Science.gov

Sample records for outer halo stars

  1. CHEMICAL COMPOSITIONS OF KINEMATICALLY SELECTED OUTER HALO STARS

    SciTech Connect

    Zhang Lan; Zhao Gang; Ishigaki, Miho; Chiba, Masashi; Aoki, Wako E-mail: zhanglan@bao.ac.c E-mail: chiba@astr.tohoku.ac.j

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including alpha-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [alpha/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens and Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy.

  2. The Fractions of Inner- and Outer-halo Stars in the Local Volume

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Beers, Timothy C.; Santucci, Rafael M.; Carollo, Daniela; Placco, Vinicius M.; Lee, Young Sun; Rossi, Silvia

    2015-11-01

    We obtain a new determination of the metallicity distribution function (MDF) of stars within ˜5-10 kpc of the Sun, based on recently improved co-adds of ugriz photometry for Stripe 82 from the Sloan Digital Sky Survey. Our new estimate uses the methodology developed previously by An et al. to study in situ halo stars, but is based on a factor of two larger sample than available before, with much-improved photometric errors and zero-points. The newly obtained MDF can be divided into multiple populations of halo stars, with peak metallicities at [Fe/H] ≈ -1.4 and -1.9, which we associate with the inner-halo and outer-halo populations of the Milky Way, respectively. We find that the kinematics of these stars (based on proper-motion measurements at high Galactic latitude) supports the proposed dichotomy of the halo, as stars with retrograde motions in the rest frame of the Galaxy are generally more metal-poor than stars with prograde motions, consistent with previous claims. In addition, we generate mock catalogs of stars from a simulated Milk Way halo system, and demonstrate for the first time that the chemically and kinematically distinct properties of the inner- and outer-halo populations are qualitatively in agreement with our observations. The decomposition of the observed MDF and our comparison with the mock catalog results suggest that the outer-halo population contributes on the order of ˜35%-55% of halo stars in the local volume.

  3. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    SciTech Connect

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-12-10

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H].

  4. Very Metal-poor Outer-halo Stars with Round Orbits

    NASA Astrophysics Data System (ADS)

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-01

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  5. VERY METAL-POOR OUTER-HALO STARS WITH ROUND ORBITS

    SciTech Connect

    Hattori, Kohei; Yoshii, Yuzuru; Beers, Timothy C.; Carollo, Daniela; Lee, Young Sun

    2013-01-20

    The orbital motions of halo stars in the Milky Way reflect the orbital motions of the progenitor systems in which they formed, making it possible to trace the mass-assembly history of the Galaxy. Direct measurement of three-dimensional velocities, based on accurate proper motions and line-of-sight velocities, has revealed that the majority of halo stars in the inner-halo region move in eccentric orbits. However, our understanding of the motions of distant, in situ halo-star samples is still limited, due to the lack of accurate proper motions for these stars. Here we explore a model-independent analysis of the line-of-sight velocities and spatial distribution of a recent sample of 1865 carefully selected halo blue horizontal-branch (BHB) stars within 30 kpc of the Galactic center. We find that the mean rotational velocity of the very metal-poor ([Fe/H] < -2.0) BHB stars significantly lags behind that of the relatively more metal-rich ([Fe/H] > -2.0) BHB stars. We also find that the relatively more metal-rich BHB stars are dominated by stars with eccentric orbits, as previously observed for other stellar samples in the inner-halo region. By contrast, the very metal-poor BHB stars are dominated by stars on rounder, lower-eccentricity orbits. Our results indicate that the motion of the progenitor systems of the Milky Way that contributed to the stellar populations found within 30 kpc correlates directly with their metal abundance, which may be related to their physical properties such as gas fractions. These results are consistent with the existence of an inner/outer halo structure for the halo system, as advocated by Carollo et al.

  6. Outward Bound with RR Lyrae Stars: Studies of the Outer Halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Sesar, B.; Banholzer, S.

