Science.gov

Sample records for osteosarcoma cell lines

  1. Gene expression profiling analysis of osteosarcoma cell lines

    PubMed Central

    SUN, LU; LI, JIE; YAN, BING

    2015-01-01

    Osteosarcoma (OS) is the most common type of primary bone malignancy and has a poor prognosis. To investigate the mechanisms of osteosarcoma, the present analyzed the GSE28424 microarray. GSE28424 was downloaded from the Gene Expression Omnibus, and included a collective of 19 OS cell lines and four normal bone cell lines, which were used as controls. Subsequently, the differentially expressed genes (DEGs) were screened using the Limma package in Bioconductor. Gene Ontology (GO) and pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, interactions between the proteins encoded by the DEGs were identified using STRING, and the protein-protein interaction (PPI) network was visualized using Cytoscape. In addition, modular analysis of the PPI network was performed using the Clique Percolation Method (CPM) in CFinder. A total of 1,170 DEGs were screened, including 530 upreguated and 640 downregulated genes. The enriched functions included organelle fission, immune response and response to wounding. In addition, RPL8 was observed to be involved with the ribosomal pathway in module A of the PPI network of the DEGs. PLCG1, SYK and PLCG2 were also involved in the B-cell receptor signaling pathway in module B and the Fc-epsilon RI signaling pathway in module C. In addition, AURKA (degree=39), MAD2L1 (degree=38), CDCA8 (degree=38), BUB1 (degree=37) and MELK (degree=37) exhibited higher degrees of connectivity in module F. The results of the present study suggested that the RPL8, PLCG1, PLCG2, SYK, MAD2L1, AURKA, CDCA8, BUB1 and MELK genes may be involved in OS. PMID:26096802

  2. Gene expression profiling analysis of osteosarcoma cell lines.

    PubMed

    Sun, Lu; Li, Jie; Yan, Bing

    2015-09-01

    Osteosarcoma (OS) is the most common type of primary bone malignancy and has a poor prognosis. To investigate the mechanisms of osteosarcoma, the present analyzed the GSE28424 microarray. GSE28424 was downloaded from the Gene Expression Omnibus, and included a collective of 19 OS cell lines and four normal bone cell lines, which were used as controls. Subsequently, the differentially expressed genes (DEGs) were screened using the Limma package in Bioconductor. Gene Ontology (GO) and pathway enrichment analysis of the DEGs was performed using the Database for Annotation, Visualization and Integrated Discovery, interactions between the proteins encoded by the DEGs were identified using STRING, and the protein‑protein interaction (PPI) network was visualized using Cytoscape. In addition, modular analysis of the PPI network was performed using the Clique Percolation Method (CPM) in CFinder. A total of 1,170 DEGs were screened, including 530 upreguated and 640 downregulated genes. The enriched functions included organelle fission, immune response and response to wounding. In addition, RPL8 was observed to be involved with the ribosomal pathway in module A of the PPI network of the DEGs. PLCG1, SYK and PLCG2 were also involved in the B‑cell receptor signaling pathway in module B and the Fc‑epsilon RI signaling pathway in module C. In addition, AURKA (degree=39), MAD2L1 (degree=38), CDCA8 (degree=38), BUB1 (degree=37) and MELK (degree=37) exhibited higher degrees of connectivity in module F. The results of the present study suggested that the RPL8, PLCG1, PLCG2, SYK, MAD2L1, AURKA, CDCA8, BUB1 and MELK genes may be involved in OS. PMID:26096802

  3. Establishment of a cell line producing bone morphogenetic protein from a human osteosarcoma.

    PubMed

    Takaoka, K; Yoshikawa, H; Masuhara, K; Sugamoto, K; Tsuda, T; Aoki, Y; Ono, K; Sakamoto, Y

    1989-07-01

    A human osteosarcoma cell line was established from a biopsy specimen from a 13-year-old girl. The osteosarcoma tissue was maintained in athymic nude mice (Balb C nu/nu) by serial transplantation for three years. The tumor was excised from a host mouse and digested with collagenase. The isolated cells were cultured by 98 passages in 14 months, and clones of osteosarcoma cells were obtained by limiting dilution. A clone named human osteosarcoma cell 6 (H-OS-6) that showed the osteoblastic phenotypes of productions of bone morphogenetic protein (BMP) and alkaline phosphatase and a response to human parathyroid hormone (h-PTH 1-34) was selected. The morphology of its chromosomes indicated its human origin. This human osteosarcoma cell line is unique in producing BMP under in vitro conditions. PMID:2545399

  4. Niclosamide inhibits the proliferation of human osteosarcoma cell lines by inducing apoptosis and cell cycle arrest.

    PubMed

    Li, Zonghuan; Yu, Yifeng; Sun, Shaoxing; Qi, Baiwen; Wang, Weiyang; Yu, Aixi

    2015-04-01

    Niclosamide, used as an antihelminthic, has demonstrated some properties of anticancer effects. However, its role in osteosarcoma remains to be determined. The aim of this study was to determine the effect of niclosamide on human osteosarcoma cell lines. The human MG-63 and U2OS osteosarcoma cell lines were treated with different concentrations of niclosamide. The cell inhibitory rate was calculated by CCK-8 assay. Cell cycle was detected by flow cytometry. Cell apoptosis was determined by Hoechst 33324 staining, flow cytometry and fluorescence microscope, respectively. The expression of bcl-2, bax and pro-caspase-3 were measured by western blotting. Niclosamide exerted an inhibitory effect on the two cell lines in a time- and dose-dependent manner. Niclosamide was found to induce the arrest of S and G2/M phase in U2OS cells and G2/M in MG-63 cells. Moreover, niclosamide induced apoptosis in MG-63 and U2OS cells. The bax/bcl-2 ratio increased while the expression of pro‑caspase-3 decreased significantly in the two cell lines. The results indicated that niclosamide inhibits proliferation, and induces apoptosis and cell cycle arrest in human osteosarcoma cell lines. PMID:25634333

  5. The Cancer-Related Transcription Factor Runx2 Modulates Cell Proliferation in Human Osteosarcoma Cell Lines

    PubMed Central

    Lucero, Claudia M.J.; Vega, Oscar A.; Osorio, Mariana M.; Tapia, Julio C.; Antonelli, Marcelo; Stein, Gary S.; Van Wijnen, Andre J.; Galindo, Mario A.

    2013-01-01

    Runx2 regulates osteogenic differentiation and bone formation, but also suppresses pre-osteoblast proliferation by affecting cell cycle progression in the G1 phase. The growth suppressive potential of Runx2 is normally inactivated in part by protein destabilization, which permits cell cycle progression beyond the G1/S phase transition, and Runx2 is again up-regulated after mitosis. Runx2 expression also correlates with metastasis and poor chemotherapy response in osteosarcoma. Here we show that six human osteosarcoma cell lines (SaOS, MG63, U2OS, HOS, G292, and 143B) have different growth rates, which is consistent with differences in the lengths of the cell cycle. Runx2 protein levels are cell cycle-regulated with respect to the G1/S phase transition in U2OS, HOS, G292, and 143B cells. In contrast, Runx2 protein levels are constitutively expressed during the cell cycle in SaOS and MG63 cells. Forced expression of Runx2 suppresses growth in all cell lines indicating that accumulation of Runx2 in excess of its pre-established levels in a given cell type triggers one or more anti-proliferative pathways in osteosarcoma cells. Thus, regulatory mechanisms controlling Runx2 expression in osteosarcoma cells must balance Runx2 protein levels to promote its putative oncogenic functions, while avoiding suppression of bone tumor growth. PMID:22949168

  6. Establishment and characterization of a new highly metastatic human osteosarcoma cell line derived from Saos2

    PubMed Central

    Du, Lin; Fan, Qiming; Tu, Bing; Yan, Wei; Tang, Tingting

    2014-01-01

    Osteosarcoma is the most common primary malignancy of bone in adolescents and young adults. There is a shortage of tumorigenic and highly metastatic human osteosarcoma cell lines that can be used for metastasis study. Here we establish and characterize a highly metastatic human osteosarcoma cell line that is derived from Saos2 cell line based on bioluminescence. The occasional pulmonary metastatic cells developed from Saos2 were isolated, harvested, characterized and named Saos2-l. The parental Saos2 and Saos2-l cells were further characterized both in vitro and in vivo. Results showed that Saos2-l cells demonstrated increased cell adhesion, migration and invasion compared to the parental Saos2 cells. Conversely, Saos2-l cells grew at a slightly slower rate than that of the parental cells. When injected into nude mice, Saos2-l cells had a greater increase in developing pulmonary metastases compared to the parental Saos2 cells. Further transcriptional profiling analysis revealed that some gene expression were up-regulated or down-regulated in the highly metastatic Saos2-l cells, indicating possible influencing factors of metastasis. Thus, we have established and characterized a highly metastatic human osteosarcoma cell line that should serve as a valuable tool for future investigations on the pathogenesis, metastasis and potential treatments of human osteosarcoma. PMID:25031706

  7. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    PubMed

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture. PMID:25170299

  8. Taurolidine: a novel anti-neoplastic agent induces apoptosis of osteosarcoma cell lines.

    PubMed

    Walters, Denise K; Muff, Roman; Langsam, Bettina; Gruber, Philipp; Born, Walter; Fuchs, Bruno

    2007-08-01

    Taurolidine, the active agent of Taurolin, is a broad spectrum anti-biotic that has been used for over 15 years for the treatment of severe surgical infections. Recently, taurolidine has been shown to possess anti-neoplastic properties in vitro and in vivo against a variety of cancers including ovarian, colon and prostate. In this study we assessed the cytotoxic activity of taurolidine against human osteosarcoma (OS) cell lines and normal human bone cells. Treatment with taurolidine inhibited the growth of all ten osteosarcoma cell lines tested and taurolidine was equally potent against cell lines with and without distinct genetic defects (i.e. p53, Rb). Moreover, taurolidine-induced growth inhibition was found to be associated with a dose dependent increase in the number of apoptotic cells and apoptosis was shown to be caspase-dependent. Taurolidine treatment was also found to inhibit adhesion of OS cell lines. Compared to OS cell lines, normal bone cells in primary culture were found to be less sensitive to the cytotoxic and anti-adhesive effects of taurolidine. These data indicate that taurolidine possesses potent anti-neoplastic activity against osteosarcoma cell lines and may have potential as a novel OS chemotherapeutic agent. PMID:17458504

  9. mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts

    PubMed Central

    2011-01-01

    Background Conventional high-grade osteosarcoma is a primary malignant bone tumor, which is most prevalent in adolescence. Survival rates of osteosarcoma patients have not improved significantly in the last 25 years. Aiming to increase this survival rate, a variety of model systems are used to study osteosarcomagenesis and to test new therapeutic agents. Such model systems are typically generated from an osteosarcoma primary tumor, but undergo many changes due to culturing or interactions with a different host species, which may result in differences in gene expression between primary tumor cells, and tumor cells from the model system. We aimed to investigate whether gene expression profiles of osteosarcoma cell lines and xenografts are still comparable to those of the primary tumor. Methods We performed genome-wide mRNA expression profiling on osteosarcoma biopsies (n = 76), cell lines (n = 13), and xenografts (n = 18). Osteosarcoma can be subdivided into several histological subtypes, of which osteoblastic, chondroblastic, and fibroblastic osteosarcoma are the most frequent ones. Using nearest shrunken centroids classification, we generated an expression signature that can predict the histological subtype of osteosarcoma biopsies. Results The expression signature, which consisted of 24 probes encoding for 22 genes, predicted the histological subtype of osteosarcoma biopsies with a misclassification error of 15%. Histological subtypes of the two osteosarcoma model systems, i.e. osteosarcoma cell lines and xenografts, were predicted with similar misclassification error rates (15% and 11%, respectively). Conclusions Based on the preservation of mRNA expression profiles that are characteristic for the histological subtype we propose that these model systems are representative for the primary tumor from which they are derived. PMID:21933437

  10. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    PubMed Central

    2010-01-01

    Background The treatment of oral squamous cell carcinomas (OSCC) and human osteosarcoma (HOS) includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang) on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20%) were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50) for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis. PMID:20840769

  11. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    SciTech Connect

    Blattmann, Claudia; Oertel, Susanne; Ehemann, Volker

    2010-09-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

  12. Osteosarcoma tissues and cell lines from patients with differing serum alkaline phosphatase concentrations display minimal differences in gene expression patterns.

    PubMed

    Rodrigues, L C de Sá; Holmes, K E; Thompson, V; Piskun, C M; Lana, S E; Newton, M A; Stein, T J

    2016-06-01

    Serum alkaline phosphatase (ALP) concentration is a prognostic factor for osteosarcoma in multiple studies, although its biological significance remains incompletely understood. To determine whether gene expression patterns differed in osteosarcoma from patients with differing serum ALP concentrations, microarray analysis was performed on 18 primary osteosarcoma samples and six osteosarcoma cell lines from dogs with normal and increased serum ALP concentration. No differences in gene expression patterns were noted between tumours or cell lines with differing serum ALP concentration using a gene-specific two-sample t-test. Using a more sensitive empirical Bayes procedure, defective in cullin neddylation 1 domain containing 1 (DCUN1D1) was increased in both the tissue and cell lines of the normal ALP group. Using quantitative PCR (qPCR), differences in DCUN1D1 expression between the two groups failed to reach significance. The homogeneity of gene expression patterns of osteosarcoma associated differing serum ALP concentrations are consistent with previous studies suggesting serum ALP concentration is not associated with intrinsic differences of osteosarcoma cells. PMID:25643733

  13. Osteosarcoma tissues and cell lines from patients with differing serum alkaline phosphatase concentrations display minimal differences in gene expression patterns

    PubMed Central

    de Sá Rodrigues, L. C.; Holmes, K. E.; Thompson, V.; Piskun, C. M.; Lana, S. E.; Newton, M. A.; Stein, T. J.

    2016-01-01

    Serum alkaline phosphatase (ALP) concentration is a prognostic factor for osteosarcoma in multiple studies, although its biological significance remains incompletely understood. To determine whether gene expression patterns differed in osteosarcoma from patients with differing serum ALP concentrations, microarray analysis was performed on 18 primary osteosarcoma samples and six osteosarcoma cell lines from dogs with normal and increased serum ALP concentration. No differences in gene expression patterns were noted between tumours or cell lines with differing serum ALP concentration using a gene-specific two-sample t-test. Using a more sensitive empirical Bayes procedure, defective in cullin neddylation 1 domain containing 1 (DCUN1D1) was increased in both the tissue and cell lines of the normal ALP group. Using quantitative PCR (qPCR), differences in DCUN1D1 expression between the two groups failed to reach significance. The homogeneity of gene expression patterns of osteosarcoma associated differing serum ALP concentrations are consistent with previous studies suggesting serum ALP concentration is not associated with intrinsic differences of osteosarcoma cells. PMID:25643733

  14. Establishment and characterization of a cisplatin‑resistant human osteosarcoma cell line.

    PubMed

    Han, Tao; Zhu, Xiaoming; Wang, Julei; Zhao, Haien; Ma, Qiong; Zhao, Jian; Qiu, Xiuchun; Fan, Qingyu

    2014-09-01

    The aim of the present study was to establish a new cisplatin-resistant human osteosarcoma cell line and investigate its biological characteristics. The human osteosarcoma cell line SOSP-9607 was exposed to cisplatin by stepwisely increasing the concentrations in the medium to select for the drug-resistant subline, SOSP-9607/CDDP cells. The morphological features were observed using inverted microscopy. The growth curves of SOSP-9607 and SOSP-9607/CDDP cells were drawn to calculate the doubling time. FCM was also used to determine the distribution of the cell cycle. The MTT assay was performed to test the drug resistance of SOSP-9607 and SOSP-9607/CDDP cells. Transwell assay was used to examine the invasive capability of the SOSP-9607/CDDP and SOSP-9607 cells. RT-PCR was performed to determine the mRNA expression levels of drug resistance-related and apoptosis-related genes, MDR1, MRP1, MRP2, LRP, ABCG2, GST-π, Bcl-2 and Bax, in both cell lines. SOSP-9607/CDDP cells exhibited changes in morphology, proliferation rate, doubling time, cell cycle distribution and invasive capability as compared with the SOSP-9607 cells. SOSP-9607/CDDP cells were 6.24-fold resistant to cisplatin in comparison with the SOSP‑9607 cells and also exhibited cross-resistance to methotrexate and adriamycin. SOSP-9607/CDDP cells overexpressed MRP1, MRP2 and GST-π. In conclusion, SOSP-9607/CDDP cells are invaluable tools with which to study the resistance of anticancer drugs and to identify the methods to overcome resistance. PMID:25017716

  15. MicroRNA-144 inhibits the proliferation, apoptosis, invasion, and migration of osteosarcoma cell line F5M2.

    PubMed

    Cui, Shao-Qian; Wang, Huan

    2015-09-01

    This study is aimed to investigate the role of microRNA-144 (miR-144) in osteosarcoma cell line F5M2 proliferation, apoptosis, invasion, and metastasis. Between 2007 and 2014, 66 cases of osteosarcoma samples in the corresponding adjacent normal tissue samples were selected from surgical resection or biopsy in the Department of Orthopedics, Shengjing Hospital, China Medical University. MiR-144 levels and Ezrin messenger RNA (mRNA) levels in osteosarcoma and the adjacent bone tissues were detected, and clinical and pathological features were analyzed. Exogenous miR-144 was transfected into human osteosarcoma cell lines at two different concentrations (low and high), and the expression levels of miR-144 and Ezrin protein between highly metastatic osteosarcoma cells and lowly metastatic osteosarcoma cells were compared. Real-time polymerase chain reaction (RT-PCR) and Western blot were used for detecting the expression levels of miR-144 or Ezrin protein, respectively. Cell proliferation was measured by methylthiazol tetrazolium (MTT) assay. Cell invasion and migration was evaluated by Transwell assays. Finally, flow cytometry was employed to determine the cell apoptosis. MiR-144 expression in osteosarcoma tissue was significantly lower than that in the surrounding normal bone tissue (P < 0.001), while Ezrin mRNA expression in osteosarcoma tissue was significantly higher than that in the surrounding normal bone tissue (P < 0.001); correlation analysis showed a significant negative correlation between miR-144 and Ezrin mRNA levels (r = 0.982, P < 0.001). MiR-144 and Ezrin mRNA expressions were significantly related with cell metastasis (P < 0.05) but were not related with other clinical factors such as gender, age, tumor location, tumor size, Enneking staging, and Dahlin's histological classification. The results of RT-PCR showed that the expression level of miR-144 in osteosarcoma cells increased after transfected with exogenous miR-144 mimics, and

  16. Genetic and molecular characterization of the human osteosarcoma 3AB-OS cancer stem cell line: a possible model for studying osteosarcoma origin and stemness.

    PubMed

    Di Fiore, Riccardo; Fanale, Daniele; Drago-Ferrante, Rosa; Chiaradonna, Ferdinando; Giuliano, Michela; De Blasio, Anna; Amodeo, Valeria; Corsini, Lidia R; Bazan, Viviana; Tesoriere, Giovanni; Vento, Renza; Russo, Antonio

    2013-06-01

    Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second-line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB-OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB-OS cells have hypertriploid karyotype with 71-82 chromosomes. By comparing 3AB-OS CSCs to the parental cells, array CGH, Affymetrix microarray, and TaqMan® Human MicroRNA array analyses identified 49 copy number variations (CNV), 3,512 dysregulated genes and 189 differentially expressed miRNAs. Some of the chromosomal abnormalities and mRNA/miRNA expression profiles appeared to be congruent with those reported in human osteosarcomas. Bioinformatic analyses selected 196 genes and 46 anticorrelated miRNAs involved in carcinogenesis and stemness. For the first time, a predictive network is also described for two miRNA family (let-7/98 and miR-29a,b,c) and their anticorrelated mRNAs (MSTN, CCND2, Lin28B, MEST, HMGA2, and GHR), which may represent new biomarkers for osteosarcoma and may pave the way for the identification of new potential therapeutic targets. PMID:23129384

  17. Establishment and characterization of OS 99-1, a cell line derived from a highly aggressive primary human osteosarcoma.

    PubMed

    Gillette, Jennifer M; Gibbs, C Parker; Nielsen-Preiss, Sheila M

    2008-01-01

    Osteosarcoma is the most common form of primary bone cancer. In this study, we established a human osteosarcoma cell line (OS 99-1) from a highly aggressive primary tumor. G-banding karyotype analysis demonstrated a large number of clonal abnormalities, as well as extensive intercellular heterogeneity. Through the use of immunologic, molecular, and biochemical analyses, we characterized protein and gene expression profiles confirming the osteogenic nature of the cells. Further evaluation indicated that OS 99-1 cells maintain the capacity to differentiate in an in vitro mineralization assay as well as form tumors in the in vivo chicken embryo model. This cell line provides a useful tool to investigate the molecular mechanisms contributing to osteosarcoma and may have the potential to serve as a culture system for studies involving bone physiology. PMID:18247100

  18. Establishment and characterization of a KIT-positive and stem cell factor-producing cell line, KTHOS, derived from human osteosarcoma.

    PubMed

    Hitora, Toshiaki; Yamamoto, Tetsuji; Akisue, Toshihiro; Marui, Takashi; Nakatani, Tetsuya; Kawamoto, Teruya; Nagira, Keiko; Yoshiya, Shinichi; Kurosaka, Masahiro

    2005-02-01

    Osteosarcoma is a malignant bone tumor that commonly affects adolescents and young adults. In the present study a human osteosarcoma cell line, KTHOS, was established from a primary osteosarcoma lesion in the distal femur of a 16-year-old girl. After 106 passages, the KTHOS cell line retained the biological characteristics of osteosarcoma. The KTHOS cells had spindle to pleomorphic cytoplasm with round to ovoid nuclei containing multiple prominent nucleoli, as expected based on the mesodermic origin of osteoblasts. The KTHOS cells were immunoreactive for osteocalcin, osteonectin, stem cell factor (SCF), and KIT (CD117). Reverse transcriptase-polymerase chain reaction indicated that the KTHOS cell line expressed mRNA for SCF and KIT. The KTHOS cells produced relatively high amounts of soluble SCF as determined by enzyme-linked immunosorbent assay. The results suggest that cell proliferation of the KTHOS cell line might be involved in autocrine and/or paracrine loops of the SCF/KIT signaling system. The KTHOS cell line is a novel human osteosarcoma cell line that releases SCF and expresses KIT. This cell line can be used for studies to explore the mechanisms for oncogenesis of human osteosarcomas. PMID:15693848

  19. Effects of indomethacin, nimesulide, and diclofenac on human MG-63 osteosarcoma cell line.

    PubMed

    Díaz-Rodríguez, Lourdes; García-Martínez, Olga; Morales, Manuel Arroyo-; Rodríguez-Pérez, Laura; Rubio-Ruiz, Belén; Ruiz, Concepción

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely prescribed drugs worldwide and serve as treatment of some degenerative inflammatory joint diseases. The aim of the present study was to investigate the influence of different concentrations of three NSAIDs on cell proliferation, differentiation, antigenic profile, and cell cycle in the human MG-63 osteosarcoma cell line, incubated for 24 hr. All NSAIDs had an inhibiting effect on osteoblastic proliferation. Treatments for 24 hr had small but significant effects on the antigenic profile. No treatment altered osteocalcin synthesis. Indomethacin and nimesulide treatments arrested the cell cycle at G(0)/G(1). These results suggest that indomethacin, nimesulide, and diclofenac appear to have no effects on osteocalcin synthesis and a slight effect on the antigenic profile. They may delay bone regeneration due to their inhibiting effect on osteoblast growth. Therefore, these drugs should only be used in situations that do not require rapid bone healing. PMID:21385796

  20. The synergistic anticancer effect of cisplatin combined with Oldenlandia diffusa in osteosarcoma MG-63 cell line in vitro

    PubMed Central

    Pu, Feifei; Chen, Fengxia; Lin, Song; Chen, Songfeng; Zhang, Zhicai; Wang, Baichuan; Shao, Zengwu

    2016-01-01

    Background Oldenlandia diffusa (OD) is a well-known traditional Chinese medicine, which is used to prevent and treat many disorders, especially cancers. However, its role in osteosarcoma has not been well understood. Here, we used OD and cisplatin individually and combined in osteosarcoma MG-63 cell to explore whether OD could induce cellular apoptosis and suppress the ability of proliferation and invasion of osteosarcoma MG-63 cell. Methods The changes of cellular shape were analyzed by optical microscopy. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay was used to analyze cell survival rate in vitro. Flow cytometry was performed to detect cell cycle and cell death. Scratch migration assay was used to evaluate cell migration and invasion. Western blot was performed to determine the expression levels of pro-apoptotic and anti-apoptotic protein. Results In this study, we found that the survival rate reduced significantly in the combined group compared with the individual group and control group. The apoptosis-inducing effect of combined application was much more significant than that of individual application. The invasion ability of combined application was significantly lower than that of the individual application. In the combined group, there were high expression levels of pro-apoptotic protein and low expression of anti-apoptotic protein. Cell-cycle analysis showed a change in the cell-cycle distribution and arrested cells in G2-M phase. Conclusion In this study, we found that OD inhibited proliferation and induced apoptosis in the human osteosarcoma MG-63 cell line in a time-dependent and dose-dependent manner. In addition, OD displayed inhibitory activity on MG-63 cell proliferation and invasion and the study also showed that OD activity might be mediated by caspase activation. These data suggest that OD might represent a novel, efficient candidate agent for further experimentation in osteosarcoma treatment. PMID:26834484

  1. Mechanisms of methotrexate resistance in osteosarcoma cell lines and strategies for overcoming this resistance

    PubMed Central

    WANG, JIANJUN; LI, GUOJUN

    2015-01-01

    The aim of the present study was to investigate the underlying mechanisms of methotrexate (MTX) resistance in the human osteosarcoma cell line, Saos-2/MTX4.4, and to evaluate various methods of overcoming the resistance to this chemotherapeutic agent. MMT assays were performed to determine the resistance of the primary (Saos-2) and resistant (Saos-2/MTX4.4) cell lines to MTX, cisplatin [cis-diamminedichloroplatinum II (DDP)], ifosfamide (IFO), Adriamycin (ADM), epirubicin (EPI) and theprubicin (THP). The Saos-2/MTX4.4 cells exhibited a low resistance to IFO, ADM, EPI and THP; however, no resistance to DDP was identified. Overall, the Saos-2/MTX4.4 cells exhibited a greater resistance to all the chemotherapeutic agents investigated compared with the Saos-2 cells. Rhodamine 123 (R123) fluorescence was measured in the Saos-2/MTX4.4 and Saos-2 cells 30 and 60 min after the addition of R123, and R123 plus verapamil (VER). VER administration increased the intracellular accumulation of R123. In addition, reverse transcription-quantitative polymerase chain reaction was performed to determine the mRNA expression levels of multidrug resistance gene 1 (MDR1) in the two cell lines. Although the Saos-2/MTX4.4 cells were more resistant to the chemotherapeutic agents than the Saos-2 cells, no significant difference was identified between the relative mRNA expression levels of MDR1 in the Saos-2/MTX4.4 and Saos-2 cells (0.4350±0.0354 vs. 0.3886±0.0456; P>0.05). PMID:25621072

  2. Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: is RANKL/RANK signalling really important?

    PubMed

    Costa-Rodrigues, J; Teixeira, C A; Fernandes, M H

    2011-08-01

    Although in the past little attention has been paid to the influence of osteosarcoma cells in osteoclast function, recent studies suggest a close relationship between osteosarcoma aggressiveness and osteoclastic activity. The present study addresses the paracrine effects of MG63 cells, a human osteosarcoma-derived cell line, on the differentiation of peripheral blood osteoclast precursor cells (PBMC). PBMC were cultured for 21 days in the presence of conditioned media from MG63 cell cultures (CM) collected at 48 h (CM_MG1), 7 days (CM_MG2) and 14 days (CM_MG3). MG63 cell cultures displayed the expression of ALP and BMP-2 and, also, the osteoclastogenic genes M-CSF and RANKL, although with a low expression of RANKL. PBMC cultures supplemented with CM presented an evident osteoclastogenic behavior, which was dependent on the culture period of the MG63 cells. The inductive effect appeared to be more relevant for the differentiation and activation genes, c-myc and c-src, and lower for genes associated with osteoclast function. In addition, PBMC cultures displayed increased functional parameters, including calcium phosphate resorbing activity. Assessment of the PBMC cultures in the presence of U0126, PDTC, and indomethacin suggested that in addition to MEK and NFkB pathways, other signaling mechanisms, probably not involving RANKL/RANK interaction, might be activated in the presence of conditioned medium from MG63. In conclusion, MG63 cell line appears to induce a significant paracrine-mediated osteoclastogenic response. Understanding the mechanisms underlying the interaction of osteosarcoma cells and osteoclasts may contribute to the development of new potential approaches in the treatment of such bone metabolic diseases. PMID:21479680

  3. Morphological characterization of a newly established human osteosarcoma cell line, HS-Os-1, revealing its distinct osteoblastic nature.

    PubMed

    Sonobe, H; Mizobuchi, H; Manabe, Y; Furihata, M; Iwata, J; Hikita, T; Oka, T; Ohtsuki, Y; Goto, T

    1991-01-01

    A newly established human osteosarcoma cell line, HS-Os-1, from an osteoblastic tumor arising in the left humerus of an 11-year-old girl was morphologically characterized in vitro and in vivo. HS-Os-1 cells in a monolayer have been maintained for more than 2 years since the initial cultivation, and were round or polygonal in shape with marked pleomorphism. Their cytoplasm was strongly positive for specific markers of osteoblasts, such as alkaline phosphatase and osteocalcin. Tumors induced in nude mice by HS-Os-1 cell inoculation at passage 12 or 23 revealed typical histological features of osteoblastic osteosarcoma, similar to those observed in the original tumor, producing prominent osteoid matrix with calcification. Ultrastructurally, HS-Os-1 cells in vitro and tumor cells in vivo showed similar well-developed, markedly dilated rough endoplasmic reticulum, polysomes and microfilaments in their cytoplasm. Additionally, many collagen fibers associated with deposition of electron-dense material were detected in the stroma featuring osteoid matrix. Thus, the HS-Os-1 cell line was shown to exhibit its osteoblastic nature in vitro and in vivo, and therefore might become an extremely useful tool for various pathomorphological investigations on human osteosarcomas. PMID:1679269

  4. Bisphosphonates regulate cell growth and gene expression in the UMR 106-01 clonal rat osteosarcoma cell line

    PubMed Central

    Mackie, P S; Fisher, J L; Zhou, H; Choong, P F M

    2001-01-01

    Local growth of osteosarcoma involves destruction of host bone by proteolytic mechanisms and/or host osteoclast activation. Osteoclast formation and activity are regulated by osteoblast-derived factors such as the osteoclast differentiating factor, receptor activator of NF-κB ligand (RANKL) and the inhibitor osteoprotegerin (OPG). We have investigated the in vitro effects of bisphosphonates on a clonal rat osteosarcoma cell line. The aminobisphosphonate pamidronate was added to UMR 106-01 cell cultures (10−8M to 10−4M up to 5 days). The non-aminobisphosphonate clodronate was administered for the same time periods (10−6M to 10−2M). Cell proliferation, apoptosis and mRNA expression was assessed. Both agents inhibited cell proliferation in a time- and dose-dependent manner. ELISA analysis demonstrated an increase in DNA fragmentation although there was no significant dose-related difference between the doses studied. Bisphosphonate-treated cultures had a greater subpopulation of cells exhibiting morphological changes of apoptosis. Expression of mRNA for osteopontin and RANKL was down-regulated by both agents, while the expression of mRNA for alkaline phosphatase, pro-α1(I) collagen and OPG was not altered. Out in vitro work suggests the bisphosphonates not only have direct effects on osteosarcoma cell growth and apoptosis, but also, by altering the relative expression of osteoclast-regulating factors, they may inhibit the activity of osteoclasts and their recruitment. © 2001 Cancer Research Campaignhttp://www.bjcancer.com PMID:11286476

  5. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    PubMed

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs. PMID:27506084

  6. Characterization of Notch Signaling During Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Rizzo, Paola; Caliceti, Cristiana; Massari, Leo; De Mattei, Monica

    2016-12-01

    Osteogenic differentiation is a multi-step process controlled by a complex molecular framework. Notch is an evolutionarily conserved intercellular signaling pathway playing a prominent role in cell fate and differentiation, although the mechanisms by which this pathway regulates osteogenesis remain controversial. This study aimed to investigate, in vitro, the involvement of Notch pathway during all the developmental stages of osteogenic differentiation in human osteosarcoma cell line MG63. Cells were cultured in basal condition (control) and in osteoinductive medium (OM). Notch inhibitors were also added in OM to block Notch pathway. During osteogenic differentiation, early (alkaline phosphatase activity and collagen type I) and late osteogenic markers (osteocalcin levels and matrix mineralization), as well as the gene expression of the main osteogenic transcription factors (Runx2, Osterix, and Dlx5) increased. Time dependent changes in the expression of specific Notch receptors were identified in OM versus control with a significant reduction in the expression of Notch1 and Notch3 receptors in the early phase of differentiation, and an increase of Notch2 and Notch4 receptors in the late phase. Among Notch nuclear target genes, Hey1 expression was significantly higher in OM than control, while Hes5 expression decreased. Osteogenic markers were reduced and Hey1 was significantly inhibited by Notch inhibitors, suggesting a role for Notch through the canonical pathway. In conclusion, Notch pathway might be involved with a dual role in osteogenesis of MG63, through the activation of Notch2, Notch4, and Hey1, inducing osteoblast differentiation and the depression of Notch1, Notch3, and Hes5, maintaining an undifferentiated status. J. Cell. Physiol. 231: 2652-2663, 2016. © 2016 Wiley Periodicals, Inc. PMID:26946465

  7. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines

    PubMed Central

    2012-01-01

    Background STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS). Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. Results We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. Conclusion LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS. PMID:23244668

  8. Comparative study of cytotoxicity of detonation nanodiamond particles with an osteosarcoma cell line and primary mesenchymal stem cells

    PubMed Central

    Keremidarska, Milena; Ganeva, Aneliya; Mitev, Dimitar; Hikov, Todor; Presker, Radina; Pramatarova, Lilyana; Krasteva, Natalia

    2014-01-01

    Recently, nanodiamonds (NDs) have attracted great interest due to their unique physical and chemical properties that could be used in various biological applications. However, depending on the origin, NDs often contain different impurities which may affect cellular functions and viability. Therefore, before their biomedical application, the cytotoxicity of newly produced NDs should be assessed. In the present study, we have evaluated cytotoxicity of four types of ND particles with two cell models: a human osteosarcoma cell line, MG-63, and primary rat mesenchymal stem cells (rMSCs). Detonation-generated nanodiamond (DND) particles were purified with different acid oxidizers and impurities’ content was determined by elemental analysis. The particles size distribution was measured revealing that the DND particles have an average size in the range of 51–233 nm. Cytotoxicity was assessed by optical microscopy and proliferation assay after 72 hours exposure of the cells to nanoparticles. We observed cell-specific and material-specific toxicity for all tested particles. Primary stem cells demonstrated higher sensitivity to DND particles than osteosarcoma cells. The most toxic were the DND particles with the smallest grain size and slight content of non-diamond carbon, while DNDs with higher grain size and free from impurities had no significant influence on cell proliferation and morphology. In addition, the smaller DND particles were found to form large aggregates mainly during incubation with rMSCs. These results demonstrate the role of the purification method on the properties of DND particles and their cytotoxicity as well as the importance of cell types used for evaluation of the nanomaterials. PMID:26019557

  9. [Establishment and characterization of a cell line, HS-Os-1 derived from an osteoblastic type of human osteosarcoma].

    PubMed

    Sonobe, H; Mizobuchi, H; Manabe, Y; Furihata, M; Iwata, J; Hikita, T; Kiuna, O; Tanimoto, T; Oka, T; Ohtsuki, Y

    1990-06-01

    A new human cell line, HS-Os-1, derived from a case of osteoblastic osteosarcoma arising in the humerus of an 11-year-old girl was established. Light microscopically, HS-Os-1 cells growing in a monolayer (in vitro) were pleomorphic, intermingled with a few multinucleated giant ones, and positive with alkaline phosphatase reaction. In the transplanted tumors in athymic nude mice (in vivo), atypical spindle or polygonal cells densely proliferated with prominent osteoid formation and even calcification. HS-Os-1 cells, both in vitro and in vivo, were mostly positive for vimentin and a few for S-100 protein. Ultrastructurally, HS-Os-1 cells in vitro and in vivo also revealed essentially the same features as the eccentrically located, euchromatin-rich nuclei with prominent nucleoli, a lot of well-developed, irregularly-dilated rough endoplasmic reticula, polysomes and microfilaments in the cytoplasm. Namely, HS-Os-1 cells fully expressed and possessed morphological characteristics as osteoblastic nature during the cultivation and heterotransplantation. This cell line, therefore, proved to be extremely useful to search for human osteosarcomas. PMID:2085479

  10. Expression of different phenotypes in cell lines from canine mammary spindle-cell tumours and osteosarcomas indicating a pluripotent mammary stem cell origin.

    PubMed

    Hellmén, E; Moller, M; Blankenstein, M A; Andersson, L; Westermark, B

    2000-06-01

    Mammary spindle-cell tumours and sarcomas seem to be restricted to dogs and humans. Two cell lines from spontaneous primary canine mammary spindle-cell tumours (CMT-U304 and CMT-U309) and two cell lines from spontaneous primary canine mammary osteosarcomas (CMT-U334 and CMT-U335) were established to study the mesenchymal phenotypes of mammary tumours in the female dog. The cells from the spindle-cell tumours expressed cytokeratin, vimentin and smooth muscle actin filaments. When these cells were inoculated subcutaneously into female and male nude mice they formed different types of mesenchymal tumours such as spindle-cell tumours, fibroma and rhabdomyoid tumours (n = 6/8). The cells from the osteosarcomas expressed vimentin filaments and also formed different types of mesenchymal tumours such as chondroid, rhabdomyoid, smooth muscle-like and spindle-cell tumours (n = 6/10). The cell lines CMT-U304, CMT-U309 and CMT-U335 had receptors for progesterone but none of the four cell lines had receptors for estrogen. All four cell lines and their corresponding primary tumours showed identical allelic patterns in microsatellite analysis. By in situ hybridization with genomic DNA we could verify that all formed tumours but one were of canine origin. Our results support the hypothesis that canine mammary tumours are derived from pluripotent stem cells. PMID:10965996

  11. Overexpression of urokinase receptor increases matrix invasion without altering cell migration in a human osteosarcoma cell line.

