated by specific cell surface proteins. But, in contrast with myoblasts and sperm cells, macrophage fusion is a rare event that occurs in specific instances. To test our hypothesis, we established an in vitro cell–cell fusion assay as a model system which uses alveolar macrophages. Upon multinucleation, these macrophages acquire the osteoclast phenotype. This indicates that multinucleation of macrophages leads to a specific and novel functional phenotype in macrophages. To identify the components of the fusion machinery, we generated four monoclonal antibodies (mAbs) which block the fusion of alveolar macrophages and purified the unique antigen recognized by these mAbs. This led us to the cloning of MFR (Macrophage Fusion Receptor). MFR was cloned simultaneously as P84/SHPS-1/SIRPα/BIT by other laboratories. We subsequently showed that the recombinant extracellular domain of MFR blocks fusion. Most recently, we identified a lower molecular weight form of MFR that is missing two extracellular immunoglobulin (Ig

  1. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity inmore » RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter

  2. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation

    PubMed Central

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-01-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3-E1 osteoblastic cells and osteoclast-like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST-1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that mangiferin significantly increased the mRNA level of runt-related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate-resistant acid phosphatase-positive multinuclear cells. RT-PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast-associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3-E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes. PMID:28627701

  3. Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors, which can fuse to RANKL-unstimulated progenitors.

    PubMed

    Levaot, Noam; Ottolenghi, Aner; Mann, Mati; Guterman-Ram, Gali; Kam, Zvi; Geiger, Benjamin

    2015-10-01

    Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~2.4%) subset of precursors, termed "fusion founders", capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5-35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Pressure regulates osteoclast formation and MCSF expression in marrow culture.

    PubMed

    Rubin, J; Biskobing, D; Fan, X; Rubin, C; McLeod, K; Taylor, W R

    1997-01-01

    One of the forces generated during skeletal loading is hydrostatic pressure. In the work presented here, the ability of increased pressure to influence recruitment of osteoclasts was evaluated. Murine marrow cultures, with pO2 and pCO2 kept constant, were subjected to either control (1.0 atm) or elevated (1.37 or 2.0 atm) hydrostatic pressure. As compared to control, cultures pressurized for 6 days at 1.37 atm formed less osteoclast-like cells (OCLC) (71 +/- 6% of control, P < 0.0001). A similar degree of inhibition occurred in cultures exposed to pressure during days 2-4 only (62 +/- 6%), while treatment during days 5-7 failed to inhibit the OCLC number relative to control (99 +/- 5%). Delivery of 2.0 atm pressure on days 2-4 generated 52 +/- 4% OCLC compared to control. Since macrophage colony stimulating factor (MCSF)-dependent proliferation of osteoclast precursors occurs during the pressure-sensitive period, semiquantitative RT-PCR for MCSF mRNA was performed after 3 days in 1.37 atm (days 2-4). As compared to controls, pressure caused a decrease in mRNA coding for the membrane bound form of MCSF (71.2 +/- 4% (n = 25, P < or = 0.05), while the MCSF RT-PCR product representing the secreted form showed no consistent change. This lack of response of the soluble MCSF RT-PCR product was expected, as levels of bioassayable MCSF were not altered by pressure. Extrapolating these data to in vivo conditions suggests that load-bearing will inhibit the formation of osteoclasts.

  5. Flavonoids isolated from Tridax procumbens (TPF) inhibit osteoclasts differentiation and bone resorption.

    PubMed

    Al Mamun, Md Abdullah; Islam, Kamrul; Alam, Md Jahangir; Khatun, Amina; Alam, M Masihul; Al-Bari, Md Abdul Alim; Alam, Md Jahangir

    2015-09-12

    The Tridax procumbens flavonoids (TPF), are well known for their medicinal properties among local natives. The TPF are traditionally used for dropsy, anaemia, arthritis, gout, asthma, ulcer, piles, and urinary problems. It also used in treating gastric problems, body pain, and rheumatic pains of joints. The TPF have been reported to increase osteogenic functioning in mesenchymal stem cells. However, their effects on osteoclastogenesis remain unclear. The TPF isolated from T. procumbens and investigated the effects of the TPF inhibit on osteoclast differentiation and bone resorption activities using primary osteoclastic cells. Osteoclast formation was assessed by counting the number of tartrate resistant acid phosphatase (TRAP) positive multinucleated cells and by measuring both TRAP activities. The TPF significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in primary osteoclastic cells. The TPF also decreased the expression of mRNAs related to osteoclast differentiation, including Trap, Cathepsin K, Mmp-9, and Mmp-13 in primary osteoclastic cells. The treatment of primary osteoclastic cells with the TPF decreased Cathepsin K, Mmp-9, and Mmp-13 proteins expression in primary osteoclastic cells. These results indicated that TPF inhibit osteoclastogenesis and pits formation activities. Our results suggest that the TPF could be a potential anti-bone resorptic agent to treat patients with bone loss-associated diseases such as osteoporosis.

  6. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  7. Dlx homeobox gene family expression in osteoclasts.

    PubMed

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  8. Bio-corrosion of stainless steel by osteoclasts--in vitro evidence.

    PubMed

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Simmen, Hans-Peter; Filgueira, Luis

    2009-07-01

    Most metals in contact with biological systems undergo corrosion by an electrochemical process. This study investigated whether human osteoclasts (OC) are able to grow on stainless steel (SS) and directly corrode the metal alloy leading to the formation of corresponding metal ions, which may cause inflammatory reactions and activate the immune system. Scanning electron microscopy analysis demonstrated long-term viable OC cultures and evident resorption features on the surface of SS discs on which OC were cultured for 21 days. The findings were confirmed by atomic emission spectrometry investigations showing significantly increased levels of chromium, nickel, and manganese in the supernatant of OC cultures. Furthermore, significant levels of pro-inflammatory cytokines IL-1beta, IL-6, and TNF-alpha, which are considered to be major mediators of osteolysis, were revealed in the same cultures by cytometric bead array analysis. Within the present study, it was shown that human osteoclast precursors are able to grow and differentiate towards mature OC on SS. The mature cells are able to directly corrode the metal surface and release corresponding metal ions, which induce the secretion of pro-inflammatory cytokines that are known to enhance osteoclast differentiation, activation, and survival. Enhanced corrosion and the subsequently released metal ions may therefore result in enhanced osteolytic lesions in the peri-prosthetic bone, contributing to the aseptic loosening of the implant.

  9. Cytologic Features of Malignant Melanoma with Osteoclast-Like Giant Cells.

    PubMed

    Jiménez-Heffernan, José A; Adrados, Magdalena; Muñoz-Hernández, Patricia; Fernández-Rico, Paloma; Ballesteros-García, Ana I; Fraga, Javier

    2018-01-01

    Malignant melanoma showing numerous osteoclast-like giant cells (OGCs) is an uncommon morphologic phenomenon, rarely mentioned in the cytologic literature. The few reported cases seem to have an aggressive clinical behavior. Although most findings support monocyte/macrophage differentiation, the exact nature of OGCs is not clear. A 57-year-old woman presented with an inguinal lymphadenopathy. Sixteen years before, cutaneous malignant melanoma of the lower limb had been excised. Needle aspiration revealed abundant neoplastic single cells as well as numerous multinucleated OGCs. Occasional neoplastic giant cells were also present. Nuclei of OGCs were monomorphic with oval morphology and were smaller than those of melanoma cells. The immunophenotype of OGCs (S100-, HMB45-, Melan-A-, SOX10-, Ki67-, CD163-, BRAF-, CD68+, MiTF+, p16+) was the expected for reactive OGCs of monocyte/macrophage origin. The tumor has shown an aggressive behavior with further metastases to the axillary lymph nodes and oral cavity. Numerous OGCs are a rare and relevant finding in malignant melanoma. Their presence should not induce confusion with other tumors rich in osteoclastic cells. Since a relevant number of OGCs in melanoma may mean a more aggressive behavior, and patients may benefit from specific treatments, their presence should be mentioned in the pathologic report. © 2018 S. Karger AG, Basel.

  10. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  11. Smad 1/5 and Smad 4 Expression Are Important for Osteoclast Differentiation

    PubMed Central

    Tasca, Amy; Stemig, Melissa; Broege, Aaron; Huang, Brandon; Davydova, Julia; Zwijsen, An; Umans, Lieve; Jensen, Eric D.; Gopalakrishnan, Raj; Mansky, Kim C.

    2015-01-01

    To investigate the necessity of the canonical BMP pathway during osteoclast differentiation, we created osteoclasts with a conditional gene deletion for Smad1 and Smad5 (SMAD1/5), or Smad4 using adenovirus expressing CRE recombinase (Ad-CRE). Reduction of either Smad4 or Smad1/5 expression resulted in fewer and smaller multinuclear cells compared to control cells. We also detected changes in osteoclast enriched genes, demonstrated by decreased Dc-stamp and cathepsin K expression in both Smad4 and Smad1/5 Ad-CRE osteoclasts, and changes in c-fos and Nfatc1 expression in only Smad4 Ad-CRE cells. Lastly we also detected a significant decrease in resorption pits and area resorbed in both the Smad4 and Smad1/5 Ad-CRE osteoclasts. Because we inhibited osteoclast differentiation with loss of either Smad4 or Smad1/5 expression, we assessed whether BMPs affected osteoclast activity in addition to BMP’s effects on differentiation. Therefore, we treated mature osteoclasts with BMP2 or with dorsomorphin, a chemical inhibitor that selectively suppresses canonical BMP signaling. We demonstrated that BMP2 stimulated resorption in mature osteoclasts whereas treatment with dorsomorphin blocks osteoclast resorption. These results indicate that the BMP canonical signaling pathway is important for osteoclast differentiation and activity. PMID:25711193

  12. Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes.

    PubMed

    Fujihara, Yuko; Kondo, Hisataka; Noguchi, Toshihide; Togari, Akifumi

    2014-04-01

    Circadian rhythms are prevalent in bone metabolism. However, the molecular mechanisms involved are poorly understood. Recently, we suggested that output signals from the suprachiasmatic nucleus (SCN) are transmitted from the master circadian rhythm to peripheral osteoblasts through β-adrenergic and glucocorticoid signaling. In this study, we examined how the master circadian rhythm is transmitted to peripheral osteoclasts and the role of clock gene in osteoclast. Mice were maintained under 12-hour light/dark periods and sacrificed at Zeitgeber times 0, 4, 8, 12, 16 and 20. mRNA was extracted from femur (cancellous bone) and analyzed for the expression of osteoclast-related genes and clock genes. Osteoclast-related genes such as cathepsin K (CTSK) and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) showed circadian rhythmicity like clock genes such as period 1 (PER1), PER2 and brain and muscle Arnt-like protein 1 (BMAL1). In an in vitro study, not β-agonist but glucocorticoid treatment remarkably synchronized clock and osteoclast-related genes in cultured osteoclasts. Chromatin immunoprecipitation (ChIP) assay showed the interaction between BMAL1 proteins and promoter region of CTSK and NFATc1. To examine whether endogenous glucocorticoids influence the osteoclast circadian rhythms, mice were adrenalectomized (ADX) and maintained under 12-hour light/dark periods at least two weeks before glucocorticoid injection. A glucocorticoid injection restarted the circadian expression of CTSK and NFATc1 in ADX mice. These results suggest that glucocorticoids mediate circadian timing to peripheral osteoclasts and osteoclast clock contributes to the circadian expression of osteoclast-related genes such as CTSK and NFATc1. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  14. Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts

    PubMed Central

    Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme

    2010-01-01

    Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300

  15. Nicotine Affects Bone Resorption and Suppresses the Expression of Cathepsin K, MMP-9 and Vacuolar-Type H+-ATPase d2 and Actin Organization in Osteoclasts

    PubMed Central

    Tanaka, Hideki; Tanabe, Natsuko; Kawato, Takayuki; Nakai, Kumiko; Kariya, Taro; Matsumoto, Sakurako; Zhao, Ning; Motohashi, Masafumi; Maeno, Masao

    2013-01-01

    Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10−5, 10−4, or 10−3 M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1–5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization. PMID

  16. The Effect of Lunasin on Receptor Activator of Nuclear Factor Kappa-B Ligand-mediated Osteoclast Formation from RAW 264.7 Cells.

    PubMed

    Bachala, Daisy; El-Refai, Nivine; Greenfield, Edward; Aminoshariae, Anita; Mickel, Andre

    2018-06-01

    To date, no study has investigated the antiresorptive property of lunasin. Hence, the present study aimed to assess the ability of lunasin to inhibit the osteoclast formation using RAW 264.7 cells. We hypothesized that lunasin is able to inhibit osteoclast formation. In the present study, the murine monocytic cell line RAW 264.7 was induced to differentiate into mature osteoclasts in the presence of recombinant receptor activator of nuclear factor kappa-B ligand. Tartrate-resistant acid phosphatase, a marker of osteoclasts, was used to identify osteoclasts. Cell lines were divided into different groups and exposed to different concentrations of 50 μmol/L, 75 μmol/L, and 100 μmol/L active and inactive lunasin. The control group was RAW 264.7 cells with receptor activator of nuclear factor kappa-B ligand. Tartrate-resistant acid phosphatase-positive cells of 3 or more nuclei, indicative of mature osteoclasts, were counted by 3 observers. The mean number of the data collected was analyzed using 1-way analysis of variance and the multiple comparison post hoc Bonferroni correction. There was a significant difference in the reduction of osteoclast formation in all the active lunasin groups (P < .001) compared with the control group and the inactive lunasin group (P < .001). Considering the suppressive effect of lunasin on osteoclastogenesis, the use of lunasin as a potential antiresorptive agent can be evaluated in future studies. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. [Osteoclasts and early bone remodeling after orthodontic micro-implant placement].

    PubMed

    Zhang, Wei; Guo, Jia-jia; Zhu, Wen-qian; Tang, Guo-hua

    2013-08-01

    To observe the incidence of osteoclasts during early bone remodeling after orthodontic micro-implant placement. Twenty New Zealand rabbits were randomly allotted into 4 groups. One micro-implant was implanted proximal to the epiphyseal plate of the tibia. Animals were sacrificed on day 3, 7, 14 and 28 (n=5). The sequence of histological changes around the micro-implants were evaluated by hematoxylin and eosin (HE) staining. Osteoclasts were identified by TRAP staining. The differences of the number of the osteoclasts among each time point were analyzed by one way ANOVA with SPSS 19.0 software package. After 3 days of implantation, a large number of erythrocytes, inflammatory cells, mesenchymal cells and bone debris were seen at the implant bone interfaces. Few osteoclasts were observed. On day 7, granular woven bone was formed and some osteoclasts were found in the Howship's lacunae. New bone formation and mineralization were apparent on day 14. Meanwhile, large amounts of osteoclasts were found in the latticed woven bone. On day 28, woven trabeculae with lamellate structures connected to lamellar bone and fewer osteoclasts were identified. Semi-quantitative analysis showed that the number of the osteoclasts was at peak on day 14. There were significant differences among each time point (P<0.01). Osteoclast activity is closely related to bone formation and remodeling after micro-implant insertion.

  18. Thymosin Beta-4 Suppresses Osteoclastic Differentiation and Inflammatory Responses in Human Periodontal Ligament Cells

    PubMed Central

    Lee, Sang-Im; Yi, Jin-Kyu; Bae, Won-Jung; Lee, Soojung; Cha, Hee-Jae; Kim, Eun-Cheol

    2016-01-01

    Background Recent reports suggest that thymosin beta-4 (Tβ4) is a key regulator for wound healing and anti-inflammation. However, the role of Tβ4 in osteoclast differentiation remains unclear. Purpose The purpose of this study was to evaluate Tβ4 expression in H2O2-stimulated human periodontal ligament cells (PDLCs), the effects of Tβ4 activation on inflammatory response in PDLCs and osteoclastic differentiation in mouse bone marrow-derived macrophages (BMMs), and identify the underlying mechanism. Methods Reverse transcription-polymerase chain reactions and Western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages (BMMs) using conditioned medium (CM) from H2O2-treated PDLCs. Results Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17) as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it. Conclusion In conclusion, this study demonstrated, for the first time, that Tβ4 was down-regulated in ROS-stimulated PDLCs as well as Tβ4 activation exhibited anti-inflammatory effects and anti-osteoclastogenesis in vitro

  19. Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation.

    PubMed

    Sekiguchi, Yuusuke; Mano, Hiroshi; Nakatani, Sachie; Shimizu, Jun; Kataoka, Aya; Ogura, Kana; Kimira, Yoshifumi; Ebata, Midori; Wada, Masahiro

    2017-08-01

    Mangiferin is a polyphenolic compound present in Salacia reticulata. It has been reported to reduce bone destruction and inhibit osteoclastic differentiation. This study aimed to determine whether mangiferin directly affects osteoblast and osteoclast proliferation and differentiation, and gene expression in MC3T3‑E1 osteoblastic cells and osteoclast‑like cells derived from primary mouse bone marrow macrophage cells. Mangiferin induced significantly greater WST‑1 activity, indicating increased cell proliferation. Mangiferin induced significantly increased alkaline phosphatase staining, indicating greater cell differentiation. Reverse transcription‑polymerase chain reaction (RT‑PCR) demonstrated that mangiferin significantly increased the mRNA level of runt‑related transcription factor 2 (RunX2), but did not affect RunX1 mRNA expression. Mangiferin significantly reduced the formation of tartrate‑resistant acid phosphatase‑positive multinuclear cells. RT‑PCR demonstrated that mangiferin significantly increased the mRNA level of estrogen receptor β (ERβ), but did not affect the expression of other osteoclast‑associated genes. Mangiferin may inhibit osteoclastic bone resorption by suppressing differentiation of osteoclasts and promoting expression of ERβ mRNA in mouse bone marrow macrophage cells. It also has potential to promote osteoblastic bone formation by promoting cell proliferation and inducing cell differentiation in preosteoblast MC3T3‑E1 cells via RunX2. Mangiferin may therefore be useful in improving bone disease outcomes.

  20. Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast-osteoclast-endothelial cell co-culture study.

    PubMed

    Forte, Lucia; Torricelli, Paola; Boanini, Elisa; Gazzano, Massimo; Rubini, Katia; Fini, Milena; Bigi, Adriana

    2016-03-01

    Quercetin (3,3',4',5,7-pentahydroxy-flavone) is a flavonoid known for its pharmacological activities, which include antioxidant and anti-inflammatory properties, as well as possible beneficial action on diseases involving bone loss. In this work, we explored the possibility to functionalize hydroxyapatite (HA) with quercetin in order to obtain new materials for bone repair through local administration of the flavonoid. HA was synthesized in presence of different concentrations of quercetin according to two different procedures: direct synthesis and phase transition from monetite. Direct synthesis lead to composite nanocrystals containing up to 3.1 wt% quercetin, which provokes a reduction of the crystals mean dimensions and of the length of the coherently scattering domains. Synthesis conditions provoke a partial oxidation of quercetin and, as a consequence, a significant reduction of its radical scavenging activity (RSA). On the other hand, synthesis through phase transition yields samples containing up to 1.3 wt% of quercetin incorporated into hydroxyapatite, with minor structural modifications, which exhibit relevant anti-oxidant activities, as testified by their high RSA levels, (slightly lower than that of pure quercetin). The biological response to these materials was tested using an innovative triculture model involving osteoblast, osteoclast and endothelial cells, in order to mimic bone microenvironment. The results show that the presence of quercetin in the composite materials enhances human osteoblast-like MG63 proliferation and differentiation, whereas it downregulates osteoclastogenesis of osteoclast precursors 2T-110, and supports proliferation and differentiation of human umbilical vein endothelial cells (HUVEC). The pharmacological activities of the flavonoid quercetin include anti-oxidant and antiinflammatory properties, as well as capability to prevent bone loss. In this paper, we demonstrate that it is possible to synthesize hydroxyapatite

  1. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  2. Inhibition of osteoclast differentiation by overexpression of NDRG2 in monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Kyeongah; Nam, Sorim; Kim, Bomi

    N-Myc downstream-regulated gene 2 (NDRG2), a member of the NDRG family of differentiation-related genes, has been characterized as a regulator of dendritic cell differentiation from monocytes, CD34{sup +} progenitor cells, and myelomonocytic leukemic cells. In this study, we show that NDRG2 overexpression inhibits the differentiation of U937 cells into osteoclasts in response to stimulation with a combination of macrophage colony-stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (RANKL). U937 cells stably expressing NDRG2 are unable to differentiate into multinucleated osteoclast-like cells and display reduced tartrate-resistant acid phosphatase (TRAP) activity and resorption pit formation. Furthermore, NDRG2 expression significantly suppressesmore » the expression of genes that are crucial for the proliferation, survival, differentiation, and function of osteoclasts, including c-Fos, Atp6v0d2, RANK, and OSCAR. The activation of ERK1/2 and p38 is also inhibited by NDRG2 expression during osteoclastogenesis, and the inhibition of osteoclastogenesis by NDRG2 correlates with the down-regulation of the expression of the transcription factor PU.1. Taken together, our results suggest that the expression of NDRG2 potentially inhibits osteoclast differentiation and plays a role in modulating the signal transduction pathway responsible for osteoclastogenesis. - Highlights: • The expression of NDRG2 significantly impairs osteoclast differentiation. • PU.1 and p38 MAPK inhibitions by NDRG2 are critical for the inhibition of osteoclastogenesis. • Knockdown of NDRG2 rescues the ability of monocytes to differentiate into osteoclasts. • NDRG2 expression in BM and primary macrophages also impairs osteoclast differentiation. • This study implies the potential of NDRG2 expression in the inhibition of osteoclastogenesis.« less

  3. Regulation and Biological Significance of Formation of Osteoclasts and Foreign Body Giant Cells in an Extraskeletal Implantation Model

    PubMed Central

    Ahmed, Gazi Jased; Tatsukawa, Eri; Morishita, Kota; Shibata, Yasuaki; Suehiro, Fumio; Kamitakahara, Masanobu; Yokoi, Taishi; Koji, Takehiko; Umeda, Masahiro; Nishimura, Masahiro; Ikeda, Tohru

    2016-01-01

    The implantation of biomaterials induces a granulomatous reaction accompanied by foreign body giant cells (FBGCs). The characterization of multinucleated giant cells (MNGCs) around bone substitutes implanted in bone defects is more complicated because of healing with bone admixed with residual bone substitutes and their hybrid, and the appearance of two kinds of MNGCs, osteoclasts and FBGCs. Furthermore, the clinical significance of osteoclasts and FBGCs in the healing of implanted regions remains unclear. The aim of the present study was to characterize MNGCs around bone substitutes using an extraskeletal implantation model and evaluate the clinical significance of osteoclasts and FBGCs. Beta-tricalcium phosphate (β-TCP) granules were implanted into rat subcutaneous tissue with or without bone marrow mesenchymal cells (BMMCs), which include osteogenic progenitor cells. We also compared the biological significance of plasma and purified fibrin, which were used as binders for implants. Twelve weeks after implantation, osteogenesis was only detected in specimens implanted with BMMCs. The expression of two typical osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin-K (CTSK), was analyzed, and TRAP-positive and CTSK-positive osteoclasts were only detected beside bone. In contrast, most of the MNGCs in specimens without the implantation of BMMCs were FBGCs that were negative for TRAP, whereas the degradation of β-TCP was detected. In the region implanted with β-TCP granules with plasma, FBGCs tested positive for CTSK, and when β-TCP granules were implanted with purified fibrin, FBGCs tested negative for CTSK. These results showed that osteogenesis was essential to osteoclastogenesis, two kinds of FBGCs, CTSK-positive and CTSK-negative, were induced, and the expression of CTSK was plasma-dependent. In addition, the implantation of BMMCs was suggested to contribute to osteogenesis and the replacement of implanted β-TCP granules to bone. PMID

  4. OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE

    PubMed Central

    Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev

    2014-01-01

    Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229

  5. Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption

    PubMed Central

    van't Hof, R. J.; Armour, K. J.; Smith, L. M.; Armour, K. E.; Wei, X. Q.; Liew, F. Y.; Ralston, S. H.

    2000-01-01

    Nitric oxide has been suggested to be involved in the regulation of bone turnover, especially in pathological conditions characterized by release of bone-resorbing cytokines. The cytokine IL-1 is thought to act as a mediator of periarticular bone loss and tissue damage in inflammatory diseases such as rheumatoid arthritis. IL-1 is a potent stimulator of both osteoclastic bone resorption and expression of inducible nitric oxide synthase (iNOS) in bone cells and other cell types. In this study, we investigated the role that the iNOS pathway plays in mediating the bone-resorbing effects of IL-1 by studying mice with targeted disruption of the iNOS gene. Studies in vitro and in vivo showed that iNOS-deficient mice exhibited profound defects of IL-1-induced osteoclastic bone resorption but responded normally to calciotropic hormones such as 1,25 dihydroxyvitamin D3 and parathyroid hormone. Immunohistochemical studies and electrophoretic mobility shift assays performed on bone marrow cocultures from iNOS-deficient mice showed abnormalities in IL-1-induced nuclear translocation of the p65 component of NFκB and in NFκB-DNA binding, which were reversed by treatment with the NO donor S-nitroso-acetyl penicillamine. These results show that the iNOS pathway is essential for IL-1-induced bone resorption and suggest that the effects of NO may be mediated by modulating IL-1-induced nuclear activation of NFκB in osteoclast precursors. PMID:10869429

  6. TSG-6 Regulates Bone Remodeling through Inhibition of Osteoblastogenesis and Osteoclast Activation*S⃞

    PubMed Central

    Mahoney, David J.; Mikecz, Katalin; Ali, Tariq; Mabilleau, Guillaume; Benayahu, Dafna; Plaas, Anna; Milner, Caroline M.; Day, Anthony J.; Sabokbar, Afsaneh

    2008-01-01

    TSG-6 is an inflammation-induced protein that is produced at pathological sites, including arthritic joints. In animal models of arthritis, TSG-6 protects against joint damage; this has been attributed to its inhibitory effects on neutrophil migration and plasmin activity. Here we investigated whether TSG-6 can directly influence bone erosion. Our data reveal that TSG-6 inhibits RANKL-induced osteoclast differentiation/activation from human and murine precursor cells, where elevated dentine erosion by osteoclasts derived from TSG-6-/- mice is consistent with the very severe arthritis seen in these animals. However, the long bones from unchallenged TSG-6-/- mice were found to have higher trabecular mass than controls, suggesting that in the absence of inflammation TSG-6 has a role in bone homeostasis; we have detected expression of the TSG-6 protein in the bone marrow of unchallenged wild type mice. Furthermore, we have observed that TSG-6 can inhibit bone morphogenetic protein-2 (BMP-2)-mediated osteoblast differentiation. Interaction analysis revealed that TSG-6 binds directly to RANKL and to BMP-2 (as well as other osteogenic BMPs but not BMP-3) via composite surfaces involving its Link and CUB modules. Consistent with this, the full-length protein is required for maximal inhibition of osteoblast differentiation and osteoclast activation, although the isolated Link module retains significant activity in the latter case. We hypothesize that TSG-6 has dual roles in bone remodeling; one protective, where it inhibits RANKL-induced bone erosion in inflammatory diseases such as arthritis, and the other homeostatic, where its interactions with BMP-2 and RANKL help to balance mineralization by osteoblasts and bone resorption by osteoclasts. PMID:18586671

  7. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133(+) Hematopoietic Stem Cells to Osteoclasts.

    PubMed

    Kalantari, Nasim; Abroun, Saeid; Soleimani, Masoud; Kaviani, Saeid; Azad, Mehdi; Eskandari, Fatemeh; Habibi, Hossein

    2016-01-01

    Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma cells expressed RANK and RANKL. It had been reported that the expression of myeloid and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well as expression of calcitonin receptor (CTR) on cord blood HSC surface. In this experimental study, CD133(+) hematopoietic stem cells were isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping, and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes. Hematopoietic stem cells expressed RANK before and after differentiation into osteoclast. Compared to control group, flow cytometric results showed an increased expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells. Presence of RANKL and M-CSF in bone marrow could induce HSCs differentiation into osteoclast.

  8. Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture.

    PubMed

    Biskobing, D M; Fan, X; Rubin, J

    1995-07-01

    To clarify events involved in 1,25(OH)2D3-stimulated osteoclast-like cell (OCLC) formation in primary murine marrow culture, we have characterized kinetics of precursor proliferation and fusion and their dependence on macrophage colony-stimulating factor (MCSF). 3H-thymidine nuclear incorporation in tartrate-resistant acid phosphatase positive multinucleated cells (TRAP+ MNCs) was assessed: 3H-thymidine incorporation was greatest when tracer was added during day 4 or 5, with labeled nuclei in 81% (day 4) and 90% (day 5) of the TRAP+ MNCs counted at the end of day 7. The percentage of total nuclei labeled was highest when 3H-thymidine was dosed on day 4 (58%), decreasing to 2% by day 7. Final TRAP+ MNC numbers were depleted by 80% when treated for 24 h with hydroxyurea on either day 3 or 4; this inhibition dropped to 57% and 12% when hydroxyurea was pulsed during days 5 or 6, respectively. The absence of 1,25(OH)2D3 during days 1-4 caused 70% attenuation of TRAP+ MNC formation; however, exposure to 3H-thymidine during day 4 in this experiment resulted in subsequent labeling of 81% of the TRAP+ MNCs formed, indicating that precursor proliferation occurred in the absence of 1,25(OH)2D3. To demonstrate that proliferation required MCSF, cultures were exposed to a monoclonal anti-MCSF antibody during days 3, 4, 5, 6, or 7. Inhibition of TRAP+ MNC formation was 85% when antibody was added during day 3. Antibody treatment after day 5 had little effect on the OCLC number. Fusion of precursors showed steady progression with OCLCs containing 4.8 +/- 0.3 nuclei at the end of day 4, 8.3 +/- 0.5 nuclei after day 5, 12.0 +/- 1.3 after day 6, and 13.7 +/- 1.5 at the end of day 7. This steady accretion of nuclei was unaffected by doses of MCSF antibody which blocked proliferation. In conclusion, we have shown that OCLCs arise from an MCSF-dependent expansion of the precursor pool occurring during days 3 and 4. Fusion of these precursors, which begins as proliferation diminishes, is

  9. Concise Review: Stem Cells in Osteoimmunology.

    PubMed

    Fierro, Fernando A; Nolta, Jan A; Adamopoulos, Iannis E

    2017-06-01

    Bone remodeling is a lifelong process in which mature bone tissue is removed from the skeleton by bone resorption and is replenished by new during ossification or bone formation. The remodeling cycle requires both the differentiation and activation of two cell types with opposing functions; the osteoclast, which orchestrates bone resorption, and the osteoblast, which orchestrates bone formation. The differentiation of these cells from their respective precursors is a process which has been overshadowed by enigma, particularly because the precise osteoclast precursor has not been identified and because the identification of skeletal stem cells, which give rise to osteoblasts, is very recent. Latest advances in the area of stem cell biology have enabled us to gain a better understanding of how these differentiation processes occur in physiological and pathological conditions. In this review we postulate that modulation of stem cells during inflammatory conditions is a necessary prerequisite of bone remodeling and therefore an essential new component to the field of osteoimmunology. In this context, we highlight the role of transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1), because it directly links inflammation with differentiation of osteoclasts and osteoblasts. Stem Cells 2017;35:1461-1467. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia.

    PubMed

    Nakamura, Hiroaki; Sato, Ginga; Hirata, Azumi; Yamamoto, Toshio

    2004-01-01

    Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.

  11. BMP-2 and titanium particles synergistically activate osteoclast formation

    PubMed Central

    Sun, S.X.; Guo, H.H.; Zhang, J.; Yu, B.; Sun, K.N.; Jin, Q.H.

    2014-01-01

    A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation. PMID:24820069

  12. Tumor Necrosis Factor Receptor-associated Factor 6 Is an Intranuclear Transcriptional Coactivator in Osteoclasts*

    PubMed Central

    Bai, Shuting; Zha, Jikun; Zhao, Haibo; Ross, F. Patrick; Teitelbaum, Steven L.

    2008-01-01

    Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-κB (RANK) and is an essential component of the signaling complex mediating osteoclastogenesis. However, the osteoclastic activity of TRAF6 is blunted by its association with four and half LIM domain 2 (FHL2), which functions as an adaptor protein in the cytoplasm and transcriptional regulator in the nucleus. We find that TRAF6 also localizes in the nuclei of osteoclasts but not their bone marrow macrophage precursors and that osteoclast intranuclear abundance is specifically increased by RANK ligand (RANKL). TRAF6 nuclear localization requires FHL2 and is diminished in fhl2-/- osteoclasts. Suggesting transcriptional activity, TRAF6 interacts with the transcription factor RUNX1 in the osteoclast nucleus. FHL2 also associates with RUNX1 but does so only in the presence of TRAF6. Importantly, TRAF6 recognizes FHL2 and RUNX1 in osteoclast nuclei, and the three molecules form a DNA-binding complex that recognizes and transactivates the RUNX1 response element in the fhl2 promoter. Finally, TRAF6 and its proximal activator, RANKL, polyubiquitinate FHL2, prompting its proteasomal degradation. These observations suggest a feedback mechanism whereby TRAF6 negatively regulates osteoclast formation by intracytoplasmic sequestration of FHL2 to blunt RANK activation and as a component of a transcription complex promoting FHL2 expression. PMID:18768464

  13. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    PubMed Central

    Chen, I-Ping

    2014-01-01

    More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts. PMID:25621177

  14. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  15. Response of human rheumatoid arthritis osteoblasts and osteoclasts to adiponectin.

    PubMed

    Krumbholz, Grit; Junker, Susann; Meier, Florian M P; Rickert, Markus; Steinmeyer, Jürgen; Rehart, Stefan; Lange, Uwe; Frommer, Klaus W; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena

    2017-01-01

    Adiponectin is an effector molecule in the pathophysiology of rheumatoid arthritis, e.g. by inducing cytokines and matrix degrading enzymes in synovial fibroblasts. There is growing evidence that adiponectin affects osteoblasts and osteoclasts although the contribution to the aberrant bone metabolism in rheumatoid arthritis is unclear. Therefore, the adiponectin effects on rheumatoid arthritis-derived osteoblasts and osteoclasts were evaluated. Adiponectin and its receptors were examined in bone tissue. Primary human osteoblasts and osteoclasts were stimulated with adiponectin and analysed using realtime polymerase chain-reaction and immunoassays. Effects on matrix-production by osteoblasts and differentiation and resorptive activity of osteoclasts were examined. Immunohistochemistry of rheumatoid arthritis bone tissue showed adiponectin expression in key cells of bone remodelling. Adiponectin altered gene expression and cytokine release in osteoblasts and increased IL-8 secretion by osteoclasts. Adiponectin inhibited osterix and induced osteoprotegerin mRNA in osteoblasts. In osteoclasts, MMP-9 and tartrate resistant acid phosphatase expression was increased. Accordingly, mineralisation capacity of osteoblasts decreased whereas resorptive activity of osteoclasts increased. The results confirm the proinflammatory potential of adiponectin and support the idea that adiponectin influences rheumatoid arthritis bone remodelling through alterations in osteoblast and osteoclast.

  16. Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite.

    PubMed

    Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa

    2016-11-15

    Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Pulsed electromagnetic field inhibits RANKL-dependent osteoclastic differentiation in RAW264.7 cells through the Ca2+-calcineurin-NFATc1 signaling pathway.

    PubMed

    Zhang, Jie; Xu, Haixia; Han, Zhongyu; Chen, Ping; Yu, Qiang; Lei, Yutian; Li, Zongze; Zhao, Ming; Tian, Jing

    2017-01-08

    Pulsed electromagnetic field (PEMF) has been reported to improve bone healing in osteoporosis patients. However, the precise mechanism has remained largely unknown. This study aimed to investigate the effects of PEMF on nuclear factor κB ligand (RANKL)-dependent osteoclastic differentiation and the Ca 2+ -calcineurin-NFATc1 signaling pathway in RAW264.7 cells in vitro. Treating RAW264.7 cells with RANKL for 4 days induced osteoclastic differentiation in vitro, and the formation of multinucleated osteoclasts, bone resorption-pit formation, tartrate-resistant acid phosphatase (TRAP) activity and the protein levels of cathepsin K, TRAP, Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and matrix metalloproteinase 9 (MMP-9) were significantly decreased. The mRNA levels of specific genes related to osteoclastogenesis (TRAP, NFATc1, CTSK and MMP-9) were also reduced. Moreover, the oscillations of intracellular Ca 2+ in RANKL-dependent RAW264.7 cells were suppressed by PEMF, as well as by inhibitors of membrane and store-operated Ca 2+ channels. Meanwhile, calcineurin activity was increased, although its protein level was not changed. PEMF increased phospho-NFATc1 in the cytosol while suppressing the nuclear translocation of NFATc1, thus inhibiting osteoclastic differentiation by suppressing the Ca 2+ -calcineurin-NFATc1 signaling pathway. Although many questions remain unresolved, to our knowledge, this is the first report demonstrating that PEMF is beneficial against RANKL-dependent osteoclastic differentiation in RAW264.7 cells in vitro via inhibiting the Ca 2+ -calcineurin-NFATc1 signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Histochemical assessment for osteoblastic activity coupled with dysfunctional osteoclasts in c-src deficient mice.

    PubMed

    Toray, Hisashi; Hasegawa, Tomoka; Sakagami, Naoko; Tsuchiya, Erika; Kudo, Ai; Zhao, Shen; Moritani, Yasuhito; Abe, Miki; Yoshida, Taiji; Yamamoto, Tomomaya; Yamamoto, Tsuneyuki; Oda, Kimimitsu; Udagawa, Nobuyuki; Luiz de Freitas, Paulo Henrique; Li, Minqi

    2017-01-01

    Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos -/- or c-src -/- mice. Osteopetrotic c-fos deficient (c-fos -/- ) mice have no osteoclasts, while c-src deficient (c-src -/- ) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos -/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src -/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src -/- bone matrix. This indicates the possibility that in c-src -/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src -/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.

  19. Decursin from Angelica gigas suppresses RANKL-induced osteoclast formation and bone loss.

    PubMed

    Wang, Xin; Zheng, Ting; Kang, Ju-Hee; Li, Hua; Cho, Hyewon; Jeon, Raok; Ryu, Jae-Ha; Yim, Mijung

    2016-03-05

    Osteoclasts are the only cells capable of breaking down bone matrix, and excessive activation of osteoclasts is responsible for bone-destructive diseases. In this study, we investigated the effects of decursin from extract of Angelica gigas root on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast formation using mouse bone marrow-derived macrophages (BMMs). Decursin inhibited RANKL-induced osteoclast formation without cytotoxicity. In particular, decursin maintains the characteristics of macrophages by blocking osteoclast differentiation by RANKL. Furthermore, the RANKL-stimulated bone resorption was diminished by decursin. Mechanistically, decursin blocked the RANKL-triggered ERK mitogen-activated protein kinases (MAPK) phosphorylation, which results in suppression of c-Fos and the nuclear factor of activated T cells (NFATc1) expression. In accordance with the in vitro study, decursin reduced lipopolysaccharide (LPS)- or ovariectomy (OVX)-induced bone loss in vivo. Therefore, decursin exerted an inhibitory effect on osteoclast formation and bone loss in vitro and in vivo. Decursin could be useful for the treatment of bone diseases associated with excessive bone resorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. HTLV-1 Tax transgenic mice develop spontaneous osteolytic bone metastases prevented by osteoclast inhibition

    PubMed Central

    Gao, Ling; Deng, Hongju; Zhao, Haibo; Hirbe, Angela; Harding, John; Ratner, Lee; Weilbaecher, Katherine

    2005-01-01

    One in 20 carriers of human T-cell leukemia virus type 1 (HTLV-1) will develop adult T-cell leukemia/lymphoma (ATL), a disease frequently associated with hypercalcemia, bone destruction, and a fatal course refractory to current therapies. Overexpression of the HTLV-1–encoded Tax oncoprotein under the human granzyme B promoter causes large granular lymphocytic leukemia/lymphomas in mice. We found that Tax+ mice spontaneously developed hypercalcemia, high-frequency osteolytic bone metastases, and enhanced osteoclast activity. We evaluated Tax tumors for the production of osteoclast-activating factors. Purification of Tax+ tumor cells and nonmalignant tumor-infiltrating lymphocytes demonstrated that each of these populations expressed transcripts for distinct osteoclast-activating factors. We then evaluated the effect of osteoclast inhibition on tumor formation. Mice doubly transgenic for Tax and the osteoclast inhibitory factor, osteoprotegerin, were protected from osteolytic bone disease and developed fewer soft-tissue tumors. Likewise, osteoclast inhibition with bone-targeted zoledronic acid protected Tax+ mice from bone and soft-tissue tumors and prolonged survival. Tax+ mice represent the first animal model of high-penetrance spontaneous osteolytic bone metastasis and underscore the critical role of nonmalignant host cells recruited by tumor cells in the process of cancer progression and metastasis. PMID:16118323

  1. Decursin inhibits osteoclastogenesis by downregulating NFATc1 and blocking fusion of pre-osteoclasts.

    PubMed

    Kim, Kwang-Jin; Yeon, Jeong-Tae; Choi, Sik-Won; Moon, Seong-Hee; Ryu, Byung Jun; Yu, Ri; Park, Sang-Joon; Kim, Seong Hwan; Son, Young-Jin

    2015-12-01

    Bone sustains its structure through dynamic interaction between osteoblastic cells and osteoclastic cells. But imbalance may lead to osteoporosis caused by overactivated osteoclast cells that have bone-resorbing function. Recently, herbs have been researched as major sources of medicines in many countries. In vitro and in vivo anti-osteoclastogenic activity of Angelica gigas NAKAI have been reported, but the biological activity of decursin, its major component in osteoclast differentiation is still unknown. Therefore, in this study, we explored whether decursin could affect RANKL-mediated osteoclastogenesis. The results showed that decursin efficiently inhibited RANKL-activated osteoclast differentiation by inhibiting transcriptional and translational expression of NFATc1, a major factor in RANKL-mediated osteoclastogenesis. Furthermore, decursin decreased fusion and migration of pre-osteoclasts by downregulating mRNA expression levels of DC-STAMP and β3 integrin, respectively. In addition, decursin prevents lipopolysaccharide (LPS)-induced bone erosion in vivo. In summary, decursin could prevent osteoclastogenesis and inflammatory bone loss via blockage of NFATc1 activity and fusion and migration of pre-osteoclasts, and it could be developed as a potent phytochemical candidate for treating pathologies of bone diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Esculetin attenuates receptor activator of nuclear factor kappa-B ligand-mediated osteoclast differentiation through c-Fos/nuclear factor of activated T-cells c1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Jong Min; Park, Sun-Hyang; Cheon, Yoon-Hee

    Esculetin exerts various biological effects on anti-oxidation, anti-tumors, and anti-inflammation. However, the involvement of esculetin in the bone metabolism process, particularly osteoclast differentiation has not yet been investigated. In the present study, we first confirmed the inhibitory effect of esculetin on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation. We then revealed the relationship between esculetin and the expression of osteoclast-specific molecules to elucidate its underlying mechanisms. Esculetin interfered with the expression of c-Fos and nuclear factor of activated T cell c1 (NFATc1) both at the mRNA and protein level with no involvement in osteoclast-associated early signaling pathways, suppressingmore » the expression of various transcription factors exclusively expressed in osteoclasts such as tartrate-resistant acid phosphatase (Trap), osteoclast-associated receptor (Oscar), dendritic cell-specific transmembrane protein (Dcstamp), osteoclast stimulatory transmembrane protein (Ocstamp), cathepsin K, αvβ3 integrin, and calcitonin receptor (Ctr). Additionally, esculetin inhibited the formation of filamentous actin (F-actin) ring-positive osteoclasts during osteoclast differentiation. However, the development of F-actin structures and subsequent bone resorbing activity of mature osteoclasts, which are observed in osteoclast/osteoblast co-culture systems were not affected by esculetin. Taken together, our results indicate for the first time that esculetin inhibits RANKL-mediated osteoclastogenesis via direct suppression of c-Fos and NFATc1 expression and exerts an inhibitory effect on actin ring formation during osteoclastogenesis. - Highlights: • We first investigated the effects of esculetin on osteoclast differentiation and function. • Our data demonstrate for the first time that esculetin can suppress osteoclastogenesis in vitro. • Esculetin acts as an inhibitor of c-Fos and NFATc1 activation

  3. Fas Binding to Calmodulin Regulates Apoptosis in Osteoclasts*

    PubMed Central

    Wu, Xiaojun; Ahn, Eun-Young; McKenna, Margaret A.; Yeo, Hyeonju; McDonald, Jay M.

    2005-01-01

    Promotion of osteoclast apoptosis is one therapeutic approach to osteoporosis. Calmodulin, the major intracellular Ca2+ receptor, modulates both osteoclastogenesis and bone resorption. The calmodulin antagonist, trifluoperazine, rescues bone loss in ovariectomized mice (Zhang, L., Feng, X., and McDonald, J. M. (2003) Endocrinology 144, 4536–4543). We show here that a 3-h treatment of mouse osteoclasts with either of the calmodulin antagonists, tamoxifen or trifluoperazine, induces osteoclast apoptosis dose-dependently. Tamoxifen, 10 μm, and trifluoperazine, 10 μm, induce 7.3 ± 1.8-fold and 5.3 ± 0.9-fold increases in osteoclast apoptosis, respectively. In Jurkat cells, calmodulin binds to Fas, the death receptor, and this binding is regulated during Fas-mediated apoptosis (Ahn, E. Y., Lim, S. T., Cook, W. J., and McDonald, J. M. (2004) J. Biol. Chem. 279, 5661–5666). In osteoclasts, calmodulin also binds Fas. When osteoclasts are treated with 10 μm trifluoperazine, the binding between Fas and calmodulin is dramatically decreased at 15 min and gradually recovers by 60 min. A point mutation of the Fas death domain in the Lpr−cg mouse renders Fas inactive. Using glutathione S-transferase fusion proteins, the human Fas cytoplasmic domain is shown to bind calmodulin, whereas a point mutation (V254N) comparable with the Lpr−cg mutation in mice has markedly reduced calmodulin binding. Osteoclasts derived from Lpr−cg mice have diminished calmodulin/Fas binding and are more sensitive to calmodulin antagonist-induced apoptosis than those from wild-type mice. Both tamoxifen- and trifluoperazine-induced apoptosis are increased 1.6 ± 0.2-fold in Lpr−cg-derived osteoclasts compared with osteoclasts derived from wild-type mice. In summary, calmodulin antagonists induce apoptosis in osteoclasts by a mechanism involving interference with calmodulin binding to Fas. The effects of calmodulin/Fas binding on calmodulin antagonist-induced apoptosis may open a new

  4. Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone

    PubMed Central

    Xiong, Jinhu; Piemontese, Marilina; Onal, Melda; Campbell, Josh; Goellner, Joseph J.; Dusevich, Vladimir; Bonewald, Lynda; Manolagas, Stavros C.; O’Brien, Charles A.

    2015-01-01

    The cytokine receptor activator of nuclear factor kappa B ligand (RANKL), encoded by the Tnfsf11 gene, is essential for osteoclastogenesis and previous studies have shown that deletion of the Tnfsf11 gene using a Dmp1-Cre transgene reduces osteoclast formation in cancellous bone by more than 70%. However, the Dmp1-Cre transgene used in those studies leads to recombination in osteocytes, osteoblasts, and lining cells making it unclear whether one or more of these cell types produce the RANKL required for osteoclast formation in cancellous bone. Because osteoblasts, osteocytes, and lining cells have distinct locations and functions, distinguishing which of these cell types are sources of RANKL is essential for understanding the orchestration of bone remodeling. To distinguish between these possibilities, we have now created transgenic mice expressing the Cre recombinase under the control of regulatory elements of the Sost gene, which is expressed in osteocytes but not osteoblasts or lining cells in murine bone. Activity of the Sost-Cre transgene in osteocytes, but not osteoblast or lining cells, was confirmed by crossing Sost-Cre transgenic mice with tdTomato and R26R Cre-reporter mice, which express tdTomato fluorescent protein or LacZ, respectively, only in cells expressing the Cre recombinase or their descendants. Deletion of the Tnfsf11 gene in Sost-Cre mice led to a threefold decrease in osteoclast number in cancellous bone and increased cancellous bone mass, mimicking the skeletal phenotype of mice in which the Tnfsf11 gene was deleted using the Dmp1-Cre transgene. These results demonstrate that osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling cancellous bone. PMID:26393791

  5. The phase state of NiTi implant material affects osteoclastic attachment.

    PubMed

    Muhonen, V; Heikkinen, R; Danilov, A; Jämsä, T; Ilvesaro, J; Tuukkanen, J

    2005-12-01

    In the present work, the responses of mature osteoclasts cultured on austenite and martensite phases of NiTi shape memory implant material were studied. We used the sensitivity of osteoclasts to the underlying substrate and actin ring formation as an indicator of the adequacy of the implant surface. The results showed osteoclasts with actin ring on both NiTi phases. However, significantly more osteoclasts were present on the austenitic NiTi than on the martensitic NiTi. We also analyzed the surface free energy of the samples but found no significant difference between austenite and martensite phases. The results revealed that osteoclasts tolerated well the austenite phase of NiTi. The chemically identical martensitic NiTi was not as well tolerated by osteoclasts (e.g., indicated by diminished actin ring formation). This leads to the conclusion that certain physical properties specific to the martensitic NiTi have an adverse effect to the surviving of osteoclasts on this NiTi phase. These results confirm that mature, authentic osteoclasts can act as cell probes in experiments concerning aspects of biocompatibility of bone implant materials. (c) 2005 Wiley Periodicals, Inc.

  6. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts

    PubMed Central

    Rodriguez, Douglas E.; Thula-Mata, Taili; Toro, Edgardo J.; Yeh, Ya-Wen; Holt, Carl; Holliday, L. Shannon; Gower, Laurie B.

    2013-01-01

    Mineralized collagen composites are of interest because they have the potential to provide a bone-like scaffold that stimulates the natural processes of resorption and remodeling. Working toward this goal, our group has previously shown that the nanostructure of bone can be reproduced using a polymer-induced liquid-precursor (PILP) process, which enables intrafibrillar mineralization of collagen with hydroxyapatite (HA) to be achieved. This prior work used polyaspartic acid (pASP), a simple mimic for acidic non-collagenous proteins (NCPs), to generate nanodroplets/nanoparticles of an amorphous mineral precursor which can infiltrate the interstices of type-I collagen fibrils. In this study we show that osteopontin (OPN) can similarly serve as a process-directing agent for the intrafibrillar mineralization of collagen, even though OPN is generally considered a mineralization inhibitor. We also found that inclusion of OPN in the mineralization process promotes the interaction of mouse marrow-derived osteoclasts with PILP-remineralized bone that was previously demineralized, as measured by actin ring formation. While osteoclast activation occurred when pASP was used as the process-directing agent, using OPN resulted in a dramatic effect on osteoclast activation, presumably because of the inherent arginine-glycine-aspartate acid (RGD) ligands of OPN. By capitalizing on the multifunctionality of OPN, these studies may lead the way to producing biomimetic bone substitutes with the capability of tailorable bioresorption rates. PMID:24140612

  7. Inhibition of experimental bone resorption and osteoclast formation and survival by 2-aminoethanesulphonic acid.

    PubMed

    Koide, M; Okahashi, N; Tanaka, R; Kazuno, K; Shibasaki, K; Yamazaki, Y; Kaneko, K; Ueda, N; Ohguchi, M; Ishihara, Y; Noguchi, T; Nishihara, T

    1999-09-01

    It is known that bone resorption is mediated by osteoclasts, and lipopolysaccharide (LPS) and inflammatory mediators such as interleukin-1 (IL-1) and prostaglandin E2 (PGE2) induce osteoclast differentiation from haemopoietic cells, 2-aminoethanesulphonic acid, which is known as taurine, is an important nutrient and is added to most synthetic human infant milk formulas. In this study, it was found that 2-aminoethanesulphonic acid inhibits the stimulation of bone resorption mediated by LPS of the periodontopathic microorganism Actinobacillus actinomycetemcomitans Y4 in organ cultures of newborn mouse calvaria. The effect of 2-aminoethanesulphonic acid on the development and survival of osteoclast-like multinucleated cells produced in a mouse bone-marrow culture system was also examined. 2-aminoethanesulphonic acid (100 microg/ml) suppressed the formation of these osteoclast-like cells in the presence of LPS of A. actinomycetemcomitans Y4, IL-1alpha or PGE2 in mouse marrow cultures. On the other hand, 2-aminoethanesulphonic acid did not inhibit 1alpha, 25-dihydroxyvitamin D3-mediated osteoclast differentiation. Although IL-1alpha elongated the survival of the osteoclast-like cells, 2-aminoethanesulphonic acid blocked the supportive effect of IL-1alpha on osteoclast survival. 2-aminoethanesulphonic acid showed no effect on the growth of mouse osteoblasts. Finally, it was found that 2-aminoethanesulphonic acid inhibited alveolar bone resorption in experimental periodontitis in hamsters. These results suggest that 2-aminoethanesulphonic acid is an effective agent in preventing inflammatory bone resorption in periodontal diseases.