    2014-07-01

    We have isolated a sample of 734 RR Lyrae stars at distances beyond 50 kpc in the Milky Way halo from the Palomar Transient Facility database. We are using these to probe the density distribution in the halo out to about 100 kpc as well as the total mass of the Milky Way galaxy, which is still controversial and is important for near field cosmology. But we are hitting a number of limits in our effort to get further out. TMT coupled with a suitable wide field but deep multi-epoch imaging survey (i.e. LSST) will enable us to probe to the outer edge of our Galaxy.

  7. CARBON-ENHANCED METAL-POOR STARS IN THE INNER AND OUTER HALO COMPONENTS OF THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Kennedy, Catherine R.; Bovy, Jo; Sivarani, Thirupathi; Aoki, Wako E-mail: kcf@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: kenne257@msu.edu E-mail: sivarani@iiap.res.in

    2012-01-10

    Carbon-enhanced metal-poor (CEMP) stars in the halo components of the Milky Way are explored, based on accurate determinations of the carbon-to-iron ([C/Fe]) abundance ratios and kinematic quantities for over 30,000 calibration stars from the Sloan Digital Sky Survey. Using our present criterion that low-metallicity stars exhibiting [C/Fe] ratios ({sup c}arbonicity{sup )} in excess of [C/Fe] =+0.7 are considered CEMP stars, the global frequency of CEMP stars in the halo system for [Fe/H] <-1.5 is 8%, for [Fe/H] <-2.0 it is 12%, and for [Fe/H] <-2.5 it is 20%. We also confirm a significant increase in the level of carbon enrichment with declining metallicity, growing from ([C/Fe]) {approx}+1.0 at [Fe/H] =-1.5 to ([C/Fe]) {approx}+1.7 at [Fe/H] =-2.7. The nature of the carbonicity distribution function (CarDF) changes dramatically with increasing distance above the Galactic plane, |Z|. For |Z| <5 kpc, relatively few CEMP stars are identified. For distances |Z| >5 kpc, the CarDF exhibits a strong tail toward high values, up to [C/Fe] > +3.0. We also find a clear increase in the CEMP frequency with |Z|. For stars with -2.0 < [Fe/H] <-1.5, the frequency grows from 5% at |Z| {approx}2 kpc to 10% at |Z| {approx}10 kpc. For stars with [Fe/H] <-2.0, the frequency grows from 8% at |Z| {approx}2 kpc to 25% at |Z| {approx}10 kpc. For stars with -2.0 < [Fe/H] <-1.5, the mean carbonicity is ([C/Fe]) {approx}+1.0 for 0 kpc < |Z| < 10 kpc, with little dependence on |Z|; for [Fe/H] <-2.0, ([C/Fe]) {approx}+1.5, again roughly independent of |Z|. Based on a statistical separation of the halo components in velocity space, we find evidence for a significant contrast in the frequency of CEMP stars between the inner- and outer-halo components-the outer halo possesses roughly twice the fraction of CEMP stars as the inner halo. The carbonicity distribution also differs between the inner-halo and outer-halo components-the inner halo has a greater portion of stars with modest carbon

  8. The Outer Halo -- Halo Origins and Mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Morrison, Heather; Arabadjis, John; Dohm-Palmer, Robbie; Freeman, Ken; Harding, Paul; Mateo, Mario; Norris, John; Olszewski, Ed; Sneden, Chris

    2000-02-01

    Through our detection of distant halo stars, we are now well placed to map the regions of the Galactic halo where previously only satellite galaxies and a few globular clusters were known. Mapping this region is crucial for answering questions like: How and over what timescales was the Milky Way's stellar halo assembled? What is the total mass and shape of its dark halo? The Sagittarius dwarf has demonstrated that at least some of the stellar halo was accreted. But, HOW MUCH of the halo was accreted? Our previous efforts have proven that the Washington photometric system, in conjuction with spectroscopy, is capable of efficiently and unambiguously identifying halo stars out to 100 kpc or more. We require followup spectroscopy to map velocity substructure, which is more likely visible in the outer halo because of the long dynamical timescales, and to identify the rare objects in the extreme outer halo which will constrain the shape and size of its dark halo. We are applying for 4m/RCSP time at both CTIO and KPNO to observe faint outer-halo giant and BHB candidates.