    PubMed

    Karikó, K; Kuo, A; Boyd, D; Okada, S S; Cines, D B; Barnathan, E S

    1993-07-01

    Proteolysis triggered by receptor-bound urokinase-type plasminogen activator (uPA) involves a cascade of species-specific molecular interactions. To study the role of the uPA receptor (uPAR) in such interactions, a human osteosarcoma cell line (HOS), which normally expresses low levels of uPAR, was transfected with human uPAR complementary DNA. One of several stably transformed clonal cells lines, designated 2A2, was characterized and compared to the parental HOS, revealing the following: (a) stable incorporation of uPAR complementary DNA into the genome demonstrated by Southern blot analysis; (b) a 10-fold increase in steady state mRNA levels of uPAR assessed by Northern blot analysis; (c) a 2-fold increase in the surface expression of glycosylphosphatidylinositol anchored uPAR protein determined by enzyme-linked immunosorbent assay and by the specific binding of radiolabeled single chain uPA; (d) a 2-fold increase in internalization and degradation of radiolabeled uPA/PAI-1 complexes; and (e) a 2-fold increase in receptor-bound uPA-mediated plasmin generation measured by the cleavage of a chromogenic substrate and degradation of 125I-labeled laminin. The involvement of uPAR in cellular processes was determined by comparing 2A2 and HOS cells in in vitro migration and invasion assays. The migration of 2A2 cells were slower on fibronectin-coated surfaces in a linear under-agarose assay, but both cell lines migrated at the same rate on uncoated polycarbonate filters in Boyden chamber assays. In the invasion experiments, 4 times more 2A2 than HOS cells penetrated through the barrier of reconstituted basement membrane Matrigel. These data suggest that uPAR does not potentiate random cell migration but facilitates matrix degradation and subsequent cell invasion. PMID:8391387

  12. Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields.

    PubMed

    Sollazzo, V; Traina, G C; DeMattei, M; Pellati, A; Pezzetti, F; Caruso, A

    1997-01-01

    We have studied the effects of low-energy, low-frequency pulsed electromagnetic fields (PEMF) on cell proliferation, in both human osteoblast-like cells obtained from bone specimens and in human MG-63 osteosarcoma cell line. Assessment of osteoblastic phenotype was performed both by immunolabeling with antiosteonectin antibody and by verifying the presence of parathyroid hormone receptors. The cells were placed in multiwell plates and set in a tissue culture incubator between a pair of Helmholtz coils powered by a pulse generator (1.3 ms, 75 Hz) for different periods of time. [3H]Thymidine incorporation was used to evaluate cell proliferation. Since it had previously been observed that the osteoblast proliferative response to PEMF exposure may also be conditioned by the presence of serum in the medium, experiments were carried out at different serum concentrations. [3H]Thymidine incorporation increases in osteoblast-like cells, when they are exposed to PEMF in the presence of 10% fetal calf serum (FCS). The greatest effect is observed after 24 hours of PEMF exposure. No effects on cell proliferation are observed when osteoblast-like cells are exposed to PEMF in the presence of 0.5% FCS or in a serum-free medium. On the other hand, PEMF-exposed MG-63 cells show increased cell proliferation either at 10% FCS, 0.5% FCS and in serum-free medium. Nevertheless, the maximum effect of PEMF exposure on MG-63 cell proliferation depends on the percentage of FCS in the medium. The higher the FCS concentration, the faster the proliferative response to PEMF exposure. Our results show that, although MG-63 cells display some similarity with human bone cells, their responses to PEMF's exposure are quite different from that observed in normal human bone cells. PMID:9383242

  13. Fluoroquinolone-Mediated Inhibition of Cell Growth, S-G2/M Cell Cycle Arrest, and Apoptosis in Canine Osteosarcoma Cell Lines

    PubMed Central

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O.; Chen, Xinbin; Rebhun, Robert B.

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21WAF1 expression resulting in decreased proliferation and increased S-G2/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma. PMID:22927942

  14. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines.

    PubMed

    Seo, Kyoung won; Holt, Roseline; Jung, Yong-Sam; Rodriguez, Carlos O; Chen, Xinbin; Rebhun, Robert B

    2012-01-01

    Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma. PMID:22927942

  15. Different expression of alternative lengthening of telomere (ALT)-associated proteins/mRNAs in osteosarcoma cell lines

    PubMed Central

    ZHANG, YI; CAI, LIN; WEI, REN-XIONG; HU, HAO; JIN, WEI; ZHU, XIAO-BIN

    2011-01-01

    Tumors, including osteosarcoma (OS), are capable of evading senescence and cell death, which is caused by telomere loss with cell division. Alternative lengthening of telomeres (ALT) is considered as the main telomere maintenance mechanism in OS. In this study, we investigated the expression of ALT-associated proteins and mRNAs in human OS cell lines. Western blotting was used to detect the protein expression in OS cell lines, while the expression of mRNA was determined by reverse-transcriptase PCR and quantitative real-time PCR analysis. Whole-genome expression arrays were used to analyze the expression of all the mRNAs involved in telomere maintenance mechanisms (TMMs) including human telomerase reverse transcriptase, promyelocytic leukemia proteins and other related proteins. OS and normal cell lines do not express telomerase reverse transcriptase (hTERT) as a key subunit of telomerase, although they show varying levels of ALT-associated proteins and mRNAs such as PML, Rad52, MRE11 and FEN1 by Western blotting and quantitative real-time PCR analysis. A number of mRNAs that play essential roles in ALT are expressed more in OS cell lines than in the osteoblast cell line, as shown by whole-genome expression arrays. In conclusion, OS cell lines maintain their telomere length primarily through the ALT mechanism. There are numerous other proteins that regulate this process in OS; therefore, anti-ALT therapy may be a more effective method to treat OS than anti-telomerase therapy. PMID:22848311

  16. Actein Inhibits Cell Proliferation and Migration in Human Osteosarcoma

    PubMed Central

    Chen, Zhi; Wu, Jingdong; Guo, Qinghao

    2016-01-01

    Background Osteosarcoma is one of the most common malignant bone cancers worldwide. Although the traditional chemotherapies have made some progression in the past decades, the mortality of osteosarcoma in children and adolescent is very high. Herein, the role of actein in osteosarcoma was explored. Material/Methods Cell viability assay was performed in osteosarcoma cell lines 143B and U2OS. Colony formation analysis was included when cells were treated with different doses of actin. Cell cycle assay was conducted to further examine the role of actein. Cell apoptotic rate and the relative activities of caspase-3, caspase-8, and caspase-9 were detected in 143B and U2OS osteosarcoma cells. Moreover, transwell assays were used to explore the effects of actein on cell metastasis. Results Actein significantly inhibited osteosarcoma cell viability in a time- and dose-dependent manner. Actein also dramatically suppressed the colony formation ability in osteosarcoma143B and U2OS cells. It was revealed that osteosarcoma cells were arrested in G0/G1 phase in the cell cycle progression and induced to apoptosis by administration of actein. The activities of pro-apoptotic factors such as caspase-3 and caspase-9 were significantly increased by actein. Furthermore, administration of actein decreased cell migrated and invasive abilities in both 143B and U2OS cell lines. Conclusions Actein inhibits tumor growth by inducing cell apoptosis in osteosarcoma. The inhibitive roles of actein in cell proliferation, migration and invasion suggest that actein may serve as a potential therapeutic agent in the treatment of osteosarcoma. PMID:27173526

  17. Vitamin D fails to prevent serum starvation- or staurosporine-induced apoptosis in human and rat osteosarcoma-derived cell lines

    SciTech Connect

    Witasp, Erika; Gustafsson, Ann-Catrin; Cotgreave, Ian; Lind, Monica . E-mail: monica.lind@imm.ki.se; Fadeel, Bengt . E-mail: bengt.fadeel@imm.ki.se

    2005-05-13

    Previous studies have suggested that 1,25(OH){sub 2}D{sub 3}, the active form of vitamin D{sub 3}, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D{sub 3} has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH){sub 2}D{sub 3} induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in this model. Moreover, 1,25(OH){sub 2}D{sub 3} failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D{sub 3}.

  18. Ladder-Like Amplification of the Type I Interferon Gene Cluster in the Human Osteosarcoma Cell Line MG63

    PubMed Central

    Marella, Narasimha Rao V.; Zeitz, Michael J.; Malyavantham, Kishore S.; Pliss, Artem; Matsui, Sei-ichi; Goetze, Sandra; Bode, Juergen; Raska, Ivan; Berezney, Ronald

    2009-01-01

    Summary The organization of the type I interferon (IFN) gene cluster (9p21.3) was studied in a human osteosarcoma cell line (MG63). Array comparative genomic hybridization (aCGH) showed an amplification of ~six-fold which ended at both ends of the gene cluster with a deletion that extended throughout the 9p21.3 band. Spectral karyotyping (SKY) combined with fluorescence in situ hybridization (FISH) identified an arrangement of the gene cluster in a ladder-like array of 5–7 “bands” spanning a single chromosome termed the “IFN chromosome”. Chromosome painting revealed that the IFN chromosome is derived from components of chromosomes 4, 8 and 9. Labeling with centromeric probes demonstrated a ladder-like amplification of centromeric 4 and 9 sequences that colocalized with each other and a similar banding pattern of chromosome 4, as well as alternating with the IFN gene clusters. In contrast, centromere 8 was not detected on the IFN chromosome. One of the amplified centromeric 9 bands was identified as the functional centromere based on its location at the chromosome constriction and immunolocalization of the CENP-C protein. A model is presented for the generation of the IFN chromosome that involves breakage- fusion- bridge (BFB) events. PMID:19005637

  19. Low-Level Light Therapy Potentiates NPe6-mediated Photodynamic Therapy in a Human Osteosarcoma Cell Line via Increased ATP

    PubMed Central

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R.

    2015-01-01

    Background Low-Level Light Therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). Methods We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-L-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5 J/cm2 of 810 nm near infrared radiation (NIR) followed by addition of 10 μM NPe6 and after 2 h incubation by 1.5 J/cm2 of 652 nm red light for PDT. Results PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Conclusions Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. PMID:25462575

  20. Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG‑63 through the ROS/JNK signaling pathway.

    PubMed

    Tu, Pinghua; Huang, Qiu; Ou, Yunsheng; Du, Xing; Li, Kaiting; Tao, Yong; Yin, Hang

    2016-06-01

    The present study was carried out to investigate the effect and mechanisms of aloe‑emodin (AE)-mediated photodynamic therapy (AE-PDT) on the human osteosarcoma cell line MG-63. After treatment with AE-PDT, the human osteosarcoma cell line MG-63 was tested for levels of viability, autophagy, reactive oxygen species (ROS) and apoptosis and changes in cell morphology with the Cell Counting Kit-8 (CCK‑8), monodansylcadaverine (MDC) and Hoechst staining and transmission electron microscopy. The expression of proteins including LC-3, cleaved caspase-3, Beclin-1, Bcl-2, p-JNK, t-JNK and β-actin was examined with western blotting. AE-PDT significantly inhibited the viability of the MG-63 cells in an AE-concentration- and PDT energy density-dependent manner. Autophagy and apoptosis of MG-63 cells was substantially promoted in the AE-PDT group compared to the control group, the AE alone group and the light emitting diode (LED) alone group. Inhibition of autophagy by 3-methyladenine (3-MA) (5 mM) and chloroquine (CQ) (15 µM) significantly promoted the apoptosis rate and improved the sensitivity of the MG-63 cells to AE-PDT. AE-PDT was found to induce the expression of ROS and p-JNK. ROS scavenger, N-acetyl-L-cysteine (NAC, 5 mM), was able to hinder the autophagy, apoptosis and phosphorylation of JNK, and JNK inhibitor (SP600125, 10 µM) significantly inhibited the autophagy and apoptosis, and attenuated the sensitivity of MG63 cells to AE-PDT. In conclusion, AE-PDT induced the autophagy and apoptosis of human osteosarcoma cell line MG-63 through the activation of the ROS-JNK signaling pathway. Autophagy may play a protective role during the early stage following treatment of AE-PDT. PMID:27035222

  1. Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG-63 through the ROS/JNK signaling pathway

    PubMed Central

    TU, PINGHUA; HUANG, QIU; OU, YUNSHENG; DU, XING; LI, KAITING; TAO, YONG; YIN, HANG

    2016-01-01

    The present study was carried out to investigate the effect and mechanisms of aloe-emodin (AE)-mediated photodynamic therapy (AE-PDT) on the human osteosarcoma cell line MG-63. After treatment with AE-PDT, the human osteosarcoma cell line MG-63 was tested for levels of viability, autophagy, reactive oxygen species (ROS) and apoptosis and changes in cell morphology with the Cell Counting Kit-8 (CCK-8), monodansylcadaverine (MDC) and Hoechst staining and transmission electron microscopy. The expression of proteins including LC-3, cleaved caspase-3, Beclin-1, Bcl-2, p-JNK, t-JNK and β-actin was examined with western blotting. AE-PDT significantly inhibited the viability of the MG-63 cells in an AE-concentration- and PDT energy density-dependent manner. Autophagy and apoptosis of MG-63 cells was substantially promoted in the AE-PDT group compared to the control group, the AE alone group and the light emitting diode (LED) alone group. Inhibition of autophagy by 3-meth-yladenine (3-MA) (5 mM) and chloroquine (CQ) (15 µM) significantly promoted the apoptosis rate and improved the sensitivity of the MG-63 cells to AE-PDT. AE-PDT was found to induce the expression of ROS and p-JNK. ROS scavenger, N-acetyl-L-cysteine (NAC, 5 mM), was able to hinder the autophagy, apoptosis and phosphorylation of JNK, and JNK inhibitor (SP600125, 10 µM) significantly inhibited the autophagy and apoptosis, and attenuated the sensitivity of MG63 cells to AE-PDT. In conclusion, AE-PDT induced the autophagy and apoptosis of human osteosarcoma cell line MG-63 through the activation of the ROS-JNK signaling pathway. Autophagy may play a protective role during the early stage following treatment of AE-PDT. PMID:27035222

  2. SRCIN1 Suppressed Osteosarcoma Cell Proliferation and Invasion.

    PubMed

    Wang, Peng; Wang, Hu; Li, Xiaotao; Liu, Ying; Zhao, Chengbin; Zhu, Daling

    2016-01-01

    SRCIN1 (SRC kinase signalling inhibitor 1) is a new tumor suppressor gene. Previous studies showed that SRCIN1 played a tumor suppressor role in the development of lung cancer and breast cancer. However, the role of SRCIN1 in osteosarcoma is still unknown. In this study, we demonstrated that SRCIN1 was downregulated in osteosarcoma cell lines compared with osteoblastic cell line. Moreover, SRCIN1 was downregulated in osteosarcoma tissues compared with the adjacent tissues. Further investigation revealed that overexpression of SRCIN1 inhibited the osteosarcoma cell line MG-63 proliferation. This effect was confirmed by measuring the ki-67 and PCNA expression. SRCIN1 overexpression promoted E-cadherin expression and suppressed N-cadherin, Vimentin and Snail expression, suggesting that SRCIN1 overexpression inhibited EMT of the osteosarcoma cell. In addition, ectopic expression of SRCIN1 inhibited the MG-63 cell colony formation and invasion. These data suggested that SRCIN1 acted as a tumor suppressor gene in the development of osteosarcoma. PMID:27513473

  3. SRCIN1 Suppressed Osteosarcoma Cell Proliferation and Invasion

    PubMed Central

    Wang, Peng; Wang, Hu; Li, Xiaotao; Liu, Ying; Zhao, Chengbin; Zhu, Daling

    2016-01-01

    SRCIN1 (SRC kinase signalling inhibitor 1) is a new tumor suppressor gene. Previous studies showed that SRCIN1 played a tumor suppressor role in the development of lung cancer and breast cancer. However, the role of SRCIN1 in osteosarcoma is still unknown. In this study, we demonstrated that SRCIN1 was downregulated in osteosarcoma cell lines compared with osteoblastic cell line. Moreover, SRCIN1 was downregulated in osteosarcoma tissues compared with the adjacent tissues. Further investigation revealed that overexpression of SRCIN1 inhibited the osteosarcoma cell line MG-63 proliferation. This effect was confirmed by measuring the ki-67 and PCNA expression. SRCIN1 overexpression promoted E-cadherin expression and suppressed N-cadherin, Vimentin and Snail expression, suggesting that SRCIN1 overexpression inhibited EMT of the osteosarcoma cell. In addition, ectopic expression of SRCIN1 inhibited the MG-63 cell colony formation and invasion. These data suggested that SRCIN1 acted as a tumor suppressor gene in the development of osteosarcoma. PMID:27513473

  4. β-Catenin transcriptional activity is minimal in canine osteosarcoma and its targeted inhibition results in minimal changes to cell line behaviour.

    PubMed

    Piskun, Caroline M; Stein, Timothy J

    2016-06-01

    Canine osteosarcoma (OS) is an aggressive malignancy associated with poor outcomes. Therapeutic improvements are likely to develop from an improved understanding of signalling pathways contributing to OS development and progression. The Wnt signalling pathway is of interest for its role in osteoblast differentiation, its dysregulation in numerous cancer types, and the relative frequency of cytoplasmic accumulation of β-catenin in canine OS. This study aimed to determine the biological impact of inhibiting canonical Wnt signalling in canine OS, by utilizing either β-catenin siRNA or a dominant-negative T-cell factor (TCF) construct. There were no consistent, significant changes in cell line behaviour with either method compared to parental cell lines. Interestingly, β-catenin transcriptional activity was three-fold higher in normal canine primary osteoblasts compared to canine OS cell lines. These results suggest canonical Wnt signalling is minimally active in canine OS and its targeted inhibition is not a relevant therapeutic strategy. PMID:24256430

  5. A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line.

    PubMed Central

    Fenteany, G; Standaert, R F; Reichard, G A; Corey, E J; Schreiber, S L

    1994-01-01

    Lactacystin, a microbial natural product, induces neurite outgrowth in Neuro 2A mouse neuroblastoma cells and inhibits progression of synchronized Neuro 2A cells and MG-63 human osteosarcoma cells beyond the G1 phase of the cell cycle. A related beta-lactone, clasto-lactacystin beta-lactone, formally the product of elimination of N-acetylcysteine from lactacystin, is also active, whereas the corresponding clastolactacystin dihydroxy acid is completely inactive. Structural analogs of lactacystin altered only in the N-acetylcysteine moiety are active, while structural or stereochemical modifications of the gamma-lactam ring or the hydroxyisobutyl group lead to partial or complete loss of activity. The inactive compounds do not antagonize the effects of lactacystin in either neurite outgrowth or cell cycle progression assays. The response to lactacystin involves induction of a predominantly bipolar morphology that is maximal 16-32 h after treatment and is distinct from the response to several other treatments that result in morphological differentiation. Neurite outgrowth in response to lactacystin appears to be dependent upon microtubule assembly, actin polymerization, and de novo protein synthesis. The observed structure-activity relationships suggest that lactacystin and its related beta-lactone may act via acylation of one or more relevant target molecule(s) in the cell. Images PMID:8159752

  6. MicroRNA-224 promotes the sensitivity of osteosarcoma cells to cisplatin by targeting Rac1.

    PubMed

    Geng, Shuo; Gu, Lina; Ju, Fang; Zhang, Hepeng; Wang, Yiwen; Tang, Han; Bi, ZhengGang; Yang, Chenglin

    2016-09-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR-224 in the development and progression of osteosarcoma. We demonstrated that miR-224 was down-regulated in osteosarcoma cell lines and tissues. Lower miR-224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR-224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG-63 cells to cisplatin. We identified Rac1 as a direct target gene of miR-224 in osteosarcoma. Rac1 expression was up-regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR-224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR-224-overexpressing MG-63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR-224-overexpressing MG-63 cells. These data suggest that miR-224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin. PMID:27222381

  7. Study of the mechanism underlying the inhibitory effects of transglutaminase II on apoptosis in the osteosarcoma MG-63 cell line under hypoxic conditions

    PubMed Central

    WANG, GUOBIN; FU, LIMEI; CHEN, FANGMIN

    2015-01-01

    The aim of the present study was to investigate the association between the apoptosis phenomenon in the MG-63 osteosarcoma cell line, and transglutaminase II (TG2) expression. The relationship between the anti-apoptotic mechanism of TG2 and the expression of cytochrome c as well as caspase-3 under hypoxic conditions was also verified. A hypoxic culture of MG-63 cells was prepared. The hypoxia and TG2 siRNA hypoxia groups were established, and the cultures were incubated for 12 h under hypoxic conditions. TG2 activity, TG2 protein expression and its mRNA level were investigated. Cytochrome c and caspase-3 protein levels in the TG2 nucleus and cytoplasm were measured. The apoptotic rate was also monitored. The results showed that TG2 activity, TG2 protein expression and its mRNA level in the hypoxia group were significantly higher than those of the siRNA hypoxia group. The results showed statistically insignificant differences (P<0.05). By contrast, a comparison of the two groups in the cytoplasm yielded no statistically significant differences (P>0.05). Cytochrome c and caspase-3 protein levels in the hypoxia group were significantly higher than those of the TG2 siRNA hypoxia group. The results showed statistically significant differences (P<0.05). By contrast, the protein levels in the cytoplasm were significantly lower than those of the TG2 siRNA hypoxia group, with differences being statistically significant (P<0.05). The differences in apoptotic rates between the hypoxia and TG2 siRNA hypoxia groups were also statistically significant (P<0.05). Under hypoxic conditions, a high TG2 expression inhibited the apoptosis of the MG-63 osteosarcoma cell line. This effect was probably associated with its suppressive activity on the transportation of cytochrome c and caspase-3 from nucleus to cytoplasm. PMID:26788145

  8. Deciphering the effect of an oxovanadium(iv) complex with the flavonoid chrysin (VOChrys) on intracellular cell signalling pathways in an osteosarcoma cell line.

    PubMed

    León, Ignacio E; Díez, Paula; Etcheverry, Susana B; Fuentes, Manuel

    2016-08-01

    Vanadium complexes were studied during recent years and considered as a representative of a new class of non-platinum metal antitumor agents in combination with their low toxicity. However, a few challenges still remain in the discovery of new molecular targets for these novel metal-based drugs. The study of cell signaling pathways related to vanadium drugs, which is highly critical for identifying specific targets that play an important role in the antitumor activity of vanadium compounds, is scarce. This research deals with the alterations in intracellular signaling pathways promoted by an oxovanadium(iv) complex with the flavonoid chrysin [VO(chrysin)2EtOH]2 (VOChrys) in a human osteosarcoma cell line (MG-63). Herein we report for the first time the effect of [VO(chrysin)2EtOH]2 on the relative abundance of 224 proteins, which are involved in the most common intracellular pathways. Besides, full-length human recombinant (FAK and AKT1) kinases are produced using an in situ IVTT system and then we have evaluated the variation of relative tyrosine-phosphorylation levels caused by the [VO(chrysin)2EtOH]2 compound. The results of the differential protein expression levels reveal that several proteins such as PKB/AKT, PAK, DAPK, Cdk 4, 6 and 7, FADD, AP2, NAK, and JNK, among others, were altered. Moreover, cell signaling pathways related to the PTK2B, FAK, PKC families suggests an important role associated with the antitumor activity of [VO(chrysin)2EtOH]2 was demonstrated. Finally, the effect of this compound on in situ expressed FAK and AKT1 is validated by determining the phosphorylation level, which decreased in the former and increased in the latter. PMID:27175625

  9. Perspectives on cancer stem cells in osteosarcoma.

    PubMed

    Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka

    2013-09-10

    Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734

  10. Downregulation of microRNA-586 Inhibits Proliferation, Invasion and Metastasis and Promotes Apoptosis in Human Osteosarcoma U2-OS Cell Line.

    PubMed

    Yang, Lei; Liu, Zong-Ming; Rao, Yan-Wei; Cui, Shao-Qian; Wang, Huan; Jia, Xiao-Jing

    2015-01-01

    In this study, we aim to examine the association of microRNA-586 (miR-586) with osteosarcoma (OS) cell proliferation, apoptosis, invasion, and metastasis. U2-OS cell lines were divided into 4 groups: an miR-586 group, anti-miR-586 group, control group (empty plasmid) and blank group (no plasmid). qRT-PCR was used to detect miR-586 expression, cell counting kit-8 and EdU assays to detect cell proliferation, flow cytometry to detect cell cycle distribution, Annexin V/PI double staining to detect cell apoptosis, and the Transwell assay to detect cell invasion and metastasis. miR-586 expression was significantly higher in the miR-586 group but significantly lower in the anti-miR-586 group compared with the control and blank groups. Cell proliferation at 2-5 days after cell transfection and the EdU-positive cell number increased obviously in the miR-586 group but decreased clearly in the anti-miR-586 group. In the miR-586 group, cells at G0/G1 stage and apoptosis cells significantly decreased, while cells at G2/M and S stages and invasive and metastatic cells significantly increased compared to the control and blank groups; however, opposite trends were found in the anti-miR-586 group. Downregulation of miR-586 expression in OS may inhibit cell proliferation, invasion and metastasis, and promote cell apoptosis. PMID:26580004

  11. Radio-sensitization of the murine osteosarcoma cell line LM8 with parthenolide, a natural inhibitor of NF-κB

    PubMed Central

    SUGIYASU, KENJIRO; NANNO, KATSUHIKO; TAMAI, NORIYUKI; HASHIMOTO, NOBUYUKI; KISHIDA, YUKI; YOSHIKAWA, HIDEKI; MYOUI, AKIRA

    2011-01-01

    Nuclear factor (NF)-κB has been shown to be associated with cancer resistance to radiotherapy (RT), and is constitutively active in the murine osteosarcoma cell line, LM8. Parthenolide has been reported to show antitumor activity through inhibition of the NF-κB pathway. In this study, we investigated the radio-sensitizing activity of parthenolide. We established Luc-LM8, a stable transfectant reporter construct of NF-κB transcriptional activity into LM8. Luc-LM8 maintained the malignancy observed with LM8. In vitro, Luc-LM8 cells were cultured with or without parthenolide treatment, irradiated, and subjected to cell viability and apoptosis assays. In vivo, to investigate whether parthenolide enhances radio-sensitivity of tumors, a tumor growth assay was conducted. Parthenolide enhanced the growth inhibitory effect of RT and induced the apoptosis of Luc-LM8 cells with RT in vitro. The in vivo tumor growth was significantly suppressed in the mice treated with parthenolide and RT. The present study suggests that parthenolide sensitizes Luc-LM8 cells to irradiation. Thus, parthenolide is a potential candidate for use as a potent radio-sensitizing drug for use in cancer RT. PMID:22866095

  12. Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system

    PubMed Central

    Feng, Yong; Sassi, Slim; Shen, Jacson K; Yang, Xiaoqian; Gao, Yan; Osaka, Eiji; Zhang, Jianming; Yang, Shuhua; Yang, Cao; Mankin, Henry J.; Hornicek, Francis J; Duan, Zhenfeng

    2014-01-01

    Osteosarcoma is the most common type primary malignant tumor of bone. Patients with regional osteosarcoma are routinely treated with surgery and chemotherapy. In addition, many patients with metastatic or recurrent osteosarcoma show poor prognosis with current chemotherapy agents. Therefore, it is important to improve the general condition and the overall survival rate of patients with osteosarcoma by identifying novel therapeutic strategies. Recent studies have revealed that CDK11 is essential in osteosarcoma cell growth and survival by inhibiting CDK11 mRNA expression with RNAi. Here, we apply the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system, a robust and highly efficient novel genome editing tool, to determine the effect of targeting endogenous CDK11 gene at the DNA level in osteosarcoma cell lines. We show that CDK11 can be efficiently silenced by CRISPR-Cas9. Inhibition of CDK11 is associated with decreased cell proliferation and viability, and induces cell death in osteosarcoma cell lines KHOS and U-2OS. Furthermore, the migration and invasion activities are also markedly reduced by CDK11 knockout. These results demonstrate that CRISPR-Cas9 system is a useful tool for the modification of endogenous CDK11 gene expression, and CRISPR-Cas9 targeted CDK11 knockout may be a promising therapeutic regimen for the treatment of osteosarcoma. PMID:25348612

  13. Runx2, p53, and pRB status as diagnostic parameters for deregulation of osteoblast growth and differentiation in a new pre-chemotherapeutic osteosarcoma cell line (OS1).

    PubMed

    Pereira, Barry P; Zhou, Yefang; Gupta, Anurag; Leong, David T; Aung, Khin Zarchi; Ling, Ling; Pho, Robert W H; Galindo, Mario; Salto-Tellez, Manuel; Stein, Gary S; Cool, Simon M; van Wijnen, Andre J; Nathan, Saminathan S

    2009-12-01

    Osteosarcomas are the most prevalent primary bone tumors found in pediatric patients. To understand their molecular etiology, cell culture models are used to define disease mechanisms under controlled conditions. Many osteosarcoma cell lines (e.g., SAOS-2, U2OS, MG63) are derived from Caucasian patients. However, patients exhibit individual and ethnic differences in their responsiveness to irradiation and chemotherapy. This motivated the establishment of osteosarcoma cell lines (OS1, OS2, OS3) from three ethnically Chinese patients. OS1 cells, derived from a pre-chemotherapeutic tumor in the femur of a 6-year-old female, were examined for molecular markers characteristic for osteoblasts, stem cells, and cell cycle control by immunohistochemistry, reverse transcriptase-PCR, Western blotting and flow cytometry. OS1 have aberrant G-banded karyotypes, possibly reflecting chromosomal abnormalities related to p53 deficiency. OS1 had ossification profiles similar to human fetal osteoblasts rather than SAOS-2 which ossifies ab initio (P < 0.05). Absence of p53 correlates with increased Runx2 expression, while the slow proliferation of OS1 cells is perhaps attenuated by pRB retention. OS1 express mesenchymal stem cell markers (CD44, CD105) and differ in relative expression of CD29, CD63, and CD71 to SAOS-2. (P < 0.05). Cell cycle synchronization with nocodazole did not affect Runx2 and CDK1 levels but decreased cyclin-E and increased cyclin-A (P < 0.05). Xenotransplantion of OS1 in SCID mice yields spontaneous tumors that were larger and grew faster than SAOS-2 transplants. Hence, OS1 is a new osteosarcoma cell culture model derived from a pre-chemotherapeutic ethnic Chinese patient, for mechanistic studies and development of therapeutic strategies to counteract metastasis and deregulation of mesenchymal development. PMID:19746444

  14. MEK inhibition induces apoptosis in osteosarcoma cells with constitutive ERK1/2 phosphorylation.

    PubMed

    Baranski, Zuzanna; Booij, Tijmen H; Kuijjer, Marieke L; de Jong, Yvonne; Cleton-Jansen, Anne-Marie; Price, Leo S; van de Water, Bob; Bovée, Judith V M G; Hogendoorn, Pancras C W; Danen, Erik H J

    2015-11-01

    Conventional high-grade osteosarcoma is the most common primary bone cancer with relatively high incidence in young people. Recurrent and metastatic tumors are difficult to treat. We performed a kinase inhibitor screen in two osteosarcoma cell lines, which identified MEK1/2 inhibitors. These inhibitors were further validated in a panel of six osteosarcoma cell lines. Western blot analysis was performed to assess ERK activity and efficacy of MEK inhibition. A 3D culture system was used to validate results from 2D monolayer cultures. Gene expression analysis was performed to identify differentially expressed gene signatures in sensitive and resistant cell lines. Activation of the AKT signaling network was explored using Western blot and pharmacological inhibition. In the screen, Trametinib, AZD8330 and TAK-733 decreased cell viability by more than 50%. Validation in six osteosarcoma cell lines identified three cell lines as resistant and three as sensitive to the inhibitors. Western blot analysis of ERK activity revealed that sensitive lines had high constitutive ERK activity. Treatment with the three MEK inhibitors in a 3D culture system validated efficacy in inhibition of osteosarcoma viability. MEK1/2 inhibition represents a candidate treatment strategy for osteosarcomas displaying high MEK activity as determined by ERK phosphorylation status. PMID:26807203

  15. A new oxidovanadium(IV) complex of oxodiacetic acid and dppz: spectroscopic and DFT study. Antitumor action on MG-63 human osteosarcoma cell line.

    PubMed

    León, Ignacio E; Parajón-Costa, Beatriz S; Franca, Carlos A; Etcheverry, Susana B; Baran, Enrique J

    2015-04-01

    The oxidovanadium(IV) complex of oxodiacetic acid (H2ODA) and dppz (dipyrido[3,2-a:2',3'-c] phenazine) of stoichiometry [VO(ODA)(dppz)]·3H2O could be synthesized for the first time by reaction between [VO(ODA)(H2O)2] and dppz. It was characterized by infrared and electronic spectroscopies. Its optimized molecular structure was obtained by DFT calculations, as it was impossible to grow single crystals adequate for crystallographic studies. The antitumor action of the complex on MG-63 human osteosarcoma cell line was also investigated. It was found that it caused a concentration-related inhibitory effect in the concentration range between 5 and 25 μM and diminished the cell viability ca. 45% in the range from 25 to 100 μM, without dose/response effects in this range. These biological effects are, in general, similar to those previously reported for the related [VO(ODA)(ophen)]·1.5H2O complex. PMID:25534289

  16. Platelets promote osteosarcoma cell growth through activation of the platelet-derived growth factor receptor-Akt signaling axis

    PubMed Central

    Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-hara, Tomoko; Fujita, Naoya

    2014-01-01

    The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. PMID:24974736

  17. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells

    PubMed Central

    Vanas, Vanita; Haigl, Barbara; Stockhammer, Verena; Sutterlüty-Fall, Hedwig

    2016-01-01

    Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin. PMID:27513462

  18. MicroRNA-21 Increases Proliferation and Cisplatin Sensitivity of Osteosarcoma-Derived Cells.

    PubMed

    Vanas, Vanita; Haigl, Barbara; Stockhammer, Verena; Sutterlüty-Fall, Hedwig

    2016-01-01

    Osteosarcoma is the most common primary bone tumor and poor prognosis for osteosarcoma patients is mainly due to chemotherapy resistance. MicroRNAs are important to maintain pathophysiological mechanisms of cancer and influence cell sensitivity to chemotherapy. In this study, we tested the functions of microRNA-21 for malignant features as well as for drug resistance of osteosarcoma. We used Northern blot to measure microRNA-21 levels in osteosarcoma-derived cell lines. MicroRNA-21 activity was modulated by either expressing a sponge to decrease its activity in an osteosarcoma-derived cell line expressing high levels of microRNA-21 or by introducing pri-microRNA-21 in a cell line with low endogenous levels. Cell migration was determined in a scratch assay and cell proliferation was measured by performing growth curve analysis. Sensitivity of the cells towards chemotherapeutics was investigated by performing cell viability assays and calculating the IC50 values. While cell migration was unaffected by modulated microRNA-21 levels, microRNA-21 inhibition slowed proliferation and exogenously expressed microRNA-21 promoted this process. Modulated microRNA-21 activity failed to effect sensitivity of osteosarcoma-derived cell lines to doxorubicin or methotrexate. Contrarily, reduction of microRNA-21 activity resulted in enhanced resistance towards cisplatin while ectopic expression of microRNA-21 showed the opposite effect. Increased microRNA-21 levels repressed the expression of Sprouty2 and ectopic expression of Sprouty2 was able to largely rescue the observed effects of microRNA-21 in osteosarcoma. In summary, our data indicate that in osteosarcoma microRNA-21 expression is an important component for regulation of cell proliferation and for determining sensitivity to cisplatin. PMID:27513462

  19. DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line.

    PubMed

    Song, Deye; Ni, Jiangdong; Xie, Hongming; Ding, Muliang; Wang, Jun

    2014-05-01

    This study used the MG-63 osteosarcoma cell line to investigate the demethylation of the phosphate and tension homolog (PTEN) gene promoter and the change in PTEN gene expression levels, which are caused by the methylation inhibitor 5-azacytidine (5-Zac), and the association between the two. Different concentrations of 5-Zac (0, 5 and 10 μmol/l) were added into the MG-63 cell culture medium and the cells were cultured for 72 h. The following techniques were performed on the cells: Western blot analysis to detect the PTEN protein; reverse transcription-polymerase chain reaction (PCR) to detect the mRNA transcription levels of the PTEN gene; flow cytometry to detect the cell apoptotic rate; and sodium bisulfate to deal with the DNA of each group. The genes of the PTEN promoter and the transcription factors specificity protein 1 (Sp1) and Myc were PCR amplified and transformed into Escherichia coli, then a number of clones were selected for sequencing and the methylation status of the amplified PTEN promoter fragment was detected. Following culture of the MG-63 cells with 5-Zac at concentrations of 0, 5 and 10 μmol/l for 72 h, the expression levels of PTEN protein in each group were gradually increased, presenting a concentration-dependent effect: Group 0 μmol/l compared with groups 5 and 10 μmol/l, P<0.05; and group 5 μmol/l compared with group 10 μmol/l, P=0.007. The mRNA expression levels of the PTEN gene significantly increased. The apoptotic rates of groups 0, 5 and 10 μmol/l were 0.69±0.42, 2.50±0.30 and 6.59±0.62%, and significant differences (P<0.01) were observed between every two groups. The bisulfate DNA sequencing results of three groups showed that, following the treatment with 5-Zac, the binding of the CG site to transcription factors was affected by demethylation. The average rate of demethylation indicated a statistical difference among the three groups. In conclusion, the methylation inhibitor 5-Zac leads to a significant increase in the

  20. DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line

    PubMed Central

    SONG, DEYE; NI, JIANGDONG; XIE, HONGMING; DING, MULIANG; WANG, JUN

    2014-01-01

    This study used the MG-63 osteosarcoma cell line to investigate the demethylation of the phosphate and tension homolog (PTEN) gene promoter and the change in PTEN gene expression levels, which are caused by the methylation inhibitor 5-azacytidine (5-Zac), and the association between the two. Different concentrations of 5-Zac (0, 5 and 10 μmol/l) were added into the MG-63 cell culture medium and the cells were cultured for 72 h. The following techniques were performed on the cells: Western blot analysis to detect the PTEN protein; reverse transcription-polymerase chain reaction (PCR) to detect the mRNA transcription levels of the PTEN gene; flow cytometry to detect the cell apoptotic rate; and sodium bisulfate to deal with the DNA of each group. The genes of the PTEN promoter and the transcription factors specificity protein 1 (Sp1) and Myc were PCR amplified and transformed into Escherichia coli, then a number of clones were selected for sequencing and the methylation status of the amplified PTEN promoter fragment was detected. Following culture of the MG-63 cells with 5-Zac at concentrations of 0, 5 and 10 μmol/l for 72 h, the expression levels of PTEN protein in each group were gradually increased, presenting a concentration-dependent effect: Group 0 μmol/l compared with groups 5 and 10 μmol/l, P<0.05; and group 5 μmol/l compared with group 10 μmol/l, P=0.007. The mRNA expression levels of the PTEN gene significantly increased. The apoptotic rates of groups 0, 5 and 10 μmol/l were 0.69±0.42, 2.50±0.30 and 6.59±0.62%, and significant differences (P<0.01) were observed between every two groups. The bisulfate DNA sequencing results of three groups showed that, following the treatment with 5-Zac, the binding of the CG site to transcription factors was affected by demethylation. The average rate of demethylation indicated a statistical difference among the three groups. In conclusion, the methylation inhibitor 5-Zac leads to a significant increase in the

  1. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    PubMed Central

    2011-01-01

    Background Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Methods Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT®), apoptosis (SensoLyte® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Results Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. Conclusions These data demonstrate that the novel curcumin

  2. Inactivation of the WNT5A Alternative Promoter B Is Associated with DNA Methylation and Histone Modification in Osteosarcoma Cell Lines U2OS and SaOS-2.