  8. TRAF Family Member-Associated NF-κB Activator (TANK) Induced by RANKL Negatively Regulates Osteoclasts Survival and Function

    PubMed Central

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption. PMID:23139637

  9. TRAF family member-associated NF-κB activator (TANK) induced by RANKL negatively regulates osteoclasts survival and function.

    PubMed

    Wu, Mengrui; Wang, Yiping; Deng, Lianfu; Chen, Wei; Li, Yi-Ping

    2012-01-01

    Osteoclasts are the principle bone-resorbing cells. Precise control of balanced osteoclast activity is indispensable for bone homeostasis. Osteoclast activation mediated by RANK-TRAF6 axis has been clearly identified. However, a negative regulation-machinery in osteoclast remains unclear. TRAF family member-associated NF-κB activator (TANK) is induced by about 10 folds during osteoclastogenesis, according to a genome-wide analysis of gene expression before and after osteoclast maturation, and confirmed by western blot and quantitative RT-PCR. Bone marrow macrophages (BMMs) transduced with lentivirus carrying tank-shRNA were induced to form osteoclast in the presence of RANKL and M-CSF. Tank expression was downregulated by 90% by Tank-shRNA, which is confirmed by western blot. Compared with wild-type (WT) cells, osteoclastogenesis of Tank-silenced BMMs was increased, according to tartrate-resistant acid phosphatase (TRAP) stain on day 5 and day 7. Number of bone resorption pits by Tank-silenced osteoclasts was increased by 176% compared with WT cells, as shown by wheat germ agglutinin (WGA) stain and scanning electronic microscope (SEM) analysis. Survival rate of Tank-silenced mature osteoclast is also increased. However, acid production of Tank-knockdown cells was not changed compared with control cells. IκBα phosphorylation is increased in tank-silenced cells, indicating that TANK may negatively regulate NF-κB activity in osteoclast. In conclusion, Tank, whose expression is increased during osteoclastogenesis, inhibits osteoclast formation, activity and survival, by regulating NF-κB activity and c-FLIP expression. Tank enrolls itself in a negative feedback loop in bone resorption. These results may provide means for therapeutic intervention in diseases of excessive bone resorption.

  10. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin αVβ3 and Inhibits Osteoclast Differentiation.

    PubMed

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu

    2015-10-01

    Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. © 2015 Wiley Periodicals, Inc.

  11. Pulsed electromagnetic field inhibits RANKL-dependent osteoclastic differentiation in RAW264.7 cells through the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Xu, Haixia; Han, Zhongyu

    Pulsed electromagnetic field (PEMF) has been reported to improve bone healing in osteoporosis patients. However, the precise mechanism has remained largely unknown. This study aimed to investigate the effects of PEMF on nuclear factor κB ligand (RANKL)-dependent osteoclastic differentiation and the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway in RAW264.7 cells in vitro. Treating RAW264.7 cells with RANKL for 4 days induced osteoclastic differentiation in vitro, and the formation of multinucleated osteoclasts, bone resorption-pit formation, tartrate-resistant acid phosphatase (TRAP) activity and the protein levels of cathepsin K, TRAP, Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and matrix metalloproteinase 9 (MMP-9) were significantly decreased. The mRNA levelsmore » of specific genes related to osteoclastogenesis (TRAP, NFATc1, CTSK and MMP-9) were also reduced. Moreover, the oscillations of intracellular Ca{sup 2+} in RANKL-dependent RAW264.7 cells were suppressed by PEMF, as well as by inhibitors of membrane and store-operated Ca{sup 2+} channels. Meanwhile, calcineurin activity was increased, although its protein level was not changed. PEMF increased phospho-NFATc1 in the cytosol while suppressing the nuclear translocation of NFATc1, thus inhibiting osteoclastic differentiation by suppressing the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway. Although many questions remain unresolved, to our knowledge, this is the first report demonstrating that PEMF is beneficial against RANKL-dependent osteoclastic differentiation in RAW264.7 cells in vitro via inhibiting the Ca{sup 2+}-calcineurin-NFATc1 signaling pathway.« less

  12. Osteoclast-targeting small molecules for the treatment of neoplastic bone metastases.

    PubMed

    Kawatani, Makoto; Osada, Hiroyuki

    2009-11-01

    Osteoclasts are highly specialized cells that resorb bone, and their abnormal activity is implicated in a variety of human bone diseases. In neoplastic bone metastasis, the bone destruction caused by osteoclasts is not only associated with the formation and progression of metastatic lesions, but also could contribute to frequent complications such as severe pain and pathological fractures, which greatly diminish the quality of life of patients. Bisphosphonates, potent antiresorptive drugs, have been shown to have efficacy for treating bone metastases in many types of cancer, and the development of various molecularly targeted agents is currently proceeding. Thus, inhibition of osteoclast function is now established as an important treatment strategy for bony metastases. This review focuses on promising small molecules that disrupt osteoclast function and introduces our chemical/biological approach for identifying osteoclast-targeting small molecular inhibitors.

  13. Follicle-Stimulating Hormone Increases the Risk of Postmenopausal Osteoporosis by Stimulating Osteoclast Differentiation

    PubMed Central

    Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin

    2015-01-01

    Objective The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. Methods We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). Results 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. Conclusions The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro. PMID:26241313

  14. Follicle-Stimulating Hormone Increases the Risk of Postmenopausal Osteoporosis by Stimulating Osteoclast Differentiation.

    PubMed

    Wang, Jie; Zhang, Wenwen; Yu, Chunxiao; Zhang, Xu; Zhang, Haiqing; Guan, Qingbo; Zhao, Jiajun; Xu, Jin

    2015-01-01

    The objectives of this study were to observe the changes in follicle-stimulating hormone (FSH) and bone mineral density (BMD) in postmenopausal women, to research the relationship between FSH and postmenopausal osteoporosis, and to observe the effects of FSH on osteoclast differentiation in RAW264.7 cells. We analyzed 248 postmenopausal women with normal bone metabolism. A radioimmunoassay (RIA) was used to detect serum FSH, luteinizing hormone (LH), and estradiol (E2). Dual-energy X-ray absorptiometry was used to measure forearm BMD. Then, we analyzed the age-related changes in serum FSH, LH and E2. Additionally, FSH serum concentrations were compared between a group of postmenopausal women with osteoporosis and a control group. Osteoclasts were induced from RAW264.7 cells in vitro by receptor activator of nuclear factor kappa B ligand (RANKL), and these cells were treated with 0, 5, 10, and 20 ng/ml FSH. After the osteoclasts matured, tartrate-resistant acid phosphatase (TRAP) staining was used to identify osteoclasts, and the mRNA expression levels of genes involved in osteoclastic phenotypes and function, such as receptor activator of NF-κB (Rank), Trap, matrix metalloproteinase-9 (Mmp-9) and Cathepsin K, were detected in different groups using real-time PCR (polymerase chain reaction). 1. FSH serum concentrations in postmenopausal women with osteoporosis increased notably compared with the control group. 2. RANKL induced RAW264.7 cell differentiation into mature osteoclasts in vitro. 3. FSH increased mRNA expression of genes involved in osteoclastic phenotypes and function, such as Rank, Trap, Mmp-9 and Cathepsin K, in a dose-dependent manner. The circulating concentration of FSH may play an important role in the acceleration of bone loss in postmenopausal women. FSH increases osteoclastogenesis in vitro.

  15. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

    PubMed Central

    Mohamedali, Khalid A.; Li, Zhi Gang; Starbuck, Michael W.; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G.; Navone, Nora M.

    2011-01-01

    Purpose A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting non-tumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomography analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions Targeting VEGFR-1 – or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. PMID:21343372

  16. Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature.

    PubMed

    Mohamedali, Khalid A; Li, Zhi Gang; Starbuck, Michael W; Wan, Xinhai; Yang, Jun; Kim, Sehoon; Zhang, Wendy; Rosenblum, Michael G; Navone, Nora M

    2011-04-15

    A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF(121)/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting nontumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF(121)/rGel. VEGF(121)/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF(121)/rGel internalization into osteoblasts was VEGF(121) receptor driven. Furthermore, VEGF(121)/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF(121)/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomographic analysis revealed that VEGF(121)/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non-tumor-bearing) femurs. VEGF(121)/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF(121)/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF(121)/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Targeting VEGF receptor (VEGFR)-1- or VEGFR-2-expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. ©2011 AACR.

  17. Genetic Ablation of CD68 Results in Mice with Increased Bone and Dysfunctional Osteoclasts

    PubMed Central

    Ashley, Jason W.; Shi, Zhenqi; Zhao, Haibo; Li, Xingsheng; Kesterson, Robert A.; Feng, Xu

    2011-01-01

    CD68 is a member of the lysosome associated membrane protein (LAMP) family that is restricted in its expression to cells of the monocyte/macrophage lineage. This lineage restriction includes osteoclasts, and, while previous studies of CD68 in macrophages and dendritic cells have proposed roles in lipid metabolism, phagocytosis, and antigen presentation, the expression and function of CD68 in osteoclasts have not been explored. In this study, we investigated the expression and localization of CD68 in macrophages and osteoclasts in response to the monocyte/macrophage-colony stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL). We found that M-CSF stimulates CD68 expression and RANKL alters the apparent molecular weight of CD68 as measured by Western immunoblotting. In addition, we explored the significance of CD68 expression in osteoclasts by generating mice that lack expression of CD68. These mice have increased trabecular bone, and in vitro assessment of CD68−/− osteoclasts revealed that, in the absence of CD68, osteoclasts demonstrate an accumulation of intracellular vesicle-like structures, and do not efficiently resorb bone. These findings demonstrate a role for CD68 in the function of osteoclasts, and future studies will determine the mechanistic nature of the defects seen in CD68−/− osteoclasts. PMID:21991369

  18. Immunoregulatory cytokines in mouse placental extracts inhibit in vitro osteoclast differentiation of murine macrophages.

    PubMed

    Canellada, A; Custidiano, A; Abraham, F; Rey, E; Gentile, T

    2013-03-01

    Previous studies showed that placental extracts (PE) alleviates arthritic symptoms in animal models of arthritis. To evaluate whether murine PEs obtained at embryonic days 7.5 (PE7) and 17.5 (PE18) regulate RANKL-induced osteoclast differentiation, RAW 264.7 cells were cultured with RANKL and MCSF in presence or not of PEs. Tartrate-resistant acid phosphatase (TRAP) was stained and multinucleated TRAP positive cells were visualized under a light microscope. Cathepsin K and metalloprotease expression was assessed by RT-PCR and gelatin zymography respectively. NFATc1 expression was determined by immunoblot. To analyze NFAT-dependent transcription, macrophages were transfected with a luciferase reporter plasmid. Cytokines were determined in PEs by ELISA and immunoblot. Transforming growth factor (TGF)- beta and Interleukin (IL)-10 receptor were inhibited in cell cultures with specific antibodies. PE7 and PE18 inhibited RANKL-induced multinucleated TRAP positive cells, Cathepsin K expression and metalloprotease activity, as well as NFATc1 expression and activity, thereby inhibiting osteoclast differentiation of RAW cells. Inflammatory/Regulatory cytokine ratio was higher in PE7 than in PE18. Blocking TGF-beta abolished the effect of both, PE7 and PE18, on multinucleated TRAP positive cells and metalloprotease expression, whereas blocking IL-10 receptor reverted the effect of PE18 but not of PE7. Inhibition of osteoclast differentiation by PEs was not unexpected, since cytokines detected in extracts were previously found to regulate osteoclast differentiation. PEs inhibited osteoclast differentiation of macrophages in vitro. Downregulation of NFATc1 might be involved in this effect. Regulatory/Th2 cytokines play a role in the effect of PEs on osteoclast differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Dynamin Forms a Src Kinase–sensitive Complex with Cbl and Regulates Podosomes and Osteoclast Activity

    PubMed Central

    Bruzzaniti, Angela; Neff, Lynn; Sanjay, Archana; Horne, William C.; De Camilli, Pietro; Baron, Roland

    2005-01-01

    Podosomes are highly dynamic actin-containing adhesion structures found in osteoclasts, macrophages, and Rous sarcoma virus (RSV)-transformed fibroblasts. After integrin engagement, Pyk2 recruits Src and the adaptor protein Cbl, forming a molecular signaling complex that is critical for cell migration, and deletion of any molecule in this complex disrupts podosome ring formation and/or decreases osteoclast migration. Dynamin, a GTPase essential for endocytosis, is also involved in actin cytoskeleton remodeling and is localized to podosomes where it has a role in actin turnover. We found that dynamin colocalizes with Cbl in the actin-rich podosome belt of osteoclasts and that dynamin forms a complex with Cbl in osteoclasts and when overexpressed in 293VnR or SYF cells. The association of dynamin with Cbl in osteoclasts was decreased by Src tyrosine kinase activity and we found that destabilization of the dynamin-Cbl complex involves the recruitment of Src through the proline-rich domain of Cbl. Overexpression of dynamin increased osteoclast bone resorbing activity and migration, whereas overexpression of dynK44A decreased osteoclast resorption and migration. These studies suggest that dynamin, Cbl, and Src coordinately participate in signaling complexes that are important in the assembly and remodeling of the actin cytoskeleton, leading to changes in osteoclast adhesion, migration, and resorption. PMID:15872089

  20. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche

    PubMed Central

    Lawson, Michelle A.; McDonald, Michelle M.; Kovacic, Natasa; Hua Khoo, Weng; Terry, Rachael L.; Down, Jenny; Kaplan, Warren; Paton-Hough, Julia; Fellows, Clair; Pettitt, Jessica A.; Neil Dear, T.; Van Valckenborgh, Els; Baldock, Paul A.; Rogers, Michael J.; Eaton, Colby L.; Vanderkerken, Karin; Pettit, Allison R.; Quinn, Julian M. W.; Zannettino, Andrew C. W.; Phan, Tri Giang; Croucher, Peter I.

    2015-01-01

    Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched ‘on' by engagement with bone-lining cells or osteoblasts, and switched ‘off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse. PMID:26632274

  1. New methodology for evaluating osteoclastic activity induced by orthodontic load

    PubMed Central

    ARAÚJO, Adriele Silveira; FERNANDES, Alline Birra Nolasco; MACIEL, José Vinicius Bolognesi; NETTO, Juliana de Noronha Santos; BOLOGNESE, Ana Maria

    2015-01-01

    Orthodontic tooth movement (OTM) is a dynamic process of bone modeling involving osteoclast-driven resorption on the compression side. Consequently, to estimate the influence of various situations on tooth movement, experimental studies need to analyze this cell. Objectives The aim of this study was to test and validate a new method for evaluating osteoclastic activity stimulated by mechanical loading based on the fractal analysis of the periodontal ligament (PDL)-bone interface. Material and Methods The mandibular right first molars of 14 rabbits were tipped mesially by a coil spring exerting a constant force of 85 cN. To evaluate the actual influence of osteoclasts on fractal dimension of bone surface, alendronate (3 mg/Kg) was injected weekly in seven of those rabbits. After 21 days, the animals were killed and their jaws were processed for histological evaluation. Osteoclast counts and fractal analysis (by the box counting method) of the PDL-bone interface were performed in histological sections of the right and left sides of the mandible. Results An increase in the number of osteoclasts and in fractal dimension after OTM only happened when alendronate was not administered. Strong correlation was found between the number of osteoclasts and fractal dimension. Conclusions Our results suggest that osteoclastic activity leads to an increase in bone surface irregularity, which can be quantified by its fractal dimension. This makes fractal analysis by the box counting method a potential tool for the assessment of osteoclastic activity on bone surfaces in microscopic examination. PMID:25760264

  2. Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro.

    PubMed

    Lionetto, S; Little, A; Moriceau, G; Heymann, D; Decurtins, M; Plecko, M; Filgueira, L; Cadosch, D

    2013-04-01

    In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenil)-2H-tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate-resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS. Copyright © 2012 Wiley Periodicals, Inc.

  3. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis.

    PubMed

    Simon, Dominic; Derer, Anja; Andes, Fabian T; Lezuo, Patrick; Bozec, Aline; Schett, Georg; Herrmann, Martin; Harre, Ulrike

    2017-12-01

    Bone tissue undergoes permanent and lifelong remodeling with a concerted action of bone-building osteoblasts and bone-resorbing osteoclasts. A precise cooperation between those two cell types is critical in the complex process of bone renewal. Galectin-3 is a member of the β-galactoside-binding lectin family playing multiple roles in cell growth, differentiation and aggregation. As it has been described to be expressed in bone, galectin-3 might influence bone homeostasis by regulating the function and/or interplay of osteoblasts and osteoclasts. Here, we investigated the role of galectin-3 in osteoclastogenesis and osteoblast-osteoclast interactions. Bone histomorphometric analysis and μCT measurements revealed a decreased trabecular bone volume and an increased osteoclast number in 12weeks old male galectin-3 knockout mice compared to wildtype littermates. Galectin-3 deficient bone marrow cells displayed a higher osteoclastogenic capacity in ex vivo differentiation assays, associated with elevated TRAF6 mRNA levels, suggesting an intrinsic inhibition of osteoclastogenesis by galectin-3 interfering with RANKL-mediated signaling. Furthermore, the addition of extracellular galectin-3 to murine or human osteoclastogenesis assays inhibited osteoclast formation and osteoclast numbers were higher in co-culture assays with galectin-3 deficient osteoblasts. In conclusion, our data suggest the secretion of galectin-3 as a novel mechanism for osteoblasts to control osteoclastogenesis and to maintain trabecular bone homeostasis independently of the RANKL/OPG-axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cell size control and a cell-intrinsic maturation program in proliferating oligodendrocyte precursor cells.

    PubMed

    Gao, F B; Raff, M

    1997-09-22

    We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by "transition probability" models, may explain the random variability of cell cycle times seen within clonal cell lines in culture.

  5. Cell Size Control and a Cell-intrinsic Maturation Program in Proliferating Oligodendrocyte Precursor Cells

    PubMed Central

    Gao, Fen-Biao; Raff, Martin

    1997-01-01

    We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by “transition probability” models, may explain the random variability of cell cycle times seen within clonal cell lines in culture. PMID:9298991

  6. The Estrogen Receptor-α in Osteoclasts Mediates the Protective Effects of Estrogens on Cancellous But Not Cortical Bone

    PubMed Central

    Martin-Millan, Marta; Almeida, Maria; Ambrogini, Elena; Han, Li; Zhao, Haibo; Weinstein, Robert S.; Jilka, Robert L.; O'Brien, Charles A.; Manolagas, Stavros C.

    2010-01-01

    Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)α from the monocyte/macrophage cell lineage in mice (ERαLysM−/−) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERαLysM−/− were resistant to the proapoptotic effect of 17β-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERα knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERα was as effective as 17β-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERα. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERα. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton. PMID:20053716

  7. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.

    PubMed

    Wilson, Susan R; Peters, Christoph; Saftig, Paul; Brömme, Dieter

    2009-01-23

    Cathepsin K is responsible for the degradation of type I collagen in osteoclast-mediated bone resorption. Collagen fragments are known to be biologically active in a number of cell types. Here, we investigate their potential to regulate osteoclast activity. Mature murine osteoclasts were seeded on type I collagen for actin ring assays or dentine discs for resorption assays. Cells were treated with cathepsins K-, L-, or MMP-1-predigested type I collagen or soluble bone fragments for 24 h. The presence of actin rings was determined fluorescently by staining for actin. We found that the percentage of osteoclasts displaying actin rings and the area of resorbed dentine decreased significantly on addition of cathepsin K-digested type I collagen or bone fragments, but not with cathepsin L or MMP-1 digests. Counterintuitively, actin ring formation was found to decrease in the presence of the cysteine proteinase inhibitor LHVS and in cathepsin K-deficient osteoclasts. However, cathepsin L deficiency or the general MMP inhibitor GM6001 had no effect on the presence of actin rings. Predigestion of the collagen matrix with cathepsin K, but not by cathepsin L or MMP-1 resulted in an increased actin ring presence in cathepsin K-deficient osteoclasts. These studies suggest that cathepsin K interaction with type I collagen is required for 1) the release of cryptic Arg-Gly-Asp motifs during the initial attachment of osteoclasts and 2) termination of resorption via the creation of autocrine signals originating from type I collagen degradation.

  8. Effect of amorphous silica nanoparticles on in vitro RANKL-induced osteoclast differentiation in murine macrophages

    NASA Astrophysics Data System (ADS)

    Nabeshi, Hiromi; Yoshikawa, Tomoaki; Akase, Takanori; Yoshida, Tokuyuki; Tochigi, Saeko; Hirai, Toshiro; Uji, Miyuki; Ichihashi, Ko-Ichi; Yamashita, Takuya; Higashisaka, Kazuma; Morishita, Yuki; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2011-07-01

    Amorphous silica nanoparticles (nSP) have been used as a polishing agent and/or as a remineralization promoter for teeth in the oral care field. The present study investigates the effects of nSP on osteoclast differentiation and the relationship between particle size and these effects. Our results revealed that nSP exerted higher cytotoxicity in macrophage cells compared with submicron-sized silica particles. However, tartrate-resistant acid phosphatase (TRAP) activity and the number of osteoclast cells (TRAP-positive multinucleated cells) were not changed by nSP treatment in the presence of receptor activator of nuclear factor κB ligand (RANKL) at doses that did not induce cytotoxicity by silica particles. These results indicated that nSP did not cause differentiation of osteoclasts. Collectively, the results suggested that nanosilica exerts no effect on RANKL-induced osteoclast differentiation of RAW264.7 cells, although a detailed mechanistic examination of the nSP70-mediated cytotoxic effect is needed.

  9. Inhibition of Osteoclast Differentiation and Bone Resorption by N-Methylpyrrolidone*

    PubMed Central

    Ghayor, Chafik; Correro, Rita M.; Lange, Katrin; Karfeld-Sulzer, Lindsay S.; Grätz, Klaus W.; Weber, Franz E.

    2011-01-01

    Regulation of RANKL (receptor activator of nuclear factor κB ligand)-induced osteoclast differentiation is of current interest in the development of antiresorptive agents. Osteoclasts are multinucleated cells that play a crucial role in bone resorption. In this study, we investigated the effects of N-methylpyrrolidone (NMP) on the regulation of RANKL-induced osteoclastogenesis. NMP inhibited RANKL-induced tartrate-resistant acid phosphatase activity and the formation of tartrate-resistant acid phosphatase-positive multinucleated cells. The RANKL-induced expression of NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and c-Fos, which are key transcription factors for osteoclastogenesis, was also reduced by treatment with NMP. Furthermore, NMP induced disruption of the actin rings and decreased the mRNAs of cathepsin K and MMP-9 (matrix metalloproteinase-9), both involved in bone resorption. Taken together, these results suggest that NMP inhibits osteoclast differentiation and attenuates bone resorption. Therefore, NMP could prove useful for the treatment of osteoporosis or other bone diseases associated with excessive bone resorption. PMID:21613210

  10. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    PubMed

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  11. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  12. Effects of extracellular magnesium on the differentiation and function of human osteoclasts.

    PubMed

    Wu, Lili; Luthringer, Bérengère J C; Feyerabend, Frank; Schilling, Arndt F; Willumeit, Regine

    2014-06-01

    Magnesium-based implants have been shown to influence the surrounding bone structure. In an attempt to partially reveal the cellular mechanisms involved in the remodelling of magnesium-based implants, the influence of increased extracellular magnesium content on human osteoclasts was studied. Peripheral blood mononuclear cells were driven towards an osteoclastogenesis pathway via stimulation with receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor for 28 days. Concomitantly, the cultures were exposed to variable magnesium concentrations (from either magnesium chloride or magnesium extracts). Osteoclast proliferation and differentiation were evaluated based on cell metabolic activity, total protein content, tartrate-resistant acid phosphatase activity, cathepsin K and calcitonin receptor immunocytochemistry, and cellular ability to form resorption pits. While magnesium chloride first enhanced and then opposed cell proliferation and differentiation in a concentration-dependent manner (peaking between 10 and 15mM magnesium chloride), magnesium extracts (with lower magnesium contents) appeared to decrease cell metabolic activity (≈50% decrease at day 28) while increasing osteoclast activity at a lower concentration (twofold higher). Together, the results indicated that (i) variations in the in vitro extracellular magnesium concentration affect osteoclast metabolism and (ii) magnesium extracts should be used preferentially in vitro to more closely mimic the in vivo environment. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Effects of Inositol 1,4,5-triphosphate on Osteoclast Differentiation in RANKL-induced Osteoclastogenesis

    PubMed Central

    Son, Aran; Kim, Min Seuk; Jo, Hae; Byun, Hae Mi

    2012-01-01

    The receptor activator of NF-κB ligand (RANKL) signal is an activator of tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of NF-κB and other signal transduction pathways essential for osteoclastogenesis, such as Ca2+ signaling. However, the intracellular levels of inositol 1,4,5-trisphosphate (IP3) and IP3-mediated cellular function of RANKL during osteoclastogenesis are not known. In the present study, we determined the levels of IP3 and evaluated IP3-mediated osteoclast differentiation and osteoclast activity by RANKL treatment of mouse leukemic macrophage cells (RAW 264.7) and mouse bone marrow-derived monocyte/macrophage precursor cells (BMMs). During osteoclastogenesis, the expression levels of Ca2+ signaling proteins such as IP3 receptors (IP3Rs), plasma membrane Ca2+ ATPase, and sarco/endoplasmic reticulum Ca2+ ATPase type2 did not change by RANKL treatment for up to 6 days in both cell types. At 24 h after RANKL treatment, a higher steady-state level of IP3 was observed in RAW264.7 cells transfected with green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of phospholipase C (PLC) δ, a probe specifically detecting intracellular IP3 levels. In BMMs, the inhibition of PLC with U73122 [a specific inhibitor of phospholipase C (PLC)] and of IP3Rs with 2-aminoethoxydiphenyl borate (2APB; a non-specific inhibitor of IP3Rs) inhibited the generation of RANKL-induced multinucleated cells and decreased the bone-resorption rate in dentin slice, respectively. These results suggest that intracellular IP3 levels and the IP3-mediated signaling pathway play an important role in RANKL-induced osteoclastogenesis. PMID:22416217

  14. Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis

    PubMed Central

    Li, Xinle; Yang, Jing; Liu, Daquan; Li, Jie; Niu, Kaijun; Feng, Shiqing; Yokota, Hiroki; Zhang, Ping

    2016-01-01

    Osteoarthritis (OA) is a whole joint disorder that involves cartilage degradation and periarticular bone response. Changes of cartilage and subchondral bone are associated with development and activity of osteoclasts from subchondral bone. Knee loading promotes bone formation, but its effects on OA have not been well investigated. Here, we hypothesized that knee loading regulates subchondral bone remodeling by suppressing osteoclast development, and prevents degradation of cartilage through crosstalk of bone-cartilage in osteoarthritic mice. Surgery-induced mouse model of OA was used. Two weeks application of daily dynamic knee loading significantly reduced OARSI scores and CC/TAC (calcified cartilage to total articular cartilage), but increased SBP (subchondral bone plate) and B.Ar/T.Ar (trabecular bone area to total tissue area). Bone resorption of osteoclasts from subchondral bone and the differentiation of osteoclasts from bone marrow-derived cells were completely suppressed by knee loading. The osteoclast activity was positively correlated with OARSI scores and negatively correlated with SBP and B.Ar/T.Ar. Furthermore, knee loading exerted protective effects by suppressing osteoclastogenesis through Wnt signaling. Overall, osteoclast lineage is the hyper responsiveness of knee loading in osteoarthritic mice. Mechanical stimulation prevents OA-induced cartilage degeneration through crosstalk with subchondral bone. Knee loading might be a new potential therapy for osteoarthritis patients. PMID:27087498

  15. Revival of nitrogen-containing bisphosphonate-induced inhibition of osteoclastogenesis and osteoclast function by water-soluble microfibrous borate glass.

    PubMed

    Yuan, He; Niu, Li-Na; Jiao, Kai; Pei, Dan-Dan; Pramanik, Chandrani; Li, Ji-Yao; Messer, Regina; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious skeletal complication associated with the long-term oral or intravenous use of nitrogen-containing bisphosphonates (N-BPs). Here, we investigated the effects of an ionic cocktail prepared from water-soluble microfibrous borate glass on neutralizing the inhibitory effects of two heterocyclic N-BPs, risedronate or zoledronic acid, on osteoclastogenesis, apoptosis of differentiated osteoclasts and osteoclast function. Cell growth and proliferation assays were first performed on RAW 264.7 cells to optimize the concentrations of the ionic cocktail and N-BPs to be used for static cell culture. The pre-osteoclasts were then stimulated with RANKL to differentiate into osteoclasts. The effects of the ionic cocktail and N-BPs on osteoclast differentiation, apoptosis and function were subsequently examined using 3 series of experiments conducted at the gene, protein, morphological and functional levels. After concentration optimization, the ionic cocktail was found to partially reverse N-BP-induced inhibition of osteoclastogenesis, stimulation of osteoclasts apoptosis and reduction of osteoclast resorptive activity. Ultrastructural examination of osteoclasts that had been exposed to either N-BP identified classical features of late apoptosis and secondary necrosis, while osteoclasts exposed simultaneously to the concentration-optimized ionic cocktail and N-BPs exhibited only signs of early apoptosis that were possibly reversible. Taken together, the results of the 4 series of experiments indicate that the ionic cocktail produced from dissolution of borate glass dressings has the potential to rescue the adverse effects of heterocyclic N-BPs on osteoclast differentiation and function. These results warrant further confirmation using dynamic cell culture and small animal BRONJ models. Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) may result in bisphosphonate

  16. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    PubMed

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  17. Conditional abrogation of Atm in osteoclasts extends osteoclast lifespan and results in reduced bone mass.

    PubMed

    Hirozane, Toru; Tohmonda, Takahide; Yoda, Masaki; Shimoda, Masayuki; Kanai, Yae; Matsumoto, Morio; Morioka, Hideo; Nakamura, Masaya; Horiuchi, Keisuke

    2016-09-28

    Ataxia-telangiectasia mutated (ATM) kinase is a central component involved in the signal transduction of the DNA damage response (DDR) and thus plays a critical role in the maintenance of genomic integrity. Although the primary functions of ATM are associated with the DDR, emerging data suggest that ATM has many additional roles that are not directly related to the DDR, including the regulation of oxidative stress signaling, insulin sensitivity, mitochondrial homeostasis, and lymphocyte development. Patients and mice lacking ATM exhibit growth retardation and lower bone mass; however, the mechanisms underlying the skeletal defects are not fully understood. In the present study, we generated mutant mice in which ATM is specifically inactivated in osteoclasts. The mutant mice did not exhibit apparent developmental defects but showed reduced bone mass due to increased osteoclastic bone resorption. Osteoclasts lacking ATM were more resistant to apoptosis and showed a prolonged lifespan compared to the controls. Notably, the inactivation of ATM in osteoclasts resulted in enhanced NF-κB signaling and an increase in the expression of NF-κB-targeted genes. The present study reveals a novel function for ATM in regulating bone metabolism by suppressing the lifespan of osteoclasts and osteoclast-mediated bone resorption.

  18. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  19. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts.

    PubMed

    Levy-Apter, Einat; Finkelshtein, Eynat; Vemulapalli, Vidyasiri; Li, Shawn S-C; Bedford, Mark T; Elson, Ari

    2014-12-26

    The non-receptor isoform of protein-tyrosine phosphatase ϵ (cyt-PTPe) supports adhesion of bone-resorbing osteoclasts by activating Src downstream of integrins. Loss of cyt-PTPe reduces Src activity in osteoclasts, reduces resorption of mineralized matrix both in vivo and in cell culture, and induces mild osteopetrosis in young female PTPe KO mice. Activation of Src by cyt-PTPe is dependent upon this phosphatase undergoing phosphorylation at its C-terminal Tyr-638 by partially active Src. To understand how cyt-PTPe activates Src, we screened 73 Src homology 2 (SH2) domains for binding to Tyr(P)-638 of cyt-PTPe. The SH2 domain of GRB2 bound Tyr(P)-638 of cyt-PTPe most prominently, whereas the Src SH2 domain did not bind at all, suggesting that GRB2 may link PTPe with downstream molecules. Further studies indicated that GRB2 is required for activation of Src by cyt-PTPe in osteoclast-like cells (OCLs) in culture. Overexpression of GRB2 in OCLs increased activating phosphorylation of Src at Tyr-416 and of cyt-PTPe at Tyr-638; opposite results were obtained when GRB2 expression was reduced by shRNA or by gene inactivation. Phosphorylation of cyt-PTPe at Tyr-683 and its association with GRB2 are integrin-driven processes in OCLs, and cyt-PTPe undergoes autodephosphorylation at Tyr-683, thus limiting Src activation by integrins. Reduced GRB2 expression also reduced the ability of bone marrow precursors to differentiate into OCLs and reduced the fraction of OCLs in which podosomal adhesion structures assume organization typical of active, resorbing cells. We conclude that GRB2 physically links cyt-PTPe with Src and enables cyt-PTPe to activate Src downstream of activated integrins in OCLs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyomiya, Hiroyasu; Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580; Ariyoshi, Wataru

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, includingmore » Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.« less

  1. The effects of vitamin D binding protein-macrophage activating factor and colony-stimulating factor-1 on hematopoietic cells in normal and osteopetrotic rats.

    PubMed

    Benis, K A; Schneider, G B

    1996-10-15

    Osteopetrosis is a heterogeneous group of bone disorders characterized by the failure of osteoclasts to resorb bone and by several immunological defects including macrophage dysfunction. Two compounds, colony-stimulating factor-1 (CSF-1) and vitamin D-binding protein-macrophage activating factor (DBP-MAF) were used in the present study to evaluate their effects on the peritoneal population of cells and on cells within the bone marrow microenvironment in normal and incisors absent (ia) osteopetrotic rats. Previous studies in this laboratory have demonstrated that administration of DBP-MAF to newborn ia animals results in a substantial increase in bone marrow cavity size due to upregulated osteoclast function. To study the effects of these compounds on the macrophage/osteoclast precursors, DBP-MAF, CSF-1, and the combination of these compounds were given to newborn ia and normal littermate animals. Both the normal and mutant phenotypes responded similarly when treated with these compounds. Rats exhibited a profound shift toward the macrophage lineage from the neutrophil lineage when compared with vehicle-treated control animals after treatment with these compounds. In the in vivo peritoneal lavage study, animals received injections of CSF-1, DBP-MAF or DBP-MAF/CSF-1 over a 4-week period. The various types of cells in the peritoneal cavity were then enumerated. The in vitro study consisted of cells isolated from the bone marrow microenvironment and cultured on feeder layers of CSF-1, DBP-MAF, or DBP-MAF/CSF-1 for colony enumeration. The increase in macrophage numbers at the expense of neutrophil numbers could be seen in both the in vivo and in vitro experiments. The macrophage/osteoclast and neutrophil lineages have a common precursor, the granulocyte/macrophage colony-forming cell (GM-CFC). With the addition of CSF-1, the GM-CFC precursor may be induced into the macrophage/osteoclast lineage rather than the granulocyte lineage. This increased pool of cells in the

  2. The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption.

    PubMed

    Wu, Wei-Jie; Kim, Min Seuk; Ahn, Byung-Yong

    2015-10-01

    To further understand the correlation between vitamin K and bone metabolism, the effects of vitamins K1, menaquinone-4 (MK-4), and menaquinone-7 (MK-7) on RANKL-induced osteoclast differentiation and bone resorption were comparatively investigated. Vitamin K2 groups (MK-4 and MK-7) were found to significantly inhibit RANKL-medicated osteoclast cell formation of bone marrow macrophages (BMMs) in a dose-dependent manner, without any evidence of cytotoxicity. The mRNA expression of specific osteoclast differentiation markers, such as c-Fos, NFATc1, OSCAR, and TRAP, as well as NFATc1 protein expression and TRAP activity in RANKL-treated BMMs were inhibited by vitamin K2, although MK-4 exhibited a significantly greater efficiency compared to MK-7. In contrast, the same dose of vitamin K1 had no inhibitory effect on RANKL-induced osteoclast cell formation, but increased the expression of major osteoclastogenic genes. Interestingly, vitamins K1, MK-4 and MK-7 all strongly inhibited osteoclastic bone resorption (p < 0.01) in a dose dependent manner. These results suggest that vitamins K1, MK-4 and MK-7 have anti-osteoporotic properties, while their regulation effects on osteoclastogenesis are somewhat different.

  3. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts

    PubMed Central

    Zupan, Janja; Jeras, Matjaž; Marc, Janja

    2013-01-01

    Bone and immune system are functionally interconnected. Immune and bone cells derive from same progenitors in the bone marrow, they share a common microenvironment and are being influenced by similar mediators. The evidence on increased bone resorption associated with inappropriate activation of T cells such as during inflammation, is well established. However, the molecular mechanisms beyond this clinical observation have begun to be intensively studied with the advancement of osteoimmunology. Now days, we have firm evidence on the influence of numerous proinflammatory cytokines on bone cells, with the majority of data focused on osteoclasts, the bone resorbing cells. It has been shown that some proinflammatory cytokines could possess osteoclastogenic and/or anti-osteoclastogenic properties and can target osteoclasts directly or via receptor activator of nuclear factor κB (RANK)/RANK ligand(RANKL)/osteoprotegerin (OPG) system. Several studies have reported opposing data regarding (anti)osteoclastogenic properties of these cytokines. Therefore, the first part of this review is summarizing current evidence on the influence of pro-inflammatory cytokines on osteoclasts and thus on bone resorption. In the second part, the evidence on the role of pro-inflammatory cytokines in osteoporosis and osteoarthritis is reviewed to show that unravelling the mechanisms beyond such complex bone diseases, is almost impossible without considering skeletal and immune systems as an indivisible integrated system. PMID:23457765

  4. A Dual-Action Armed Replicating Adenovirus for the Treatment of Osteoblastic Bone Metastases of Prostate Cancer

    DTIC Science & Technology

    2007-03-01

    ligand), a membrane-bound cytokine expressed in osteoblasts/stromal cells, which binds to RANK, a cell- surface protein present on osteoclast...cocultures were incubated for 10 days and then the culture medium was employed in an ELISA to detect the osteoclast marker , tartrate- resistant acid...bone marrow stromal cells and osteoclast precursor cells. Ten days post-infection, expression of the osteoclast marker enzyme TRAP was determined

  5. Effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts.

    PubMed

    Gao, Aichao; Wang, Xichao; Yu, Haiyan; Li, Na; Hou, Yubo; Yu, Weixian

    2016-02-01

    Porphyromonas gingivalis (Pg) as the major pathogenic bacterium of chronic periodontitis can cause alveolar bone resorption. Lipopolysaccharide (LPS) is its main virulence factor. The Eph family plays an important role in maintaining bone homeostasis. In this study, the effects of P. gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts were investigated. MC3T3-E1 cells and RAW264.7 cells were separately cultured in osteoblast-conditioned medium and osteoclast-conditioned medium to induce their differentiation into osteoblasts and osteoclasts, respectively. MC3T3-E1 cells were treated with 1 μg/mL of Pg-LPS 3, 7, and 14 d later, while RAW264.7 cells were treated with 10 μg/mL of Pg-LPS 1, 3, and 5 d later. The results have shown that Pg-LPS increased the expression of EphA2 both in osteoblasts and osteoclasts, decreased the expression of osteogenic-related genes (ALP, Sp7), and increased the expression of osteoclast-related genes (MMP9, c-fos, ACP5, CtsK, and NFATc1). Tartrate-resistant acid phosphatase (TRAP) staining illustrated that Pg-LPS promoted osteoclast differentiation and decreased the activity of alkaline phosphatase. Therefore, analysis indicates that, when treated with Pg-LPS, the expression of EphA2 is upregulated while the activity of osteoblasts and osteoclasts was reduced and increased, respectively. Our data suggest that EphA2 is closely related to the formation of osteoblasts and resorption of osteoclast and is likely to play an role in bone resorption induced in chronic periodontitis. These findings may provide information on new targets for prevention and treatment of chronic periodontitis.

  6. Effects of a mesoporous bioactive glass on osteoblasts, osteoclasts and macrophages.

    PubMed

    Gómez-Cerezo, N; Casarrubios, L; Morales, I; Feito, M J; Vallet-Regí, M; Arcos, D; Portolés, M T

    2018-05-29

    A mesoporous bioactive glass (MBG) of molar composition 75SiO 2 -20CaO-5P 2 O 5 (MBG-75S) has been synthetized as a potential bioceramic for bone regeneration purposes. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption studies and transmission electron microscopy (TEM) demonstrated that MBG-75S possess a highly ordered mesoporous structure with high surface area and porosity, which would explain the high ionic exchange rate (mainly calcium and silicon soluble species) with the surrounded media. MBG-75S showed high biocompatibility in contact with Saos-2 osteoblast-like cells. Concentrations up to 1 mg/ml did not lead to significant alterations on either morphology or cell cycle. Regarding the effects on osteoclasts, MBG-75S allowed the differentiation of RAW-264.7 macrophages into osteoclast-like cells but exhibiting a decreased resorptive activity. These results point out that MBG-75S does not inhibit osteoclastogenesis but reduces the osteoclast bone-resorbing capability. Finally, in vitro studies focused on the innate immune response, evidenced that MBG-75S allows the proliferation of macrophages without inducing their polarization towards the M1 pro-inflammatory phenotype. This in vitro behavior is indicative that MBG-75S would just induce the required innate immune response without further inflammatory complications under in vivo conditions. The overall behavior respect to osteoblasts, osteoclasts and macrophages, makes this MBG a very interesting candidate for bone grafting applications in osteoporotic patients. Copyright © 2018. Published by Elsevier Inc.

  7. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice.

    PubMed

    Maridas, David E; Rendina-Ruedy, Elizabeth; Le, Phuong T; Rosen, Clifford J

    2018-01-06

    Bone marrow stromal cells (BMSCs) constitute a cell population routinely used as a representation of mesenchymal stem cells in vitro. They reside within the bone marrow cavity alongside hematopoietic stem cells (HSCs), which can give rise to red blood cells, immune progenitors, and osteoclasts. Thus, extractions of cell populations from the bone marrow results in a very heterogeneous mix of various cell populations, which can present challenges in experimental design and confound data interpretation. Several isolation and culture techniques have been developed in laboratories in order to obtain more or less homogeneous populations of BMSCs and HSCs invitro. Here, we present two methods for isolation of BMSCs and HSCs from mouse long bones: one method that yields a mixed population of BMSCs and HSCs and one method that attempts to separate the two cell populations based on adherence. Both methods provide cells suitable for osteogenic and adipogenic differentiation experiments as well as functional assays.

  8. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawawi, M.S.F.; Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005; Dharmapatni, A.A.S.S.K.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway inmore » osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative

  9. A c-fms tyrosine kinase inhibitor, Ki20227, suppresses osteoclast differentiation and osteolytic bone destruction in a bone metastasis model.

    PubMed

    Ohno, Hiroaki; Kubo, Kazuo; Murooka, Hideko; Kobayashi, Yoshiko; Nishitoba, Tsuyoshi; Shibuya, Masabumi; Yoneda, Toshiyuki; Isoe, Toshiyuki

    2006-11-01

    In bone metastatic lesions, osteoclasts play a key role in the development of osteolysis. Previous studies have shown that macrophage colony-stimulating factor (M-CSF) is important for the differentiation of osteoclasts. In this study, we investigated whether an inhibitor of M-CSF receptor (c-Fms) suppresses osteoclast-dependent osteolysis in bone metastatic lesions. We developed small molecule inhibitors against ligand-dependent phosphorylation of c-Fms and examined the effects of these compounds on osteolytic bone destruction in a bone metastasis model. We discovered a novel quinoline-urea derivative, Ki20227 (N-{4-[(6,7-dimethoxy-4-quinolyl)oxy]-2-methoxyphenyl}-N'-[1-(1,3-thiazole-2-yl)ethyl]urea), which is a c-Fms tyrosine kinase inhibitor. The IC(50)s of Ki20227 to inhibit c-Fms, vascular endothelial growth factor receptor-2 (KDR), stem cell factor receptor (c-Kit), and platelet-derived growth factor receptor beta were found to be 2, 12, 451, and 217 nmol/L, respectively. Ki20227 did not inhibit other kinases tested, such as fms-like tyrosine kinase-3, epidermal growth factor receptor, or c-Src (c-src proto-oncogene product). Ki20227 was also found to inhibit the M-CSF-dependent growth of M-NFS-60 cells but not the M-CSF-independent growth of A375 human melanoma cells in vitro. Furthermore, in an osteoclast-like cell formation assay using mouse bone marrow cells, Ki20227 inhibited the development of tartrate-resistant acid phosphatase-positive osteoclast-like cells in a dose-dependent manner. In in vivo studies, oral administration of Ki20227 suppressed osteoclast-like cell accumulation and bone resorption induced by metastatic tumor cells in nude rats following intracardiac injection of A375 cells. Moreover, Ki20227 decreased the number of tartrate-resistant acid phosphatase-positive osteoclast-like cells on bone surfaces in ovariectomized (ovx) rats. These findings suggest that Ki20227 inhibits osteolytic bone destruction through the suppression of M

  10. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    PubMed

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn; Chen, Xianying; Lv, Chaoyang

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with bothmore » bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.« less

  12. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    PubMed Central

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the presence of colony stimulating factor-1 and receptor activator of NF-κB ligand in the presence or absence of the A1R antagonist 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX). Osteoclast morphology was analyzed in tartrate-resistant acid phosphatase or F-actin-stained samples, and bone resorption was evaluated by toluidine blue staining of dentin. BMCs from A1R-knockout mice form fewer osteoclasts than BMCs from WT mice, and the A1R antagonist DPCPX inhibits osteoclast formation (IC50=1 nM), with altered morphology and reduced ability to resorb bone. A1R blockade increased ubiquitination and degradation of TRAF6 in RAW264.7 cells induced to differentiate into osteoclasts. These studies suggest a critical role for adenosine in bone homeostasis via interaction with adenosine A1R and further suggest that A1R may be a novel pharmacologic target to prevent the bone loss associated with inflammatory diseases and menopause.—Kara, F. M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B. B., Stanley, R., Cronstein, B. N. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. PMID:20181934

  13. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy

    PubMed Central

    2017-01-01

    Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047

  14. A metabolomics study of the inhibitory effect of 17-beta-estradiol on osteoclast proliferation and differentiation.

    PubMed

    Liu, Xiaoyan; Liu, Yanqiu; Cheng, Mengchun; Zhang, Xiaozhe; Xiao, Hongbin

    2015-02-01

    Estradiol is a major drug used clinically to alleviate osteoporosis, partly through inhibition of the activity of osteoclasts, which play a crucial role in bone resorption. So far, little is known about the effects of estradiol on osteoclast metabolism. In this study, ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC/MS)-based metabolomics strategy was used to investigate the metabolite response to 17β-estradiol in mouse osteoclast RAW264.7, a commonly used cell model for studying osteoporosis. Our results showed that the application of estradiol altered the levels of 27 intracellular metabolites, including lysophosphatidylcholines (LysoPCs), other lipids and amino acid derivants. The changes of all the 27 metabolites were observed in the study of estradiol induced osteoclast proliferation inhibition (1 μM estradiol applied), while the changes of only 18 metabolites were observed in the study of differentiation inhibition (0.1 μM estradiol applied). Further pathway impact analysis determined glycerophospholipid metabolism as the main potential target pathway of estradiol, which was further confirmed by LCAT (phosphatidylcholine-sterol acyltransferase) activity changes and lipid peroxidative product (MDA, methane dicarboxylic aldehyde) changes caused by estradiol. Additionally, we found that estradiol significantly decreased intracellular oxidative stress during cell proliferation but not during cell differentiation. Our study suggested that estradiol generated a highly condition-dependent influence on osteoclast metabolism.

  15. High porous titanium scaffolds showed higher compatibility than lower porous beta-tricalcium phosphate scaffolds for regulating human osteoblast and osteoclast differentiation.

    PubMed

    Hirota, Makoto; Hayakawa, Tohru; Shima, Takaki; Ametani, Akihiro; Tohnai, Iwai

    2015-04-01

    We compared osteoblast and osteoclast differentiation when using beta-tricalcium phosphate (βTCP) and titanium scaffolds by investigating human mesenchymal stem cells (hMSCs) and osteoclast progenitor cell activities. hMSCs were cultured for 7, 14, and 21days on titanium scaffolds with 60%, 73%, and 87% porosity and on βTCP scaffolds with 60% and 75% porosity. Human osteoclast progenitor cells were cultured with osteoblast for 14 and 21days on 87% titanium and 75% βTCP scaffolds. Viable cell numbers with 60% and 73% titanium were higher than with 87% titanium and βTCP scaffolds (P<0.05). An 87% titanium scaffold resulted in the highest osteocalcin production with calcification on day 14 (P<0.01) in titanium scaffolds. All titanium scaffolds resulted in higher osteocalcin production on days 7 and 14 compared to βTCP scaffolds (P<0.01). Osteoblasts cultured on 87% titanium scaffolds suppressed osteoclast differentiation on day 7 but enhanced osteoclast differentiation on day 14 compared to 75% βTCP scaffolds (P<0.01). These findings concluded that high porosity titanium scaffolds could enhance progression of hMSC/osteoblast differentiation and regulated osteoclast differentiation cooperating with osteoblast differentiation for calcification as compared with lower porous βTCP. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bone substitute material composition and morphology differentially modulate calcium and phosphate release through osteoclast-like cells.

    PubMed

    Konermann, A; Staubwasser, M; Dirk, C; Keilig, L; Bourauel, C; Götz, W; Jäger, A; Reichert, C

    2014-04-01

    The aim of this study was to determine the material composition and cell-mediated remodelling of different calcium phosphate-based bone substitutes. Osteoclasts were cultivated on bone substitutes (Cerabone, Maxresorb, and NanoBone) for up to 5 days. Bafilomycin A1 addition served as the control. To determine cellular activity, the supernatant content of calcium and phosphate was measured by inductively coupled plasma optical emission spectrometry. Cells were visualized on the materials by scanning electron microscopy. Material composition and surface characteristics were assessed by energy-dispersive X-ray spectroscopy. Osteoclast-induced calcium and phosphate release was material-specific. Maxresorb exhibited the highest ion release to the medium (P = 0.034; calcium 40.25mg/l day 5, phosphate 102.08 mg/l day 5) and NanoBone the lowest (P = 0.021; calcium 8.43 mg/l day 5, phosphate 15.15 mg/l day 5); Cerabone was intermediate (P = 0.034; calcium 16.34 mg/l day 5, phosphate 30.6 mg/l day 5). All investigated materials showed unique resorption behaviours. The presented methodology provides a new perspective on the investigation of bone substitute biodegradation, maintaining the material-specific micro- and macrostructure. Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets.

    PubMed

    Akisaka, Toshitaka; Yoshida, Atsushi

    2015-05-01

    Osteoclasts are highly polarized cells from both morphological and functional points of view. Using quick-freeze, rotary-replication methods combined with cell-shearing, we clarified the variability of cytoplasmic surface of the polarized membranes of osteoclasts seeded on apatite. As to the organization of actin filaments and clathrin sheets, we confirmed almost the same ventral membrane specializations of osteoclasts on apatite as seen on glass plates. The organized actin filaments and membrane-associated particles supported the ruffled border membranes. Inside the actin sealing zone, membrane specializations were not always occupied with the ruffled border but also with other types of membranes. Some osteoclasts formed an actin ring but lacked the ruffled border projections. We report a unique and distinctive membrane modification of apatite-attached osteoclasts, i.e., the presence of dense aggregates of membrane-associated particles and related structures not found in the osteoclasts seeded on glass plates. Actin filament polarity in the podosomes was determined by decoration with myosin S1. The actin filament polarity within podosome appears to be oriented predominantly with its barbed ends toward the core, whereas the interconnecting F-actin appears to be mixed oriented. Two different types of clathrin plaques displayed different distributions: clathrin-dependent endocytosis was observed in the ruffled border regions, whereas flat clathrin sheets were found in the leading edge of lamellipodia and near podosomes. The clathrin sheets adhered to the apatite surface tightly on the ventral membranes overlaying the resorption lacunae. All these membrane specializations as mentioned above may indicate the functional variability of osteoclasts seeded on apatite.

  18. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.

    PubMed

    Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric

    2017-06-06

    The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future

  19. Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory cytokines, and support monocyte-to-osteoclast cell induction.