  9. The Outer Galactic Halo As Probed By RR Lyr Stars From the Palomar Transient Facility + Keck

    NASA Astrophysics Data System (ADS)

    Cohen, Judith; Sesar, Branimir; Banholzer, Sophianna

    2016-08-01

    We present initial results from our study of the outer halo of the Milky Way using a large sample of RR Lyr(ab) variables datamined from the archives of the Palomar Transient Facility. Of the 464 RR Lyr in our sample with distances exceeding 50 kpc, 62 have been observed spectroscopically at the Keck Observatory. vr and σ(vr ) are given as a function of distance between 50 and 110 kpc, and a very preliminary rather low total mass for the Milky Way out to 110 kpc of ~7+/-1.5×1011 M ⊙ is derived from our data.

  10. The structure of star clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Mackey, A. D.; Ferguson, A. M. N.; Huxor, A.; Read, J. I.; Lewis, G. F.; Irwin, M. J.; Chapman, S.; Ibata, R.; Wilkinson, M. I.; McConnachie, A. W.; Martin, N. F.; Davies, M. B.; Bridges, T. J.

    2012-05-01

    We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with ˜20 parsec core radii and ˜100 parsec photometric tidal radii, or by Sérsic profiles of index ˜1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sérsic profiles of index ˜2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kpc.

  11. The Outer Halo Metallicity Distribution

    NASA Astrophysics Data System (ADS)

    MA, ZHIBO; Morrison, H.; Harding, P.; Xue, X.; Rix, H.; Rockosi, C.; Johnson, J.; Lee, Y.; Cudworth, K.

    2012-01-01

    We present a new determination of the metallicity distribution function in the Milky Way halo, based on an in situ sample of more than 5000 K giants from SDSS/SEGUE. We have also measured the metallicity gradient in the halo, using our sample which stretches from 5 kpc to more than 100 kpc from the galactic center. The halo metallicity gradient has been a controversial topic in recent studies, but our in-situ study overcomes the problems caused in these studies by their extrapolations from local samples to the distant halo. We also describe our extensive checks of the log g and [Fe/H] measurements from the SEGUE Stellar Parameters pipeline, using globular and open cluster stars and SEGUE stars with follow-up high-resolution analysis. In addition, we present a new Bayesian estimate of distances to the K giants, which avoids the distance bias introduced by the red giant branch luminosity function.

  12. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  13. ASSEMBLY OF THE OUTER GALACTIC STELLAR HALO IN THE HIERARCHICAL MODEL

    SciTech Connect

    Murante, Giuseppe; Curir, Anna; Poglio, Eva; Villalobos, Alvaro E-mail: curir@oato.inaf.i E-mail: villalobos@oats.inaf.i

    2010-06-20

    We provide a set of numerical N-body simulations for studying the formation of the outer Milky Ways' stellar halo through accretion events. After simulating minor mergers of prograde and retrograde orbiting satellite halos with a dark matter main halo, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions where a retrograde signal in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the Milky Way stellar halo. Our results show that, for satellites more massive than {approx}1/40 of the main halo, the dynamical friction has a fundamental role in assembling the final velocity distributions resulting from different orbits and that retrograde satellites moving on low-inclination orbits deposit more stars in the outer halo regions and therefore can produce the counter-rotating behavior observed in the outer Milky Way halo.

  14. Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Totten, E. J.; Irwin, M. J.