    PubMed

    Vaidya, Himani; Rumph, Candie; Katula, Karen S

    2016-01-01

    WNT5A is a secreted ligand involved in Wnt pathway signaling and has a role in cell movement and differentiation. Altered WNT5A expression is associated with various cancers, although in most studies the focus has been on only one of the known WNT5A isoforms. In this study, we analyzed expression from two of the major WNT5A promoters, termed promoter A and promoter B, in normal human osteoblasts, SaOS-2 and U2OS osteosarcoma cell lines, and osteosarcoma tumor tissue. We found that both promoters A and B are active in normal osteoblasts with nearly 11-fold more promoter B than A transcripts. Promoter B but not promoter A transcripts are decreased or nearly undetectable in the SaOS-2 and U2OS cell lines and osteosarcoma tumor tissues. Transient transfection of promoter A and promoter B reporter constructs confirmed that SaOS-2 cells have the necessary factors to transcribe both promoters. Bisulfite sequencing analysis revealed that three CpG enriched regions upstream of the promoter B exon 1βare highly methylated in both SaOS-2 and U2OS cells. The CpG island sub-region R6 located in promoter B exon 1β was approximately 51% methylated in SaOS-2 and 25% methylated in U2OS. Region 3 was approximately 28% methylated in normal osteoblasts, whereas the others were unmethylated. Promoter B was re-activated by treatment of SaOS-2 cells with 1 μM 5-azacytidine, which was associated with only a small insignificant change in methylation of sub-region R6. ChIP analysis of U2OS and SaOS-2 cells indicated that the promoter B region is less enriched in the active histone mark H3K4me3, in comparison to promoter A and that there is increased enrichment of the repressive mark H3K27me3 in association with the promoter B genomic region in the cell line SaOS-2. These findings show that epigenetic inactivation of the WNT5A promoter B involves both DNA methylation and histone modifications and suggest that differential expression of the WNT5A alternative promoters A and B is a

  3. Inactivation of the WNT5A Alternative Promoter B Is Associated with DNA Methylation and Histone Modification in Osteosarcoma Cell Lines U2OS and SaOS-2

    PubMed Central

    Vaidya, Himani; Rumph, Candie; Katula, Karen S.

    2016-01-01

    WNT5A is a secreted ligand involved in Wnt pathway signaling and has a role in cell movement and differentiation. Altered WNT5A expression is associated with various cancers, although in most studies the focus has been on only one of the known WNT5A isoforms. In this study, we analyzed expression from two of the major WNT5A promoters, termed promoter A and promoter B, in normal human osteoblasts, SaOS-2 and U2OS osteosarcoma cell lines, and osteosarcoma tumor tissue. We found that both promoters A and B are active in normal osteoblasts with nearly 11-fold more promoter B than A transcripts. Promoter B but not promoter A transcripts are decreased or nearly undetectable in the SaOS-2 and U2OS cell lines and osteosarcoma tumor tissues. Transient transfection of promoter A and promoter B reporter constructs confirmed that SaOS-2 cells have the necessary factors to transcribe both promoters. Bisulfite sequencing analysis revealed that three CpG enriched regions upstream of the promoter B exon 1βare highly methylated in both SaOS-2 and U2OS cells. The CpG island sub-region R6 located in promoter B exon 1β was approximately 51% methylated in SaOS-2 and 25% methylated in U2OS. Region 3 was approximately 28% methylated in normal osteoblasts, whereas the others were unmethylated. Promoter B was re-activated by treatment of SaOS-2 cells with 1 μM 5-azacytidine, which was associated with only a small insignificant change in methylation of sub-region R6. ChIP analysis of U2OS and SaOS-2 cells indicated that the promoter B region is less enriched in the active histone mark H3K4me3, in comparison to promoter A and that there is increased enrichment of the repressive mark H3K27me3 in association with the promoter B genomic region in the cell line SaOS-2. These findings show that epigenetic inactivation of the WNT5A promoter B involves both DNA methylation and histone modifications and suggest that differential expression of the WNT5A alternative promoters A and B is a

  4. TRIM59 is upregulated and promotes cell proliferation and migration in human osteosarcoma.

    PubMed

    Liang, Jinqian; Xing, Dan; Li, Zheng; Shen, Jianxiong; Zhao, Hong; Li, Shugang

    2016-06-01

    Osteosarcoma is a prevalent type of cancer and has a high metastatic ability, particularly for metastasis to the lungs. Effective treatment strategies have improved, however, the detailed molecular mechanism underlying the onset of this malignancy remains to be fully elucidated. The current study investigated the role of the tripartite motif (TRIM) family protein TRIM59 in osteosarcoma growth and metastasis. It was identified that TRIM59 was overexpressed in clinical osteosarcoma tissues and cultured osteosarcoma cell lines. In addition, the MTT assay demonstrated that in U2OS and MG63 cells, knockdown of TRIM59 by specific siRNA inhibited proliferation, whereas overexpression of TRIM59 promoted cell proliferation. Furthermore, overexpression of TRIM59 significantly increased the U2OS cell migrative and invasive abilities in a Transwell chamber assay. In addition, TRIM59 was able to negatively regulate the protein levels of P53 without significantly affecting the mRNA levels in U2OS and MG63 cells. These data suggest the oncogenic abilities of TRIM59 in osteosarcoma, which promote osteosarcoma cell proliferation, migration and invasion. PMID:27121462

  5. Antisense inhibition of hyaluronan synthase-2 in human osteosarcoma cells inhibits hyaluronan retention and tumorigenicity

    SciTech Connect

    Nishida, Yoshihiro . E-mail: ynishida@med.nagoya-u.ac.jp; Knudson, Warren; Knudson, Cheryl B.; Ishiguro, Naoki

    2005-07-01

    Osteosarcoma is a common malignant bone tumor associated with childhood and adolescence. The results of numerous studies have suggested that hyaluronan plays an important role in regulating the aggressive behavior of various types of cancer cells. However, no studies have addressed hyaluronan with respect to osteosarcomas. In this investigation, the mRNA expression copy number of three mammalian hyaluronan synthases (HAS) was determined using competitive RT-PCR in the osteoblastic osteosarcoma cell line, MG-63. MG-63 are highly malignant osteosarcoma cells with an abundant hyaluronan-rich matrix. The results demonstrated that HAS-2 is the predominant HAS in MG-63. Accumulation of intracellular hyaluronan increased in association with the proliferative phase of these cells. The selective inhibition of HAS-2 mRNA in MG-63 cells by antisense phosphorothioate oligonucleotides resulted in reduced hyaluronan accumulation by these cells. As expected, the reduction in hyaluronan disrupted the assembly of cell-associated matrices. However, of most interest, coincident with the reduction in hyaluronan, there was a substantial decrease in cell proliferation, a decrease in cell motility and a decrease in cell invasiveness. These data suggest that hyaluronan synthesized by HAS-2 in MG-63 plays a crucial role in osteosarcoma cell proliferation, motility, and invasion.

  6. p53 mediated apoptosis in osteosarcoma MG-63 cells by inhibition of FANCD2 gene expression

    PubMed Central

    Xia, Peng; Sun, Yifu; Zheng, Changjun; Hou, Tingting; Kang, Mingyang; Yang, Xiaoyu

    2015-01-01

    Purpose: The aim of this study was to investigate the association between osteosarcoma (OS) and Fanconi anemia (FA) related pathways and the molecular mechanisms. Methods: siRNA for Fanconi anemia complementation group D2 (FANCD2) was constructed and transfected into the osteosarcoma cell line MG-63 cells. Expression of TP53INP1, p53, p21, caspase-9, and caspase-3 mRNA in MG-63 cells were examined by real-time fluorescence quantitative PCR, and the protein levels were also determined by western blot. Results: After silence of the FANCD2 gene in MG-63 cells, cell proliferation was inhibited, cell cycle was arrested and cell apoptosis was induced. The apoptosis was mediated by the p53 signaling pathway. After FANCD2 expression was inhibited, TP53INP1 gene expression was up-regulated, phosphorylation of p53 was promoted and the p21 protein was activated, leading to cell cycle arrested in G1, finally resulted in caspase-dependent cell apoptosis. Conclusions: Inhibition of FANCD2 gene expression can induce apoptosis of osteosarcoma cells, which indicated that FANCD2 played an important role in the development of osteosarcoma and it might be a potential target for treatment of osteosarcoma. PMID:26379910

  7. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization.

    PubMed Central

    Wiedłocha, A; Falnes, P O; Rapak, A; Muñoz, R; Klingenberg, O; Olsnes, S

    1996-01-01

    U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyrosine phosphorylation, DNA synthesis, and cell proliferation. A considerable fraction of the cell-associated growth factor was found in the nuclear fraction. When the growth factor was fused to the diphtheria toxin A fragment, it was still bound to the growth factor receptor and induced tyrosine phosphorylation but did not induce DNA synthesis or cell proliferation, nor was any fusion protein recovered in the nuclear fraction. On the other hand, when the fusion protein was associated with the diphtheria toxin B fragment to allow translocation to the cytosol by the toxin pathway, the fusion protein was targeted to the nucleus and stimulated both DNA synthesis and cell proliferation. In untransfected cells containing toxin receptors but not fibroblast growth factor receptors, the fusion protein was translocated to the cytosol and targeted to the nucleus, but in this case, it stimulated only DNA synthesis. These data indicate that the following two signals are required to stimulate cell proliferation in transfected U2OS Dr1 cells: the tyrosine kinase signal from the activated fibroblast growth factor receptor and translocation of the growth factor into the cell. PMID:8524304

  8. Osteocytes serve as a progenitor cell of osteosarcoma

    PubMed Central

    Sottnik, Joseph L; Campbell, Brittany; Mehra, Rohit; Behbahani-Nejad, Omid; Hall, Christopher L.; Keller, Evan T.

    2016-01-01

    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, an SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. PMID:24700678

  9. Osteocytes serve as a progenitor cell of osteosarcoma.

    PubMed

    Sottnik, Joseph L; Campbell, Brittany; Mehra, Rohit; Behbahani-Nejad, Omid; Hall, Christopher L; Keller, Evan T

    2014-08-01

    Osteosarcoma (OSA) is the most common primary bone tumor in humans. However, the cell of origin of OSA is not clearly defined although there is evidence that osteoblasts may serve as OSA progenitors. The role of osteocytes, terminally differentiated osteoblasts, as OSA progenitors has yet to be described. Analysis of patient cDNA from publicly available microarray data revealed that patients with OSA have increased expression of dentin matrix phosphoprotein 1 (DMP1), a marker of osteocytes. Analysis of multiple murine, human, and canine OSA cell lines revealed DMP1 expression. To test the tumorigenic potential of osteocytes, MLO-Y4, a SV-40 immortalized murine osteocyte cell line, was injected into subcutaneous and orthotopic (intratibial) sites of mice. Tumor growth occurred in both locations. Orthotopic MLO-Y4 tumors produced mixed osteoblastic/osteolytic radiographic lesions; a hallmark of OSA. Together, these data demonstrate for the first time that osteocytes can serve as OSA progenitors. PMID:24700678

  10. Knockdown of TRAF4 expression suppresses osteosarcoma cell growth in vitro and in vivo.

    PubMed

    Yao, Weitao; Wang, Xin; Cai, Qiqing; Gao, Songtao; Wang, Jiaqiang; Zhang, Peng

    2014-12-01

    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is an adapter molecule that is overexpressed in certain cancers. TRAF4 is overexpressed in osteosarcoma tissues and osteosarcoma cells. Using the technique of RNA interference, the expression of TRAF4 in the human osteosarcoma Saos-2 cell line was shown to be downregulated. The proliferation, cell cycle arrest and apoptosis ability of Saos‑2 cells were examined, as was tumor development in a xenograft mouse model. The results showed that the TRAF4 knockdown exerts inhibitory effects on the proliferation ability of Saos-2 cells and tumor development in a xenograft mouse model. Simultaneously, it was found that TRAF4 knockdown led to cell cycle arrest in the G1 phase and promoted Saos-2 cell apoptosis. Following TNF-α treatment, the expression of nuclear factor κB was significantly reduced in the TRAF4‑small interfering RNA group. These results indicate that TRAF4 regulated osteosarcoma cell growth in vitro and in vivo, and offers a candidate molecular target for osteosarcoma prevention and therapy. PMID:25270078

  11. Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line

    SciTech Connect

    Qiang, Weiguang; Wu, Qinqin; Zhou, Fuxiang; Xie, Conghua; Wu, Changping; Zhou, Yunfeng

    2014-03-07

    Highlights: • Down-regulation of TPP1 shortened telomere length in telomerase-negative cells. • Down-regulation of TPP1 induced cell apoptosis in telomerase-negative cells. • Down-regulation of TPP1 increased radiosensitivity in telomerase-negative cells. - Abstract: Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.

  12. Impaired cell cycle regulation of osteoblast-related transcription factor Runx2/Cbfa1 in osteosarcoma cells

    PubMed Central

    San Martin, Inga; Varela, Nelson; Gaete, Marcia; Villegas, Karina; Osorio, Mariana; Tapia, Julio C.; Antonelli, Marcelo; Mancilla, Edna; Lian, Jane B.; Stein, Janet L.; Stein, Gary S; van Wijnen, Andre J.; Galindo, Mario

    2011-01-01

    In mammals, bone differentiation requires the functional expression of the Runx2/Cbfβ heterodimeric complex. Our previous results indicate that Runx2 is also a suppressor of pre-osteoblast proliferation by affecting cell cycle progression at G1. Runx2 levels are cell cycle regulated, oscillating from a maximum during early G1 to a minimum during late G1, S and mitosis phases in proliferating pre-osteoblasts Nevertheless, there is no information concerning Cbfβ gene expression during the cell cycle nor on Runx2 cell cycle expression in bone cancer cells. We analyzed Runx2 and Cbfβ gene expression during cell cycle progression in the pre-osteoblast MC3T3 and osteosarcoma ROS and SaOS cell lines. The expected reduction of Runx2 protein level was observed in MC3T3 cells arrested in late G1 or M phase using mimosine or nocodazole, respectively. However, this reduction was not observed in the cell cycle arrested osteosarcoma cells. Cbfβ protein levels were not regulated during the cell cycle in pre-osteoblasts and osteosarcoma cells. Using cells synchronized in late G1 and mitosis we found that Runx2 levels, but not Cbfβ levels, were cell cycle regulated in MC3T3 osteoblasts. Interestingly, both factors showed a constitutively elevated expression throughout the cell cycle in osteosarcoma cells. Proteasome inhibition by MG132 prevented cell cycle-dependent downregulation of Runx2 protein levels in osteoblasts, but not in osteosarcoma. We propose that Runx2 is involved in tumoral osteosarcoma progression. Altogether, deregulated Runx2 expression throughout the cell cycle seems to constitute a central mechanism in the pathogenesis of osteosarcoma. PMID:19739101

  13. Antitumor activity of dobutamine on human osteosarcoma cells

    PubMed Central

    YIN, JUN; DONG, QIRONG; ZHENG, MINQIAN; XU, XIAOZU; ZOU, GUOYOU; MA, GUOLIN; LI, KEFENG

    2016-01-01

    Dobutamine has been widely used for the treatment of heart failure and cardiogenic shock since the 1970s. Osteosarcoma is the most commonly observed malignant bone tumor in children. Currently, there are no effective drugs for the treatment of osteosarcoma. In the present study, the potential anticancer activity of dobutamine on human osteosarcoma cells was examined. Human osteosarcoma MG-63 cells were treated with dobutamine at various concentrations and for various incubation times. The inhibition of cell growth by dobutamine was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was utilized to evaluate the effect of dobutamine on cell apoptosis and the cell cycle. Furthermore, the expression levels of caspase-3 and caspase-9 were assessed by western blot analysis. The influence of dobutamine on cancer cell migration and invasion was additionally evaluated using wound-healing assay and the Boyden Chamber migration method. Dobutamine significantly inhibited the growth of MG-63 cells at a concentration of 10 µM or higher when incubated for 12 h or longer (P=0.023). Dobutamine augmented cell apoptosis and arrested the cell cycle in the G2/M phase. Western blot analysis revealed that dobutamine induces expression of caspase-3 and caspase-9. In addition, the invasiveness and migration of MG-63 cells was inhibited by dobutamine in a concentration-dependent manner. The results of the present study may lead to novel applications for dobutamine in the treatment of osteosarcoma. PMID:27284371

  14. Imatinib Mesylate Exerts Anti-Proliferative Effects on Osteosarcoma Cells and Inhibits the Tumour Growth in Immunocompetent Murine Models

    PubMed Central

    Ory, Benjamin; Charrier, Céline; Brion, Régis; Blanchard, Frederic; Redini, Françoise; Heymann, Dominique

    2014-01-01

    Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma), a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1). Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma) and POS-1 (undifferentiated osteosarcoma). Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R), appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor status of patients

  15. Triptolide reduces the viability of osteosarcoma cells by reducing MKP-1 and Hsp70 expression

    PubMed Central

    ZHAO, LEI; JIANG, BO; WANG, DONG; LIU, WEI; ZHANG, HUAWU; LIU, WEISHENG; QIU, ZHEN

    2016-01-01

    Osteosarcoma is the most common type of malignant bone tumor found in adolescents and young adults. The aim of the present study was to determine whether triptolide, a diterpene epoxide extracted from the Tripterygium plant, was able effectively decrease the viability of osteosarcoma cells. The underlying molecular mechanisms are also investigated. The human osteosarcoma cell lines U-2 OS and MG-63 were used in this study. The U-2 OS and MG-63 cells were treated with 0, 5, 10, 25 or 50 nM triptolide. Cells treated with dimethyl sulfoxide only were used as the no drug treatment control. A commercial MTT kit was used to determine the effects of triptolide on cells. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is frequently overexpressed in tumor tissues, possibly related to the failure of a number of chemotherapeutics. Heat shock protein 70 (Hsp70) is a chaperone molecule that is able to increase drug resistance. The protein expression levels of MKP-1 and Hsp70 were determined using western blot analysis. The results indicate that triptolide effectively reduced the viability of the osteosarcoma cells. Furthermore, triptolide was found to effectively reduce MKP-1 expression and Hsp70 levels. Further analysis showed that triptolide reduced MKP-1 mRNA expression in the U-2 OS and MG-63 cells. Triptolide reduced Hsp70 mRNA expression levels in U-2 OS and MG-63 cells. These results suggest that triptolide effectively decreases the viability of osteosarcoma cells. These effects may be associated with the decreased expression of MKP-1 and Hsp70 levels. These results suggest that triptolide may be used in the treatments of osteosarcoma. PMID:27168842

  16. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets.

    PubMed

    Yan, Guang-Ning; Lv, Yang-Fan; Guo, Qiao-Nan

    2016-01-28

    Osteosarcoma is the most common type of bone cancer, especially in children and young adults. The primary treatment for osteosarcoma is a combination of surgery and chemotherapy, however prognoses remain poor due to chemoresistance and early metastases. Osteosarcoma stem cells appear to play central roles in tumor recurrence, metastases and chemoresistance via self-renewal and differentiation. Targeting these cells may provide a novel strategy in the treatment of osteosarcoma. This review summarizes current knowledge of this rare phenotype and recent advances in understanding the functions OSCs (osteosarcoma stem cells) in osteosarcoma, with the aim of improving therapies in the future. PMID:26571463

  17. GSK3β negatively regulates HIF1α mRNA stability via nucleolin in the MG63 osteosarcoma cell line.

    PubMed

    Cheng, Dong-dong; Zhao, Hai-guang; Yang, Yun-song; Hu, Tu; Yang, Qing-cheng

    2014-01-10

    Hypoxia-inducible factor 1α (HIF1α) is a transcription factor involved in the growth, invasion and metastasis of malignant tumors. Glycogen synthase kinase 3 beta (GSK3β) is a protein kinase involved in a variety of signaling pathways, such as the Wnt and NF-κB pathways; this kinase can affect tumor progress through the regulation of transcription factor expression and apoptosis. Recent studies showed that GSK3β was involved in the expression of HIF1α. However, the effect of GSK3β on HIF1α expression in osteosarcoma cells remains unknown. To understand the relationship between GSK3β and HIF1α comprehensively, small RNA interference techniques, Western blot analyses, quantitative real-time PCR analyses and luciferase assays were used in our study. Experimental data revealed that inhibition of GSK3β could increase HIF1α protein levels and expression of its target genes by increasing the stability of the HIF1α mRNA, not by affecting the HIF1α protein stability, and that this process could be mediated by nucleolin. PMID:24333432

  18. Acquisition of anoikis resistance in human osteosarcoma cells does not alter sensitivity to chemotherapeutic agents

    PubMed Central

    Díaz-Montero, C Marcela; McIntyre, Bradley W

    2005-01-01

    Background Chemotherapy-induced cell death can involve the induction of apoptosis. Thus, aberrant function of the pathways involved might result in chemoresistance. Since cell adhesion to the extracellular matrix acts as a survival factor that homeostatically maintains normal tissue architecture, it was tested whether acquisition of resistance to deadhesion-induced apoptosis (anoikis) in human osteosarcoma would result in resistance to chemotherapy. Methods Osteosarcoma cell lines (SAOS-2 and TE-85) obtained from ATCC and were maintained in complete Eagle's MEM medium. Suspension culture was established by placing cells in tissue culture wells coated with poly-HEMA. Cell cytotoxicity was determined using a live/dead cytotoxicity assay. Cell cycle/apoptosis analyses were performed using propidium iodide (PI) staining with subsequent FACS analysis. Apoptosis was also assayed by Annexin-FITC/PI staining. Results Etoposide, adriamycin, vinblastine, cisplatin and paclitaxel were able to induce apoptosis in human osteosarcoma cells SAOS-2 regardless of their anoikis resistance phenotype or the culture conditions (adhered vs. suspended). Moreover, suspended anoikis resistant TE-85 cells (TE-85ar) retained their sensitivity to chemotherapy as well. Conclusion Acquisition of anoikis resistance in human osteosarcoma cells does not result in a generalized resistance to all apoptotic stimuli, including chemotherapy. Moreover, our results suggest that the pathways regulating anoikis resistance and chemotherapy resistance might involve the action of different mediators. PMID:15829011

  19. Genomic instability and telomere fusion of canine osteosarcoma cells.

    PubMed

    Maeda, Junko; Yurkon, Charles R; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C; Roybal, Erica J; Rota, Garrett W; Saffer, Ethan R; Rose, Barbara J; Hanneman, William H; Thamm, Douglas H; Kato, Takamitsu A

    2012-01-01

    Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246

  20. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells

    PubMed Central

    Fan, Shuli; Li, Xu; Li, Leiming; Wang, Liguo; Du, Zhangzhen; Yang, Yan; Zhao, Jiansong; Li, Yan

    2016-01-01

    Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy. PMID:27274275

  1. Human osteosarcoma CD49f−CD133+ cells: impaired in osteogenic fate while gain of tumorigenicity

    PubMed Central

    Ying, Meidan; Liu, Gang; Shimada, Hiroyuki; Ding, Wanjing; May, William A.; He, Qiaojun; Adams, Gregor B.; Wu, Lingtao

    2014-01-01

    The biological relationships among self-renewal, tumorigenicity, and lineage differentiation of human osteosarcoma-initiating cells (OSIC) remain elusive, making it difficult to identify and distinguish OSIC from osteosarcoma-forming cells (OSFC) for developing OSIC-targeted therapies. Using a new inverse lineage tracking strategy coupled with serial human-to-mouse xenotransplantation, we identified a subpopulation of osteosarcoma cells with OSIC-like properties and sought to distinguish them from their progeny, OSFC. We found that serial transplantation of cells from different osteosarcoma cell lines and primary osteosarcoma tissues progressively increased the CD49f+ subpopulation composing the bulk of the osteosarcoma mass. These CD49f+ cells displayed characteristics of OSFC: limited in vivo tumorigenicity, weak lineage differentiation, more differentiated osteogenic feature, and greater chemo-sensitivity. By contrast, their parental CD49f−CD133+ cells had an inhibited osteogenic fate, together with OSIC-like properties of self-renewal, strong tumorigenicity, and differentiation to CD49f+ progeny. Hence, the CD49f−CD133+ phenotype appears to identify OSIC-like cells that possess strong tumorigenicity correlated with an impaired osteogenic fate and the ability to initiate tumor growth through generation of CD49f+ progeny. These findings advance our understanding of OSIC-like properties and, for the first time, provide a much-needed distinction between OSIC and OSFC in this cancer. PMID:23045288

  2. Downregulation of RSK2 influences the biological activities of human osteosarcoma cells through inactivating AKT/mTOR signaling pathways.

    PubMed

    Qiu, Quanhe; Jiang, Jing; Lin, Liangbo; Cheng, Si; Xin, Daqi; Jiang, Wei; Shen, Jieliang; Hu, Zhenming

    2016-06-01

    RSK2 (90 kDa ribosomal S6 kinase) is a downstream effector of the Ras/ERK (extracellular signal-regulated kinase) signaling pathway that has major functions in cell biological activities, including regulating nuclear signaling, cell cycle progression, cell proliferation, cell growth, protein synthesis, cell migration and cell survival, and is expressed in most types of human malignant tumors, including lung cancer, prostate and breast tumors, skin cancer and osteosarcomas (OS). RSK2 was found to be essential for osteosarcoma formation. To investigate whether RSK2 is expressed at high levels in human osteosarcome tissues and whether its expression is correlated with the aggressive biological behavior of osteosarcoma cell line (OCLs), we assessed the association between RSK2 expression and OS cell progression, as well as the effects of RSK2 inhibition on the biological activities of osteosarcoma cells. We performed immunohistochemistry to analyze the expression of RSK2 in specimens from 30 humans with osteosarcoma, and 15 normal tissues. RSK2 gene expression levels in 30 specimens with osteosarcoma were significantly higher than those of normal tissues. We performed RNA interference on three OCLs to evaluate cell apoptosis, cell growth, cell proliferation, cell motility, chemosensitivity and oncogenicity. After transfection with RSK2 shRNA, increased cell apoptosis, cell growth inhibition, cell cycle progression, weaker cell proliferation, cell migration and weaker tumor formation were observed in all OCLs. These results suggested that RSK2 expression may mediate the biological activities of OS cells and RSK2 may be an effective therapeutic target for the treatment of osteosarcomas. The AKT/mTOR, MAPK/ERK/c-Fos and Bcl2/Bax pathways were analysed to clarify the mechanisms involved. PMID:27082640

  3. p53-Dependent Activation of microRNA-34a in Response to Etoposide-Induced DNA Damage in Osteosarcoma Cell Lines Not Impaired by Dominant Negative p53 Expression

    PubMed Central

    Novello, Chiara; Pazzaglia, Laura; Conti, Amalia; Quattrini, Irene; Pollino, Serena; Perego, Paola; Picci, Piero; Benassi, Maria Serena

    2014-01-01

    Osteosarcoma (OS) is the most common primary malignant bone tumor and prevalently occurs in the second decade of life. Etoposide, a chemotherapeutic agent used in combined treatments of recurrent human OS, belongs to the topoisomerase inhibitor family and causes DNA breakage. In this study we evaluated the cascade of events determined by etoposide-induced DNA damage in OS cell lines with different p53 status focusing on methylation status and expression of miR-34a that modulate tumor cell growth and cell cycle progression. Wild-type p53 U2-OS cells and U2-OS cells expressing dominant-negative form of p53 (U2- OS175) were more sensitive to etoposide than p53-deficient MG63 and Saos-2 cells, showing increased levels of unmethylated miR-34a, reduced expression of CDK4 and cell cycle arrest in G1 phase. In contrast, MG63 and Saos-2 cell lines presented aberrant methylation of miR-34a promoter gene with no miR-34a induction after etoposide treatment, underlining the close connection between p53 expression and miR-34a methylation status. Consistently, in p53siRNA transfected U2-OS cells we observed loss of miR-34a induction after etoposide exposure associated with a partial gain of gene methylation and cell cycle progress towards G2/M phase. Our results suggest that the open and unmethylated conformation of the miR-34a gene may be regulated by p53 able to bind the gene promoter. In conclusion, cell response to etoposide-induced DNA damage was not compromised in cells with dominant-negative p53 expression. PMID:25490093

  4. Capsaicin induces immunogenic cell death in human osteosarcoma cells

    PubMed Central

    Jin, Tao; Wu, Hongyan; Wang, Yanlin; Peng, Hao

    2016-01-01

    Immunogenic cell death (ICD) is characterized by the early surface exposure of calreticulin (CRT). As a specific signaling molecule, CRT on the surface of apoptotic tumor cells mediates the recognition and phagocytosis of tumor cells by antigen presenting cells. To date, only a small quantity of anti-cancer chemicals have been found to induce ICD, therefore it is clinically important to identify novel chemicals that may induce ICD. The purpose of the present study is to explore the function of capsaicin in inducing ICD. In the current study, MTT assays were used to examine the growth inhibiting effects of MG-63 cells when they were treated with capsaicin or cisplatin. Mitochondrial membrane potential and western blot analysis were used to investigate capsaicin- and cisplatin-induced apoptosis. In addition, the effects of capsaicin and cisplatin were evaluated for their abilities in inducing calreticulin membrane translocation and mediating ICD in human osteosarcoma cells (MG-63). The results demonstrated that capsaicin and cisplatin can induce the apoptosis of MG-63 cells. However, only capsaicin induced a rapid translocation of CRT from the intracellular space to the cell surface. Treatment with capsaicin increased phagocytosis of MG-63 cells by dendritic cells (DCs), and these MG-63-loaded DCs could efficiently stimulate the secretion of IFN-γ by lymphocytes. These results identify capsaicin as an anti-cancer agent capable of inducing ICD in human osteosarcoma cells in vitro. PMID:27446273

  5. TIMP3 regulates osteosarcoma cell migration, invasion, and chemotherapeutic resistances.

    PubMed

    Han, Xiu-Guo; Li, Yan; Mo, Hui-Min; Li, Kang; Lin, Du; Zhao, Chang-Qing; Zhao, Jie; Tang, Ting-Ting

    2016-07-01

    Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs) to limit degradation of the extracellular matrix. Low levels of TIMP3 have been demonstrated in cancer tissues at advanced clinical stages, with positive distant metastasis and chemotherapeutic resistance. We examined the role of TIMP3 in osteosarcoma (OS) cell invasiveness and chemoresistance. TIMP3 was overexpressed or knocked down in the human OS cell lines Saos2 and MG63. Cell migration and invasion capacities were then evaluated using Transwell assays, and resistance to cisplatin was assessed by CCK-8 assay and flow cytometry. Real-time PCR and western blotting were used to investigate activation of signaling pathways downstream of TIMP3. Overexpression of TIMP3 inhibited the migration and invasion of Saos2 and MG63 cells, while knockdown of TIMP3 had the opposite effect. Cell survival after exposure to cisplatin was inhibited by TIMP3 overexpression in both Saos2 and MG63 cells. Consistently, downregulation of TIMP3 gene expression significantly decreased the sensitivity of OS cells to cisplatin treatment. MMP1, MMP2, Bcl-2, and Akt1 were all downregulated following TIMP3 overexpression, while Bax and cleaved caspase-3 were upregulated. TIMP3 knockdown had opposite effects on the regulation of these genes. Taken together, our findings suggest TIMP3 as a new target for inhibition of OS progression and chemotherapeutic resistance. PMID:26749283

  6. miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3

    SciTech Connect

    Liu, Li-hong; Li, Hui; Li, Jin-ping; Zhong, Hui; Zhang, Han-chon; Chen, Jia; Xiao, Tao

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear. Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.

  7. Phyllostachys edulis extract induces apoptosis signaling in osteosarcoma cells, associated with AMPK activation

    PubMed Central

    Chou, Chi-Wen; Cheng, Ya-Wen; Tsai, Chung-Hung

    2014-01-01

    Objective Bamboo is distributed worldwide, and its different parts are used as foods or as a traditional herb. Recently, antitumoral effects of bamboo extracts on several tumors have been increasingly reported; however, antitumoral activity of bamboo extracts on osteosarcoma remains unclear. In the present study, we investigated effects of an aqueous Phyllostachys edulis leaf extract (PEE) on osteosarcoma cells and the underlying mechanism of inhibition. Methods The growth of human osteosarcoma cell lines 143B and MG-63 and lung fibroblast MRC-5 cells was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Apoptosis was demonstrated using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay and flow cytometric analysis. Phosphorylation and protein levels were determined by immunoblotting. Results After treatment with PEE, viability of 143B and MG-63 cells was dose-dependently reduced to 36.3%±1.6% of control values, which were similar to AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) treatments. In parallel, ratios of apoptotic cells and cells in the sub-G1 phase were significantly increased. Further investigation showed that PEE treatments led to activation of caspase cascades and changes of apoptotic mediators Bcl2, Bax, and p53. Consistently, our results revealed that PEE activated adenosine monophosphate-activated protein kinase (AMPK) signaling, and the AMPK activation was associated with the induction of apoptotic signaling. Conclusion Our results indicated that PEE suppressed the growth of 143B and MG-63 cells but moderately affected MRC-5 cells. PEE-induced apoptosis may attribute to AMPK activation and the following activation of apoptotic signaling cascades. These findings revealed that PEE possesses antitumoral activity on human osteosarcoma cells by manipulating AMPK signaling, suggesting that PEE alone or combined with regular antitumor drugs may be beneficial as osteosarcoma

  8. Pirarubicin inhibits multidrug-resistant osteosarcoma cell proliferation through induction of G2/M phase cell cycle arrest

    PubMed Central

    Zheng, Shui-er; Xiong, Sang; Lin, Feng; Qiao, Guang-lei; Feng, Tao; Shen, Zan; Min, Da-liu; Zhang, Chun-ling; Yao, Yang

    2012-01-01

    Aim: Pirarubicin (THP) is recently found to be effective in treating patients with advanced, relapsed or recurrent high-grade osteosarcoma. In this study, the effects of THP on the multidrug-resistant (MDR) osteosarcoma cells were assessed, and the underlying mechanisms for the disruption of cell cycle kinetics by THP were explored. Methods: Human osteosarcoma cell line MG63 and human MDR osteosarcoma cell line MG63/DOX were tested. The cytotoxicity of drugs was examined using a cell proliferation assay with the Cell Counting Kit-8 (CCK-8). The distribution of cells across the cell cycle was determined with flow cytometry. The expression of cell cycle-regulated genes cyclin B1 and Cdc2 (CDK1), and the phosphorylated Cdc2 and Cdc25C was examined using Western blot analyses. Results: MG63/DOX cells were highly resistant to doxorubicin (ADM) and gemcitabine (GEM), but were sensitive or lowly resistant to THP, methotrexate (MTX) and cisplatin (DDP). Treatment of MG63/DOX cells with THP (200–1000 ng/mL) inhibited the cell proliferation in time- and concentration-dependent manners. THP (50–500 ng/mL) induced MG63/DOX cell cycle arrest at the G2/M phase in time- and concentration-dependent manners. Furthermore, the treatment of MG63/DOX cells with THP (200–1000 ng/mL) downregulated cyclin B1 expression, and decreased the phosphorylated Cdc2 at Thr161. Conversely, the treatment increased the phosphorylated Cdc2 at Thr14/Tyr15 and Cdc25C at Ser216, which led to a decrease in Cdc2-cyclin B1 activity. Conclusion: The cytotoxicity of THP to MG63/DOX cells may be in part due to its ability to arrest cell cycle progression at the G2/M phase, which supports the use of THP for managing patients with MDR osteosarcoma. PMID:22580740

  9. MiR-34a and miR-203 Inhibit Survivin Expression to Control Cell Proliferation and Survival in Human Osteosarcoma Cells

    PubMed Central

    Chen, Xun; Chen, Xiao-Gang; Hu, Xiaojing; Song, Tao; Ou, Xuehai; Zhang, Caiguo; Zhang, Wentao; Zhang, Chun

    2016-01-01

    Elevated expression of survivin is observed in a number of cancer types, including human osteosarcoma. Few studies have demonstrated that survivin expression levels can be considered an independent predictor of survival for human osteosarcoma patients. However, the underlying molecular mechanisms of survivin in the process of human osteosarcoma carcinogenesis remain unclear. In the current study, we evaluated the biological effects of survivin knockdown on osteosarcoma cell proliferation, colony formation rate, and sensitivity to the chemotherapeutic agent cisplatin. We found that two different osteosarcoma cell lines, U2OS and Saos-2, have relatively higher expression levels of survivin, and specific knockdown of survivin resulted in a number of effects, such as inhibition of cell proliferation, decreased colony formation rate, cell cycle arrest at G2/M phase, induction of apoptosis, and increased sensitivity to cisplatin. In addition, we identified two microRNAs, miR-34a and miR-203, that are aberrantly expressed in human osteosarcoma cells and specifically target survivin by inhibiting its expression, therefore repressing osteosarcoma cell maintenance and proliferation. PMID:27326248

  10. Effectiveness evaluation of dendritic cell immunotherapy for osteosarcoma on survival rate and in vitro immune response.

    PubMed

    Fang, X; Jiang, C; Xia, Q

    2015-01-01

    The aim of this study was to investigate the effects of dendritic cell (DC) therapy in osteosarcoma. Bone marrow DCs from Wistar (allograft group) and Sprague Dawley (SD) (homograft group) rats were electrically fused with the SD-derived osteosarcoma cell line UMR106 to generate a DC-osteosarcoma fusion (DOF) tumor vaccine, which was co-incubated with SD T lymphocytes to stimulate T cell proliferation. CD8+ and CD4+ cell percentages were measured by flow cytometry; tumor-cytotoxic effects of cytotoxic T lymphocytes (CTLs) were measured by the MTT assay. Active immunotherapy was applied to SD osteosarcoma model rats via subcutaneous injection of the tumor vaccine. Significant potentiation of T lymphocyte proliferation was observed in both groups. In the homograft group, the CD8+/CD4+ ratio was elevated to 78.2 from 55.1% after stimulation (P < 0.05) whereas the CD4+ cell percentage was reduced from 61.3 to 21.2% (P < 0.05). Similarly, in the allograft group the CD8+ and CD4+ cell percentages significantly increased (33.8 to 69.6%) or decreased (61.3 to 28.1%) after stimulation, respectively (P < 0.05). The preferential homograft group response was not significant (P > 0.05). Induced UMR106- specific CTLs showed a significantly higher tumor-cytotoxic effect after stimulation (P < 0.05). After DOF active immunotherapy, tumor bodies displayed atrophy or disappearance, leading to higher survival times and rates (60 and 70% in the allograft and homograft groups) (P < 0.05). This study demonstrated that osteosarcoma immunotherapy using a DC-fused tumor vaccine can effectively stimulate T lymphocyte proliferation and induce the tumor-cytotoxic activity of CTLs. PMID:26436501

  11. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas.