    PubMed

    Pasquier, Jennifer; Thomas, Binitha; Hoarau-Véchot, Jessica; Odeh, Tala; Robay, Amal; Chidiac, Omar; Dargham, Soha R; Turjoman, Rebal; Halama, Anna; Fakhro, Khalid; Menzies, Robert; Jayyousi, Amin; Zirie, Mahmoud; Al Suwaidi, Jassim; Rafii, Arash; Malik, Rayaz A; Talal, Talal; Abi Khalil, Charbel

    2017-11-27

    Circulating microparticles (MPs) are major mediators in cardiovascular complications of type 2 diabetes (T2D); however, their contribution to Charcot foot (CF) disease is not known. Here, we purified and assessed the origin, concentration and content of circulating MPs from 33 individuals: 11 with T2D and acute CF, 11 T2D patients with equivalent neuropathy and 11 non-diabetic controls. First, we demonstrated that there were no differences in the distribution of MPs of endothelial, platelet origin among the 3 groups. However, MPs from leukocytes and monocytes origin were increased in CF patients. Moreover, we demonstrated that monocytes-derived MPs originated more frequently from intermediate and non-classical monocytes in CF patients. Five cytokines (G-CSF, GM-CSF, IL-1-ra, IL-2 and IL-16) were significantly increased in MPs from acute CF patients. Applying ingenuity pathways analysis, we found that those cytokines interacted well and induced the activation of pathways that are involved in osteoclast formation. Further, we treated THP-1 monocytes and monocytes sorted from healthy patients with CF-derived MPs during their differentiation into osteoclasts, which increased their differentiation into multinucleated osteoclast-like cells. Altogether, our study suggests that circulating MPs in CF disease have a high content of inflammatory cytokines and could increase osteoclast differentiation in vitro.

  20. Real-time intravital imaging of pH variation associated with osteoclast activity.

    PubMed

    Maeda, Hiroki; Kowada, Toshiyuki; Kikuta, Junichi; Furuya, Masayuki; Shirazaki, Mai; Mizukami, Shin; Ishii, Masaru; Kikuchi, Kazuya

    2016-08-01

    Intravital imaging by two-photon excitation microscopy (TPEM) has been widely used to visualize cell functions. However, small molecular probes (SMPs), commonly used for cell imaging, cannot be simply applied to intravital imaging because of the challenge of delivering them into target tissues, as well as their undesirable physicochemical properties for TPEM imaging. Here, we designed and developed a functional SMP with an active-targeting moiety, higher photostability, and a fluorescence switch and then imaged target cell activity by injecting the SMP into living mice. The combination of the rationally designed SMP with a fluorescent protein as a reporter of cell localization enabled quantitation of osteoclast activity and time-lapse imaging of its in vivo function associated with changes in cell deformation and membrane fluctuations. Real-time imaging revealed heterogenic behaviors of osteoclasts in vivo and provided insights into the mechanism of bone resorption.

  1. The transcription factor FBI-1/OCZF/LRF is expressed in osteoclasts and regulates RANKL-induced osteoclast formation in vitro and in vivo.

    PubMed

    Kukita, Akiko; Kukita, Toshio; Nagata, Kengo; Teramachi, Junpei; Li, Yin-Ji; Yoshida, Hiroki; Miyamoto, Hiroshi; Gay, Steffen; Pessler, Frank; Shobuike, Takeo

    2011-09-01

    Since transcription factors expressed in osteoclasts are possible targets for regulation of bone destruction in bone disorders, we investigated the expression of the transcription factor FBI-1/OCZF/LRF (in humans, factor that binds to inducer of short transcripts of human immunodeficiency virus type 1; in rats, osteoclast-derived zinc finger; in mice, leukemia/lymphoma-related factor) in patients with rheumatoid arthritis (RA), and assessed its role in osteoclastogenesis in vivo. Expression of FBI-1/OCZF was investigated in subchondral osteoclasts in human RA and in rat adjuvant-induced arthritis (AIA) using immunostaining and in situ hybridization, respectively. Transgenic mice overexpressing OCZF (OCZF-Tg) under the control of the cathepsin K promoter were generated, and bone mineral density and bone histomorphometric features were determined by peripheral quantitative computed tomography, calcein double-labeling, and specific staining for osteoclasts and osteoblasts. LRF/OCZF expression and the consequence of LRF inhibition were assessed in vitro with RANKL-induced osteoclast differentiation. FBI-1/OCZF was detected in the nuclei of osteoclasts in rat AIA and human RA. RANKL increased the levels of LRF messenger RNA and nuclear-localized LRF protein in primary macrophages. In OCZF-Tg mice, bone volume was significantly decreased, the number of osteoclasts, but not osteoblasts, was increased in long bones, and osteoclast survival was promoted. Conversely, inhibition of LRF expression suppressed the formation of osteoclasts from macrophages in vitro. FBI-1/OCZF/LRF regulates osteoclast formation and apoptosis in vivo, and may become a useful marker and target in treating disorders leading to reduced bone density, including chronic arthritis. Copyright © 2011 by the American College of Rheumatology.

  2. Surface microtopography modulates sealing zone development in osteoclasts cultured on bone

    PubMed Central

    Addadi, Lia; Geiger, Benjamin

    2017-01-01

    Bone homeostasis is continuously regulated by the coordinated action of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between these two cell populations leads to pathological bone diseases such as osteoporosis and osteopetrosis. Osteoclast functionality relies on the formation of sealing zone (SZ) rings that define the resorption lacuna. It is commonly assumed that the structure and dynamic properties of the SZ depend on the physical and chemical properties of the substrate. Considering the unique complex structure of native bone, elucidation of the relevant parameters affecting SZ formation and stability is challenging. In this study, we examined in detail the dynamic response of the SZ to the microtopography of devitalized bone surfaces, taken from the same area in cattle femur. We show that there is a significant enrichment in large and stable SZs (diameter larger than 14 µm; lifespan of hours) in cells cultured on rough bone surfaces, compared with small and fast turning over SZ rings (diameter below 7 µm; lifespan approx. 7 min) formed on smooth bone surfaces. Based on these results, we propose that the surface roughness of the physiologically relevant substrate of osteoclasts, namely bone, affects primarily the local stability of growing SZs. PMID:28202594

  3. Microgravity Induction of TRAIL Expression in Preosteoclast Cells Enhances Osteoclast Differentiation

    NASA Astrophysics Data System (ADS)

    Sambandam, Yuvaraj; Baird, Kelsey L.; Stroebel, Maxwell; Kowal, Emily; Balasubramanian, Sundaravadivel; Reddy, Sakamuri V.

    2016-05-01

    Evidence indicates that astronauts experience significant bone loss in space. We previously showed that simulated microgravity (μXg) using the NASA developed rotary cell culture system (RCCS) enhanced bone resorbing osteoclast (OCL) differentiation. However, the mechanism by which μXg increases OCL formation is unclear. RANK/RANKL signaling pathway is critical for OCL differentiation. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to increase osteoclastogenesis. We hypothesize that TRAIL may play an important role in μXg enhanced OCL differentiation. In this study, we identified by RT profiler PCR array screening that μXg induces high levels of TRAIL expression in murine preosteoclast cells in the absence of RANKL stimulation compared to ground based (Xg) cultures. We further identified that μXg elevated the adaptor protein TRAF-6 and fusion genes OC-STAMP and DC-STAMP expression in preosteoclast cells. Interestingly, neutralizing antibody against TRAIL significantly reduced μXg induced OCL formation. We further identified that over-expression of pTRAIL in RAW 264.7 cells enhanced OCL differentiation. These results indicate that TRAIL signaling plays an important role in the μXg increased OCL differentiation. Therefore, inhibition of TRAIL expression could be an effective countermeasure for μXg induced bone loss.

  4. Generation of novel bone forming cells (monoosteophils) from the cathelicidin-derived peptide LL-37 treated monocytes.

    PubMed

    Zhang, Zhifang; Shively, John E

    2010-11-15

    Bone generation and maintenance involve osteoblasts, osteoclasts, and osteocytes which originate from unique precursors and rely on key growth factors for differentiation. However, an incomplete understanding of bone forming cells during wound healing has led to an unfilled clinical need such as nonunion of bone fractures. Since circulating monocytes are often recruited to sites of injury and may differentiate into various cell types including osteoclasts, we investigated the possibility that circulating monocytes in the context of tissue injury may also contribute to bone repair. In particular, we hypothesized that LL-37 (produced from hCAP-18, cathelicidin), which recruits circulating monocytes during injury, may play a role in bone repair. Treatment of monocytes from blood with LL-37 for 6 days resulted in their differentiation to large adherent cells. Growth of LL-37-differentiated monocytes on osteologic discs reveals bone-like nodule formation by scanning electron microscopy (SEM). In vivo transplantation studies in NOD/SCID mice show that LL-37-differentiated monocytes form bone-like structures similar to endochondral bone formation. Importantly, LL-37-differentiated monocytes are distinct from conventional monocyte-derived osteoclasts, macrophages, and dendritic cells and do not express markers of the mesenchymal stem cells (MSC) lineage, distinguishing them from the conventional precursors of osteoblasts. Furthermore, LL-37 differentiated monocytes express intracellular proteins of both the osteoblast and osteoclast lineage including osteocalcin (OC), osteonectin (ON), bone sialoprotein II (BSP II), osteopontin (OP), RANK, RANKL, MMP-9, tartrate resistant acid phosphatase (TRAP), and cathepsin K (CK). Blood derived monocytes treated with LL-37 can be differentiated into a novel bone forming cell that functions both in vitro and in vivo. We propose the name monoosteophil to indicate their monocyte derived lineage and their bone forming phenotype. These

  5. Inhibition of osteoclast bone resorption activity through osteoprotegerin-induced damage of the sealing zone.

    PubMed

    Song, Ruilong; Gu, Jianhong; Liu, Xuezhong; Zhu, Jiaqiao; Wang, Qichao; Gao, Qian; Zhang, Jiaming; Cheng, Laiyang; Tong, Xishuai; Qi, Xinyi; Yuan, Yan; Liu, Zongping

    2014-09-01

    Bone remodeling is dependent on the dynamic equilibrium between osteoclast-mediated bone resorption and osteoblast-mediated osteogenesis. The sealing zone is an osteoclast-specific cytoskeletal structure, the integrity of which is critical for osteoclast-mediated bone resorption. To date, studies have focused mainly on the osteoprotegerin (OPG)‑induced inhibition of osteoclast differentiation through the OPG/receptor activator of the nuclear factor kappa-B ligand (RANKL)/RANK system, which affects the bone resorption of osteoclasts. However, the effects of OPG on the sealing zone have not been reported to date. In this study, the formation of the sealing zone was observed by Hoffman modulation contrast (HMC) microscopy and confocal laser scanning microscopy. The effects of OPG on the existing sealing zone and osteoclast-mediated bone resorption activity, as well as the regulatory role of genes involved in the formation of the sealing zone were examined by immunofluorescence staining, HMC microscopy, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis and scanning electron microscopy. The sealing zone was formed on day 5, with belt-like protuberances at the cell edge and scattered distribution of cell nuclei, but no filopodia. The sealing zone was intact in the untreated control group. However, defects in the sealing zone were observed in the OPG-treated group (20 ng/ml) and the structure was absent in the groups treated with 40 and 80 ng/ml OPG. The podosomes showed a scattered or clustered distribution between the basal surface of the osteoclasts and the well surface. Furthermore, resorption lacunae were not detected in the 20 ng/ml OPG-treated group, indicating the loss of osteoclast-mediated bone resorption activity. Treatment with OPG resulted in a significant decrease in the expression of Arhgef8/Net1 and DOCK5 Rho guanine nucleotide exchange factors (RhoGEFs), 10 of 18 RhoGTPases (RhoA, RhoB, cdc42v1, cdc42v2

  6. Biochemical and morphological changes associated with macrophages and osteoclasts when challenged with infection - biomed 2011.

    PubMed

    Wiggers, Erin Callie; Johnson, William; Tucci, Michelle; Benghuzzi, Hamed

    2011-01-01

    Osteomyelitis is a bacterial infection of the bone that occurs frequently as a complication of open fractures and various kinds of orthopedic surgery. This infection can often lead to more extensive surgeries and even death of the patient. In animal models of osteomyelitis, the site of infection by Staphylococcus aureus was observed to have high numbers of both macrophages and osteoclasts, both of which may contribute to large amounts of osteolysis and tissue damage. In order to evaluate the immune response in both types of cells, two cells lines, a macrophage cell line and a macrophage cell line stimulated to become osteoclasts by the addition of receptor activator of nuclear-factor B (RANKL), were exposed to lipopolysaccharides, opsonized S. aureus, and unopsonized S. aureus. The results showed that both cell types activated a biochemical cascade that included the release of cytokines and nitric oxide associated with cell damage and death in response to infection. However, macrophages and osteoclasts differed in response magnitude, most likely due to differences in cell-membrane receptors. This data supports the growing body of research that links the immune and skeletal systems. Further understanding of biochemical pathways shared by the two systems could lead to significant advances in the treatment of osteomyelitis and the success of prostheses.

  7. Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer

    PubMed Central

    Liu, Jin; Li, Defang; Dang, Lei; Liang, Chao; Guo, Baosheng; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Y. S.; He, Bing; Liu, Biao; Li, Fangfei; Lu, Jun; Wang, Luyao; Shaikh, Atik Badshah; Jiang, Feng; Lu, Changwei; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Xiao, Lianbo; Lu, Aiping; Zhang, Ge

    2017-01-01

    The role of osteoclastic miRNAs in regulating osteolytic bone metastasis (OBM) of breast cancer is still underexplored. Here, we examined the expression profiles of osteoclastogenic miRNAs in human bone specimens and identified that miR-214-3p was significantly upregulated in breast cancer patients with OBM. Consistently, we found increased miR-214-3p within osteoclasts, which was associated with the elevated bone resorption, during the development of OBM in human breast cancer xenografted nude mice (BCX). Furthermore, genetic ablation of osteoclastic miR-214-3p in nude mice prevent the development of OBM. Conditioned medium from MDA-MB-231 cells dramatically stimulated miR-214-3p expression to promote osteoclast differentiation. Mechanistically, a series of in vitro study showed that miR-214-3p directly targeted Traf3 to promote osteoclast activity and bone-resorbing activity. In addition, osteoclast-specific miR-214-3p knock-in mice showed remarkably increased bone resorption when compared to the littermate controls, which was attenuated after osteoclast-targeted treatment with Traf3 3′UTR-containing plasmid. In BCX nude mice, osteoclast-targeted antagomir-214-3p delivery could recover the TRAF3 protein expression and attenuate the development of OBM, respectively. Collectively, inhibition of osteoclastic miR-214-3p may be a potential therapeutic strategy for breast cancer patients with OBM. Meanwhile, the intraosseous TRAF3 could be a promising biomarker for evaluation of the treatment response of antagomir-214-3p. PMID:28071724

  8. Dual Role of Cyanidin-3-glucoside on the Differentiation of Bone Cells.

    PubMed

    Park, K H; Gu, D R; So, H S; Kim, K J; Lee, S H

    2015-12-01

    Cyanidin-3-glucoside (C3G) is one of the major components of anthocyanin, a water-soluble phytochemical. Recent studies demonstrated the chemopreventive and chemotherapeutic activities of C3G in various conditions, including cancer, although the precise effects of C3G on osteoclast and osteoblast differentiation remain unclear. Here, we investigated the role of C3G in the differentiation of bone-associated cells and its underlying mechanism. C3G inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation and formation in a dose-dependent manner and downregulated the expression of osteoclast differentiation marker genes. Pretreatment with C3G considerably reduced the induction of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated kinases activation by RANKL in osteoclast precursor cells. Furthermore, C3G dramatically inhibited the expression of c-Fos and nuclear factor of activated T-cells, cytoplasmic 1, which are important transcription factors for osteoclast differentiation and activation. The formation of osteoclasts in coculture of bone marrow cells and calvaria-derived osteoblasts was also inhibited by C3G treatment, although the expression of macrophage colony-stimulating factor and RANKL (master factors for osteoclast differentiation and formation) and osteoprotegerin (a decoy receptor for RANKL) on osteoblasts was unaffected. The inhibitory effect of C3G on osteoclastogenesis is therefore targeted specifically to osteoclasts but not osteoblasts. Moreover, analysis of the expression levels of osteoblast differentiation marker genes and alizarin red staining showed that osteoblast differentiation and matrix formation increased after C3G treatment. Taken together, these results strongly suggest that C3G has a dual role in bone metabolism, as an effective inhibitor of osteoclast differentiation but also as an activator of osteoblast differentiation. Therefore, C3G may be used

  9. Choline kinase β mutant mice exhibit reduced phosphocholine, elevated osteoclast activity, and low bone mass.

    PubMed

    Kular, Jasreen; Tickner, Jennifer C; Pavlos, Nathan J; Viola, Helena M; Abel, Tamara; Lim, Bay Sie; Yang, Xiaohong; Chen, Honghui; Cook, Robert; Hool, Livia C; Zheng, Ming Hao; Xu, Jiake

    2015-01-16

    The maintenance of bone homeostasis requires tight coupling between bone-forming osteoblasts and bone-resorbing osteoclasts. However, the precise molecular mechanism(s) underlying the differentiation and activities of these specialized cells are still largely unknown. Here, we identify choline kinase β (CHKB), a kinase involved in the biosynthesis of phosphatidylcholine, as a novel regulator of bone homeostasis. Choline kinase β mutant mice (flp/flp) exhibit a systemic low bone mass phenotype. Consistently, osteoclast numbers and activity are elevated in flp/flp mice. Interestingly, osteoclasts derived from flp/flp mice exhibit reduced sensitivity to excessive levels of extracellular calcium, which could account for the increased bone resorption. Conversely, supplementation of cytidine 5'-diphosphocholine in vivo and in vitro, a regimen that bypasses CHKB deficiency, restores osteoclast numbers to physiological levels. Finally, we demonstrate that, in addition to modulating osteoclast formation and function, loss of CHKB corresponds with a reduction in bone formation by osteoblasts. Taken together, these data posit CHKB as a new modulator of bone homeostasis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Effects of Cinnamoyloxy-mammeisin from Geopropolis on Osteoclast Differentiation and Porphyromonas gingivalis-Induced Periodontitis.

    PubMed

    da Cunha, Marcos Guilherme; Ramos-Junior, Erivan Schnaider; Franchin, Marcelo; Taira, Thaise Mayumi; Beutler, John A; Franco, Gilson Cesar Nobre; Ikegaki, Masaharu; de Alencar, Severino Matias; Fukada, Sandra Yasuyo; Rosalen, Pedro Luiz

    2017-06-23

    Bone-loss-related diseases such as rheumatoid arthritis, osteomyelitis, osteoporosis, and periodontitis are associated with high rates of morbidity worldwide. These disorders are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. In this context, we evaluated the effect of cinnamoyloxy-mammeisin (CNM), an anti-inflammatory coumarin found in Melipona scutellaris geopropolis, on key targets related to bone remodeling. In the present study we investigated the in vitro effects of CNM on osteoclast differentiation and M-CSF+RANKL-induced osteoclastogenic marker expression. Additionally, the interference of CNM treatment on osteoclast activity was evaluated by zymography and resorption area. Finally, we assessed the capacity of the compound to mitigate alveolar bone loss in vivo in experimental murine periodontitis induced by Porphyromonas gingivalis. We observed that treatment with CNM impaired osteoclast differentiation, as evidenced by a reduced number of tartrate-resistant acid-phosphatase-positive multinucleated cells (TRAP+) as well as the expression of osteoclastogenic markers upon M-CSF+RANKL-induced stimulation. Similarly, we observed reduced gelatinolytic and resorption capacity in M-CSF+RANKL-induced cells in vitro. Lastly, CNM attenuated alveolar bone loss in an experimental murine periodontitis model. These findings indicate that CNM may be considered a promising treatment for bone loss diseases.

  11. Identification and characterization of B cell precursors in rat lymphoid tissues. I. Adoptive transfer assays for precursors of TI-1, TI-2, and TD antigen-reactive B cells.

    PubMed

    Whalen, B J; Goldschneider, I

    1993-10-01

    Quantitative adoptive transfer assays were developed to detect the precursors of TI-1, TI-2, and TD antigen-reactive B cells in rat lymphoid tissues. Studies on the immune responses in normal and athymic nude rats validate the use of TNP-lipopolysaccharide as a TI-1 antigen, TNP-Ficoll as a TI-2 antigen, and SRBC as a TD antigen in rats. The precursors to these immunologically competent B cells are detected, following transfer into irradiated histocompatible recipients, by their ability to generate expanded populations of antigen-reactive B cells capable of mounting antibody responses (splenic IgM plaque-forming cells) to these antigens. Maximal numbers of antigen-reactive B cells emerge in antigenically naive rats after an interval of 7-12 days following transfer of donor lymphoid cells and decline rapidly thereafter. The delayed responses in adoptive recipients reconstituted with spleen cells are proportional to the numbers of spleen cells transferred and are shown to be primarily donor derived using histocompatible Ig kappa chain alloantigen disparate rat strain combinations. The precursors of TI-1, TI-2, and TD antigen-reactive B cells are present in both donor spleen and bone marrow. However, precursor cells to TI-1 and TD antigens are largely absent from donor lymph node cells, whereas precursors to the TI-2 antigen are as prevalent in donor lymph node as in donor spleen. These results support the hypothesis that newly formed virginal B cells represent transient populations of precursor cells that undergo further proliferation and differentiation in the spleen before acquiring immunological competence. The results also suggest that the precursors of TI-2 antigen-reactive B cells differ developmentally from those of TI-1 and TD antigen-reactive B cells, and that the antigen-reactive progeny of these precursors require additional stimulation in order to join the pool of long-lived peripheral B cells.

  12. Osteoprotective effects of osthole in a mouse model of 5/6 nephrectomy through inhibiting osteoclast formation.

    PubMed

    Li, Xiaofeng; Xue, Chunchun; Wang, Libo; Tang, Dezhi; Huang, Jian; Zhao, Yongjian; Chen, Yan; Zhao, Dongfeng; Shi, Qi; Wang, Yongjun; Shu, Bing

    2016-10-01

    The present study aimed to investigate the effects of osthole on osteoclast formation and bone loss in a mouse model of 5/6 nephrectomy. The mice in control and osthole groups were treated 1 month following 5/6 nephrectomy with either a placebo or osthole, respectively. At 2 months post‑nephrectomy, the L4 vertebrae were harvested. The bone mineral density (BMD) of cancellous bone was measured using micro‑CT and tartrate‑resistant acid phosphatase (TRAP) staining was performed to evaluate osteoclast formation. Immunohistochemistry staining and reverse transcription‑quantitative polymerase chain reaction were performed to detect the expression of nuclear factor of activated T‑cells, cytoplasmic‑1 (NFATc‑1), c‑Fos, cathepsin K, Trap, matrix metalloproteinase 9 (Mmp9), osteoprotegerin (Opg) and receptor activator for nuclear factor‑κB ligand (Rankl). Bone marrow cells were cultured with osthole, and osteoclast formation was shown by TRAP staining. Primary calvaria osteoblasts were cultured with osthole, and expression levels of Opg and Rankl were detected. Compared with the sham group, the BMD of mice in model group was significantly reduced. The numbers of osteoclasts and the expression levels of NFATc‑1, c‑Fos, cathepsin K and Mmp9 were significantly increased. Compared with the control group, the mice in the osthole group exhibited increased BMD of the L4 vertebrae, a reduction in osteoclast numbers and decreased expression levels of NFATc‑1, c‑Fos, cathepsin K and Mmp9. In vitro experiments also showed that osteoclast formation was decreased following treatment with osthole. Osteoprotegerin (Opg)/receptor activator for nuclear factor‑κB ligand (Rankl) was upregulated by osthole treatment in the L4 vertebrae and in primary cultures of calvarial osteoblasts. Osthole inhibited osteoclast formation and partially reversed the bone loss induced by 5/6 nephrectomy in mice through the upregulation of OPG/RANKL.

  13. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts

    PubMed Central

    Lau, Esther; Al-Dujaili, Saja; Guenther, Axel; Liu, Dawei; Wang, Liyun; You, Lidan

    2010-01-01

    Osteocytes are well evidenced to be the major mechanosensor in bone, responsible for sending signals to the effector cells (osteoblasts and osteoclasts) that carry out bone formation and resorption. Consistent with this hypothesis, it has been shown that osteocytes release various soluble factors (e.g. transforming growth factor-β, nitric oxide, and prostaglandins) that influence osteoblastic and osteoclastic activities when subjected to a variety of mechanical stimuli, including fluid flow, hydrostatic pressure, and mechanical stretching. Recently, low-magnitude, high-frequency (LMHF) vibration (e.g., acceleration less than <1g, where g=9.98 m/s2, at 20-90 Hz) has gained much interest as studies have shown that such mechanical stimulation can positively influence skeletal homeostasis in animals and humans. Although the anabolic and anti-resorptive potential of LMHF vibration is becoming apparent, the signaling pathways that mediate bone adaptation to LMHF vibration are unknown. We hypothesize that osteocytes are the mechanosensor responsible for detecting the vibration stimulation and producing soluble factors that modulate the activity of effector cells. Hence, we applied low-magnitude (0.3g) vibrations to osteocyte-like MLO-Y4 cells at various frequencies (30, 60, 90 Hz) for 1 hour. We found that osteocytes were sensitive to this vibration stimulus at the transcriptional level: COX-2 maximally increased by 344% at 90 Hz, while RANKL decreased most significantly (-55%, p<0.01) at 60 Hz. Conditioned medium collected from the vibrated MLO-Y4 cells attenuated the formation of large osteoclasts (≥10 nuclei) by 36% (p<0.05) and the amount of osteoclastic resorption by 20% (p=0.07). The amount of soluble RANKL (sRANKL) in the conditioned medium was found to be 53% lower in the vibrated group (p<0.01), while PGE2 release was also significantly decreased (-61%, p<0.01). We conclude that osteocytes are able to sense LMHF vibration and respond by producing soluble

  14. Lysophosphatidic Acid Signals through Multiple Receptors in Osteoclasts to Elevate Cytosolic Calcium Concentration, Evoke Retraction, and Promote Cell Survival*

    PubMed Central

    Lapierre, Danielle M.; Tanabe, Natsuko; Pereverzev, Alexey; Spencer, Martha; Shugg, Ryan P. P.; Dixon, S. Jeffrey; Sims, Stephen M.

    2010-01-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid whose functions are mediated by multiple G protein-coupled receptors. We have shown that osteoblasts produce LPA, raising the possibility that it mediates intercellular signaling among osteoblasts and osteoclasts. Here we investigated the expression, signaling and function of LPA receptors in osteoclasts. Focal application of LPA elicited transient increases in cytosolic calcium concentration ([Ca2+]i), with 50% of osteoclasts responding at ∼400 nm LPA. LPA-induced elevation of [Ca2+]i was blocked by pertussis toxin or the LPA1/3 receptor antagonist VPC-32183. LPA caused sustained retraction of osteoclast lamellipodia and disrupted peripheral actin belts. Retraction was insensitive to VPC-32183 or pertussis toxin, indicating involvement of a distinct signaling pathway. In this regard, inhibition of Rho-associated kinase stimulated respreading after LPA-induced retraction. Real-time reverse transcription-PCR revealed transcripts encoding LPA1 and to a lesser extent LPA2, LPA4, and LPA5 receptor subtypes. LPA induced nuclear translocation of NFATc1 and enhanced osteoclast survival, effects that were blocked by VPC-32183 or by a specific peptide inhibitor of NFAT activation. LPA slightly reduced the resorptive activity of osteoclasts in vitro. Thus, LPA binds to at least two receptor subtypes on osteoclasts: LPA1, which couples through Gi/o to elevate [Ca2+]i, activate NFATc1, and promote survival, and a second receptor that likely couples through G12/13 and Rho to evoke and maintain retraction through reorganization of the actin cytoskeleton. These findings reveal a signaling axis in bone through which LPA, produced by osteoblasts, acts on multiple receptor subtypes to induce pleiotropic effects on osteoclast activity and function. PMID:20551326

  15. Glow discharge plasma pretreatment enhances osteoclast differentiation and survival on titanium plates.

    PubMed

    Kawai, Hiroyuki; Shibata, Yo; Miyazaki, Takashi

    2004-05-01

    Despite the fact that several reports have demonstrated osteoclast activity on various bioactive ceramics, osteoclast functions on surface-modified titanium have not come under focus. This study aimed to examine whether the increasing surface energy of glow discharge plasma (GDP) involved in protein adhesion containing the RGD (Arg-Gly-Asp) sequence affects osteoclast responses on titanium plates. We examined osteoclast differentiation and survival rates on titanium plates with and without GDP. The amounts of osteoclasts on titanium plates were not increased by GDP after 1 week. However, osteoclast differentiation was greatly activated by GDP pretreatment, as tartrate-resistant acid phosphatase synthesis significantly increased on the titanium plates with GDP. Additionally, since the presence of osteoclasts was detected only on the titanium plates with GDP, even after 4h cultivation in a coculture test, the osteoclasts survival rate was increased by GDP pretreatment. As osteoclast responses were affected even on surface modified metallic materials, we concluded that novel approaches are needed not only for osteoclastic resorption on ceramic materials but also for osteoclast responses on surface-modified metallic materials.

  16. Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines

    PubMed Central

    Debeb, Bisrat G.; Galat, Vasiliy; Epple-Farmer, Jessica; Iannaccone, Steve; Woodward, Wendy A.; Bader, Michael; Iannaccone, Philip; Binas, Bert

    2009-01-01

    Background The extraembryonic endoderm (ExEn) defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM) as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES) cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. Methodology/Principal Findings Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines (“XEN-P cell lines”), which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. Conclusions/Significance Our findings (i) suggest strongly that the ExEn precursor is a self-renewable entity, (ii) indicate that active Oct4 gene expression (transcription plus translation) is part of its molecular identity, and (iii) provide an in vitro model of early ExEn differentiation. PMID:19784378

  17. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure.

    PubMed Central

    Sato, M; Grasser, W; Endo, N; Akins, R; Simmons, H; Thompson, D D; Golub, E; Rodan, G A

    1991-01-01

    Studies of the mode of action of the bisphosphonate alendronate showed that 1 d after the injection of 0.4 mg/kg [3H]alendronate to newborn rats, 72% of the osteoclastic surface, 2% of the bone forming, and 13% of all other surfaces were densely labeled. Silver grains were seen above the osteoclasts and no other cells. 6 d later the label was 600-1,000 microns away from the epiphyseal plate and buried inside the bone, indicating normal growth and matrix deposition on top of alendronate-containing bone. Osteoclasts from adult animals, infused with parathyroid hormone-related peptide (1-34) and treated with 0.4 mg/kg alendronate subcutaneously for 2 d, all lacked ruffled border but not clear zone. In vitro alendronate bound to bone particles with a Kd of approximately 1 mM and a capacity of 100 nmol/mg at pH 7. At pH 3.5 binding was reduced by 50%. Alendronate inhibited bone resorption by isolated chicken or rat osteoclasts when the amount on the bone surface was around 1.3 x 10(-3) fmol/microns 2, which would produce a concentration of 0.1-1 mM in the resorption space if 50% were released. At these concentrations membrane leakiness to calcium was observed. These findings suggest that alendronate binds to resorption surfaces, is locally released during acidification, the rise in concentration stops resorption and membrane ruffling, without destroying the osteoclasts. Images PMID:1661297

  18. RANKL-induced DC-STAMP Is Essential for Osteoclastogenesis

    PubMed Central

    Kukita, Toshio; Wada, Naohisa; Kukita, Akiko; Kakimoto, Takashi; Sandra, Ferry; Toh, Kazuko; Nagata, Kengo; Iijima, Tadahiko; Horiuchi, Madoka; Matsusaki, Hiromi; Hieshima, Kunio; Yoshie, Osamu; Nomiyama, Hisayuki

    2004-01-01

    Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor–κB ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell–specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DC-STAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis. PMID:15452179

  19. Osteoclast Inhibitory Peptide-1 Therapy for Paget’s Disease

    DTIC Science & Technology

    2010-08-01

    Carolina 29425 Osteoclast inhibitory peptide-1 (OIP) is an autocrine/paracrine inhibitor of osteoclast differentia- tion, and mice that overexpress OIP-1...have previously identified and characterized theosteoclast inhibitory peptide-1 (OIP-1/hSca) as an autocrine/paracrine inhibitor of osteoclast...H, Takai T, Kodama T, Morio T, Geha RS, Kitamura D, Kurosaki T, Ellmeier W, Takayanagi H 2008 Tyrosine kinases Btk and Tec reg- ulate osteoclast

  20. Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities.

    PubMed

    Uchida, Yoko; Irie, Koichiro; Fukuhara, Daiki; Kataoka, Kota; Hattori, Takako; Ono, Mitsuaki; Ekuni, Daisuke; Kubota, Satoshi; Morita, Manabu

    2018-06-23

    Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin , which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II , and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1 . In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and

  1. Mesenchymal precursor cells in the blood of normal individuals

    PubMed Central

    Zvaifler, Nathan J; Marinova-Mutafchieva, Lilla; Adams, Gill; Edwards, Christopher J; Moss, Jill; Burger, Jan A; Maini, Ravinder N

    2000-01-01

    (FACS). BMPCs were concentrated in fractions 7 and 8, along with monocytes and lymphocytes. Elutriation fractions with more than 50% and less than 75% monocytes were collected and concentrated by centrifugation at 1200 rpm for 5 min, and the cell pellets were combined, reconstituted in DMEM plus 20% sterile heat-inactivated FCS, counted, washed in medium, repelleted, and then resuspended in DMEM to 5 × 106/ml and dispensed into either tissue-culture plastic slides or glass chamber slides. Cells thus obtained were observed in time-lapse cinematography, assayed for proliferation, and examined immunohistologically and histochemically, and their ability to become fibroblasts, osteoclasts, osteoblasts, and adipocytes was documented. Results: BMPCs were found in elutriation fractions containing less than 30% T cells and more than 60% monocytes from the blood of more than 100 normal persons. BMPCs adhered to plastic and glass and proliferated logarithmically in DMEM-20% FCS without added growth factors. The initial elutriate had only small, round, mononuclear cells; upon culture, these were replaced by fibroblast-like cells and large, round, stromal cells. The formation of cells with fibroblast-like and stromal morphology was not affected by eliminating CD34, CD3, or CD14 cells from the elutriation fraction. Osteogenic supplements (dexamethasone, ascorbic acid, and β-glycero-phosphate) added to the culture inhibited fibroblast formation, and BMPCs assumed the cuboidal shape of osteoblasts. After 5 days in supplemented medium, the elutriated cells displayed AP and its production was doubled by the addition of BMP2 (1 ng) (P < 0.04). Two weeks later, 30% of the cells were very large and reacted with anti-osteocalcin antibody. The same cultures contained two other types of cell: sudanophlic adipocytes and multinucleated giant cells, which stain for TRAP and vitronectin receptors (attributes of osteoclasts). Cultured BMPCs were immunostained by antibodies to vimentin, type I

  2. Tumor Necrosis Factor α Stimulates Osteoclast Differentiation by a Mechanism Independent of the Odf/Rankl–Rank Interaction

    PubMed Central

    Kobayashi, Kanichiro; Takahashi, Naoyuki; Jimi, Eijiro; Udagawa, Nobuyuki; Takami, Masamichi; Kotake, Shigeru; Nakagawa, Nobuaki; Kinosaki, Masahiko; Yamaguchi, Kyoji; Shima, Nobuyuki; Yasuda, Hisataka; Morinaga, Tomonori; Higashio, Kanji; Martin, T. John; Suda, Tatsuo

    2000-01-01

    Osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) stimulates the differentiation of osteoclast progenitors of the monocyte/macrophage lineage into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF, also called CSF-1). When mouse bone marrow cells were cultured with M-CSF, M-CSF–dependent bone marrow macrophages (M-BMMφ) appeared within 3 d. Tartrate-resistant acid phosphatase–positive osteoclasts were also formed when M-BMMφ were further cultured for 3 d with mouse tumor necrosis factor α (TNF-α) in the presence of M-CSF. Osteoclast formation induced by TNF-α was inhibited by the addition of respective antibodies against TNF receptor 1 (TNFR1) or TNFR2, but not by osteoclastogenesis inhibitory factor (OCIF, also called OPG, a decoy receptor of ODF/RANKL), nor the Fab fragment of anti–RANK (ODF/RANKL receptor) antibody. Experiments using M-BMMφ prepared from TNFR1- or TNFR2-deficient mice showed that both TNFR1- and TNFR2-induced signals were important for osteoclast formation induced by TNF-α. Osteoclasts induced by TNF-α formed resorption pits on dentine slices only in the presence of IL-1α. These results demonstrate that TNF-α stimulates osteoclast differentiation in the presence of M-CSF through a mechanism independent of the ODF/RANKL–RANK system. TNF-α together with IL-1α may play an important role in bone resorption of inflammatory bone diseases. PMID:10637272

  3. Cbl Associates with Pyk2 and Src to Regulate Src Kinase Activity, αvβ3 Integrin-Mediated Signaling, Cell Adhesion, and Osteoclast Motility

    PubMed Central

    Sanjay, Archana; Houghton, Adam; Neff, Lynn; DiDomenico, Emilia; Bardelay, Chantal; Antoine, Evelyne; Levy, Joan; Gailit, James; Bowtell, David; Horne, William C.; Baron, Roland

    2001-01-01

    The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin αvβ3 induces the [Ca2+]i-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of αvβ3 integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src−/− mice. PMID:11149930

  4. Gradient coatings of strontium hydroxyapatite/zinc β-tricalcium phosphate as a tool to modulate osteoblast/osteoclast response.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2018-06-01

    The chemistry, structure and morphology of the implant surface have a great influence on the integration of an implant material with bone tissue. In this work, we applied Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE) to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and Zn-substituted β-tricalcium phosphate (ZnTCP) on Titanium substrates. Five samples with different SrHA/ZnTCP composition ratios were fabricated by a single step laser procedure. SrHA was synthesized in aqueous medium, whereas ZnTCP was obtained by reaction at high temperature. Both powders were separately suspended in deionized water, frozen at liquid nitrogen temperature and used as targets for C-MAPLE experiments, which proceed via simultaneous laser vaporization of two distinct material targets. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy analyses confirmed that the coatings contain the same crystalline phases as the as-prepared powder samples, with a homogeneous distribution of the two phosphates along deposited thin films. Human osteoclast precursor 2T-110 and human osteoblast-like cells MG63 were co-cultured on the coatings. The results indicate that osteoblast viability and production of osteocalcin were promoted by the presence of ZnTCP. On the other hand, SrHA inhibited osteoclastogenesis and osteoclast differentiation, as demonstrated by the observed increase of the osteoprotegerin/RANKL ratio and decrease of the number of TRAP-positive multinucleated cells when increasing SrHA amount in the coatings. The results indicate that the possibility to tailor the composition of the coatings provides materials able to modulate bone growth and bone resorption. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation

    PubMed Central

    Li, Defang; Liu, Jin; Guo, Baosheng; Liang, Chao; Dang, Lei; Lu, Cheng; He, Xiaojuan; Cheung, Hilda Yeuk-Siu; Xu, Liang; Lu, Changwei; He, Bing; Liu, Biao; Shaikh, Atik Badshah; Li, Fangfei; Wang, Luyao; Yang, Zhijun; Au, Doris Wai-Ting; Peng, Songlin; Zhang, Zongkang; Zhang, Bao-Ting; Pan, Xiaohua; Qian, Airong; Shang, Peng; Xiao, Lianbo; Jiang, Baohong; Wong, Chris Kong-Chu; Xu, Jiake; Bian, Zhaoxiang; Liang, Zicai; Guo, De-an; Zhu, Hailong; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2016-01-01

    Emerging evidence indicates that osteoclasts direct osteoblastic bone formation. MicroRNAs (miRNAs) have a crucial role in regulating osteoclast and osteoblast function. However, whether miRNAs mediate osteoclast-directed osteoblastic bone formation is mostly unknown. Here, we show that increased osteoclastic miR-214-3p associates with both elevated serum exosomal miR-214-3p and reduced bone formation in elderly women with fractures and in ovariectomized (OVX) mice. Osteoclast-specific miR-214-3p knock-in mice have elevated serum exosomal miR-214-3p and reduced bone formation that is rescued by osteoclast-targeted antagomir-214-3p treatment. We further demonstrate that osteoclast-derived exosomal miR-214-3p is transferred to osteoblasts to inhibit osteoblast activity in vitro and reduce bone formation in vivo. Moreover, osteoclast-targeted miR-214-3p inhibition promotes bone formation in ageing OVX mice. Collectively, our results suggest that osteoclast-derived exosomal miR-214-3p transfers to osteoblasts to inhibit bone formation. Inhibition of miR-214-3p in osteoclasts may be a strategy for treating skeletal disorders involving a reduction in bone formation. PMID:26947250

  6. Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: is RANKL/RANK signalling really important?

    PubMed

    Costa-Rodrigues, J; Teixeira, C A; Fernandes, M H

    2011-08-01

    Although in the past little attention has been paid to the influence of osteosarcoma cells in osteoclast function, recent studies suggest a close relationship between osteosarcoma aggressiveness and osteoclastic activity. The present study addresses the paracrine effects of MG63 cells, a human osteosarcoma-derived cell line, on the differentiation of peripheral blood osteoclast precursor cells (PBMC). PBMC were cultured for 21 days in the presence of conditioned media from MG63 cell cultures (CM) collected at 48 h (CM_MG1), 7 days (CM_MG2) and 14 days (CM_MG3). MG63 cell cultures displayed the expression of ALP and BMP-2 and, also, the osteoclastogenic genes M-CSF and RANKL, although with a low expression of RANKL. PBMC cultures supplemented with CM presented an evident osteoclastogenic behavior, which was dependent on the culture period of the MG63 cells. The inductive effect appeared to be more relevant for the differentiation and activation genes, c-myc and c-src, and lower for genes associated with osteoclast function. In addition, PBMC cultures displayed increased functional parameters, including calcium phosphate resorbing activity. Assessment of the PBMC cultures in the presence of U0126, PDTC, and indomethacin suggested that in addition to MEK and NFkB pathways, other signaling mechanisms, probably not involving RANKL/RANK interaction, might be activated in the presence of conditioned medium from MG63. In conclusion, MG63 cell line appears to induce a significant paracrine-mediated osteoclastogenic response. Understanding the mechanisms underlying the interaction of osteosarcoma cells and osteoclasts may contribute to the development of new potential approaches in the treatment of such bone metabolic diseases.

  7. Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice.

    PubMed

    Qi, Bing; Cong, Qian; Li, Ping; Ma, Gang; Guo, Xizhi; Yeh, James; Xie, Min; Schneider, Michael D; Liu, Huijuan; Li, Baojie

    2014-11-24

    Tak1 is a MAPKKK that can be activated by growth factors and cytokines such as RANKL and BMPs and its downstream pathways include NF-κB and JNK/p38 MAPKs. Tak1 is essential for mouse embryonic development and plays critical roles in tissue homeostasis. Previous studies have shown that Tak1 is a positive regulator of osteoclast maturation, yet its roles in bone growth and remodeling have not been assessed, as mature osteoclast-specific Tak1 deletion with Cstk-Cre resulted in runtedness and postnatal lethality. Here we generated osteoclast progenitor (monocyte)-specific Tak1 knockout mice and found that these mice show normal body weight, limb size and fertility, and osteopetrosis with severity similar to that of RANK or RANKL deficient mice. Mechanistically, Tak1 deficiency altered the signaling of NF-κB, p38MAPK, and Smad1/5/8 and the expression of PU.1, MITF, c-Fos, and NFATc1, suggesting that Tak1 regulates osteoclast differentiation at multiple stages via multiple signaling pathways. Moreover, the Tak1 mutant mice showed defects in skull, articular cartilage, and mesenchymal stromal cells. Ex vivo Tak1-/- monocytes also showed enhanced ability in promoting osteogenic differentiation of mesenchymal stromal cells. These findings indicate that Tak1 functions in osteoclastogenesis in a cell-autonomous manner and in osteoblastogenesis and chondrogenesis in non-cell-autonomous manners.

  8. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    PubMed Central

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  9. Whole-cell fungal transformation of precursors into dyes

    PubMed Central

    2010-01-01

    Background Chemical methods of producing dyes involve extreme temperatures and unsafe toxic compounds. Application of oxidizing enzymes obtained from fungal species, for example laccase, is an alternative to chemical synthesis of dyes. Laccase can be replaced by fungal biomass acting as a whole-cell biocatalyst with properties comparable to the isolated form of the enzyme. The application of the whole-cell system simplifies the transformation process and reduces the time required for its completion. In the present work, four fungal strains with a well-known ability to produce laccase were tested for oxidation of 17 phenolic and non-phenolic precursors into stable and non-toxic dyes. Results An agar-plate screening test of the organic precursors was carried out using four fungal strains: Trametes versicolor, Fomes fomentarius, Abortiporus biennis, and Cerrena unicolor. Out of 17 precursors, nine were transformed into coloured substances in the presence of actively growing fungal mycelium. The immobilized fungal biomass catalyzed the transformation of 1 mM benzene and naphthalene derivatives in liquid cultures yielding stable and non-toxic products with good dyeing properties. The type of fungal strain had a large influence on the absorbance of the coloured products obtained after 48-hour transformation of the selected precursors, and the most effective was Fomes fomentarius (FF25). Whole-cell transformation of AHBS (3-amino-4-hydroxybenzenesulfonic acid) into a phenoxazinone dye was carried out in four different systems: in aqueous media comprising low amounts of carbon and nitrogen source, in buffer, and in distilled water. Conclusions This study demonstrated the ability of four fungal strains belonging to the ecological type of white rot fungi to transform precursors into dyes. This paper highlights the potential of fungal biomass for replacing isolated enzymes as a cheaper industrial-grade biocatalyst for the synthesis of dyes and other commercially important

  10. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion.

    PubMed

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D; Schulz, Stefan; Fleißner, André

    2016-10-18

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.

  11. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption.

    PubMed

    Sims, Natalie A

    2016-10-01

    Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Role of c-Src in cellular events associated with colony-stimulating factor-1-induced spreading in osteoclasts.

    PubMed

    Insogna, K; Tanaka, S; Neff, L; Horne, W; Levy, J; Baron, R

    1997-01-01

    We and others have observed that in response to treatment with Colony Stimulating Factor-1 (CSF-1) neonatal rat osteoclasts demonstrate rapid cytoplasmic spreading. The receptor for CSF-1, c-Fms, is expressed in osteoclasts, possesses intrinsic tyrosine-kinase activity, and signals via rapid phosphorylation of selected proteins. It has been reported previously that c-Src becomes tyrosine phosphorylated following CSF-1 treatment of fibroblasts overexpressing c-Fms. We therefore examined the cellular events associated with CSF-1-induced spreading in osteoclasts and what role, if any, c-Src played in these processes. Confocal microscopic studies using phosphotyrosine (P-tyr) monoclonal antibodies demonstrated that CSF-1 induced a significant dose- and time-dependent increase in P-tyr labeling of neonatal rat osteoclasts. Phalloidin staining was consistent with partial to complete disassembly of the actin attachment ring with redistribution of actin to the spreading cytoplasmic edge of the cell. Quantitation of cellular F-actin using NBD-phallicidin confirmed a decrease in polymerized actin following exposure to CSF-1. In contrast, CSF-1 failed to induce any cytoplasmic spreading in osteoclasts isolated from mice with targeted disruption of the src gene. Further, in src- osteoclasts no well defined attachment ring could be identified. To investigate cell-signaling events associated with osteoclast spreading, detergent lysates were made from purified multinucleated osteoclast-like cells (OCLs) obtained by coculturing murine bone marrow and osteoblasts with calcitriol. Western blot analyses of lysates from control and CSF-1-treated normal cells indicated that several proteins were specifically phosphorylated in response to CSF-1, most notably proteins of 165, 60, and 85-90 kDa. Immunoprecipitation studies revealed that the 165 and 60 kDa proteins were, respectively, c-Fms and c-Src. The c-Src kinase activity was increased 2.9-fold following CSF-1 treatment. The 85-90 k

  13. A Novel Role for Thrombopoietin in Regulating Osteoclast Development in Humans and Mice

    PubMed Central

    Bethel, Monique; Barnes, Calvin L. T.; Taylor, Amanda F.; Cheng, Ying-Hua; Chitteti, Brahmananda R.; Horowitz, Mark C.; Bruzzaniti, Angela; Srour, Edward F.; Kacena, Melissa A.

    2015-01-01

    Emerging data suggest that megakaryocytes (MKs) play a significant role in skeletal homeostasis. Indeed, osteosclerosis observed in several MK-related disorders may be a result of increased numbers of MKs. In support of this idea, we have previously demonstrated that MKs increase osteoblast (OB) proliferation by a direct cell-cell contact mechanism and that MKs also inhibit osteoclast (OC) formation. As MKs and OCs are derived from the same hematopoietic precursor, in these osteoclastogenesis studies we examined the role of the main MK growth factor, thrombopoietin (TPO) on OC formation and bone resorption. Here we show that TPO directly increases OC formation and differentiation in vitro. Specifically, we demonstrate the TPO receptor (c-mpl or CD110) is expressed on cells of the OC lineage, c-mpl is required for TPO to enhance OC formation in vitro, and TPO activates the MAPK, JAK/STAT, and NFκB signaling pathways, but does not activate the PI3K/AKT pathway. Further, we found TPO enhances OC resorption in CD14+CD110+ human OC progenitors derived from peripheral blood mononuclear cells (PBMCs), and further separating OC progenitors based on CD110 expression enriches for mature OC development. The regulation of OCs by TPO highlights a novel therapeutic target for bone loss diseases and may be important to consider in the numerous hematologic disorders associated with alterations in TPO/c-mpl signaling as well as in patients suffering from bone disorders. PMID:25656774

  14. "Ruffled border" formation on a CaP-free substrate: A first step towards osteoclast-recruiting bone-grafts materials able to re-establish bone turn-over.

    PubMed

    Merolli, Antonio; Fung, Stephanie; Murthy, N Sanjeeva; Pashuck, E Thomas; Mao, Yong; Wu, Xiaohuan; Steele, Joseph A M; Martin, Daniel; Moghe, Prabhas V; Bromage, Timothy; Kohn, Joachim

    2018-03-21

    Osteoclasts are large multinucleated giant cells that actively resorb bone during the physiological bone turnover (BTO), which is the continuous cycle of bone resorption (by osteoclasts) followed by new bone formation (by osteoblasts). Osteoclasts secrete chemotactic signals to recruit cells for regeneration of vasculature and bone. We hypothesize that a biomaterial that attracts osteoclasts and re-establishes BTO will induce a better healing response than currently used bone graft materials. While the majority of bone regeneration efforts have focused on maximizing bone deposition, the novelty in this approach is the focus on stimulating osteoclastic resorption as the starter for BTO and its concurrent new vascularized bone formation. A biodegradable tyrosine-derived polycarbonate, E1001(1k), was chosen as the polymer base due to its ability to support bone regeneration in vivo. The polymer was functionalized with a RGD peptide or collagen I, or blended with β-tricalcium phosphate. Osteoclast attachment and early stages of active resorption were observed on all substrates. The transparency of E1001(1k) in combination with high resolution confocal imaging enabled visualization of morphological features of osteoclast activation such as the formation of the "actin ring" and the "ruffled border", which previously required destructive forms of imaging such as transmission electron microscopy. The significance of these results is twofold: (1) E1001(1k) is suitable for osteoclast attachment and supports osteoclast maturation, making it a base polymer that can be further modified to optimize stimulation of BTO and (2) the transparency of this polymer makes it a suitable analytical tool for studying osteoclast behavior.