    1996-04-01

    A byproduct of the APM high redshift quasar survey (Irwin et al. 1991) was the discovery of ~ 20 distant (20-100kpc) cool AGB carbon stars (all N-type) at high Galactic latitude. In August we used the INT+IDS to survey the rest of the high latitude SGC sky visible from La Palma and found 10 more similar carbon stars. Before this work there were only a handful of published faint high latitude cool carbon stars known (eg. Margon et al., 1984, Mould et al., 1985) and there has been speculation as to their origin (eg. Sanduleak, 1980, van den Bergh & Lafontaine, 1984). Intermediate age carbon stars (3 -- 7 Gyrs) seem unlikely to have formed in the halo in isolation from other star forming regions so how did they get there ? One possiblity that we are investigating, is that they arise from either the disruption of tidally captured dSph galaxies or are a manifestion of the long sought after optical component of the Magellanic Stream. Lack of proper motion rules out the possibility of them being dwarf carbon stars (eg. Warren et al., 1992); indeed no N-type carbon stars have been found to be dwarf carbon stars. Our optical spectroscopy confirms their carbon star type (they are indistinguishable from cool AGB carbon stars in nearby dwarf galaxies) and hence probable large distances. We are extending our survey to the NGC region, obtaining radial velocities and good S:N fluxed spectra for all the carbon stars. This will enable us to investigate their kinematics, true spatial distribution and hence their origin. Even, in the event that these objects are somehow an integral part of the Galactic halo, then their velocities and large distances will enable direct studies of the velocity ellipsoid and rotation of the outer halo (eg. Green et al., 1994).

  15. THE M33 GLOBULAR CLUSTER SYSTEM WITH PAndAS DATA: THE LAST OUTER HALO CLUSTER?

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Ferguson, Annette M. N. E-mail: harris@physics.mcmaster.ca

    2011-04-01

    We use CFHT/MegaCam data to search for outer halo star clusters in M33 as part of the Pan-Andromeda Archaeological Survey. This work extends previous studies out to a projected radius of 50 kpc and covers over 40 deg{sup 2}. We find only one new unambiguous star cluster in addition to the five previously known in the M33 outer halo (10 kpc {<=} r {<=} 50 kpc). Although we identify 2440 cluster candidates of various degrees of confidence from our objective image search procedure, almost all of these are likely background contaminants, mostly faint unresolved galaxies. We measure the luminosity, color, and structural parameters of the new cluster in addition to the five previously known outer halo clusters. At a projected radius of 22 kpc, the new cluster is slightly smaller, fainter, and redder than all but one of the other outer halo clusters, and has g' {approx} 19.9, (g' - i') {approx} 0.6, concentration parameter c {approx} 1.0, a core radius r{sub c} {approx} 3.5 pc, and a half-light radius r{sub h} {approx} 5.5 pc. For M33 to have so few outer halo clusters compared to M31 suggests either tidal stripping of M33's outer halo clusters by M31, or a very different, much calmer accretion history of M33.

  16. PROBING THE HALO FROM THE SOLAR VICINITY TO THE OUTER GALAXY: CONNECTING STARS IN LOCAL VELOCITY STRUCTURES TO LARGE-SCALE CLOUDS

    SciTech Connect

    Johnston, Kathryn V.; Sheffield, Allyson A.; Majewski, Steven R.; Sharma, Sanjib; Rocha-Pinto, Helio J.

    2012-11-20

    This paper presents the first potential connections made between two local features in velocity space found in a survey of M giant stars and stellar spatial inhomogeneities on global scales. Comparison to cosmological, chemodynamical stellar halo models confirms that the M giant population is particularly sensitive to rare, recent and massive accretion events. These events can give rise to locally observed velocity sequences-each made from a small fraction of debris from a massive progenitor, passing at high velocity through the survey volume, near the pericenter of the eccentric orbit of the system. The majority of the debris is found in much larger structures, whose morphologies are more cloud-like than stream-like and which lie at the orbital apocenters. Adopting this interpretation, the full-space motions represented by the observed M giant velocity features are derived under the assumption that the members within each sequence share a common space velocity. Orbit integrations are then used to trace the past and future trajectories of these stars across the sky revealing plausible associations with large, previously discovered, cloud-like structures. The connections made between nearby velocity structures and these distant clouds represent preliminary steps toward developing coherent maps of such giant debris systems. These maps promise to provide new insights into the origin of debris clouds, new probes of Galactic history and structure, and new constraints on the high-velocity tails of the local dark matter distribution that are essential for interpreting direct dark matter particle detection experiments.