    PubMed

    Lyons, Samanthe M; Alizadeh, Elaheh; Mannheimer, Joshua; Schuamberg, Katherine; Castle, Jordan; Schroder, Bryce; Turk, Philip; Thamm, Douglas; Prasad, Ashok

    2016-01-01

    Metastatic cancer cells for many cancers are known to have altered cytoskeletal properties, in particular to be more deformable and contractile. Consequently, shape characteristics of more metastatic cancer cells may be expected to have diverged from those of their parental cells. To examine this hypothesis we study shape characteristics of paired osteosarcoma cell lines, each consisting of a less metastatic parental line and a more metastatic line, derived from the former by in vivo selection. Two-dimensional images of four pairs of lines were processed. Statistical analysis of morphometric characteristics shows that shape characteristics of the metastatic cell line are partly overlapping and partly diverged from the parental line. Significantly, the shape changes fall into two categories, with three paired cell lines displaying a more mesenchymal-like morphology, while the fourth displaying a change towards a more rounded morphology. A neural network algorithm could distinguish between samples of the less metastatic cells from the more metastatic cells with near perfect accuracy. Thus, subtle changes in shape carry information about the genetic changes that lead to invasiveness and metastasis of osteosarcoma cancer cells. PMID:26873952

  12. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas

    PubMed Central

    Lyons, Samanthe M.; Alizadeh, Elaheh; Mannheimer, Joshua; Schuamberg, Katherine; Castle, Jordan; Schroder, Bryce; Turk, Philip; Thamm, Douglas; Prasad, Ashok

    2016-01-01

    ABSTRACT Metastatic cancer cells for many cancers are known to have altered cytoskeletal properties, in particular to be more deformable and contractile. Consequently, shape characteristics of more metastatic cancer cells may be expected to have diverged from those of their parental cells. To examine this hypothesis we study shape characteristics of paired osteosarcoma cell lines, each consisting of a less metastatic parental line and a more metastatic line, derived from the former by in vivo selection. Two-dimensional images of four pairs of lines were processed. Statistical analysis of morphometric characteristics shows that shape characteristics of the metastatic cell line are partly overlapping and partly diverged from the parental line. Significantly, the shape changes fall into two categories, with three paired cell lines displaying a more mesenchymal-like morphology, while the fourth displaying a change towards a more rounded morphology. A neural network algorithm could distinguish between samples of the less metastatic cells from the more metastatic cells with near perfect accuracy. Thus, subtle changes in shape carry information about the genetic changes that lead to invasiveness and metastasis of osteosarcoma cancer cells. PMID:26873952

  13. Knockdown of Akt Sensitizes Osteosarcoma Cells to Apoptosis Induced by Cisplatin Treatment

    PubMed Central

    Zhang, Guoyou; Li, Ming; Zhu, Xiaodong; Bai, Yushu; Yang, Changwei

    2011-01-01

    Akt plays an important role in the inhibition of apoptosis induced by chemotherapy and other stimuli. We therefore investigated if knockdown of Akt2 promoted drug-induced apoptosis in cultured osteosarcoma cells in vitro. SAOS-2 cells were transfected with Akt2 siRNA. The sensitivity of the transformed cell line to the chemotherapeutic drug cisplatin was assessed. Reduced expression of Akt2 did not directly inhibit the growth rate of the transfected cells; however, it significantly increased their sensitivity to cisplatin. Knockdown of Akt2, together with cisplatin treatment, promoted the expression of p53 up-regulated modulator of apoptosis (PUMA). It is possible that the augmentation of cisplatin cytotoxicity may be mediated by PUMA activation. The results of this study suggest that knockdown of Akt2 expression may have therapeutic applications in enhancing the efficacy of chemotherapy in patients with osteosarcoma. PMID:21686164

  14. Cloning of a parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR 106) cell line: Chromosomal assignment of the gene in the human, mouse, and rat genomes

    SciTech Connect

    Pausova, Z.; Bourdon, J.; Clayton, D.; Janicic, N.; Goltzman, D.; Hendy, G.N. ); Mattei, M.G. ); Seldin, M.F. ); Riviere, M.; Szpirer, J. )

    1994-03-01

    Complementary DNAs spanning the entire coding region of the rat parathyroid hormone/parathyroid hormone-related peptide receptor (PTHR) were isolated from a rat osteosarcoma (UMR 106) cell-line cDNA library. The longest of these clones (rPTHrec4) was used to chromosomally assign the PTHR gene in the human, rat, and mouse genomes. By somatic cell hybrid analysis, the gene was localized to human chromosome 3 and rat chromosome 8; by in situ hybridization, the gene was mapped to human chromosome 3p21.1-p22 and to mouse chromosome 9 band F; and by interspecific backcross analysis, the Pthr gene segregated with the transferrin (Trf) gene in chromosome 9 band F. Mouse chromosome 9 and rat chromosome 8 are known to be highly homologous and to also show synteny conservation with human chromosome 3. These three chromosomes share the transferrin gene (TF), the myosin light polypeptide 3 gene (MYL3), and the acelpeptide hydrolase gene (APEH). These results add a fourth gene, the PTHR gene, to the synteny group conserved in these chromosomes. 34 refs., 7 figs. 1 tab.

  15. Anemone altaica Induces Apoptosis in Human Osteosarcoma Cells.

    PubMed

    Chang, I-Chang; Chiang, Tsay-I; Lo, Chun; Lai, Yi-Hua; Yue, Chia-Herng; Liu, Jer-Yuh; Hsu, Li-Sung; Lee, Chia-Jen

    2015-01-01

    In the past decade, no significant improvement has been made in chemotherapy for osteosarcoma (OS). To develop improved agents against OS, we screened 70 species of medicinal plants and treated two human OS cell lines with different agent concentrations. We then examined cell viability using the MTT assay. Results showed that a candidate plant, particularly the rhizomes of Anemone altaica Fisch. ex C. A. Mey aqueous extract (AAE), suppressed the viability of HOS and U2OS cells in a concentration-dependent manner. Flow cytometry analysis revealed that AAE significantly increased the amount of cell shrinkage (Sub-G1 fragments) in HOS and U2OS cells. Moreover, AAE increased cytosolic cytochrome c and Bax, but decreased Bcl-2. The amount of cleaved caspase-3 and poly-(ADP-ribose) polymerase-1 (PARP-1) were significantly increased. AAE suppressed the growth of HOS and U2OS through the intrinsic apoptotic pathway. Data suggest that AAE is cytotoxic to HOS and U2OS cells and has no significant influence on human osteoblast hFOB cells. The high mRNA levels of apoptosis-related factors (PPP1R15A, SQSTM1, HSPA1B, and DDIT4) and cellular proliferation markers (SKA2 and BUB1B) were significantly altered by the AAE treatment of HOS and U2OS cells. Results show that the anticancer activity of AAE could up-regulate the expression of a cluster of genes, especially those in the apoptosis-related factor family and caspase family. Thus, AAE has great potential as a useful therapeutic drug for human OS. PMID:26224029

  16. MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1.

    PubMed

    Han, Kang; Chen, Xiang; Bian, Na; Ma, Baoan; Yang, Tongtao; Cai, Chengkui; Fan, QingYu; Zhou, Yong; Zhao, Ting Bao

    2015-04-20

    Metastasis is a leading cause of mortality for osteosarcoma patients. The molecular pathological mechanism remains to be elucidated. In the previously study, we established two osteosarcoma cell lines with different metastatic potentials. Differential expressed genes and proteins regarding metastatic ability have been identified. MicroRNAs are important regulators in tumorigenesis and tumor progression. In this study, microRNA microarray was used to assess the differential expressed miRNAs level between these two cell lines. One of the top ranked miRNAs-miR-195 was identified highly expressing in lowly metastatic cells. It was showed that over-expression of miR-195 substantially inhibits migration and invasion of osteosarcoma cells in vitro and pulmonary metastasis formation in vivo. Meanwhile, CCND1 was identified as the target gene of miR-195 and further studied. More importantly, using real-time PCR, we evaluated the expression of miR-195 and CCND1 in osteosarcoma samples from 107 frozen biopsy tissues and 99 formalin- or paraformalin-fixed, paraffin-embedded (FFPE) tissues. Results indicated lowly expressed miR-195 or highly CCND1 correlated with positive overall survival and their expression inversely related to each other. In summary, our study suggests miR-195 functions as a tumor metastasis suppressor gene by down-regulating CCND1 and can be used as a potential target in the treatment of osteosarcoma. PMID:25823925

  17. MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1

    PubMed Central

    Ma, Baoan; Yang, Tongtao; Cai, Chengkui; Fan, QingYu; Zhou, Yong; Zhao, TingBao

    2015-01-01

    Metastasis is a leading cause of mortality for osteosarcoma patients. The molecular pathological mechanism remains to be elucidated. In the previously study, we established two osteosarcoma cell lines with different metastatic potentials. Differential expressed genes and proteins regarding metastatic ability have been identified. MicroRNAs are important regulators in tumorigenesis and tumor progression. In this study, microRNA microarray was used to assess the differential expressed miRNAs level between these two cell lines. One of the top ranked miRNAs-miR-195 was identified highly expressing in lowly metastatic cells. It was showed that over-expression of miR-195 substantially inhibits migration and invasion of osteosarcoma cells in vitro and pulmonary metastasis formation in vivo. Meanwhile, CCND1 was identified as the target gene of miR-195 and further studied. More importantly, Using real-time PCR, we evaluated the expression of miR-195 and CCND1 in osteosarcoma samples from 107 frozen biopsy tissues and 99 formalin- or paraformalin-fixed, paraffin-embedded (FFPE) tissues. Results indicated lowly expressed miR-195 or highly CCND1 correlated with positive overall survival and their expression inverse relate to each other. In summary, our study suggests miR-195 function as a tumor metastasis suppressor gene by down-regulating CCND1 and can be used as a potential target in the treatment of osteosarcoma. PMID:25823925

  18. Sanguinarine induces apoptosis of human osteosarcoma cells through the extrinsic and intrinsic pathways

    SciTech Connect

    Park, Hyunjin; Bergeron, Eric; Senta, Helena; Guillemette, Kim; Beauvais, Sabrina; Blouin, Richard; Sirois, Joel; Faucheux, Nathalie

    2010-08-27

    Research highlights: {yields} We show for the first time the effect of sanguinarine (SA) on MG63 and SaOS-2 cells. {yields} SA altered osteosarcoma cell viability in a concentration and time dependent manner. {yields} SA induced osteosarcoma cell apoptosis and increased caspase-8 and -9 activities. {yields} SA decreased dose dependently the Bcl-2 protein level only in MG63 cells. {yields} SaOS-2 which are osteoblast-derived, seemed more resistant to SA than MG63. -- Abstract: The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma, a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 {mu}mol/L sanguinarine for 4 and 24 h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 {mu}mol/L sanguinarine killed almost 100% of both cell populations within 24 h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1 h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy.

  19. Osteosarcoma: mouse models, cell of origin and cancer stem cell

    PubMed Central

    Guijarro, Maria V.

    2016-01-01

    Osteosarcoma (OS) is the most common non-hematologic primary tumor of bone in children and adults. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for non-metastatic disease approaching 70%. However, most OS tumors are high grade and tend to rapidly develop pulmonary metastases. Despite clinical advances, patients with metastatic disease or relapse have a poor prognosis. Here the cell biology of OS is reviewed with a special emphasis on mouse models as well as the roles of the cell of origin and cancer stem cells. A better understanding of the molecular pathogenesis of human OS is essential for the development of improved prognostic and diagnostic markers as well as targeted therapies for both primary and metastatic OS.

  20. FBJ osteosarcoma virus in tissue culture. III. Isolation and characterization of non-virus-producing FBJ-transformed cells.

    PubMed Central

    Levy, J A; Kazan, P L; Reilly, C A; Finkel, M P

    1978-01-01

    Hamster and rat cell lines have been established that have been transformed by FBJ murine sarcoma virus (FBJ-MuSV) but that do not produce virus. The hamster cell line originated from an osteosarcoma that appeared in a hamster inoculated at birth with an extract of a CFNo1 mouse FBJ-osteosarcoma. The rat cell line was obtained by transferring the FBJ-MuSV genome to normal rat kidney cells in the absence of the FBJ type C virus (FBJ-MuLV), which, usually in high concentration, accompanies the FBJ-MuSV. Both transformed hamster and rat cell lines contain the FBJ-MuSV genome, which can be rescued by ecotropic and xenotropic murine type C viruses. This rescued genome produces characteristic FBJ-MuSV foci in tissue culture and, in appropriate animal hosts, induces osteosarcomas typical of those induced by FBJ-MuSV. FBJ-MuSV was isolated originally from a parosteal osteosarcoma that occurred naturally in a mouse. Since there was no previous history of passage of the agent through any other animal species, these non-virus-producing hamster and rat cells transformed by FBJ-MuSV should be very helpful in molecular studies examining the origin of spontaneous sarcoma genomes in mice. PMID:206718

  1. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell.

    PubMed

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  2. Ferulic acid inhibits proliferation and promotes apoptosis via blockage of PI3K/Akt pathway in osteosarcoma cell

    PubMed Central

    Wang, Ting; Gong, Xia; Jiang, Rong; Li, Hongzhong; Du, Weimin; Kuang, Ge

    2016-01-01

    Ferulic acid, a ubiquitous phenolic acid abundant in corn, wheat and flax, has potent anti-tumor effect in various cancer cell lines. However, the anti-tumor effect of ferulic acid on osteosarcoma remains unclear. Therefore, we conduct current study to examine the effect of ferulic acid on osteosarcoma cells and explore the underlying mechanisms. In present study, ferulic acid inhibited proliferation and induced apoptosis in both 143B and MG63 osteosarcoma cells dose-dependently, indicated by MTT assay and Annexin V-FITC apoptosis detection. Additionally, ferulic acid induced G0/G1 phase arrest and down-regulated the expression of cell cycle-related protein, CDK 2, CDK 4, CDK 6, confirmed by flow cytometry assay and western blotting. Moreover, ferulic acid upregulated Bax, downregulated Bcl-2, and subsequently enhanced caspase-3 activity. More importantly, ferulic acid dose-dependently inhibited PI3K/Akt activation. Using adenoviruses expressing active Akt, the anti-proliferation and pro-apoptosis of ferulic acid were reverted. Our results demonstrated that ferulic acid might inhibit proliferation and induce apoptosis via inhibiting PI3K/Akt pathway in osteosarcoma cells. Ferulic acid is a novel therapeutic agent for osteosarcoma. PMID:27158383

  3. Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells.

    PubMed

    Zhang, Ning; Ying, Mei-Dan; Wu, Yong-Ping; Zhou, Zhi-Hong; Ye, Zhao-Ming; Li, Hang; Lin, Ding-Sheng

    2014-01-01

    Osteosarcoma, one of the most common malignant bone tumours, is generally considered a differentiation disease caused by genetic and epigenetic disruptions in the terminal differentiation of osteoblasts. Novel therapies based on the non-cytotoxic induction of cell differentiation-responsive pathways could represent a significant advance in treating osteosarcoma; however, effective pharmaceuticals to induce differentiation are lacking. In the present study, we investigated the effect of hyperoside, a flavonoid compound, on the osteoblastic differentiation of U2OS and MG63 osteosarcoma cells in vitro. Our results demonstrated that hyperoside inhibits the proliferation of osteosarcoma cells by inducing G0/G1 arrest in the cell cycle, without causing obvious cell death. Cell migration assay further suggested that hyperoside could inhibit the invasion potential of osteosarcoma cells. Additionally, osteopontin and runt-related transcription factor 2 protein levels and osteocalcin activation were upregulated dramatically in hyperoside-treated osteosarcoma cells, suggesting that hyperoside may stimulates osteoblastic differentiation in osteosarcoma cells. This differentiation was accompanied by the activation of transforming growth factor (TGF)-β and bone morphogenetic protein-2, suggesting that the hyperoside-induced differentiation involves the TGF-β signalling pathway. To our knowledge, this study is the first to evaluate the differentiation effect of hyperoside in osteosarcoma cells and assess the possible potential for hyperoside treatment as a future therapeutic approach for osteosarcoma differentiation therapy. PMID:24983940

  4. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation.

    PubMed

    Wells, James W; Evans, Christopher H; Scott, Milcah C; Rütgen, Barbara C; O'Brien, Timothy D; Modiano, Jaime F; Cvetkovic, Goran; Tepic, Slobodan

    2013-01-01

    Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs. PMID:23365669

  5. Genetically Modified T-Cell Therapy for Osteosarcoma

    PubMed Central

    DeRenzo, Christopher

    2015-01-01

    T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma, who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen presenting cells ex vivo is time consuming and often results in T-cell products with a low frequency of tumor-specific T cells. In addition, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models, however early phase clinical trials are in progress. In this chapter we review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches. PMID:24924183

  6. Cytotoxic Effects of Fucoidan Nanoparticles against Osteosarcoma

    PubMed Central

    Kimura, Ryuichiro; Rokkaku, Takayoshi; Takeda, Shinji; Senba, Masachika; Mori, Naoki

    2013-01-01

    In this study, we analyzed the size-dependent bioactivities of fucoidan by comparing the cytotoxic effects of native fucoidan and fucoidan lipid nanoparticles on osteosarcoma in vitro and in vivo. In vitro experiments indicated that nanoparticle fucoidan induced apoptosis of an osteosarcoma cell line more efficiently than native fucoidan. The more potent effects of nanoparticle fucoidan, relative to native fucoidan, were confirmed in vivo using a xenograft osteosarcoma model. Caco-2 cell transport studies showed that permeation of nanoparticle fucoidan was higher than native fucoidan. The higher bioactivity and superior bioavailability of nanoparticle fucoidan could potentially be utilized to develop novel therapies for osteosarcoma. PMID:24177673

  7. Voacamine modulates the sensitivity to doxorubicin of resistant osteosarcoma and melanoma cells and does not induce toxicity in normal fibroblasts.

    PubMed

    Condello, Maria; Cosentino, Dario; Corinti, Silvia; Di Felice, Gabriella; Multari, Giuseppina; Gallo, Francesca Romana; Arancia, Giuseppe; Meschini, Stefania

    2014-04-25

    In previous studies it has been demonstrated that the plant alkaloid voacamine (1), used at noncytotoxic concentrations, enhanced the cytotoxicity of doxorubicin and exerted a chemosensitizing effect on cultured multidrug-resistant (MDR) U-2 OS-DX osteosarcoma cells. The in vitro investigations reported herein gave the following results: (i) the chemosensitizing effect of 1, in terms of drug accumulation and cell survival, was confirmed using SAOS-2-DX cells, another MDR osteosarcoma cell line; (ii) compound 1 enhanced the cytotoxic effect of doxorubicin also on the melanoma cell line Me30966, intrinsically drug resistant and P-glycoprotein-negative; (iii) at the concentrations used to sensitize tumor cells, 1 was not cytotoxic to normal cells (human fibroblasts). These findings suggest possible applications of voacamine (1) in integrative oncologic therapies against resistant tumors. PMID:24720452

  8. Voacamine Modulates the Sensitivity to Doxorubicin of Resistant Osteosarcoma and Melanoma Cells and Does Not Induce Toxicity in Normal Fibroblasts

    PubMed Central

    2015-01-01

    In previous studies it has been demonstrated that the plant alkaloid voacamine (1), used at noncytotoxic concentrations, enhanced the cytotoxicity of doxorubicin and exerted a chemosensitizing effect on cultured multidrug-resistant (MDR) U-2 OS-DX osteosarcoma cells. The in vitro investigations reported herein gave the following results: (i) the chemosensitizing effect of 1, in terms of drug accumulation and cell survival, was confirmed using SAOS-2-DX cells, another MDR osteosarcoma cell line; (ii) compound 1 enhanced the cytotoxic effect of doxorubicin also on the melanoma cell line Me30966, intrinsically drug resistant and P-glycoprotein-negative; (iii) at the concentrations used to sensitize tumor cells, 1 was not cytotoxic to normal cells (human fibroblasts). These findings suggest possible applications of voacamine (1) in integrative oncologic therapies against resistant tumors. PMID:24720452

  9. Preclinical mouse models of osteosarcoma.

    PubMed

    Uluçkan, Özge; Segaliny, Aude; Botter, Sander; Santiago, Janice M; Mutsaers, Anthony J

    2015-01-01

    Osteosarcoma is the most common form of primary bone tumors with high prevalence in children. Survival rates of osteosarcoma are low, especially in the case of metastases. Mouse models of this disease have been very valuable in investigation of mechanisms of tumorigenesis, metastasis, as well as testing possible therapeutic options. In this chapter, we summarize currently available mouse models for osteosarcoma and provide detailed methodology for the isolation of cell lines from genetically engineered mouse models (GEMMs), gene modification and tumor cell injection methods, as well as imaging techniques. PMID:25987985

  10. Sulforaphane induces DNA damage and mitotic abnormalities in human osteosarcoma MG-63 cells: correlation with cell cycle arrest and apoptosis.

    PubMed

    Ferreira de Oliveira, José Miguel P; Remédios, Catarina; Oliveira, Helena; Pinto, Pedro; Pinho, Francisco; Pinho, Sónia; Costa, Maria; Santos, Conceição

    2014-01-01

    Osteosarcoma is a recalcitrant bone malignancy with poor responsiveness to treatments; therefore, new chemotherapeutic compounds are needed. Sulforaphane (SFN) has been considered a promising chemotherapeutic compound for several types of tumors by inducing apoptosis and cytostasis, but its effects (e.g., genotoxicity) in osteosarcoma cells remains exploratory. In this work, the MG-63 osteosarcoma cell line was exposed to SFN up to 20 μM for 24 and 48 h. SFN induced G2/M phase arrest and decreased nuclear division index, associated with disruption of cytoskeletal organization. Noteworthy, SFN induced a transcriptome response supportive of G2/M phase arrest, namely a decrease in Chk1- and Cdc25C-encoding transcripts, and an increase in Cdk1-encoding transcripts. After 48-h exposure, SFN at a dietary concentration (5 μM) contributed to genomic instability in the MG-63 cells as confirmed by increased number of DNA breaks, clastogenicity, and nuclear and mitotic abnormalities. The increased formation of nucleoplasmic bridges, micronuclei, and apoptotic cells positively correlated with loss of viability. These results suggest that genotoxic damage is an important step for SFN-induced cytotoxicity in MG-63 cells. In conclusion, SFN shows potential to induce genotoxic damage at low concentrations and such potential deserves further investigation in other tumor cell types. PMID:24405297

  11. Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells

    PubMed Central

    Zhang, Linlin; lyer, Arun K; Yang, Xiaoqian; Kobayashi, Eisuke; Guo, Yuqi; Mankin, Henry; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Our prior screening of microRNAs (miRs) identified that miR-199a-3p expression is reduced in osteosarcoma cells, one of the most common types of bone tumor. miR-199a-3p exhibited functions of tumor cell growth inhibition, suggesting the potential application of miR-199a-3p as an anticancer agent. In the study reported here, we designed and developed a lipid-modified dextran-based polymeric nanoparticle platform for encapsulation of miRs, and determined the efficiency and efficacy of delivering miR-199a-3p into osteosarcoma cells. In addition, another potent miR, let-7a, which also displayed tumor suppressive ability, was selected as a candidate miR for evaluation. Fluorescence microscopy studies and real-time polymerase chain reaction results showed that dextran nanoparticles could deliver both miR-199a-3p and let-7a into osteosarcoma cell lines (KHOS and U-2OS) successfully. Western blotting analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays demonstrated that dextran nanoparticles loaded with miRs could efficiently downregulate the expression of target proteins and effectively inhibit the growth and proliferation of osteosarcoma cells. These results demonstrate that a lipid-modified dextran-based polymeric nanoparticle platform may be an effective nonviral carrier for potential miR-based anticancer therapeutics. PMID:25931818

  12. Genetically Modified T Cells Targeting Interleukin-11 Receptor α-Chain Kill Human Osteosarcoma Cells and Induce the Regression of Established Osteosarcoma Lung Metastases

    PubMed Central

    Cooper, Laurence JN; Hollomon, Mario; Huls, Helen; Kleinerman, Eugenie S

    2013-01-01

    The treatment of osteosarcoma (OS) pulmonary metastases remains a challenge. T cells genetically modified to express a chimeric antigen receptor (CAR), which recognizes a tumor-associated antigen, have shown activity against hematopoetic malignancies in clinical trials, but this requires the identification of a specific receptor on the tumor cell. In the current study, we found that interleukin (IL)-11Rα was selectively expressed on 14 of 16 OS patients’ lung metastases and 4 different human OS cell lines, indicating that IL-11Rα may be a novel target for CAR-specific T-cell therapy. IL-11Rα expression was absent or low in normal organ tissues, with the exception of the GI track. IL-11Rα-CAR-specific T cells were obtained by non-viral gene transfer of Sleeping Beauty DNA plasmids and selectively expanded ex vivo using artificial antigen presenting cells derived from IL-11Rα + K562 cells genetically modified to co-express T-cell co-stimulatory molecules. IL-11Rα-CAR+ T cells killed all 4 OS cell lines in vitro; cytotoxicity correlated with the level of IL-11Rα expression on the tumor cells. Intravenous injection of IL-11Rα-CAR+ T cells into mice resulted in the regression of OS pulmonary metastases with no organ toxicity. Together, the data suggest that IL-11Rα-CAR T cells may represent a new therapy for OS patients with pulmonary metastases. PMID:22075555

  13. Cell Lines

    PubMed Central

    Cherbas, Lucy; Gong, Lei

    2014-01-01

    We review the properties and uses of cell lines in Drosophila research, emphasizing the variety of lines, the large body of genomic and transcriptional data available for many of the lines, and the variety of ways the lines have been used to provide tools for and insights into the developmental, molecular, and cell biology of Drosophila and mammals. PMID:24434506

  14. Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells?

    PubMed

    Mutsaers, Anthony J; Walkley, Carl R

    2014-05-01

    Osteosarcoma is a disease with many complex genetic abnormalities but few well defined genetic drivers of tumor initiation and evolution. The disease is diagnosed and defined through the observation of malignant osteoblastic cells that produce osteoid, however the exact cell of origin for this cancer remains to be definitively defined. Evidence exists to support a mesenchymal stem cell as well as committed osteoblast precursors as the cell of origin. Increasing numbers of experimental models have begun to shed light on to the likely cell population that gives rise to OS in vivo with the weight of evidence favoring an osteoblastic population as the cell of origin. As more information is gathered regarding osteosarcoma initiating cells and how they may relate to the cell of origin we will derive a better understanding of the development of this disease which may ultimately lead to clinical improvements through more personalized therapeutic approaches. PMID:24530473

  15. Variable effects of dexamethasone on protein synthesis in clonal rat osteosarcoma cells

    SciTech Connect

    Hodge, B.O.; Kream, B.E.

    1988-05-01

    We examined the effects of dexamethasone on protein synthesis in clonal rat osteoblastic osteosarcoma (ROS) cell lines by measuring the incorporation of (/sup 3/H)proline into collagenase-digestible and noncollagen protein in the cell layer and medium of the cultures. In ROS 17/2 and subclone C12 of ROS 17/2.8, dexamethasone decreased collagen synthesis with no change in DNA content of the cultures. In ROS 17/2.8 and its subclone G2, dexamethasone stimulated collagen and noncollagen protein synthesis, with a concomitant decrease in the DNA content of the cells. These data indicate that ROS cell lines are phenotypically heterogeneous and suggest that in normal bone there may be distinct subpopulations of osteoblasts with varying phenotypic traits with respect to the regulation of protein synthesis.

  16. Triptolide induces the cell apoptosis of osteosarcoma cells through the TRAIL pathway.

    PubMed

    Zhao, Xingwei; Zhang, Qiang; Chen, Liang

    2016-09-01

    Research on triptolide, a diterpenoid epoxide found in the Thunder God Vine Tripterygium wilfordii, has increased our knowledge of the pharmacology, pharmacokinetics, toxicology and clinical application of this agent. In the present study, we aimed to identify the effects of triptolide on the apoptosis of osteosarcoma cells and to evaluate the anti-proliferative action of this agent. MG-63 cells were treated either with various doses of triptolide (50, 100 or 200 nM) or DMSO for 6, 12 and 24 h. Treatment with triptolide effectively suppressed the cell viability and induced the apoptosis of osteosarcoma MG-63 cells as detected by MTT assay and flow cytometry, respectively. In addition, by using caspase-3, caspase-8 and caspase-9 activity assays and western blot analysis, the anticancer effects of triptolide against osteosarcoma growth were found to involve activation of the DR-5/p53/Bax/caspase-9/ caspase-3 signaling pathway and the DR-5/FADD/caspase-8/lysosomal/cathepsin B/caspase-3 signaling pathway in the MG-63 cells. An important factor in the anticancer effects of triptolide against osteosarcoma was TRAIL-DR-5. The data suggest that triptolide may be a potential novel chemotherapeutic agent for osteosarcoma and acts through the TRAIL-DR-5 signaling pathway. PMID:27461934

  17. Allogeneic mRNA-based electrotransfection of autologous dendritic cells and specific antitumor effects against osteosarcoma in rats.

    PubMed

    Yu, Zhe; Qian, Jixian; Wu, Jiachang; Gao, Jie; Zhang, Minghua

    2012-12-01

    Vaccination with dendritic cells (DCs) transfected with tumor-derived mRNA antigen has emerged as a promising strategy for generating protective immunity in mammals. However, the integration of allogeneic osteosarcoma mRNA and autologous DCs has not been fully examined. This study was designed to investigate the antitumor effects of tumor vaccine produced by autologous DCs transfected of allogeneic osteosarcoma mRNA through electroporation in tumor-bearing rats model. In the present study, extraction of Wistar rat tumor mRNA was performed as a two-step procedure. First, total RNA was extracted by use of Trizol; then, mRNA purification was performed by use of polyT-coated magnetic beads. Then, we transfected the allogeneic-derived tumor mRNA to Sprague-Dawley (SD) rat bone marrow-derived DCs through electroporation. The tumor vaccine was applied to tumor-bearing rats model, and the specific antitumor effects of the tumor vaccine were observed. The immunization using autologous DCs electrotransfected with allogeneic osteosarcoma total RNA induced specific CTL responses, which were statistically significant (P < 0.05), and the cytotoxic activity was confirmed in cold target inhibition assays and using mAbs blocking MHC class I molecules. In in vivo experiments, 70 % of the rats immunized with allogeneic osteosarcoma RNA transfected to DCs were typically able to reject tumor challenge and remained tumor-free. Vaccinated survivors developed long immunological memory and were able to reject a subsequent rechallenge with the same tumor cells but not a syngeneic unrelated tumor line. In the present study, we demonstrated that allogeneic tumor mRNA isolated from rat osteosarcoma cell line could be applied to produce tumor vaccine inducing specific antitumor effects, especially in DC-based immunotherapy strategy. This study also provides the foundations for an effective and broadly applicable treatment to a wide range of cancer indications for which tumor-associated antigens

  18. MicroRNA-184 Modulates Doxorubicin Resistance in Osteosarcoma Cells by Targeting BCL2L1

    PubMed Central

    Lin, Bo-chuan; Huang, Dong; Yu, Chao-qun; Mou, Yong; Liu, Yuan-hang; Zhang, Da-wei; Shi, Feng-jun

    2016-01-01

    Background Early metastasis of osteosarcoma (OS) is highly lethal and responds poorly to drug and radiation therapies. MicroRNAs (miRNAs) are a class of small noncoding RNAs that modulate gene expression at the post-transcriptional level. However, the detailed functions of specific miRNAs are not entirely understood. The aim of the present study was to investigate the role of miR-184 as a mediator of drug resistance in human osteosarcoma. Material/Methods qRT-PCR was used to analyze the expression level of miR-184 in OS cell line U-2 OS and MG-63 treated with doxorubicin. MiR-184 agomir or miR-184 antagomir was transferred into cells to regulated miR-184. The target of miR-184 was predicted by TargetScan and confirmed by luciferase reporter assay. Bcl-2-like protein 1 (BCL2L1) expression was detected by Western blot. Cell apoptosis was determined by Annexin V staining and analysis by flow cytometry. Results Doxorubicin induced time-dependent expression of miR-184 in OS cell line U-2 OS and MG-63. Luciferase reporter assay identified BCL2L1 as the direct target gene of miR-184. Furthermore, doxorubicin reduced BCL2L1 expression, which was reversed by miR-184 overexpression and further decreased by miR-184 inhibition in OS cells. In addition, miR-184 agomir reduced doxorubicin-induced cell apoptosis, whereas miR-184 antagomir enhanced apoptosis in OS cells, suggesting that up-regulation of miR-184 contributes to chemoresistance of the OS cell line. Conclusions Our data show that miR-184 was up-regulated in OS patients treated with doxorubicin therapy and leads to poor response to drug therapy by targeting BCL2L1. PMID:27222034

  19. Identification of CBX3 and ABCA5 as Putative Biomarkers for Tumor Stem Cells in Osteosarcoma

    PubMed Central

    Saini, Vaibhav; Hose, Curtis D.; Monks, Anne; Nagashima, Kunio; Han, Bingnan; Newton, Dianne L.; Millione, Angelena; Shah, Jalpa; Hollingshead, Melinda G.; Hite, Karen M.; Burkett, Mark W.; Delosh, Rene M.; Silvers, Thomas E.; Scudiero, Dominic A.; Shoemaker, Robert H.

    2012-01-01

    Recently, there has been renewed interest in the role of tumor stem cells (TSCs) in tumorigenesis, chemoresistance, and relapse of malignant tumors including osteosarcoma. The potential exists to improve osteosarcoma treatment through characterization of TSCs and identification of therapeutic targets. Using transcriptome, proteome, immunophenotyping for cell-surface markers, and bioinformatic analyses, heterogeneous expression of previously reported TSC or osteosarcoma markers, such as CD133, nestin, POU5F1 (OCT3/4), NANOG, SOX2, and aldehyde dehydrogenase, among others, was observed in vitro. However, consistently significantly lower CD326, CD24, CD44, and higher ABCG2 expression in TSC-enriched as compared with un-enriched osteosarcoma cultures was observed. In addition, consistently higher CBX3 expression in TSC-enriched osteosarcoma cultures was identified. ABCA5 was identified as a putative biomarker of TSCs and/or osteosarcoma. Lastly, in a high-throughput screen we identified epigenetic (5-azacytidine), anti-microtubule (vincristine), and anti-telomerase (3,11-difluoro-6,8,13-trimethyl- 8H-quino [4,3,2-kl] acridinium methosulfate; RHPS4)-targeted therapeutic agents as candidates for TSC ablation in osteosarcoma. PMID:22870217

  20. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells

    PubMed Central

    YANG, XIAORONG; ZHOU, WENLAI; LIU, SHIQING

    2016-01-01

    Sperm-associated antigen 9 (SPAG9) is an oncoprotein involved in the progression of various human malignancies; however, its role in osteosarcoma (OS) remains poorly evaluated. The present study used Matrigel™ cell migration and invasion assays, tube formation assay, Cell Counting kit-8, quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay to investigate the role of SPAG9 in OS cell motility, invasion and angiogenesis. The results of the present study demonstrated that SPAG9 expression was upregulated in OS tissues, as compared with adjacent normal tissues, and knockdown of SPAG9 in an OS cell line inhibited cell motility and invasion via inactivation of metalloproteinase (MMP)-2 and MMP-9. Furthermore, the present study demonstrated that silencing of SPAG9 in OS cells inhibited tube formation, the proliferation of human umbilical vascular endothelial cells, and suppressed vascular endothelial growth factor (VEGF) expression and secretion, contributing to a reduction in angiogenesis. The results of the present study indicated that SPAG9 may be an important regulator in OS and may be involved in metastasis. Therefore SPAG9 may be a promising target for the treatment of metastatic OS. PMID:26893659

  1. Aberrant tropoelastin secretion in MG-63 human osteosarcoma cells

    SciTech Connect

    Curtiss, S.W.

    1989-01-01

    The secretion of newly synthesized tropoelastin, the soluble precursor of the extracellular matrix protein elastin, is not well understood. MG-63 human osteosarcoma cells were found by immunoblot analysis to synthesize 62 kD and 64 kD tropoelastins. Media from 63 cells labelled for five hours with ({sup 3}H)-valine contain no detectable tropoelastin, unlike media from other tropoelastin-synthesizing cells. Immunoblots of conditioned media and 1Ox-concentrated conditioned media left on the cells for six days also show an absence of tropoelastin from the cell media. No insoluble elastin is associated with the cell layer, as determined by amino acid analysis and electron microscopy of 18-21 day cell cultures. The absence of tropoelastin from the cell medium and elastin from the extracellular matrix indicates that MG63 cells do not secrete tropoelastin as expected, but accumulate it intracellularly. This accumulation is transient: immunoblots and immunofluorescence microscopy show that cells three days after passage have the highest steady-state levels of tropoelastin per cell, that day 8 cells contain lower but still significant amounts of tropoelastin, and that by day 22 tropoelastin is no longer present in the cell cultures. Cell density is a critical factor in the observed pattern of tropoelastin expression. Cells seeded at ten fold their usual initial density have high tropoelastin levels at one day after passage, sooner than cells seeded normally. Tropoelastin also disappears from high density-seeded cells more quickly and is no longer detectable at day 10. Lysosome-like vesicles containing membranous structures appear by immunoelectron microscopy to be the primary site of intracellular tropoelastin localization.