  15. Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice

    PubMed Central

    Qi, Bing; Cong, Qian; Li, Ping; Ma, Gang; Guo, Xizhi; Yeh, James; Xie, Min; Schneider, Michael D.; Liu, Huijuan; Li, Baojie

    2014-01-01

    Tak1 is a MAPKKK that can be activated by growth factors and cytokines such as RANKL and BMPs and its downstream pathways include NF-κB and JNK/p38 MAPKs. Tak1 is essential for mouse embryonic development and plays critical roles in tissue homeostasis. Previous studies have shown that Tak1 is a positive regulator of osteoclast maturation, yet its roles in bone growth and remodeling have not been assessed, as mature osteoclast-specific Tak1 deletion with Cstk-Cre resulted in runtedness and postnatal lethality. Here we generated osteoclast progenitor (monocyte)-specific Tak1 knockout mice and found that these mice show normal body weight, limb size and fertility, and osteopetrosis with severity similar to that of RANK or RANKL deficient mice. Mechanistically, Tak1 deficiency altered the signaling of NF-κB, p38MAPK, and Smad1/5/8 and the expression of PU.1, MITF, c-Fos, and NFATc1, suggesting that Tak1 regulates osteoclast differentiation at multiple stages via multiple signaling pathways. Moreover, the Tak1 mutant mice showed defects in skull, articular cartilage, and mesenchymal stromal cells. Ex vivo Tak1−/− monocytes also showed enhanced ability in promoting osteogenic differentiation of mesenchymal stromal cells. These findings indicate that Tak1 functions in osteoclastogenesis in a cell-autonomous manner and in osteoblastogenesis and chondrogenesis in non-cell-autonomous manners. PMID:25418008

  16. BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts

    PubMed Central

    Sztacho, Martin; Segeletz, Sandra; Sanchez-Fernandez, Maria Arantzazu; Czupalla, Cornelia; Niehage, Christian; Hoflack, Bernard

    2016-01-01

    Bone resorption in vertebrates relies on the ability of osteoclasts to assemble F-actin-rich podosomes that condense into podosomal belts, forming sealing zones. Sealing zones segregate bone-facing ruffled membranes from other membrane domains, and disassemble when osteoclasts migrate to new areas. How podosome/sealing zone dynamics is regulated remains unknown. We illustrate the essential role of the membrane scaffolding F-BAR-Proline-Serine-Threonine Phosphatase Interacting Proteins (PSTPIP) 1 and 2 in this process. Whereas PSTPIP2 regulates podosome assembly, PSTPIP1 regulates their disassembly. PSTPIP1 recruits, through its F-BAR domain, the protein tyrosine phosphatase non-receptor type 6 (PTPN6) that de-phosphophorylates the phosphatidylinositol 5-phosphatases SHIP1/2 bound to the SH3 domain of PSTPIP1. Depletion of any component of this complex prevents sealing zone disassembly and increases osteoclast activity. Thus, our results illustrate the importance of BAR domain proteins in podosome structure and dynamics, and identify a new PSTPIP1/PTPN6/SHIP1/2-dependent negative feedback mechanism that counterbalances Src and PI(3,4,5)P3 signalling to control osteoclast cell polarity and activity during bone resorption. PMID:27760174

  17. Probiotic consumption decreases the number of osteoclasts during orthodontic movement in mice.

    PubMed

    Pazzini, Camila Alessandra; Pereira, Luciano José; da Silva, Tarcília Aparecida; Montalvany-Antonucci, Carina Cristina; Macari, Soraia; Marques, Leandro Silva; de Paiva, Saul Martins

    2017-07-01

    The aim of the present study was to investigate the effect of probiotic (Bacillus Subtilis) supplementation on bone remodelling induced by mechanical loading. C57BL/6 mice were divided in two groups: (1) Probiotic and (2) Vehicle (water). The probiotic (1.5×10 8 CFU/mL) was administered orally for 14 days, starting two days before the induction of orthodontic tooth movement (OTM). OTM was determined by histomorphometric analysis by comparing the right to the left side of the maxilla. The number of osteoclasts was determined by counting TRAP-positive cells. Osteoblasts were counted on Masson's trichrome-stained slides. OTM was similar between groups (with and without probiotic supplementation) (p=0.46). The number of TRAP-positive cells increased (p<0.01) on the experimental side (where the spring coil was installed) in comparison to the control side in both groups. However, the number of osteoclasts decreased (p˂0.01) in the probiotic group, in comparison to the vehicle group. There was an increase in the number of osteoblasts (p˂0.05) in both the Vehicle and Probiotic groups on the side under OTM, independent of probiotic supplementation. Oral Supplementation with a probiotic influenced the number of osteoclasts adjacent to the tooth root during orthodontic movement in mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The emerging role of Hippo signaling pathway in regulating osteoclast formation.

    PubMed

    Yang, Wanlei; Han, Weiqi; Qin, An; Wang, Ziyi; Xu, Jiake; Qian, Yu

    2018-06-01

    A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases. © 2017 Wiley Periodicals, Inc.

  19. Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior.

    PubMed

    Rumpler, M; Würger, T; Roschger, P; Zwettler, E; Sturmlechner, I; Altmann, P; Fratzl, P; Rogers, M J; Klaushofer, K

    2013-12-01

    The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 lm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm²) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.

  20. Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion.

    PubMed

    Oikawa, Tsukasa; Oyama, Masaaki; Kozuka-Hata, Hiroko; Uehara, Shunsuke; Udagawa, Nobuyuki; Saya, Hideyuki; Matsuo, Koichi

    2012-05-14

    Osteoclasts fuse to form multinucleated cells during osteoclastogenesis. This process is mediated by dynamic rearrangement of the plasma membrane and cytoskeleton, and it requires numerous factors, many of which have been identified. The underlying mechanism remains obscure, however. In this paper, we show that Tks5, a master regulator of invadopodia in cancer cells, is crucial for osteoclast fusion downstream of phosphoinositide 3-kinase and Src. Expression of Tks5 was induced during osteoclastogenesis, and prevention of this induction impaired both the formation of circumferential podosomes and osteoclast fusion without affecting cell differentiation. Tyrosine phosphorylation of Tks5 was attenuated in Src-/- osteoclasts, likely accounting for defects in podosome organization and multinucleation in these cells. Circumferential invadopodia formation in B16F0 melanoma cells was also accompanied by Tks5 phosphorylation. Co-culture of B16F0 cells with osteoclasts in an inflammatory milieu promoted the formation of melanoma-osteoclast hybrid cells. Our results thus reveal an unexpected link between circumferential podosome/invadopodium formation and cell-cell fusion in and beyond osteoclasts.

  1. Rebamipide, an Amino Acid Analog of 2(1H)-Quinolinone, Inhibits the Formation of Human Osteoclasts

    PubMed Central

    Kobashigawa, Tsuyoshi

    2016-01-01

    Objectives. Drug repositioning or drug reprofiling (DR) has recently been growing in importance. DR has a significant advantage over traditional drug development because the repositioned drug has already passed toxicity tests; its safety is known, and the risk of adverse toxicology is reduced. In the current study, we investigated the role of rebamipide, a mucosa-protecting agent, with recently reported anti-inflammatory function, in human osteoclastogenesis. Methods. Peripheral blood mononuclear cells (PBMCs) were cultured in the presence of M-CSF and sRANKL. Osteoclast formation was evaluated by immunohistological staining for CD51/61 (vitronectin receptors). Osteoclast formation, in the presence or absence of rebamipide (0, 1, and 3 mM), was observed by time-lapse photography and actin ring formation. The number of absorption sites and area of absorption were calculated using Osteologic™ plates. Pit formation was studied by 3D-SEM. Results. Rebamipide inhibited human osteoclast formation at 3 mM, a pharmacological concentration, and inhibited resorbing activity dose-dependently. Rebamipide induced the degradation of actin rings in mature osteoclasts. This mechanism may involve inhibiting the osteoclast fusion pathway through reducing the expression of DC-specific transmembrane protein (DC-STAMP). Conclusions. The present study suggests that rebamipide would be useful as a novel agent for osteoporosis and rheumatoid arthritis. PMID:27965978

  2. Rebamipide, an Amino Acid Analog of 2(1H)-Quinolinone, Inhibits the Formation of Human Osteoclasts.

    PubMed

    Nanke, Yuki; Kobashigawa, Tsuyoshi; Yago, Toru; Kawamoto, Manabu; Yamanaka, Hisashi; Kotake, Shigeru

    2016-01-01

    Objectives . Drug repositioning or drug reprofiling (DR) has recently been growing in importance. DR has a significant advantage over traditional drug development because the repositioned drug has already passed toxicity tests; its safety is known, and the risk of adverse toxicology is reduced. In the current study, we investigated the role of rebamipide, a mucosa-protecting agent, with recently reported anti-inflammatory function, in human osteoclastogenesis. Methods. Peripheral blood mononuclear cells (PBMCs) were cultured in the presence of M-CSF and sRANKL. Osteoclast formation was evaluated by immunohistological staining for CD51/61 (vitronectin receptors). Osteoclast formation, in the presence or absence of rebamipide (0, 1, and 3 mM), was observed by time-lapse photography and actin ring formation. The number of absorption sites and area of absorption were calculated using Osteologic™ plates. Pit formation was studied by 3D-SEM. Results . Rebamipide inhibited human osteoclast formation at 3 mM, a pharmacological concentration, and inhibited resorbing activity dose-dependently. Rebamipide induced the degradation of actin rings in mature osteoclasts. This mechanism may involve inhibiting the osteoclast fusion pathway through reducing the expression of DC-specific transmembrane protein (DC-STAMP). Conclusions . The present study suggests that rebamipide would be useful as a novel agent for osteoporosis and rheumatoid arthritis.

  3. Improved Single-Source Precursors for Solar-Cell Absorbers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  4. Vinpocetine inhibits oligodendroglial precursor cell differentiation.

    PubMed

    Torres, Klintsy Julieta; Göttle, Peter; Kremer, David; Rivera, Jose Flores; Aguirre-Cruz, Lucinda; Corona, Teresa; Hartung, Hans-Peter; Küry, Patrick

    2012-01-01

    In multiple sclerosis during periods of remission a limited degree of myelin repair can be observed mediated by oligodendroglial precursor cells. Phosphodiesterase inhibitors act as anti-inflammatory agents and might hold promise for future multiple sclerosis treatment. To investigate whether phosphodiesterase inhibitors could also influence myelin repair. We stimulated primary oligodendroglial precursor cells with cilostazol, rolipram and vinpocetine and assessed their effects on repair related cellular processes. We found that vinpocetine exerted a strong negative effect on myelin expression while cilostazol and rolipram did not show such effects. In addition, vinpocetine decreased morphological complexities suggesting an overall negative impact on oligodendroglial cell maturation. We provide evidence that this is not mediated via a blockade of phosphodiesterase-1 but rather by inhibition of IĸB kinase. These findings suggest that vinpocetine via IĸB inhibition exerts a strong negative impact on oligodendroglial cell maturation and may therefore provide the rationale to restrict its application during periods of remission in multiple sclerosis patients. This is of particular interest since vinpocetine is widely used as a health supplement thought to act as a cognitive and memory enhancer for healthy people and patients with neurological or muscle diseases. Copyright © 2012 S. Karger AG, Basel.

  5. Coordinated Regulation of Niche and Stem Cell Precursors by Hormonal Signaling

    PubMed Central

    Gancz, Dana; Lengil, Tamar; Gilboa, Lilach

    2011-01-01

    Stem cells and their niches constitute units that act cooperatively to achieve adult body homeostasis. How such units form and whether stem cell and niche precursors might be coordinated already during organogenesis are unknown. In fruit flies, primordial germ cells (PGCs), the precursors of germ line stem cells (GSCs), and somatic niche precursors develop within the larval ovary. Together they form the 16–20 GSC units of the adult ovary. We show that ecdysone receptors are required to coordinate the development of niche and GSC precursors. At early third instar, ecdysone receptors repress precocious differentiation of both niches and PGCs. Early repression is required for correct morphogenesis of the ovary and for protecting future GSCs from differentiation. At mid-third instar, ecdysone signaling is required for niche formation. Finally, and concurrent with the initiation of wandering behavior, ecdysone signaling initiates PGC differentiation by allowing the expression of the differentiation gene bag of marbles in PGCs that are not protected by the newly formed niches. All the ovarian functions of ecdysone receptors are mediated through early repression, and late activation, of the ecdysone target gene broad. These results show that, similar to mammals, a brain-gland-gonad axis controls the initiation of oogenesis in insects. They further exemplify how a physiological cue coordinates the formation of a stem cell unit within an organ: it is required for niche establishment and to ensure that precursor cells to adult stem cells remain undifferentiated until the niches can accommodate them. Similar principles might govern the formation of additional stem cell units during organogenesis. PMID:22131903

  6. Osteoclast Inhibitory Peptide-1 Therapy for Paget’s Disease

    DTIC Science & Technology

    2012-08-01

    1 (SQSTM1/p62) gene have been widely identified in PDB patients. We previously detected expression of measles virus nucleocapsid (MVNP) transcripts...high bone turnover in PDB. 15. SUBJECT TERMS Paget’s Disease, measles virus nucleocapsid, sequestosome1 , osteoclast, osteoclast inhibitory peptide...detected expression of measles virus nucleocapsid (MVNP) transcripts in osteoclasts from patients with PDB. Also, we have shown that MVNP gene

  7. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  8. Enrichment of skin-derived neural precursor cells from dermal cell populations by altering culture conditions.

    PubMed

    Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh

    2016-01-01

    As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.

  9. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  10. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    PubMed

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Involvement of the orphan nuclear estrogen receptor-related receptor α in osteoclast adhesion and transmigration

    PubMed Central

    Bonnelye, Edith; Saltel, Frédéric; Chabadel, Anne; Zirngibl, Ralph A; Aubin, Jane E; Jurdic, Pierre

    2010-01-01

    The orphan nuclear receptor, estrogen receptor-related receptor α (ERRα) is expressed in osteoblasts and osteoclasts (OCs) and has been proposed to be a modulator of estrogen signaling. To determine the role of ERRα in OC biology, we knocked down ERRα activity by transient transfection of an siRNA directed against ERRα in the RAW264.7 monocyte–macrophage cell line that differentiates into OCs in the presence of receptor activator of nuclear factor κB-ligands and macrophage colony-stimulating factor. In parallel, stable RAW cell lines expressing a dominant-negative form of ERRα and green fluorescent protein (RAW-GFP-ERRαΔAF2) were used. Expression of OC markers was assessed by real-time PCR, and adhesion and transmigration tests were performed. Actin cytoskeletal organization was visualized using confocal microscopy. We found that RAW264.7 cells expressing siRNA directed against ERRα and RAW-GFP-ERRαΔAF2 OCs displayed abnormal spreading, and decreased osteopontin and β3 integrin subunit expression compared with the corresponding control cells. Decreased adhesion and the absence of podosome belts concomitant with abnormal localization of c-src were also observed in RAW-GFP-ERRαΔAF2-derived OCs. In addition, RAW-GFP-ERRαΔAF2-derived OCs failed to transmigrate through osteoblast cell layers. Our data show that the impairment of ERRα function does not alter OC precursor proliferation and differentiation but does alter the adhesion/spreading and migration capacities of mature OCs. PMID:20841427

  12. Novel antiosteoclastogenic activity of phloretin antagonizing RANKL-induced osteoclast differentiation of murine macrophages.

    PubMed

    Kim, Jung-Lye; Kang, Min-Kyung; Gong, Ju-Hyun; Park, Sin-Hye; Han, Seon-Young; Kang, Young-Hee

    2012-08-01

    Bone-remodeling imbalance resulting in more bone resorption than bone formation is known to cause skeletal diseases such as osteoporosis. Phloretin, a natural dihydrochalcone compound largely present in apple peels, possesses antiphotoaging, and antiinflammatory activity. Phloretin inhibited receptor activator of NF-κB ligand (RANKL)-induced formation of multinucleated osteoclasts and diminished bone resorption area produced during the osteoclast differentiation process. It was also found that ≥ 10 μM phloretin reduced RANKL-enhanced tartrate-resistance acid phosphatase activity and matrix metalloproteinase-9 secretion in a dose-dependent manner. The phloretin treatment retarded RANKL-induced expression of carbonic anhydrase II, vacuolar-type H(+) -ATPase D2 and β3 integrin, all involved in the bone resorption. Furthermore, submicromolar phloretin diminished the expression and secretion of cathepsin K elevated by RANKL, being concurrent with inhibition of TRAF6 induction and NF-κB activation. RANKL-induced activation of nuclear factor of activated T cells c1 (NFATc1) and microphthalmia-associated transcription factor was also suppressed by phloretin. These results demonstrate that the inhibition of osteoclast differentiation and bone resorption by phloretin entail a disturbance of TRAF6-NFATc1-NF-κB pathway triggered by RANKL. Therefore, phloretin may be a potential therapeutic agent targeting osteoclast differentiation and bone resorption in skeletal diseases such as osteoporosis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings.

    PubMed

    Costa, Daniel O; Prowse, Paul D H; Chrones, Tom; Sims, Stephen M; Hamilton, Douglas W; Rizkalla, Amin S; Dixon, S Jeffrey

    2013-10-01

    The behavior of bone cells is influenced by the surface chemistry and topography of implants and scaffolds. Our purpose was to investigate how the topography of biomimetic hydroxyapatite (HA) coatings influences the attachment and differentiation of osteoblasts, and the resorptive activity of osteoclasts. Using strategies reported previously, we directly controlled the surface topography of HA coatings on polycaprolactone discs. Osteoblasts and osteoclasts were incubated on HA coatings having distinct isotropic topographies with submicrometer and micro-scale features. Osteoblast attachment and differentiation were greater on more complex, micro-rough HA surfaces (Ra ~2 μm) than on smoother topographies (Ra ~1 μm). In contrast, activity of the osteoclast marker tartrate-resistant acid phosphatase was greater on smoother than on micro-rough surfaces. Furthermore, scanning electron microscopy revealed the presence of resorption lacunae exclusively on smoother HA coatings. Inhibition of resorption on micro-rough surfaces was associated with disruption of filamentous actin sealing zones. In conclusion, HA coatings can be prepared with distinct topographies, which differentially regulate responses of osteoblasts, as well as osteoclastic activity and hence susceptibility to resorption. Thus, it may be possible to design HA coatings that induce optimal rates of bone formation and degradation specifically tailored for different applications in orthopedics and dentistry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. NHE10, a novel osteoclast-specific member of the Na{sup +}/H{sup +} exchanger family, regulates osteoclast differentiation and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seoung Hoon; Kim, Taesoo; Park, Eui-Soon

    2008-05-02

    Bone homeostasis is tightly regulated by the balanced actions of osteoblasts (OBs) and osteoclasts (OCs). We previously analyzed the gene expression profile of OC differentiation using a cDNA microarray, and identified a novel osteoclastogenic gene candidate, clone OCL-1-E7 [J. Rho, C.R. Altmann, N.D. Socci, L. Merkov, N. Kim, H. So, O. Lee, M. Takami, A.H. Brivanlou, Y. Choi, Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis, DNA Cell Biol. 21 (2002) 541-549]. In this study, we have isolated full-length cDNAs corresponding to this clone from mice and humans to determine the functionalmore » roles of this gene in osteoclastogenesis. The full-length cDNA of OCL-1-E7 encodes 12 membrane-spanning domains that are typical of isoforms of the Na{sup +}/H{sup +} exchangers (NHEs), indicating that this clone is a novel member of the NHE family (hereafter referred to as NHE10). Here, we show that NHE10 is highly expressed in OCs in response to receptor activator of nuclear factor-{kappa}B ligand signaling and is required for OC differentiation and survival.« less

  15. Squamous cell carcinoma of the uterine cervix associated with osteoclast-like giant cells: A case report and review of the literature.

    PubMed

    Yu, Guohua; Lin, Chunhua; Wang, Wei; Han, Yekun; Qu, Guimei; Zhang, Tingguo

    2014-10-01

    Squamous cell carcinoma is a common malignant tumor of the uterine cervix. The present study reports the case of squamous cell carcinoma of the uterine cervix with osteoclast-like giant cells (OGCs) in an 84-year-old female who had suffered from irregular vaginal bleeding for one month. Colposcopy was performed and a cauliflower-like mass was identified in the front lip of the uterine cervix. Biopsy was then performed, and the tumor was found to be composed of epithelial cell nests, ranging in size. The neoplastic cells exhibited unclear boundaries and eosinophilic cytoplasm. Additionally, the nuclei were atypical and mitosis was observed. Among the epithelial nests, there were numerous OGCs with abundant eosinophilic cytoplasm, as well as multinucleation with bland nuclei. By immunohistochemical staining, the epithelial cells were positive for cytokeratin, while negative for CD68 and vimentin. By contrast, the immunophenotype of the OGCs was the exact opposite. Based on the histological characters, a diagnosis of squamous cell carcinoma of the uterine cervix associated with OGCs was made. Considering the age of the patient, radiotherapy was administered. The patient succumbed to brain metastasis of the tumor after eight months of follow-up.

  16. Identification of early B cell precursors (stage 1 and 2 hematogones) in the peripheral blood.

    PubMed

    Kurzer, Jason H; Weinberg, Olga K

    2018-05-25

    Differentiating malignant B-lymphoblasts from early benign B cell precursors (hematogones) is a vital component of the diagnosis of B-lymphoblastic leukaemia. It has been previously reported that only late-stage B cell precursors circulate in the peripheral blood. Consequently, flow cytometric detection of cells with immunophenotypic findings similar to earlier stage precursors in the peripheral blood justifiably raises concern for involvement by B-lymphoblastic leukaemia. We report here, however, that benign early B cell precursors can indeed be detected in the peripheral blood, thus complicating the interpretation of flow cytometric findings derived from these sample types. A retrospective search of our collective databases identified 13 cases containing circulating early stage B cell precursors. The patients ranged in age from 15 days to 85 years old. All positive cases demonstrated that the earlier B cell precursors were associated with later stage precursors, a finding that could help differentiate these cells from B-lymphoblastic leukaemia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Study of Osteoclast Adhesion to Cortical Bone Surfaces: A Correlative Microscopy Approach for Concomitant Imaging of Cellular Dynamics and Surface Modifications

    PubMed Central

    2015-01-01

    Bone remodeling relies on the coordinated functioning of osteoblasts, bone-forming cells, and osteoclasts, bone-resorbing cells. The effects of specific chemical and physical bone features on the osteoclast adhesive apparatus, the sealing zone ring, and their relation to resorption functionality are still not well-understood. We designed and implemented a correlative imaging method that enables monitoring of the same area of bone surface by time-lapse light microscopy, electron microscopy, and atomic force microscopy before, during, and after exposure to osteoclasts. We show that sealing zone rings preferentially develop around surface protrusions, with lateral dimensions of several micrometers, and ∼1 μm height. Direct overlay of sealing zone rings onto resorption pits on the bone surface shows that the rings adapt to pit morphology. The correlative procedure presented here is noninvasive and performed under ambient conditions, without the need for sample labeling. It can potentially be applied to study various aspects of cell-matrix interactions. PMID:26682493

  18. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes.

    PubMed

    Algate, K; Haynes, D R; Bartold, P M; Crotti, T N; Cantley, M D

    2016-10-01

    Periodontitis is the most common bone loss pathology in adults and if left untreated is responsible for premature tooth loss. Cytokines, such as tumour necrosis factor-α (TNFα), involved in the chronic inflammatory response within the periodontal gingiva, significantly influence the normal bone remodelling processes. In this review, the effects of TNFα on bone metabolism in periodontitis are evaluated in relation to its direct and indirect actions on bone cells including osteoclasts, osteoblasts and osteocytes. Evidence published to date suggests a potent catabolic role for TNFα through the stimulation of osteoclastic bone resorption as well as the suppression of osteoblastic bone formation and osteocytic survival. However, the extent and timing of TNFα exposure in vitro and in vivo greatly influences its effect on skeletal cells, with contradictory anabolic activity observed with TNFα in a number of studies. None the less, it is evident that managing the chronic inflammatory response in addition to the deregulated bone metabolism is required to improve periodontal and inflammatory bone loss treatments‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Salicortin inhibits osteoclast differentiation and bone resorption by down-regulating JNK and NF-κB/NFATc1 signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Shaobo; Xu, Jiawei; Zhang, Chenghua

    Receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated signaling is essential for osteoclast differentiation, activation, and survival. Salicortin is a phenolic glycoside that has been isolated from many plants such as Populus and Salix species, and has been shown to have anti-amnesic and anti-adipogenic effects. In this study, we investigated the effect of salicortin on RANKL-induced osteoclasts formation, bone resorption, and activation of osteoclast-related signaling pathways. Salicortin suppressed RANKL-induced osteoclastogenesis in bone marrow macrophage cultures in a dose-dependent manner, and inhibited osteoclastic bone resorption activity without any cytotoxicity. Salicortin inhibited RANKL-induced c-Jun N-terminal kinase and NF-κB activation, concomitant with retardedmore » IκBα phosphorylation and inhibition of p65 nuclear translocation, leading to impaired transcription of nuclear factor of activated T cells c1 (NFATc1) and expression of osteoclastic-specific genes. Taken together, our findings demonstrate that salicortin inhibits NF-κB and NFATc1 activation, leading to attenuation of osteoclastogenesis and bone resorption. Thus, salicortin may be of interest in developments of treatment for osteoclast related diseases. - Highlights: • Salicortin suppresses osteoclastogenesis in vitro. • Salicortin impairs the JNK and NF-κB/NFATc1 signaling pathway. • Salicortin may be of interest in developments of osteoporosis treatment.« less

  20. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression.

    PubMed

    Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng

    2017-03-01

    Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo , further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

  1. The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss.

    PubMed

    Shinohara, Masahiro; Chang, Betty Y; Buggy, Joseph J; Nagai, Yusuke; Kodama, Tatsuhiko; Asahara, Hiroshi; Takayanagi, Hiroshi

    2014-03-01

    Bone-resorbing osteoclasts play an essential role in normal bone homeostasis, as well as in various bone disorders such as osteoporosis and rheumatoid arthritis. Previously we showed that the Tec family of tyrosine kinases is essential for the differentiation of osteoclasts and the inhibition of Btk is a promising strategy for the prevention of the bone loss in osteoclast-associated bone disorders. Here we demonstrate that an orally available Btk inhibitor, ibrutinib (PCI-32765), suppresses osteoclastic bone resorption by inhibiting both osteoclast differentiation and function. Ibrutinib downregulated the expression of NFATc1, the key transcription factor for osteoclastogenesis, and disrupted the formation of the actin ring in mature osteoclasts. In addition, genome-wide screening revealed that Btk regulates the expression of the genes involved in osteoclast differentiation and function in both an NFATc1-dependent and -independent manner. Finally, we showed that ibrutinib administration ameliorated the bone loss that developed in a RANKL-induced osteoporosis mouse model. Thus, this study suggests ibrutinib to be a promising therapeutic agent for osteoclast-associated bone diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Biosynthesis and processing of cathepsin K in cultured human osteoclasts.

    PubMed

    Rieman, D J; McClung, H A; Dodds, R A; Hwang, S M; Holmes, M W; James, I E; Drake, F H; Gowen, M

    2001-03-01

    Cathepsin K (cat K) is the major cysteine protease expressed in osteoclasts and is thought to play a key role in matrix degradation during bone resorption. However, little is known regarding the synthesis, activation, or turnover of the endogenous enzyme in osteoclasts. In this study, we show that mature cat K protein and enzyme activity are localized within osteoclasts. Pulse-chase experiments revealed that, following the synthesis of pro cat K, intracellular conversion to the mature enzyme occurred in a time-dependent manner. Subsequently, the level of mature enzyme decreased. Little or no cat K was observed in the culture media at any timepoint. Pretreatment of osteoclasts with either chloroquine or monensin resulted in complete inhibition of the processing of newly synthesized cat K. In addition, pro cat K demonstrated susceptibility to treatment with N-glycosidase F, suggesting the presence of high-mannose-containing oligosaccharides. Treatment of osteoclasts with the PI3-kinase inhibitor, Wortmannin (WT), not only prevented the intracellular processing of cat K but also resulted in the secretion of proenzyme into the culture media. Taken together, these results suggest that the biosynthesis, processing, and turnover of cat K in human osteoclasts is constitutive and occurs in a manner similar to that of other known cysteine proteases. Furthermore, cat K is not secreted as a proenzyme, but is processed intracellularly, presumably in lysosomal compartments prior to the release of active enzyme into the resorption lacunae.

  3. Water extract of the fruits of Alpinia oxyphylla inhibits osteoclast differentiation and bone loss.

    PubMed

    Ha, Hyunil; Shim, Ki-Shuk; Kim, Taesoo; Lee, Chung-Jo; Park, Ji Hyung; Kim, Han Sung; Ma, Jin Yeul

    2014-09-23

    Excessive bone resorption by osteoclasts causes pathological bone destruction, seen in various bone diseases. There is accumulating evidence that certain herbal extracts have beneficial effects on bone metabolism. The fruits of Alpinia oxyphylla has been traditionally used for the treatment of diarrhea and enuresis. In this study, we investigated the effects of water extract of the fruits of Alpinia oxyphylla (WEAO) on osteoclast differentiation and osteoclast-mediated bone destruction. For osteoclast differentiation assay, mouse bone marrow-derived macrophages (BMMs) were cultured in the presence of RANKL and M-CSF. RANKL signaling pathways and gene expression of transcription factors regulating osteoclast differentiation were investigated by real-time PCR and Western blotting. A constitutively active form of NFATc1 was retrovirally transduced into BMMs. Bone resorbing activity of mature osteoclast was examined on a plate coated with an inorganic crystalline calcium phosphate. The in vivo effect against bone destruction was assessed in a murine model of RANKL-induced osteoporosis by micro-computed tomography and bone metabolism marker analyses. WEAO dose-dependently inhibited RANKL-induced osteoclast differentiation from BMMs by targeting the early stages of osteoclast differentiation. WEAO inhibited RANKL-induced expression of NFATc1, the master regulator of osteoclast differentiation. Overexpression of a constitutively active form of NFATc1 blunted the inhibitory effect of WEAO on osteoclast differentiation, suggesting that NFATc1 is a critical target of the inhibitory action of WEAO. WEAO inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1, by suppressing the classical NF-κB signaling pathway. WEAO also inhibited RANKL-induced down-regulation of Id2 and MafB, negative regulators of NFATc1. WEAO does not directly affect bone resorbing activity of mature osteoclasts. In accordance with the in vitro results, WEAO attenuated RANKL

  4. Ultrastructural features of the osteoclasts from Paget's disease of bone in relation to a viral aetiology.

    PubMed Central

    Harvey, L; Gray, T; Beneton, M N; Douglas, D L; Kanis, J A; Russell, R G

    1982-01-01

    The ultrastructure of the osteocytes, osteoblasts, osteoclasts, haemopoietic and other connective tissue cells was examined in 27 biopsies from 22 patients with Paget's disease of bone. Electron microscopy showed characteristic nuclear and cytoplasmic inclusions in the osteoclasts of all of the 25 biopsies exhibiting histological evidence of Paget's disease. Such inclusions were absent from all the other types examined. The intranuclear inclusions consisted of stacked rows or complex whorls of tubular filaments with an individual filament diameter of 12-15 nm, often arranged in a paracrystalline array. The frequency of occurrence of inclusions in the osteoclasts and their individual nuclei measured quantitatively in 18 of the biopsies was related to the histological severity of the disease process. The similarity of the observed inclusions to those of paramyxovirus inclusion bodies (particularly measles) support the hypothesis that Paget's disease is a slow virus infection. Images PMID:7096600

  5. Dioscin inhibits osteoclast differentiation and bone resorption though down-regulating the Akt signaling cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Xinhua; Zhai, Zanjing; Liu, Xuqiang

    Highlights: •A natural-derived compound, dioscin, suppresses osteoclast formation and bone resorption. •Dioscin inhibits osteolytic bone loss in vivo. •Dioscin impairs the Akt signaling cascades pathways during osteoclastogenesis. •Dioscin have therapeutic value in treating osteoclast-related diseases. -- Abstract: Bone resorption is the unique function of osteoclasts (OCs) and is critical for both bone homeostasis and pathologic bone diseases including osteoporosis, rheumatoid arthritis and tumor bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. In this study, we for the first time demonstrated that dioscin suppressed RANKL-mediated osteoclast differentiationmore » and bone resorption in vitro in a dose-dependent manner. The suppressive effect of dioscin is supported by the reduced expression of osteoclast-specific markers. Further molecular analysis revealed that dioscin abrogated AKT phosphorylation, which subsequently impaired RANKL-induced nuclear factor-kappaB (NF-κB) signaling pathway and inhibited NFATc1 transcriptional activity. Moreover, in vivo studies further verified the bone protection activity of dioscin in osteolytic animal model. Together our data demonstrate that dioscin suppressed RANKL-induced osteoclast formation and function through Akt signaling cascades. Therefore, dioscin is a potential natural agent for the treatment of osteoclast-related diseases.« less

  6. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements

    PubMed Central

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement

  7. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements.

    PubMed

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement

  8. SLP-76 couples Syk to the osteoclast cytoskeleton.

    PubMed

    Reeve, Jennifer L; Zou, Wei; Liu, Yuli; Maltzman, Jonathan S; Ross, F Patrick; Teitelbaum, Steven L

    2009-08-01

    The capacity of the osteoclast (OC) to resorb bone is dictated by cytoskeletal organization, which in turn emanates from signals derived from the alpha(v)beta(3) integrin and c-Fms. Syk is key to these signals and, in other cells, this tyrosine kinase exerts its effects via intermediaries including the SLP adaptors, SLP-76 and BLNK (B cell linker). Thus, we asked whether these two SLP proteins regulate OC function. We find BLNK-deficient OCs are normal, whereas cytoskeletal organization of those lacking SLP-76 is delayed, thus modestly reducing bone resorption in vitro. Cytoskeletal organization and bone resorption are more profoundly arrested in cultured OCs deficient in BLNK and SLP-76 double knockout (DKO) phenotypes. In contrast, stimulated bone resorption in vivo is inhibited approximately 40% in either SLP-76(-/-) or DKO mice. This observation, taken with the fact that DKO OCs are rescued by retroviral transduction of only SLP-76, indicates that SLP-76 is the dominant SLP family member in the resorptive process. We also find SLP-76 is phosphorylated in a Syk-dependent manner. Furthermore, in the absence of the adaptor protein, integrin-mediated phosphorylation of Vav3, the OC cytoskeleton-organizing guanine nucleotide exchange factor, is abrogated. In keeping with a central role of SLP-76/Vav3 association in osteoclastic resorption, retroviral transduction of SLP-76, in which the Vav binding site is disrupted (3YF), fails to normalize the cytoskeleton of DKO OCs and the resorptive capacity of the cells. Finally, c-Fms-activated Syk also exerts its OC cytoskeleton-organizing effect in a SLP-76/Vav3-dependent manner.

  9. Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice.

    PubMed

    Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2012-04-01

    Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.

  10. IL-1beta suppresses the formation of osteoclasts by increasing OPG production via an autocrine mechanism involving celecoxib-related prostaglandins in chondrocytes.

    PubMed

    Watanabe, Yusuke; Namba, Aki; Aida, Yukiko; Honda, Kazuhiro; Tanaka, Hideki; Suzuki, Naoto; Matsumura, Hideo; Maeno, Masao

    2009-01-01

    Elevated interleukin (IL)-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1beta stimulated the expression of prostaglandin (PG) receptor EP4 via increased PGE(2) production. However, the effect of IL-1beta on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1beta and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) in human chondrocytes, and the indirect effect of IL-1beta on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1beta; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1beta. Conditioned medium from IL-1beta-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1beta suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.

  11. Meninges harbor cells expressing neural precursor markers during development and adulthood.

    PubMed

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.

  12. Meninges harbor cells expressing neural precursor markers during development and adulthood

    PubMed Central

    Bifari, Francesco; Berton, Valeria; Pino, Annachiara; Kusalo, Marijana; Malpeli, Giorgio; Di Chio, Marzia; Bersan, Emanuela; Amato, Eliana; Scarpa, Aldo; Krampera, Mauro; Fumagalli, Guido; Decimo, Ilaria

    2015-01-01

    Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood. PMID:26483637

  13. The Alliance of Mesenchymal Stem Cells, Bone, and Diabetes

    PubMed Central

    Napoli, Nicola; Paladini, Angela; Briganti, Silvia I.; Pozzilli, Paolo; Epstein, Sol

    2014-01-01

    Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact. PMID:25140176

  14. Loss of T cell precursors after spaceflight and exposure to vector-averaged gravity

    NASA Technical Reports Server (NTRS)

    Woods, Chris C.; Banks, Krista E.; Gruener, Raphael; DeLuca, Dominick

    2003-01-01

    Using fetal thymus organ culture (FTOC), we examined the effects of spaceflight and vector-averaged gravity on T cell development. Under both conditions, the development of T cells was significantly attenuated. Exposure to spaceflight for 16 days resulted in a loss of precursors for CD4+, CD8+, and CD4+CD8+ T cells in a rat/mouse xenogeneic co-culture. A significant decrease in the same precursor cells, as well as a decrease in CD4-CD8- T cell precursors, was also observed in a murine C57BL/6 FTOC after rotation in a clinostat to produce a vector-averaged microgravity-like environment. The block in T cell development appeared to occur between the pre-T cell and CD4+CD8+ T cell stage. These data indicate that gravity plays a decisive role in the development of T cells.

  15. Characterization of two types of osteoclasts from human peripheral blood monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuasa, Kimitaka; Mori, Kouki; Ishikawa, Hitoshi

    2007-05-04

    The two osteoclastogenesis pathways, receptor activator nuclear factor (NF)-{kappa}B ligand (RANKL)-mediated and fusion regulatory protein-1 (FRP-1)-mediated osteoclastogenesis, have recently been reported. There were significant differences in differentiation and activation mechanisms between the two pathways. When monocytes were cultured with FRP-1 without adding M-CSF, essential for the RANKL system, TRAP-positive polykaryocyte formation occurred. FRP-1-mediated osteoclasts formed larger pits on mineralized calcium phosphate plates than RANKL+M-CSF-mediated osteoclasts did. Lacunae on dentin surfaces induced by FRP-1-mediated osteoclasts were inclined to be single and isolated. However, osteoclasts induced by RANKL+M-CSF made many connected pits on dentin surfaces as if they crawled on there. Interestingly,more » FRP-1 osteoclastogenesis was enhanced by M-CSF/IL-1{alpha}, while chemotactic behavior to the dentin slices was not effected. There were differences in pH and concentration of HCO3- at culture endpoint and in adherent feature to dentin surfaces. Our findings indicate there are two types of osteoclasts with distinct properties.« less

  16. 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate suppresses osteoclast maturation and bone resorption by targeting macrophage-colony stimulating factor signaling.

    PubMed

    Park, So Jeong; Park, Doo Ri; Bhattarai, Deepak; Lee, Kyeong; Kim, Jaesang; Bae, Yun Soo; Lee, Soo Young

    2014-08-01

    2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.

  17. Divergent Resorbability and Effects on Osteoclast Formation of Commonly Used Bone Substitutes in a Human In Vitro-Assay

    PubMed Central

    Busse, Björn; Schilling, Arndt F.; Schinke, Thorsten; Amling, Michael; Lange, Tobias

    2012-01-01

    Bioactive bone substitute materials are a valuable alternative to autologous bone transplantations in the repair of skeletal defects. However, clinical studies have reported varying success rates for many commonly used biomaterials. While osteoblasts have traditionally been regarded as key players mediating osseointegration, increasing evidence suggests that bone-resorbing osteoclasts are of crucial importance for the longevity of applied biomaterials. As no standardized data on the resorbability of biomaterials exists, we applied an in vitro-assay to compare ten commonly used bone substitutes. Human peripheral blood mononuclear cells (PBMCs) were differentiated into osteoclasts in the co-presence of dentin chips and biomaterials or dentin alone (control) for a period of 28 days. Osteoclast maturation was monitored on day 0 and 14 by light microscopy, and material-dependent changes in extracellular pH were assessed twice weekly. Mature osteoclasts were quantified using TRAP stainings on day 28 and their resorptive activity was determined on dentin (toluidin blue staining) and biomaterials (scanning electron microscopy, SEM). The analyzed biomaterials caused specific changes in the pH, which were correlated with osteoclast multinuclearity (r = 0.942; p = 0.034) and activity on biomaterials (r = 0.594; p = 0.041). Perossal led to a significant reduction of pH, nuclei per osteoclast and dentin resorption, whereas Tutogen bovine and Tutobone human strikingly increased all three parameters. Furthermore, natural biomaterials were resorbed more rapidly than synthetic biomaterials leading to differential relative resorption coefficients, which indicate whether bone substitutes lead to a balanced resorption or preferential resorption of either the biomaterial or the surrounding bone. Taken together, this study for the first time compares the effects of widely used biomaterials on osteoclast formation and resorbability in an unbiased approach that may now aid

  18. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

    PubMed Central

    Zhao, Hongying; Zhang, Jun; Shao, Haiyu; Liu, Jianwen; Jin, Mengran; Chen, Jinping; Huang, Yazeng

    2017-01-01

    Transforming growth factor β1 (TGFβ1)/Smad4 signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through TGFβ1/Smad4 signaling. Here, we present that TGFβ1 elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by TGFβ1. The results of luciferase reporter experiments and ChIP assays demonstrated that TGFβ1 promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the TGFβ1/Smad4 pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the TGFβ1-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that TGFβ1/Smad4 signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise. PMID:28359146

  19. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.

    PubMed

    Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela

    2014-03-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts

    PubMed Central

    Huang, Su; Eleniste, Pierre P.; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A.; Mains, Richard E.; Allen, Matthew R.; Bruzzaniti, Angela

    2014-01-01

    Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36 week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14 week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. PMID:24380811

  1. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling.

    PubMed

    Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou

    2018-03-08

    This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.

  2. Osteoblast and osteoclast behaviors in the turnover of attachment bones during medaka tooth replacement.

    PubMed

    Mantoku, Akiko; Chatani, Masahiro; Aono, Kazushi; Inohaya, Keiji; Kudo, Akira

    2016-01-15

    Tooth replacement in polyphyodont is a well-organized system for maintenance of homeostasis of teeth, containing the dynamic structural change in skeletal tissues such as the attachment bone, which is the supporting element of teeth. Histological analyses have revealed the character of tooth replacement, however, the cellular mechanism of how skeletal tissues are modified during tooth replacement is largely unknown. Here, we showed the important role of osteoblasts for controlling osteoclasts to modify the attachment bone during tooth replacement in medaka pharyngeal teeth, coupled with an osterix-DsRed/TRAP-GFP transgenic line to visualize osteoblasts and osteoclasts. In the turnover of the row of attachment bones, these bones were resorbed at the posterior side where most developed functional teeth were located, and generated at the anterior side where teeth were newly erupted, which caused continuous tooth replacement. In the cellular analysis, osteoclasts and osteoblasts were located at attachment bones separately, since mature osteoclasts were localized at the resorbing side and osteoblasts gathered at the generating side. To demonstrate the role of osteoclasts in tooth replacement, we established medaka made deficient in c-fms-a by TALEN. c-fms-a deficient medaka showed hyperplasia of attachment bones along with reduced bone resorption accompanied by a low number of TRAP-positive osteoclasts, indicating an important role of osteoclasts in the turnover of attachment bones. Furthermore, nitroreductase-mediated osteoblast-specific ablation induced disappearance of osteoclasts, indicating that osteoblasts were essential for maintenance of osteoclasts for the proper turnover. Taken together, our results suggested that the medaka attachment bone provides the model to understand the cellular mechanism for tooth replacement, and that osteoblasts act in the coordination of bone morphology by supporting osteoclasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santiago, Francisco; Oguma, Junya; Brown, Anthony M.C.

    Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitormore » ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in

  4. Approach to novel functional foods for stress control 4. Regulation of serotonin transporter by food factors.

    PubMed

    Ito, Mikiko; Haito, Sakiko; Furumoto, Mari; Kawai, Yoshichika; Terao, Junji; Miyamoto, Ken-ichi

    2005-11-01

    Serotonin transporters (SERTs) are pre-synaptic proteins specialized for the clearance of serotonin following vesicular release at central nervous system (CNS) and enteric nervous system synapses. SERTs are high affinity targets in vivo for antidepressants such as serotonin selective reuptake inhibitors (SSRIs). These include 'medical' psychopharmacological agents such as analgesics and antihistamines, a plant extract called St John's Wort (Hypericum). Osteoclasts are the primary cells responsible for bone resorption. They arise by the differentiation of osteoclast precursors of the monocyte/macrophage lineage. The expression of SERTs was increased in RANKL-induced osteoclast-like cells. Using RANKL stimulation of RAW264.7 cells as a model system for osteoclast differentiation, we studied the direct effects of food factor on serotonin uptake. The SSRIs (fluoxetine and fluvoxamine) inhibited markedly (approximately 95%) in serotonin transport in differentiated osteoclast cells. The major components of St. John's Wort, hyperforin and hypericine were significantly decreased in serotonin transport activity. Thus, a new in vitro model using RANKL-induced osteoclast-like cells may be useful to analyze the regulation of SERT by food factors and SSRIs.

  5. Complex osteoclastogenic inductive effects of nicotine over hydroxyapatite.

    PubMed

    Costa-Rodrigues, Joao; Rocha, Isabel; Fernandes, Maria H

    2018-02-01

    Cigarette smoke is associated to pathological weakening of bone tissue, being considered an important playmaker in conditions such as osteoporosis and periodontal bone loss. In addition, it is also associated with an increased risk of failure in bone regeneration strategies. The present work aimed to characterize the effects of nicotine on human osteoclastogenesis over a hydroxyapatite substrate. Osteoclast precursors were maintained in the absence or presence of the osteoclastogenesis enhancers M-CSF and RANKL, and were further treated with nicotine levels representative of the concentrations observed in the plasma and saliva of smokers. It was observed that nicotine at low concentrations elicit an increase in osteoclast differentiation, but only in the presence of M-CSF and RANKL it was also able to significantly increase the resorbing ability of osteoclasts. A slight downregulation of NFkB pathway and an increase in the production of TNF-α and, particularly PGE2, were involved in the observed effects of nicotine. At high concentrations, nicotine revealed cytotoxic effects, causing a decrease in cell density. In conclusion, nicotine at levels found in the plasma of the smokers, has the ability to act directly on osteoclast precursors, inducing its osteoclastogenic differentiation. The stimulatory behavior appears to be dependent on the stage of osteoclastic differentiation of the precursor cells, which means, in the absence of M-CSF and RANKL, it only favors the initial stages of osteoclast differentiation, while in the presence of the growth factors, a significant increase in their resorbing ability is also achieved. © 2017 Wiley Periodicals, Inc.

  6. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    PubMed

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  7. Increases in intracellular pH facilitate endocytosis and decrease availability of voltage-gated proton channels in osteoclasts and microglia

    PubMed Central

    Sakai, Hiromu; Li, Guangshuai; Hino, Yoshiko; Moriura, Yoshie; Kawawaki, Junko; Sawada, Makoto; Kuno, Miyuki

    2013-01-01

    Voltage-gated proton channels (H+ channels) are highly proton-selective transmembrane pathways. Although the primary determinants for activation are the pH and voltage gradients across the membrane, the current amplitudes fluctuate often when these gradients are constant. The aim of this study was to investigate the role of the intracellular pH (pHi) in regulating the availability of H+ channels in osteoclasts and microglia. In whole-cell clamp recordings, the pHi was elevated after exposure to NH4Cl and returned to the control level after washout. However, the H+ channel conductance did not recover fully when the exposure was prolonged (>5 min). Similar results were observed in osteoclasts and microglia, but not in COS7 cells expressing a murine H+ channel gene (mVSOP). As other electrophysiological properties, like the gating kinetics and voltage dependence for activation, were unchanged, the decreases in the H+ channel conductance were probably due to the decreases in H+ channels available at the plasma membrane. The decreases in the H+ channel conductances were accompanied by reductions in the cell capacitance. Exposure to NH4Cl increased the uptake of the endocytosis marker FM1-43, substantiating the idea that pHi increases facilitated endocytosis. In osteoclasts, whose plasma membrane expresses V-ATPases and H+ channels, pHi increases by these H+-transferring molecules in part facilitated endocytosis. The endocytosis and decreases in the H+ channel conductance were reduced by dynasore, a dynamin blocker. These results suggest that pHi increases in osteoclasts and microglia decrease the numbers of H+ channels available at the plasma membrane through facilitation of dynamin-dependent endocytosis. PMID:24081153

  8. Effects of cobalt and chromium ions at clinically equivalent concentrations after metal-on-metal hip replacement on human osteoblasts and osteoclasts: implications for skeletal health.

    PubMed

    Andrews, Rebecca E; Shah, Karan M; Wilkinson, J Mark; Gartland, Alison

    2011-10-01

    Metal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed. Monocytes were isolated from human peripheral blood and settled onto dentine disks then cultured with M-CSF and RANKL plus either Co(2+), Cr(3+) or Cr(6+) ions for 21 days from day 0 or between days 14 and 21. Cells were fixed and stained for TRAP and osteoclast number and amount of resorption per dentine disk determined. Co(2+) and Cr(3+) did not affect osteoblast survival or function over the clinically equivalent concentration range, whilst Cr(6+) reduced osteoblast survival and function at concentrations within the clinically equivalent serum range after MOMHR (IC(50) =2.2 μM). In contrast, osteoclasts were more sensitive to metal ions exposure. At serum levels a mild stimulatory effect on resorption in forming osteoclasts was found for Co(2+) and Cr(3+), whilst at higher serum and synovial equivalent concentrations, and with Cr(6+), a reduction in cell number and resorption was observed. Co(2+) and Cr(6+) within the clinical range reduced cell number and resorption in mature osteoclasts. Our data suggest that metal ions at equivalent concentrations to those found in MOMHR affect bone cell health and may contribute to the observed bone-related complications of these

  9. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    PubMed

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  10. Emodin suppresses cadmium-induced osteoporosis by inhibiting osteoclast formation.

    PubMed

    Chen, Xiao; Ren, Shuai; Zhu, Guoying; Wang, Zhongqiu; Wen, Xiaolin

    2017-09-01

    Environmental level of cadmium (Cd) exposure can induce bone loss. Emodin, a naturally compound found in Asian herbal medicines, could influence osteoblast/osteoclast differentiation. However, the effects of emodin on Cd-induced bone damage are not clarified. The aim of this study was to investigate the role of emodin on Cd-induced osteoporosis. Sprague-Dawley male rats were divided into three groups which were given 0mg/L, 50mg Cd/L and 50mg Cd/L plus emodin (50mg/kg body weight). Bone histological investigation, microCT analysis, metabolic biomarker determination and immunohistochemical staining were performed at the 12th week. The bone mass and bone microstructure index of rats treated with Cd were obviously lower than in control. Cd markedly enhanced the osteoclast formation compared with control. Emodin significantly abolished the Cd-induced bone microstructure damage (p<0.05), osteoclast formation and increase of tartrate-resistant acid phosphatase 5b level (p<0.05). Our data further showed that emodin attenuated the Cd-induced inhibition of osteoprotegerin expression and stimulation of receptor activator for nuclear factor-κ B ligand expression. Our data show that emodin suppresses the Cd-induced osteoporosis by inhibiting osteoclast formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    PubMed

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  12. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE PAGES

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin; ...

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  13. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Joseph G.; Kulp, Daniel W.; Havenar-Daughton, Colin

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. We employed deep mutational scanning and multi-target optimization to develop a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen asmore » a candidate human vaccine prime. Lastly, these methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.« less

  14. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen.

    PubMed

    Jardine, Joseph G; Kulp, Daniel W; Havenar-Daughton, Colin; Sarkar, Anita; Briney, Bryan; Sok, Devin; Sesterhenn, Fabian; Ereño-Orbea, June; Kalyuzhniy, Oleksandr; Deresa, Isaiah; Hu, Xiaozhen; Spencer, Skye; Jones, Meaghan; Georgeson, Erik; Adachi, Yumiko; Kubitz, Michael; deCamp, Allan C; Julien, Jean-Philippe; Wilson, Ian A; Burton, Dennis R; Crotty, Shane; Schief, William R

    2016-03-25

    Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naïve B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naïve B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens. Copyright © 2016, American Association for the Advancement of Science.

  15. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    DOEpatents

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  16. Magnolol Inhibits RANKL-induced osteoclast differentiation of raw 264.7 macrophages through heme oxygenase-1-dependent inhibition of NFATc1 expression.

    PubMed

    Lu, Sheng-Hua; Chen, Tso-Hsiao; Chou, Tz-Chong

    2015-01-23

    Magnolol (1) isolated from Magnolia officinalis exhibits many beneficial effects such as anti-inflammatory and antioxidant activity. The aim of this study was to evaluate the effects of magnolol (1) on RANKL-induced osteoclast differentiation and investigate the underlying molecular mechanisms. Treatment with magnolol (1) significantly inhibited osteoclast differentiation of RAW 264.7 macrophages and bone-resorbing activity of osteoclasts in the RANKL-induced system. Moreover, RANKL-activated JNK/ERK/AP-1 and NF-κB signaling, ROS formation, and NFATc1 activation were attenuated by magnolol (1). A novel finding of this study is that magnolol (1) can increase heme oxygenase-1 (HO-1) expression and Nrf2 activation in RANKL-stimulated cells. Blocking HO-1 activity with tin protoporphyrin IX markedly reversed magnolol (1)-mediated inhibition of osteoclast differentiation, NFATc1 nuclear translocation, and MMP-9 activity, suggesting that HO-1 contributes to the attenuation of NFATc1-mediated osteoclastogenesis by magnolol (1). Therefore, the inhibitory effect of magnolol (1) on osteoclast differentiation is due to inhibition of MAPK/c-fos/AP-1 and NF-κB signaling as well as ROS production and up-regulation of HO-1 expression, which ultimately suppresses NFATc1 induction. These findings indicate that magnolol (1) may have potential to treat bone diseases associated with excessive osteoclastogenesis.

  17. NFATc1 regulation of the human β3 integrin promoter in osteoclast differentiation

    PubMed Central

    Crotti, Tania N.; Flannery, Merrilee; Walsh, Nicole C.; Fleming, Joseph D.; Goldring, Steven R.; McHugh, Kevin P.