  17. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  18. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  19. TRACING THE OUTER HALO IN A GIANT ELLIPTICAL TO 25 R {sub eff}

    SciTech Connect

    Rejkuba, M.; Harris, W. E.; Greggio, L.; Harris, G. L. H.; Jerjen, H.; Gonzalez, O. A.

    2014-08-10

    We have used the Advanced Camera for Surveys and Wide Field Camera 3 cameras on board the Hubble Space Telescope to resolve stars in the halo of the nearest giant elliptical (gE) galaxy NGC 5128 out to a projected distance of 140 kpc (25 effective radii, R {sub eff}) along the major axis and 90 kpc (16 R {sub eff}) along the minor axis. This data set provides an unprecedented radial coverage of the stellar halo properties in any gE galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128, even in our most distant fields. The star counts demonstrate increasing flattening of the outer halo, which is elongated along the major axis of the galaxy. The V – I colors of the red giants enable us to measure the metallicity distribution in each field and so map the gradient out to ∼16 R {sub eff} from the galaxy center along the major axis. A median metallicity is obtained even for the outermost fields along both axes. We observe a smooth transition from a metal-rich ([M/H] ∼0.0) inner galaxy to lower metallicity in the outer halo, with the metallicity gradient slope along the major axis of Δ[M/H]/ΔR ≅ –0.0054 ± 0.0006 dex kpc{sup –1}. In the outer halo, beyond ∼10 R {sub eff}, the number density profile follows a power law, but also significant field-to-field metallicity and star count variations are detected. The metal-rich component dominates in all observed fields, and the median metallicity is [M/H] >–1 dex in all fields.

  20. Red giants in the outer halo of the elliptical galaxy NGC 5128/Centaurus A

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Flynn, Chris; Harris, William E.; Valtonen, Mauri

    2015-03-01

    We used VIMOS on VLT to perform V and I band imaging of the outermost halo of NGC 5128/Centaurus A ((m - M)0 = 27.91±0.08), 65 kpc from the galaxy's center and along the major axis. The stellar population has been resolved to I0 ≈ 27 with a 50% completeness limit of I0 = 24.7, well below the tip of the red-giant branch (TRGB), which is seen at I0 ≈ 23.9. The surface density of NGC 5128 halo stars in our fields was sufficiently low that dim, unresolved background galaxies were a major contaminant in the source counts. We isolated a clean sample of red-giant-branch (RGB) stars extending to ≈0.8 mag below the TRGB through conservative magnitude and color cuts, to remove the (predominantly blue) unresolved background galaxies. We derived stellar metallicities from colors of the stars via isochrones and measured the density falloff of the halo as a function of metallicity by combining our observations with HST imaging taken of NGC 5128 halo fields closer to the galaxy center. We found both metal-rich and metal-poor stellar populations and found that the falloff of the two follows the same de Vaucouleurs' law profiles from ≈8 kpc out to ≈70 kpc. The metallicity distribution function (MDF) and the density falloff agree with the results of two recent studies of similar outermost halo fields in NGC 5128. We found no evidence of a "transition" in the radial profile of the halo, in which the metal-rich halo density would drop rapidly, leaving the underlying metal-poor halo to dominate by default out to greater radial extent, as has been seen in the outer halo of two other large galaxies. If NGC 5128 has such a transition, it must lie at larger galactocentric distances.

  1. Mass segregation in the outer halo globular cluster Palomar 14

    NASA Astrophysics Data System (ADS)

    Frank, Matthias J.; Grebel, Eva K.; Küpper, Andreas H. W.

    2014-09-01

    We present evidence for mass segregation in the outer halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope imaging, we analyse the radial dependence of the stellar mass function in the cluster's inner 39.2 pc in the mass range of 0.53 ≤ m ≤ 0.80 M⊙, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6 ± 0.2 in the cluster's core to a slope of 1.6 ± 0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al., who interpret the cluster's non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the cluster's expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.