  2. Morphological and Immunohistochemical Characterization of Canine Osteosarcoma Spheroid Cell Cultures.

    PubMed

    Gebhard, C; Gabriel, C; Walter, I

    2016-06-01

    Spheroid cell culture emerges as powerful in vitro tool for experimental tumour research. In this study, we established a scaffold-free three-dimensional spheroid system built from canine osteosarcoma (OS) cells (D17). Spheroids (7, 14 and 19 days of cultivation) and monolayer cultures (2 and 7 days of cultivation) were evaluated and compared on light and electron microscopy. Monolayer and spheroid cultures were tested for vimentin, cytokeratin, alkaline phosphatase, osteocalcin and collagen I by means of immunohistochemistry. The spheroid cell culture exhibited a distinct network of collagen I in particular after 19-day cultivation, whereas in monolayer cultures, collagen I was arranged as a lamellar basal structure. Necrotic centres of large spheroids, as observed in 14- and 19-day cultures, were characterized by significant amounts of osteocalcin. Proliferative activity as determined by Ki-67 immunoreactivity showed an even distribution in two-dimensional cultures. In spheroids, proliferation was predominating in the peripheral areas. Metastasis-associated markers ezrin and S100A4 were shown to be continuously expressed in monolayer and spheroid cultures. We conclude that the scaffold-free spheroid system from canine OS cells has the ability to mimic the architecture of the in vivo tumour, in particular cell-cell and cell-matrix interactions. PMID:26287450

  3. Oncogenic roles of carbonic anhydrase 8 in human osteosarcoma cells.

    PubMed

    Wang, Tze-Kai; Lin, Yu-Ming; Lo, Che-Min; Tang, Chih-Hsin; Teng, Chieh-Lin Jerry; Chao, Wei-Ting; Wu, Min Huan; Liu, Chin-San; Hsieh, Mingli

    2016-06-01

    Carbonic anhydrase 8 (CA8), a member of the carbonic anhydrase family, is one of the three isozymes that do not catalyze the reversible hydration of carbon dioxide due to the lack of one important histidine. In the present study, we observed increased expression of CA8 in more aggressive types of human osteosarcoma (OS) cells and found that CA8 expression is correlated with disease stages, such that more intense expression occurs in the disease late stage. We also demonstrated that overexpression of CA8 in human OS (HOS) cells significantly increased cell proliferation both in vitro and in vivo. Downregulated CA8 sensitized cells to apoptotic stress induced by staurosporine and cisplatin, suggesting a specific role of CA8 to protect cells from stresses. In addition, downregulation of CA8 in HOS cells reduced cell invasion and colony formation ability in soft agar and further decreased matrix metalloproteinase 9 and focal adhesion kinase expression, indicating that CA8 might facilitate cancer cell invasion via the activation of FAK-MMP9 signaling. Interestingly, HOS cells with CA8 knockdown showed a significant decrease in glycolytic activity and cell death under glucose withdrawal, further indicating that CA8 may be involved in regulating aerobic glycolysis and enhancing cell viability. Knockdown of CA8 significantly decreased phosphorylated Akt expression suggesting that the oncogenic role of CA8 may be mediated by the regulation of Akt activation through p-Akt induction. Importantly, the inhibition of glycolysis by 2-deoxyglucose sensitized CA8 HOS-CA8-myc cells to cisplatin treatment under low glucose condition, highlighting a new therapeutic option for OS cancer. PMID:26711783

  4. Hypoxia promotes drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling

    PubMed Central

    Zhao, Changfu; Zhang, Qiao; Yu, Tao; Sun, Shudong; Wang, Wenjun; Liu, Guangyao

    2016-01-01

    Purpose Drug resistance has been recognized to be a major obstacle to the chemotherapy for osteosarcoma. And the potential importance of hypoxia as a target to reverse drug resistance in osteosarcoma has been indicated, though the mechanism underlining such role is not clarified. The present study aims to investigate the role of hypoxia in the drug resistance in osteosarcoma cells via activating AMP-activated protein kinase (AMPK) signaling. Experimental design We investigated the promotion of the resistance to doxorubicin of osteosarcoma MG-63 and U2-os cells in vitro, and then determined the role of hypoxia-inducible factor-1 (HIF-1)α and HIF-1β, the activation and regulatory role of AMPK in the osteosarcoma U2-os cells which were treated with doxorubicin under hypoxia. Results It was demonstrated that hypoxia significantly reduced the sensitivity of MG-63 and U2-os cells to doxorubicin, indicating an inhibited viability reduction and a reduced apoptosis promotion. And such reduced sensitivity was not associated with HIF-1α, though it was promoted by hypoxia in U2-os cells. Interestingly, the AMPK signaling was significantly promoted by hypoxia in the doxorubicin-treated U2-os cells, with a marked upregulation of phosphorylated AMPK (Thr 172) and phosphorylated acetyl-CoA carboxylase (ACC) (Ser 79), which were sensitive to the AMPK activator, AICAR and the AMPK inhibitor, Compound C. Moreover, the promoted AMPK activity by AICAR or the downregulated AMPK activity by Compound C significantly reduced or promoted the sensitivity of U2-os cells to doxorubicin. Conclusion The present study confirmed the AMPK signaling activation in the doxorubicin-treated osteosarcoma cells, in response to hypoxia, and the chemical upregulation or downregulation of AMPK signaling reduced or increased the chemo-sensitivity of osteosarcoma U2-os cells in vitro. Our study implies that AMPK inhibition might be a effective strategy to sensitize osteocarcoma cells to chemotherapy. PMID

  5. Suppression of liver receptor homolog-1 by microRNA-451 represses the proliferation of osteosarcoma cells

    SciTech Connect

    Li, Zhiyong; Wu, Shuwen; Lv, Shouzheng; Wang, Huili; Wang, Yong; Guo, Qiang

    2015-06-05

    Liver receptor homolog-1 (LRH-1) plays an important role in the onset and progression of many cancer types. However, the role of LRH-1 in osteosarcoma has not been well investigated. In this study, the critical role of LRH-1 in osteosarcoma cells was described. Quantitative polymerase chain reaction and Western blot analysis results revealed that LRH-1 was highly overexpressed in osteosarcoma cells. LRH-1 was knocked down by small interfering RNA (siRNA), and this phenomenon significantly inhibited osteosarcoma cell proliferation. Bioinformatics analysis results showed that LRH-1 contained putative binding sites of microRNA-451 (miR-451); this result was further validated through a dual-luciferase activity reporter assay. miR-451 was overexpressed in osteosarcoma cells through transfection of miR-451 mimics; miR-451 overexpression then significantly inhibited LRH-1 expression and cell proliferation. The loss of LRH-1 by siRNA or miR-451 mimics significantly impaired Wnt/β-catenin activity, leading to G0/G1 cell cycle arrest. Results showed that LRH-1 is implicated in osteosarcoma. Therefore, miR-451-induced suppression of LRH-1 can be a novel therapy to treat osteosarcoma. - Highlights: • LRH-1 was highly overexpressed in osteosarcoma cells. • Knockdown of LRH-1 inhibited osteosarcoma cell proliferation. • miR-451 directly targeted and regulated LRH-1 expression. • Overexpression of miR-451 suppressed Wnt activity.

  6. Impaired cell cycle regulation of the osteoblast-related heterodimeric transcription factor Runx2-Cbfbeta in osteosarcoma cells.

    PubMed

    San Martin, Inga A; Varela, Nelson; Gaete, Marcia; Villegas, Karina; Osorio, Mariana; Tapia, Julio C; Antonelli, Marcelo; Mancilla, Edna E; Pereira, Barry P; Nathan, Saminathan S; Lian, Jane B; Stein, Janet L; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario

    2009-12-01

    Bone formation and osteoblast differentiation require the functional expression of the Runx2/Cbfbeta heterodimeric transcription factor complex. Runx2 is also a suppressor of proliferation in osteoblasts by attenuating cell cycle progression in G(1). Runx2 levels are modulated during the cell cycle, which are maximal in G(1) and minimal beyond the G(1)/S phase transition (S, G(2), and M phases). It is not known whether Cbfbeta gene expression is cell cycle controlled in preosteoblasts nor how Runx2 or Cbfbeta are regulated during the cell cycle in bone cancer cells. We investigated Runx2 and Cbfbeta gene expression during cell cycle progression in MC3T3-E1 osteoblasts, as well as ROS17/2.8 and SaOS-2 osteosarcoma cells. Runx2 protein levels are reduced as expected in MC3T3-E1 cells arrested in late G(1) (by mimosine) or M phase (by nocodazole), but not in cell cycle arrested osteosarcoma cells. Cbfbeta protein levels are cell cycle independent in both osteoblasts and osteosarcoma cells. In synchronized MC3T3-E1 osteoblasts progressing from late G1 or mitosis, Runx2 levels but not Cbfbeta levels are cell cycle regulated. However, both factors are constitutively elevated throughout the cell cycle in osteosarcoma cells. Proteasome inhibition by MG132 stabilizes Runx2 protein levels in late G(1) and S in MC3T3-E1 cells, but not in ROS17/2.8 and SaOS-2 osteosarcoma cells. Thus, proteasomal degradation of Runx2 is deregulated in osteosarcoma cells. We propose that cell cycle control of Runx2 gene expression is impaired in osteosarcomas and that this deregulation may contribute to the pathogenesis of osteosarcoma. PMID:19739101

  7. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  8. Mechanosensitivity of human osteosarcoma cells and phospholipase C {beta}2 expression

    SciTech Connect

    Hoberg, M. . E-mail: Maik.Hoberg@med.uni-tuebingen.de; Gratz, H.-H.; Noll, M.; Jones, D.B.

    2005-07-22

    Bone adapts to mechanical load by osteosynthesis, suggesting that osteoblasts might respond to mechanical stimuli. We therefore investigated cell proliferation and phospholipase C (PLC) expression in osteoblasts. One Hertz uniaxial stretching at 4000 {mu}strains significantly increased the proliferation rates of human osteoblast-like osteosarcoma cell line MG-63 and primary human osteoblasts. However, U-2/OS, SaOS-2, OST, and MNNG/HOS cells showed no significant changes in proliferation rate. We investigated the expression pattern of different isoforms of PLC in these cell lines. We were able to detect PLC {beta}1, {beta}3, {gamma}1, {gamma}2, and {delta}1 in all cells, but PLC {beta}2 was only detectable in the mechanosensitive cells. We therefore investigated the possible role of PLC {beta}2 in mechanotransduction. Inducible antisense expression for 24 h inhibited the translation of PLC {beta}1 in U-2/OS cells by 35% and PLC {beta}2 in MG-63 by 29%. Fluid shear flow experiments with MG-63 lacking PLC {beta}2 revealed a significantly higher level of cells losing attachment to coverslips and a significantly lower number of cells increasing intracellular free calcium.

  9. SerpinE2 promotes multiple cell proliferation and drug resistance in osteosarcoma.

    PubMed

    Mao, Minzhi; Wang, Wanchun

    2016-07-01

    SerpinE2 is a member of the Serpins family, which could inhibit serine protease and promote tumor progression, particularly in tumor metastasis. However, at present, its role in the progression of osteosarcoma has not been determined. The present study analyzed the expression profiles of SerpinE2 in cancer tissues, including tissues from osteosarcoma of different stages. Higher expression of SerpinE2 was shown in osteosarcoma tissues, particularly in tissue from patients with metastasis and a tumor-node-metastasis stage II‑III. Following chemotherapy, the SerpinE2 expression levels were shown to be higher than those at diagnosis. Cell proliferation and colony formation were increased after transfection with SerpinE2 over‑expression vector. Additionally, drug resistance to bortezomib and doxorubicin treatment following SerpinE2 transfection was analyzed. MG‑63 and SAOS‑2 cells showed less sensitivity following transfection with SerpinE2. The cell cycle‑related genes, cyclin‑dependent kinase (CDK)4 and cyclin D1 were positively correlated with SerpinE2 expression in patient‑derived tissue and in osteosarcoma cells. Finally, the high expression of SerpinE2 contributes to poor survival rates in patients with osteosarcoma. In conclusion, high expression of SerpinE2 in osteosarcoma stimulates cell proliferation, promotes drug‑resistance, and results in poor survival by regulating CDK4 and cyclin D1. Thus, SerpinE2 could be a potential target for treatment of patients with osteosarcoma. PMID:27221371

  10. KLF8 knockdown suppresses proliferation and invasion in human osteosarcoma cells

    PubMed Central

    LIN, FENG; SHEN, ZAN; TANG, LI-NA; ZHENG, SHUI-ER; SUN, YUAN-JUE; MIN, DA-LIU; YAO, YANG

    2014-01-01

    Krüppel-like factor 8 (KLF8) is a transcription factor that is important in the regulation of the cell cycle and has a critical role in oncogenic transformation and epithelial to mesenchymal transition (EMT). EMT is a key process in tumor metastasis. Although overexpression of KLF8 has been observed in a variety of human tumor types, the role of KLF8 in human osteosarcoma is yet to be elucidated. The present study aimed to investigate the biological impact of KLF8 on Saos-2 osteosarcoma cells. KLF8 gene expression was knocked down in vitro using a lentivirus-mediated small interfering (si)RNA method. Cell proliferation and cell cycle distribution were evaluated using 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-di-phenytetrazoliumromide and colony formation assays, and flow cytometry, respectively. Cell invasion was analyzed using a Transwell® invasion assay. Knockdown of KLF8 was found to significantly inhibit proliferation and invasion in osteosarcoma cells. These data suggest that KLF8 may exhibit an important role in osteosarcoma tumorigenesis and that KLF8 may be a potential therapeutic target for the treatment of osteosarcoma. PMID:24604387

  11. Chondroblastic osteosarcoma

    PubMed Central

    Almeida, Etanaiara; Mascarenhas, Bruno Araújo; Cerqueira, Arlei; Medrado, Alena Ribeiro Alves Peixoto

    2014-01-01

    The purpose of this paper is to report a case of chondroblastic osteosarcoma in the region of the maxilla, with 5 months of evolution. The term osteosarcoma refers to a heterogeneous group of malignancies with bone formation or mesenchymal tissue with histopathological evidence of osteogenic differentiation. The pattern of chondroblastic osteosarcoma represents 25% of all reported cases of this neoplasm. Its histopathological diagnosis is based on the predominance of a chondroid matrix formed in the midst of neoplastic cells. A woman patient, 27-year old, melanoderm, presented on extraoral exam with facial asymmetry caused by the a swelling in the premaxillary region with upper lip protrusion. Intraoral exam showed a maxillary tumefaction with involvement of the vestibular and palatine regions. The computerized tomography (CT) analysis exhibited a radiolucent mass with dispersed areas of radiopacity, with poorly defined and indistinct peripheral edges. The patient was subjected to incisional biopsy and histopathological examination showed the presence of a malignant neoplasm of mesenchymal origin characterized by the presence of irregular bone trabeculae dispersed among mildly atypical chondroblastic cells. The World Health Organization (WHO) recognizes several variants that differ in location, clinical behavior and degree of cellular atypia. The conventional or classical osteosarcoma is the most frequent variant, which develops within the medullary bone. This report illustrates the rapid evolution of one of the histological variants of osteosarcoma. PMID:25949008

  12. Long form collapsin response mediator protein-1 promotes the migration and invasion of osteosarcoma cells

    PubMed Central

    HOU, HUIGE; CHEN, LIN; ZHA, ZHENGANG; CAI, SHAOHUI; TAN, MINGHUI; GUO, GUOQING; LIU, NING; SHE, GUORONG; XUN, SONGWEI

    2016-01-01

    It has been reported that long form collapsin response mediator protein-1 (LCRMP-1) promotes the metastasis of non-small cell lung cancer. Osteosarcoma (OS) is a human cancer with a high potential for metastasis. The present study aimed to investigate the role of LCRMP-1 in OS metastasis. The expression of LCRMP-1 in OS specimens and cell lines was evaluated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Furthermore, the migration and invasion of OS cells with LCRMP-1-knockdown was investigated to examine the role of LCRMP-1 in OS metastasis. In addition, the expression of N-cadherin and matrix metalloproteinases (MMPs), which are involved in cell migration, was evaluated using RT-qPCR. Increased expression of LCRMP-1 was observed in the OS tissues and cell lines, accompanied by the enhanced migration and invasion of the OS cells. LCRMP-1-knockdown resulted in a significant decrease in the expression of N-cadherin and MMPs, as well as inhibition of the migration and invasion of the OS cells. Overexpression of LCRMP-1 promoted OS metastasis. Therefore, LCRMP-1 may be a promising target for the effective treatment of OS. PMID:27347094

  13. Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma

    PubMed Central

    Tavanti, E; Sero, V; Vella, S; Fanelli, M; Michelacci, F; Landuzzi, L; Magagnoli, G; Versteeg, R; Picci, P; Hattinger, C M; Serra, M

    2013-01-01

    Background: Aurora kinases are key regulators of cell cycle and represent new promising therapeutic targets in several human tumours. Methods: Biological relevance of Aurora kinase-A and -B was assessed on osteosarcoma clinical samples and by silencing these genes with specific siRNA in three human osteosarcoma cell lines. In vitro efficacy of two Aurora kinases-targeting drugs (VX-680 and ZM447439) was evaluated on a panel of four drug-sensitive and six drug-resistant human osteosarcoma cell lines. Results: Human osteosarcoma cell lines proved to be highly sensitive to both drugs. A decreased drug sensitivity was observed in doxorubicin-resistant cell lines, most probably related to ABCB1/MDR1 overexpression. Both drugs variably induced hyperploidy and apoptosis in the majority of cell lines. VX-680 also reduced in vitro cell motility and soft-agar cloning efficiency. Drug association experiments showed that VX-680 positively interacts with all conventional drugs used in osteosarcoma chemotherapy, overcoming the cross-resistance observed in the single-drug treatments. Conclusion: Aurora kinase-A and -B represent new candidate therapeutic targets for osteosarcoma. In vitro analysis of the Aurora kinases inhibitors VX-680 and ZM447439 indicated in VX-680 a new promising drug of potential clinical usefulness in association with conventional osteosarcoma chemotherapeutic agents. PMID:24129234

  14. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells.

    PubMed

    Hou, Chun-Han; Lin, Feng-Ling; Hou, Sheng-Mon; Liu, Ju-Fang

    2014-01-01

    Osteosarcoma (OS) is a relatively rare form of cancer, but OS is the most commonly diagnosed bone cancer in children and adolescents. Chemotherapy has side effects and induces drug resistance in OS. Since an effective adjuvant therapy was insufficient for treating OS, researching novel and adequate remedies is critical. Hyperthermia can induce cell death in various cancer cells, and thus, in this study, we investigated the anticancer method of hyperthermia in human OS (U-2 OS) cells. Treatment at 43 °C for 60 min induced apoptosis in human OS cell lines, but not in primary bone cells. Furthermore, hyperthermia was associated with increases of intracellular reactive oxygen species (ROS) and caspase-3 activation in U-2 OS cells. Mitochondrial dysfunction was followed by the release of cytochrome c from the mitochondria, and was accompanied by decreased anti-apoptotic Bcl-2 and Bcl-xL, and increased pro-apoptotic proteins Bak and Bax. Hyperthermia triggered endoplasmic reticulum (ER) stress, which was characterized by changes in cytosolic calcium levels, as well as increased calpain expression and activity. In addition, cells treated with calcium chelator (BAPTA-AM) blocked hyperthermia-induced cell apoptosis in U-2 OS cells. In conclusion, hyperthermia induced cell apoptosis substantially via the ROS, ER stress, mitochondria, and caspase pathways. Thus, hyperthermia may be a novel anticancer method for treating OS. PMID:25268613

  15. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres

    PubMed Central

    Chang, Run; Sun, Linlin; Webster, Thomas J

    2015-01-01

    Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane) has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs) with diameters of 10–20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment

  16. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1

    PubMed Central

    Weekes, Daniel; Zandueta, Carolina; Perurena, Naiara; Thomas, David P; Sunters, Andrew; Vuillier, Céline; Bozec, Aline; El-Emir, Ethaar; Miletich, Isabelle; Patiño-Garcia, Ana; Lecanda, Fernando; Grigoriadis, Agamemnon E

    2015-01-01

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant due to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signaling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 was identified as a novel c-Fos/AP-1 regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of MAPKs, morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1 silenced osteosarcoma cells caused a marked 2- to 5-fold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus, deregulated FGFR signalling plays an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy. PMID:26387545

  17. Regulation of osteosarcoma cell lung metastasis by the c-Fos/AP-1 target FGFR1.

    PubMed

    Weekes, D; Kashima, T G; Zandueta, C; Perurena, N; Thomas, D P; Sunters, A; Vuillier, C; Bozec, A; El-Emir, E; Miletich, I; Patiño-Garcia, A; Lecanda, F; Grigoriadis, A E

    2016-06-01

    Osteosarcoma is the most common primary malignancy of the skeleton and is prevalent in children and adolescents. Survival rates are poor and have remained stagnant owing to chemoresistance and the high propensity to form lung metastases. In this study, we used in vivo transgenic models of c-fos oncogene-induced osteosarcoma and chondrosarcoma in addition to c-Fos-inducible systems in vitro to investigate downstream signalling pathways that regulate osteosarcoma growth and metastasis. Fgfr1 (fibroblast growth factor receptor 1) was identified as a novel c-Fos/activator protein-1(AP-1)-regulated gene. Induction of c-Fos in vitro in osteoblasts and chondroblasts caused an increase in Fgfr1 RNA and FGFR1 protein expression levels that resulted in increased and sustained activation of mitogen-activated protein kinases (MAPKs), morphological transformation and increased anchorage-independent growth in response to FGF2 ligand treatment. High levels of FGFR1 protein and activated pFRS2α signalling were observed in murine and human osteosarcomas. Pharmacological inhibition of FGFR1 signalling blocked MAPK activation and colony growth of osteosarcoma cells in vitro. Orthotopic injection in vivo of FGFR1-silenced osteosarcoma cells caused a marked twofold to fivefold decrease in spontaneous lung metastases. Similarly, inhibition of FGFR signalling in vivo with the small-molecule inhibitor AZD4547 markedly reduced the number and size of metastatic nodules. Thus deregulated FGFR signalling has an important role in osteoblast transformation and osteosarcoma formation and regulates the development of lung metastases. Our findings support the development of anti-FGFR inhibitors as potential antimetastatic therapy. PMID:26387545

  18. hTERT promoter activity identifies osteosarcoma cells with increased EMT characteristics

    PubMed Central

    YU, LING; LIU, SHIQING; GUO, WEICHUN; ZHANG, CHUN; ZHANG, BO; YAN, HUICHAO; WU, ZHENG

    2014-01-01

    Epithelial-mesenchymal transition (EMT) is a critical step in order for epithelial-derived malignancies to metastasize, however, its role in mesenchymal-derived tumors, i.e., osteosarcoma, remains unclear. Cancer stem cells (CSCs) are enriched with cells that undergo EMT. The activity of telomerase is maintained in normal stem cells and a number of malignant tumors. The current study observed the heterogeneity of telomerase activity among individual osteosarcoma cells. We hypothesized that telomerase-positive (TELpos) cells are enriched for stem cell-like and EMT properties. A human telomerase reverse transcriptase (hTERT) promoter-reporter was applied to assess the telomerase activity of individual MG63 osteosarcoma cells and sort them into TELpos and telomerase-negative (TELneg) subpopulations. It was found that the TELpos cells exhibited an enhanced ability to form sarcospheres in vitro. In addition, TELpos cells exhibited a higher expression of vimentin, accompanied by an increased long/short axis ratio. A panel of EMT-related genes was evaluated by quantitative PCR and western blot analysis, and were found to be significantly upregulated in TELpos cells. Next, the in vitro migration capacity was examined by Transwell assay, which confirmed that TELpos cells are more prone to migration (2.6 fold). The results of the present study support the concept that EMT also applies to mesenchymal-derived osteosarcoma and draws a connection between telomerase and EMT characteristics. PMID:24348856

  19. Effect and mechanism of dihydroartemisinin on proliferation, metastasis and apoptosis of human osteosarcoma cells.

    PubMed

    Tang, C; Ao, P Y; Zhao, Y Q; Huang, S Z; Jin, Y; Liu, J J; Luo, J P; Zheng, J; Shi, D P

    2015-01-01

    Osteosarcoma represents an aggressive type of bone malignancy that poses a significant health threat. The objective of the current study was to analyze the effect and mechanism of dihydroartemisinin (DHA) on the proliferation, metastasis and apoptosis of human osteosarcoma cells. A gradient concentration of DHA (15, 25 and 35 μmol.L-1) was used to stimulate the cells, along with control and Dimethyl sulfoxide (DMSO). The phenotypic outcomes were characterized using MTT assay, clone formation assay, Hoechst 33258 staining assay, luciferase reporter plasmid assay, Western blot and wound healing assay. In addition, IBM SPSS Statistics 18.0 software was applied for statistical analysis and all experimental data were expressed as mean ± s.d. Analysis of variance (ANOVA) was applied to compare the differences among multiple groups. Our results demonstrated that DHA inhibited the proliferation and metastasis of osteosarcoma cells and promoted the apoptosis in the cytomorphosis. PMID:26753652

  20. Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence

    PubMed Central

    Perrot, Pierre; Rousseau, Julie; Bouffaut, Anne-Laure; Rédini, Françoise; Cassagnau, Elisabeth; Deschaseaux, Frédéric; Heymann, Marie-Françoise; Heymann, Dominique; Duteille, Franck; Trichet, Valérie; Gouin, François

    2010-01-01

    Background Osteosarcoma is the most common malignant primary bone tumour in young adult treated by neo adjuvant chemotherapy, surgical tumor removal and adjuvant multidrug chemotherapy. For correction of soft tissue defect consecutive to surgery and/or tumor treatment, autologous fat graft has been proposed in plastic and reconstructive surgery. Principal Findings We report here a case of a late local recurrence of osteosarcoma which occurred 13 years after the initial pathology and 18 months after a lipofilling procedure. Because such recurrence was highly unexpected, we investigated the possible relationship of tumor growth with fat injections and with mesenchymal stem/stromal cell like cells which are largely found in fatty tissue. Results obtained in osteosarcoma pre-clinical models show that fat grafts or progenitor cells promoted tumor growth. Significance These observations and results raise the question of whether autologous fat grafting is a safe reconstructive procedure in a known post neoplasic context. PMID:20544017

  1. Increased multi-drug resistance and reduced apoptosis in osteosarcoma side population cells are crucial factors for tumor recurrence

    PubMed Central

    WANG, YANG; TENG, JIA-SONG

    2016-01-01

    The present study investigated the characteristic features of cancer stem cells (CSCs) using an aggressive human osteosarcoma cell line OS-65. Hoechst 33342 dye exclusion was used to distinguish the cancer stem-like side population (SP) cells from OS-65 cells. Furthermore, the SP cells were characterized via chemoresistance and cell death assays, reverse transcription-quantitative polymerase chain reaction and immunofluorescence. The present study identified ~3.3% of cancer stem-like SP cells from OS-65 cells whose prevalence is reduced significantly (0.9%) following treatment with verapamil. It was demonstrated that osteosarcoma SP cells are highly efficient at generating additional sarcospheres as transcriptional regulation of stemness genes, including SOX2, OCT-4 and NANOG, is highly upregulated. Notably, these SP cells demonstrated high resistance against chemotherapeutic drugs and apoptosis via elevated transcriptional regulation of several ATPase binding cassette (ABC) transporter and anti-apoptotic proteins, including ABCG2, ABCB1/MDR1 ABCB5, B cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein, respectively. The results of the present study suggested that CSCs may be a novel therapeutic target for the prevention of tumor relapse. PMID:27347020

  2. MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively.

    PubMed

    Pu, Youguang; Zhao, Fangfang; Cai, Wenjing; Meng, Xianghui; Li, Yinpeng; Cai, Shanbao

    2016-04-01

    MicroRNAs have been identified as key players in the development and progression of osteosarcoma, which is the most common primary malignancy of bone. Sequencing-based miR-omic and quantitative real-time PCR analyses suggested that the expression of miR-193a-3p and miR-193a-5p was decreased by DNA methylation at their promoter region in a highly metastatic osteosarcoma cell line (MG63.2) relative to their expression in the less metastatic MG63 cell line. Further wound-healing and invasion assays demonstrated that both miR-193a-3p and miR-193a-5p suppressed osteosarcoma cell migration and invasion. Moreover, introducing miR-193a-3p and miR-193a-5p mimics into MG63.2 cells or antagomiRs into MG63 cells confirmed their critical roles in osteosarcoma metastasis. Additionally, bioinformatics prediction along with biochemical assay results clearly suggested that the secretory small GTPase Rab27B and serine racemase (SRR) were direct targets of miR-193a-3p and miR-193a-5p, respectively. These two targets are indeed involved in the miR-193a-3p- and miR-193a-5p-induced suppression of osteosarcoma cell migration and invasion. MiR-193a-3p and miR-193a-5p play important roles in osteosarcoma metastasis through down-regulation of the Rab27B and SRR genes and therefore may serve as useful biomarkers for the diagnosis of osteosarcoma and as potential candidates for the treatment of metastatic osteosarcoma. PMID:26913720

  3. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion.

    PubMed

    Fontanella, Raffaela; Pelagalli, Alessandra; Nardelli, Anna; D'Alterio, Crescenzo; Ieranò, Caterina; Cerchia, Laura; Lucarelli, Enrico; Scala, Stefania; Zannetti, Antonella

    2016-01-01

    Recent findings suggest that bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into the microenvironment of developing tumors, where they contribute to metastatic processes. The aim of this study was to investigate the role of BM-MSCs in promoting osteosarcoma and hepatocellular carcinoma cell progression in vitro and the possible mechanisms involved in these processes. U2OS and SNU-398 are osteosarcoma and hepatocellular carcinoma cell lines, respectively, that can be induced to proliferate when cultured in the presence of BM-MSCs. To determine the effect of BM-MSCs on U2OS and SNU-398 cells, the AKT and ERK signaling pathways were investigated, and increases were observed in active P-Akt and P-Erk forms. Moreover, BM-MSCs caused an increase in tumor cell migration and invasion that was derived from the enhancement of CXCR4 levels. Thus, when tumor cells were treated with the CXCR4 antagonist AMD3100, a reduction in their migration and invasion was observed. Furthermore, a new CXCR4 inhibitor, Peptide R, which was recently developed as an anticancer agent, was used to inhibit BM-MSC-mediated tumor invasion and to overcome AMD3100 toxicity. Taken together, these results suggest that inhibiting CXCR4 impairs the cross-talk between tumor cells and BM-MSCs, resulting in reduced metastatic potential in osteosarcoma and hepatocellular carcinoma cells. PMID:26517945

  4. The flavonoid luteolin enhances doxorubicin-induced autophagy in human osteosarcoma U2OS cells

    PubMed Central

    Zhang, Baoliang; Yu, Xin; Xia, Hong

    2015-01-01

    Luteolin (LUT), a flavone, which is universally present as constituent of medicinal plants as well as some vegetables and spices, has been demonstrated display specific anti-carcinogenic effects. However, the mechanisms by which LUT inhibits human osteosarcoma growth remain unknown. The effects of LUT on cell growth in human osteosarcoma U2OS cells were measured by MTT assay and flowcytometry. The effects of LUT on morphological markers of autophagy in U2OS were analyzed by fluorescence microscopy and electron microscopy. Autophagic markers, beclin1 and LC3 were detected by western blotting. Here, we found that LUT induced autophagy in U2OS and acted as an enhancer to sensitize doxorubicin (DOX)-mediated autophagy signaling. The combined treatment of LUT and DOX greatly decreases the growth of U2OS, showing synergistic cytotoxicity. Our results indicate that LUT in combination with DOX maybe a novel strategy for the treatment of human osteosarcoma. PMID:26629003

  5. Gynura procumbens ethanolic extract suppresses osteosarcoma cell proliferation and metastasis in vitro

    PubMed Central

    WANG, HENG; ZHOU, JI WEN; FU, DA HUA; ZHOU, YANG; CHENG, WEN ZHAO; LIU, ZHI-LI

    2013-01-01

    Gynura procumbens is a traditional herb used for the treatment of inflammation, rheumatism and viral infections, although the antitumor effect and its potential mechanisms of action remain unclear. In the present study, the antitumor effect of Gynura procumbens ethanolic extract (GPE) on the osteosarcoma (OS) cell line, U2-OS, was investigated in vitro. Cell proliferation and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Transwell invasion and wound healing assays were performed to investigate the invasion and migration of the U2-OS cells. The results showed that GPE was able to inhibit U2-OS cell proliferation and metastasis and induce cell apoptosis. Furthermore, the expression of the NF-κBp65 protein was detected by western blotting to evaluate the effects of GPE on the nuclear transfer of NF-κB. It was demonstrated that the expression of the NF-κBp65 protein was significantly decreased by GPE. This indicated that GPE was able to inhibit the nuclear transfer of NF-κB. The study shows that GPE is able to induce apoptosis and suppress proliferation and metastasis in U2-OS cells via the inhibition of the nuclear translocation of NF-κB. PMID:23946787

  6. Gynura procumbens ethanolic extract suppresses osteosarcoma cell proliferation and metastasis in vitro.

    PubMed

    Wang, Heng; Zhou, Ji Wen; Fu, DA Hua; Zhou, Yang; Cheng, Wen Zhao; Liu, Zhi-Li

    2013-07-01

    Gynura procumbens is a traditional herb used for the treatment of inflammation, rheumatism and viral infections, although the antitumor effect and its potential mechanisms of action remain unclear. In the present study, the antitumor effect of Gynura procumbens ethanolic extract (GPE) on the osteosarcoma (OS) cell line, U2-OS, was investigated in vitro. Cell proliferation and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Transwell invasion and wound healing assays were performed to investigate the invasion and migration of the U2-OS cells. The results showed that GPE was able to inhibit U2-OS cell proliferation and metastasis and induce cell apoptosis. Furthermore, the expression of the NF-κBp65 protein was detected by western blotting to evaluate the effects of GPE on the nuclear transfer of NF-κB. It was demonstrated that the expression of the NF-κBp65 protein was significantly decreased by GPE. This indicated that GPE was able to inhibit the nuclear transfer of NF-κB. The study shows that GPE is able to induce apoptosis and suppress proliferation and metastasis in U2-OS cells via the inhibition of the nuclear translocation of NF-κB. PMID:23946787

  7. Ursolic Acid Triggers Apoptosis in Human Osteosarcoma Cells via Caspase Activation and the ERK1/2 MAPK Pathway.

    PubMed

    Wu, Chia-Chieh; Cheng, Chun-Hsiang; Lee, Yi-Hui; Chang, Ing-Lin; Chen, Hsin-Yao; Hsieh, Chen-Pu; Chueh, Pin-Ju

    2016-06-01

    Ursolic acid (UA), a naturally occurring pentacyclic triterpene acid found in many medicinal herbs and edible plants, has been shown to trigger apoptosis in several lines of tumor cells in vitro. We found that treatment with UA suppressed the viability of human osteosarcoma MG-63 cells and induced cell cycle arrest at sub-G1 and G2/M phases. Furthermore, exposure to UA induced intracellular oxidative stress and collapse of mitochondrial membrane permeability, resulting in the subsequent activation of apoptotic caspases 8, 9, and 3 as well as PARP cleavage, and ultimately apoptosis in MG-63 cells. Moreover, protein analysis of mitogen-activated protein kinase (MAPK)-related protein expression showed an increase in activated ERK1/2, JNK, and p38 MAPK in UA-treated MG-63 cells. In addition, UA-induced apoptosis was significantly abolished in MG-63 cells that had been pretreated with inhibitors of caspase 3, 8, and 9 and ERK1/2. Furthermore, UA-treated MG-63 cells also exhibited an enhancement in Bax/Bcl-2 ratio, whereas anti-apoptotic XIAP and survivin were down-regulated. Taken together, we provide evidence demonstrating that UA mediates caspase-dependent and ERK1/2 MAPK-associated apoptosis in osteosarcoma MG-63 cells. PMID:27171502

  8. Expression and prognostic relevance of PRAME in primary osteosarcoma

    SciTech Connect

    Tan, Pingxian; Zou, Changye; Yong, Bicheng; Han, Ju; Zhang, Longjuan; Su, Qiao; Yin, Junqiang; Wang, Jin; Huang, Gang; Peng, Tingsheng; Shen, Jingnian

    2012-03-23

    Graphical abstract: High PRAME expression was associated with osteosarcoma patients' poor prognosis and lung metastasis. Highlights: Black-Right-Pointing-Pointer We analyzed and verified the role of PRAME in primary osteosarcoma. Black-Right-Pointing-Pointer High PRAME expression in osteosarcoma correlated to poor prognosis and lung metastasis. Black-Right-Pointing-Pointer PRAME siRNA knockdown significantly suppressed the proliferation, colony formation, and G1 cell cycle arrest in U-2OS cells. -- Abstract: The preferentially expressed antigen of melanoma (PRAME), a cancer-testis antigen with unknown function, is expressed in many human malignancies and is considered an attractive potential target for tumor immunotherapy. However, studies of its expression and function in osteosarcoma have rarely been reported. In this study, we found that PRAME is expressed in five osteosarcoma cell lines and in more than 70% of osteosarcoma patient specimens. In addition, an immunohistochemical analysis showed that high PRAME expression was associated with poor prognosis and lung metastasis. Furthermore, PRAME siRNA knockdown significantly suppressed the proliferation, colony formation, and G1 cell cycle arrest in U-2OS cells. Our results suggest that PRAME plays an important role in cell proliferation and disease progression in osteosarcoma. However, the detail mechanisms of PRAME function in osteosarcoma require further investigation.

  9. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study

    PubMed Central

    BIAN, DONG-LIN; WANG, XUE-MEI; HUANG, KUN; ZHAI, QI-XI; YU, GUI-BO; WU, CHENG-HUA

    2016-01-01

    The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors. PMID:27123060

  10. Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells

    SciTech Connect

    Liu, P.-S.; Chen, C.-Y.

    2010-05-01

    Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu and Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in human osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.

  11. Clinical implication of long noncoding RNA 91H expression profile in osteosarcoma patients.

    PubMed

    Xia, Wen-Kai; Lin, Qing-Feng; Shen, Dong; Liu, Zhi-Li; Su, Jun; Mao, Wei-Dong

    2016-01-01

    Long noncoding RNAs have been documented as having widespread roles in carcinogenesis and cancer progression. However, roles of long noncoding RNAs in osteosarcoma remain unclear. This study is to investigate the clinical relevance and biological functions of long noncoding RNA 91H in osteosarcoma. Herein, we confirmed that 91H expression was notably increased in osteosarcoma patients and cell lines compared to healthy controls and normal human bone cell lines. High expression of 91H was significantly correlated with advanced clinical stage, chemotherapy after surgery, and tumor size >5 cm. Furthermore, 91H was an independent prognostic factor for overall survival in osteosarcoma patients after treatments. Additionally, the knockdown of 91H expression inhibited osteosarcoma cells' proliferation and promoted their apoptosis in vitro. In summary, these findings indicate that 91H may be a novel biomarker for risk prognostication and also provide a clue to the molecular etiology of osteosarcoma. PMID:27555785

  12. Signal transduction and downregulation of C-MET in HGF stimulated low and highly metastatic human osteosarcoma cells

    SciTech Connect

    Husmann, Knut; Ducommun, Pascal; Sabile, Adam A.; Pedersen, Else-Marie; Born, Walter; Fuchs, Bruno

    2015-09-04

    The poor outcome of osteosarcoma (OS), particularly in patients with metastatic disease and a five-year survival rate of only 20%, asks for more effective therapeutic strategies targeting malignancy-promoting mechanisms. Dysregulation of C-MET, its ligand hepatocyte growth factor (HGF) and the fusion oncogene product TPR-MET, first identified in human MNNG-HOS OS cells, have been described as cancer-causing factors in human cancers. Here, the expression of these molecules at the mRNA and the protein level and of HGF-stimulated signaling and downregulation of C-MET was compared in the parental low metastatic HOS and MG63 cell lines and the respective highly metastatic MNNG-HOS and 143B and the MG63-M6 and MG63-M8 sublines. Interestingly, expression of TPR-MET was only observed in MNNG-HOS cells. HGF stimulated the phosphorylation of Akt and Erk1/2 in all cell lines investigated, but phospho-Stat3 remained at basal levels. Downregulation of HGF-stimulated Akt and Erk1/2 phosphorylation was much faster in the HGF expressing MG63-M8 cells than in HOS cells. Degradation of HGF-activated C-MET occurred predominantly through the proteasomal and to a lesser extent the lysosomal pathway in the cell lines investigated. Thus, HGF-stimulated Akt and Erk1/2 signaling as well as proteasomal degradation of HGF activated C-MET are potential therapeutic targets in OS. - Highlights: • Expression of TPR-MET was only observed in MNNG-HOS cells. • HGF stimulated the phosphorylation of Akt and Erk1/2 but not of Stat3 in osteosarcoma cell lines. • Degradation of HGF-activated C-MET occurred predominantly through the proteasomal pathway.