    2006-01-01

    The transcription factor NFATc1 plays an essential role in transducing signals from RANKL in osteoclast differentiation. To date, however, the specific transcriptional targets of NFATc1 are unknown. Expression of the β3 integrin is required for normal osteoclast function. We therefore examined the role of NFATc1 in human β3 integrin expression in osteoclast differentiation. Analysis of the mouse and human β3 gene promoters revealed considerable sequence homology across a 1.3 kb region upstream of the transcription start site (TSS), with conserved NFAT binding elements present. The region −1242 to +29 (relative to the TSS) was cloned as a luciferase reporter construct (pB3-1.3) and a deletion construct removing to −997 (pB3-1) made. The deletion of 245 bp 5′ removed three conserved NFAT sites including a consensus NFAT:AP-1 site. The pB3-1.3 reporter construct was induced by treatment with RANKL in the range 2.5–40 ng/ml and dose-dependently induced by co-transfection with human NFATc1 in RAW264.7 cells. The pB3-1 deletion construct was minimally induced with RANKL treatment and unresponsive to co-transfected NFATc1. Direct NFAT binding to two of the consensus NFAT sites within this 245 bp 5′ region was demonstrated by EMSA and supershift with anti-NFAT antibodies. Mutation of two of the conserved NFAT sites in the −1242 to −997 fragment was required to prevent binding. The double NFAT mutant, in the context of the full-length promoter was unresponsive to RANKL treatment or co-transfected NFATc1. We generated cell-permeable TAT-dominant-negative (dn)NFATc1 fusion proteins to assess the effect of blockade of NFAT signaling. Transduction with dnNFAT inhibited RANKL induction of the human β3 integrin promoter. Involvement of the NFATc1-calcineurin pathway in regulating the human β3 integrin promoter was further confirmed using the calcineurin pathway inhibitory peptide 11R-VIVIT. Together these results establish the β3 gene as a direct target of

  18. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    PubMed Central

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  19. Dendrobium moniliforme Exerts Inhibitory Effects on Both Receptor Activator of Nuclear Factor Kappa-B Ligand-Mediated Osteoclast Differentiation in Vitro and Lipopolysaccharide-Induced Bone Erosion in Vivo.

    PubMed

    Baek, Jong Min; Kim, Ju-Young; Ahn, Sung-Jun; Cheon, Yoon-Hee; Yang, Miyoung; Oh, Jaemin; Choi, Min Kyu

    2016-03-01

    Dendrobium moniliforme (DM) is a well-known plant-derived extract that is widely used in Oriental medicine. DM and its chemical constituents have been reported to have a variety of pharmacological effects, including anti-oxidative, anti-inflammatory, and anti-tumor activities; however, no reports discuss the beneficial effects of DM on bone diseases such as osteoporosis. Thus, we investigated the relationship between DM and osteoclasts, cells that function in bone resorption. We found that DM significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)-induced tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation; DM directly induced the down-regulation of c-Fos and nuclear factor of activated T cells c1 (NFATc1) without affecting other RANKL-dependent transduction pathways. In the later stages of osteoclast maturation, DM negatively regulated the organization of filamentous actin (F-actin), resulting in impaired bone-resorbing activity by the mature osteoclasts. In addition, micro-computed tomography (μ-CT) analysis of the murine model revealed that DM had a beneficial effect on lipopolysaccharide (LPS)-mediated bone erosion. Histological analysis showed that DM attenuated the degradation of trabecular bone matrix and formation of TRAP-positive osteoclasts in bone tissues. These results suggest that DM is a potential candidate for the treatment of metabolic bone disorders such as osteoporosis.

  20. Mitochondrial Complex I Activity Suppresses Inflammation and Enhances Bone Resorption by Tipping the Balance of Macrophage-Osteoclast Polarization

    PubMed Central

    Jin, Zixue; Wei, Wei; Yang, Marie; Du, Yang; Wan, Yihong

    2014-01-01

    SUMMARY Mitochondrial complex I (CI) deficiency is associated with multiple neurological and metabolic disorders. However, its effect on innate immunity and bone remodeling is unclear. Using deletion of the essential CI subunit Ndufs4 as a model for mitochondrial dysfunction, we report that mitochondria suppress macrophage activation and inflammation while promoting osteoclast differentiation and bone resorption via both cell-autonomous and systemic regulation. Global Ndufs4 deletion causes systemic inflammation and osteopetrosis. Hematopoietic Ndufs4 deletion causes an intrinsic lineage shift from osteoclast to macrophage. Liver Ndufs4 deletion causes a metabolic shift from fatty acid oxidation to glycolysis, accumulating fatty acids and lactate (FA/LAC) in circulation. FA/LAC further activates Ndufs4−/− macrophages via ROS induction, and diminishes osteoclast lineage commitment in Ndufs4−/− progenitors; both inflammation and osteopetrosis in Ndufs4−/− mice are attenuated by TLR4/2 deletion. Together, these findings reveal mitochondrial CI as a critical rheostat of innate immunity and skeletal homeostasis. PMID:25130399

  1. Bioreactor Expansion of Skin-Derived Precursor Schwann Cells.

    PubMed

    Walsh, Tylor; Biernaskie, Jeff; Midha, Rajiv; Kallos, Michael S

    2016-01-01

    Scaling up the production of cells in a culture process is a critical step when trying to develop cell-based regenerative therapies. Static cultures often cannot be easily scaled up to clinically relevant cell numbers. Alternatively, bioreactors offer a highly valuable means to develop a clinical-ready process. To culture adherent cells in suspension, such as skin-derived precursor Schwann cells (SKP-SCs), microcarriers need to be used. Microcarriers are small spherical beads suspended within the vessel that allow for higher growth surface area to volume ratio. Here we describe the procedure of combining microcarriers with the controllability of bioreactors to generate higher cell densities in smaller reactor volumes leading to a more efficient and cost-effective cell production for applications in regenerative medicine.

  2. Formation and specification of a Drosophila dopaminergic precursor cell.

    PubMed

    Watson, Joseph D; Crews, Stephen T

    2012-09-01

    Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb(+)/gsb-n(+) MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons.

  3. Formation and specification of a Drosophila dopaminergic precursor cell

    PubMed Central

    Watson, Joseph D.; Crews, Stephen T.

    2012-01-01

    Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb+/gsb-n+ MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons. PMID:22874915

  4. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner

    PubMed Central

    Cong, Qian; Jia, Hao; Li, Ping; Qiu, Shoutao; Yeh, James; Wang, Yibin; Zhang, Zhen-Lin; Ao, Junping; Li, Baojie; Liu, Huijuan

    2017-01-01

    Bone mass is determined by the balance between bone formation, carried out by mesenchymal stem cell-derived osteoblasts, and bone resorption, carried out by monocyte-derived osteoclasts. Here we investigated the potential roles of p38 MAPKs, which are activated by growth factors and cytokines including RANKL and BMPs, in osteoclastogenesis and bone resorption by ablating p38α MAPK in LysM+monocytes. p38α deficiency promoted monocyte proliferation but regulated monocyte osteoclastic differentiation in a cell-density dependent manner, with proliferating p38α−/− cultures showing increased differentiation. While young mutant mice showed minor increase in bone mass, 6-month-old mutant mice developed osteoporosis, associated with an increase in osteoclastogenesis and bone resorption and an increase in the pool of monocytes. Moreover, monocyte-specific p38α ablation resulted in a decrease in bone formation and the number of bone marrow mesenchymal stem/stromal cells, likely due to decreased expression of PDGF-AA and BMP2. The expression of PDGF-AA and BMP2 was positively regulated by the p38 MAPK-Creb axis in osteoclasts, with the promoters of PDGF-AA and BMP2 having Creb binding sites. These findings uncovered the molecular mechanisms by which p38α MAPK regulates osteoclastogenesis and coordinates osteoclastogenesis and osteoblastogenesis. PMID:28382965

  5. Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell–cell recognition and fusion

    PubMed Central

    Weichert, Martin; Lichius, Alexander; Priegnitz, Bert-Ewald; Brandt, Ulrike; Gottschalk, Johannes; Nawrath, Thorben; Groenhagen, Ulrike; Read, Nick D.; Schulz, Stefan; Fleißner, André

    2016-01-01

    Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell–cell communication and fusion in the fungus Neurospora crassa. Genetically identical germinating spores of this fungus undergo cell–cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell–cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion. PMID:27708165

  6. The cell biology and role of resorptive cells in diseases: A review.

    PubMed

    Babaji, Prashant; Devanna, Raghu; Jagtap, Kiran; Chaurasia, Vishwajit Rampratap; Jerry, Jeethu John; Choudhury, Basanta Kumar; Duhan, Dinesh

    2017-01-01

    Resorptive cells are responsible for the resorption of mineralized matrix of hard tissues. Bone-resorbing cells are called osteoclasts; however, they can resorb mineralized dental tissues or calcified cartilage and then they are called odontoclasts and chondroclasts, respectively. Resorptive cells form when mononuclear precursors derived from a monocyte-macrophage cell lineage are attracted to certain mineralized surfaces and subsequently fuse and adhere onto them for exerting their resorbing activity. These cells are responsible for degradation of calcified extracellular matrix composed of organic molecules and hydroxyapatite. The activity of these cells can be observed in both physiological and pathological processes throughout life and their activity is mainly required in bone turnover and growth, spontaneous and induced (orthodontic) tooth movement, tooth eruption, and bone fracture healing, as well as in pathological conditions such as osteoporosis, osteoarthritis, and bone metastasis. In addition, they are responsible for daily control of calcium homeostasis. Clastic cells also resorb the primary teeth for shedding before the permanent teeth erupt into the oral cavity.

  7. Total saponin from Anemone flaccida Fr. Schmidt abrogates osteoclast differentiation and bone resorption via the inhibition of RANKL-induced NF-κB, JNK and p38 MAPKs activation.

    PubMed

    Kong, Xiangying; Wu, Wenbin; Yang, Yue; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Zhao, Hongyan; Su, Xiaohui; Jia, Shiwei; Ju, Dahong; Lin, Na

    2015-03-15

    Osteoclasts, bone-specialized multinucleated cells, are responsible for bone destructive diseases such as rheumatoid arthritis and osteoporosis. Natural plant-derived products have received substantial attention given their potential therapeutic and preventive activities against bone destructive diseases. In the present study, we investigated the effects of total saponin (TS) from Anemone flaccida Fr. Schmidt, on receptor activator of nuclear factor-κB ligand (RANKL)-induced in vitro osteoclast differentiation. We observed that TS concentration-dependently inhibited RANKL-induced osteoclast formation from RAW 264.7 cell and bone marrow-derived macrophages (BMMs), as well as decreased extent of actin ring formation and lacunar resorption. The RANKL-stimulated expression of osteoclast-related transcription factors were also diminished by TS. Moreover, TS blocked the RANKL-triggered TRAF6 expression, phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and inhibited NF-κB p65 DNA binding activity. Furthermore, TS almost abrogated the nuclear factor of activated T cells (NFATc1) and c-Fos expression. Taken together, our results demonstrated that TS suppresses RANKL-induced osteoclast differentiation and inflammatory bone loss via the down-regulation of TRAF6 level, suppression of JNK and p38 MAPKs and NF-κB activation, and subsequent decreased expression of c-Fos and NFATc1. Therefore, TS may be a potential agent and needs to be more evaluated in vivo or in clinical trials to become a therapeutic for lytic bone diseases.

  8. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    PubMed Central

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  9. Dynamin and PTP-PEST cooperatively regulate Pyk2 dephosphorylation in osteoclasts

    PubMed Central

    Eleniste, Pierre P.; Du, Liping; Shivanna, Mahesh; Bruzzaniti, Angela

    2012-01-01

    Bone loss is caused by the dysregulated activity of osteoclasts which degrade the extracellular bone matrix. The tyrosine kinase Pyk2 is highly expressed in osteoclasts, and mice lacking Pyk2 exhibit an increase in bone mass, in part due to impairment of osteoclast function. Pyk2 is activated by phosphorylation at Y402 following integrin activation, but the mechanisms leading to Pyk2 dephosphorylation are poorly understood. In the current study, we examined the mechanism of action of the dynamin GTPase on Pyk2 dephosphorylation. Our studies reveal a novel mechanism for the interaction of Pyk2 with dynamin, which involves the binding of Pyk2’s FERM domain with dynamin’s plextrin homology domain. In addition, we demonstrate that the dephosphorylation of Pyk2 requires dynamin’s GTPase activity and is mediated by the tyrosine phosphatase PTP-PEST. The dephosphorylation of Pyk2 by dynamin and PTP-PEST may be critical for terminating outside-in integrin signaling, and for stabilizing cytoskeletal reorganization during osteoclast bone resorption. PMID:22342188

  10. Blockade of CD26 signaling inhibits human osteoclast development.

    PubMed

    Nishida, Hiroko; Suzuki, Hiroshi; Madokoro, Hiroko; Hayashi, Mutsumi; Morimoto, Chikao; Sakamoto, Michiie; Yamada, Taketo

    2014-11-01

    Bone remodeling is maintained by the delicate balance between osteoblasts (OBs) and osteoclasts (OCs). However, the role of CD26 in regulating bone remodeling has not yet been characterized. We herein show that CD26 is preferentially expressed on normal human OCs and is intensely expressed on activated human OCs in osteolytic bone alterations. Macrophage-colony stimulating factor (M-CSF) and soluble receptor activator of NF-κB ligand (sRANKL) induced human OC differentiation, in association with CD26 expression on monocyte-macrophage lineage cells. CD26 expression was accompanied by increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which is crucial for early human OC differentiation. The humanized anti-CD26 monoclonal antibody, huCD26mAb, impaired the formation and function of tartrate-resistant acid phosphatase (TRAP)/CD26 positive multi-nucleated (nuclei > 3) OCs with maturation in the manner of dose-dependency. It was revealed that huCD26mAb inhibits early OC differentiation via the inactivation of MKK3/6, p38 MAPK and subsequent dephosphorylation of microphthalmia-associated transcription factor (mi/Mitf). These inhibitions occur immediately after RANKL binds to RANK on the human OC precursor cells and were demonstrated using the OC functional assays. huCD26mAb subsequently impaired OC maturation and bone resorption by suppressing the expression of TRAP and OC fusion proteins. In addition, p38 MAPK inhibitor also strongly inhibited OC formation and function. Our results suggest that the blockade of CD26 signaling impairs the development of human functional OCs by inhibiting p38 MAPK-mi/Mitf phosphorylation pathway and that targeting human OCs with huCD26mAb may have therapeutic potential for the treatment of osteolytic lesions following metastasis to alleviate bone destruction and reduce total skeletal-related events (SREs). © 2014 American Society for Bone and Mineral Research.

  11. Connexin 43 expression of foreign body giant cells after implantation of nanoparticulate hydroxyapatite.

    PubMed

    Herde, Katja; Hartmann, Sonja; Brehm, Ralph; Kilian, Olaf; Heiss, Christian; Hild, Anne; Alt, Volker; Bergmann, Martin; Schnettler, Reinhard; Wenisch, Sabine

    2007-11-01

    In bone a role of connexin 43 has been implicated with the fusion of mononuclear precursors of the monocyte/macrophage lineage into multinucleated cells. In order to investigate the putative role of connexin 43 in formation of bone osteoclast-like foreign body giant cells which are formed in response to implantation of biomaterials, nanoparticulate hydroxyapatite had been implanted into defects of minipig femura. After 20 days the defect areas were harvested and connexin 43 expression and synthesis were investigated by using immunohistochemistry, Western Blot, and in situ hybridization within macrophages and osteoclast-like foreign body giant cells. Morphological analysis of gap junctions is performed ultrastructurally. As shown on protein and mRNA level numerous connexin 43 positive macrophages and foreign body giant cells (FBGC) were localized within the granulation tissue and along the surfaces of the implanted hydroxyapatite (HA). Besides, the formation of FBGC by fusion of macrophages could be shown ultrastructurally. Connexin 43 labeling observed on the protein and mRNA level could be attributed to gap junctions identified ultrastructurally between macrophages, between FBGC, and between FBGC and macrophages. Annular gap junctions in the cytoplasm of FBGC pointed to degradation of the channels, and the ubiquination that had occurred in the course of degradation was confirmed by Western blot analysis. All in all, the presently observed pattern of connexin 43 labeling refers to an functional role of gap junctional communication in the formation of osteoclast-like foreign body giant cells formed in response to implantation of the nanoparticulate HA.

  12. Notch signaling drives multiple myeloma induced osteoclastogenesis

    PubMed Central

    Colombo, Michela; Thümmler, Katja; Mirandola, Leonardo; Garavelli, Silvia; Todoerti, Katia; Apicella, Luana; Lazzari, Elisa; Lancellotti, Marialuigia; Platonova, Natalia; Akbar, Moeed; Chiriva-Internati, Maurizio; Soutar, Richard; Neri, Antonino; Goodyear, Carl S.; Chiaramonte, Raffaella

    2014-01-01

    Multiple myeloma (MM) is closely associated with bone destruction. Once migrated to the bone marrow, MM cells unbalance bone formation and resorption via the recruitment and maturation of osteoclast precursors. The Notch pathway plays a key role in different types of cancer and drives several biological processes relevant in MM, including cell localization within the bone marrow, proliferation, survival and pharmacological resistance. Here we present evidences that MM can efficiently drive osteoclastogenesis by contemporaneously activating Notch signaling on tumor cells and osteoclasts through the aberrant expression of Notch ligands belonging to the Jagged family. Active Notch signaling in MM cells induces the secretion of the key osteoclastogenic factor, RANKL, which can be boosted in the presence of stromal cells. In turn, MM cells-derived RANKL causes the upregulation of its receptor, RANK, and Notch2 in pre-osteoclasts. Notch2 stimulates osteoclast differentiation by promoting autocrine RANKL signaling. Finally, MM cells through Jagged ligands expression can also activate Notch signaling in pre-osteoclast by direct contact. Such synergism between tumor cells and pre-osteoclasts in MM-induced osteoclastogenesis can be disrupted by silencing tumor-derived Jagged1 and 2. These results make the Jagged ligands new promising therapeutic targets in MM to contrast bone disease and the associated co-morbidities. PMID:25257302

  13. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  14. A monoclonal antibody that recognizes B cells and B cell precursors in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffman, R.L.; Weissman, I.L.

    1981-02-01

    The monoclonal antibody, RA3-2C2, appears to be specific for cells within the B cell lineage. This antibody does not recognize thymocytes, peripheral T cells, or nonlymphoid hematopoietic cells in the spleen or bone marrow. Nor does it recognize the pluripotent hematopoietic stem cells, the spleen colony-forming unit, All sIg+ B cells and most plasma cells are RA3-2C2+. In addition, approximately 20% of nucleated bone marrow cells are RA3-2C2+ but sIg-. This population contains B cell precursors that can give rise to sIg+ cells within 2 d in vitro.

  15. HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells.

    PubMed

    Lewis, D E; Yang, L; Luo, W; Wang, X; Rodgers, J R

    1999-06-18

    To determine whether the CD28-CD8+ T cells that develop during HIV infection contain HIV-specific cytotoxic precursor cells. CD8 subpopulations from six asymptomatic HIV-positive adults, with varying degrees of CD4 T cell loss, were sorted by flow cytometry and HIV-specific precursor cytotoxic T lymphocyte frequencies were measured. Three populations of CD8 T cells were tested: CD28+CD5-- T cells, CD28-CD57+ T cells (thought to be memory cells) and CD28-CD57- T cells (function unknown). Sorted CD8 subsets were stimulated with antigen presenting cells expressing HIV-1 Gag/Pol molecules. Cytotoxic T cell assays on Gag/Pol expressing 51Cr-labeled Epstein-Barr virus transformed autologous B cells lines or control targets were performed after 2 weeks. Specific lysis and precursor frequencies were calculated. Both CD28 positive and CD28-CD57+ populations contained appreciable numbers of precursors (9-1720 per 10(6) CD8+ T cells). However, the CD28-CD57- population had fewer precursors in five out of six people studied. More CD28 positive HIV-specific cytotoxic T lymphocyte precursors were found in patients with CD4:CD8 ratios > 1, whereas more CD28-CD57+ precursors were found in patients whose CD4:CD8 ratios were < 1 (r2, 0.68). Memory HIV-specific precursor cytotoxic T lymphocytes are found in both CD28 positive and CD28-CD8+ cells, however, a CD28-CD57- subpopulation had fewer. Because CD28-CD57+ cells are antigen-driven with limited diversity, the loss of CD28 on CD8 T cells during disease progression may reduce the response to new HIV mutations; this requires further testing.

  16. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yi; Zhang, Qing; Shen, Yi

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts hasmore » been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.« less

  17. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization.

    PubMed

    Yovich, S; Seydel, U; Papadimitriou, J M; Nicholson, G C; Wood, D J; Zheng, M H

    1998-04-01

    Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture --resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization.

  18. Accentuated Osteoclastic Response to Parathyroid Hormone Undermines Bone Mass Acquisition in Osteonectin-null Mice

    PubMed Central

    do Reis, Luciene Machado; Kessler, Catherine B.; Adams, Douglas J.; Lorenzo, Joseph; Jorgetti, Vanda; Delany, Anne M.

    2008-01-01

    Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone. In the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 μg/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin

  19. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts.

    PubMed

    Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O'Brien, Charles A; Almeida, Maria; Manolagas, Stavros C

    2015-07-01

    In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (AR(f/y);Prx1-Cre or ERα(f/f);Osx1-Cre) or myeloid cell lineage (AR(f/y);LysM-Cre or ERα(f/f);LysM-Cre) and their descendants. Male AR(f/y);Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, AR(f/y);LysM-Cre, ERα(f/f);Osx1-Cre, or ERα(f/f);LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the AR(f/y);Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts-not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on

  20. The Effects of Androgens on Murine Cortical Bone Do Not Require AR or ERα Signaling in Osteoblasts and Osteoclasts

    PubMed Central

    Ucer, Serra; Iyer, Srividhya; Bartell, Shoshana M; Martin-Millan, Marta; Han, Li; Kim, Ha-Neui; Weinstein, Robert S; Jilka, Robert L; O’Brien, Charles A; Almeida, Maria; Manolagas, Stavros C

    2016-01-01

    In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1-Cre or ERαf/f;Osx1-Cre) or myeloid cell lineage (ARf/y; LysM-Cre or ERαf/f;LysM-Cre) and their descendants. Male ARf/y;Prx1-Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM-Cre, ERαf/f; Osx1-Cre, or ERαf/f;LysM-Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1-Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell

  1. Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture.

    PubMed

    Wu, Lili; Feyerabend, Frank; Schilling, Arndt F; Willumeit-Römer, Regine; Luthringer, Bérengère J C

    2015-11-01

    Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. An attractive human osteoblasts and osteoclasts cocultivation regime was

  2. Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell–cell fusion

    PubMed Central

    Oyama, Masaaki; Kozuka-Hata, Hiroko; Uehara, Shunsuke; Udagawa, Nobuyuki; Saya, Hideyuki; Matsuo, Koichi

    2012-01-01

    Osteoclasts fuse to form multinucleated cells during osteoclastogenesis. This process is mediated by dynamic rearrangement of the plasma membrane and cytoskeleton, and it requires numerous factors, many of which have been identified. The underlying mechanism remains obscure, however. In this paper, we show that Tks5, a master regulator of invadopodia in cancer cells, is crucial for osteoclast fusion downstream of phosphoinositide 3-kinase and Src. Expression of Tks5 was induced during osteoclastogenesis, and prevention of this induction impaired both the formation of circumferential podosomes and osteoclast fusion without affecting cell differentiation. Tyrosine phosphorylation of Tks5 was attenuated in Src−/− osteoclasts, likely accounting for defects in podosome organization and multinucleation in these cells. Circumferential invadopodia formation in B16F0 melanoma cells was also accompanied by Tks5 phosphorylation. Co-culture of B16F0 cells with osteoclasts in an inflammatory milieu promoted the formation of melanoma–osteoclast hybrid cells. Our results thus reveal an unexpected link between circumferential podosome/invadopodium formation and cell–cell fusion in and beyond osteoclasts. PMID:22584907

  3. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  4. Scoparone attenuates RANKL-induced osteoclastic differentiation through controlling reactive oxygen species production and scavenging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Hyun; Jang, Hae-Dong, E-mail: haedong@hnu.kr

    Scoparone, one of the bioactive components of Artemisia capillaris Thunb, has various biological properties including immunosuppressive, hepatoprotective, anti-allergic, anti-inflammatory, and antioxidant effects. This study aims at evaluating the anti-osteoporotic effect of scoparone and its underlying mechanism in vitro. Scoparone demonstrated potent cellular antioxidant capacity. It was also found that scoparone inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation and suppressed cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression via c-jun N-terminal kinase (JNK)/extracellular signal-regulated kinase (ERK)/p38-mediated c-Fos–nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway. During osteoclast differentiation, the production of general reactive oxygen speciesmore » (ROS) and superoxide anions was dose-dependently attenuated by scoparone. In addition, scoparone diminished NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1 (Nox1) expression and activation via the tumor necrosis factor receptor-associated factor 6 (TRAF6)–cSrc–phosphatidylinositol 3-kinase (PI3k) signaling pathway and prevented the disruption of mitochondrial electron transport chain system. Furthermore, scoparone augmented the expression of superoxide dismutase 1 (SOD1) and catalase (CAT). The overall results indicate that the inhibitory effect of scoparone on RANKL-induced osteoclast differentiation is attributed to the suppressive effect on ROS and superoxide anion production by inhibiting Nox1 expression and activation and protecting the mitochondrial electron transport chain system and the scavenging effect of ROS resulting from elevated SOD1 and CAT expression. - Highlights: • Scoparone dose-dependently inhibited RANKL-induced osteoclast differentiation. • Scoparone diminished general ROS and superoxide anions in a dose-dependent manner. • Scoparone inhibited Nox1

  5. Effects of alkaloids from Sophora flavescens on osteoblasts infected with Staphylococcus aureus and osteoclasts.

    PubMed

    Wang, Xuping; Zheng, Rongzong; Huang, Xiaowen; Mao, Zhujun; Wang, Nani; Li, Hongyu; Wen, Chengping; Shou, Dan

    2018-03-25

    Chronic osteomyelitis is primarily caused by infection with Staphylococcus aureus (S. aureus). Antibiotics are commonly administered; however, it is a challenge to promote bone healing. The aim of this study was to investigate the in vitro effects of alkaloids from the herbal remedy Sophora flavescens (ASF) on rat calvarial osteoblasts (ROBs) infected with S. aureus and healthy osteoclasts. Cell proliferation and alkaline phosphatase, interleukin-6, and tumour necrosis factor-α activity was measured in infected ROBs; tartrate-resistant acid phosphatase was evaluated in osteoclasts via enzyme-linked immunosorbent assay. The mRNA and protein expression levels of bone morphogenetic protein 2, runt-related transcription factor 2, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand were assessed in infected ROBs through reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Results indicated that ASF increased the viability of uninfected ROBs and infected ROBs treated with vancomycin via regulation of bone morphogenetic protein 2, runt-related transcription factor, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand mRNA and protein expression levels. In addition, the secretion of the inflammatory factor tumour necrosis factor-α was decreased and alkaline phosphatase activity was increased, inhibiting the viability of osteoclasts and tartrate-resistant acid phosphatase activity. Therefore, the herbal remedy ASF has potential as a new treatment for chronic osteomyelitis. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Neutrophil-derived MRP-14 is up-regulated in infectious osteomyelitis and stimulates osteoclast generation.

    PubMed

    Dapunt, Ulrike; Giese, Thomas; Maurer, Susanne; Stegmaier, Sabine; Prior, Birgit; Hänsch, G Maria; Gaida, Matthias M

    2015-10-01

    Bone infections of patients with joint replacement by endoprosthesis (so called "periprosthetic joint infection") pose a severe problem in the field of orthopedic surgery. The diagnosis is often difficult, and treatment is, in most cases, complicated and prolonged. Patients often require an implant exchange surgery, as the persistent infection and the accompanying inflammation lead to tissue damage with bone degradation and consequently, to a loosening of the implant. To gain insight into the local inflammatory process, expression of the proinflammatory cytokine MRP-14, a major content of neutrophils, and its link to subsequent bone degradation was evaluated. We found MRP-14 prominently expressed in the affected tissue of patients with implant-associated infection, in close association with the chemokine CXCL8 and a dense infiltrate of neutrophils and macrophages. In addition, the number of MRP-14-positive cells correlated with the presence of bone-resorbing osteoclasts. MRP-14 plasma concentrations were significantly higher in patients with implant-associated infection compared with patients with sterile inflammation or healthy individuals, advocating MRP-14 as a novel diagnostic marker. A further biologic activity of MRP-14 was detected: rMRP-14 directly induced the differentiation of monocytes to osteoclasts, thus linking the inflammatory response in implant infections with osteoclast generation, bone degradation, and implant loosening. © Society for Leukocyte Biology.

  7. Effect of cooling rate on human and murine hemopoietic precursor cell recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niskanen, E.; Pirsch, G.

    1983-08-01

    The effect of cooling rate on recovery of human and murine hemopoietic precursor cells was studied. In the presence of 10% Me2SO, a cooling rate of 7 degrees C/min from -4 to -30 degrees C was optimal for recovery of both human and murine precursor cells which give rise to colonies in diffusion chambers implanted in mice (CFU-DG). Cooling of human marrow at a rate between 3 and 7 degrees C/min resulted in the best CFU-C recovery, although no good correlation between the cooling rate and murine CFU-C recovery was demonstrated. These data suggest that recovery of the primitive hemopoieticmore » precursor cells can be improved by changing the standard cryopreservation programs used presently. However, improved recovery of CFU-DG does not necessarily translate into faster reconstitution of hemopoiesis. No significant difference was observed in overall recovery of bone marrow cellularity in lethally irradiated mice following injection of untreated marrow and marrow cooled at a rate of 1 and 7 degrees C/min.« less

  8. Prolactin Stimulates Precursor Cells in the Adult Mouse Hippocampus

    PubMed Central

    Walker, Tara L.; Vukovic, Jana; Koudijs, Margaretha M.; Blackmore, Daniel G.; Mackay, Eirinn W.; Sykes, Alex M.; Overall, Rupert W.; Hamlin, Adam S.; Bartlett, Perry F.

    2012-01-01

    In the search for ways to combat degenerative neurological disorders, neurogenesis-stimulating factors are proving to be a promising area of research. In this study, we show that the hormonal factor prolactin (PRL) can activate a pool of latent precursor cells in the adult mouse hippocampus. Using an in vitro neurosphere assay, we found that the addition of exogenous PRL to primary adult hippocampal cells resulted in an approximate 50% increase in neurosphere number. In addition, direct infusion of PRL into the adult dentate gyrus also resulted in a significant increase in neurosphere number. Together these data indicate that exogenous PRL can increase hippocampal precursor numbers both in vitro and in vivo. Conversely, PRL null mice showed a significant reduction (approximately 80%) in the number of hippocampal-derived neurospheres. Interestingly, no deficit in precursor proliferation was observed in vivo, indicating that in this situation other niche factors can compensate for a loss in PRL. The PRL loss resulted in learning and memory deficits in the PRL null mice, as indicated by significant deficits in the standard behavioral tests requiring input from the hippocampus. This behavioral deficit was rescued by direct infusion of recombinant PRL into the hippocampus, indicating that a lack of PRL in the adult mouse hippocampus can be correlated with impaired learning and memory. PMID:22973440

  9. Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling

    PubMed Central

    Chang, Linda; Noseda, Michela; Higginson, Michelle; Ly, Michelle; Patenaude, Alexandre; Fuller, Megan; Kyle, Alastair H.; Minchinton, Andrew I.; Puri, Mira C.; Dumont, Daniel J.; Karsan, Aly

    2012-01-01

    Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1+CD31dimvascular endothelial (VE)-cadherin−CD45− precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1+ precursor cell, but not the VE-cadherin+ endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1+ precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1+ local precursor to VSMC in a spatiotemporal fashion across all vascular beds. PMID:22509029

  10. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity

    PubMed Central

    Sun, Weijia; Zhao, Chenyang; Li, Yuheng; Wang, Liang; Nie, Guangjun; Peng, Jiang; Wang, Aiyuan; Zhang, Pengfei; Tian, Weiming; Li, Qi; Song, Jinping; Wang, Cheng; Xu, Xiaolong; Tian, Yanhua; Zhao, Dingsheng; Xu, Zi; Zhong, Guohui; Han, Bingxing; Ling, Shukuan; Chang, Yan-Zhong; Li, Yingxian

    2016-01-01

    MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function. In a coculture system, inhibition of exosome formation and secretion prevented miR-214 transportation. Exosomes specifically recognized osteoblasts through the interaction between ephrinA2 and EphA2. In osteoclast-specific miR-214 transgenic mice, exosomes were secreted into the serum, and miR-214 and ephrinA2 levels were elevated. Therefore, these exosomes have an inhibitory role in osteoblast activity. miR-214 and ephrinA2 levels in serum exosomes from osteoporotic patients and mice were upregulated substantially. These exosomes may significantly inhibit osteoblast activity. Inhibition of exosome secretion via Rab27a small interfering RNA prevented ovariectomized-induced osteoblast dysfunction in vivo. Taken together, these findings suggest that exosome-mediated transfer of microRNA plays an important role in the regulation of osteoblast activity. Circulating miR-214 in exosomes not only represents a biomarker for bone loss but could selectively regulate osteoblast function. PMID:27462462

  11. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*

    PubMed Central

    Quint, Patrick; Ruan, Ming; Pederson, Larry; Kassem, Moustapha; Westendorf, Jennifer J.; Khosla, Sundeep; Oursler, Merry Jo

    2013-01-01

    Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways. PMID:23300082

  12. [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel.

    PubMed

    Khan, Kainat; Singh, Akanksha; Mittal, Monika; Sharan, Kunal; Singh, Nidhi; Dixit, Preety; Sanyal, Sabyasachi; Maurya, Rakesh; Chattopadhyay, Naibedya

    2012-12-01

    [6]-Gingerol, a major constituent of ginger, is considered to have several health beneficial effects. The effect of 6-gingerol on bone cells and skeleton of mice was investigated. The effects of 6-gingerol on mouse bone marrow macrophages and osteoblasts were studied. 6-Gingerol-stimulated osteoclast differentiation of bone marrow macrophages but had no effect on osteoblasts. Capsazepine, an inhibitor of TRPV1 (transient receptor potential vanilloid 1) channel, attenuated the pro-osteoclastogenic effect of 6-gingerol or capsaicin (an agonist of TRPV1). Similar to capsaicin, 6-gingerol stimulated Ca(2) + influx in osteoclasts. The effect of daily feeding of 6-gingerol for 5 wk on the skeleton of adult female Balb/cByJ mice was investigated. Mice treated with capsaicin and ovariectomized (OVx) mice served as controls for osteopenia. 6-Gingerol caused increase in trabecular osteoclast number, microarchitectural erosion at all trabecular sites and loss of vertebral stiffness, and these effects were comparable to capsaicin or OVx group. Osteoclast-specific serum and gene markers of 6-gingerol-treated mice were higher than the OVx group. Bone formation was unaffected by 6-gingerol. Daily feeding of 6-gingerol to skeletally mature female mice caused trabecular osteopenia, and the mechanism appeared to be activation of osteoclast formation via the TRPV1 channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. TRAP-Positive Multinucleated Giant Cells Are Foreign Body Giant Cells Rather Than Osteoclasts: Results From a Split-Mouth Study in Humans.

    PubMed

    Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram

    2015-12-01

    This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.

  14. Activation of Src kinase by protein-tyrosine phosphatase-PEST in osteoclasts: comparative analysis of the effects of bisphosphonate and protein-tyrosine phosphatase inhibitor on Src activation in vitro.

    PubMed

    Chellaiah, Meenakshi A; Schaller, Michael D

    2009-08-01

    PTP-PEST is involved in the regulation of sealing ring formation in osteoclasts. In this article, we have shown a regulatory role for PTP-PEST on dephosphorylation of c-Src at Y527 and phosphorylation at Y418 in the catalytic site. Activation of Src in osteoclasts by over-expression of PTP-PEST resulted in the phosphorylation of cortactin at Y421 and WASP at Y294. Also enhanced as a result, is the interaction of Src, cortactin, and Arp2 with WASP. Moreover, the number of osteoclasts displaying sealing ring and bone resorbing activity was increased in response to PTP-PEST over-expression as compared with control osteoclasts. Cells expressing constitutively active-Src (527YDeltaF) simulate the effects mediated by PTP-PEST. Treatment of osteoclasts with a bisphosphonate alendronate or a potent PTP inhibitor PAO decreased the activity and phosphorylation of Src at Y418 due to reduced dephosphorylation state at Y527. Therefore, Src-mediated phosphorylation of cortactin and WASP as well as the formation of WASP.cortactin.Arp2 complex and sealing ring were reduced in these osteoclasts. Similar effects were observed in osteoclasts treated with an Src inhibitor PP2. We have shown that bisphosphonates could modulate the function of osteoclasts by inhibiting downstream signaling mediated by PTP-PEST/Src, in addition to its effect on the inhibition of the post-translational modification of small GTP-binding proteins such as Rab, Rho, and Rac as shown by others. The promising effects of the inhibitors PP2 and PAO on osteoclast function suggest a therapeutic approach for patients with bone metastases and osteoporosis as an alternative to bisphosphonates.

  15. Bioactivity of xerogels as modulators of osteoclastogenesis mediated by connexin 43.

    PubMed

    Glenske, Kristina; Wagner, Alena-Svenja; Hanke, Thomas; Cavalcanti-Adam, Elisabetta A; Heinemann, Sascha; Heinemann, Christiane; Kruppke, Benjamin; Arnhold, Stefan; Moritz, Andreas; Schwab, Elisabeth H; Worch, Hartmut; Wenisch, Sabine

    2014-02-01

    In order to investigate the effects of different degrees of bioactivity of xerogels on connexin 43 (cx43) signaling of osteoclasts a cell culture approach was developed. Cells isolated from peripheral blood mononuclear cells were cultured in combination with the xerogels and were harvested for further investigations on day 1, day 5, and day 10. By means of quantitative PCR increased cx43 mRNA levels and coincident decreasing mRNA levels of the calcium sensing receptor, TRAP, and Cathepsin K were detected with increasing bioactivity of the xerogel samples. Additionally, osteoclasts cultured on tissue culture plates were used to perform principle investigations on cell differentiation by means of transmission electron microscopy, life cell imaging, and immunofluorescence, and the results demonstrated that cx43-signaling could be attributed to migration and fusion of osteoclast precursors. Therefore, the positive correlation of cx43 expression with high xerogel bioactivity was caused by proceeding differentiation of the osteoclasts. Finally, the presently observed pattern of cx43 signaling refers to strong effects regarding bioactivity on cx43-associated cell differentiation of osteoclasts influenced by extracellular calcium ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hedgehog signalling stimulates precursor cell accumulation and impairs epithelial maturation in the murine oesophagus.

    PubMed

    van Dop, Willemijn A; Rosekrans, Sanne L; Uhmann, Anja; Jaks, Viljar; Offerhaus, G Johan A; van den Bergh Weerman, Marius A; Kasper, Maria; Heijmans, Jarom; Hardwick, James C H; Verspaget, Hein W; Hommes, Daan W; Toftgård, Rune; Hahn, Heidi; van den Brink, Gijs R

    2013-03-01

    In the intestine Hedgehog (Hh) signalling is directed from epithelium to mesenchyme and negatively regulates epithelial precursor cell fate. The role of Hh signalling in the oesophagus has not been studied in vivo. Here the authors examined the role of Hh signalling in epithelial homeostasis of oesophagus. The authors used transgenic mice in which the Hh receptor Patched1 (Ptch1) could be conditionally inactivated in a body-wide manner and mice in which Gli1 could be induced specifically in the epithelium of the skin and oesophagus. Effects on epithelial homeostasis of the oesophagus were examined using immunohistochemistry, in situ hybridisation, transmission electron microscopy and real-time PCR. Hh signalling was examined in patients with oesophageal squamous cell carcinoma (SCC) by quantitative real-time PCR. Sonic Hh is signalled in an autocrine manner in the basal layer of the oesophagus. Activation of Hh signalling resulted in an expansion of the epithelial precursor cell compartment and failure of epithelial maturation and migration. Levels of Hh targets GLI1, HHIP and PTCH1 were increased in SCC compared with normal tissue from the same patients. Here the authors find that Hh signalling positively regulates the precursor cell compartment in the oesophageal epithelium in an autocrine manner. Since Hh signalling targets precursor cells in the oesophageal epithelium and signalling is increased in SCCs, Hh signalling may be involved in oesophageal SCC formation.

  17. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis.

    PubMed

    Li, Xiaojie; Jie, Qiang; Zhang, Hongyang; Zhao, Yantao; Lin, Yangjing; Du, Junjie; Shi, Jun; Wang, Long; Guo, Kai; Li, Yong; Wang, Chunhui; Gao, Bo; Huang, Qiang; Liu, Jian; Yang, Liu; Luo, Zhuojing

    2016-11-01

    Postmenopausal osteoporosis is a worldwide health problem and is characterized by increased and activated osteoclasts. However, the mechanism by which osteoclasts are dysregulated in postmenopausal osteoporosis is not fully understood. In this study, we found that the Hedgehog-Gli pathway was upregulated in postmenopausal osteoporotic osteoclasts and that 17β-estradiol both inhibited osteoclastogenesis and induced osteoclast apoptosis by downregulating Hedgehog-Gli signaling. Furthermore, we demonstrated that the Hedgehog-Gli pathway was negatively regulated by MEK/ERK signaling and that this effect was Sonic Hedgehog (SHH)-dependent and was partially blocked by an anti-SHH antibody. Moreover, we found that the stimulatory effect of Hedgehog signaling on osteoclastogenesis and the inhibitory effect on osteoclast apoptosis were dependent on the Gli family of transcription factors. The pathways and molecules that contribute to the regulation of osteoclastogenesis and apoptosis represent potential new strategies for designing molecular drugs for the treatment of postmenopausal osteoporosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pure erythroid leukemia following precursor B-cell lymphoblastic leukemia.

    PubMed

    Xu, Min; Finn, Laura S; Tsuchiya, Karen D; Thomson, Blythe; Pollard, Jessica; Rutledge, Joe

    2012-01-01

    Therapy-related acute myeloid leukemia is an unfortunate sequel to current multimodal intensive chemotherapy. The patient described was diagnosed with pure erythroleukemia, AML-M6b, during therapy for precursor B-cell acute lymphoblastic leukemia. To the best of our knowledge, this is the first report of this unusual association.

  19. Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production.

    PubMed

    Oshita, Koichi; Yamaoka, Kunihiro; Udagawa, Nobuyuki; Fukuyo, Shunsuke; Sonomoto, Koshiro; Maeshima, Keisuke; Kurihara, Ryuji; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Chiba, Kenji; Tanaka, Yoshiya

    2011-06-01

    Mesenchymal stem cells (MSCs) have been proposed to be a useful tool for treatment of rheumatoid arthritis (RA), not only because of their multipotency but also because of their immunosuppressive effect on lymphocytes, dendritic cells, and other proinflammatory cells. Since bone destruction caused by activated osteoclasts occurs in RA, we undertook the present study to investigate the effect of MSCs on osteoclast function and differentiation in order to evaluate their potential use in RA therapy. Human MSCs and peripheral blood mononuclear cells were cultured under cell-cell contact-free conditions with osteoclast induction medium. Differentiation into osteoclast-like cells was determined by tartrate-resistant acid phosphatase staining and expression of osteoclast differentiation markers. The number of osteoclast-like cells was decreased and expression of cathepsin K and nuclear factor of activated T cells c1 (NF-ATc1) was down-regulated by the addition of either MSCs or a conditioned medium obtained from MSCs. Osteoprotegerin (OPG) was constitutively produced by MSCs and inhibited osteoclastogenesis. However, osteoclast differentiation was not fully recovered upon treatment with either anti-OPG antibody or OPG small interfering RNA, suggesting that OPG had only a partial role in the inhibitory effect of MSCs. Moreover, bone-resorbing activity of osteoclast-like cells was partially recovered by addition of anti-OPG antibody into the conditioned medium. The present results indicate that human MSCs constitutively produce OPG, resulting in inhibition of osteoclastogenesis and expression of NF-ATc1 and cathepsin K in the absence of cell-cell contact. Therefore, we conclude that human MSCs exert a suppressive effect on osteoclastogenesis, which may be beneficial in inhibition of joint damage in RA. Copyright © 2011 by the American College of Rheumatology.

  20. IGFBP-7 inhibits the differentiation of oligodendrocyte precursor cells via regulation of Wnt/β-Catenin signaling.

    PubMed

    Li, Nan; Han, Jinfeng; Tang, Jing; Ying, Yanqin

    2018-06-01

    Oligodendrocytes (OLs) are glial cells that form myelin sheaths in the central nervous system. Myelin sheath plays important role in nervous system and loss of it in neurodegenerative diseases can lead to impairment of movement. Understanding the signals and factors that regulate OL differentiation can help to address novel strategies for improving myelin repair in neurodegenerative diseases. The aim of this study was to investigate the role of insulin-like growth factor-binding proteins 7 (IGFBP-7) in differentiating OL precursor cells (OPCs). It was found that oligodendrocyte precursors undergoing differentiation were accompanied by selective expression of IGFBP-7. In addition, knockdown of IGFBP-7 promoted differentiation of oligodendrocytes and increased formation of myelin in cultured cells. In contrast, excessive expression of IGFBP-7 inhibited differentiation of oligodendrocytes. Furthermore, overexpression of IGFBP-7 in oligodendrocyte precursor cells increased transcription of Wnt target genes and promoted β-Catenin nuclear translocation. These findings suggest that IGFBP-7 negatively regulates differentiation of oligodendrocyte precursor cells via regulation of Wnt/β-Catenin signaling. © 2017 Wiley Periodicals, Inc.

  1. An estimation of the frequency of precursor cells which generate cytotoxic lymphocytes

    PubMed Central

    1976-01-01

    The cell-mediated immune response has been generated in vitro with a polyacrylamide culture system which allows the segregation of foci (clones?) of cytotoxic lymphocytes. Using the method of limiting dilutions, the frequency of precursor cells in CBA spleen cells able to generate a cytotoxic response against DBA mastocytoma is estimated at 1 per 1,700 cells. PMID:1083894

  2. Microgravity promotes osteoclast activity in medaka fish reared at the international space station.

    PubMed

    Chatani, Masahiro; Mantoku, Akiko; Takeyama, Kazuhiro; Abduweli, Dawud; Sugamori, Yasutaka; Aoki, Kazuhiro; Ohya, Keiichi; Suzuki, Hiromi; Uchida, Satoko; Sakimura, Toru; Kono, Yasushi; Tanigaki, Fumiaki; Shirakawa, Masaki; Takano, Yoshiro; Kudo, Akira

    2015-09-21

    The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation.

  3. Microgravity promotes osteoclast activity in medaka fish reared at the international space station

    PubMed Central

    Chatani, Masahiro; Mantoku, Akiko; Takeyama, Kazuhiro; Abduweli, Dawud; Sugamori, Yasutaka; Aoki, Kazuhiro; Ohya, Keiichi; Suzuki, Hiromi; Uchida, Satoko; Sakimura, Toru; Kono, Yasushi; Tanigaki, Fumiaki; Shirakawa, Masaki; Takano, Yoshiro; Kudo, Akira

    2015-01-01

    The bone mineral density (BMD) of astronauts decreases specifically in the weight-bearing sites during spaceflight. It seems that osteoclasts would be affected by a change in gravity; however, the molecular mechanism involved remains unclear. Here, we show that the mineral density of the pharyngeal bone and teeth region of TRAP-GFP/Osterix-DsRed double transgenic medaka fish was decreased and that osteoclasts were activated when the fish were reared for 56 days at the international space station. In addition, electron microscopy observation revealed a low degree of roundness of mitochondria in osteoclasts. In the whole transcriptome analysis, fkbp5 and ddit4 genes were strongly up-regulated in the flight group. The fish were filmed for abnormal behavior; and, interestingly, the medaka tended to become motionless in the late stage of exposure. These results reveal impaired physiological function with a change in mechanical force under microgravity, which impairment was accompanied by osteoclast activation. PMID:26387549

  4. Centrifugation of Cultured Osteoblasts And Macrophages as a Model To Study How Gravity Regulates The Function of Skeletal Cells

    NASA Technical Reports Server (NTRS)

    Globus, Ruth K.; Searby, Nancy D.; Almeida, Eduardo A. C.; Sutijono, Darrell; Yu, Joon-Ho; Malouvier, Alexander; Doty, Steven B.; Morey-Holton, Emily; Weinstein, Steven L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    examined cell survival, reasoning that osteoblasts might mold skeletal structure in a hypergravity environment in part by regulating apoptosis and thus the duration of osteoblast productivity. Finally, we tested the influence of centrifugation on microbial activation of a macrophage cell line (RAW264.7). In response to the appropriate hormonal stimulation, this cell line is reportedly capable of undergoing differentiation to express osteoclast markers. In addition, a component of the cell wall of gram-negative bacteria, lipopolysaccaride (LPS), stimulates the formation of osteoclasts in vivo. Thus we tested the influence on centrifugation on RAW264.7 cells stimulated with LPS to provide an index of the function of osteoclast precursors.

  5. Effect of heparin and alendronate coating on titanium surfaces on inhibition of osteoclast and enhancement of osteoblast function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Ho-Jin; Yun, Young-Pil; Han, Choong-Wan

    2011-09-23

    Highlights: {yields} We examine bone metabolism of engineered alendronate attached to Ti surfaces. {yields} Alendronate-immobilized Ti enhances activation of osteoblast differentiation. {yields} Alendronate-immobilized Ti inhibits osteoclast differentiation. {yields} Alendronate-immobilized Ti may be a bioactive implant with dual functions. -- Abstract: The failure of orthopedic and dental implants has been attributed mainly to loosening of the implant from host bone, which may be due to weak bonding of the implant material to bone tissue. Titanium (Ti) is used in the field of orthopedic and dental implants because of its excellent biocompatibility and outstanding mechanical properties. Therefore, in the field of materialsmore » science and tissue engineering, there has been extensive research to immobilize bioactive molecules on the surface of implant materials in order to provide the implants with improved adhesion to the host bone tissue. In this study, chemically active functional groups were introduced on the surface of Ti by a grafting reaction with heparin and then the Ti was functionalized by immobilizing alendronate onto the heparin-grafted surface. In the MC3T3-E1 cell osteogenic differentiation study, the alendronate-immobilized Ti substrates significantly enhanced alkaline phosphatase activity (ALP) and calcium content. Additionally, nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation of RAW264.7 cells was inhibited with the alendronate-immobilized Ti as confirmed by TRAP analysis. Real time PCR analysis showed that mRNA expressions of osteocalcin and osteopontin, which are markers for osteogenesis, were upregulated in MC3T3-E1 cells cultured on alendronate-immobilized Ti. The mRNA expressions of TRAP and Cathepsin K, markers for osteoclastogenesis, in RAW264.7 cells cultured on alendronate-immobilized Ti were down-regulated. Our study suggests that alendronate-immobilized Ti may be a bioactive implant with dual functions to

  6. G protein-coupled receptor 84 controls osteoclastogenesis through inhibition of NF-κB and MAPK signaling pathways.

    PubMed

    Park, Ji-Wan; Yoon, Hye-Jin; Kang, Woo Youl; Cho, Seungil; Seong, Sook Jin; Lee, Hae Won; Yoon, Young-Ran; Kim, Hyun-Ju

    2018-02-01

    GPR84, a member of the G protein-coupled receptor family, is found predominantly in immune cells, such as macrophages, and functions as a pivotal modulator of inflammatory responses. In this study, we investigated the role of GPR84 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. Our microarray data showed that GPR84 was significantly downregulated in osteoclasts compared to in their precursors, macrophages. The overexpression of GPR84 in bone marrow-derived macrophages suppressed the formation of multinucleated osteoclasts without affecting precursor proliferation. In addition, GPR84 overexpression attenuated the induction of c-Fos and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which are transcription factors that are critical for osteoclastogenesis. Furthermore, knockdown of GPR84 using a small hairpin RNA promoted RANKL-mediated osteoclast differentiation and gene expression of osteoclastogenic markers. Mechanistically, GPR84 overexpression blocked RANKL-stimulated phosphorylation of IκBα and three MAPKs, JNK, ERK, and p38. GPR84 also suppressed NF-κB transcriptional activity mediated by RANKL. Conversely, GPR84 knockdown enhanced RANKL-induced activation of IκBα and the three MAPKs. Collectively, our results revealed that GPR84 functions as a negative regulator of osteoclastogenesis, suggesting that it may be a potential therapeutic target for osteoclast-mediated bone-destructive diseases. © 2017 Wiley Periodicals, Inc.