  2. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  3. Cool Carbon Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Gigoyan, K. S.

    2016-06-01

    In this paper we report current status of search and study for Faint High Latitude Carbon Stars (FHLCs). Data for more than 1800 spectroscopically confirmed FHLCs are known, which are found thanks to objective prism surveys and photometric selections. More than half of the detected objects belongs to group of dwarf Carbon (dC) stars. Many-sided investigations based on modern astrophysical databases are necessary to study the space distribution of different groups of the FHLC stars and their possible origin in the Halo of our Galaxy. We report about the selection of FHLCs by the spectroscopic surveys: First Byurakan Survey (FBS), Hamburg/ESO Survey (HES), LAMOST Pilot Survey and SDSS, as well as by photometric selection: APM Survey for Cool Carbon Stars in the Galactic Halo, SDSS and 2MASS JHK colours.

  4. The outer profile of dark matter haloes: an analytical approach

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-07-01

    A steepening feature in the outer density profiles of dark matter haloes indicating the splashback radius has drawn much attention recently. Possible observational detections have even been made for galaxy clusters. Theoretically, Adhikari et al. have estimated the location of the splashback radius by computing the secondary infall trajectory of a dark matter shell through a growing dark matter halo with an NFW profile. However, since they imposed a shape of the halo profile rather than computing it consistently from the trajectories of the dark matter shells, they could not provide the full shape of the dark matter profile around the splashback radius. We improve on this by extending the self-similar spherical collapse model of Fillmore & Goldreich to a ΛCDM universe. This allows us to compute the dark matter halo profile and the trajectories simultaneously from the mass accretion history. Our results on the splashback location agree qualitatively with Adhikari et al. but with small quantitative differences at large mass accretion rates. We present new fitting formulae for the splashback radius Rsp in various forms, including the ratios of Rsp/R200c and Rsp/R200m. Numerical simulations have made the puzzling discovery that the splashback radius scales well with R200m but not with R200c. We trace the origin of this to be the correlated increase of Ωm and the average halo mass accretion rate with an increasing redshift.

  5. The outer profile of dark matter halos: an analytical approach

    NASA Astrophysics Data System (ADS)

    Shi, Xun

    2016-04-01

    A steepening feature in the outer density profiles of dark matter halos indicating the splashback radius has drawn much attention recently. Possible observational detections have even been made for galaxy clusters. Theoretically, Adhikari et al. have estimated the location of the splashback radius by computing the secondary infall trajectory of a dark matter shell through a growing dark matter halo with an NFW profile. However, since they imposed a shape of the halo profile rather than computing it consistently from the trajectories of the dark matter shells, they could not provide the full shape of the dark matter profile around the splashback radius. We improve on this by extending the self-similar spherical collapse model of Fillmore & Goldreich to a ΛCDM universe. This allows us to compute the dark matter halo profile and the trajectories simultaneously from the mass accretion history. Our results on the splashback location agree qualitatively with Adhikari et al. but with small quantitative differences at large mass accretion rates. We present new fitting formulae for the splashback radius Rsp in various forms, including the ratios of Rsp/R200c and Rsp/R200m. Numerical simulations have made the puzzling discovery that the splashback radius scales well with R200m but not with R200c. We trace the origin of this to be the correlated increase of Ωm and the average halo mass accretion rate with an increasing redshift.

  6. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  7. Star formation in the outer disks of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Barnes, Kate Lynn

    of the outer stellar disk and halo of M83 to determine the mass of the tidal stream and discuss formation scenarios for the stellar, gaseous, and extended ultraviolet (XUV) star forming disk.