  13. In vitro generation of cytotoxic T lymphocyte response using dendritic cell immunotherapy in osteosarcoma

    PubMed Central

    He, Ye-Teng; Zhang, Qing-Min; Kou, Quan-Chun; Tang, Bo

    2016-01-01

    Immunotherapy with tumor lysate-pulsed dendritic cells (DCs) is one of the breakthrough strategies used in the treatment of cancer. However, DC-based immunotherapies for osteosarcoma are limited. In the present study, preclinical studies of a C3H osteosarcoma mouse model (produced by subcutaneous injection of LM8 murine osteosarcoma cells) validated the concept that LM8 cell lysate-pulsed bone marrow-derived DCs may evoke a more potent immune response compared with DCs that have been matured using polyinosinic:polycytidylic acid (poly I:C). A cytotoxic T lymphocyte (CTL) response was established using two groups of C3H mice (n=9) with osteosarcoma; the treatment group consisted of LM8 cell lysate-pulsed DCs and the control group consisted of DCs matured using poly I:C. Each group was immunized with doses of 1×106 cells twice per week for 3 weeks. No difference in the expression of cluster of differentiation markers was identified in the two groups. DCs pulsed with LM8 cell lysate were associated with the increased induction of CTL activity. Serum interferon-γ levels were increased in mice that received DCs pulsed with LM8 cell lysate compared with that in the poly I:C-matured DC group (P<0.041). Serum interleukin-4 was decreased in the treatment group vs. the control group (P<0.033). A mixed lymphocyte reaction assay confirmed that LM8-DC immunotherapy may evoke a significant antigen-specific immune response in a mouse model. The present study reveals promising data on efficacy of a DC-based immunotherapy in the treatment of osteosarcoma; however, further clinical studies are warranted. PMID:27446401

  14. Construction of recombinant pEGFP-N1-hPer2 plasmid and its expression in osteosarcoma cells

    PubMed Central

    CHENG, ANYUAN; ZHANG, YAN; MEI, HONGJUN; FANG, SHUO; JI, PENG; YANG, JIAN; YU, LING; GUO, WEICHUN

    2016-01-01

    The aim of this study was to construct the eukaryotic expression vector pEGFP-N1-hPer2 and assess its expression in the human osteosarcoma cell line MG63. Total mRNA was extracted from human osteosarcoma MG63 cells, the human period 2 (hPer2) gene was obtained by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into the pEGFP-N1 vector, then the recombinant pEGFP-N1-hPer2 plasmid was constructed and transfected into MG63 cells using Lipofectamine 2000. The expression of hPer2 in MG63 cells was measured by quantitative RT-PCR and western blot analysis. The accurate construction of pEGFP-N1-hPer2 was verified by double enzyme digestion and DNA sequencing. hPer2 gene expression in the transfected cells was assessed by RT-qPCR and western blot analysis. In conclusion, the recombinant pEGFP-N1-hPer2 plasmid was constructed successfully, and expressed effectively in MG63 cells. PMID:27073550

  15. Long noncoding RNA MALAT1 as a potential therapeutic target in osteosarcoma.

    PubMed

    Cai, Xianyi; Liu, Yunlu; Yang, Wen; Xia, Yun; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-06-01

    Recent studies have revealed that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in the development of several solid tumors. However, the function of MALAT1 in the tumorigenesis of osteosarcoma remains unknown. In the present study, levels of MALAT1 in human osteosarcoma cell lines and tissues were detected by quantitative real-time polymerase chain reaction (RT-PCR). The roles of MALAT1 in osteosarcoma were investigated by using in vitro and in vivo assays. We observed that MALAT1 expression was up-regulated in human osteosarcoma cell lines and tissues. In vitro knockdown of MALAT1 by siRNA significantly inhibited cell proliferation and migration, and induced cell cycle arrest and apoptosis in osteosarcoma cells. In addition, MALAT1 knockdown markedly suppressed the formation of tubular network structures and caused breakage of stress fibers in osteosarcoma cell lines U2OS and MNNG/HOS. Furthermore, MALAT1 knockdown delayed tumor growth in an osteosarcoma xenograft model. Specifically, we found that administration of MALAT1 siRNA decreased the protein levels of RhoA and its downstream effectors Rho-associated coiled-coil containing protein kinases (ROCKs). Taken together, these findings suggest that MALAT1 plays an oncogenic role in osteosarcoma and may be a promising therapeutic target for the treatment of osteosarcoma patients. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:932-941, 2016. PMID:26575981

  16. Osteosarcoma After Hematopoietic Stem Cell Transplantation in Children and Adolescents: Case Report and Review of the Literature.

    PubMed

    Kebudi, Rejin; Ozger, Harzem; Kızılocak, Hande; Bay, Sema Buyukkapu; Bilgiç, Bilge

    2016-09-01

    Osteosarcoma as a secondary malignancy after hematopoietic stem cell transplantation (HSCT) is very rare. We present a case and review of 18 other cases reported to date. Our patient underwent HSCT for myelodysplastic syndrome at the age of 4 years. She developed osteosarcoma 13 years later. She underwent surgery after three courses of neoadjuvant chemotherapy followed by chemotherapy and mifamurtide. She has no evidence of disease 28 months after termination of chemotherapy. In 18 other cases of secondary osteosarcoma in the literature, 15 had received total body irradiation, eight had received alkylating agents, and six had received etoposide. The median interval from HSCT to the onset of osteosarcoma was 6.5 years (range 2.5-15.3), which confirms that children undergoing HSCT should be followed up for many years. In conclusion, osteosarcoma must be included in the differential diagnosis among solid tumors that may develop following HSCT. PMID:27187839

  17. Ampelopsin suppresses TNF-α-induced migration and invasion of U2OS osteosarcoma cells.

    PubMed

    Liu, Changying; Zhao, Pengfei; Yang, Yubao; Xu, Xiaodong; Wang, Liang; Li, Bo

    2016-06-01

    Ampelopsin has been suggested as a novel anticancer agent, however, there is no evidence regarding its direct effect on the migration and invasion of osteosarcoma cells. The aims of the present study were to investigate the influence of ampelopsin on the migration and invasion of osteosarcoma cells and to clarify the underlying mechanisms. Scratch wound healing and Transwell assays were used to measure the migratory and invasive activities of the cells, respectively. The protein and RNA levels of matrix metalloproteinase-2 (MMP-2) were detected with western blot and RT-qPCR, respectively, following stimulation with tumor necrosis factor‑α (TNF-α) and ampelopsin. The expression levels of phospho‑ and total-p38MAPK were detected using western blot analysis. Additionally, SB203580, an inhibitor of p38MAPK, was used to investigate the effect of TNF‑α and ampelopsin. The results demonstrated that TNF‑α upregulated the expression level of MMP‑2 and promoted the migration and invasion of osteosarcoma cells. TNF‑α also activated the p38MAPK pathway, and SB203580 significantly inhibited the effect of TNF‑α on MMP‑2 expression. The application of ampelopsin abolished the effects of TNF‑α on the activation of the p38MAPK pathway and the expression of MMP‑2, and downregulated the migration and invasion of the osteosarcoma cells. These results demonstrated that ampelopsin inhibits the TNF‑α‑induced migration and invasion of osteosarcoma cells, and that the effect of ampelopsin was mediated by p38MAPK/MMP‑2 signaling. PMID:27082056

  18. The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells.

    PubMed

    Guan, Guofeng; Zhang, Yinglong; Lu, Yao; Liu, Lijuan; Shi, Doufei; Wen, Yanhua; Yang, Lianjia; Ma, Qiong; Liu, Tao; Zhu, Xiaodong; Qiu, Xiuchun; Zhou, Yong

    2015-02-01

    HIF-1α mediates hypoxia-induced expression of the chemokine receptor CXCR4 and contributes to metastasis in many different cancers. We have previously shown that hypoxia promotes migration of human osteosarcoma cells by activating the HIF-1α/CXCR4 pathway. Here, immunohistochemical analysis showed that unlike control osteochondroma samples, osteosarcoma specimens were characterized by elevated expression levels of HIF-1α and CXCR4. Moreover, we found that hypoxia-induced invasiveness was more pronounced in high metastatic potential F5M2 osteosarcoma cells than in low metastatic potential F4 cells, and that this induction was sensitive to treatment with the CXCR4 antagonist AMD3100 and the HIF-1α inhibitor KC7F2. Interestingly, hypoxia-induced CXCR4 expression persisted after cultured osteosarcoma cells were returned to normoxic conditions. These observations were confirmed by experiments in a mouse model of osteosarcoma lung metastasis showing that hypoxia stimulation of pulmonary metastasis was greater in F5M2 than in F4 cells, and was sensitive to treatment with AMD3100. Our study provides further evidence of the contributions of hypoxia and the HIF-1α/CXCR4 pathway to the progression of osteosarcoma, and suggests that this axis might be efficiently leveraged in the development of novel osteosarcoma therapeutics. PMID:25444927

  19. Dipsacus asperoides polysaccharide induces apoptosis in osteosarcoma cells by modulating the PI3K/Akt pathway.

    PubMed

    Chen, Jun; Yao, Dong; Yuan, Huixin; Zhang, Shaojun; Tian, Jinhong; Guo, Wenjing; Liang, Weizhi; Li, Huiyuan; Zhang, Yong

    2013-06-20

    An alkaline extractable and water-soluble polysaccharide (ADAPW), with an average molecular weight of 16kDa, was purified from the alkaline extraction of the roots of Dipsacus asperoides. Monosaccharide component analysis indicated that ADAPW was composed of glucose, rhamnose, arabinose and mannose in a molar ratio of 8.54:1.83:1.04:0.42. This study aimed to investigate the effect of ADAPW on the viability of human osteosarcoma cell line HOS cells, and explore the possible mechanisms. The results revealed that ADAPW inhibited the proliferation of HOS cells in a dose-dependent manner by inducing apoptosis. Furthermore, treatment with ADAPW caused a loss of mitochondrial membrane potential and accumulation of reactive oxygen species (ROS). In addition, Western blot analysis demonstrated that ADAPW down-regulated the protein expressions of PI3K and phosphorylated Akt (pAkt) in HOS cells. Taken together, induction of apoptosis on HOS cells by ADAPW was mainly associated with ROS production, mitochondrial dysfunction, and inhibition of PI3K/Akt signaling pathway. So this finding suggests that ADAPW may be potentially effective in cancer prevention against human osteosarcoma. PMID:23648042

  20. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6.

    PubMed

    Zhu, Kegan; Liu, Lei; Zhang, Junliang; Wang, Yanbo; Liang, Hongwei; Fan, Gentao; Jiang, Zhenhuan; Zhang, Chen-Yu; Chen, Xi; Zhou, Guangxin

    2016-06-01

    Osteosarcoma is the most common primary sarcoma of bone, and it is a leading cause of cancer death among adolescents and young adults. However, the molecular mechanism underlying osteosarcoma carcinogenesis remains poorly understood. Recently, cyclin-dependent kinase 6 (CDK6) was identified as an important oncogene. We found that CDK6 protein level, rather than CDK6 mRNA level, is much higher in osteosarcoma tissues than in normal adjacent tissues, which indicates a post-transcriptional mechanism involved in CDK6 regulation in osteosarcoma. MiRNAs are small non-coding RNAs that repress gene expression at the post-transcriptional level and have widely been shown to play important roles in many human cancers. In this study, we investigated the role of miR-29b as a novel regulator of CDK6 using bioinformatics methods. We demonstrated that CDK6 can be downregulated by miR-29b via binding to the 3'-UTR region in osteosarcoma cells. Furthermore, we identified an inverse correlation between miR-29b and CDK6 protein levels in osteosarcoma tissues. Finally, we examined the function of miR-29b-driven repression of CDK6 expression in osteosarcoma cells. The results revealed that miR-29b acts as a tumor suppressor of osteosarcoma by targeting CDK6 in the proliferation and migration processes. Taken together, our results highlight an important role for miR-29b in the regulation of CDK6 in osteosarcoma and may open new avenues for future osteosarcoma therapies. PMID:27230400

  1. Clinical implication of long noncoding RNA 91H expression profile in osteosarcoma patients

    PubMed Central

    Xia, Wen-Kai; Lin, Qing-Feng; Shen, Dong; Liu, Zhi-Li; Su, Jun; Mao, Wei-Dong

    2016-01-01

    Long noncoding RNAs have been documented as having widespread roles in carcinogenesis and cancer progression. However, roles of long noncoding RNAs in osteosarcoma remain unclear. This study is to investigate the clinical relevance and biological functions of long noncoding RNA 91H in osteosarcoma. Herein, we confirmed that 91H expression was notably increased in osteosarcoma patients and cell lines compared to healthy controls and normal human bone cell lines. High expression of 91H was significantly correlated with advanced clinical stage, chemotherapy after surgery, and tumor size >5 cm. Furthermore, 91H was an independent prognostic factor for overall survival in osteosarcoma patients after treatments. Additionally, the knockdown of 91H expression inhibited osteosarcoma cells’ proliferation and promoted their apoptosis in vitro. In summary, these findings indicate that 91H may be a novel biomarker for risk prognostication and also provide a clue to the molecular etiology of osteosarcoma. PMID:27555785

  2. Hydrogel-PLGA delivery system prolongs 2-methoxyestradiol-mediated anti-tumor effects in osteosarcoma cells.

    PubMed

    Maran, Avudaiappan; Dadsetan, Mahrokh; Buenz, Colleen M; Shogren, Kristen L; Lu, Lichun; Yaszemski, Michael J

    2013-09-01

    Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma. PMID:23355512

  3. MicroRNA-409-3p inhibits osteosarcoma cell migration and invasion by targeting catenin-δ1.

    PubMed

    Wu, Shifeng; Du, Xinjie; Wu, Manwu; Du, Hechun; Shi, Xiaoliang; Zhang, Tao

    2016-06-10

    Osteosarcoma is the most common primary bone cancer which is associated with early metastatic potential and poor prognosis. However, the molecular mechanisms underlying osteosarcoma progression are not well characterized. Here, we investigated the role of miR-409-3p in osteosarcoma metastasis. Osteosarcoma tissue showed decreased expression of miR-409-3p compared to adjacent non-tumorous tissue. The expression level of miR-409-3p was negatively correlated with osteosarcoma metastasis. Overexpression of miR-409-3p in osteosarcoma cells (U2OS) inhibited cell migration and invasion. Bioinformatics analysis showed that catenin-δ1 (CTNND1, p120-catenin) is a direct target of miR-409-3p. Overexpression of miR-409-3p repressed the expression of catenin-δ1 in U2OS cells at both mRNA and protein levels. Meanwhile, miR-409-3p repressed the activity of luciferase reporter containing the 3'-untranslated region (3'UTR) of CTNND1 gene. Furthermore, expression of catenin-δ1 rescued the inhibitory effect of miR-409-3p on cell migration and invasion. Altogether, these results indicated that miR-409-3p targets catenin-δ1 to repress osteosarcoma metastasis. PMID:26992637

  4. BMI1 Is Expressed in Canine Osteosarcoma and Contributes to Cell Growth and Chemotherapy Resistance

    PubMed Central

    Gandour-Edwards, Regina; Withers, Sita S.; Holt, Roseline; Rebhun, Robert B.

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy. PMID:26110620

  5. Resveratrol inhibits canonical Wnt signaling in human MG-63 osteosarcoma cells.

    PubMed

    Zou, Yonggen; Yang, Jiexiang; Jiang, Dianming

    2015-11-01

    In the last 30 years, the 5-year-survival rate of patients with osteosarcoma has not improved as a result of the low prevalence and large tumor heterogeneity. Therefore, the development of novel drugs for the treatment of osteosarcoma is urgently required. The present study aimed to identify potential novel drugs for the treatment of osteosarcoma, thus used β‑catenin as a target and performed high content screening. In a total of 14 botanical extracts assessed, resveratrol markedly downregulated the expression of β‑catenin and significantly inhibited MG‑63 cell proliferation. CCK‑8 assay was used to confirm the anti‑osteosarcoma effect of resveratrol and flow cytometry and western blotting were performed to analyze the underlying mechanisms of the proapoptotic effects of resveratrol. β‑catenin is a vital member of the canonical Wnt signaling pathway and, therefore, the target genes of this pathway were further analyzed. The results of this analysis demonstrated that resveratrol suppressed the MG‑63 cells by inhibiting the canonical Wnt signaling pathway. PMID:26398440

  6. Inactivation of human osteosarcoma cells in vitro by {sup 211}At-TP-3 monoclonal antibody: Comparison with astatine-211 and external-beam X rays

    SciTech Connect

    Larsen, R.H. |; Bruland, O.S.; Hoff, P.; Alstad, J.; Lindmo, T.; Rofstad, E.K.

    1994-08-01

    The potential usefulness of {alpha}-particle radioimmunotherapy in the treatment of osteosarcoma was studied in vitro by using the monoclonal antibody TP-3 and cells of three human osteosarcoma cell lines (OHS, SAOS and KPDX) differing in antigen expression. Cell survival curves were established after treatment with (a) {sup 211}At-TP-3 of different specific activities, (b) {sup 211}At-labeled bovine serum albumin (BSA), (c) free {sup 211}At and (d) external-beam X rays. The three osteosarcoma cell lines showed similar survival curves, whether treated with external-beam X rays, {sup 211}At-BSA or free {sup 211}At. The D{sub o}`s were lower for free {sup 211}At than for {sup 211}At-BSA. The survival curves for {sup 211}At-TP-3 treatment, on the other hand, differed significantly among the cell lines, suggesting that sensitivity to {sup 211}At-TP-3 treatment was governed by cellular properties other than sensitivity to external-beam X rays. The cellular property most important for sensitivity to {sup 211}At-TP-3 treatment was the antigen expression. Cell inactivation after {sup 211}At-TP-3 treatment increased substantially with increasing specific activity of the {sup 211}At-TP-3. At high specific activities, the cytotoxic effect of {sup 211}At-TP-3 was significantly higher than that of {sup 211}At-BSA. In conclusion, {sup 211}At-TP-3 has the potential to give clinically favorable therapeutic ratios in the treatment of osteosarcoma. 39 refs., 5 figs., 2 tabs.

  7. Regulation of an H-ras-related transcript by parathyroid hormone in rat osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Scott, D. K.; Weaver, W. R.; Clohisy, J. C.; Brakenhoff, K. D.; Kahn, A. J.; Partridge, N. C.

    1992-01-01

    The rat osteosarcoma cell line UMR 106-01 is a commonly used model system for the study of osteoblast function. However, it also expresses a phenotype characteristic of transformed cells. To test whether the latter could be accounted for by aberrant oncogene expression, we probed Northern blots of UMR and other osteoblastic cells with a panel of oncogene probes. These blots, when probed with a cDNA specific for v-H-ras, revealed a 7.0-kilobase (kb) H-ras-related transcript (designated HRRT) in UMR 106-01 cells that was not expressed in other osteoblastic cells. Osteoblast-enriched calvarial cells expressed the typical 1.1-kb H-ras mRNA, which was absent in UMR cells. Additionally, Western blots of lysates of UMR cells documented the presence of three proteins immunologically related to H-rasp21. To determine whether HRRT represented a recombinant retrovirus product, Northern blots were probed with a cDNA specific for the highly conserved gag-pol region of Moloney murine leukemia virus. These blots showed parallel cross-reactivity with an apparently identical transcript of 7.0 kb. The 7.0-kb transcripts detected by both v-H-ras and gag-pol probes declined to the same extent after treatment with concentrations of PTH known to inhibit proliferation of these cells. PTH regulated the abundance of HRRT in a time- and dose-dependent manner, with greatest repression of the transcript after 8 h of treatment with 10(-8) M PTH. The decrease in HRRT could not be completely accounted for by changes in transcriptional activity, as determined by nuclear run-on assays.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Antibacterial Activity of Elephant Garlic and Its Effect against U2OS Human Osteosarcoma Cells

    PubMed Central

    Huang, Zehao; Ren, Jianwu

    2013-01-01

    Objective(s): The present study was designed to investigate the antibacterial function and pharmacological effect of elephant garlic (Allium ampeloprasum var. ampeloprasum) on U2OS human osteosarcoma cells. Materials and Methods: Seven kinds of bacteria were reconstituted, inoculated and tested in this research to evaluate elephant garlic antibacterial activity. By the means of FACS analysis, cell proliferation assay, confocal laser scanning microscopy and Transwell migration assays, the effect of elephant garlic against U2OS human osteosarcoma cells was unveiled. Rerults: The antimicrobial activity of elephant garlic was stronger than ampicillin when used against Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, Staphylococcus actinomycetes, and gray actinomycetes. Even at a very low concentration (12.5%), elephant garlic still had an antibacterial effect on common bacteria E. coli and S. aureus. The G0/G1 ratio of elephant garlic treated group cells increased while S phase decreased. Elephant garlic extract inhibited the growth of human osteosarcoma cells, U2OS, through preventing the transition from G1 phase to S phase. It reduced osteosarcoma cell, U2OS, invasion ability and significantly increased the proportion of apoptosis. It significantly affected the cytoskeleton generation. Conclusion: Elephant garlic exhibits antibacterial property and has an inhibitory effect on osteosarcoma cells (U2OS) proliferation and cell activity, suggesting the mechanism of its anticancer effects on U2OS human osteosarcoma cells. PMID:24379966

  9. Effect of Tolfenamic Acid on Canine Cancer Cell Proliferation, Specificity Protein (Sp) Transcription Factors, and Sp-Regulated Proteins in Canine Osteosarcoma, Mammary Carcinoma, and Melanoma Cells

    PubMed Central

    Wilson, H.; Chadalapaka, G.; Jutooru, I.; Sheppard, S.; Pfent, C.; Safe, S.

    2016-01-01

    Background Tolfenamic acid (TA) is an NSAID currently under investigation as an anticancer agent in humans. TA induces proteosome-dependent degradation of transcription factors Sp 1, 3, and 4. These proteins are known to be overexpressed in many human cancers. Hypothesis To evaluate the protein expression of Sps in canine tissue, and efficacy of TA against several canine tumor cell lines. Methods Six canine cell lines (2 osteosarcoma, 2 mammary carcinoma, 2 melanoma) were evaluated. Protein levels of Sp 1–4 and their downstream targets were evaluated using Western Blots. Cell survival and TUNEL assays were performed on cell lines, and Sp1 expression was evaluated on histologic samples from archived canine cases. Animals Six immortalized canine cancer cell lines derived from dogs were used. Archived tissue samples were also used. Results Sps were highly expressed in all 6 cell lines and variably expressed in histologic tissues. TA decreased expression of Sps 1–4 in all cell lines. All of the downstream targets of Sps were inhibited in the cell lines. Variable Sp1 expression was identified in all histologic samples examined. TA significantly inhibited cell survival in all cell lines in a dose dependant fashion. The number of cells undergoing apoptosis was significantly increased (P < .05) in all cell lines after exposure to TA in a dose-dependent fashion. Conclusions, and Clinical Importance Tolfenamic acid is a potential anticancer NSAID and further investigation is needed to determine its usefulness in a clinical setting. PMID:22536857

  10. A novel derivative of doxorubicin, AD198, inhibits canine transitional cell carcinoma and osteosarcoma cells in vitro

    PubMed Central

    Rathore, Kusum; Cekanova, Maria

    2015-01-01

    Doxorubicin (DOX) is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198) is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC) in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC) (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly) and three canine osteosarcoma (K9OSA) (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ) primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium) assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose) polymerase (PARP) was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest that AD198 might be considered as a new treatment option for K9TCC and K9OSA cell lines cancers in vivo. PMID:26451087

  11. High Expression of XRCC6 Promotes Human Osteosarcoma Cell Proliferation through the β-Catenin/Wnt Signaling Pathway and Is Associated with Poor Prognosis

    PubMed Central

    Zhu, Bin; Cheng, Dongdong; Li, Shijie; Zhou, Shumin; Yang, Qingcheng

    2016-01-01

    Increasing evidences show that XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) was upregulated and involved in tumor growth in several tumor types. However, the correlation of XRCC6 and human osteosarcoma (OS) is still unknown. This study was conducted with the aim to reveal the expression and biological function of XRCC6 in OS and elucidate the potential mechanism. The mRNA expression level of XRCC6 was measured in osteosarcoma cells and OS samples by quantitative transcription-PCR (qRT-PCR). The expression of XRCC6 protein was measured using Western blot and immunohistochemical staining in osteosarcoma cell lines and patient samples. Cell Counting Kit 8 (CCK8), colony-forming and cell cycle assays were used to test cell survival capacity. We found that XRCC6 was overexpressed in OS cells and OS samples compared with the adjacent non-tumorous samples. High expression of XRCC6 was correlated with clinical stage and tumor size in OS. Reduced expression of XRCC6 inhibits OS cell proliferation through G2/M phase arrest. Most importantly, further experiments demonstrated that XRCC6 might regulate OS growth through the β-catenin/Wnt signaling pathway. In conclusion, these findings indicate that XRCC6 exerts tumor-promoting effects for OS through β-catenin/Wnt signaling pathway. XRCC6 may serve as a novel therapeutic target for OS patients. PMID:27455247

  12. High Expression of XRCC6 Promotes Human Osteosarcoma Cell Proliferation through the β-Catenin/Wnt Signaling Pathway and Is Associated with Poor Prognosis.

    PubMed

    Zhu, Bin; Cheng, Dongdong; Li, Shijie; Zhou, Shumin; Yang, Qingcheng

    2016-01-01

    Increasing evidences show that XRCC6 (X-ray repair complementing defective repair in Chinese hamster cells 6) was upregulated and involved in tumor growth in several tumor types. However, the correlation of XRCC6 and human osteosarcoma (OS) is still unknown. This study was conducted with the aim to reveal the expression and biological function of XRCC6 in OS and elucidate the potential mechanism. The mRNA expression level of XRCC6 was measured in osteosarcoma cells and OS samples by quantitative transcription-PCR (qRT-PCR). The expression of XRCC6 protein was measured using Western blot and immunohistochemical staining in osteosarcoma cell lines and patient samples. Cell Counting Kit 8 (CCK8), colony-forming and cell cycle assays were used to test cell survival capacity. We found that XRCC6 was overexpressed in OS cells and OS samples compared with the adjacent non-tumorous samples. High expression of XRCC6 was correlated with clinical stage and tumor size in OS. Reduced expression of XRCC6 inhibits OS cell proliferation through G2/M phase arrest. Most importantly, further experiments demonstrated that XRCC6 might regulate OS growth through the β-catenin/Wnt signaling pathway. In conclusion, these findings indicate that XRCC6 exerts tumor-promoting effects for OS through β-catenin/Wnt signaling pathway. XRCC6 may serve as a novel therapeutic target for OS patients. PMID:27455247

  13. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation.

    PubMed

    Fan, Jingzhang; Yang, Xin; Bi, Zhenggang

    2015-02-01

    6-Gingerol, a major component of ginger, is demonstrated to possess a variety of pharmacological activities. Despite demonstration of its anti-cancer activity, the exact mechanism underlying the effects of 6-gingerol against sarcoma remains sketchy. In the present study, we investigated the anti-cancer effects of 6-gingerol on osteosarcoma cells. MTT assay was performed to determine cell viability. Phosphorylation and protein levels were determined by immunoblotting. Cell cycle was determined using flow cytometry. Quantitative polymerase chain reaction was employed to determine the changes in the messenger RNA (mRNA) expression of genes. Treatment with 6-gingerol resulted in a significant decrease in the viability of osteosarcoma cells in a dose-dependent fashion. In parallel, the number of cells arrested at the sub-G1 cell cycle phase was significantly increased. The results showed that 6-gingerol induced activation of caspase cascades and regulated cellular levels of Bcl2 and Bax. Moreover, 6-gingerol activated AMP-activated protein kinase (AMPK) signaling associated with the apoptotic pathways. Our findings suggest that 6-gingerol suppresses the growth of osteosarcoma cells. The anti-cancer activity is attributed to the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling incorporating with 6-gingerol-induced AMPK activation. The study identifies a new molecular mechanism by which AMPK is involved in anti-cancer effects of 6-gingerol. PMID:25330949

  14. Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells.

    PubMed Central

    Recklies, A D; White, C; Melching, L; Roughley, P J

    2001-01-01

    Recently three isoforms of hyaluronan synthase (HAS), the enzyme responsible for hyaluronate/hyaluronan (HA) biosynthesis, have been cloned, allowing us to study their expression pattern. Our objective was to determine which of the HAS isoenzymes were expressed in human articular chondrocytes, synovial fibroblasts and osteosarcoma cells, whether their expression could be modulated by growth factors (insulin-like growth factor-1, basic fibroblast growth factor and transforming growth factor (TGF-beta1) and cytokines [interleukin 1beta1 (IL-1beta)], and whether changes in the rate of HA synthesis by the cells correlated with changes in mRNA levels for one or more of the HAS isoforms. All three HAS isoforms were found to be expressed in the cultured cells analysed in this study, although the relative proportions varied for each cell type. HAS2 mRNA was usually predominant in chondrocytes, whereas synovial cells contained increased amounts of HAS1. HAS3 was always the least abundant message. The rapidly growing osteosarcoma cells contained almost exclusively HAS2 message. HAS usage in uncultured cartilage and synovial tissues was similar to that in the cultured cells, with HAS2 message being the predominant species in cartilage and HAS1 usually being the predominant species in synovium. HA synthesis was stimulated by the growth factors, but the extent of the response was cell-type specific. Synovial cells responded particularly well to IL-1beta, and showed a unique synergistic response when IL-1beta was used in combination with TGF-beta1. This response was much reduced in articular chondrocytes and absent in the osteosarcoma cells. Analysis of changes in HAS message levels indicated that there was often no correlation with the changes in HA secretion following exposure to growth factors. Although HAS-1 mRNA was increased in synovial cells after exposure to TGF-beta1/IL-1beta, the magnitude of the change was far less than the effect on HA synthesis. Our data thus

  15. Minnelide reduces tumor burden in preclinical models of osteosarcoma

    PubMed Central

    Banerjee, Sulagna; Thayanithy, Venugopal; Sangwan, Veena; Mackenzie, Tiffany N.; Saluja, Ashok K.; Subramanian, Subbaya

    2015-01-01

    Osteosarcoma is the most common bone cancer in children and adolescents with a five-year survival rate of about 70%. In this study, we have evaluated the preclinical therapeutic efficacy of the novel synthetic drug, Minnelide, a prodrug of triptolide on osteosarcoma. Triptolide was effective in significantly inducing apoptosis in all osteosarcoma cell lines tested but had no significant effect on the human osteoblast cells. Notably, Minnelide treatment significantly reduced tumor burden and lung metastasis in the orthotopic and lung colonization models. Triptolide/Minnelide effectively downregulated the levels of pro-survival proteins such as heat shock proteins, cMYC, survivin and targets NF-κB pathway. PMID:23499892

  16. Minnelide reduces tumor burden in preclinical models of osteosarcoma.

    PubMed

    Banerjee, Sulagna; Thayanithy, Venugopal; Sangwan, Veena; Mackenzie, Tiffany N; Saluja, Ashok K; Subramanian, Subbaya

    2013-07-28

    Osteosarcoma is the most common bone cancer in children and adolescents with a 5-year survival rate of about 70%. In this study, we have evaluated the preclinical therapeutic efficacy of the novel synthetic drug, Minnelide, a prodrug of triptolide on osteosarcoma. Triptolide was effective in significantly inducing apoptosis in all osteosarcoma cell lines tested but had no significant effect on the human osteoblast cells. Notably, Minnelide treatment significantly reduced tumor burden and lung metastasis in the orthotopic and lung colonization models. Triptolide/Minnelide effectively downregulated the levels of pro-survival proteins such as heat shock proteins, cMYC, survivin and targets the NF-κB pathway. PMID:23499892

  17. Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma

    PubMed Central

    Rastegar, Farbod; Gao, Jian-Li; Shenaq, Deana; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Jiang, Wei; Wagner, Eric R.; Huang, Enyi; Gao, Yanhong; Shen, Jikun; Yang, Ke; He, Bai-Cheng; Chen, Liang; Zuo, Guo-Wei; Luo, Jinyong; Luo, Xiaoji; Bi, Yang; Liu, Xing; Li, Mi; Hu, Ning; Wang, Linyuan; Luther, Gaurav; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan

    2010-01-01

    Background Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. Methodology/Principal Findings Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. Conclusions/Significance Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially

  18. siRNA targeting TCTP suppresses osteosarcoma cell growth and induces apoptosis in vitro and in vivo.

    PubMed

    Shen, Jian-Hui; Qu, Cheng-Bo; Chu, Hai-Kun; Cui, Ming-Yu; Wang, Yu-Lan; Sun, Yuan-Xin; Song, Yin-Dong; Li, Gang; Shi, Feng-Jun

    2016-01-01

    Osteosarcoma (OS) remains the most frequent primary malignant bone tumor in adolescents. However, the molecular cause of the disease is poorly elucidated. In the present study, we primarily found that translationally controlled tumor protein (TCTP) was overexpressed in human OS tissues and cell lines. To investigate the function of TCTP in OS cell growth, an RNA interference lentivirus system was employed to deplete TCTP expression in Saos-2 and U2OS cell lines. Specific knockdown of TCTP significantly impaired cell proliferation and colony-formation capacity in both OS cell lines. Moreover, depletion of TCTP caused a significant accumulation of OS cells in the S phase and eventually induced cell apoptosis. Expression levels of the G2/M phase regulators cyclin B1 and Cdc25A were decreased, and apoptotic markers Bad and caspase-3 were increased in both OS cell lines after depletion of TCTP. Furthermore, depletion of TCTP potently inhibited the growth of xenografts in nude mice. Our results indicate that inhibition of TCTP expression exerts potential antitumor activity and may be a novel therapeutic approach in human OS. PMID:25522670

  19. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  20. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway.

    PubMed

    Hao, Liang; Liao, Qi; Tang, Qiang; Deng, Huan; Chen, Lu

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cells growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. PMID:26797271

  1. Rat Osteosarcoma Cells as a Therapeutic Target Model for Osteoregeneration via Sclerostin Knockdown.

    PubMed

    Sedaghati, Bita; Jahroomishirazi, Roomina; Starke, Annett; Hacker, Michael C; Schulz-Siegmund, Michaela

    2016-01-01

    There are various conceptually different strategies to improve bone regeneration and to treat osteoporosis, each with distinct inherent advantages and disadvantages. The use of RNA interference strategies to suppress the biological action of catabolic factors or antagonists of osteogenic proteins is promising, and such strategies can be applied locally. They are comparably inexpensive and do not suffer from stability problems as protein-based approaches. In this study, we focus on sclerostin, encoded by the SOST gene, a key regulator of bone formation and remodeling. Sclerostin is expressed by mature osteocytes but also by late osteogenically differentiated cells. Thus, it is difficult and requires long-term cultures to investigate the effects of SOST silencing on the expression of osteogenic markers using primary cells. We, therefore, selected a rat osteosarcoma cell line, UMR-106, that has been shown to express SOST and secrete sclerostin in a comparable fashion as late osteoblasts and osteocytes. We investigated the effects of differentiating supplements on SOST expression and sclerostin secretion in UMR-106 cells and found that addition of 100 ng/ml of bone morphogenetic protein (BMP)-2 strongly induced sclerostin secretion, whereas dexamethasone inhibited secretion. Effects of silencing SOST in UMR-106 cells cultured in various differentiation media including BMP-2 and/or dexamethasone were determined next with the aim to find promising test conditions for a readout system for the evaluation of future small interfering RNA release formulations for local induction of bone formation. We found a direct correlation between attenuated SOST expression and an increase in the osteogenic potential of UMR-106 cells. The combination of SOST silencing and BMP-2 could synergistically improve osteogenic factors. A lowered proliferation rate in silenced groups may indicate a faster switch to differentiation. PMID:27233518

  2. Homotypic RANK signaling differentially regulates proliferation, motility and cell survival in osteosarcoma and mammary epithelial cells.

    PubMed

    Beristain, Alexander G; Narala, Swami R; Di Grappa, Marco A; Khokha, Rama

    2012-02-15

    RANKL (receptor activator of NF-κB ligand) is a crucial cytokine for regulating diverse biological systems such as innate immunity, bone homeostasis and mammary gland differentiation, operating through activation of its cognate receptor RANK. In these normal physiological processes, RANKL signals through paracrine and/or heterotypic mechanisms where its expression and function is tightly controlled. Numerous pathologies involve RANKL deregulation, such as bone loss, inflammatory diseases and cancer, and aberrant RANK expression has been reported in bone cancer. Here, we investigated the significance of RANK in tumor cells with a particular emphasis on homotypic signaling. We selected RANK-positive mouse osteosarcoma and RANK-negative preosteoblastic MC3T3-E1 cells and subjected them to loss- and gain-of-RANK function analyses. By examining a spectrum of tumorigenic properties, we demonstrate that RANK homotypic signaling has a negligible effect on cell proliferation, but promotes cell motility and anchorage-independent growth of osteosarcoma cells and preosteoblasts. By contrast, establishment of RANK signaling in non-tumorigenic mammary epithelial NMuMG cells promotes their proliferation and anchorage-independent growth, but not motility. Furthermore, RANK activation initiates multiple signaling pathways beyond its canonical target, NF-κB. Among these, biochemical inhibition reveals that Erk1/2 is dominant and crucial for the promotion of anchorage-independent survival and invasion of osteoblastic cells, as well as the proliferation of mammary epithelial cells. Thus, RANK signaling functionally contributes to key tumorigenic properties through a cell-autonomous homotypic mechanism. These data also identify the likely inherent differences between epithelial and mesenchymal cell responsiveness to RANK activation. PMID:22421365

  3. Anticancer Effects of Geopropolis Produced by Stingless Bees on Canine Osteosarcoma Cells In Vitro

    PubMed Central

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. PMID:23690851

  4. Anticancer effects of geopropolis produced by stingless bees on canine osteosarcoma cells in vitro.

    PubMed

    Cinegaglia, Naiara Costa; Bersano, Paulo Ricardo Oliveira; Araújo, Maria José Abigail Mendes; Búfalo, Michelle Cristiane; Sforcin, José Maurício

    2013-01-01

    Geopropolis is produced by indigenous stingless bees from the resinous material of plants, adding soil or clay. Its biological properties have not been investigated, such as propolis, and herein its cytotoxic action on canine osteosarcoma (OSA) cells was evaluated. OSA is a primary bone neoplasm diagnosed in dogs being an excellent model in vivo to study human OSA. spOS-2 primary cultures were isolated from the tumor of a dog with osteosarcoma and incubated with geopropolis, 70% ethanol (geopropolis solvent), and carboplatin after 6, 24, 48, and 72 hours. Cell viability was analyzed by the crystal violet method. Geopropolis was efficient against canine OSA cells in a dose- and time-dependent way, leading to a distinct morphology compared to control. Geopropolis cytotoxic action was exclusively due to its constituents since 70% ethanol (its solvent) had no effect on cell viability. Carboplatin had no effect on OSA cells. Geopropolis exerted a cytotoxic effect on canine osteosarcoma, and its introduction as a possible therapeutic agent in vivo could be investigated, providing a new contribution to OSA treatment. PMID:23690851

  5. Inhibition of autophagy and enhancement of endoplasmic reticulum stress increase sensitivity of osteosarcoma Saos-2 cells to cannabinoid receptor agonist WIN55,212-2.