  7. Euphorbia factor L1 inhibits osteoclastogenesis by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast.

    PubMed

    Hong, Seong-Eun; Lee, Jiae; Seo, Dong-Hyun; In Lee, Hye; Ri Park, Doo; Lee, Gong-Rak; Jo, You-Jin; Kim, Narae; Kwon, Minjung; Shon, Hansem; Kyoung Seo, Eun; Kim, Han-Sung; Young Lee, Soo; Jeong, Woojin

    2017-11-01

    Excessive bone resorption caused by increased osteoclast number or activity leads to a variety of bone diseases including osteoporosis, rheumatoid arthritis and periodontitis. Thus, the therapeutic strategy for these diseases has been focused primarily on the inhibition of osteoclast formation and function. This study shows that euphorbia factor L1 (EFL1), a diterpenoid isolated from Euphorbia lathyris, inhibited osteoclastogenesis and induced osteoclast apoptosis. EFL1 suppressed osteoclast formation and bone resorption at both initial and terminal differentiation stages. EFL1 inhibited receptor activator of NF-κB ligand (RANKL)-induced NFATc1 induction with attenuated NF-κB activation and c-Fos expression. EFL1 decreased the level of reactive oxygen species by scavenging them or activating Nrf2, and inhibited PGC-1β that regulates mitochondria biogenesis. In addition, EFL1 induced apoptosis in differentiated osteoclasts by increasing Fas ligand expression followed by caspase activation. Moreover, EFL1 inhibited inflammation-induced bone erosion and ovariectomy-induced bone loss in mice. These findings suggest that EFL1 inhibits osteoclast differentiation by regulating cellular redox status and induces Fas-mediated apoptosis in osteoclast, and may provide therapeutic potential for preventing or treating bone-related diseases caused by excessive osteoclast. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo.

    PubMed

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis.

  9. Ebselen Is a Potential Anti-Osteoporosis Agent by Suppressing Receptor Activator of Nuclear Factor Kappa-B Ligand-Induced Osteoclast Differentiation In vitro and Lipopolysaccharide-Induced Inflammatory Bone Destruction In vivo

    PubMed Central

    Baek, Jong Min; Kim, Ju-Young; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2016-01-01

    Ebselen is a non-toxic seleno-organic drug with anti-inflammatory and antioxidant properties that is currently being examined in clinical trials to prevent and treat various diseases, including atherosclerosis, stroke, and cancer. However, no reports are available for verifying the pharmacological effects of ebselen on major metabolic bone diseases such as osteoporosis. In this study, we observed that ebselen suppressed the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in an osteoblast/osteoclast co-culture by regulating the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin secreted by osteoblasts. In addition, ebselen treatment in the early stage of osteoclast differentiation inhibited RANKL-dependent osteoclastogenesis by decreasing the phosphorylation of IκB, PI3K, and Akt in early signaling pathways and by subsequently inducing c-Fos and nuclear factor of activated T-cells c1. Further, ebselen induced apoptosis of osteoclasts in the late stage of osteoclast differentiation. In addition, ebselen treatment suppressed filamentous actin ring formation and bone resorption activity of mature osteoclasts. Reflecting these in vitro effects, administration of ebselen recovered bone loss and its µ-CT parameters in lipopolysaccharide-mediated mouse model. Histological analysis confirmed that ebselen prevented trabecular bone matrix degradation and osteoclast formation in the bone tissues. Finally, it was proved that the anti-osteoclastogenic action of ebselen is achieved through targeting N-methyl-D-aspartate (NMDA) receptor. These results indicate that ebselen is a potentially safe drug for treating metabolic bone diseases such as osteoporosis. PMID:27019631

  10. Osteoclasts in neurofibromatosis type 1 display enhanced resorption capacity, aberrant morphology, and resistance to serum deprivation.

    PubMed

    Heervä, Eetu; Alanne, Maria H; Peltonen, Sirkku; Kuorilehto, Tommi; Hentunen, Teuvo; Väänänen, Kalervo; Peltonen, Juha

    2010-09-01

    Neurofibromatosis 1 syndrome (NF1) presents with skeletal involvement suggesting that altered bone dynamics is associated with NF1. Histological analysis of three cases of NF1-related pseudarthrosis revealed numerous osteoclasts in contact with adjacent bone, and within the pseudarthrosis tissue itself. These findings prompted us to evaluate the differentiation and resorption capacity of NF1-osteoclast like cells (OLCs) in vitro. Osteoclast progenitors were isolated from peripheral blood of 17 patients with NF1 and allowed to differentiate into OLCs on bone slices. The following differences were found between NF1 and control samples: samples from NF1 patients resulted in a higher number of resorbing OLCs; NF1 OLCs were larger in size; their nuclei were more numerous; actin rings were more frequent; and the resorption pits in NF1 samples were more numerous and larger. Bone resorption markers revealed that the resorption activity in NF1 OLC cultures was approximately two times higher than in controls. Following deprivation from serum, the number of NF1 OLCs remained essentially the same during 24h, whereas the number of control OLCs was dramatically reduced during the same time. Three patients had NF1-related lytic bone lesions, and their in vitro results differed from those of other patients. Our results demonstrate that OLCs derived from blood of patients with NF1 display elevated resorption activity under conditions isolated from microenvironment operative in vivo. Thus, increased osteoclast activity may be a phenotypic property of the NF1 syndrome, and at least in part explain selected skeletal findings in NF1, such as osteoporosis/osteopenia. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Quantitative evaluation of bone resorption activity of osteoclast-like cells by measuring calcium phosphate resorbing area using incubator-facilitated and video-enhanced microscopy.

    PubMed

    Morimoto, Yoshitaka; Hoshino, Hironobu; Sakurai, Takashi; Terakawa, Susumu; Nagano, Akira

    2009-04-01

    Quantitative evaluation of the ability of bone resorption activity in live osteoclast-like cells (OCLs) has not yet been reported on. In this study, we observed the sequential morphological change of OCLs and measured the resorbing calcium phosphate (CP) area made by OCLs alone and with the addition of elcatonin utilizing incubator facilitated video-enhanced microscopy. OCLs, which were obtained from a coculture of ddy-mouse osteoblastic cells and bone marrow cells, were cultured on CP-coated quartz cover slips. The CP-free area increased constantly in the OCLs alone, whereas it did not increase after the addition of elcatonin. This study showed that analysis of the resorbed areas under the OCL body using this method enables the sequential quantitative evaluation of the bone resorption activity and the effect of several therapeutic agents on bone resorption in vitro.

  12. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells*

    PubMed Central

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E.; Ziegler, Mathias; Nikiforov, Andrey

    2015-01-01

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors. PMID:26385918

  14. Age-related effects on osteoclastic activities after orthodontic tooth movement.

    PubMed

    Li, X; Li, M; Lu, J; Hu, Y; Cui, L; Zhang, D; Yang, Y

    2016-10-01

    To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the t-test, and significance was set at p < 0.05. There was no significant difference between the amount of tooth movement in the young group (0.96, standard deviation (sd) 0.30mm) and that in the adult group (0.80mm, sd 0.28) (p > 0.05) after the seven-day force application. On the compression side, the expression of RANKL and TRAP-positive osteoclasts in both the young and the adult groups increased after the application of force for seven days, and then decreased at the end of the seven-day retention period. However, by the end of the period, the expression of RANKL on the compression side dropped to the control level in the young group (p > 0.05), while it was still higher than that on the control side in the adult group (p < 0.05). The expression of RANKL on the compression side did not show significant difference between the young and the adult groups after seven-day force application (p > 0.05), but it was significantly higher in the adult group than that in the young group after seven-day post

  15. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya

    2013-09-01

    Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. [Development, physiology, and cell activity of bone].

    PubMed

    de Baat, P; Heijboer, M P; de Baat, C

    2005-07-01

    Bones are of crucial importance for the human body, providing skeletal support, serving as a home for the formation of haematopoietic cells, and reservoiring calcium and phosphate. Long bones develop by endochondral ossification. Flat bones develop by intramembranous ossification. Bone tissue contains hydroxyapatite and various extracellular proteins, producing bone matrix. Two biological mechanisms, determining the strength of bone, are modelling and remodelling. Modelling can change bone shape and size through bone formation by osteoblasts at some sites and through bone destruction by osteoclasts at other sites. Remodelling is bone turnover, also performed by osteoclasts and osteoblasts. The processes of modelling and remodelling are induced by mechanical loads, predominantly muscle loads. Osteoblasts develop from mesenchymal stem cells. Many stimulating factors are known to activate the differentiation. Mature osteoblasts synthesize bone matrix and may further differentiate into osteocytes. Osteocytes maintain structural bone integrity and allow bone to adapt to any mechanical and chemical stimulus. Osteoclasts derive from haematopoietic stem cells. A number of transcription and growth factors have been identified essential for osteoclast differentiation and function. Finally, there is a complex interaction between osteoblasts and osteoclasts. Bone destruction starts by attachment of osteoclasts to the bone surface. Following this, osteoclasts undergo specific morphological changes. The process of bone destruction starts by acid dissolution of hydroxyapatite. After that osteoclasts start to destruct the organic matrix.

  17. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB

    PubMed Central

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D.; Garner, Ethan C.; Walker, Suzanne

    2014-01-01

    Summary The bacterial actin homolog MreB, which is critical for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids, but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis. PMID:25402772

  18. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.

    PubMed

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D; Garner, Ethan C; Walker, Suzanne

    2015-01-01

    The bacterial actin homolog MreB, which is crucial for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of lipid-linked peptidoglycan precursors. When precursors are depleted, MreB filaments disassemble into the cytoplasm, and peptidoglycan synthesis becomes disorganized. In cells that lack wall teichoic acids but continue to make peptidoglycan, dynamic MreB filaments are observed, although their presence is not sufficient to establish a rod shape. We propose that the cell regulates MreB filament association with the membrane, allowing rapid and reversible inactivation of cell wall enzyme complexes in response to the inhibition of cell wall synthesis.

  19. The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration.

    PubMed

    Handberg-Thorsager, Mette; Saló, Emili

    2007-05-01

    Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians.

  20. A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans

    PubMed Central

    Weinstein, Nathan; Mendoza, Luis

    2013-01-01

    The vulva of Caenorhabditis elegans has been long used as an experimental model of cell differentiation and organogenesis. While it is known that the signaling cascades of Wnt, Ras/MAPK, and NOTCH interact to form a molecular network, there is no consensus regarding its precise topology and dynamical properties. We inferred the molecular network, and developed a multivalued synchronous discrete dynamic model to study its behavior. The model reproduces the patterns of activation reported for the following types of cell: vulval precursor, first fate, second fate, second fate with reversed polarity, third fate, and fusion fate. We simulated the fusion of cells, the determination of the first, second, and third fates, as well as the transition from the second to the first fate. We also used the model to simulate all possible single loss- and gain-of-function mutants, as well as some relevant double and triple mutants. Importantly, we associated most of these simulated mutants to multivulva, vulvaless, egg-laying defective, or defective polarity phenotypes. The model shows that it is necessary for RAL-1 to activate NOTCH signaling, since the repression of LIN-45 by RAL-1 would not suffice for a proper second fate determination in an environment lacking DSL ligands. We also found that the model requires the complex formed by LAG-1, LIN-12, and SEL-8 to inhibit the transcription of eff-1 in second fate cells. Our model is the largest reconstruction to date of the molecular network controlling the specification of vulval precursor cells and cell fusion control in C. elegans. According to our model, the process of fate determination in the vulval precursor cells is reversible, at least until either the cells fuse with the ventral hypoderm or divide, and therefore the cell fates must be maintained by the presence of extracellular signals. PMID:23785384

  1. Substance P increases production of proinflammatory cytokines and formation of osteoclasts in dental pulp fibroblasts in patients with severe orthodontic root resorption.

    PubMed

    Yamaguchi, Masaru; Ozawa, Yasuhito; Mishima, Hiroyuki; Aihara, Norihito; Kojima, Tadashi; Kasai, Kazutaka

    2008-05-01

    The objective of this study was to determine the extent to which substance P (SP) increases proinflammatory cytokine production and osteoclast formation of human dental pulp fibroblasts (HDPF) in patients with severe orthodontically induced inflammatory root resorption (OIIRR). HDPF were obtained from 5 patients with severe apical root resorption after orthodontic treatment. The levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha were determined after 24 hours by using ELISA kits. Furthermore, culture supernatants were added to cultured human osteoclasts, and osteoclast formation was observed after tartrate-resistant acid phosphatase (TRAP) staining and the formation of resorption cavities. Stimulation with SP increased the levels of IL-1beta, IL-6, and TNF-alpha, in a time- and concentration-dependent manner, although the increase was greater in the severe root resorption (SRR) group than in the nonresorption (NR) group (P < 0.001, 3-way repeated measures ANOVA). As for osteoclast formation, the numbers of TRAP-positive multinucleate cells and resorptive pits were significantly increased in the SRR group compared with the NR group (P < 0.001, 2-way repeated measures ANOVA). These results suggest that HDPF stimulated with SP might be deeply involved in the progress of inflammation in pulp tissue and the incidence of SRR during orthodontic treatment.

  2. Peripheral cannabinoid receptor, CB2, regulates bone mass

    PubMed Central

    Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai

    2006-01-01

    The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142

  3. The union of somatic gonad precursors and primordial germ cells during C. elegans embryogenesis

    PubMed Central

    Rohrschneider, Monica R.; Nance, Jeremy

    2013-01-01

    Somatic gonadal niche cells control the survival, differentiation, and proliferation of germline stem cells. The establishment of this niche-stem cell relationship is critical, and yet the precursors to these two cell types are often born at a distance from one another. The simple C. elegans gonadal primordium, which contains two somatic gonad precursors (SGPs) and two primordial germ cells (PGCs), provides an accessible model for determining how stem cell and niche cell precursors first assemble during development. To visualize the morphogenetic events that lead to formation of the gonadal primordium, we generated transgenic strains to label the cell membranes of the SGPs and PGCs and captured time-lapse movies as the gonadal primordium formed. We identify three distinct phases of SGP behavior: posterior migration along the endoderm towards the PGCs, extension of a single long projection around the adjacent PGC, and a dramatic wrapping over the PGC surfaces. We show that the endoderm and PGCs are dispensable for SGP posterior migration and initiation of projections. However, both tissues are required for the final positioning of the SGPs and the morphology of their projections, and PGCs are absolutely required for SGP wrapping behaviors. Finally, we demonstrate that the basement membrane component laminin, which localizes adjacent to the developing gonadal primordium, is required to prevent the SGPs from over-extending past the PGCs. Our findings provide a foundation for understanding the cellular and molecular regulation of the establishment of a niche-stem cell relationship. PMID:23562590

  4. Identification and Characterization of a Dendritic Cell Precursor in Parenchymal Lung Tissue.

    PubMed

    von Garnier, Christophe; Blank, Fabian; Rothen-Rutishauser, Barbara; Goethert, Joachim R; Holt, Patrick G; Stumbles, Philip A; Strickland, Deborah H

    2017-03-01

    The pulmonary parenchymal and mucosal microenvironments are constantly exposed to the external environment and thus require continuous surveillance to maintain steady-state immunological homeostasis. This is achieved by a mobile network of pulmonary dendritic cells (DC) and macrophages (mø) that constantly sample and process microenvironmental antigens into signals that can initiate or dampen inflammation, either locally or after onward migration to draining lymph nodes. The constant steady-state turnover of pulmonary DC and mø requires replenishment from bone marrow precursors; however, the nature of the pulmonary precursor cell (PC) remains unclear, although recent studies suggest that subsets of pulmonary DC may derive from circulating monocytic precursors. In the current study, we describe a population of cells in steady-state mouse lung tissue that has the surface phenotypic and ultrastructural characteristics of a common DC progenitor. Irradiation and reconstitution studies confirmed the bone marrow origins of this PC and showed that it had rapid depletion and reconstitution kinetics that were similar to those of DC, with a 50% repopulation by donor-derived cells by Days 7-9 after reconstitution. This was significantly faster than the rates observed for mø, which showed 50% repopulation by donor-derived cells beyond Days 16-21 after reconstitution. Purified PC gained antigen-presenting function and a cell surface phenotype similar to that of pulmonary DC after maturation in vitro, with light and electron microscopy confirming a myeloid DC morphology. To the best of our knowledge, this is the first study to describe a PC for DC in lung tissue; the findings have implications for the restoration of pulmonary immunological homeostasis after bone marrow transplant.

  5. In vivo demonstration of cell types in bone that harbor epidermal growth factor receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martineau-Doize, B.; Lai, W.H.; Warshawsky, H.

    1988-08-01

    The binding and internalization of (/sup 125/I)iodoepidermal growth factor (EGF) by bone cells of the rat was demonstrated in situ by quantitative radioautography. Specific binding sites were observed on a cell profile enriched in endocytic components, including lysosome-like structures, a rough endoplasmic reticulum-rich cell profile, and a cell profile that histologically resembles an undifferentiated precursor cell. By the criteria of gel filtration and precipitability by trichloroacetic acid, most of the bound (/sup 125/I)iodo-EGF was considered intact. By morphological criteria none of the cell profiles that bound (/sup 125/I)iodo-EGF corresponded to fully formed osteoclasts or osteoblasts. The endocytic cell was foundmore » in the epiphyseal plate between the invading capillary and the transverse and longitudinal cartilage septa as well as near osteoclasts in the zone of mixed spicules. The rough endoplasmic reticulum-rich cell was present in vacated chondrocyte lacunae of the epiphyseal plate close to the metaphysis, and the poorly differentiated cell was observed between the mixed spicules of the metaphysis. Similar cell types were also found in the alveolar bone surrounding the incisors. These cells may be the origin of established bone cell lines that harbor high concentrations of EGF receptors and may also be responsible for the humoral hypercalcemia in response to the reported actions of injected EGF or transforming growth factor-alpha as well as that of malignancy.« less

  6. Osteoclasts but not osteoblasts are affected by a calcified surface treated with zoledronic acid in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindeler, Aaron; Little, David G.; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney

    2005-12-16

    Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over themore » 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.« less

  7. Targeted Proteomics-Driven Computational Modeling of Macrophage S1P Chemosensing*

    PubMed Central

    Manes, Nathan P.; Angermann, Bastian R.; Koppenol-Raab, Marijke; An, Eunkyung; Sjoelund, Virginie H.; Sun, Jing; Ishii, Masaru; Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra

    2015-01-01

    Osteoclasts are monocyte-derived multinuclear cells that directly attach to and resorb bone. Sphingosine-1-phosphate (S1P)1 regulates bone resorption by functioning as both a chemoattractant and chemorepellent of osteoclast precursors through two G-protein coupled receptors that antagonize each other in an S1P-concentration-dependent manner. To quantitatively explore the behavior of this chemosensing pathway, we applied targeted proteomics, transcriptomics, and rule-based pathway modeling using the Simmune toolset. RAW264.7 cells (a mouse monocyte/macrophage cell line) were used as model osteoclast precursors, RNA-seq was used to identify expressed target proteins, and selected reaction monitoring (SRM) mass spectrometry using internal peptide standards was used to perform absolute abundance measurements of pathway proteins. The resulting transcript and protein abundance values were strongly correlated. Measured protein abundance values, used as simulation input parameters, led to in silico pathway behavior matching in vitro measurements. Moreover, once model parameters were established, even simulated responses toward stimuli that were not used for parameterization were consistent with experimental findings. These findings demonstrate the feasibility and value of combining targeted mass spectrometry with pathway modeling for advancing biological insight. PMID:26199343

  8. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  9. RNA therapeutics targeting osteoclast-mediated excessive bone resorption

    PubMed Central

    Wang, Yuwei; Grainger, David W

    2011-01-01

    RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing technique developed with dramatically increasing utility for both scientific and therapeutic purposes. Short interfering RNA (siRNA) is currently exploited to regulate protein expression relevant to many therapeutic applications, and commonly used as a tool for elucidating disease-associated genes. Osteoporosis and their associated osteoporotic fragility fractures in both men and women are rapidly becoming a global healthcare crisis as average life expectancy increases worldwide. New therapeutics are needed for this increasing patient population. This review describes the diversity of molecular targets suitable for RNAi-based gene knock-down in osteoclasts to control osteoclast-mediated excessive bone resorption. We identify strategies for developing targeted siRNA delivery and efficient gene silencing, and describe opportunities and challenges of introducing siRNA as a therapeutic approach to hard and connective tissue disorders. PMID:21945356

  10. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging.

    PubMed

    Renkema, Kristin R; Li, Gang; Wu, Angela; Smithey, Megan J; Nikolich-Žugich, Janko

    2014-01-01

    Naive T cell responses are eroded with aging. We and others have recently shown that unimmunized old mice lose ≥ 70% of Ag-specific CD8 T cell precursors and that many of the remaining precursors acquire a virtual (central) memory (VM; CD44(hi)CD62L(hi)) phenotype. In this study, we demonstrate that unimmunized TCR transgenic (TCRTg) mice also undergo massive VM conversion with age, exhibiting rapid effector function upon both TCR and cytokine triggering. Age-related VM conversion in TCRTg mice directly depended on replacement of the original TCRTg specificity by endogenous TCRα rearrangements, indicating that TCR signals must be critical in VM conversion. Importantly, we found that VM conversion had adverse functional effects in both old wild-type and old TCRTg mice; that is, old VM, but not old true naive, T cells exhibited blunted TCR-mediated, but not IL-15-mediated, proliferation. This selective proliferative senescence correlated with increased apoptosis in old VM cells in response to peptide, but decreased apoptosis in response to homeostatic cytokines IL-7 and IL-15. Our results identify TCR as the key factor in differential maintenance and function of Ag-specific precursors in unimmunized mice with aging, and they demonstrate that two separate age-related defects--drastic reduction in true naive T cell precursors and impaired proliferative capacity of their VM cousins--combine to reduce naive T cell responses with aging.

  11. HMC-1 human mast cells synthesize neurotensin (NT) precursor, secrete bioactive NT-like peptide(s) and express NT receptor NTS1.

    PubMed

    Cochrane, David E; Carraway, Robert E; Harrington, Kimberly; Laudano, Melissa; Rawlings, Stephen; Feldberg, Ross S

    2011-12-01

    To determine if mast cells synthesize the inflammatory peptide, neurotensin (NT), secrete immunoreactive and bioactive NT, and express the NT receptor NTS1. HMC-1 cells, pleural mast cells from Sprague-Dawley rats, LAD2 mast cells, and human cord blood mast cells were used. HMC-1 cells were stimulated with NT, C48/80, mastoparan, or PGE(2). For changes in cutaneous vascular permeability, anesthetized rats were injected intravenously with Evans Blue dye and intradermally with saline, NT, histamine, diphenhydramine, and C48/80. RT-PCR was used to identify RNA transcripts. Histamine was measured by fluorometric assay. In vivo cutaneous vascular permeability assays, radio-immunoassays for NT, Western blotting for the NT precursor protein and NTS1 protein from HMC-1 cells and tissues from rats were used. Immunohistochemistry was used to identify NT precursor-like proteins in HMC-1 mast cells. HMC-1 cells express mRNAs for NT precursor, PC5A processing enzyme and NTS1 receptor. Human cord blood mast cells and LAD2 mast cells express mRNA transcripts for NT precursor and NTS1. Western blotting showed NT precursor and NTS1 receptor in HMC1. Rat tissues with high numbers of mast cells contained NT precursor proteins. NT-like peptides from HMC-1 displayed NT-like bioactivity. HMC-1 mast cells synthesize and secrete immunoreactive and bioactive NT-like peptide(s) and express the NT receptor, suggesting that NT from mast cells might serve autocrine and paracrine roles.

  12. T cell mediated suppression of neurotropic coronavirus replication in neural precursor cells

    PubMed Central

    Plaisted, Warren C.; Weinger, Jason G.; Walsh, Craig M.; Lane, Thomas E.

    2014-01-01

    Neural precursor cells (NPCs) are the subject of intense investigation for their potential to treat neurodegenerative disorders, yet the consequences of neuroinvasive virus infection of NPCs remain unclear. This study demonstrates that NPCs support replication following infection by the neurotropic JHM strain of mouse hepatitis virus (JHMV). JHMV infection leads to increased cell death and dampens IFN-γ-induced MHC class II expression. Importantly, cytokines secreted by CD4+ T cells inhibit JHMV replication in NPCs, and CD8+ T cells specifically target viral peptide-pulsed NPCs for lysis. Furthermore, treatment with IFN-γ inhibits JHMV replication in a dose-dependent manner. Together, these findings suggest that T cells play a critical role in controlling replication of a neurotropic virus in NPCs, a finding which has important implications when considering immune modulation for NPC-based therapies for treatment of human neurologic diseases. PMID:24418558

  13. MIF induces osteoclast differentiation and contributes to progression of periodontal disease in mice.

    PubMed

    Madeira, Mila Fernandes Moreira; Queiroz-Junior, Celso Martins; Costa, Graciela Mitre; Santos, Patrícia Campi; Silveira, Elcia Maria; Garlet, Gustavo Pompermaier; Cisalpino, Patrícia Silva; Teixeira, Mauro Martins; Silva, Tarcília Aparecida; Souza, Daniele da Glória

    2012-02-01

    Periodontal disease (PD) is a chronic inflammatory and alveolar bone destructive disease triggered by microorganisms from the oral biofilm. Oral inoculation of mice with the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) induces marked alveolar bone loss and local production of inflammatory mediators, including Macrophage Migration Inhibitory Factor (MIF). The role of MIF for alveolar bone resorption during PD is not known. In the present study, experimental PD was induced in BALB/c wild-type mice (WT) and MIF knockout mice (MIF⁻/⁻) through oral inoculation of Aa. Despite enhanced number of bacteria, MIF⁻/⁻ mice had reduced infiltration of TRAP-positive cells and reduced alveolar bone loss. This was associated with decreased neutrophil accumulation and increased levels of IL-10 in periodontal tissues. TNF-α production was similar in both groups. In vitro, LPS from Aa enhanced osteoclastic activity in a MIF-dependent manner. In conclusion, MIF has role in controlling bacterial growth in the context of PD but contributes more significantly to the progression of bone loss during PD by directly affecting differentiation and activity of osteoclasts. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture.

    PubMed

    Akisaka, Toshitaka; Yoshida, Hisaho; Suzuki, Reiko; Takama, Keiko

    2008-03-01

    The organization of the cytoskeleton in the podosomes of osteoclasts was studied by use of cell shearing, rotary replication, and fluorescence cytochemical techniques. After shearing, clathrin plaques and particles associated with the cytoskeleton were left behind on the exposed cytoplasmic side of the membrane. The cytoskeleton of the podosomes was characterized by two types of actin filaments: relatively long filaments in the portion surrounding the podosome core, and highly branched short filaments in the core. Individual actin filaments radiating from the podosomes interacted with several membrane particles along the length of the filaments. Many lateral contacts with the membrane surface by the particles were made along the length of individual actin filaments. The polarity of actin filaments in podosomes became oriented such that their barbed ends were directed toward the core of podosomes. The actin cytoskeletons terminated or branched at the podosomes, where the membrane tightly adhered to the substratum. Microtubules were not usually present in the podosome structures; however, certain microtubules appeared to be morphologically in direct contact with the podosome core. Most of the larger clathrin plaques consisted of flat sheets of clathrin lattices that interconnected neighboring clathrin lattices to form an extensive clathrin area. However, the small deeply invaginated clathrin plaques and the podosomal cytoskeleton were located close together. Thus, the clathrin plaques on the ventral membrane of osteoclasts might be involved in both cell adhesion and the formation of receptor-ligand complexes, i.e., endocytosis.

  15. The chemokine CXCL16 induces migration and invasion of glial precursor cells via its receptor CXCR6.

    PubMed

    Hattermann, Kirsten; Ludwig, Andreas; Gieselmann, Volkmar; Held-Feindt, Janka; Mentlein, Rolf

    2008-09-01

    Chemokines are implicated in developmental and inflammatory processes in the brain. The transmembrane chemokine CXCL16 is produced in brain endothelial and reactive astroglial cells and released by shedding. Its receptor CXCR6 is detected during brain development highest at postnatal day 6, found in glial precursor cells differentiated from neural stem cells and in an A2B5-positive glial precursor cell line. Their stimulation by soluble CXCL16 induces the PI3-kinase/Akt and Erk pathways resulting in the activation of the transcription factor AP-1. As biological responses, soluble CXCL16 upregulates its own receptor, increases cell proliferation, stimulates cell migration in wound-healing and in spheroid confrontation assays. Invasion of CXCR6-positive glial cells into CXCL16-expressing spheroids can be blocked by sheddase inhibitors and CXCL16-antibody. Since CXCL16 is induced by cytokines at sites of inflammation, neurodegeneration, ischemia and malignant transformation, it should attract CXCR6-positive glial precursor cells, enhance their invasion and proliferation and thus favor astrogliosis.

  16. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis.

    PubMed

    Conter, Valentino; Valsecchi, Maria Grazia; Buldini, Barbara; Parasole, Rosanna; Locatelli, Franco; Colombini, Antonella; Rizzari, Carmelo; Putti, Maria Caterina; Barisone, Elena; Lo Nigro, Luca; Santoro, Nicola; Ziino, Ottavio; Pession, Andrea; Testi, Anna Maria; Micalizzi, Concetta; Casale, Fiorina; Pierani, Paolo; Cesaro, Simone; Cellini, Monica; Silvestri, Daniela; Cazzaniga, Giovanni; Biondi, Andrea; Basso, Giuseppe

    2016-02-01

    Early T-cell precursor acute lymphoblastic leukaemia was recently recognised as a distinct leukaemia and reported as associated with poor outcomes. We aimed to assess the outcome of early T-cell precursor acute lymphoblastic leukaemia in patients from the Italian Association of Pediatric Hematology Oncology (AIEOP) centres treated with AIEOP-Berlin-Frankfurt-Münster (AIEOP-BFM) protocols. In this retrospective analysis, we included all children aged from 1 to less than 18 years with early T-cell precursor acute lymphoblastic leukaemia immunophenotype diagnosed between Jan 1, 2008, and Oct 31, 2014, from AIEOP centres. Early T-cell precursors were defined as being CD1a and CD8 negative, CD5 weak positive or negative, and positive for at least one of the following antigens: CD34, CD117, HLADR, CD13, CD33, CD11b, or CD65. Treatment was based on AIEOP-BFM acute lymphoblastic leukaemia 2000 (NCT00613457) or AIEOP-BFM acute lymphoblastic leukaemia 2009 protocols (European Clinical Trials Database 2007-004270-43). The main differences in treatment and stratification of T-cell acute lymphoblastic leukaemia between the two protocols were that in the 2009 protocol only, pegylated L-asparaginase was substituted for Escherichia coli L-asparaginase, patients with prednisone poor response received an additional dose of cyclophosphamide at day 10 of phase IA, and high minimal residual disease at day 15 assessed by flow cytometry was used as a high-risk criterion. Outcomes were assessed in terms of event-free survival, disease-free survival, and overall survival. Early T-cell precursor acute lymphoblastic leukaemia was diagnosed in 49 patients. Compared with overall T-cell acute lymphoblastic leukaemia, it was associated with absence of molecular markers for PCR detection of minimal residual disease in 25 (56%) of 45 patients; prednisone poor response in 27 (55%) of 49 patients; high minimal residual disease at day 15 after starting therapy in 25 (64%) of 39 patients (bone marrow

  17. Tissue-specific differentiation of a circulating CCR9- pDC-like common dendritic cell precursor.

    PubMed

    Schlitzer, Andreas; Heiseke, Alexander F; Einwächter, Henrik; Reindl, Wolfgang; Schiemann, Matthias; Manta, Calin-Petru; See, Peter; Niess, Jan-Hendrik; Suter, Tobias; Ginhoux, Florent; Krug, Anne B

    2012-06-21

    The ontogenic relationship between the common dendritic cell (DC) progenitor (CDP), the committed conventional DC precursor (pre-cDC), and cDC subpopulations in lymphoid and nonlymphoid tissues has been largely unraveled. In contrast, the sequential steps of plasmacytoid DC (pDC) development are less defined, and it is unknown at which developmental stage and location final commitment to the pDC lineage occurs. Here we show that CCR9(-) pDCs from murine BM which enter the circulation and peripheral tissues have a common DC precursor function in vivo in the steady state, in contrast to CCR9(+) pDCs which are terminally differentiated. On adoptive transfer, the fate of CCR9(-) pDC-like precursors is governed by the tissues they enter. In the BM and liver, most transferred CCR9(-) pDC-like precursors differentiate into CCR9(+) pDCs, whereas in peripheral lymphoid organs, lung, and intestine, they additionally give rise to cDCs. CCR9(-) pDC-like precursors which are distinct from pre-cDCs can be generated from the CDP. Thus, CCR9(-) pDC-like cells are novel CDP-derived circulating DC precursors with pDC and cDC potential. Their final differentiation into functionally distinct pDCs and cDCs depends on tissue-specific factors allowing adaptation to local requirements under homeostatic conditions.

  18. New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimbow, K.; Uesugi, T.

    1982-02-01

    Photobiological processes involving new melanogenesis after exposure to ultraviolet (UV) light were experimentally studied in C57 black adult mice by histochemistry, cytochemistry, and autoradiography. The trunk and the plantar region of the foot, where no functioning melanocytes were present before exposure, were exposed to UV-A for 14 consecutive days. Both regions revealed a basically similar pattern for new melanogenesis which involved an activation of precursor melanocytes. Essentially all of ''indeterminate'' cells appeared to be precursor melanocytes, the fine structure of which could be differentiated even from poorly developed Langerhans cells. New melanogenesis was manifested by 4 stages of cellular andmore » subcellular reactions of these cells as indicated by histochemistry of dihydroxyphenylalanine (dopa) and autoradiography of thymidine incorporation: (a) an initial lag in the activation of precursor melanocytes with development of Golgi cisternae and rough endoplasmic reticulum followed by formation of unmelanized melanosomes (day 0 to 2); (b) synthesis of active tyrosinase accumulated in Golgi cisternae and vesicles with subsequent formation of melanized melanosomes in these cells (day 3 to 5); (c) mitotic proliferation of many of these activated cells, followed by an exponential increase of new melanocytes (day 6 to 7); and (d) melanosome transfer with differentiation of 10 nm filaments and arborization of dendrites, but without any significant change in the melanocyte population (day 8 to 14). The melanosome transfer was, however, not obvious until after 7 days of exposure. The size of newly synthesized melanosomes was similar to that of tail skin where native melanocytes were present before exposure.« less

  19. Loss of the hematopoietic stem cell factor GATA2 in the osteogenic lineage impairs trabecularization and mechanical strength of bone.

    PubMed

    Tolkachov, Alexander; Fischer, Cornelius; Ambrosi, Thomas H; Bothe, Melissa; Han, Chung-Ting; Muenzner, Matthias; Mathia, Susanne; Salminen, Marjo; Seifert, Georg; Thiele, Mario; Duda, Georg N; Meijsing, Sebastiaan H; Sauer, Sascha; Schulz, Tim J; Schupp, Michael

    2018-03-26

    The transcription factor GATA2 is required for expansion and differentiation of hematopoietic stem cells (HSCs). In mesenchymal stem cells (MSCs) GATA2 blocks adipogenesis, but its biological relevance and underlying genomic events are unknown. We report a dual function of GATA2 in bone homeostasis. GATA2 in MSCs binds near genes involved in skeletal system development and co-localizes with motifs for FOX and HOX transcription factors, known regulators of skeletal development. Ectopic GATA2 blocks osteoblastogenesis by interfering with SMAD1/5/8 activation. MSC-specific deletion of GATA2 in mice increases numbers and differentiation capacity of bone-derived precursors, resulting in elevated bone formation. Surprisingly, MSC-specific GATA2 deficiency impairs trabecularization and mechanical strength of bone, involving reduced MSC expression of the osteoclast inhibitor osteoprotegerin and increased osteoclast numbers. Thus, GATA2 affects bone turnover via MSC-autonomous and indirect effects. By regulating bone trabecularization, GATA2 expression in the osteogenic lineage may contribute to the anatomical and cellular microenvironment of the HSC niche required for hematopoiesis. Copyright © 2018 American Society for Microbiology.

  20. F4/80 inhibits osteoclast differentiation via downregulation of nuclear factor of activated T cells, cytoplasmic 1.

    PubMed

    Kang, Ju-Hee; Sim, Jung-Sun; Zheng, Ting; Yim, Mijung

    2017-04-01

    Osteoclastogenesis is an essential process in bone metabolism, which can be induced by RANKL stimulation. The F4/80 glycoprotein is a member of the EGF-transmembrane 7 (TM7) family and has been established as a specific cell-surface marker for murine macrophages. This study aimed to identify the role of F4/80 in osteoclastogenesis. Using mouse bone marrow-derived macrophages (BMMs), we observed that the mRNA level of F4/80 was dramatically reduced as these cells differentiated into osteoclasts. Furthermore, osteoclastogenesis was decreased in F4/80 high BMMs compared to F4/80 -/low BMMs. The inhibitory effect of F4/80 was associated with decreased expression of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). Ectopic overexpression of a constitutively active form of NFATc1 rescued the anti-osteoclastogenic effect of F4/80 completely, suggesting that the anti-osteoclastogenic effect of F4/80 was mainly due to reduction in NFATc1 expression. As an underlying mechanism, we demonstrated that the presence of F4/80 abrogated the effect of RANKL on the phosphorylation of CREB and activated the expression of IFN-β, which are restored by cyclic AMP. Collectively, our results demonstrate that the presence of F4/80 suppresses RANKL-induced osteoclastogenesis by impairing the expression of NFATc1 via CREB and IFN-β. Therefore, F4/80 may hold therapeutic potential for bone destructive diseases.

  1. Innate lymphoid cells, precursors and plasticity.

    PubMed

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells.

    PubMed

    Niculescu, Mihai D; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H

    2007-04-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.

  3. Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells

    PubMed Central

    Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.

    2008-01-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582

  4. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss.

    PubMed

    Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J

    2012-06-01

    Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.

  5. A bone substitute with high affinity for vitamin D-binding protein―relationship with niche of osteoclasts

    PubMed Central

    Ikeda, Tohru; Kasai, Michiyuki; Tatsukawa, Eri; Kamitakahara, Masanobu; Shibata, Yasuaki; Yokoi, Taishi; Nemoto, Takayuki K; Ioku, Koji

    2014-01-01

    The biological activity of osteoblasts and osteoclasts is regulated not only by hormones but also by local growth factors, which are expressed in neighbouring cells or included in bone matrix. Previously, we developed hydroxyapatite (HA) composed of rod-shaped particles using applied hydrothermal methods (HHA), and it revealed mild biodegradability and potent osteoclast homing activity. Here, we compared serum proteins adsorbed to HHA with those adsorbed to conventional HA composed of globular-shaped particles (CHA). The two ceramics adsorbed serum albumin and γ-globulin to similar extents, but affinity for γ-globulin was much greater than that to serum albumin. The chemotactic activity for macrophages of serum proteins adsorbed to HHA was significantly higher than that of serum proteins adsorbed to CHA. Quantitative proteomic analysis of adsorbed serum proteins revealed preferential binding of vitamin D-binding protein (DBP) and complements C3 and C4B with HHA. When implanted with the femur of 8-week-old rats, HHA contained significantly larger amount of DBP than CHA. The biological activity of DBP was analysed and it was found that the chemotactic activity for macrophages was weak. However, DBP-macrophage activating factor, which is generated by the digestion of sugar chains of DBP, stimulated osteoclastogenesis. These results confirm that the microstructure of hydroxyapatite largely affects the affinity for serum proteins, and suggest that DBP preferentially adsorbed to HA composed of rod-shaped particles influences its potent osteoclast homing activity and local bone metabolism. PMID:24286277

  6. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness

    PubMed Central

    Wiley, Luke A.; Burnight, Erin R.; DeLuca, Adam P.; Anfinson, Kristin R.; Cranston, Cathryn M.; Kaalberg, Emily E.; Penticoff, Jessica A.; Affatigato, Louisa M.; Mullins, Robert F.; Stone, Edwin M.; Tucker, Budd A.

    2016-01-01

    Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans. PMID:27471043

  7. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Regulatory actions of 3',5'-cyclic adenosine monophosphate on osteoclast function: possible roles of Epac-mediated signaling.

    PubMed

    Jeevaratnam, Kamalan; Salvage, Samantha C; Li, Mengye; Huang, Christopher L-H

    2018-05-30

    Alterations in cellular levels of the second messenger 3',5'-cyclic adenosine monophosphate ([cAMP] i ) regulate a wide range of physiologically important cellular signaling processes in numerous cell types. Osteoclasts are terminally differentiated, multinucleated cells specialized for bone resorption. Their systemic regulator, calcitonin, triggers morphometrically and pharmacologically distinct retraction (R) and quiescence (Q) effects on cell-spread area and protrusion-retraction motility, respectively, paralleling its inhibition of bone resorption. Q effects were reproduced by cholera toxin-mediated G s -protein activation known to increase [cAMP] i , unaccompanied by the [Ca 2+ ] i changes contrastingly associated with R effects. We explore a hypothesis implicating cAMP signaling involving guanine nucleotide-exchange activation of the small GTPase Ras-proximate-1 (Rap1) by exchange proteins directly activated by cAMP (Epac). Rap1 activates integrin clustering, cell adhesion to bone matrix, associated cytoskeletal modifications and signaling processes, and transmembrane transduction functions. Epac activation enhanced, whereas Epac inhibition or shRNA-mediated knockdown compromised, the appearance of markers for osteoclast differentiation and motility following stimulation by receptor activator of nuclear factor kappa-Β ligand (RANKL). Deficiencies in talin and Rap1 compromised in vivo bone resorption, producing osteopetrotic phenotypes in genetically modified murine models. Translational implications of an Epac-Rap1 signaling hypothesis in relationship to N-bisphosphonate actions on prenylation and membrane localization of small GTPases are discussed. © 2018 New York Academy of Sciences.

  9. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro.

    PubMed

    Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé

    2017-01-01

    The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.

  10. Effects of interleukin-7/interleukin-7 receptor on RANKL-mediated osteoclast differentiation and ovariectomy-induced bone loss by regulating c-Fos/c-Jun pathway.

    PubMed

    Zhao, Ji-Jun; Wu, Zhao-Feng; Yu, Ying-Hao; Wang, Ling; Cheng, Li

    2018-09-01

    To explore the effects of IL-7/IL-7R on the RANKL-mediated osteoclast differentiation in vitro and OVX-induced bone loss in vivo. BMMs and RAW264.7 were transfected with IL-7, IL-7R siRNA, c-Fos siRNA, and c-jun siRNA and later stimulated by RANKL. TRAP and toluidine blue staining were used to observe osteoclast formation and bone resorption, respectively. HE and TRAP staining were used to detect trabecular bone microstructure and osteoclasts of mice, respectively. qRT-PCR and Western blot analysis were used to examine expression. IL-7 unregulated the expression of CTSK, NFATc1, MMP9, and the phosphorylation of p38 and Akt by activating the c-Fos/c-Jun pathway, which increased osteoclast numbers and bone resorption in RANKL-stimulated macrophages. While IL-7R siRNA and c-Fos siRNA decreased the expression, as well as and the phosphorylation of p38 and Akt.IL-7 decreased the BMD and OPG expression in OVX-induced mice and increased the TRAP positive cells, the mRNA expression of c-fos, c-jun, and RANKL, which was contradictory to IL-7R siRNA, and c-Fos siRNA. Furthermore, IL-7R siRNA and c-Fos siRNA caused thicker trabeculae, increased trabecular number, and decreased osteolysis in OVX mice. IL-7/IL-7R can promote RANKL-mediated osteoclast formation and bone resorption by activating the c-Fos/c-Jun pathway, as well as inducing bone loss in OVX mice. © 2018 Wiley Periodicals, Inc.

  11. Cot kinase promotes Ca2+ oscillation/calcineurin-independent osteoclastogenesis by stabilizing NFATc1 protein.

    PubMed

    Kuroda, Yukiko; Hisatsune, Chihiro; Mizutani, Akihiro; Ogawa, Naoko; Matsuo, Koichi; Mikoshiba, Katsuhiko

    2012-07-01

    Osteoclasts are multinuclear bone-resorbing cells formed by the fusion of monocyte/macrophage-lineage precursor cells. Activation of the transcription factor NFATc1 (nuclear factor of activated T cells c1) by the receptor activator of NF-κB ligand (RANKL) is critical for osteoclast differentiation. In our previous report (Y. Kuroda, C. Hisatsune, T. Nakamura, K. Matsuo, and K. Mikoshiba. Proc. Natl. Acad. Sci. U. S. A. 105:8643, 2008), we demonstrated that osteoblasts induce osteoclast differentiation via Ca(2+) oscillation/calcineurin-dependent and -independent NFATc1 activation pathways; however, the mechanism underlying the latter remained unclear. Here we show that Cot, a serine/threonine kinase also known as tumor progression locus 2 (Tpl-2), directly phosphorylates all Ca(2+)/calcineurin-regulated NFAT family members (NFATc1 through NFATc4) and increases their protein levels. Moreover, Cot activity in osteoclasts was enhanced via cell-cell interaction with osteoblasts, and Cot promoted Ca(2+) oscillation/calcineurin-independent osteoclastogenesis by increasing NFATc1 stability through phosphorylation. We propose that NFAT activation in vivo occurs via phosphorylation-induced protein stabilization, even in the absence of Ca(2+) oscillation and calcineurin activity.

  12. Cot Kinase Promotes Ca2+ Oscillation/Calcineurin-Independent Osteoclastogenesis by Stabilizing NFATc1 Protein

    PubMed Central

    Kuroda, Yukiko; Hisatsune, Chihiro; Mizutani, Akihiro; Ogawa, Naoko

    2012-01-01

    Osteoclasts are multinuclear bone-resorbing cells formed by the fusion of monocyte/macrophage-lineage precursor cells. Activation of the transcription factor NFATc1 (nuclear factor of activated T cells c1) by the receptor activator of NF-κB ligand (RANKL) is critical for osteoclast differentiation. In our previous report (Y. Kuroda, C. Hisatsune, T. Nakamura, K. Matsuo, and K. Mikoshiba. Proc. Natl. Acad. Sci. U. S. A. 105:8643, 2008), we demonstrated that osteoblasts induce osteoclast differentiation via Ca2+ oscillation/calcineurin-dependent and -independent NFATc1 activation pathways; however, the mechanism underlying the latter remained unclear. Here we show that Cot, a serine/threonine kinase also known as tumor progression locus 2 (Tpl-2), directly phosphorylates all Ca2+/calcineurin-regulated NFAT family members (NFATc1 through NFATc4) and increases their protein levels. Moreover, Cot activity in osteoclasts was enhanced via cell-cell interaction with osteoblasts, and Cot promoted Ca2+ oscillation/calcineurin-independent osteoclastogenesis by increasing NFATc1 stability through phosphorylation. We propose that NFAT activation in vivo occurs via phosphorylation-induced protein stabilization, even in the absence of Ca2+ oscillation and calcineurin activity. PMID:22615493

  13. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fengbo; Graduate School of Tianjin Medical University, No. 22, Qixiangtai Street, Heping District, Tianjin 300070; Sun, Xiaolei

    Highlights: • Naringin possesses many pharmacological activities, promotes the proliferation of osteoblast. • Undecalcified histological obtain dynamic parameters of callus formation and remodeling. • Naringin regulate osteoclast apoptosis by mitochondrial pathway. - Abstract: Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness,more » bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats.« less

  14. Purification of human induced pluripotent stem cell-derived neural precursors using magnetic activated cell sorting.

    PubMed

    Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida

    2015-01-01

    Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.

  15. Cardiomyocyte-released factors stimulate oligodendrocyte precursor cells proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroda, Mariko; Muramatsu, Rieko; Precursory Research for Embryonic Science and Technology

    The heart produces multiple diffusible factors that are involved in a number of physiological processes, but the action of these factors on the central nervous system is not well understood. In this study, we found that one or more factors released by cardiomyocytes promote oligodendrocyte precursor cell (OPC) proliferation in vitro. Mouse OPCs co-cultured with mouse cardiomyocytes showed higher proliferative ability than OPCs cultured alone. In addition, cardiomyocyte-conditioned media was sufficient to promote OPC proliferation. The phosphorylation of phosphatidylinositol (PI) 3-kinase and extracellular signal-regulated kinase (ERK) in OPCs is necessary for the enhancement of OPC proliferation by cardiomyocyte-conditioned media. These datamore » indicate that heart-derived factors have the ability to directly regulate the function of central nervous system (CNS) cells.« less

  16. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    PubMed

    Babona-Pilipos, Robart; Droujinine, Ilia A; Popovic, Milos R; Morshead, Cindi M

    2011-01-01

    The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR) signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  17. Combined treatment with Dendrobium candidum and black tea extract promotes osteoprotective activity in ovariectomized estrogen deficient rats and osteoclast formation.

    PubMed

    Wang, Ming-Yue; Shen, Chang; An, Meng-Fei; Xie, Chuan-Qi; Wu, Xin; Zhu, Qiang-Qiang; Sun, Bin; Huang, Yan-Ping; Zhao, Yun-Li; Wang, Xuan-Jun; Sheng, Jun

    2018-05-01

    Dendrobium candidum (DC) and black tea, are traditional chinese drinks, which contain multiple active ingredients. However, whether or not the combination of these two ingredients can improve osteoporosis remains unknown. This study therefore aimed to examine the effects of the combination of DC and black tea extract (BTE) on osteoporosis. Ovariectomy (OVX)-induced osteoporosis in vivo as well as receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in vitro was selected. Results showed that OVX rats that were treated orally with a DC and BTE combination for 12 weeks maintained their calcium (Ca) and phosphorus (P) homeostasis and exhibited significantly enhanced estradiol (E 2 ) and OPG levels. This combination treatment also simultaneously reduced levels of interleukin (IL)-1β, IL-6 and improved the organ coefficients of the uterus and femur as well as BMD and BMC in OVX rats. In addition, this DC and BTE combination suppressed osteoclast differentiation in the RANKL-stimulated osteoclastogenesis of RAW 264.7 cells and effectively inhibited the expression of osteoclast-associated genes and proteins. The results of this study further highlight the fact that a combination of DC and BTE improved ovariectomy-induced osteoporosis in rats and suppressed RANKL-stimulated osteoclastogenesis in RAW 264.7 cells. This combination also significantly alleviated osteoporosis when compared to the alternative sole treatments above, due to synergistic effects among components. One partial mechanism of this combination might be the inhibition of osteoclast proliferation and the regulation of NFATC1/c-Fos expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp; Nakagawa, Shin; Takamura, Naoki

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression andmore » secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.« less

  19. The loss of Cbl-phosphatidylinositol 3-kinase interaction perturbs RANKL-mediated signaling, inhibiting bone resorption and promoting osteoclast survival.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Langdon, Wallace Y; Nakamura, Mary C; Tsygankov, Alexander Y; Sanjay, Archana

    2010-11-19

    Cbl is an adaptor protein and an E3 ligase that plays both positive and negative roles in several signaling pathways that affect various cellular functions. Tyrosine 737 is unique to Cbl and is phosphorylated by Syk and Src family kinases. Phosphorylated Cbl Tyr(737) creates a binding site for the p85 regulatory subunit of PI3K, which also plays an important role in the regulation of bone resorption by osteoclasts. To investigate the role of Cbl-PI3K interaction in bone homeostasis, we examined the knock-in mice (Cbl(YF/YF)) in which the PI3K binding site in Cbl is ablated due to the mutation in the regulatory tyrosine. We report that in Cbl(YF/YF) mice, despite increased numbers of osteoclasts, bone volume is increased due to defective osteoclast function. Additionally, in ex vivo cultures, mature Cbl(YF/YF) osteoclasts showed an increased ability to survive in the presence of RANKL due to delayed onset of apoptosis. RANKL-mediated signaling is perturbed in Cbl(YF/YF) osteoclasts, and most interestingly, AKT phosphorylation is up-regulated, suggesting that the lack of PI3K sequestration by Cbl results in increased survival and decreased bone resorption. Cumulatively, these in vivo and in vitro results show that, on one hand, binding of Cbl to PI3K negatively regulates osteoclast differentiation, survival, and signaling events (e.g. AKT phosphorylation), whereas on the other hand it positively influences osteoclast function.

  20. Inhibition of RANKL- and LPS-induced osteoclast differentiations by novel NF-κB inhibitor DTCM-glutarimide.

    PubMed

    Koide, Naoki; Kaneda, Ayumi; Yokochi, Takashi; Umezawa, Kazuo

    2015-03-01

    We have isolated 9-methylstreptimidone from microorganism as a new NF-κB inhibitor. Later, we designed 3-[(dodecylthiocarbonyl) methyl]-glutarimide (DTCM-glutarimide) as an analog of this compound, which shows anti-inflammatory activity in vivo. In the present research, we found that DTCM-glutarimide inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation of mouse bone marrow-derived macrophages and RANKL- or lipopolysaccharide (LPS)-induced osteoclast differentiation of RAW 264.7 cells without any toxicity. It also inhibited the RANKL-induced NFATc1 expression. Upstream signaling involving phosphorylation of Akt and GSK-3β was induced by RANKL, of which the signaling was inhibited by DTCM-glutarimide. Then DTCM-glutarimide was confirmed to inhibit RANKL-induced NF-κB activity, possibly by inhibiting the Akt-mediated activation of IKK. Thus, DTCM-glutarimide inhibited osteoclastogenesis by blocking both the Akt-GSK3β-NFATc1 and NF-κB-NFATc1 pathways. DTCM-glutarimide may be a candidate as a chemotherapeutic agent for severe bone resorption diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. VpreB gene expression in hematopoietic malignancies: a lineage- and stage-restricted marker for B-cell precursor leukemias.