  8. The Chemical Composition of Halo Stars on Extreme Orbits

    NASA Astrophysics Data System (ADS)

    Stephens, Alex

    1999-04-01

    Presented within is a fine spectroscopic analysis of 11 metal-poor (-2.15<[Fe/H]<-1.00) dwarf stars on orbits that penetrate the outermost regions of the Galactic halo. Abundances for a select group of light metals (Na, Mg, Si, Ca, and Ti), Fe-peak nuclides (Cr, Fe, and Ni), and neutron-capture elements (Y and Ba) were calculated using line strengths measured from high-resolution (R~48,000), high signal-to-noise ratio (S/N~110pixel^-1) echelle spectra acquired with the Keck I 10 m telescope and HIRES spectrograph. Ten of the stars have apogalactica, a proxy for stellar birthplace, which stretch between 25 and 90 kpc; however, these ``outer halo'' stars exhibit strikingly uniform abundances. The average, Fe-normalized abundances-<[Mg/Fe]>=+0.23+/-0.09, <[Si/Fe]>=+0.24+/-0.10, <[Ca/Fe]>=+0.22+/-0.07, <[Ti/Fe]>=+0.20+/-0.08, <[Cr/Fe]>=0.02+/-0.07, <[Ni/Fe]>=-0.09+/-0.07, and <[Ba/Fe]>=+0.01+/-0.12-exhibit little intrinsic scatter; moreover, the evolution of individual ratios (as a function of [Fe/H]) is generally consistent with the predictions of galactic chemical evolution models dominated by the ejecta of core-collapse supernovae. Only <[Y/Fe]>=-0.13+/-0.21 exhibits a dispersion larger than observational uncertainties, which suggests a different nucleosynthesis site for this element. It has been conjectured that stars on high-energy orbits-either those that penetrate the remote halo or ones with extreme retrograde velocities-were once associated with a cannibalized satellite galaxy. Such stars, as shown here, are indistinguishable from metal-poor dwarfs of the inner Galactic halo. The uniformity of the abundances, regardless of kinematic properties, suggests that physically, spatially, and temporally distinct star-forming regions within (or near) the growing Milky Way experienced grossly similar chemical evolution histories. Implications for galaxy formation scenarios are discussed.

  9. Major substructure in the M31 Outer Halo: the East Cloud

    NASA Astrophysics Data System (ADS)

    McMonigal, B.; Bate, N. F.; Conn, A. R.; Mackey, A. D.; Lewis, G. F.; Irwin, M. J.; Martin, N. F.; McConnachie, A. W.; Ferguson, A. M. N.; Ibata, R. A.; Huxor, A. P.

    2016-02-01

    We present the first detailed analysis of the East Cloud, a highly disrupted diffuse stellar substructure in the outer halo of M31. The core of the substructure lies at a projected distance of ˜100 kpc from the centre of M31 in the outer halo, with possible extensions reaching right into the inner halo. Using Pan-Andromeda Archaeological Survey photometry of red giant branch stars, we measure the distance, metallicity and brightness of the cloud. Using Hubble Space Telescope data, we independently measure the distance and metallicity to the two globular clusters coincident with the East Cloud core, PA-57 and PA-58, and find their distances to be consistent with the cloud. Four further globular clusters coincident with the substructure extensions are identified as potentially associated. Combining the analyses, we determine a distance to the cloud of 814^{+20}_{-9} kpc, a metallicity of [Fe/H] = -1.2 ± 0.1, and a brightness of MV = -10.7 ± 0.4 mag. Even allowing for the inclusion of the potential extensions, this accounts for less than 20 per cent of the progenitor luminosity implied by the luminosity-metallicity relation. Using the updated techniques developed for this analysis, we also refine our estimates of the distance and brightness of the South-West Cloud, a separate substructure analysed in the previous work in this series.