    PubMed

    Zhang, Guodong; Bi, Haiyong; Gao, Ji; Lu, Xing; Zheng, Yanping

    2016-07-01

    WIN55,212-2, a cannabinoid receptor agonist, can activate cannabinoid receptors, which has proven anti-tumour effects in several tumour types. Studies showed that WIN can inhibit tumour cell proliferation and induce apoptosis in diverse cancers. However, the role and mechanism of WIN in osteosarcoma are still unclear. In this study, we examined the effect of WIN55,212-2 on osteosarcoma cell line Saos-2 in terms of cell viability and apoptosis. Meanwhile, we further explored the role of endoplasmic reticulum stress and autophagy in apoptosis induced by WIN55,212-2. Our results showed that the cell proliferation of Saos-2 was inhibited by WIN55,212-2 in a dose-dependent and time-dependent manner. WIN55,212-2-induced Saos-2 apoptosis through mitochondrial apoptosis pathway. Meanwhile, WIN55,212-2 can induce endoplasmic reticulum stress and autophagy in Saos-2 cells. Inhibition of autophagy and enhancement of endoplasmic reticulum stress increased apoptosis induced by WIN55,212-2 in Saos-2 cells. These findings indicated that WIN55,212-2 in combination with autophagic inhibitor or endoplasmic reticulum stress activator may shed new light on osteosarcoma treatment. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27309350

  6. Serum starvation-induced voltage-gated potassium channel Kv7.5 expression and its regulation by Sp1 in canine osteosarcoma cells.

    PubMed

    Lee, Bo Hyung; Ryu, Pan Dong; Lee, So Yeong

    2014-01-01

    The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv) channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy. PMID:24434641

  7. Serum Starvation-Induced Voltage-Gated Potassium Channel Kv7.5 Expression and Its Regulation by Sp1 in Canine Osteosarcoma Cells

    PubMed Central

    Lee, Bo Hyung; Ryu, Pan Dong; Lee, So Yeong

    2014-01-01

    The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv) channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy. PMID:24434641

  8. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells

    PubMed Central

    Chou, Pei-Yu; Wang, Shih-Wei; Chen, Hsien-Te; Lin, Yu-Min; Chiang, I-Ping; Chang, Tzu-Ming; Hsu, Shao-Keh; Chou, Ming-Chih; Tang, Chih-Hsin; Fong, Yi-Chin

    2016-01-01

    Osteosarcoma is the most frequent bone tumor, characterized by a high metastatic potential. However, the crosstalk between chemokine (C-C motif) ligand 3 (CCL3), which facilitates tumor progression and metastasis. Vascular endothelial growth factor-A (VEGF-A), an angiogenesis inducer and a highly specific mitogen for endothelial cells, has not been well explored in human osteosarcoma. Here we demonstrate the correlation of CCL3 and VEGF-A expressions, quantified by immunohistochemistry, with the tumor stage of human osteosarcoma tissues. Furthermore, CCL3 promotes VEGF-A expression in human osteosarcoma cells that subsequently induces human endothelial progenitor cell (EPC) migration and tube formation. Phosphorylation of JNK, ERK, and p38 was found after CCL3 stimulation. In addition, JNK, ERK, and p38 inhibitors also abolished CCL3-induced VEGF-A expression and angiogenesis. We noted that CCL3 reduces the expression of miR-374b and miR-374b mimic by reversing CCL3-promoted VEGF-A expression and angiogenesis in vitro and in vivo. This study shows that CCL3 promotes VEGF-A expression and angiogenesis in human osteosarcoma cells by down-regulating miR-374b expression via JNK, ERK, and p38 signaling pathways. Thus, CCL3 may be a new molecular therapeutic target in osteosarcoma angiogenesis and metastasis. PMID:26713602

  9. Secondary osteosarcoma developing 10 years after chemoradiotherapy for non-small-cell lung cancer.

    PubMed

    Yagishita, Shigehiro; Horinouchi, Hidehito; Yorozu, Takashi; Kitazono, Satoru; Mizugaki, Hidenori; Kanda, Shintaro; Fujiwara, Yutaka; Nokihara, Hiroshi; Yamamoto, Noboru; Mori, Taisuke; Tsuta, Koji; Sumi, Minako; Tamura, Tomohide

    2014-02-01

    A 53-year-old female patient was admitted with pain and a progressively enlarging mass in the right upper chest. Chest computed tomography revealed a mass lesion in the region of the right upper ribs. Ten years prior to this admission, the patient had undergone right lobectomy for lung adenocarcinoma. One year after the surgery, follow-up computed tomography had revealed tumor recurrence in the mediastinal and supraclavicular lymph nodes, and the patient had been treated by chemoradiotherapy. Thereafter, regular follow-up had revealed no evidence of recurrence of the non-small-cell lung cancer. Histopathological findings revealed proliferation of spindle-shaped malignant tumor cells in a background of osteoid, consistent with the diagnosis of osteosarcoma. The location of the tumor was consistent with the radiation field. Based on the clinicopathological findings, the patient was diagnosed as having secondary osteosarcoma occurring as a result of the chemoradiotherapy administered previously for the recurrent non-small-cell lung cancer. Unfortunately, the patient died of rapid progression of the osteosarcoma within a week of admission to the hospital. The autopsy revealed contiguous invasion by the tumor of the heart, with massive thrombus formation. The peripheral pulmonary arteries were diffusely occluded by metastatic tumors. Our case serves to highlight the risk of development of secondary sarcoma as a life-threatening late complication after chemoradiotherapy for locally advanced non-small-cell lung cancer, even after complete cure of the primary tumor. PMID:24338556

  10. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    SciTech Connect

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-04-18

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening.

  11. Characterization of mouse model-derived osteosarcoma (OS) cells in vitro and in vivo.

    PubMed

    Uluçkan, Özge; Bakiri, Latifa; Wagner, Erwin F

    2015-01-01

    Osteosarcoma (OS) is the most common primary tumor of bone with a high incidence in children. Treatment options for OS are limited, and once metastasized, the prognosis is very poor. Genetically engineered mouse models (GEMMs) are valuable tools to understand the mechanisms of tumorigenesis and to test possible therapies. In this chapter, we summarize the methods related to the isolation, characterization, and transplantation of OS cells obtained from GEMMs. PMID:25636475

  12. Characterization of the metastatic phenotype of a panel of established osteosarcoma cells

    PubMed Central

    Ren, Ling; Mendoza, Arnulfo; Zhu, Jack; Briggs, Joseph W.; Halsey, Charles; Hong, Ellen S.; Burkett, Sandra S.; Morrow, James J.; Lizardo, Michael M.; Osborne, Tanasa; Li, Samuel Q.; Luu, Hue H.; Meltzer, Paul; Khanna, Chand

    2015-01-01

    Osteosarcoma (OS) is the most common bone tumor in pediatric patients. Metastasis is a major cause of mortality and morbidity. The rarity of this disease coupled with the challenges of drug development for metastatic cancers have slowed the delivery of improvements in long-term outcomes for these patients. In this study, we collected 18 OS cell lines, confirmed their expression of bone markers and complex karyotypes, and characterized their in vivo tumorgenicity and metastatic potential. Since prior reports included conflicting descriptions of the metastatic and in vivo phenotypes of these models, there was a need for a comparative assessment of metastatic phenotypes using identical procedures in the hands of a single investigative group. We expect that this single characterization will accelerate the study of this metastatic cancer. Using these models we evaluated the expression of six previously reported metastasis-related OS genes. Ezrin was the only gene consistently differentially expressed in all the pairs of high/low metatstatic OS cells. We then used a subtractive gene expression approach of the high and low human metastatic cells to identify novel genes that may be involved in OS metastasis. PHLDA1 (pleckstrin homology-like domain, family A) was identified as one of the genes more highly expressed in the high metastatic compared to low metastatic cells. Knocking down PHLDA1 with siRNA or shRNA resulted in down regulation of the activities of MAPKs (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (MAPKs). Reducing the expression of PHLDA1 also delayed OS metastasis progression in mouse xenograft models. PMID:26320182

  13. Characterization of the metastatic phenotype of a panel of established osteosarcoma cells.

    PubMed

    Ren, Ling; Mendoza, Arnulfo; Zhu, Jack; Briggs, Joseph W; Halsey, Charles; Hong, Ellen S; Burkett, Sandra S; Morrow, James; Lizardo, Michael M; Osborne, Tanasa; Li, Samuel Q; Luu, Hue H; Meltzer, Paul; Khanna, Chand

    2015-10-01

    Osteosarcoma (OS) is the most common bone tumor in pediatric patients. Metastasis is a major cause of mortality and morbidity. The rarity of this disease coupled with the challenges of drug development for metastatic cancers have slowed the delivery of improvements in long-term outcomes for these patients. In this study, we collected 18 OS cell lines, confirmed their expression of bone markers and complex karyotypes, and characterized their in vivo tumorgenicity and metastatic potential. Since prior reports included conflicting descriptions of the metastatic and in vivo phenotypes of these models, there was a need for a comparative assessment of metastatic phenotypes using identical procedures in the hands of a single investigative group. We expect that this single characterization will accelerate the study of this metastatic cancer. Using these models we evaluated the expression of six previously reported metastasis-related OS genes. Ezrin was the only gene consistently differentially expressed in all the pairs of high/low metastatic OS cells. We then used a subtractive gene expression approach of the high and low human metastatic cells to identify novel genes that may be involved in OS metastasis. PHLDA1 (pleckstrin homology-like domain, family A) was identified as one of the genes more highly expressed in the high metastatic compared to low metastatic cells. Knocking down PHLDA1 with siRNA or shRNA resulted in down regulation of the activities of MAPKs (ERK1/2), c-Jun N-terminal kinases (JNK), and p38 mitogen-activated protein kinases (MAPKs). Reducing the expression of PHLDA1 also delayed OS metastasis progression in mouse xenograft models. PMID:26320182

  14. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma

    PubMed Central

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-01-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  15. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma.

    PubMed

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-09-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma. PMID:27573585

  16. Matrine-induced autophagy counteracts cell apoptosis via the ERK signaling pathway in osteosarcoma cells

    PubMed Central

    Ma, Kun; Huang, Man-Yu; Guo, Yan-Xing; Hu, Guo-Qiang

    2016-01-01

    The aim of the present study was to observe whether autophagy was induced by matrine, and to investigate the role of autophagy in the antitumor effects of matrine on human osteosarcoma MG-63 cells and its underlying mechanism. MG-63 cells were cultured in vitro in matrine at a concentration of 0.6, 0.8, 1.0 and 1.2 g/l for 0, 24, 48 and 72 h. A MTT assay was used to evaluate the proliferation inhibition of MG-63 cells by matrine, and Annexin V-fluorescein isothiocyanate/propidum iodide (PI) staining flow cytometry was used to analyze the apoptotic rate. Alterations in cell morphology was assessed by PI and Hoechst 33258 cell staining. Matrine-induced autophagy in MG-63 cells was confirmed by green fluorescent protein-microtubule-associated protein 1-light chain 3 (LC3) b transfection and fluorescence microscopy, and cell viability was investigated by MTT assay following inhibition of autophagy by chloroquine (CQ) pretreatment. The expression level of apoptosis-associated proteins B-cell lymphoma-2 (Bcl-2) and Bcl-2-like protein 4 (Bax), autophagy-associated LC3II protein, and the activation of extracellular signal-regulated kinase (ERK) was detected by western blotting. Cell proliferation was clearly inhibited by matrine in a dose- and time-dependent manner. Flow cytometry and Hoechst 33258/PI staining verified that matrine induced apoptosis in a time-dependent manner when cells were exposed to 1.1 g/l matrine; fluorescence microscopy demonstrated that green fluorescence puncta were enhanced with prolonged time of matrine incubation. Western blotting confirmed that the expression of pro-apoptosis-associated proteins Bax and LC3II, and phosphorylated-ERK were upregulated, and anti-apoptosis protein Bcl-2 was downregulated in a time-dependent manner following treatment with matrine. The cell viability of the matrine + CQ group was increased compared with the matrine group alone, which revealed that matrine treatment alone induced protective autophagy in MG-63 cells

  17. Molecular mechanisms of Polyphyllin I-induced apoptosis and reversal of the epithelial-mesenchymal transition in human osteosarcoma cells.

    PubMed

    Chang, Junli; Wang, Hongshen; Wang, Xianyang; Zhao, Yongjian; Zhao, Dongfeng; Wang, Chenglong; Li, Yimian; Yang, Zhilie; Lu, Sheng; Zeng, Qinghua; Zimmerman, Jacquelyn; Shi, Qi; Wang, Yongjun; Yang, Yanping

    2015-07-21

    Osteosarcoma is a most common highly malignant bone tumor in children and adolescents. Polyphyllin I (PPI) is an ethanol extraction from Paris polyphylla Smith var.yunnanensis (Franch.) Hand.-Mazz, which belongs to antipyretic-detoxicate family and has been used as a natural medicine in the treatment of infectious disease and cancer in China for centuries. The proteasome activity inhibitory and anti-osteosarcoma effects of PPI have not been known. Here we found PPI exhibited a selective inhibitory effect on proteasomal chymotrypsin (CT)-like activity, both in purified human proteasome and in cultured osteosarcoma cellular proteasome, and caused an accumulation of ubiquitinated proteins. PPI also inhibited viability, proliferation, migration, and invasion of MG-63, Saos-2, and U-2 OS osteosarcoma cells and resulted in S phase arrest and apoptosis. Furthermore, we explored the molecular targets involved. Exposure of osteosarcoma cells to PPI caused an inactivation of the intrinsic nuclear factor κB (NF-κB) and activation of unfolded protein response (UPR)/endoplasmic reticulum (ER) stress signaling cascade in osteosarcoma cells, followed by down-regulation of anti-apoptotic proteins, with up-regulation of pro-apoptotic proteins. We also demonstrated down-regulation of c-Myc, Cyclin B1, Cyclin D1, and CDK1, which are involved in the cell cycle and growth. Finally, we identified down-regulation of Vimentin, Snail, Slug, and up-regulation of E-cadherin, which are integral proteins involved in epithelial-mesenchymal transition (EMT). Taken together, our data provide insights into the mechanism underlying the anticancer activity of PPI in human osteosarcoma cells. PMID:25978954

  18. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    PubMed

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  19. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures

    PubMed Central

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-01-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49fhi/CD90lo cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49fhi/CD90lo cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. PMID:24802970

  20. Retinal Targets ALDH Positive Cancer Stem Cell and Alters the Phenotype of Highly Metastatic Osteosarcoma Cells

    PubMed Central

    Mu, Xiaodong; Patel, Stuti; Mektepbayeva, Damel; Mahjoub, Adel; Huard, Johnny; Weiss, Kurt

    2015-01-01

    Aldehyde dehydrogenase (ALDH) is a cancer stem cell marker. Retinoic acid has antitumor properties, including the induction of apoptosis and inhibition of proliferation. Retinal, the precursor of retinoic acid, can be oxidized to retinoic acid by dehydrogenases, including ALDH. We hypothesized that retinal could potentially be transformed to retinoic acid with higher efficiency by cancer stem cells, due to the higher ALDH activity. We previously observed that ALDH activity is greater in highly metastatic K7M2 osteosarcoma (OS) cells than in nonmetastatic K12 OS cells. We also demonstrated that ALDH activity correlates with clinical metastases in bone sarcoma patients, suggesting that ALDH may be a therapeutic target specific to cells with high metastatic potential. Our current results demonstrated that retinal preferentially affected the phenotypes of ALDH-high K7M2 cells in contrast to ALDH-low K12 cells, which could be mediated by the more efficient transformation of retinal to retinoic acid by ALDH in K7M2 cells. Retinal treatment of highly metastatic K7M2 cells decreased their proliferation, invasion capacity, and resistance to oxidative stress. Retinal altered the expression of metastasis-related genes. These observations indicate that retinal may be used to specifically target metastatic cancer stem cells in OS. PMID:26819566

  1. On the measurement of human osteosarcoma cell elastic modulus using shear assay experiments.

    PubMed

    Cao, Yifang; Bly, Randy; Moore, Will; Gao, Zhan; Cuitino, Alberto M; Soboyejo, Wole

    2007-01-01

    This paper presents a method for determining the elastic modulus of human osteosarcoma (HOS) cells. The method involves a combination of shear assay experiments and finite element analysis. Following in-situ observations of cell deformation during shear assay experiments, a digital image correlation (DIC) technique was used to determine the local displacement and strain fields. Finite element analysis was then used to determine the Young's moduli of HOS cells. This involved a match of the maximum shear stresses estimated from the experimental shear assay measurements and those calculated from finite element simulations. PMID:17200819

  2. Model for Osteosarcoma-9 as a potent factor in cell survival and resistance to apoptosis

    NASA Astrophysics Data System (ADS)

    Vourvouhaki, Ekaterini; Carvalho, Carla; Aguiar, Paulo

    2007-07-01

    In this paper we use a simple model to explore the function of the gene Osteosarcoma-9 (OS-9). We are particularly interested in understanding the role of this gene as a potent anti-apoptotic factor. The theoretical description is constrained by experimental data from induction of apoptosis in cells where OS-9 is overexpressed. The data available suggest that OS-9 promotes cell viability and confers resistance to apoptosis, potentially implicating OS-9 in the survival of cancer cells. Three different apoptosis-inducing mechanisms were tested and are modeled here. A more complex and realistic model is also discussed.

  3. Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.

    1994-01-01

    The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.

  4. Telangiectatic osteosarcoma--a case report.

    PubMed Central

    Suh, Y. L.; Chi, J. G.

    1989-01-01

    Telangiectatic osteosarcoma is a rare and special variant of osteogenic sarcoma with distinct radiologic, gross and microscopic features. This tumor is predominantly lytic, destructive tumor without sclerosis on roentgenogram, and is soft and cystic on gross examination. Histologically aneurysmally dilated spaces lined or traversed by stromal cells producing osteoid are noted. This report concerns a case of telangiectatic osteosarcoma occurring in a 7 years old boy. He presented with pathologic fracture of the right distal tibia, followed by a purely lytic lesion on X-ray examination. This lesion recurred five times during a span of one year. Microscopic features of the biopsy specimen was difficult to differentiate from aneurysmal bone cyst because of prominant blood-filled cyst formation. It was finally identified as osteosarcoma from the below-knee amputation specimen through the close examination for anaplastic osteoid-producing stromal cells in the septa that separate the blood cysts. PMID:2597366

  5. Telangiectatic osteosarcoma--a case report.

    PubMed

    Suh, Y L; Chi, J G

    1989-06-01

    Telangiectatic osteosarcoma is a rare and special variant of osteogenic sarcoma with distinct radiologic, gross and microscopic features. This tumor is predominantly lytic, destructive tumor without sclerosis on roentgenogram, and is soft and cystic on gross examination. Histologically aneurysmally dilated spaces lined or traversed by stromal cells producing osteoid are noted. This report concerns a case of telangiectatic osteosarcoma occurring in a 7 years old boy. He presented with pathologic fracture of the right distal tibia, followed by a purely lytic lesion on X-ray examination. This lesion recurred five times during a span of one year. Microscopic features of the biopsy specimen was difficult to differentiate from aneurysmal bone cyst because of prominant blood-filled cyst formation. It was finally identified as osteosarcoma from the below-knee amputation specimen through the close examination for anaplastic osteoid-producing stromal cells in the septa that separate the blood cysts. PMID:2597366

  6. miRNA-449a is downregulated in osteosarcoma and promotes cell apoptosis by targeting BCL2.

    PubMed

    Chen, Jie; Zhou, Jinsong; Chen, Xin; Yang, Baohui; Wang, Dong; Yang, Pinglin; He, Xijing; Li, Haopeng

    2015-09-01

    Accumulating evidence reveals that miR-449a is expressed at a low level in several tumors and cancer cell lines, and acts as a tumor suppressor in several cancers. However, its role in osteosarcoma (OS) is not well understood. In the present study, we found that miR-449a was significantly downregulated in both OS tissues and cell lines. Furthermore, low expression level of miR-449a was correlated with advanced tumor stage, metastasis, and predicted a poor overall survival in OS patients. Additionally, restoration of miR-449a in OS cell lines U2OS and Saos-2 reduced cell viability, promoted cell apoptosis in vitro, and suppressed tumorigenicity in vivo. Moreover, BCL2, an antiapoptotic molecule, was identified to be a direct target of miR-449a, and the proapoptotic function of miR-449a was mainly through targeting BCL2 expression. Taken together, our results demonstrated a tumor-suppressive role of miR-449a in OS progression and suggested a potential therapeutic target for OS. PMID:26002578

  7. IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-κB signaling.

    PubMed

    Lu, Jinchang; Song, Guohui; Tang, Qinglian; Zou, Changye; Han, Feng; Zhao, Zhiqiang; Yong, Bicheng; Yin, Junqiang; Xu, Huaiyuan; Xie, Xianbiao; Kang, Tiebang; Lam, YingLee; Yang, Huiling; Shen, Jingnan; Wang, Jin

    2015-05-01

    Osteosarcoma is a common malignant bone tumor with a propensity to metastasize to the lungs. Epigenetic abnormalities have been demonstrated to underlie osteosarcoma development; however, the epigenetic mechanisms that are involved in metastasis are not yet clear. Here, we analyzed 2 syngeneic primary human osteosarcoma cell lines that exhibit disparate metastatic potential for differences in epigenetic modifications and expression. Using methylated DNA immunoprecipitation (MeDIP) and microarray expression analysis to screen for metastasis-associated genes, we identified Iroquois homeobox 1 (IRX1). In both human osteosarcoma cell lines and clinical osteosarcoma tissues, IRX1 overexpression was strongly associated with hypomethylation of its own promoter. Furthermore, experimental modulation of IRX1 in osteosarcoma cell lines profoundly altered metastatic activity, including migration, invasion, and resistance to anoikis in vitro, and influenced lung metastasis in murine models. These prometastatic effects of IRX1 were mediated by upregulation of CXCL14/NF-κB signaling. In serum from osteosarcoma patients, the presence of IRX1 hypomethylation in circulating tumor DNA reduced lung metastasis-free survival. Together, these results identify IRX1 as a prometastatic gene, implicate IRX1 hypomethylation as a potential molecular marker for lung metastasis, and suggest that epigenetic reversion of IRX1 activation may be beneficial for controlling osteosarcoma metastasis. PMID:25822025

  8. VEGF Silencing Inhibits Human Osteosarcoma Angiogenesis and Promotes Cell Apoptosis via PI3K/AKT Signaling Pathway.

    PubMed

    Zhao, Jian; Zhang, Zi-Ru; Zhao, Na; Ma, Bao-An; Fan, Qing-Yu

    2015-11-01

    Vascular endothelial growth factor (VEGF) is one of the most effective angiogenic factors that promote generation of tumor vasculature. VEGF is usually up-regulated in multiple cancers including osteosarcoma and glioma. To further explore the potential molecular mechanism that inhibits tumor growth induced by interference of VEGF expression, we constructed a Lv-shVEGF vector and assessed the efficiency of VEGF silencing and its influence in U2OS cells. The data demonstrate that Lv-shVEGF has high inhibition efficiency on VEGF expression, which inhibits proliferation and promotes apoptosis of U2OS cells in vitro. Our results also indicate that inhibition of VEGF expression suppresses osteosarcoma tumor growth in vivo and reduces osteosarcoma angiogenesis. We also found that the activations of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) were considerably reduced after osteosarcoma cells were treated with Lv-shVEGF. Taken together, our data demonstrate that VEGF silencing suppresses cell proliferation, promotes cell apoptosis, and reduces osteosarcoma angiogenesis through inactivation of PI3K/AKT signaling pathway. PMID:27352347

  9. Silencing of Ether à go-go 1 by shRNA inhibits osteosarcoma growth and cell cycle progression.

    PubMed

    Wu, Jin; Zhong, Daixing; Fu, Xijin; Liu, Qingjun; Kang, Liangqi; Ding, Zhenqi

    2014-01-01

    Recently, a member of the voltage-dependent potassium channel (Kv) family, the Ether à go-go 1 (Eag1) channel was found to be necessary for cell proliferation, cycle progression and tumorigenesis. However, the therapeutic potential of the Eag1 channel in osteosarcoma remains elusive. In the present study, a recombinant adenovirus harboring shRNA against Eag1 was constructed to silence Eag1 expression in human osteosarcoma MG-63 cells. We observed that Eag1-shRNA inhibited the proliferation and colony formation of MG-63 cells due to the induction of G1 phase arrest. Moreover, in vivo experiments showed that Eag1-shRNA inhibited osteosarcoma growth in a xenograft nude mice model. In addition, selective inhibition of Eag1 significantly decreased the expression levels of cyclin D1 and E. Taken together, our data suggest that the Eag1 channel plays a crucial role in regulating the proliferation and cell cycle of osteosarcoma cells, and represents a new and effective therapeutic target for osteosarcoma. PMID:24694542

  10. Silencing of Ether à Go-Go 1 by shRNA Inhibits Osteosarcoma Growth and Cell Cycle Progression

    PubMed Central

    Wu, Jin; Zhong, Daixing; Fu, Xijin; Liu, Qingjun; Kang, Liangqi; Ding, Zhenqi

    2014-01-01

    Recently, a member of the voltage-dependent potassium channel (Kv) family, the Ether à go-go 1 (Eag1) channel was found to be necessary for cell proliferation, cycle progression and tumorigenesis. However, the therapeutic potential of the Eag1 channel in osteosarcoma remains elusive. In the present study, a recombinant adenovirus harboring shRNA against Eag1 was constructed to silence Eag1 expression in human osteosarcoma MG-63 cells. We observed that Eag1-shRNA inhibited the proliferation and colony formation of MG-63 cells due to the induction of G1 phase arrest. Moreover, in vivo experiments showed that Eag1-shRNA inhibited osteosarcoma growth in a xenograft nude mice model. In addition, selective inhibition of Eag1 significantly decreased the expression levels of cyclin D1 and E. Taken together, our data suggest that the Eag1 channel plays a crucial role in regulating the proliferation and cell cycle of osteosarcoma cells, and represents a new and effective therapeutic target for osteosarcoma. PMID:24694542

  11. Mesenchymal stem cells increase proliferation but do not change quiescent state of osteosarcoma cells: Potential implications according to the tumor resection status

    PubMed Central

    Avril, Pierre; Le Nail, Louis-Romée; Brennan, Meadhbh Á.; Rosset, Philippe; De Pinieux, Gonzague; Layrolle, Pierre; Heymann, Dominique; Perrot, Pierre; Trichet, Valérie

    2015-01-01

    Conventional therapy of primary bone tumors includes surgical excision with wide resection, which leads to physical and aesthetic defects. For reconstruction of bone and joints, allografts can be supplemented with mesenchymal stem cells (MSCs). Similarly, adipose tissue transfer (ATT) is supplemented with adipose-derived stem cells (ADSCs) to improve the efficient grafting in the correction of soft tissue defects. MSC-like cells may also be used in tumor-targeted cell therapy. However, MSC may have adverse effects on sarcoma development. In the present study, human ADSCs, MSCs and pre-osteoclasts were co-injected with human MNNG-HOS osteosarcoma cells in immunodeficient mice. ADSCs and MSCs, but not the osteoclast precursors, accelerated the local proliferation of MNNG-HOS osteosarcoma cells. However, the osteolysis and the metastasis process were not exacerbated by ADSCs, MSCs, or pre-osteoclasts. In vitro proliferation of MNNG-HOS and Saos-2 osteosarcoma cells was increased up to 2-fold in the presence of ADSC-conditioned medium. In contrast, ADSC-conditioned medium did not change the dormant, quiescent state of osteosarcoma cells cultured in oncospheres. Due to the enhancing effect of ADSCs/MSCs on in vivo/in vitro proliferation of osteosarcoma cells, MSCs may not be good candidates for osteosarcoma-targeted cell therapy. Although conditioned medium of ADSCs accelerated the cell cycle of proliferating osteosarcoma cells, it did not change the quiescent state of dormant osteosarcoma cells, indicating that ADSC-secreted factors may not be involved in the risk of local recurrence. PMID:26998421

  12. miR-205 suppresses the proliferative and migratory capacity of human osteosarcoma Mg-63 cells by targeting VEGFA

    PubMed Central

    Wang, Li; Shan, Minhong; Liu, Yang; Yang, Fengyi; Qi, Hongxia; Zhou, Lijuan; Qiu, Lirong; Li, Yanshuang

    2015-01-01

    Background Osteosarcoma (OS) is the most common primary bone malignancy in children and young adults. MiR-205 has been reported to be negatively correlated with the proliferation and metastasis of many types of cancer, while its effects on the malignant phenotype of OS are unclear. Methods Using TaqMan RT polymerase chain reaction analysis, we firstly explored the expression of miR-205 in a panel of OS cell lines. As the expression of miR-205 was significantly decreased in these cell lines, we sought to compensate for its loss by transfection of exogenous miR-205 mimic into MG-63 cells. To further understand the role of miR-205 in OS, we investigated the effects of miR-205 on the proliferation, migration, and invasion of MG-63 cells, and further explored the mechanisms that might be involved. Results We found that miR-205 was consistently suppressed in OS cells when compared with the normal human osteoblast (NHOst) cell line. Restored expression of miR-205 in the OS (MG-63) cell line significantly inhibited cell proliferation, migration, and invasion. Moreover, bioinformatic prediction suggested that vascular endothelial growth factor A (VEGFA) was the target oncogene for miR-205 in OS cells. Further quantitative RT polymerase chain reaction and Western blot assays identified that overexpression of miR-205 suppressed expression of VEGFA mRNA and protein. Restored expression of VEGFA in MG-63 cells previously treated with miR-205 mimic could partially abolish miR-205-mediated suppression of proliferation and invasion of these cells. Conclusion Collectively, these data suggest that miR-205 might function as a tumor suppressor in OS by, at least partially, targeting VEGFA. PMID:26396534

  13. Emodin mitigates the oxidative stress induced by cisplatin in osteosarcoma MG63 cells

    PubMed Central

    Yan, Li; Hu, Rui; Tu, Song; Cheng, Wen-Jun; Zheng, Qiong; Wang, Jun-Wen; Kan, Wu-Sheng; Ren, Yi-Jun

    2016-01-01

    Previously, the application of cisplatin in chemotherapy was limited due to the significant side effects on normal cell growth. In the present study, the concomitant application of emodin with cisplatin was demonstrated to ameliorate cisplatin-induced oxidative stress and markedly suppress tumor cell proliferation for the first time. Human osteosarcoma MG-63 cells were treated with cisplatin alone or in combination with emodin. The cell viability was determined by MTS assays and the augmentation of reactive oxygen species were determined by fluorogenic probes; in addition, a stable MG-63 subline bearing antioxidant response element (ARE)-driven luciferase expression was developed to monitor the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-ARE signaling pathway. The results indicated that cisplatin or emodin may inhibit MG-63 cell proliferation in a time- or dose-dependent manner, respectively. Concomitant treatment with cisplatin and emodin demonstrated synergic anti-tumor effects. Cisplatin augmented reactive oxygen species in the MG-63 cells, followed by the translocation of Nrf2 from the cytoplasm into the nucleus, which triggered ARE-driven luciferase expression. The addition of emodin diminished the previously described phenomenon, resulting in decreased ROS augmentation, translocation of Nrf2 and ARE-driven luciferase activity. In conclusion, emodin could ameliorate cisplatin-induced oxidative stress and protect the cells from oxidative stress-induced damage. The findings of the present study provide a novel strategy for the treatment of osteosarcoma using emodin and cisplatin. PMID:27602124

  14. Self-assembled monolayers of alkanethiolates on surface chemistry groups in osteosarcoma cells

    PubMed Central

    DENG, YING-HU; LI, LI-HUA; HE, JIN; LI, MEI; ZHANG, YU; WANG, XIU-MEI; CUI, FU-ZHAI; XIA, HONG

    2015-01-01

    Cell biomedical behavior is influenced by a number of factors, and the extracellular matrix (ECM) of the cellular microenvironment affects certain cancer cells. In the current study, U-2OS cells were cultured on gold surfaces modified with different terminal chemical groups [methyl (-CH3), amino (-NH2), hydroxyl (-OH) and carboxyl (-COOH)]. The results revealed that different chemical surfaces convey different behaviors. The density of the different functional surfaces was confirmed by atomic force microscopy. Cell morphology, proliferation rate and cell cycle were investigated using scanning electron microscopy, cell counting and flow cytometry. In conclusion, the type of chemical group on a biomaterial is an important property for the growth of osteosarcoma cells; -NH2 and -COOH surfaces sustained visible cell adhesion and promoted cell growth. PMID:25373556

  15. Baicalein suppresses the viability of MG-63 osteosarcoma cells through inhibiting c-MYC expression via Wnt signaling pathway.

    PubMed

    He, Nengbin; Zhang, Zhichang

    2015-07-01

    The major reason responsible for the poor prognosis of osteosarcoma is the malignant proliferation of osteosarcoma cells. The activated Wnt/β-catenin signaling induces c-MYC gene transcription and results in osteocytes' carcinomatous change, which contributes to osteosarcoma development, so c-MYC gene is one of the therapeutic targets. The role of multiple botanical extracts in the expression of β-catenin's target gene c-MYC in osteosarcoma MG-63 cells was tested by cellomics high content screening. Baicalein was identified as the most effective one which can inhibit the proliferation and promote the apoptosis of MG-63 cells in a dose-dependent manner by cell counting kit-8 test and fluorescence-activated cell sorting, respectively. This process was associated with the decreased levels of β-catenin and its target gene c-MYC, identified by q-PCR and Western blotting, respectively. When MG-63 cells were treated with both baicalein and JNK inhibitor SP600125, the apoptosis and expression of c-MYC were not significantly decreased. After the construct pcDNA3.1-BANCR (BRAF-regulated lncRNA 1) was transfected into MG-63 cells, RT-PCR, Western blotting and CCK-8 assay showed that BANCR was positively correlated with baicalein. These results indicated that baicalein inhibited osteosarcoma cell proliferation and promoted apoptosis by targeting c-MYC gene through Wnt signaling, in which JNK and BANCR were also involved as well as β-catenin, suggesting a new potential mechanism for us to better understand the inhibiting effect of baicalein on osteosarcoma. PMID:25893737

  16. GLIPR1 inhibits the proliferation and induces the differentiation of cancer-initiating cells by regulating miR-16 in osteosarcoma.

    PubMed

    Dong, Jian; Bi, Binna; Zhang, Lianhai; Gao, Kaituo

    2016-09-01

    Osteosarcoma is a common, highly malignant and metastatic bone cancer. Elucidation of the molecular mechanisms of osteosarcoma may further help us to understand the pathogenesis of the disease, and offer novel targets for effective therapies. Human glioma pathogenesis-related protein 1 (GLIPR1) has been found to be downregulated in human cancers. However, its roles have not been reported in osteosarcoma. In the present study, we demonstrated that GLIPR1 protein was downregulated in osteosarcoma. Its overexpression inhibited the proliferation, migration and invasion and induced the differentiation of cancer-initiating cells (CICs) in osteosarcoma. Moreover, GLIPR1 overexpression upregulated miR-16 in osteosarcoma cells. The upregulation suppressed proliferation, migration and invasion as well as induced differentiation of CICs in osteosarcoma. Thus, we conclude that GLIPR1 inhibited the proliferation, migration and invasion and induced the differentiation of CICs by regulating miR-16 in osteosarcoma. The present study provides direct evidence that GLIPR1 is a bona fide tumor suppressor and identified GLIPR1 and miR-16 as key components for regulating the proliferation, migration, invasion and CICs in osteosarcoma. PMID:27460987

  17. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-01-01

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1. PMID:27409610

  18. Inhibition of AQP1 Hampers Osteosarcoma and Hepatocellular Carcinoma Progression Mediated by Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Pelagalli, Alessandra; Nardelli, Anna; Fontanella, Raffaela; Zannetti, Antonella

    2016-01-01

    The complex cross-talk between tumor cells and their surrounding stromal environment plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward the tumor microenvironment and contribute to the active formation of tumor-associated stroma. Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398) cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell migration and invasion through involvement of AQP1. PMID:27409610

  19. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies

    PubMed Central

    Abarrategi, Ander; Tornin, Juan; Martinez-Cruzado, Lucia; Hamilton, Ashley; Martinez-Campos, Enrique; Rodrigo, Juan P.; González, M. Victoria; Baldini, Nicola; Garcia-Castro, Javier; Rodriguez, Rene

    2016-01-01

    Osteosarcoma (OS) is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs. PMID:27366153

  20. Fuse-binding protein 1 is a target of the EZH2 inhibitor GSK343, in osteosarcoma cells.

    PubMed

    Xiong, Xifeng; Zhang, Jinli; Liang, Weiguo; Cao, Wenjuan; Qin, Shengnan; Dai, Libing; Ye, Dongping; Liu, Zhihe

    2016-08-01

    Osteosarcoma is the primary cancer of leaf tissue and is regarded as a differentiation disease caused by genetic and epigenetic changes which interrupt the osteoblast differentiation from mesenchymal stem cells. Because of its high malignancy degree and rapid development, the morbidity and mortality are high. The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressive complex 2 (PRC2) and has been demonstrated to be involved in a variety of biological processes, such as cell proliferation and program cell death. EZH2 impairs gene expression by catalyzing the tri-methylation of histone H3 lysine 27 (H3K27me3) which controls gene transcription epigenetically. It is reported that EZH2 expression is higher in osteosarcoma than in osteoblastoma and the highest expression of EZH2 is found in osteosarcoma with metastasis. In the past few years, several potent inhibitors of EZH2 have been discovered, and GSK343 is one of them. In this study, we found that GSK343 inhibited osteosarcoma cell viability, restrained cell cycle transition and promoted programmed cell death. GSK343 not only inhibited the expression of EZH2 and its target, c-Myc and H3K27me3, but it also inhibited fuse binding protein 1 (FBP1) expression, another c-Myc regulator. Furthermore, we found that FBP1 physically interacts with EZH2. Based on these results, we believe that GSK343 is a potential molecule for osteosarcoma clinical treatment. Other than the inhibition on EZH2-c-Myc signal pathway, we postulate that the inhibition on FBP1-c-Myc signal pathway is another potential underlying mechanism with which GSK343 inhibits osteosarcoma cell viability. PMID:27278257

  1. Childhood Cancer: Osteosarcoma

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Osteosarcoma KidsHealth > For Parents > Osteosarcoma Print A A A ... kids with osteosarcoma do recover. Risk for Childhood Osteosarcoma Osteosarcoma is most often seen in teenage boys. ...