    PubMed

    Bauer, S R; Kubagawa, H; Maclennan, I; Melchers, F

    1991-09-15

    We show here that analysis of VpreB gene transcription can be a specific way to identify acute leukemias of cells at very early stages of B-cell development. Northern blot analysis of RNAs from 63 leukemia samples showed that VpreB RNA was present in malignancies of precursor B cells, the expression being a feature of both common acute lymphoblastic leukemia (ALL) (CD10+) and null ALL (CD10-). It was absent from malignancies of mature B cells (surface Ig positive), from acute leukemias of the T-cell lineage and granulocyte-macrophage lineages, and from normal tonsil B and T lymphocytes. Chronic myeloid leukemia blast crises of the B-precursor-cell type expressed the VpreB gene while myeloid blast crises did not. VpreB RNA was also expressed in the neoplastic cells of one of three patients with acute undifferentiated leukemias. These data show that VpreB RNA expression is a marker of the malignant forms of precursor B cells, and that it appears at least as early as cytoplasmic CD22 and CD19 in tumors of the B-cell lineage.

  2. Impact of Lactic Acid on Cell Proliferation and Free Radical Induced Cell Death in Monolayer Cultures of Neural Precursor Cells

    PubMed Central

    Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.

    2009-01-01

    Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cell population of considerable interest as a source of cells for neural tissue regeneration strategies, generate a high amount of reactive oxygen species, and when associated with a degradable biomaterial, may be impacted by released lactic acid. In this work, the effect of lactic acid on a neural cell population containing proliferative neural precursor cells was examined in monolayer culture. Lactic acid was found to scavenge exogenously added free radicals produced in the presence of either hydrogen peroxide or a photoinitiator (I2959) commonly utilized in the preparation of photopolymerizable biomaterials. In addition to its effect on exogenously added free radicals, lactic acid reduced intracellular redox state, increased the proliferation of the cell population, and modified the cell composition. The findings of this study provide insight into the role that lactic acid plays naturally on developing neural cells and are also of interest to biomaterials scientists that are focused on the development of degradable lactic-acid based polymers for cell culture devices. The effect of lactic acid on other cell populations may differ and should be characterized to best understand how cells function in degradable cell culture devices. PMID:19408314

  3. Characterization of glial-restricted precursors from rhesus monkey embryonic stem cells.

    PubMed

    Chen, Hongwei; Mao, Yu; Wang, Shufen; Li, Bin; Wang, Jinhuan; Li, Jian; Ma, Yuanye

    2015-01-01

    Glial-restricted precursor (GRP) cells, the earliest glial progenitors for both astrocytes and oligodendrocytes, have been derived from embryos and embryonic stem cells (ESC) in rodents. However, knowledge regarding the equivalent cell type in primates is limited due to restrictions imposed by ethics and resources. Here we report successful derivation and characterization of primate GRP cells from rhesus monkey ESC. The purified monkey GRP cells were A 2 B 5 -positive and FGF2-dependent for survival and proliferation. The differentiation assays indicated that they were tri-potential in vitro and bi-potential in vivo . These newly purified GRP cells will help to facilitate understanding of the molecular mechanism of glial development in primates as well as provide a source of therapeutic donor cells for use in neuroregenerative medicine.

  4. The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption

    NASA Astrophysics Data System (ADS)

    Lai, Min; Jin, Ziyang; Yang, Xinyi; Wang, Huaying; Xu, Kui

    2017-02-01

    The aim of this study was to fabricate a novel drug-releasing bioactive platform that has excellent potential for improving osteoblast differentiation and inhibiting osteoclast resorption. TiO2 nanotubes (TNTs) with an outer diameter of around 70 nm were prepared by an anodization method. TNTs were filled with simvastatin (SV) and then coated using chitosan/gelatin multilayers (TNT-SV-LBL). The successful fabrication of TNT-SV-LBL substrates was confirmed by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement, respectively. The in vitro release behavior of simvastatin from TNT-SV-LBL substrates showed a sustained release as compared to the uncoated group. Osteoblasts adhering to TNT-SV-LBL substrates attached well and displayed significantly higher (p < 0.01) cell viability compared with the other substrates. More importantly, osteoblasts grown on TNT-SV-LBL substrates displayed a statistically significant (p < 0.01 or p < 0.05) increase in protein production levels of alkaline phosphatase (ALP), osteocalcin (OC) and mRNA expression of runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN), OC and osteoprotegerin (OPG) compared to the other groups after 4, 7 and 14 days of culture, respectively. Additionally, multinuclear osteoclastic differentiation of RAW264.7 cells grown on TNT-SV-LBL substrates was inhibited as confirmed by tartrate-resistant acid phosphatase (TRAP) analysis. These results demonstrated that bio-functionalized substrates with SV and chitosan/gelatin multilayers have great potential for improving osteoblast differentiation, as well as inhibiting osteoclast formation. Therefore, these advanced surface and chemical capabilities make this substrate well suited for the development of a drug-releasing Ti implant for bone regeneration.

  5. Opposing Effects of α2- and β-Adrenergic Receptor Stimulation on Quiescent Neural Precursor Cell Activity and Adult Hippocampal Neurogenesis

    PubMed Central

    Prosper, Boris W.; Marathe, Swanand; Husain, Basma F. A.; Kernie, Steven G.; Bartlett, Perry F.; Vaidya, Vidita A.

    2014-01-01

    Norepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood. In this study, we used transgenic Nestin-GFP mice and neurosphere assays to show that modulation of α2- and β-adrenergic receptor activity directly affects Nestin-GFP/GFAP-positive precursor cell population albeit in an opposing fashion. While selective stimulation of α2-adrenergic receptors decreases precursor cell activation, proliferation and immature neuron number, stimulation of β-adrenergic receptors activates the quiescent precursor pool and enhances their proliferation in the adult hippocampus. Furthermore, our data indicate no major role for α1-adrenergic receptors, as we did not observe any change in either the activation and proliferation of hippocampal precursors following selective stimulation or blockade of α1-adrenergic receptors. Taken together, our data suggest that under physiological as well as under conditions that lead to enhanced norepinephrine release, the balance between α2- and β-adrenergic receptor activity regulates precursor cell activity and hippocampal neurogenesis. PMID:24922313

  6. Efficient production of reactive oxygen species in neural precursor cells after exposure to 250 MeV protons.

    PubMed

    Giedzinski, Erich; Rola, Radoslaw; Fike, John R; Limoli, Charles L

    2005-10-01

    The space radiation environment is composed of highly energetic ions, dominated by protons, that pose a range of potential health risks to astronauts. Traversals of these particles through certain tissues may compromise the viability and/or function of sensitive cells, including neural precursors found within the dentate subgranular zone of the hippocampus. Irradiation has been shown to deplete these cells in vivo, and reductions of these critical cells are believed to impair neurogenesis and cognition. To more fully understand the mechanisms underlying the behavior of these precursor cells after irradiation, we have developed an in vitro neural precursor cell system and used it to assess acute (0-48 h) changes in ROS and mitochondrial end points after exposure to Bragg-peak protons of 250 MeV. Relative ROS levels were increased at nearly all doses (1-10 Gy) and postirradiation times (6-24 h) compared to unirradiated controls. The increase in ROS after proton irradiation was more rapid than that observed with X rays and showed a well-defined dose response at 6 and 24 h, increasing approximately 10% and 3% per gray, respectively. However, by 48 h postirradiation, ROS levels fell below controls and coincided with minor reductions in mitochondrial content. Use of the antioxidant alpha-lipoic acid (before or after irradiation) was shown to eliminate the radiation-induced rise in ROS levels. Our results corroborate earlier studies using X rays and provide further evidence that elevated ROS are integral to the radioresponse of neural precursor cells.

  7. Phloretin promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice.

    PubMed

    Lee, Eun-Jung; Kim, Jung-Lye; Kim, Yun-Ho; Kang, Min-Kyung; Gong, Ju-Hyun; Kang, Young-Hee

    2014-09-15

    Bone-remodeling imbalance induced by increased osteoclast formation and bone resorption is known to cause skeletal diseases such as osteoporosis. The reduction of estrogen levels at menopause is one of the strongest risk factors developing postmenopausal osteoporosis. This study investigated osteoprotective effects of the dihydrochalcone phloretin found in apple tree leaves on bone loss in ovariectomized (OVX) C57BL/6 female mice as a model for postmenopausal osteoporosis. OVX demoted bone mineral density (BMD) of mouse femurs, reduced serum 17β-estradiol level and enhanced serum receptor activator of NF-κB ligand (RANKL)/osteoprotegerin ratio with uterine atrophy. Oral administration of 10 mg/kg phloretin to OVX mice for 8 weeks improved such effects, compared to sham-operated mice. Phloretin attenuated TRAP activity and cellular expression of β3 integrin and carbonic anhydrase II augmented in femoral bone tissues of OVX mice. This study further examined that osteogenic activity of phloretin in RANKL-differentiated Raw 264.7 macrophages into mature osteoclasts. Phloretin at 1-20 μM stimulated Smac expression and capase-3 activation concurrently with nuclear fragmentation of multi-nucleated osteoclasts, indicating that this compound promoted osteoclast apoptosis. Consistently, phloretin enhanced bcl-2 induction but diminished bax expression. Furthermore, phloretin activated ASK-1-diverged JNK and p38 MAPK signaling pathways in mature osteoclasts, whereas it dose-dependently inhibited the RANKL-stimulated activation of ERK. Therefore, phloretin manipulated ASK-1-MAPK signal transduction leading to transcription of apoptotic genes. Phloretin was effective in preventing estrogen deficiency-induced osteoclastogenic resorption. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells

    PubMed Central

    Kondo, Toru; Raff, Martin

    2004-01-01

    We showed previously that purified rat oligodendrocyte precursor cells (OPCs) can be induced by extracellular signals to convert to multipotent neural stem-like cells (NSLCs), which can then generate both neurons and glial cells. Because the conversion of precursor cells to stem-like cells is of both intellectual and practical interest, it is important to understand its molecular basis. We show here that the conversion of OPCs to NSLCs depends on the reactivation of the sox2 gene, which in turn depends on the recruitment of the tumor suppressor protein Brca1 and the chromatin-remodeling protein Brahma (Brm) to an enhancer in the sox2 promoter. Moreover, we show that the conversion is associated with the modification of Lys 4 and Lys 9 of histone H3 at the same enhancer. Our findings suggest that the conversion of OPCs to NSLCs depends on progressive chromatin remodeling, mediated in part by Brca1 and Brm. PMID:15574597

  9. [Isolation and Characterization of Multipotent Precursor Cells from Murine Adipose Tissue using a Clinically Approved Cell Separation System].

    PubMed

    Krug, C; Beer, A; Saller, M M; Aszodi, A; Holzbach, T; Giunta, R E; Volkmer, E

    2016-04-01

    Recent studies underscored the clinical potential of adipose-derived multipotent stem-/precursor cells (ASPCs). One of the main hurdles en route to clinical application was to isolate cells without having to perform expansion cultures outside the OR. A new generation of clinically approved, commercially available cell separation systems claims to provide ASPCs ready for application without further expansion cultures. However, it is unclear if the new systems yield sufficient cells of adequate quality for the use in autologous murine models. The aim of this study was to isolate and characterize adipose-derived precursor cells taken from the inguinal fat pat of wistar rats using InGeneron's clinically approved ARC™-cell separation system. We isolated cells from the inguinal fat pad of 3 male Wistar rats according to the manufacturer's protocol. In order to reduce the influence of the atmospheric oxygen on the multipotent precursor cells, one half of the cell suspension was cultivated under hypoxia (2% O2) simulating physiological conditions for ASPCs. As a control, the other half of the cells were cultivated under normoxia (21% O2). Cell surface markers CD90, CD29, CD45 and CD11b/c were analyzed by FACS, and osteogenic and adipogenic differentiation of the ASPCs was performed. Finally, cellular growth characteristics were assessed by evaluation of the cumulative population doublings and CFU assay, and metabolic activity was evaluated by WST-1 assay. Processing time was 90 (± 12) min. 1 g of adipose tissue yielded approximately 60 000 plastic adhering cells. Both groups showed a high expression of the mesenchymal stem cell markers CD90 and CD29 while they were negative for the leucocyte markers CD45 and CD11b/c. A strong osteogenic differentiation and a sufficient adipogenic differentiation potential was proven for all ASPCs. Under hypoxia, ASPCs showed increased proliferation characteristics and CFU efficiency as well as a significantly increased metabolic

  10. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation.

    PubMed

    Glass, Donald A; Bialek, Peter; Ahn, Jong Deok; Starbuck, Michael; Patel, Millan S; Clevers, Hans; Taketo, Mark M; Long, Fanxin; McMahon, Andrew P; Lang, Richard A; Karsenty, Gerard

    2005-05-01

    Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.

  11. Quantifying the Labeling and the Levels of Plant Cell Wall Precursors Using Ion Chromatography Tandem Mass Spectrometry1[W][OA

    PubMed Central

    Alonso, Ana P.; Piasecki, Rebecca J.; Wang, Yan; LaClair, Russell W.; Shachar-Hill, Yair

    2010-01-01

    The biosynthesis of cell wall polymers involves enormous fluxes through central metabolism that are not fully delineated and whose regulation is poorly understood. We have established and validated a liquid chromatography tandem mass spectrometry method using multiple reaction monitoring mode to separate and quantify the levels of plant cell wall precursors. Target analytes were identified by their parent/daughter ions and retention times. The method allows the quantification of precursors at low picomole quantities with linear responses up to the nanomole quantity range. When applying the technique to Arabidopsis (Arabidopsis thaliana) T87 cell cultures, 16 hexose-phosphates (hexose-Ps) and nucleotide-sugars (NDP-sugars) involved in cell wall biosynthesis were separately quantified. Using hexose-P and NDP-sugar standards, we have shown that hot water extraction allows good recovery of the target metabolites (over 86%). This method is applicable to quantifying the levels of hexose-Ps and NDP-sugars in different plant tissues, such as Arabidopsis T87 cells in culture and fenugreek (Trigonella foenum-graecum) endosperm tissue, showing higher levels of galacto-mannan precursors in fenugreek endosperm. In Arabidopsis cells incubated with [U-13CFru]sucrose, the method was used to track the labeling pattern in cell wall precursors. As the fragmentation of hexose-Ps and NDP-sugars results in high yields of [PO3]−/or [H2PO4]− ions, mass isotopomers can be quantified directly from the intensity of selected tandem mass spectrometry transitions. The ability to directly measure 13C labeling in cell wall precursors makes possible metabolic flux analysis of cell wall biosynthesis based on dynamic labeling experiments. PMID:20442274

  12. Safflower bud inhibits RANKL-induced osteoclast differentiation and prevents bone loss in ovariectomized mice.

    PubMed

    Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan

    2017-10-15

    The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.

  13. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis

    PubMed Central

    Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji

    2016-01-01

    The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)–mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow–derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR−/− mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos–dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR−/− mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. PMID:27849171

  14. Loss of Cbl–PI3K Interaction Enhances Osteoclast Survival due to p21-Ras Mediated PI3K Activation Independent of Cbl-b

    PubMed Central

    Adapala, Naga Suresh; Barbe, Mary F.; Tsygankov, Alexander Y.; Lorenzo, Joseph A.; Sanjay, Archana

    2015-01-01

    Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl−/− and Cbl-b−/−, mice lacking Cbl–PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl–PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b−/− background (YF/YF;Cbl-b−/−) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b−/− osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl–PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl–PI3K interaction, increased Ras GTPase activity and Ras–PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b−/− mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b−/− mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl–PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts. PMID:24470255

  15. Loss of Cbl-PI3K interaction enhances osteoclast survival due to p21-Ras mediated PI3K activation independent of Cbl-b.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Tsygankov, Alexander Y; Lorenzo, Joseph A; Sanjay, Archana

    2014-07-01

    Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl(-/-) and Cbl-b(-/-) , mice lacking Cbl-PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl-PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b(-/-) background (YF/YF;Cbl-b(-/-) ) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b(-/-) osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl-PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl-PI3K interaction, increased Ras GTPase activity and Ras-PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b(-/-) mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b(-/-) mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl-PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts. © 2014 Wiley Periodicals, Inc.

  16. Circulating osteogentic precursor cells in non-hereditary heterotopic ossification.

    PubMed

    Egan, Kevin P; Duque, Gustavo; Keenan, Mary Ann; Pignolo, Robert J

    2018-04-01

    Non-hereditary heterotopic ossification (NHHO) may occur after musculoskeletal trauma, central nervous system (CNS) injury, or surgery. We previously described circulating osteogenic precursor (COP) cells as a bone marrow-derived type 1 collagen + CD45 + subpopulation of mononuclear adherent cells that are able of producing extraskeletal ossification in a murine in vivo implantation assay. In the current study, we performed a tissue analysis of COP cells in NHHO secondary to defined conditions, including traumatic brain injury, spinal cord injury, cerebrovascular accident, trauma without neurologic injury, and joint arthroplasty. All bone specimens revealed the presence of COP cells at 2-14 cells per high power field. COP cells were localized to early fibroproliferative and neovascular lesions of NHHO with evidence for their circulatory status supported by their presence near blood vessels in examined lesions. This study provides the first systematic evaluation of COP cells as a contributory histopathological finding associated with multiple forms of NHHO. These data support that circulating, hematopoietic-derived cells with osteogenic potential can seed inflammatory sites, such as those subject to soft tissue injury, and due to their migratory nature, may likely be involved in seeding sites distant to CNS injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity

    PubMed Central

    Shakespeare, William; Yang, Michael; Bohacek, Regine; Cerasoli, Franklin; Stebbins, Karin; Sundaramoorthi, Raji; Azimioara, Mihai; Vu, Chi; Pradeepan, Selvi; Metcalf, Chester; Haraldson, Chad; Merry, Taylor; Dalgarno, David; Narula, Surinder; Hatada, Marcos; Lu, Xiaode; van Schravendijk, Marie Rose; Adams, Susan; Violette, Shelia; Smith, Jeremy; Guan, Wei; Bartlett, Catherine; Herson, Jay; Iuliucci, John; Weigele, Manfred; Sawyer, Tomi

    2000-01-01

    Targeted disruption of the pp60src (Src) gene has implicated this tyrosine kinase in osteoclast-mediated bone resorption and as a therapeutic target for the treatment of osteoporosis and other bone-related diseases. Herein we describe the discovery of a nonpeptide inhibitor (AP22408) of Src that demonstrates in vivo antiresorptive activity. Based on a cocrystal structure of the noncatalytic Src homology 2 (SH2) domain of Src complexed with citrate [in the phosphotyrosine (pTyr) binding pocket], we designed 3′,4′-diphosphonophenylalanine (Dpp) as a pTyr mimic. In addition to its design to bind Src SH2, the Dpp moiety exhibits bone-targeting properties that confer osteoclast selectivity, hence minimizing possible undesired effects on other cells that have Src-dependent activities. The chemical structure AP22408 also illustrates a bicyclic template to replace the post-pTyr sequence of cognate Src SH2 phosphopeptides such as Ac-pTyr-Glu-Glu-Ile (1). An x-ray structure of AP22408 complexed with Lck (S164C) SH2 confirmed molecular interactions of both the Dpp and bicyclic template of AP22408 as predicted from molecular modeling. Relative to the cognate phosphopeptide, AP22408 exhibits significantly increased Src SH2 binding affinity (IC50 = 0.30 μM for AP22408 and 5.5 μM for 1). Furthermore, AP22408 inhibits rabbit osteoclast-mediated resorption of dentine in a cellular assay, exhibits bone-targeting properties based on a hydroxyapatite adsorption assay, and demonstrates in vivo antiresorptive activity in a parathyroid hormone-induced rat model. PMID:10944210

  18. TGF-β Coordinately Activates TAK1/MEK/AKT/NFkB and Smad Pathways to Promote Osteoclast Survival

    PubMed Central

    Gingery, Anne; Bradley, Elizabeth W.; Pederson, Larry; Ruan, Ming; Horwood, Nikki J.; Oursler, Merry Jo

    2008-01-01

    To better understand the roles of TGF-β in bone metabolism, we investigated osteoclast survival in response TGF-β and found that TGF-β inhibited apoptosis. We examined the receptors involved in promotion of osteoclast survival and found that the canonical TGF-β receptor complex is involved in the survival response. The upstream MEK kinase TAK1 was rapidly activated following TGF-β treatment. Since osteoclast survival involves MEK, AKT, and NFκB activation, we examined TGF-β effects on activation of these pathways and observed rapid phosphorylation of MEK, AKT, IKK, IκB, and NFκB. The timing of activation coincided with SMAD activation and dominant negative SMAD expression did not inhibit NFκB activation, indicating that kinase pathway activation is independent of SMAD signaling. Inhibition of TAK1, MEK, AKT, NIK, IKK, or NFκB repressed TGF-β-mediated osteoclast survival. Adenoviral-mediated TAK1 or MEK inhibition eliminated TGF-β-mediated kinase pathway activation and constitutively active AKT expression overcame apoptosis induction following MEK inhibition. TAK1/MEK activation induces pro-survival BclXL expression and TAK1/MEK and SMAD pathway activation induces pro-survival Mcl-1 expression. These data show that TGF-β-induced NFκB activation is through TAK1/MEK-mediated AKT activation, which is essential for TGF-β to support of osteoclast survival. PMID:18586026

  19. Bone cell communication factors and Semaphorins

    PubMed Central

    Negishi-Koga, Takako; Takayanagi, Hiroshi

    2012-01-01

    Bone tissue is continuously renewed throughout adult life by a process called 'remodeling', which involves a dynamic interplay among bone cells including osteoclasts, osteoblasts and osteocytes. For example, a tight coupling between bone resorption and formation is essential for the homeostasis of the skeletal system. Studies on the coupling mechanism in physiological and pathological settings have revealed that osteoclasts or osteoclastic bone resorption promote bone formation through the production of diverse coupling factors. The classical coupling factors are the molecules that promote bone formation after resorption, but there may be distinct mechanisms at work in various phases of bone remodeling. A recent study revealed that the Semaphorin 4D expressed by osteoclasts inhibits bone formation, which represents a mechanism by which coupling is dissociated. Furthermore, it has been demonstrated that osteoblastic expression of Semaphorin 3A exerts an osteoprotective effect by both suppressing bone resorption and increasing bone formation. Thus, recent advances have made it increasingly clear that bone remodeling is regulated by not only classical coupling factors, but also molecules that mediate cell–cell communication among bone cells. We propose that such factors be called bone cell communication factors, which control the delicate balance of the interaction of bone cells so as to maintain bone homeostasis. PMID:24171101

  20. A DNA Microarray Analysis of Chemokine and Receptor Genes in the Rat Dental Follicle – Role of Secreted Frizzled-Related Protein-1 in Osteoclastogenesis

    PubMed Central

    Liu, Dawen; Wise, Gary E.

    2007-01-01

    The dental follicle, a loose connective tissue sac that surrounds the unerupted tooth, appears to regulate the osteoclastogenesis needed for eruption; i.e., bone resorption to form an eruption pathway. Thus, DNA microarray studies were conducted to determine which chemokines and their receptors were expressed chronologically in the dental follicle, chemokines that might attract osteoclast precursors. In the rat first mandibular molar, a major burst of osteoclastogenesis occurs at day 3 with a minor burst at day 10. The results of the microarray confirmed our previous studies showing the gene expression of molecules such as CSF-1 and MCP-1 in the dental follicle cells. Other new genes also were detected, including secreted frizzled-related protein-1 (SFRP-1), which was found to be down-regulated at days 3 and 9. Using rat bone marrow cultures to conduct in vitro osteoclastogenic assays, it was demonstrated that SFRP-1 inhibited osteoclast formation in a concentration-dependent fashion. However, with increasing concentrations of SFRP-1, the number of TRAP-positive mononuclear cells increased suggesting that SFRP-1 inhibits osteoclast formation by inhibiting the fusion of mononuclear cells (osteoclast precursors). Co-culturing bone marrow mononuclear cells and dental follicle cells demonstrated that the dental follicle cells were secreting a product(s) that inhibited osteoclastogenesis, as measured by counting of TRAP-positive osteoclasts. Adding an antibody either to SFRP-1 or OPG partially restored osteoclastogenesis. Adding both anti-SFRP-1 and anti-OPG fully negated the inhibitory effect of the follicle cells upon osteoclastogenesis. These results strongly suggest that SFRP-1 and OPG, both secreted by the dental follicle cells, use different pathways to exert their inhibitory effect on osteoclastogenesis. Based on these in vitro studies of osteoclastogenesis, it is likely that the down-regulation of SFRP-1 gene expression in the dental follicle at days 3 and 9 is

  1. Massive elimination of multinucleated osteoclasts by eupatilin is due to dual inhibition of transcription and cytoskeletal rearrangement.

    PubMed

    Kim, Ju-Young; Lee, Myeung Su; Baek, Jong Min; Park, Jongtae; Youn, Byung-Soo; Oh, Jaemin

    2015-12-01

    Osteoporosis is an aging-associated disease requiring better therapeutic modality. Eupatilin is a major flavonoid from Artemisia plants such as Artemisia princeps and Artemisia argyi which has been reported to possess various beneficial biological effects including anti-inflammation, anti-tumor, anti-cancer, anti-allergy, and anti-oxidation activity. Complete blockade of RANK-dependent osteoclastogenesis was accomplished upon stimulation prior to the receptor activator of nuclear factor κB (RANK)-ligand (RANKL) treatment or post-stimulation of bone marrow macrophages (BMCs) in the presence of RANKL with eupatilin. This blockade was accompanied by inhibition of rapid phosphorylation of Akt, GSK3β, ERK and IκB as well as downregulation of c-Fos and NFATc1 at protein, suggesting that transcriptional suppression is a key mechanism for anti-osteoclastogenesis. Transient reporter assays or gain of function assays confirmed that eupatilin was a potent transcriptional inhibitor in osteoclasts (OC). Surprisingly, when mature osteoclasts were cultured on bone scaffolds in the presence of eupatilin, bone resorption activity was also completely blocked by dismantling the actin rings, suggesting that another major acting site of eupatilin is cytoskeletal rearrangement. The eupatilin-treated mature osteoclasts revealed a shrunken cytoplasm and accumulation of multi-nuclei, eventually becoming fibroblast-like cells. No apoptosis occurred. Inhibition of phosphorylation of cofilin by eupatilin suggests that actin may play an important role in the morphological change of multinucleated cells (MNCs). Human OC similarly responded to eupatilin. However, eupatilin has no effects on osteoblast differentiation and shows cytotoxicity on osteoblast in the concentration of 50 μM. When eupatilin was administered to LPS-induced osteoporotic mice after manifestation of osteoporosis, it prevented bone loss. Ovariectomized (OVX) mice remarkably exhibited bone protection effects. Taken

  2. Quantifying Osteogenic Cell Degradation of Silk Biomaterials

    PubMed Central

    Sengupta, Sejuti; Park, Sang-Hyug; Seok, Gil Eun; Patel, Atur; Numata, Keiji; Lu, Chia-Li; Kaplan, David L.

    2010-01-01

    The degradation of silk protein films by human mesenchymal stem cells (hMSCs), osteoblasts and osteoclasts, cells involved in osteogenic functions in normal and diseased bone, was assessed in vitro. The involvement of specific matrix metalloproteinases (MMPs) and integrin signaling in the degradation process was determined. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively compare degradation by the different cell types using surface patterned silk films. Osteoblasts and osteoclasts demonstrated significant degradation of the silk films in vitro in comparison to the hMSCs and the film controls without cells. The osteoclasts degraded the silk films the most and also generated the highest level of MMPs 1 and 2. The osteoblasts upregulated integrins α5 and β1 while the osteoclasts upregulated integrins α2 and β1. There was significant contrast in responses on the silk matrices between osteogenic cells vs undifferentiated hMSCs to illustrate in vitro the role of cell type on matrix remodeling. These are important issues in matching biomaterial matrix features and studies in vitro to remodeling in vivo, in both normal and disease tissue systems. Cell populations and niche factors impact tissue regeneration, wound healing and physiological state and the ability to better understand the role of different cell types is critical to overall regenerative outcomes. PMID:21105641

  3. Cherubism Mice Also Deficient in c-Fos Exhibit Inflammatory Bone Destruction Executed by Macrophages That Express MMP14 Despite the Absence of TRAP+ Osteoclasts.

    PubMed

    Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi

    2018-01-01

    Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP+) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2 KI/KI ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2 KI/KI mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum collagen I C-terminal telopeptide (ICTP), a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, whereas levels of serum cross-linked C-telopeptide (CTX), another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2 KI/KI mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2 KI/KI mice. After activation of the NF-κB pathway, macrophage colony-stimulating factor (M-CSF)-dependent macrophages from c-Fos-deficient Sh3bp2 KI/KI mice expressed increased amounts of MMP14 compared with wild-type macrophages. Interestingly, receptor activator of NF-κB ligand (RANKL)-deficient Sh3bp2 KI/KI mice failed to show notable bone erosion, whereas c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2 KI/KI mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in

  4. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  5. The Nuclear Receptor AhR Controls Bone Homeostasis by Regulating Osteoclast Differentiation via the RANK/c-Fos Signaling Axis.

    PubMed

    Izawa, Takashi; Arakaki, Rieko; Mori, Hiroki; Tsunematsu, Takaaki; Kudo, Yasusei; Tanaka, Eiji; Ishimaru, Naozumi

    2016-12-15

    The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow-derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR -/- mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos-dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR -/- mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. The molecular characterization of porcine egg precursor cells

    PubMed Central

    Tsai, Te-Sha; Johnson, Jacqueline; White, Yvonne; John, Justin C.

    2017-01-01

    Female-factor infertility can be caused by poor oocyte quality and depleted ovarian reserves. Egg precursor cells (EPCs), isolated from the ovarian cortex, have the potential to be used to overcome female infertility. We aimed to define the origins of EPCs by analyzing their gene expression profiles and mtDNA content using a mini-pig model. We characterized FAC-sorted DDX4+-derived porcine EPCs by performing RNA-sequencing and determined that they utilize pathways important for cell cycle and proliferation, which supports the existence of adult mitotically active oogonial cells. Expression of the pluripotent markers Sox2 and Oct4, and the primitive germ cell markers Blimp1 and Stella were not detected. However, Nanog and Ddx4 were expressed, as were the primitive germ cell markers Fragilis, c-Kit and Tert. Moreover, porcine EPCs expressed self-renewal and proliferation markers including Myc, Esrrb, Id2, Klf4, Klf5, Stat3, Fgfr1, Fgfr2 and Il6st. The presence of Zp1, Zp2, Zp3 and Nobox were not detected, indicating that porcine EPCs are not indicative of mature primordial oocytes. We performed mitochondrial DNA Next Generation Sequencing and determined that one mtDNA variant harbored by EPCs was present in oocytes, preimplantation embryos and somatic tissues over three generations in our mini-pig model indicating the potential germline origin of EPCs. PMID:28969006

  7. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    ERIC Educational Resources Information Center

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  8. Exosome-Mediated Genetic Information Transfer, a Missing Piece of Osteoblast-Osteoclast Communication Puzzle.

    PubMed

    Yin, Pengbin; Lv, Houchen; Li, Yi; Deng, Yuan; Zhang, Licheng; Tang, Peifu

    2017-01-01

    The skeletal system functions and maintains itself based on communication between cells of diverse origins, especially between osteoblasts (OBs) and osteoclasts (OCs), accounting for bone formation and resorption, respectively. Previously, protein-level information exchange has been the research focus, and this has been discussed in detail. The regulative effects of microRNAs (miRNAs) on OB and OC ignite the question as to whether genetic information could be transferred between bone cells. Exosomes, extracellular membrane vesicles 30-100 nm in diameter, have recently been demonstrated to transfer functional proteins, mRNAs, and miRNAs, and serve as mediators of intercellular communication. By reviewing the distinguishing features of exosomes, a hypothesis was formulated and evaluated in this article that exosome-mediated genetic information transfer may represent a novel strategy for OB-OC communication. The exosomes may coordinately regulate these two cells under certain physiological conditions by transferring genetic information. Further research in exosome-shuttered miRNAs in OB-OC communication may add a missing piece to the bone cells communication "puzzle."

  9. Case report of precursor B-cell lymphoblastic lymphoma presenting as syncope and cardiac mass in a nonimmunocompromised child.

    PubMed

    Hahn, Barry; Rao, Sudha; Shah, Binita

    2007-08-01

    We report the case of a previously healthy, 10-year-old boy who presented to the emergency department with a syncopal episode. In the emergency department, the patient was diagnosed with a right atrial mass, later identified as a precursor B-cell lymphoblastic lymphoma (LL). Most causes of syncope in children are not life threatening. In most cases, it indicates a predisposition to vasovagal episodes. Lymphomas account for approximately 7% of malignancies among children younger than 20 years, are more common in white males and immunocompromised patients, and are predominantly tumors of T-cell origin. Children with non-Hodgkin lymphoma usually present with extranodal disease, most frequently involving the abdomen (31%), mediastinum (26%), or head and neck (29%). Our patient was unique in that he was a nonimmunocompromised, black boy, presenting with syncope in the setting of a large atrial mass identified as a precursor B-cell LL. To our knowledge, there are no reported cases of precursor B-cell LL presenting as syncope and a cardiac mass.

  10. Brain and Bone Damage in KARAP/DAP12 Loss-of-Function Mice Correlate with Alterations in Microglia and Osteoclast Lineages

    PubMed Central

    Nataf, Serge; Anginot, Adrienne; Vuaillat, Carine; Malaval, Luc; Fodil, Nassima; Chereul¶, Emmanuel; Langlois¶, Jean-Baptiste; Dumontel, Christiane; Cavillon, Gaelle; Confavreux, Christian; Mazzorana, Marlène; Vico, Laurence; Belin, Marie-Franaçoise; Vivier, Eric; Tomasello, Elena; Jurdic, Pierre

    2005-01-01

    Human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy, also known as Nasu-Hakola disease, has been described to be associated with mutations affecting the immunoreceptor tyrosine-based activation motif-bearing KARAP/DAP12 immunoreceptor gene. Patients present bone fragilities and severe neurological alterations leading to presenile dementia. Here we investigated whether the absence of KARAP/DAP12-mediated signals in loss-of-function (KΔ75) mice also leads to bone and central nervous system pathological features. Histological analysis of adult KΔ75 mice brains revealed a diffuse hypomyelination predominating in anterior brain regions. As this was not accompanied by oligodendrocyte degeneration or microglial cell activation it suggests a developmental defect of myelin formation. Interestingly, in postnatal KΔ75 mice, we observed a dramatic reduction in microglial cell numbers similar to in vitro microglial cell differentiation impairment. Our results raise the intriguing possibility that defective microglial cell differentiation might be responsible for abnormal myelin development. Histomorphometry revealed that bone remodeling is also altered, because of a resorption defect, associated with a severe block of in vitro osteoclast differentiation. In addition, we show that, among monocytic lineages, KARAP/DAP12 specifically controls microglial and osteoclast differentiation. Our results confirm that KARAP/DAP12-mediated signals play an important role in the regulation of both brain and bone homeostasis. Yet, important differences exist between the symptoms observed in Nasu-Hakola patients and KΔ75 mice. PMID:15632019

  11. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  12. Alcohol-Induced Molecular Dysregulation in Human Embryonic Stem Cell-Derived Neural Precursor Cells

    PubMed Central

    Kim, Yi Young; Roubal, Ivan; Lee, Youn Soo; Kim, Jin Seok; Hoang, Michael; Mathiyakom, Nathan; Kim, Yong

    2016-01-01

    Adverse effect of alcohol on neural function has been well documented. Especially, the teratogenic effect of alcohol on neurodevelopment during embryogenesis has been demonstrated in various models, which could be a pathologic basis for fetal alcohol spectrum disorders (FASDs). While the developmental defects from alcohol abuse during gestation have been described, the specific mechanisms by which alcohol mediates these injuries have yet to be determined. Recent studies have shown that alcohol has significant effect on molecular and cellular regulatory mechanisms in embryonic stem cell (ESC) differentiation including genes involved in neural development. To test our hypothesis that alcohol induces molecular alterations during neural differentiation we have derived neural precursor cells from pluripotent human ESCs in the presence or absence of ethanol treatment. Genome-wide transcriptomic profiling identified molecular alterations induced by ethanol exposure during neural differentiation of hESCs into neural rosettes and neural precursor cell populations. The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis on significantly altered genes showed potential ethanol’s effect on JAK-STAT signaling pathway, neuroactive ligand-receptor interaction, Toll-like receptor (TLR) signaling pathway, cytokine-cytokine receptor interaction and regulation of autophagy. We have further quantitatively verified ethanol-induced alterations of selected candidate genes. Among verified genes we further examined the expression of P2RX3, which is associated with nociception, a peripheral pain response. We found ethanol significantly reduced the level of P2RX3 in undifferentiated hESCs, but induced the level of P2RX3 mRNA and protein in hESC-derived NPCs. Our result suggests ethanol-induced dysregulation of P2RX3 along with alterations in molecules involved in neural activity such as neuroactive ligand-receptor interaction may be a molecular event

  13. Impact of Bisphosphonate on Orthodontic tooth movement and osteoclastic count: An Animal Study

    PubMed Central

    Venkataramana, V; Chidambaram, S; Reddy, B Vishnuvardhan; Goud, E V Soma Shekara; Arafath, Mohammed; Krishnan, Santhana

    2014-01-01

    Background : The aim of the current study is to examine the effect of systemically administered BP-Pamidronate, on Orthodontic Tooth Movement (OTM) along with osteoclastic quantification in New Zealand white rabbits. Materials & Methods : Twenty rabbits used in the study, were equally divided into 2 groups ; Group-1 as Control & Group-2 as Experimental. A sentalloy NITI closed coil spring (GAC International, USA) of 100 gram force, ligated between the lower first molar and the anterior most incisors of the rabbit has served as orthodontic force element. The BP- Pamidronate was administered at the dosage of 1.5 mg/kg body intra-peritonially, on the 1st, 7th and 14th day of the experiment. On the 21st day both group of animals were sacrificed, mandibles were dissected. The formed diastema between the 1st and 2nd molar was measured on the dissected mandibles using standard metric scale, which is considered as the OTM in the mesial direction. Next, the alveolar bone regions along with intact mesial surfaces were processed for histological investigation (osteoclastic count). Results : The student ‘t’ test has been done to compare the mean values of molar tooth movement and osteoclastic count. Parameter :1 molar tooth movement has shown a significant difference between the control (3.750 ± 0.548 mm) and the experimental group (3.050 ± 0.556 mm) with calculated ‘p’ value (p-value <0.05) is significant at 0.0110 level. Parameter : 2 osteoclastic count has shown a significant difference between the control (13.335000 ± 0.735856 per square mm.) and the experimental group (11.426900 ± 1.49369 per square mm) calculated ‘p’ value (p-value <0.05) is significant at 0.003 level. Conclusion : The molar tooth movement and the osteoclastic count were significantly reduced in BP – Pamidronate administered animals than non-drug recipients. How to cite the article: Venkataramana V, Chidambaram S, Reddy BV, Goud EV, Arafath M, Krishnan S. Impact of Bisphosphonate on

  14. Impact of Bisphosphonate on Orthodontic tooth movement and osteoclastic count: An Animal Study.

    PubMed

    Venkataramana, V; Chidambaram, S; Reddy, B Vishnuvardhan; Goud, E V Soma Shekara; Arafath, Mohammed; Krishnan6, Santhana

    2014-04-01

    Background : The aim of the current study is to examine the effect of systemically administered BP-Pamidronate, on Orthodontic Tooth Movement (OTM) along with osteoclastic quantification in New Zealand white rabbits. Materials & Methods : Twenty rabbits used in the study, were equally divided into 2 groups ; Group-1 as Control & Group-2 as Experimental. A sentalloy NITI closed coil spring (GAC International, USA) of 100 gram force, ligated between the lower first molar and the anterior most incisors of the rabbit has served as orthodontic force element. The BP- Pamidronate was administered at the dosage of 1.5 mg/kg body intra-peritonially, on the 1st, 7th and 14th day of the experiment. On the 21st day both group of animals were sacrificed, mandibles were dissected. The formed diastema between the 1st and 2nd molar was measured on the dissected mandibles using standard metric scale, which is considered as the OTM in the mesial direction. Next, the alveolar bone regions along with intact mesial surfaces were processed for histological investigation (osteoclastic count). Results : The student 't' test has been done to compare the mean values of molar tooth movement and osteoclastic count. Parameter :1 molar tooth movement has shown a significant difference between the control (3.750 ± 0.548 mm) and the experimental group (3.050 ± 0.556 mm) with calculated 'p' value (p-value <0.05) is significant at 0.0110 level. Parameter : 2 osteoclastic count has shown a significant difference between the control (13.335000 ± 0.735856 per square mm.) and the experimental group (11.426900 ± 1.49369 per square mm) calculated 'p' value (p-value <0.05) is significant at 0.003 level. Conclusion : The molar tooth movement and the osteoclastic count were significantly reduced in BP - Pamidronate administered animals than non-drug recipients. How to cite the article: Venkataramana V, Chidambaram S, Reddy BV, Goud EV, Arafath M, Krishnan S. Impact of Bisphosphonate on Orthodontic tooth

  15. Steap4 Plays a Critical Role in Osteoclastogenesis in Vitro by Regulating Cellular Iron/Reactive Oxygen Species (ROS) Levels and cAMP Response Element-binding Protein (CREB) Activation*

    PubMed Central

    Zhou, Jian; Ye, Shiqiao; Fujiwara, Toshifumi; Manolagas, Stavros C.; Zhao, Haibo

    2013-01-01

    Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-κB-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function. PMID:23990467

  16. Activation of NF-kappa B Signaling Promotes Growth of Prostate Cancer Cells in Bone

    PubMed Central

    Jin, Renjie; Sterling, Julie A.; Edwards, James R.; DeGraff, David J.; Lee, Changki; Park, Serk In; Matusik, Robert J.

    2013-01-01

    Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation. PMID:23577181

  17. Loss of p19Arf in a Rag1−/− B-cell precursor population initiates acute B-lymphoblastic leukemia

    PubMed Central

    Hauer, Julia; Mullighan, Charles; Morillon, Estelle; Wang, Gary; Bruneau, Julie; Brousse, Nicole; Lelorc'h, Marc; Romana, Serge; Boudil, Amine; Tiedau, Daniela; Kracker, Sven; Bushmann, Frederic D.; Borkhardt, Arndt; Fischer, Alain; Hacein-Bey-Abina, Salima

    2011-01-01

    In human B-acute lymphoblastic leukemia (B-ALL), RAG1-induced genomic alterations are important for disease progression. However, given that biallelic loss of the RAG1 locus is observed in a subset of cases, RAG1's role in the development of B-ALL remains unclear. We chose a p19Arf−/−Rag1−/− mouse model to confirm the previously published results concerning the contribution of CDKN2A (p19ARF /INK4a) and RAG1 copy number alterations in precursor B cells to the initiation and/or progression to B-acute lymphoblastic leukemia (B-ALL). In this murine model, we identified a new, Rag1-independent leukemia-initiating mechanism originating from a Sca1+CD19+ precursor cell population and showed that Notch1 expression accelerates the cells' self-renewal capacity in vitro. In human RAG1-deficient BM, a similar CD34+CD19+ population expressed p19ARF. These findings suggest that combined loss of p19Arf and Rag1 results in B-cell precursor leukemia in mice and may contribute to the progression of precursor B-ALL in humans. PMID:21622646

  18. Sanguiin H-6, a constituent of Rubus parvifolius L., inhibits receptor activator of nuclear factor-κB ligand-induced osteoclastogenesis and bone resorption in vitro and prevents tumor necrosis factor-α-induced osteoclast formation in vivo.

    PubMed

    Sakai, Eiko; Aoki, Yuri; Yoshimatsu, Masako; Nishishita, Kazuhisa; Iwatake, Mayumi; Fukuma, Yutaka; Okamoto, Kuniaki; Tanaka, Takashi; Tsukuba, Takayuki

    2016-07-15

    Osteoclasts are multinucleated bone-resorbing cells that differentiate in response to receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). Enhanced osteoclastogenesis contributes to bone diseases, such as osteoporosis and rheumatoid arthritis. Rubus parvifolius L. is traditionally used as an herbal medicine for rheumatism; however, its detailed chemical composition and the molecular mechanisms responsible for its biological action have not been elucidated. To investigate the mechanisms by which R. parvifolius L. extract and its major constituent sanguiin H-6, inhibit osteoclastogenesis and bone resorption. Cell proliferation, cell differentiation, and bone resorption were detected in vitro. Inhibition of signaling pathways, marker protein expression, and protein nuclear translocation were evaluated by western blot analysis. Tumor necrosis factor-α (TNF-α)-mediated osteoclastogenesis was examined in vivo. R. parvifolius L. extract inhibited the bone-resorption activity of osteoclasts. In addition, sanguiin H-6 markedly inhibited RANKL-induced osteoclast differentiation and bone resorption, reduced reactive oxygen species production, and inhibited the phosphorylation of inhibitor of NF-κB alpha (IκBα) and p38 mitogen-activated protein kinase. Sanguiin H-6 also decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), cathepsin K, and c-Src. Moreover, sanguiin H-6 inhibited the nuclear translocation of NFATc1, c-Fos, and NF-κB in vitro, as well as TNF-α-mediated osteoclastogenesis in vivo. Our data revealed that R. parvifolius L. has anti-bone resorption activity and suggest that its constituent, sanguiin H-6, can potentially be used for the prevention and treatment of bone diseases associated with excessive osteoclast formation and subsequent bone destruction. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    PubMed

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features

    PubMed Central

    Schwab, Claire J.; Chilton, Lucy; Morrison, Heather; Jones, Lisa; Al-Shehhi, Halima; Erhorn, Amy; Russell, Lisa J.; Moorman, Anthony V.; Harrison, Christine J.

    2013-01-01

    In childhood B-cell precursor acute lymphoblastic leukemia, cytogenetics is important in diagnosis and as an indicator of response to therapy, thus playing a key role in risk stratification of patients for treatment. Little is known of the relationship between different cytogenetic subtypes in B-cell precursor acute lymphoblastic leukemia and the recently reported copy number abnormalities affecting significant leukemia associated genes. In a consecutive series of 1427 childhood B-cell precursor acute lymphoblastic leukemia patients, we have determined the incidence and type of copy number abnormalities using multiplex ligation-dependent probe amplification. We have shown strong links between certain deletions and cytogenetic subtypes, including the novel association between RB1 deletions and intrachromosomal amplification of chromosome 21. In this study, we characterized the different copy number abnormalities and show heterogeneity of PAX5 and IKZF1 deletions and the recurrent nature of RB1 deletions. Whole gene losses are often indicative of larger deletions, visible by conventional cytogenetics. An increased number of copy number abnormalities is associated with NCI high risk, specifically deletions of IKZF1 and CDKN2A/B, which occur more frequently among these patients. IKZF1 deletions and rearrangements of CRLF2 among patients with undefined karyotypes may point to the poor risk BCR-ABL1-like group. In conclusion, this study has demonstrated in a large representative cohort of children with B-cell precursor acute lymphoblastic leukemia that the pattern of copy number abnormalities is highly variable according to the primary genetic abnormality. PMID:23508010

  1. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol

    PubMed Central

    Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R.; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U.; Kulozik, Andreas E.; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid

    2014-01-01

    Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75th percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72±3% versus 86±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60±8% versus 78±4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22±3% versus 11±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31±8% versus 11±3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1

  2. High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol.

    PubMed

    Cario, Gunnar; Rhein, Peter; Mitlöhner, Rita; Zimmermann, Martin; Bandapalli, Obul R; Romey, Renja; Moericke, Anja; Ludwig, Wolf-Dieter; Ratei, Richard; Muckenthaler, Martina U; Kulozik, Andreas E; Schrappe, Martin; Stanulla, Martin; Karawajew, Leonid

    2014-01-01

    Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75(th) percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72 ± 3% versus 86 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60 ± 8% versus 78 ± 4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22 ± 3% versus 11 ± 1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31 ± 8% versus 11 ± 3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally

  3. Inhibition of bone resorption by Tanshinone VI isolated from Salvia miltiorrhiza Bunge.

    PubMed

    Nicolin, V; Dal Piaz, F; Nori, S L; Narducci, P; De Tommasi, N

    2010-05-10

    During the last decade, a more detailed knowledge of molecular mechanisms involved in osteoclastogenesis has driven research efforts in the development and screening of compound libraries of several small molecules that specifically inhibit the pathway involved in the commitment of the osteoclast precursor cells. Natural compounds that suppress osteoclast differentiation may have therapeutic value in treating osteoporosis and other bone erosive diseases such as rheumatoid arthritis or metastasis associated with bone loss. In ongoing investigation into anti-osteoporotic compounds from natural products we have analyzed the effect of Tanshinone VI on osteoclasts differentiation, using a physiologic three-dimensional osteoblast/bone marrow model of cell co-culture. Tanshinone VI is an abietane diterpene extracted from the root of Salvia miltiorrhiza Bunge (Labiatae), a Chinese traditional crude drug, "Tan-Shen". Tashinone has been widely used in clinical practice for the prevention of cardiac diseases, arthritis and other inflammation-related disorders based on its pharmacological actions in multiple tissues. Although Tanshinone VI A has been used as a medicinal agent in the treatment of many diseases, its role in osteoclast-related bone diseases remains unknown. We showed previously that Tanshinone VI greatly inhibits osteoclast differentiation and suppresses bone resorption through disruption of the actin ring; subsequently, we intended to examine the precise inhibitory mechanism of Tanshinone VI on osteoclast differentiating factor. This study shows, for the first time, that Tanshinone VI prevents osteoclast differentiation by inhibiting RANKL expression and NFkB induction.

  4. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts

    PubMed Central

    Keller, Johannes; Catala-Lehnen, Philip; Huebner, Antje K.; Jeschke, Anke; Heckt, Timo; Lueth, Anja; Krause, Matthias; Koehne, Till; Albers, Joachim; Schulze, Jochen; Schilling, Sarah; Haberland, Michael; Denninger, Hannah; Neven, Mona; Hermans-Borgmeyer, Irm; Streichert, Thomas; Breer, Stefan; Barvencik, Florian; Levkau, Bodo; Rathkolb, Birgit; Wolf, Eckhard; Calzada-Wack, Julia; Neff, Frauke; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabĕ; Klutmann, Susanne; Tsourdi, Elena; Hofbauer, Lorenz C.; Kleuser, Burkhard; Chun, Jerold; Schinke, Thorsten; Amling, Michael

    2014-01-01

    The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts. PMID:25333900

  5. Naringin prevents ovariectomy-induced osteoporosis and promotes osteoclasts apoptosis through the mitochondria-mediated apoptosis pathway.

    PubMed

    Li, Fengbo; Sun, Xiaolei; Ma, Jianxiong; Ma, Xinlong; Zhao, Bin; Zhang, Yang; Tian, Peng; Li, Yanjun; Han, Zhe

    2014-09-26

    Naringin, the primary active compound of the traditional Chinese medicine Rhizoma drynariae, possesses many pharmacological activities. The present study is an effort to explore the anti-osteoporosis potential of naringin in vivo and in vitro. In vivo, we used ovariectomized rats to clarify the mechanisms by which naringin anti-osteoporosis. In vitro, we used osteoclasts to investigate naringin promotes osteoclasts apoptosis. Naringin was effective at enhancing BMD, trabecular thickness, bone mineralization, and mechanical strength in a dose-dependent manner. The result of RT-PCR analysis revealed that naringin down-regulated the mRNA expression levels of BCL-2 and up-regulated BAX, caspase-3 and cytochrome C. In addition, naringin significantly reduced the bone resorption area in vitro. These findings suggest that naringin promotes the apoptosis of osteoclasts by regulating the activity of the mitochondrial apoptosis pathway and prevents OVX-induced osteoporosis in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. TGF-β induced PAR-1 expression promotes tumor progression and osteoclast differentiation in giant cell tumor of bone.

    PubMed

    Wang, Ting; Jiao, Jian; Zhang, Hao; Zhou, Wang; Li, Zhenxi; Han, Shuai; Wang, Jing; Yang, Xinghai; Huang, Quan; Wu, Zhipeng; Yan, Wangjun; Xiao, Jianru

    2017-10-15

    Although protease activated receptor-1 (PAR-1) has been confirmed as an oncogene in many cancers, the role of PAR-1 in giant cell tumor (GCT) of bone has been rarely reported. The mechanism of PAR-1 in tumor-induced osteoclastogenesis still remains unclear. In the present study, we detected that PAR-1 was significantly upregulated in GCT of bone compared to normal tissues, while TGF-β was also overexpressed in GCT tissues and could promote the expression of PAR-1 in a dose and time dependent manner. Using the luciferase reporter assay, we found that two downstreams of TGF-β, Smad3 and Smad4, could activate the promoter of PAR-1, which might explain the mechanism of TGF-β induced PAR-1 expression. Meanwhile, PAR-1 was also overexpressed in microvesicles from stromal cells of GCT (GCTSCs), and might be transported from GCTSCs to monocytes through microvesicles. In addition, knockout of PAR-1 by TALENs in GCTSCs inhibited tumor growth, angiogenesis and osteoclastogenesis in GCT in vitro. Using the chick CAM models, we further showed that inhibition of PAR-1 suppressed tumor growth and giant cell formation in vivo. Using microarray assay, we detected a number of genes involved in osteoclastogenesis as the possible downstreams of PAR-1, which may partly explain the mechanism of PAR-1 in GCT. In brief, for the first time, these results reveal an upstream regulatory role of TGF-β in PAR-1 expression, and PAR-1 expression promotes tumor growth, angiogenesis and osteoclast differentiation in GCT of bone. Hence, PAR-1 represents a novel potential therapeutic target for GCT of bone. © 2017 UICC.

  7. iNOS-Derived Nitric Oxide Stimulates Osteoclast Activity and Alveolar Bone Loss in Ligature-Induced Periodontitis in Rats

    PubMed Central

    Herrera, Bruno S.; Martins-Porto, Rodrigo; Maia-Dantas, Aline; Campi, Paula; Spolidorio, Luis C.; Costa, Soraia K.P.; Van Dyke, Thomas E.; Gyurko, Robert; Muscara, Marcelo N.

    2012-01-01

    Background Inflammatory stimuli activate inducible nitric oxide synthase (iNOS) in a variety of cell types, including osteoclasts (OC) and osteoblasts, resulting in sustained NO production. In this study, we evaluate the alveolar bone loss in rats with periodontitis under long-term iNOS inhibition, and the differentiation and activity of OC from iNOS-knockout (KO) mice in vitro. Methods Oral aminoguanidine (an iNOS inhibitor) or water treatment was started 2 weeks before induction of periodontitis. Rats were sacrificed 3, 7, or 14 days after ligature placement, and alveolar bone loss was evaluated. In vitro OC culture experiments were also performed to study the differentiation of freshly isolated bone marrow cells from both iNOS KO and wild-type C57BL/6 mice. OC were counted 6 days later after tartrate-resistant acid phosphatase staining (a marker of osteoclast identity), and bone resorption activity was assessed by counting the number of resorption pits on dentin disks. Results Rats with ligature showed progressive and significant alveolar bone loss compared to sham animals, and aminoguanidine treatment significantly inhibited ligature-induced bone loss at 7 and 14 days after the induction. In comparison to bone marrow cells from wild-type mice, cells from iNOS KO mice showed decreased OC growth and the resulting OC covered a smaller culture dish area and generated fewer resorption pit counts. Conclusion Our results demonstrate that iNOS inhibition prevents alveolar bone loss in a rat model of ligature-induced periodontitis, thus confirming that iNOS-derived NO plays a crucial role in the pathogenesis of periodontitis, probably by stimulating OC differentiation and activity. PMID:21417589

  8. Identification of residual leukemic cells by flow cytometry in childhood B-cell precursor acute lymphoblastic leukemia: verification of leukemic state by flow-sorting and molecular/cytogenetic methods.

    PubMed

    Øbro, Nina F; Ryder, Lars P; Madsen, Hans O; Andersen, Mette K; Lausen, Birgitte; Hasle, Henrik; Schmiegelow, Kjeld; Marquart, Hanne V

    2012-01-01

    Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and/or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative immunophenotype and antigen modulation) that highlight important methodological pitfalls. These findings demonstrate that with sufficient experience, flow cytometry is reliable for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia, although rare cases require supplementary PCR-based monitoring.

  9. A novel population of local pericyte precursor cells in tumor stroma that require Notch signaling for differentiation.

    PubMed

    Patenaude, Alexandre; Woerher, Stefan; Umlandt, Patricia; Wong, Fred; Ibrahim, Rawa; Kyle, Alastair; Unger, Sandy; Fuller, Megan; Parker, Jeremy; Minchinton, Andrew; Eaves, Connie J; Karsan, Aly

    2015-09-01

    Pericytes are perivascular support cells, the origin of which in tumor tissue is not clear. Recently, we identified a Tie1(+) precursor cell that differentiates into vascular smooth muscle, in a Notch-dependent manner. To understand the involvement of Notch in the ontogeny of tumor pericytes we used a novel flow immunophenotyping strategy to define CD146(+)/CD45(-)/CD31(-/lo) pericytes in the tumor stroma. This strategy combined with ex vivo co-culture experiments identified a novel pericyte progenitor cell population defined as Sca1(hi)/CD146(-)/CD45(-)/CD31(-). The differentiation of these progenitor cells was stimulated by co-culture with endothelial cells. Overexpression of the Notch ligand Jagged1 in endothelial cells further stimulated the differentiation of Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells into pericytes, while inhibition of Notch signaling with a γ-secretase inhibitor reduced this differentiation. However, Notch inhibition specifically in Tie1-expressing cells did not change the abundance of pericytes in tumors, suggesting that the pericyte precursor is distinct from the vascular smooth muscle cell precursor. Transplant experiments showed that the bone marrow contributes minimally to tumor pericytes. Immunophenotyping revealed that Sca1(hi)/CD146(-)/CD45(-)/CD31(-) cells have greater potential to differentiate into pericytes and have increased expression of classic mesenchymal stem cell markers (CD13, CD44, Nt5e and Thy-1) compared to Sca1(-/lo)/CD146(-)/CD45(-)/CD31(-) cells. Our results suggest that a local Sca1(hi)/CD146(-)/CD45(-)/CD31(-) pericyte progenitor resides in the tumor microenvironment and requires Notch signaling for differentiation into mature pericytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors,Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2004-10-01

    Anderson DC, Sharpe PT. 1992. Canine distemper virus transcripts sequenced from pagetic bone. Bone Miner 19:159–174. Gori F, Hofbauer LC, Dunstan CR...clast formation in Paget’s disease. QJM 95:233–240. Ooi CG, Walsh CA, Gallagher JA, Fraser WD. 2000. Absence of measles virus and canine distemper virus...techniques. Furthermore, it has also been de- monstrated that infecting canine bone marrow cells with CDV results in development of multi- nucleated cells

  11. Splenomegaly, myeloid lineage expansion and increased osteoclastogenesis in osteogenesis imperfecta murine.

    PubMed

    Matthews, Brya G; Roeder, Emilie; Wang, Xi; Aguila, Hector Leonardo; Lee, Sun-Kyeong; Grcevic, Danka; Kalajzic, Ivo

    2017-10-01

    Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b + ) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dok-3 and Dok-1/-2 adaptors play distinctive roles in cell fusion and proliferation during osteoclastogenesis and cooperatively protect mice from osteopenia.

    PubMed

    Kajikawa, Shuhei; Taguchi, Yuu; Hayata, Tadayoshi; Ezura, Yoichi; Ueta, Ryo; Arimura, Sumimasa; Inoue, Jun-Ichiro; Noda, Masaki; Yamanashi, Yuji

    2018-04-15

    Bone mass is determined by coordinated acts of osteoblasts and osteoclasts, which control bone formation and resorption, respectively. Osteoclasts are multinucleated, macrophage/monocyte lineage cells from bone marrow. The Dok-family adaptors Dok-1, Dok-2 and Dok-3 are expressed in the macrophage/monocyte lineage and negatively regulate many signaling pathways, implying roles in osteoclastogenesis. Indeed, mice lacking Dok-1 and Dok-2, the closest homologues with redundant functions, develop osteopenia with increased osteoclast counts compared to the wild-type controls. Here, we demonstrate that Dok-3 knockout (KO) mice also develop osteopenia. However, Dok-3 KO, but not Dok-1/-2 double-KO (DKO), mice develop larger osteoclasts within the normal cell-count range, suggesting a distinctive role for Dok-3. Indeed, Dok-3 KO, but not Dok-1/-2 DKO, bone marrow-derived cells (BMDCs) generated larger osteoclasts with more nuclei due to augmented cell-to-cell fusion in vitro. In addition, while Dok-1/-2 DKO BMDCs generated more osteoclasts, Dok-1/-2/-3 triple-KO (TKO) BMDCs generated osteoclasts increased in both number and size. Furthermore, Dok-1/-2/-3 TKO mice showed the combined effects of Dok-3 and Dok-1/-2 deficiency: severe osteopenia with more and larger osteoclasts. Together, our findings demonstrate that Dok-3 and Dok-1/-2 play distinctive but cooperative roles in osteoclastogenesis and protect mice from osteopenia, providing physiological and pathophysiological insight into bone homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2008-10-01

    recombinant KNG (25 ng/ml) for 24 h period resulted in a 5-fold increase in the levels of phospho- HSP27 and a 3-fold increase in ERK1/2...the levels of phospho- HSP27 . KNG increased normal and pagetic marrow stromal cell proliferation at 1.4-fold and 2.5-fold, respectively. KNG in the...presence of an ERK inhibitor peptide did not stimulate pagetic marrow stromal cell proliferation. Furthermore, siRNA suppression of HSP27 expression

  14. Measles Virus Nucleocapsid (MVNP) Gene Expression and RANK Receptor Signaling in Osteoclast Precursors, Osteoclast Inhibitors Peptide Therapy for Pagets Disease

    DTIC Science & Technology

    2006-10-01

    recombinant KNG (25 ng/ml) for 24 h period resulted in a 5-fold increase in the levels of phospho- HSP27 and a 3-fold increase in ERK1/2 phosphorylation in...levels of phospho- HSP27 . KNG increased normal and pagetic marrow stromal cell proliferation at 1.4-fold and 2.5-fold, respectively. KNG in the presence of...an ERK inhibitor peptide did not stimulate pagetic marrow stromal cell proliferation. Furthermore, siRNA suppression of HSP27 expression

  15. Dual-Responsive Metabolic Precursor and Light-Up AIEgen for Cancer Cell Bio-orthogonal Labeling and Precise Ablation.

    PubMed

    Hu, Fang; Yuan, Youyong; Wu, Wenbo; Mao, Duo; Liu, Bin

    2018-06-05

    Metabolic glycoengineering of unnatural glycans with bio-orthogonal chemical groups and a subsequent click reaction with fluorescent probes have been widely used in monitoring various bioprocesses. Herein, we developed a dual-responsive metabolic precursor that could specifically generate unnatural glycans with azide groups on the membrane of targeted cancer cells with high selectivity. Moreover, a water-soluble fluorescent light-up probe with aggregation-induced emission (AIE) was synthesized, which turned its fluorescence on upon a click reaction with azide groups on the cancer cell surface, enabling special cancer cell imaging with low background signal. Furthermore, the probe can generate 1 O 2 upon light irradiation, fulfilling its dual role as an imaging and therapeutic agent for cancer cells. Therefore, the concepts of the cancer-cell-specific metabolic precursor cRGD-S-Ac 3 ManNAz and the AIE light-up probe are promising in bio-orthogonal labeling and cancer-specific imaging and therapy.

  16. Synthesis of a Possible Precursor of α-Amylase in Wheat Aleurone Cells 1

    PubMed Central

    Okita, Thomas W.; Decaleya, Roberto; Rappaport, Lawrence

    1979-01-01

    α-Amylase from wheat aleurone (Triticum aestivum) was synthesized in a S-150 wheat germ readout system using polysomes, and a messenger RNA-dependent reticulocyte lysate system using polyadenylic acid [poly(A)]-enriched RNA. The product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, precipitation by specific λ-globulin for α-amylase, and proteolysis. Two immunoprecipitated products were synthesized from the readout system, the predominant species migrating coincidentally with authentic α-amylase on sodium dodecyl sulfate-polyacrylamide gels. A putative precursor, 1,500 daltons larger, was evident but was less abundant. The relationship between the two polypeptides was established by proteolytic analysis using Staphylococcus aureus V8 protease. At least nine fragments were generated and were identical in both species. The poly(A)-enriched RNA synthesized only the putative precursor in the reticulocyte lysate system. Attempts to process the precursor to the mature size of α-amylase failed. These findings are discussed in connection with the signal hypothesis (proposed for the transport of proteins across membranes) and the mode of secretion of α-amylase in aleurone cells. Images PMID:16660677

  17. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity

    PubMed Central

    Chatani, Masahiro; Morimoto, Hiroya; Takeyama, Kazuhiro; Mantoku, Akiko; Tanigawa, Naoki; Kubota, Koji; Suzuki, Hiromi; Uchida, Satoko; Tanigaki, Fumiaki; Shirakawa, Masaki; Gusev, Oleg; Sychev, Vladimir; Takano, Yoshiro; Itoh, Takehiko; Kudo, Akira

    2016-01-01

    Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts. PMID:28004797

  18. Polymer/Nanocrystal Hybrid Solar Cells: Influence of Molecular Precursor Design on Film Nanomorphology, Charge Generation and Device Performance

    PubMed Central

    MacLachlan, Andrew J; Rath, Thomas; Cappel, Ute B; Dowland, Simon A; Amenitsch, Heinz; Knall, Astrid-Caroline; Buchmaier, Christine; Trimmel, Gregor; Nelson, Jenny; Haque, Saif A

    2015-01-01

    In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials. PMID:25866496

  19. Novel use of a Dektak 150 surface profiler unmasks differences in resorption pit profiles between control and Charcot patient osteoclasts.

    PubMed

    Petrova, Nina L; Petrov, Peter K; Edmonds, Michael E; Shanahan, Catherine M

    2014-04-01

    We hypothesized that newly formed osteoclasts from patients with acute Charcot osteoarthropathy can resorb surfaces of bone more extensively compared with controls. Peripheral blood monocytes, isolated from eight Charcot patients and nine controls, were cultured in vitro on 24-well plates and bovine bone discs in duplicate with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor κβ ligand (RANKL). Osteoclast formation was assessed by tartrate-resistant acid phosphatase staining (TRAcP) at day 17. Resorption was measured at day 21 after toluidine blue staining by two methods: (1) area of resorption at the surface by image analysis (%) and (2) area of resorption under the surface (μm(2)) measured by a Dektak 150 Surface Profiler. Ten 1,000 μm-long scans were performed per disc. Pits were classified as unidented, bidented, and multidented according to their shape. Although the number of newly formed TRAcP positive multinucleated cells (>3 nuclei) was similar in M-CSF + RANKL-treated cultures between controls and Charcot patients, the latter exhibited increased resorbing activity. The area of resorption on the surface by image analysis was significantly greater in Charcot patients compared with controls (21.1 % [14.5-26.2] vs. 40.8 % [35.4-46.0], median [25-75th percentile], p < 0.01), as was the area of resorption under the surface (2.7 x 10(3) μm(2) [1.6 x 10(3)- 3.9 x 10(3)] vs. 8.3 x 10(3) μm (2) [5.6 x 10(3)- 10.6 x 10(3), [corrected] p < 0.01) after profilometry. In Charcot patients pits were deeper and wider and more frequently presented as multidented pits. This application of the Dektak 150 Surface Profiler revealed novel differences in resorption pit profile from osteoclasts derived from Charcot patients compared with controls. Resorption in Charcot patients was mediated by highly aggressive newly formed osteoclasts from monocytes eroding large and deep areas of bone.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, R.-W.; Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Chen, C.-H.

    People who regularly drink tea have been found to have a higher bone mineral density (BMD) and to be at less risk of hip fractures than those who do not drink it. Green tea catechins such as (-)-epigallocatechin gallate (EGCG) have been reported to increase osteogenic functioning in mesenchymal stem cells. However, its effect on osteoclastogenesis remains unclear. In this study, we investigated the effect of EGCG on RANKL-activation osteoclastogenesis and NF-{kappa}B in RAW 264.7, a murine preosteoclast cell line. EGCG (10-100 {mu}M) significantly suppressed the RANKL-induced differentiation of osteoclasts and the formation of pits in murine RAW 264.7 cellsmore » and bone marrow macrophages (BMMs). EGCG appeared to target osteoclastic differentiation at an early stage but had no cytotoxic effect on osteoclast precursors. In addition, it significantly inhibited RANKL-induced NF-{kappa}B transcriptional activity and nuclear translocation. We conclude that EGCG inhibits osteoclastogenesis through its activation of NF-{kappa}B.« less

  1. Intratumoral conversion of adrenal androgen precursors drives androgen receptor-activated cell growth in prostate cancer more potently than de novo steroidogenesis.

    PubMed

    Kumagai, Jinpei; Hofland, Johannes; Erkens-Schulze, Sigrun; Dits, Natasja F J; Steenbergen, Jacobie; Jenster, Guido; Homma, Yukio; de Jong, Frank H; van Weerden, Wytske M

    2013-11-01

    Despite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. The relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. In PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. Our data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth. © 2013 Wiley Periodicals, Inc.

  2. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  3. Lack of effect of a granulocyte proliferation inhibitor or their committed precursor cells.

    PubMed

    Lord, B I; Testa, N G; Wright, E G; Banerjee, R K

    1977-05-01

    Using the agar culture technique, we have measured the effect of granulocyte extracts GCE (and of erythrocyte-RCE and lymph node extracts-LNE) on the growth and proliferation of the committed granulocytic precursor cells, CFU-C. In addition we have determined their effects on the proliferation of the developing colony cells and on the ultimate cell production in the colonies. The results show that GCE has no effect on the growth or proliferative activity on the CFU-C. It does, however, reduce both the autoradiographic labelling indices of the developing colony cells and the net colony cellularities, acting as a cell cycle modulator. These are effects specific to the GCE since at the dose levels used, neither RCE nor LNE affected these measurements.

  4. Involvement of toll-like receptor 2 and 4 in association between dyslipidemia and osteoclast differentiation in apolipoprotein E deficient rat periodontium

    PubMed Central

    2013-01-01

    Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061

  5. Bone remodelling: its local regulation and the emergence of bone fragility.

    PubMed

    Martin, T John; Seeman, Ego

    2008-10-01

    Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.

  6. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair.

    PubMed

    Kim, Han-Seop; Lee, Jungwoon; Lee, Da Yong; Kim, Young-Dae; Kim, Jae Yun; Lim, Hyung Jin; Lim, Sungmin; Cho, Yee Sook

    2017-06-06

    Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Interleukin-1β induces human cementoblasts to support osteoclastogenesis

    PubMed Central

    Huynh, Nam C-N; Everts, Vincent; Pavasant, Prasit; Ampornaramveth, Ruchanee S

    2017-01-01

    Injury of the periodontium followed by inflammatory response often leads to root resorption. Resorption is accomplished by osteoclasts and their generation may depend on an interaction with the cells in direct contact with the root, the cementoblasts. Our study aimed to investigate the role of human cementoblasts in the formation of osteoclasts and the effect of interleukin (IL)-1β hereupon. Extracted teeth from healthy volunteers were subjected to sequential digestion by type I collagenase and trypsin. The effect of enzymatic digestion on the presence of cells on the root surface was analyzed by histology. Gene expression of primary human cementoblasts (pHCB) was compared with a human cementoblast cell line (HCEM). The pHCBs were analyzed for their expression of IL-1 receptors as well as of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). In a co-culture system consisting of osteoclast precursors (blood monocytes) and pHCBs, the formation of osteoclasts and their resorptive activity was assessed by osteo-assay and ivory slices. The cells obtained after a 120 min enzyme digestion expressed the highest level of bone sialoprotein, similar to that of HCEM. This fraction of isolated cells also shared a similar expression pattern of IL-1 receptors (IL1-R1 and IL1-R2). Treatment with IL-1β potently upregulated RANKL expression but not of OPG. pHCBs were shown to induce the formation of functional osteoclasts. This capacity was significantly stimulated by pretreating the pHCBs with IL-1β prior to their co-culture with human blood monocytes. Our study demonstrated that cementoblasts have the capacity to induce osteoclastogenesis, a capacity strongly promoted by IL-1β. These results may explain why osteoclasts can be formed next to the root of teeth. PMID:29235551

  8. Understanding the reconstitution of the B-cell compartment in bone marrow and blood after treatment for B-cell precursor acute lymphoblastic leukaemia.

    PubMed

    Theunissen, Prisca M J; van den Branden, Anouk; Van Der Sluijs-Gelling, Alita; De Haas, Valerie; Beishuizen, Auke; van Dongen, Jacques J M; Van Der Velden, Vincent H J

    2017-07-01

    A better understanding of the reconstitution of the B-cell compartment during and after treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) will help to assess the immunological status and needs of post-treatment BCP-ALL patients. Using 8-colour flow cytometry and proliferation-assays, we studied the composition and proliferation of both the B-cell precursor (BCP) population in the bone marrow (BM) and mature B-cell population in peripheral blood (PB) during and after BCP-ALL therapy. We found a normal BCP differentiation pattern and a delayed formation of classical CD38 dim -naive mature B-cells, natural effector B-cells and memory B-cells in patients after chemotherapy. This B-cell differentiation/maturation pattern was strikingly similar to that during initial B-cell development in healthy infants. Tissue-resident plasma cells appeared to be partly protected from chemotherapy. Also, we found that the fast recovery of naive mature B-cell numbers after chemotherapy was the result of increased de novo BCP generation, rather than enhanced B-cell proliferation in BM or PB. These results indicate that post-treatment BCP-ALL patients will eventually re-establish a B-cell compartment with a composition and B-cell receptor repertoire similar to that in healthy children. Additionally, the formation of a new memory B-cell compartment suggests that revaccination might be beneficial after BCP-ALL therapy. © 2017 John Wiley & Sons Ltd.

  9. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice

    PubMed Central

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Evercooren, Anne Baron-Van

    2015-01-01

    Induced pluripotent stem cell–derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent–derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin–derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS. PMID:26301815

  10. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liang; Dong, Chuanming; Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and weremore » associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.« less

  11. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and their Niche in Developing Hair Follicles.

    PubMed

    Rezza, Amélie; Wang, Zichen; Sennett, Rachel; Qiao, Wenlian; Wang, Dongmei; Heitman, Nicholas; Mok, Ka Wai; Clavel, Carlos; Yi, Rui; Zandstra, Peter; Ma'ayan, Avi; Rendl, Michael

    2016-03-29

    The hair follicle (HF) is a complex miniorgan that serves as an ideal model system to study stem cell (SC) interactions with the niche during growth and regeneration. Dermal papilla (DP) cells are required for SC activation during the adult hair cycle, but signal exchange between niche and SC precursors/transit-amplifying cell (TAC) progenitors that regulates HF morphogenetic growth is largely unknown. Here we use six transgenic reporters to isolate 14 major skin and HF cell populations. With next-generation RNA sequencing, we characterize their transcriptomes and define unique molecular signatures. SC precursors, TACs, and the DP niche express a plethora of ligands and receptors. Signaling interaction network analysis reveals a bird's-eye view of pathways implicated in epithelial-mesenchymal interactions. Using a systematic tissue-wide approach, this work provides a comprehensive platform, linked to an interactive online database, to identify and further explore the SC/TAC/niche crosstalk regulating HF growth. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Triterpenoid Saponin W3 from Anemone flaccida Suppresses Osteoclast Differentiation through Inhibiting Activation of MAPKs and NF-κB Pathways.

    PubMed

    Kong, Xiangying; Yang, Yue; Wu, Wenbin; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Su, Xiaohui; Jia, Shiwei; Lin, Na

    2015-01-01

    Excessive bone resorption by osteoclasts within inflamed joints is the most specific hallmark of rheumatoid arthritis. A. flaccida has long been used for the treatment of arthritis in folk medicine of China; however, the active ingredients responsible for the anti-arthritis effects of A. flaccida are still elusive. In this study, W3, a saponin isolated from the extract of A. flaccida was identified as the major active ingredient by using an osteoclast formation model induced by receptor activator of nuclear factor kappa-B ligand (RANKL). W3 dose-dependently suppressed the actin ring formation and lacunar resorption. Mechanistic investigation revealed that W3 inhibited the RANKL-induced TRAF6 expression, decreased phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and suppressed NF-κB p65 DNA binding activity. Furthermore, W3 almost abrogated the expression of c-Fos and nuclear factor of activated T cells (NFATc1). Therefore, our results suggest that W3 is a potential agent for treating lytic bone diseases although further evaluation in vivo and in clinical trials is needed.

  13. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells

    PubMed Central

    Florencio-Silva, Rinaldo; Sasso-Cerri, Estela; Simões, Manuel Jesus; Cerri, Paulo Sérgio

    2015-01-01

    Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling. PMID:26247020

  14. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator

    PubMed Central

    Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki

    2016-01-01

    Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343

  15. Baculovirus-expressed vitamin D-binding protein-macrophage activating factor (DBP-maf) activates osteoclasts and binding of 25-hydroxyvitamin D(3) does not influence this activity.

    PubMed

    Swamy, N; Ghosh, S; Schneider, G B; Ray, R

    2001-01-01

    Vitamin D-binding protein (DBP) is a multi-functional serum protein that is converted to vitamin D-binding protein-macrophage activating factor (DBP-maf) by post-translational modification. DBP-maf is a new cytokine that mediates bone resorption by activating osteoclasts, which are responsible for resorption of bone. Defective osteoclast activation leads to disorders like osteopetrosis, characterized by excessive accumulation of bone mass. Previous studies demonstrated that two nonallelic mutations in the rat with osteopetrosis have independent defects in the cascade involved in the conversion of DBP to DBP-maf. The skeletal defects associated with osteopetrosis are corrected in these mutants with in vivo DBP-maf treatment. This study evaluates the effects of various forms of DBP-maf (native, recombinant, and 25-hydroxyvitamin D(3) bound) on osteoclast function in vitro in order to determine some of the structural requirements of this protein that relate to bone resorbing activities. Osteoclast activity was determined by evaluating pit formation using osteoclasts, isolated from the long bones of newborn rats, incubated on calcium phosphate coated, thin film, Ostologic MultiTest Slides. Incubation of osteoclasts with ex vivo generated native DBP-maf resulted in a dose dependent, statistically significant, activation of the osteoclasts. The activation was similar whether or not the vitamin D binding site of the DBP-maf was occupied. The level of activity in response to DBP-maf was greater than that elicited by optimal doses of other known stimulators (PTH and 1,25(OH(2)D(3)) of osteoclast function. Furthermore, another potent macrophage activating factor, interferon--gamma, had no effect on osteoclast activity. The activated form of a full length recombinant DBP, expressed in E. coli showed no activity in the in vitro assay. Contrary to this finding, baculovirus-expressed recombinant DBP-maf demonstrated significant osteoclast activating activity. The normal

  16. Surface Expression of Precursor N-cadherin Promotes Tumor Cell Invasion12

    PubMed Central

    Maret, Deborah; Gruzglin, Eugenia; Sadr, Mohamad Seyed; Siu, Vincent; Shan, Weisong; Koch, Alexander W; Seidah, Nabil G; Del Maestro, Rolando F; Colman, David R

    2010-01-01

    The expression of N-cadherin (NCAD) has been shown to correlate with increased tumor cell motility and metastasis. However, NCAD-mediated adhesion is a robust phenomenon and therefore seems to be inconsistent with the “release” from intercellular adhesion required for invasion. We show that in the most invasive melanoma and brain tumor cells, altered posttranslational processing results in abundant nonadhesive precursor N-cadherin (proNCAD) at the cell surface, although total NCAD levels remain constant. We demonstrate that aberrantly processed proNCAD promotes cell migration and invasion in vitro. Furthermore, in human tumor specimens, we find high levels of proNCAD as well, supporting an overall conclusion that proNCAD and mature NCAD coexist on these tumor cell surfaces and that it is the ratio between these functionally antagonistic moieties that directly correlates with invasion potential. Our work provides insight into what may be a widespread mechanism for invasion and metastasis and challenges the current dogma of the functional roles played by classic cadherins in tumor progression. PMID:21170270

  17. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways.

    PubMed

    Feng, Wei; Liu, Hongrui; Luo, Tingting; Liu, Di; Du, Juan; Sun, Jing; Wang, Wei; Han, Xiuchun; Yang, Kaiyun; Guo, Jie; Amizuka, Norio; Li, Minqi

    2017-01-27

    Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.

  18. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via re-specification of lineage-restricted precursors

    PubMed Central

    Doulatov, Sergei; Vo, Linda T.; Chou, Stephanie S.; Kim, Peter G.; Arora, Natasha; Li, Hu; Hadland, Brandon K.; Bernstein, Irwin D.; Collins, James J.; Zon, Leonard I.; Daley, George Q.

    2013-01-01

    Summary Human pluripotent stem cells (hPSCs) represent a promising source of patient-specific cells for disease modeling, drug screens, and cellular therapies. However, the inability to derive engraftable human hematopoietic stem and progenitor (HSPCs) has limited their characterization to in vitro assays. We report a strategy to re-specify lineage-restricted CD34+CD45+ myeloid precursors derived from hPSCs into multilineage progenitors that can be expanded in vitro and engraft in vivo. HOXA9, ERG, and RORA conferred self-renewal and multilineage potential in vitro and maintained primitive CD34+CD38− cells. Screening cells via transplantation revealed that two additional factors, SOX4 and MYB, were required for engraftment. Progenitors specified with all five factors gave rise to reproducible short-term engraftment with myeloid and erythroid lineages. Erythroid precursors underwent hemoglobin switching in vivo, silencing embryonic and activating adult globin expression. Our combinatorial screening approach establishes a strategy for obtaining transcription factor-mediated engraftment of blood progenitors from human pluripotent cells. PMID:24094326

  19. Critical Role of MKP-1 in Lipopolysaccharide-Induced Osteoclast Formation through CXCL1 and CXCL2

    PubMed Central

    Valerio, Michael S.; Herbert, Bethany A.; Basilakos, Dimitrios S.; Browne, Courtney; Yu, Hong; Kirkwood, Keith L.

    2014-01-01

    Osteoclast (OC) progenitors (OCP) have been defined in the bone marrow (BM) as CD3−CD45R(B220)−GR1−CD11blo/−CD115+ (dOCP) and more recently in the peripheral blood (PB) as Lym−Ly6G−CD11b+Ly6C+. These progenitors respond to stimuli, including LPS from periopathogenic Aggregatibacter actinomycetemcomitans, activating MAPK signaling, resulting in cytokine/chemokine-mediated osteoclastogenesis. Intracellular negative signaling pathways, including MAPK phosphatase-1 (MKP-1, gene Dusp1) deactivate MAPK pathways (p-p38 and p-JNK) and reduce inflammatory cytokines/chemokines. Objective To delineate the role of MKP-1 in chemokine-mediated OC formation using defined OC progenitor populations. Given its role in innate immune inflammatory signaling, we hypothesize that MKP-1 regulates LPS-induced OC formation from BM OCP through deregulated chemokines. Methods BM and PB from WT and Dusp1−/− female mice (8–12wks) was obtained and sorted into defined progenitor populations. BM sorted dOCP were primed with MCSF and RANKL (48hrs), blocked with vehicle or chemokine blocking antibodies and stimulated with LPS (48–96hrs). TRAP assay and OC activity were measured for OC formation and activity following treatments. Nanostring Array and qPCR were utilized for gene expression analysis. Results Dusp1−/− dOCPs formed more and larger osteoclasts from CD11bhi and dOCP compared to matched WT (P<0.05 each). PB-derived dOCP produced larger and more functional osteoclasts from Dusp1−/− mice compared to WT controls. Nanostring array data revealed significant deregulation in chemokine expression from Dusp1−/− vs. WT cells. qPCR validation of target genes revealed that Dusp1 deficient CD11b+ populations display 1.5–3.5-fold greater expression of CXCL1 and 2–3-fold greater expression of CXCL2 compared to WT in CD11bhi and dOCP (P<0.05 each). Antibody blocking studies using anti-CXCL1 and CXCL2 antibodies blunted osteoclastogenesis in Dusp1−/− cells. Conclusion

  20. Ca-P spots modified zirconia by liquid precursor infiltration and the effect on osteoblast-like cell responses.

    PubMed

    Li, Yongmei; Liu, Yan; Zhang, Zutai; Zhuge, Ruishen; Ding, Ning; Tian, Yueming

    2018-01-26

    Ca-P spots modified zirconia by liquid precursor infiltration and the cell responses were investigated. Pre-sintered zirconia specimens were immersed in Ca-P precursor solution. After dense sintering, scanning electron microscopy showed Ca-P spots were formed on the zirconia and anchored with zirconia substrates. The distribution density was increased with the extension of immersion time. Energy dispersive spectrometer confirmed the stoichiometric Ca/P ratio was about 1.67. After hydrothermal treatment, Ca-P spots turned into rod crystals where diffraction peaks of tricalcium phosphate and hydroxyapatite were detected by X-ray diffraction, and Ca 2+ and PO 4 3- release decreased slightly (p>0.05). There was no significant decrease on three-point bending strength (p>0.05). Osteoblast-like MC3T3-E1 cells attached and spread well and showed higher proliferation on Ca-P spots modified zirconia (p<0.05), though its initial alkaline phosphatase activity was not significant high (p>0.05). In conclusion, Ca-P liquid precursor infiltration is a potential method to modify the zirconia ceramics for improving bioactivity.

  1. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    PubMed

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  2. The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors

    PubMed Central

    Jiráková, Klára; Šeneklová, Monika; Jirák, Daniel; Turnovcová, Karolína; Vosmanská, Magda; Babič, Michal; Horák, Daniel; Veverka, Pavel; Jendelová, Pavla

    2016-01-01

    Introduction Magnetic resonance (MR) imaging is suitable for noninvasive long-term tracking. We labeled human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) with two types of iron-based nanoparticles, silica-coated cobalt zinc ferrite nanoparticles (CZF) and poly-l-lysine-coated iron oxide superparamagnetic nanoparticles (PLL-coated γ-Fe2O3) and studied their effect on proliferation and neuronal differentiation. Materials and methods We investigated the effect of these two contrast agents on neural precursor cell proliferation and differentiation capability. We further defined the intracellular localization and labeling efficiency and analyzed labeled cells by MR. Results Cell proliferation was not affected by PLL-coated γ-Fe2O3 but was slowed down in cells labeled with CZF. Labeling efficiency, iron content and relaxation rates measured by MR were lower in cells labeled with CZF when compared to PLL-coated γ-Fe2O3. Cytoplasmic localization of both types of nanoparticles was confirmed by transmission electron microscopy. Flow cytometry and immunocytochemical analysis of specific markers expressed during neuronal differentiation did not show any significant differences between unlabeled cells or cells labeled with both magnetic nanoparticles. Conclusion Our results show that cells labeled with PLL-coated γ-Fe2O3 are suitable for MR detection, did not affect the differentiation potential of iPSC-NPs and are suitable for in vivo cell therapies in experimental models of central nervous system disorders. PMID:27920532

  3. Gene expression profiling of choline-deprived neural precursor cells isolated from mouse brain.

    PubMed

    Niculescu, Mihai D; Craciunescu, Corneliu N; Zeisel, Steven H

    2005-04-04

    Choline is an essential nutrient and an important methyl donor. Choline deficiency alters fetal development of the hippocampus in rodents and these changes are associated with decreased memory function lasting throughout life. Also, choline deficiency alters global and gene-specific DNA methylation in several models. This gene expression profiling study describes changes in cortical neural precursor cells from embryonic day 14 mice, after 48 h of exposure to a choline-deficient medium. Using Significance Analysis of Microarrays, we found the expression of 1003 genes to be significantly changed (from a total of 16,000 total genes spotted on the array), with a false discovery rate below 5%. A total of 846 genes were overexpressed while 157 were underexpressed. Classification by gene ontology revealed that 331 of these genes modulate cell proliferation, apoptosis, neuronal and glial differentiation, methyl metabolism, and calcium-binding protein classes. Twenty-seven genes that had changed expression have previously been reported to be regulated by promoter or intron methylation. These findings support our previous work suggesting that choline deficiency decreases the proliferation of neural precursors and possibly increases premature neuronal differentiation and apoptosis.

  4. Subcellular Distribution of Glutathione Precursors in Arabidopsis thaliana

    PubMed Central

    Koffler, Barbara Eva; Maier, Romana; Zechmann, Bernd

    2011-01-01

    Abstract Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) – the first enzyme of glutathione synthesis – causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells. PMID:22050910

  5. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory?

    PubMed

    Bürgler, Simone; Nadal, David

    2017-12-01

    Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells-expanded during an infection in early childhood-migrate to the bone marrow and support BCP-ALL cells as they support normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.

  6. CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells*

    PubMed Central

    Grozio, Alessia; Sociali, Giovanna; Sturla, Laura; Caffa, Irene; Soncini, Debora; Salis, Annalisa; Raffaelli, Nadia; De Flora, Antonio; Nencioni, Alessio; Bruzzone, Santina

    2013-01-01

    NAD+ is mainly synthesized in human cells via the “salvage” pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the “salvage” pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD+ or NAD+ precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD+ precursors for NAD+ biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD+ biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors. PMID:23880765

  7. Kaempferol increases levels of coenzyme Q in kidney cells and serves as a biosynthetic ring precursor.

    PubMed

    Fernández-Del-Río, Lucía; Nag, Anish; Gutiérrez Casado, Elena; Ariza, Julia; Awad, Agape M; Joseph, Akil I; Kwon, Ohyun; Verdin, Eric; de Cabo, Rafael; Schneider, Claus; Torres, Jorge Z; Burón, María I; Clarke, Catherine F; Villalba, José M

    2017-09-01

    Coenzyme Q (Q) is a lipid-soluble antioxidant essential in cellular physiology. Patients with Q deficiencies, with few exceptions, seldom respond to treatment. Current therapies rely on dietary supplementation with Q 10 , but due to its highly lipophilic nature, Q 10 is difficult to absorb by tissues and cells. Plant polyphenols, present in the human diet, are redox active and modulate numerous cellular pathways. In the present study, we tested whether treatment with polyphenols affected the content or biosynthesis of Q. Mouse kidney proximal tubule epithelial (Tkpts) cells and human embryonic kidney cells 293 (HEK 293) were treated with several types of polyphenols, and kaempferol produced the largest increase in Q levels. Experiments with stable isotope 13 C-labeled kaempferol demonstrated a previously unrecognized role of kaempferol as an aromatic ring precursor in Q biosynthesis. Investigations of the structure-function relationship of related flavonols showed the importance of two hydroxyl groups, located at C3 of the C ring and C4' of the B ring, both present in kaempferol, as important determinants of kaempferol as a Q biosynthetic precursor. Concurrently, through a mechanism not related to the enhancement of Q biosynthesis, kaempferol also augmented mitochondrial localization of Sirt3. The role of kaempferol as a precursor that increases Q levels, combined with its ability to upregulate Sirt3, identify kaempferol as a potential candidate in the design of interventions aimed on increasing endogenous Q biosynthesis, particularly in kidney. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. p57KIP2 regulates radial glia and intermediate precursor cell cycle dynamics and lower layer neurogenesis in developing cerebral cortex

    PubMed Central

    Mairet-Coello, Georges; Tury, Anna; Van Buskirk, Elise; Robinson, Kelsey; Genestine, Matthieu; DiCicco-Bloom, Emanuel

    2012-01-01

    During cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57KIP2, an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed macroencephaly associated with cortical hyperplasia during late embryogenesis and postnatal development. Embryonically, proliferation of radial glial cells (RGC) and intermediate precursors (IPC) was increased, expanding both populations, with greater effect on IPCs. Furthermore, cell cycle re-entry was increased during early corticogenesis, whereas cell cycle exit was augmented at middle stage. Consequently, neurogenesis was reduced early, whereas it was enhanced during later development. In agreement, the timetable of early neurogenesis, indicated by birthdating analysis, was delayed. Cell cycle dynamics analyses in mutants indicated that p57KIP2 regulates cell cycle length in both RGCs and IPCs. By contrast, related CKI p27KIP1 controlled IPC proliferation exclusively. Furthermore, p57KIP2 deficiency markedly increased RGC and IPC divisions at E14.5, whereas p27KIP1 increased IPC proliferation at E16.5. Consequently, loss of p57KIP2 increased primarily layer 5-6 neuron production, whereas loss of p27KIP1 increased neurons specifically in layers 2-5. In conclusion, our observations suggest that p57KIP2 and p27KIP1 control neuronal output for distinct cortical layers by regulating different stages of precursor proliferation, and support a model in which IPCs contribute to both lower and upper layer neuron generation. PMID:22223678

  9. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis mediated through FoxP3+ CD8 T-cells

    PubMed Central

    Buchwald, Zachary S.; Yang, Chang; Nellore, Suman; Shashkova, Elena V.; Davis, Jennifer L.; Cline, Anna; Ko, Je; Novack, Deborah V.; DiPaolo, Richard; Aurora, Rajeev

    2015-01-01

    TNFα and IL-17 secreted by proinflammatory T-cells (TEFF) promote bone erosion by activating osteoclasts. We previously demonstrated that in addition to bone resorption, osteoclasts act as antigen presenting cells to induce FoxP3 in CD8 T-cells (TcREG). The osteoclast-induced regulatory CD8 T-cells limit bone resorption in ovariectomized mice (a murine model of postmenopausal osteoporosis). Here we show that while low-dose RANKL maximally induces TcREG via Notch signaling pathway to limit bone resorption, high-dose RANKL promotes bone resorption. In vitro, both TNFα and IL-17, cytokines that are abundant in ovariectomized animals, suppress TcREG induction by osteoclasts by repressing Notch ligand expression in osteoclasts but this effect can be counteracted by addition of RANKL. Ovariectomized mice treated with low-dose RANKL induced TcREG that suppressed bone resorption, decreased TEFF levels and increased bone formation. High dose RANKL had the expected osteolytic effect. Low dose RANKL administration in ovariectomized mice lacking CD8 T-cells was also osteolytic, confirming that TcREG mediate this bone anabolic effect. Our results show that while RANKL directly stimulates osteoclasts to resorb bone, it also controls the osteoclasts’ ability to induce regulatory T-cells, engaging an important negative feedback loop. In addition to the conceivable clinical relevance to treatment of osteoporosis, these observations have potential relevance to induction of tolerance and autoimmune diseases. PMID:25656537

  10. Soluble Factors from Human Olfactory Neural Stem/Progenitor Cells Influence the Fate Decisions of Hippocampal Neural Precursor Cells.

    PubMed

    Gómez-Virgilio, Laura; Ramírez-Rodríguez, Gerardo Bernabé; Sánchez-Torres, Carmen; Ortiz-López, Leonardo; Meraz-Ríos, Marco Antonio

    2018-03-01

    Neurogenesis plays a significant role during adulthood, and the observation that neural stem cells reside in the central nervous system and the olfactory epithelium has attracted attention due to their importance in neuronal regeneration. In addition, soluble factors (SFs) release by neural stem cells may modulate the neurogenic process. Thus, in this study, we identified the SFs released by olfactory human neural stem/progenitor cells (hNS/PCs-OE). These cells express Ki67, nestin, and βIII-tubulin, indicating their neural lineage. The hNS/PCs-OE also express PSD95 and tau proteins during proliferation, but increased levels are observed after differentiation. Thus, we evaluated the effects of SFs from hNS/PCs-OE on the viability, proliferation, and differentiation potential of adult murine hippocampal neural precursor cells (AHPCs). SFs from hNS/PCs-OE maintain cells in the precursor and proliferative stages and mainly promote the astrocytic differentiation of AHPCs. These effects involved the activation, as measured by phosphorylation, of several proteins (Erk1/2; Akt/PRAS40/GSK3β and JAK/STAT) involved in key events of the neurogenic process. Moreover, according to the results from the antibody-based microarray approach, among the soluble factors, hNS/PCs-OE produce interleukin-6 (IL-6) and neurotrophin 4 (NT4). However, residual epidermal growth factor (EGF) was also detected. These proteins partially reproduced the effects of SFs from hNS/PCs-OE on AHPCs, and the mechanism underlying these effects is mediated by Src proteins, which have been implicated in EGF-induced transactivation of TrkB receptor. The results of the present study suggest the potential use of SFs from hNS/PCs-OE in controlling the differentiation potential of AHPCs. Thus, the potential clinical relevance of hNS/PCs-OE is worth pursuing.

  11. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    PubMed

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  12. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children.

    PubMed

    Goto, Hiroaki; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Fujii, Hisaki; Yokota, Shumpei; Komine, Hiromi

    2009-10-01

    Sensitivity to 10 anticancer drugs was evaluated in 6 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. Authenticity of newly established cell lines was confirmed by genomic fingerprinting. The line YCUB-5R established at relapse was more resistant to 4-hydroperoxy-cyclophosphamide, cytarabine, L-asparaginase, topotecan, fludarabine, and etoposide than YCUB-5 from the same patient at diagnosis. Of the drugs tested, etoposide and SN-38 (irinotecan) showed highest efficacy in the panel, with 50% growth inhibition at 0.22-1.8 microg/ml and 0.57-3.6 ng/ml, respectively. This cell line panel offers an in vitro model for the development of new therapies for childhood BCP-ALL.

  13. Genetically distinct leukemic stem cells in human CD34− acute myeloid leukemia are arrested at a hemopoietic precursor-like stage

    PubMed Central

    Quek, Lynn; Garnett, Catherine; Karamitros, Dimitris; Stoilova, Bilyana; Doondeea, Jessica; Kennedy, Alison; Metzner, Marlen; Ivey, Adam; Sternberg, Alexander; Hunter, Hannah; Price, Andrew; Virgo, Paul; Grimwade, David; Freeman, Sylvie; Russell, Nigel; Mead, Adam

    2016-01-01

    Our understanding of the perturbation of normal cellular differentiation hierarchies to create tumor-propagating stem cell populations is incomplete. In human acute myeloid leukemia (AML), current models suggest transformation creates leukemic stem cell (LSC) populations arrested at a progenitor-like stage expressing cell surface CD34. We show that in ∼25% of AML, with a distinct genetic mutation pattern where >98% of cells are CD34−, there are multiple, nonhierarchically arranged CD34+ and CD34− LSC populations. Within CD34− and CD34+ LSC–containing populations, LSC frequencies are similar; there are shared clonal structures and near-identical transcriptional signatures. CD34− LSCs have disordered global transcription profiles, but these profiles are enriched for transcriptional signatures of normal CD34− mature granulocyte–macrophage precursors, downstream of progenitors. But unlike mature precursors, LSCs express multiple normal stem cell transcriptional regulators previously implicated in LSC function. This suggests a new refined model of the relationship between LSCs and normal hemopoiesis in which the nature of genetic/epigenetic changes determines the disordered transcriptional program, resulting in LSC differentiation arrest at stages that are most like either progenitor or precursor stages of hemopoiesis. PMID:27377587

  14. A Subpopulation of Smooth Muscle Cells, Derived from Melanocyte-Competent Precursors, Prevents Patent Ductus Arteriosus

    PubMed Central

    Puig, Isabel; Champeval, Delphine; Kumasaka, Mayuko; Belloir, Elodie; Bonaventure, Jacky; Mark, Manuel; Yamamoto, Hiroaki; Taketo, Mark M.; Choquet, Philippe; Etchevers, Heather C.; Beermann, Friedrich; Delmas, Véronique; Monassier, Laurent; Larue, Lionel

    2013-01-01

    Background Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes. PMID:23382837

  15. Evaluation of Accessory Lacrimal Gland in Muller's Muscle Conjunctival Resection Specimens for Precursor Cell Markers and Biological Markers of Dry Eye Disease.

    PubMed

    Ali, Marwan; Shah, Dhara; Pasha, Zeeshan; Jassim, Sarmad H; Jassim Jaboori, Assraa; Setabutr, Pete; Aakalu, Vinay K

    2017-04-01

    The accessory lacrimal glands (ALGs) are an understudied component of the tear functional unit, even though they are important in the development of dry eye syndrome (DES). To advance our understanding of aging changes, regenerative potential, and histologic correlates to human characteristics, we investigated human ALG tissue from surgical samples to determine the presence or absence of progenitor cell markers and lacrimal epithelial markers and to correlate marker expression to relevant patient characteristics. ALG tissues obtained from Muller's muscle conjunctival resection (MMCR) specimens were created using tissue microarrays (TMAs). Immunofluorescence staining of MMCR sections was performed using primary antibodies specific to cell protein markers. Cell marker localization in TMAs was then assessed by two blinded observers using a standardized scoring system. Patient characteristics including age, race, and status of ocular surface health were then compared against expression of stem cell markers. Human ALG expressed a number of epithelial markers, and in particular, histatin-1 was well correlated with the expression of epithelial markers and was present in most acini. In addition, we noted the presence of precursor cell markers nestin, ABCG2, and CD90 in ALG tissue. There was a decrease in precursor cell marker expression with increasing age. Finally, we noted that a negative association was present between histatin-1 expression and DES. Thus, we report for the first time that human ALG tissues contain precursor marker-positive cells and that this marker expression may decrease with increasing age. Moreover, histatin-1 expression may be decreased in DES. Future studies will be performed to use these cell markers to isolate and culture lacrimal epithelial cells from heterogeneous tissues, determine the relevance of histatin-1 expression to DES, and isolate candidate precursor cells from ALG tissue.

  16. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou

    2017-08-01

    Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.

  17. [Development of fluorescent probes for bone imaging in vivo ~Fluorescent probes for intravital imaging of osteoclast activity~.

    PubMed

    Minoshima, Masafumi; Kikuchi, Kazuya

    Fluorescent molecules are widely used as a tool to directly visualize target biomolecules in vivo. Fluorescent probes have the advantage that desired function can be rendered based on rational design. For bone-imaging fluorescent probes in vivo, they should be delivered to bone tissue upon administration. Recently, a fluorescent probe for detecting osteoclast activity was developed. The fluorescent probe has acid-sensitive fluorescence property, specific delivery to bone tissue, and durability against laser irradiation, which enabled real-time intravital imaging of bone-resorbing osteoclasts for a long period of time.

  18. Schisandrin B protects PC12 cells by decreasing the expression of amyloid precursor protein and vacuolar protein sorting 35★

    PubMed Central

    Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping

    2012-01-01

    PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458

  19. Parathyroid Hormone Regulates the Distribution and Osteoclastogenic Potential of Hematopoietic Progenitors in the Bone Marrow

    PubMed Central

    Jacome-Galarza, Christian E; Lee, Sun-Kyeong; Lorenzo, Joseph A; Aguila, Hector Leonardo

    2011-01-01

    Parathyroid hormone (PTH) increases both the number of osteoclast in bone and the number of early hematopoietic stem cells (HSCs) in bone marrow. We previously characterized the phenotype of multiple populations of bone marrow cells with in vitro osteoclastogenic potential in mice. Here we examined whether intermittent administration of PTH influences these osteoclast progenitor (OCP) populations. C57BL/6 mice were treated with daily injections of bPTH(1–34) (80 μg/kg/day) for 7 or 14 days. We found that PTH caused a significant increase in the percentage of TN/CD115+CD117high and TN/CD115+CD117int cells ( p <.05) in bone marrow on day 7. In contrast, PTH decreased the absolute number of TN/CD115+CD117low cells by 39% on day 7 ( p <.05). On day 14, there was no effect of PTH on osteoclast progenitor distribution in vivo. However, PTH treatment for 7 and 14 days did increase receptor activator of NF-κB ligand (RANKL)– and macrophage colony-stimulating factor (M-CSF)–stimulated in vitro osteoclastogenesis and bone resorption in TN/CD115+ cells. In the periphery, 14 days of treatment increased the percentage and absolute numbers of HSCs (Lin−CD117+Sca-1+) in the spleen ( p <.05). These data correlated with an increase in the percent and absolute numbers of HSCs in bone marrow on day 14 ( p <.05). Interestingly, the effects on hematopoietic progenitors do not depend on osteoclast resorption activity. These results suggest that in vivo PTH treatment increased in vitro osteoclastogenesis and resorption without altering the number of osteoclast precursors. This implies that in vivo PTH induces sustained changes, possibly through an epigenetic mechanism, in the in vitro responsiveness of the cells to M-CSF and RANKL. PMID:21611963

  20. Synergistic effects of tributyltin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on differentiating osteoblasts and osteoclasts.

    PubMed

    Koskela, Antti; Viluksela, Matti; Keinänen, Meeri; Tuukkanen, Juha; Korkalainen, Merja

    2012-09-01

    The purpose of this study was to examine the effects of the persistent and accumulative environmental pollutants tributyltin (TBT) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) individually and in combination on differentiating bone cells. TBT and TCDD are chemically distinct compounds with different mechanisms of toxicity, but they typically have the same sources of exposure and both have been shown to affect bone development at low exposure levels. Bone marrow stem cells were isolated from femurs and tibias of C57BL/6J mice, differentiated in culture into osteoblasts or osteoclasts and exposed to 0.1-10nM TBT, 0.01-1nM TCDD or 10nM TBT+ 1nM TCDD. In osteoblasts, the combined exposure to TBT and TCDD significantly decreased the mRNA expression of alkaline phosphatase and osteocalcin more than TBT or TCDD alone. PCR array showed different gene expression profiles for TBT and TCDD individually, and the combination evoked several additional alterations in gene expression. Expression of aryl hydrocarbon receptor repressor (AHRR) was increased by TCDD as expected, but simultaneous exposure to TBT prevented the increase thus potentially strengthening AHR-mediated effects of TCDD. The number of osteoclasts was reduced by TCDD alone and in combination with TBT, but TBT alone had no effect. However, the total area of resorbed bone was remarkably lower after combined exposure than after TBT or TCDD alone. In conclusion, very low concentrations of TBT and TCDD have synergistic deleterious effects on bone formation and additive effects on bone resorption. Copyright © 2012 Elsevier Inc. All rights reserved.