  2. BET inhibitors induce apoptosis through a MYC independent mechanism and synergise with CDK inhibitors to kill osteosarcoma cells

    PubMed Central

    Baker, Emma K; Taylor, Scott; Gupte, Ankita; Sharp, Phillip P; Walia, Mannu; Walsh, Nicole C; Zannettino, Andrew CW; Chalk, Alistair M; Burns, Christopher J; Walkley, Carl R

    2015-01-01

    Osteosarcoma (OS) survival rates have plateaued in part due to a lack of new therapeutic options. Here we demonstrate that bromodomain inhibitors (BETi), JQ1, I-BET151, I-BET762, exert potent anti-tumour activity against primary and established OS cell lines, mediated by inhibition of BRD4. Strikingly, unlike previous observations in long-term established human OS cell lines, the antiproliferative activity of JQ1 in primary OS cells was driven by the induction of apoptosis, not cell cycle arrest. In further contrast, JQ1 activity in OS was mediated independently of MYC downregulation. We identified that JQ1 suppresses the transcription factor FOSL1 by displacement of BRD4 from its locus. Loss of FOSL1 phenocopied the antiproliferative effects of JQ1, identifying FOSL1 suppression as a potential novel therapeutic approach for OS. As a monotherapy JQ1 demonstrated significant anti-tumour activity in vivo in an OS graft model. Further, combinatorial treatment approaches showed that JQ1 increased the sensitivity of OS cells to doxorubicin and induced potent synergistic activity when rationally combined with CDK inhibitors. The greater level of activity achieved with the combination of BETi with CDK inhibitors demonstrates the efficacy of this combination therapy. Taken together, our studies show that BET inhibitors are a promising new therapeutic for OS. PMID:25944566

  3. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-{kappa}B

    SciTech Connect

    Bin Hafeez, Bilal; Ahmed, Salahuddin; Wang, Naizhen; Gupta, Sanjay; Zhang Ailin; Haqqi, Tariq M. . E-mail: txh5@case.edu

    2006-10-01

    Development of chemotherapy resistance and evasion from apoptosis in osteosarcoma, a primary malignant bone tumor, is often correlated with constitutive nuclear factor-{kappa}B (NF-{kappa}B) activation. Here, we investigated the ability of a polyphenolic fraction of green tea (GTP) that has been shown to have antitumor effects on various malignant cell lines to inhibit growth and induce apoptosis in human osteosarcoma SAOS-2 cells. Treatment of SAOS-2 cells with GTP (20-60 {mu}g/ml) resulted in reduced cell proliferation and induction of apoptosis, which correlated with decreased nuclear DNA binding of NF-{kappa}B/p65 and lowering of NF-{kappa}B/p65 and p50 levels in the cytoplasm and nucleus. GTP treatment of cells reduced I{kappa}B-{alpha} phosphorylation but had no effect on its protein expression. Furthermore, GTP treatment resulted in the inhibition of IKK-{alpha} and IKK-{beta}, the upstream kinases that phosphorylate I{kappa}B-{alpha}. The increase in apoptosis in SAOS-2 cells was accompanied with decrease in the protein expression of Bcl-2 and concomitant increase in the levels of Bax. GTP treatment of SAOS-2 cells also resulted in significant activation of caspases as was evident by increased levels of cleaved caspase-3 and caspase-8 in these cells. Treatment of SAOS-2 cells with a specific caspase-3 inhibitor Ac-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO) and general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (Z-VAD-FMK) rescued SAOS-2 cells from GTP-induced apoptosis. Taken together, these results indicate that GTP is a candidate therapeutic for osteosarcoma that mediates its antiproliferative and apoptotic effects via activation of caspases and inhibition of NF-{kappa}B.

  4. Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas.

    PubMed

    Osaki, Shuhei; Tazawa, Hiroshi; Hasei, Joe; Yamakawa, Yasuaki; Omori, Toshinori; Sugiu, Kazuhisa; Komatsubara, Tadashi; Fujiwara, Tomohiro; Sasaki, Tsuyoshi; Kunisada, Toshiyuki; Yoshida, Aki; Urata, Yasuo; Kagawa, Shunsuke; Ozaki, Toshifumi; Fujiwara, Toshiyoshi

    2016-01-01

    Osteosarcoma is a rare disease diagnosed as malignant bone tumor. It is generally refractory to chemotherapy, which contributes to its poor prognosis. The reversal of chemoresistance is a major clinical challenge to improve the prognostic outcome of osteosarcoma patients. We developed a tumor-specific replication-competent oncolytic adenovirus, OBP-301 (telomelysin) and assessed its synergistic effects with chemotherapeutic agents (cisplatin and doxorubicin) using human osteosarcoma cell lines and a xenograft tumor model. The molecular mechanism underlying the chemosensitizing effect of OBP-301 was evaluated in aspects of apoptosis induction. OBP-301 inhibits anti-apoptotic myeloid cell leukemia 1 (MCL1) expression, which in turn leads to chemosensitization in human osteosarcoma cells. The siRNA-mediated knockdown of MCL1 expression sensitized human osteosarcoma cells to common chemotherapeutic agents. We also found that upregulation of microRNA-29 targeting MCL1 via virally induced transcriptional factor E2F-1 activation was critical for the enhancement of chemotherapy-induced apoptosis in osteosarcoma cells. Telomerase-specific oncolytic adenovirus synergistically suppressed the viability of human osteosarcoma cells in combination with chemotherapeutic agents. The combination treatment also significantly inhibited tumor growth, as compared to monotherapy, in an osteosarcoma xenograft tumor model. Our data suggest that replicative virus-mediated tumor-specific MCL1 ablation may be a promising strategy to attenuate chemoresistance in osteosarcoma patients. PMID:27356624

  5. Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas

    PubMed Central

    Osaki, Shuhei; Tazawa, Hiroshi; Hasei, Joe; Yamakawa, Yasuaki; Omori, Toshinori; Sugiu, Kazuhisa; Komatsubara, Tadashi; Fujiwara, Tomohiro; Sasaki, Tsuyoshi; Kunisada, Toshiyuki; Yoshida, Aki; Urata, Yasuo; Kagawa, Shunsuke; Ozaki, Toshifumi; Fujiwara, Toshiyoshi

    2016-01-01

    Osteosarcoma is a rare disease diagnosed as malignant bone tumor. It is generally refractory to chemotherapy, which contributes to its poor prognosis. The reversal of chemoresistance is a major clinical challenge to improve the prognostic outcome of osteosarcoma patients. We developed a tumor-specific replication-competent oncolytic adenovirus, OBP-301 (telomelysin) and assessed its synergistic effects with chemotherapeutic agents (cisplatin and doxorubicin) using human osteosarcoma cell lines and a xenograft tumor model. The molecular mechanism underlying the chemosensitizing effect of OBP-301 was evaluated in aspects of apoptosis induction. OBP-301 inhibits anti-apoptotic myeloid cell leukemia 1 (MCL1) expression, which in turn leads to chemosensitization in human osteosarcoma cells. The siRNA-mediated knockdown of MCL1 expression sensitized human osteosarcoma cells to common chemotherapeutic agents. We also found that upregulation of microRNA-29 targeting MCL1 via virally induced transcriptional factor E2F-1 activation was critical for the enhancement of chemotherapy-induced apoptosis in osteosarcoma cells. Telomerase-specific oncolytic adenovirus synergistically suppressed the viability of human osteosarcoma cells in combination with chemotherapeutic agents. The combination treatment also significantly inhibited tumor growth, as compared to monotherapy, in an osteosarcoma xenograft tumor model. Our data suggest that replicative virus-mediated tumor-specific MCL1 ablation may be a promising strategy to attenuate chemoresistance in osteosarcoma patients. PMID:27356624

  6. Adriamycin resistance-associated prohibitin gene inhibits proliferation of human osteosarcoma MG63 cells by interacting with oncogenes and tumor suppressor genes

    PubMed Central

    Du, Min-Dong; He, Kai-Yi; Qin, Gang; Chen, Jin; Li, Jin-Yi

    2016-01-01

    The resistance of cancer cells to chemotherapeutic agents is a major obstacle for successful chemotherapy, and the mechanism of chemoresistance remains unclear. The present study developed an adriamycin-resistant human osteosarcoma MG-63 sub-line (MG-63/ADR), and identified differentially expressed proteins that may be associated with adriamycin resistance. Two dimensional gel electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis and a protein identification assay were performed. Western blot analysis was used to examine the prohibitin (PHB) levels in the MG-63/ADR cells. Quantitative polymerase chain reaction was utilized to detect adriamycin resistant-associated genes. Laser-scanning confocal microscope was employed to examine the colocalization of PHB with v-myc avian myelocytomatosis viral oncogene homolog (c-myc), FBJ murine osteosarcoma viral oncogene homolog (c-fos), tumor protein p53 and retinoblastoma 1 (Rb). In addition, the full length of the open reading frame of human PHB was subcloned into a lentiviral vector pLVX-puro. The proliferative rate of MG-63 cells was also investigated. The overall protein expression in MG-63/ADR cells was clearly suppressed. Three notable protein regions, representing high mobility group box 1, Ras homolog gene family, member A, and PHB, were identified to be significantly altered in MG-63/ADR cells when compared with its parental cells. Therefore, PHB modulated the chemoresistance of MG-63/ADR cells by interacting with multiple oncogenes or tumor suppressor genes (c-myc, c-fos, p53 and Rb). In addition, overexpression of PHB decreases the proliferative rate of MG-63 cells. In conclusion, PHB is an adriamycin resistance-associated gene, which may inhibit the proliferation of human osteosarcoma MG-63 cells by interacting with the oncogenes or tumor suppressor genes, c-myc, c-fos, p53 and Rb. PMID:27602127

  7. Prostanoid-induced expression of matrix metalloproteinase-1 messenger ribonucleic acid in rat osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Clohisy, J. C.; Connolly, T. J.; Bergman, K. D.; Quinn, C. O.; Partridge, N. C.

    1994-01-01

    Individual prostanoids have distinct potencies in activating intracellular signaling pathways and regulating gene expression in osteoblastic cells. The E-series prostaglandins (PGs) are known to stimulate matrix metalloproteinase-1 (MMP-1) synthesis and secretion in certain rodent and human osteoblastic cells, yet the intracellular events involved remain unclear. To further characterize this response and its signal transduction pathway(s), we examined prostanoid-induced expression of the MMP-1 gene in the rat osteoblastic osteosarcoma cell line UMR 106-01. Northern blot analysis demonstrated that prostaglandin E2 (PGE2) and PGE1 were very potent stimulators (40-fold) of MMP-1 transcript abundance, PGF2 alpha and prostacyclin were weak stimulators (4-fold), and thromboxane-B2 had no effect. The marked increase in MMP-1 transcript abundance after PGE2 treatment was first detected at 2 h, became maximal at 4 h, and persisted beyond 24 h. This response was dose dependent and elicited maximal and half-maximal effects with concentrations of 10(-6) and 0.6 x 10(-7) M, respectively. Cycloheximide, a protein synthesis inhibitor, completely blocked this effect of PGE2, suggesting that the expression of other genes is required. Nuclear run-on experiments demonstrated that PGE2 rapidly activates MMP-1 gene transcription, with a maximal increase at 2-4 h. The second messenger analog, 8-bromo-cAMP, mimicked the effects of PGE2 by stimulating a dose-dependent increase in MMP-1 messenger RNA (mRNA) levels, with a maximal effect quantitatively similar to that observed with PGE2. Thus, in UMR 106-01 cells, different prostanoids have distinct potencies in stimulating MMP-1 mRNA abundance. Our data suggest that PGE2 stimulation of MMP-1 synthesis is due to activation of MMP-1 gene transcription and a subsequent marked increase in MMP-1 mRNA abundance. This effect is dependent on de novo protein synthesis and is mimicked by protein kinase-A activation.

  8. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    PubMed

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. PMID:27402836

  9. Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment

    PubMed Central

    Salvatore, Viviana; Focaroli, Stefano; Teti, Gabriella; Mazzotti, Antonio; Falconi, Mirella

    2015-01-01

    Background The progression of malignant tumors does not depend exclusively on the autonomous properties of cancer cells; it is also influenced by tumor stroma reactivity and is under strict microenvironmental control. By themselves, stromal cells are not malignant, and they maintain normal tissue structure and function. However, through intercellular interactions or by paracrine secretions from cancer cells, normal stromal cells acquire abnormal phenotypes that sustain cancer cell growth and tumor progression. In their dysfunctional state, fibroblast and immune cells produce chemokines and growth factors that stimulate cancer cell growth and invasion. In our previous work, we established an in vitro model based on a monolayer co-culture system of healthy human fibroblasts (HFs) and human osteosarcoma cells (the MG-63 cell line) that simulates the microenvironment of tumor cells and healthy cells. The coexistence between MG-63 cells and HFs allowed us to identify the YKL-40 protein as the main marker for verifying the influence of tumor cells grown in contact with healthy cells. Methods In this study, we evaluated the interactions of HFs and MG-63 cells in a transwell co-culture system over 24 h, 48 h, 72 h, and 96 h. We analyzed the contributions of these populations to the tumor microenvironment during cancer progression, as measured by multiple markers. We examined the effect of siRNA knockdown of YKL-40 by tracking the subsequent changes in gene expression within the co-culture. We validated the expression of several genes, focusing on those involved in cancer cell invasion, inflammatory responses, and angiogenesis: TNF alpha, IL-6, MMP-1, MMP-9, and VEGF. We compared the results to those from a transwell co-culture without the YKL-40 knockdown. Results In a pro-inflammatory environment promoted by TNF alpha and IL-6, siRNA knockdown of YKL-40 caused a down-regulation of VEGF and MMP-1 expression in HFs. Conclusions These findings demonstrated that the tumor

  10. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1

    PubMed Central

    Yao, Jie; Qin, Li; Miao, Sen; Wang, Xiangshan; Wu, Xuejian

    2016-01-01

    There is increasing evidence that microRNAs (miRs) are implicated in tumor development and progression; however, their specific roles in osteosarcoma are not well understood. The aim of the present study was to investigate the role of miR-506 in the pathogenesis of osteosarcoma. The expression levels of miR-506 and astrocyte elevated gene-1 (AEG-1) mRNA were detected using quantitative polymerase chain reaction, and the protein levels of AEG-1, β-catenin, c-myc and cyclin D1 were determined using western blot analysis. The effects of miR-506 and AEG-1 on cell viability, colony forming ability and apoptosis were assessed using MTT assay, colony formation assay, and flow cytometry, respectively. Lucifer reporter assays were used to demonstrate whether AEG-1 is a direct target of miR-506. The present study identified that miR-506 was downregulated in osteosarcoma tissues and cells. Overexpression of miR-506 suppressed the proliferation and induced apoptosis in osteosarcoma cells in vitro and inhibited tumor formation in vivo. Overexpression of miR-506 significantly inhibited the luciferase activity of AEG-1 with a wild-type 3′-untranslated region, providing clear evidence that AEG-1 was a direct and functional downstream target of miR-506. Similar to the overexpression of miR-506, downregulation of AEG-1 lead to an inhibitory effect on osteosarcoma in vitro. Furthermore, overexpression of miR-506 or downregulation of AEG-1 inhibited the Wnt/β-catenin signaling pathway, and inhibition of this pathway by β-catenin small interfering RNA or CGP049090, a small molecule inhibitor, suppressed cell proliferation and induced apoptosis in vitro. Overall, the present data indicated that miR-506 functions as a tumor suppressor by targeting AEG-1 in osteosarcoma via the regulation of the Wnt/β-catenin signaling pathway. PMID:27602115

  11. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B

    SciTech Connect

    Eliseev, Roman A. . E-mail: Roman_Eliseev@urmc.rochester.edu; Schwarz, Edward M.; Zuscik, Michael J.; O'Keefe, Regis J.; Drissi, Hicham; Rosier, Randy N.

    2006-01-01

    The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes such as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.

  12. Systemically administered PEDF against primary and secondary tumours in a clinically relevant osteosarcoma model

    PubMed Central

    Broadhead, M L; Dass, C R; Choong, P F M

    2011-01-01

    Background: Pigment epithelium-derived factor (PEDF) is an endogenous glycoprotein with a potential role as a therapeutic for osteosarcoma. Animal studies have demonstrated the biological effects of PEDF on osteosarcoma; however, these results are difficult to extrapolate for human use due to the chosen study design and drug delivery methods. Methods: In this study we have attempted to replicate the human presentation and treatment of osteosarcoma using a murine orthotopic model of osteosarcoma. The effects of PEDF on osteosarcoma cell lines were evaluated in vitro prior to animal experimentation. Orthotopic tumours were induced by intra-tibial injection of SaOS-2 osteosarcoma cells. Treatment with PEDF was delayed until after the macroscopic appearance of primary tumours. Pigment epithelium-derived factor was administered systemically via an implanted intraperitoneal micro-osmotic pump. Results: In vitro, PEDF inhibited proliferation, induced apoptosis and inhibited cell cycling of osteosarcoma cells. Pigment epithelium-derived factor promoted adhesion to Collagen I and inhibited invasion through Collagen I. In vivo, treatment with PEDF caused a reduction in both primary tumour volume and burden of pulmonary metastases. Systemic administration of PEDF did not cause toxic effects on normal tissues. Conclusion: Systemically delivered PEDF is effective in suppressing the size of primary and secondary tumours in an orthotopic murine model of osteosarcoma. PMID:21979423

  13. Delivery of inhibitor of growth 4 (ING4) gene significantly inhibits proliferation and invasion and promotes apoptosis of human osteosarcoma cells

    PubMed Central

    Li, Mei; Zhu, Ye; Zhang, Hongbin; Li, Lihua; He, Peng; Xia, Hong; Zhang, Yu; Mao, Chuanbin

    2014-01-01

    Growing evidence has suggested that inhibitor of growth 4 (ING4), a novel member of ING family proteins, plays a critical role in the development and progression of different tumors via multiple pathways. However, the function of ING4 in human osteosarcoma remains unclear. To understand its potential roles and mechanisms in inhibiting osteosarcoma, we constructed an expression vector pEGFP-ING4 and transfected the human osteosarcoma cells using this vector. We then studied the effects of over-expressed ING4 in the transfected cells on the proliferation, apoptosis and invasion of the osteosarcoma cells. The up-regulation of ING4 in the osteosarcoma cells, arising from the stable pEGFP-ING4 gene transfection, was found to significantly inhibit the cell proliferation by the cell cycle alteration with S phase reduction and G0/G1 phase arrest, induce cell apoptosis via the activation of the mitochondria pathway, and suppress cell invasion through the down-regulation of the matrix metalloproteinase 2 (MMP-2) and MMP-9 expression. In addition, increased ING4 level evoked the blockade of NF-κB signaling pathway and down-regulation of its target proteins. Our work suggests that ING4 can suppress osteosarcoma progression through signaling pathways such as mitochondria pathway and NF-κB signaling pathway and ING4 gene therapy is a promising approach to treating osteosarcoma. PMID:25490312

  14. Small molecules, LLL12 and FLLL32, inhibit STAT3 and exhibit potent growth suppressive activity in osteosarcoma cells and tumor growth in mice.

    PubMed

    Onimoe, Grace-Ifeyinwa; Liu, Aiguo; Lin, Li; Wei, Chang-Ching; Schwartz, Eric B; Bhasin, Deepak; Li, Chenglong; Fuchs, James R; Li, Pui-kai; Houghton, Peter; Termuhlen, Amanda; Gross, Thomas; Lin, Jiayuh

    2012-06-01

    Constitutive activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in osteosarcoma, and hence, may serve as a therapeutic target. In order to target STAT3, we tested two new STAT3 inhibitors, LLL12 and FLLL32. LLL12 and FLLL32 inhibit STAT3 phosphorylation and STAT3 downstream targets. LLL12 and FLLL32 also inhibit IL-6 induced STAT3 phosphorylation. The inhibition of STAT3 by LLL12 and FLLL32 resulted in the induction of apoptosis, reduction of plating efficiency, and migration in osteosarcoma cells. Furthermore, LLL12 and FLLL32 inhibited SJSA osteosarcoma cells and OS-33 tumor growth in murine xenografts. These results provide evidence that constitutive STAT3 signaling is required for osteosarcoma survival and migration in vitro and tumor growth in vivo. Blocking persistent STAT3 signaling by LLL12 and FLLL32 may be a novel therapeutic approach for osteosarcoma. PMID:21340507

  15. Telangiectatic osteosarcoma.

    PubMed

    Gomes, H; Menanteau, B; Gaillard, D; Behar, C

    1986-01-01

    Two cases of telangiectatic osteosarcoma are described. The difficulty in differentiating this tumour from aneurysmal bone cyst is emphasized both from the pathological and radiological aspects. PMID:3456553

  16. Influence of surfaces modified with biomimetic extracellular matrices on adhesion and proliferation of mesenchymal stem cells and osteosarcoma cells.

    PubMed

    Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2015-02-01

    Preparation of surfaces modified with biomimetic extracellular matrices (ECMs) is important for investigation of the interaction between ECMs and cells. In the present study, surfaces modified with ECMs from normal somatic cells, stem cells and tumor cells were prepared by cell culture method. The ECMs derived from bone marrow-derived mesenchymal stem cells (MSCs), dermal fibroblasts (FBs), osteoblasts (OBs) and MG63 osteosarcoma cells were deposited on the surfaces of cell-culture polystyrene plates (TCPS). The ECMs from different cell types had different compositions. The effects of the ECM-deposited surfaces on the adhesion, spreading and proliferation of MSCs and MG63 human osteosarcoma cells were dependent on the type of both ECMs and cells. The surfaces deposited with ECMs from MSCs, FBs and OBs promoted cell adhesion more strongly than surfaces deposited with ECMs from MG63 cells and TCPS. Compared to TCPS, the ECM-deposited surfaces promoted proliferation of MSCs while they inhibited the proliferation of MG63 cells. PMID:25516267

  17. Plumbagin exhibits an anti-proliferative effect in human osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling

    PubMed Central

    Xue, Yuan-Liang; Meng, Xiang-Qi; Ma, Long-Jun; Yuan, Zhen

    2016-01-01

    Plumbagin, a naphthoquinone constituent of Plumbago zeylanica L. (Plumbaginaceae) is widely used in traditional Chinese medicine as an antifungal, antibacterial and anti-inflammatory agent. Plumbagin is known to exhibit proapoptotic, antiangiogenic and antimetastatic effects in cancer cells. The transcriptional co-factor four and a half LIM domains 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of gene expression, signal transduction and cell proliferation and differentiation, and also acts as a tumor suppressor or oncoprotein depending on the tissue microenvironment. The present study investigated the effect of plumbagin on FHL2 expression, Wnt/β-catenin signalling and its anti-proliferative activity in various human osteosarcoma cell lines, including SaOS2, MG63, HOS and U2OS. The cells were exposed to plumbagin and the expression of FHL2 was evaluated using western blot analysis. Furthermore, the anti-proliferative effect of plumbagin was evaluated using a 3-(4,5 dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, since FHL2 is involved in Wnt/β-catenin signaling, the effect of plumbagin on β-catenin and its primary target genes, including v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) and WNT1 inducible signaling pathway protein-1 (WISP-1), was evaluated using western blot analysis. It was observed that plumbagin suppressed the expression of FHL2 and exhibited significant anti-proliferative activity in osteosarcoma cells. It also attenuated Wnt/β-catenin signalling by downregulating β-catenin and its target genes, including c-Myc and WISP-1. In conclusion, plumbagin demonstrated anti-proliferative activity in osteosarcoma cells by downregulating FHL2 and interfering with Wnt/β-catenin signalling. PMID:27446400

  18. Nimbolide Induces ROS-Regulated Apoptosis and Inhibits Cell Migration in Osteosarcoma

    PubMed Central

    Liu, Ju-Fang; Hou, Chun-Han; Lin, Feng-Ling; Tsao, Ya-Ting; Hou, Sheng-Mou

    2015-01-01

    Osteosarcoma (OS) is a primary malignant tumor of bone and is most prevalent in children and adolescents. OS is frequently associated with pulmonary metastasis, which is the main cause of OS-related mortality. OS has a poor prognosis and is often unresponsive to conventional chemotherapy. In this study, we determined that Nimbolide, a novel anti-cancer therapy, acts by modulating multiple mechanisms in osteosarcoma cells. Nimbolide induces apoptosis by increasing endoplasmic reticulum (ER) stress, mitochondrial dysfunction, accumulation of reactive oxygen species (ROS), and finally, caspase activation. We also determined that Nimbolide inhibits cell migration, which is crucial for metastasis, by reducing the expression of integrin αvβ5. In addition, our results demonstrate that integrin αvβ5 expression is modulated by the PI3K/Akt and NF-κB signaling cascade. Nimbolide has potential as an anti-tumor drug given its multifunctional effects in OS. Collectively, these results help us to understand the mechanisms of action of Nimbolide and will aid in the development of effective therapies for OS. PMID:26426012

  19. Biological Characteristics of the MG-63 Human Osteosarcoma Cells on Composite Tantalum Carbide/Amorphous Carbon Films

    PubMed Central

    Chang, Yin-Yu; Huang, Heng-Li; Chen, Ya-Chi; Hsu, Jui-Ting; Shieh, Tzong-Ming; Tsai, Ming-Tzu

    2014-01-01

    Tantalum (Ta) is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC) and TaC/amorphous carbon (a-C) coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C), was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics. PMID:24760085

  20. Biological characteristics of the MG-63 human osteosarcoma cells on composite tantalum carbide/amorphous carbon films.

    PubMed

    Chang, Yin-Yu; Huang, Heng-Li; Chen, Ya-Chi; Hsu, Jui-Ting; Shieh, Tzong-Ming; Tsai, Ming-Tzu

    2014-01-01

    Tantalum (Ta) is a promising metal for biomedical implants or implant coating for orthopedic and dental applications because of its excellent corrosion resistance, fracture toughness, and biocompatibility. This study synthesizes biocompatible tantalum carbide (TaC) and TaC/amorphous carbon (a-C) coatings with different carbon contents by using a twin-gun magnetron sputtering system to improve their biological properties and explore potential surgical implant or device applications. The carbon content in the deposited coatings was regulated by controlling the magnetron power ratio of the pure graphite and Ta cathodes. The deposited TaC and TaC/a-C coatings exhibited better cell viability of human osteosarcoma cell line MG-63 than the uncoated Ti and Ta-coated samples. Inverted optical and confocal imaging was used to demonstrate the cell adhesion, distribution, and proliferation of each sample at different time points during the whole culture period. The results show that the TaC/a-C coating, which contained two metastable phases (TaC and a-C), was more biocompatible with MG-63 cells compared to the pure Ta coating. This suggests that the TaC/a-C coatings exhibit a better biocompatible performance for MG-63 cells, and they may improve implant osseointegration in clinics. PMID:24760085

  1. Wnt5a promotes migration of human osteosarcoma cells by triggering a phosphatidylinositol-3 kinase/Akt signals

    PubMed Central

    2014-01-01

    Wnt5a is classified as a non-transforming Wnt family member and plays complicated roles in oncogenesis and cancer metastasis. However, Wnt5a signaling in osteosarcoma progression remains poorly defined. In this study, we found that Wnt5a stimulated the migration of human osteosarcoma cells (MG-63), with the maximal effect at 100 ng/ml, via enhancing phosphorylation of phosphatidylinositol-3 kinase (PI3K)/Akt. PI3K and Akt showed visible signs of basal phosphorylation and elevated phosphorylation at 15 min after stimulation with Wnt5a. Pharmaceutical inhibition of PI3K with LY294002 significantly blocked the Wnt5a-induced activation of Akt (p-Ser473) and decreased Wnt5a-induced cell migration. Akt siRNA remarkably inhibited Wnt5a-induced cell migration. Additionally, Wnt5a does not alter the total expression and phosphorylation of β-catenin in MG-63 cells. Taken together, we demonstrated for the first time that Wnt5a promoted osteosarcoma cell migration via the PI3K/Akt signaling pathway. These findings could provide a rationale for designing new therapy targeting osteosarcoma metastasis. PMID:24524196

  2. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner.

    PubMed

    Fernández, L; Valentín, J; Zalacain, M; Leung, W; Patiño-García, A; Pérez-Martínez, A

    2015-11-01

    Current therapies fail to cure most metastatic or recurrent bone cancer. We explored the efficacy and the pathways involved in natural killer (NK) cells' elimination of osteosarcoma (OS) cells, including tumor initiating cells (TICs), which are responsible for chemotherapy resistance, recurrence, and metastasis. The expression of ligands for NK cell receptors was studied in primary OS cell lines by flow cytometry. In vitro cytotoxicity of activated and expanded NK (NKAE) cells against OS was tested, and the pathways involved explored by using specific antibody blockade. NKAE cells' ability to target OS TICs was analyzed by flow cytometry and sphere formation assays. Spironolactone (SPIR) was tested for its ability to increase OS cells' susceptibility to NK cell lysis in vitro and in vivo. We found OS cells were susceptible to NKAE cells' lysis both in vivo and in vitro, and this cytolytic activity relied on interaction between NKG2D receptor and NKG2D ligands (NKG2DL). SPIR increased OS cells' susceptibility to lysis by NKAE cells, and could shrink the OS TICs. Our results show NKAE cells target OS cells including the TICs compartment, supporting the use of NK-cell based immunotherapies for OS. PMID:26276724

  3. MicroRNA-200b acts as a tumor suppressor in osteosarcoma via targeting ZEB1

    PubMed Central

    Li, Yusheng; Zeng, Chao; Tu, Min; Jiang, Wei; Dai, Zixun; Hu, Yuling; Deng, Zhenhan; Xiao, Wenfeng

    2016-01-01

    Osteosarcoma is the most common type of cancer that develops in bone, mainly arising from the metaphysis of the long bones. MicroRNA (miR)-200b has been found to generally act as a tumor suppressor in multiple types of human cancers. However, the detailed role of miR-200b in osteosarcoma still remains to be fully understood. This study aimed to investigate the exact role of miR-200b in the progression of osteosarcoma and the underlying mechanism. Real-time reverse transcription-polymerase chain reaction data showed that miR-200b was significantly downregulated in osteosarcoma tissues compared to their matched adjacent nontumor tissues. Low miR-200b level was associated with the advanced clinical stage and positive distant metastasis. Besides, it was also downregulated in osteosarcoma cell lines (U2OS, Saos2, HOS, and MG63) compared to normal osteoblast cell line NHOst. In vitro study showed that restoration of miR-200b led to a significant decrease in proliferation, migration, and invasion of osteosarcoma cells. Moreover, ZEB1 was identified as a target gene of miR-200b, and its expression levels were negatively mediated by miR-200b in osteosarcoma cells. In addition, ZEB1 was significantly upregulated in osteosarcoma cells compared to the normal osteoblast cell line NHOst, and inhibition of ZEB1 expression also suppressed the proliferation, migration, and invasion in osteosarcoma cells. Finally, we showed that ZEB1 was frequently upregulated in osteosarcoma tissues compared to their matched adjacent normal tissues, and its expression was reversely correlated to the miR-200b levels in osteosarcoma tissues. Based on these findings, our study suggests that miR-200b inhibits the proliferation, migration, and invasion of osteosarcoma cells, probably via the inhibition of ZEB1 expression. Therefore, miR-200b/ZEB1 may become a potential target for the treatment of osteosarcoma. PMID:27307751

  4. Alpha-CaMKII plays a critical role in determining the aggressive behavior of human osteosarcoma.

    PubMed

    Daft, Paul G; Yuan, Kaiyu; Warram, Jason M; Klein, Michael J; Siegal, Gene P; Zayzafoon, Majd

    2013-04-01

    Osteosarcoma is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. Despite improvements in osteosarcoma treatment, more specific molecular targets are needed as potential therapeutic options. One target of interest is α-Ca(2+)/calmodulin-dependent protein kinase II (α-CaMKII), a ubiquitous mediator of Ca(2+)-linked signaling, which has been shown to regulate tumor cell proliferation and differentiation. Here, we investigate the role of α-CaMKII in the growth and tumorigenicity of human osteosarcoma. We show that α-CaMKII is highly expressed in primary osteosarcoma tissue derived from 114 patients, and is expressed in varying levels in different human osteosarcoma (OS) cell lines [MG-63, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)/HOS, and 143B). To examine whether α-CaMKII regulates osteosarcoma tumorigenic properties, we genetically inhibited α-CaMKII in two osteosarcoma cell lines using two different α-CaMKII shRNAs delivered by lentiviral vectors and overexpressed α-CaMKII by retrovirus. The genetic deletion of α-CaMKII by short hairpin RNA (shRNA) in MG-63 and 143B cells resulted in decreased proliferation (50% and 41%), migration (22% and 25%), and invasion (95% and 90%), respectively. The overexpression of α-CaMKII in HOS cells resulted in increased proliferation (240%), migration (640%), and invasion (10,000%). Furthermore, α-CaMKII deletion in MG-63 cells significantly reduced tumor burden in vivo (65%), whereas α-CaMKII overexpression resulted in tumor formation in a previously nontumor forming osteosarcoma cell line (HOS). Our results suggest that α-CaMKII plays a critical role in determining the aggressive phenotype of osteosarcoma, and its inhibition could be an attractive therapeutic target to combat this devastating adolescent disease. PMID:23364534

  5. Berberine Induced Apoptosis of Human Osteosarcoma Cells by Inhibiting Phosphoinositide 3 Kinase/Protein Kinase B (PI3K/Akt) Signal Pathway Activation

    PubMed Central

    2016-01-01

    Background: Osteosarcoma is a malignant tumor with high mortality but effective therapy has not yet been developed. Berberine, an isoquinoline alkaloid component in several Chinese herbs including Huanglian, has been shown to induce growth inhibition and the apoptosis of certain cancer cells. The aim of this study was to determine the role of berberine on human osteosarcoma cell lines U2OS and its potential mechanism. Methods: The proliferation effect of U20S was exanimed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and the percentage of apoptotic cells were determined by flow cytometric analysis. The expression of PI3K, p-Akt, Bax, Bcl-2, cleavage-PARP and Caspase3 were detected by Western blott. Results: Berberine treatment caused dose-dependent inhibiting proliferation and inducing apoptosis of U20S cell. Mechanistically, berberine inhibits PI3K/AKT activation that, in turn, results in up-regulating the expression of Bax, and PARP and down-regulating the expression of Bcl-2 and caspase3. In all, berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. Conclusion: Berberine can suppress the proliferation and induce the apoptosis of U2OS cell through inhibiting the PI3K/Akt signaling pathway activation. PMID:27398330

  6. Decitabine-induced demethylation of 5' CpG island in GADD45A leads to apoptosis in osteosarcoma cells.

    PubMed

    Al-Romaih, Khaldoun; Sadikovic, Bekim; Yoshimoto, Maisa; Wang, Yuzhuo; Zielenska, Maria; Squire, Jeremy A

    2008-05-01

    GADD45 genes are epigenetically inactivated in various types of cancer and tumor cell lines. To date, defects of the GADD45 gene family have not been implicated in osteosarcoma (OS) oncogenesis, and the role of this pathway in regulating apoptosis in this tumor is unknown. The therapeutic potential of Gadd45 in OS emerged when our previous studies showed that GADD45A was reexpressed by treatment with the demethylation drug decitabine. In this study, we analyze the OS cell lines MG63 and U2OS and show that on treatment with decitabine, a significant loss of DNA methylation of GADD45A was associated with elevated expression and induction of apoptosis. In vivo affects of decitabine treatment in mice showed that untreated control xenografts exhibited low nuclear staining for Gadd45a protein, whereas the nuclei from xenografts in decitabine-treated mice exhibited increased amounts of protein and elevated apoptosis. To show the specificity of this gene for decitabine-induced apoptosis in OS, GADD45A mRNAs were disrupted using short interference RNA, and the ability of the drug to induce apoptosis was reduced. Understanding the role of demethylation of GADD45A in reexpression of this pathway and restoration of apoptotic control is important for understanding OS oncogenesis and for more targeted therapeutic approaches. PMID:18472964

  7. Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

    SciTech Connect

    Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki; Imano, Motohiro; Ogaki, Mitsuhiko; Yanae, Masashi; Nishida, Shozo

    2012-03-15

    Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion, and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529/ONO-5920

  8. MicroRNA-26a induces osteosarcoma cell growth and metastasis via the Wnt/β-catenin pathway

    PubMed Central

    QU, FENG; LI, CHUN-BAO; YUAN, BANG-TUO; QI, WEI; LI, HONG-LIANG; SHEN, XUE-ZHEN; ZHAO, GANG; WANG, JIANG-TAO; LIU, YU-JIE

    2016-01-01

    MicroRNAs (miRNAs/miRs) are a type of highly conserved, small non-coding RNA that are vital to the post-transcriptional regulation of gene expression via base pairing with target mRNA 3′-untranslated regions (3′-UTRs). Several studies have indicated that the abnormal expression of miRNAs occurs frequently in human osteosarcoma (OS). In the present study, the role of miR-26a in the progression and metastasis of OS was investigated using reverse transcription-quantitative polymerase chain reaction, a luciferase activity assay, cell viability assay, in vitro migration and invasion assays, transfection and western blot analysis. miR-26a was upregulated in OS tissues and cell lines, and the expression of miR-26a was indicated to affect the proliferation, migration and invasion of OS Saos-2 cells. At the molecular level, the results showed that glycogen synthase kinase-3β (GSK-3β) was identified as a target of miR-26a, and the ectopic expression of miR-26a inhibited GSK-3β by directly binding to the 3′-UTR. Therefore, the expression of miR-26a was negatively correlated with GSK-3β in the OS tissues. These data suggest that miR-26a is significant in the proliferation of human OS cells due to the direct regulation of Wnt/β-catenin signaling. PMID:26893786

  9. Focal adhesion kinase overexpression and its impact on human osteosarcoma

    PubMed Central

    Chen, Yong; Yang, Aizhen; Chen, Hui; Zhang, Jian; Wu, Sujia; Shi, Xin; Wang, Chen; Sun, Xiaoliang

    2015-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. siRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis. PMID:26393679

  10. Growth factors, their receptor expression and markers for proliferation of endothelial and neoplastic cells in human osteosarcoma.

    PubMed

    Bianchi, E; Artico, M; Di Cristofano, C; Leopizzi, M; Taurone, S; Pucci, M; Gobbi, P; Mignini, F; Petrozza, V; Pindinello, I; Conconi, M T; Della Rocca, C

    2013-01-01

    Osteosarcoma is the most common primary malignant tumour of the bone. Although new therapies continue to be reported, osteosarcoma-related morbidity and mortality remain high. Modern medicine has greatly increased knowledge of the physiopathology of this neoplasm. Novel targets for drug development may be identified through an understanding of the normal molecular processes that are deeply modified in pathological conditions. The aim of the present study is to investigate, by immunohistochemistry, the localisation of different growth factors and of the proliferative marker Ki-67 in order to determine whether these factors are involved in the transformation of osteogenic cells and in the development of human osteosarcoma. We observed a general positivity for NGF - TrKA - NT3 - TrKC - VEGF in the cytoplasm of neoplastic cells and a strong expression for NT4 in the nuclear compartment. TGF-beta was strongly expressed in the extracellular matrix and vascular endothelium. BDNF and TrKB showed a strong immunolabeling in the extracellular matrix. Ki-67/MIB-1 was moderately expressed in the nucleus of neoplastic cells. We believe that these growth factors may be considered potential therapeutic targets in the treatment of osteosarcoma, although proof of this hypothesis requires further investigation. PMID:24067459