  10. Carbon-enhanced metal-poor stars: CEMP-s and CEMP-no subclasses in the halo system of the Milky Way

    SciTech Connect

    Carollo, Daniela; Freeman, Ken; Beers, Timothy C.; Placco, Vinicius M.; Tumlinson, Jason; Martell, Sarah L. E-mail: kcf@mso.anu.edu.au E-mail: vplacco@gemini.edu E-mail: smartell@aao.gov.au

    2014-06-20

    We explore the kinematics and orbital properties of a sample of 323 very metal-poor stars in the halo system of the Milky Way, selected from the high-resolution spectroscopic follow-up studies of Aoki et al. and Yong et al. The combined sample contains a significant fraction of carbon-enhanced metal-poor (CEMP) stars (22% or 29%, depending on whether a strict or relaxed criterion is applied for this definition). Barium abundances (or upper limits) are available for the great majority of the CEMP stars, allowing for their separation into the CEMP-s and CEMP-no subclasses. A new method to assign membership to the inner- and outer-halo populations of the Milky Way is developed, making use of the integrals of motion, and applied to determine the relative fractions of CEMP stars in these two subclasses for each halo component. Although limited by small-number statistics, the data suggest that the inner halo of the Milky Way exhibits a somewhat higher relative number of CEMP-s stars than CEMP-no stars (57% versus 43%), while the outer halo possesses a clearly higher fraction of CEMP-no stars than CEMP-s stars (70% versus 30%). Although larger samples of CEMP stars with known Ba abundances are required, this result suggests that the dominant progenitors of CEMP stars in the two halo components were different; massive stars for the outer halo, and intermediate-mass stars in the case of the inner halo.

  11. Two New Ultra-Faint Star Clusters in the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Kim, Dongwon

    2016-08-01

    Kim 1 & 2 are two new star clusters discovered in the Stromlo Missing Satellite Survey. Kim 1, located at a heliocentric distance of 19.8 +/- 0.9 kpc, features an extremely low total luminosity (M V = 0.3 +/- 0.5 mag) and low star concentration. Together with the large ellipticity (ɛ = 0.42 +/- 0.10) and irregular isophotes, these properties suggest that Kim 1 is an intermediate mass star cluster being stripped by the Galactic tidal field. Kim 2 is a rare ultra-faint outer halo globular cluster located at a heliocentric distance of 104.7 +/- 4.1 kpc. The cluster exhibits evidence of significant mass loss such as extra-tidal stars and mass-segregation. Kim 2 is likely to follow an orbit confined to the peripheral region of the Galactic halo, and/or to have formed in a dwarf galaxy that was later accreted into the Galactic halo.

  12. Characterizing stellar halo populations II: The age gradient in blue horizontal-branch stars

    NASA Astrophysics Data System (ADS)

    Das, Payel; Williams, Angus; Binney, James

    2016-08-01

    The distribution of Milky Way halo blue horizontal-branch (BHB) stars is examined using action-based extended distribution functions (EDFs) that describe the locations of stars in phase space, metallicity, and age. The parameters of the EDFs are fitted using stars observed in the Sloan Extension for Galactic Understanding and Exploration-II (SEGUE-II) survey that trace the phase-space kinematics and chemistry out to ˜70 kpc. A maximum a posteriori probability (MAP) estimate method and a Markov Chain Monte Carlo method are applied, taking into account the selection function in positions, distance, and metallicity for the survey. The best-fit EDF declines with actions less steeply at actions characteristic of the inner halo than at the larger actions characteristic of the outer halo, and older ages are found at smaller actions than at larger actions. In real space, the radial density profile steepens smoothly from -2 at ˜2 kpc to -4 in the outer halo, with an axis ratio ˜0.7 throughout. There is no indication for rotation in the BHBs, although this is highly uncertain. A moderate level of radial anisotropy is detected, with βs varying from isotropic to between ˜0.1 and ˜0.3 in the outer halo depending on latitude. The BHB data are consistent with an age gradient of -0.03 Gyr kpc-1, with some uncertainty in the distribution of the larger ages. These results are consistent with a scenario in which older, larger systems contribute to the inner halo, whilst the outer halo is primarily comprised of younger, smaller systems.

  13. Lithium in halo stars from standard stellar evolution

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.

    1990-01-01

    A grid has been constructed of theoretical evolution sequences of models for low-metallicity stars from the premain-sequence to the giant branch phases. The grid is used to study the history of surface Li abundance during standard stellar evolution. The Li-7 observations of halo stars by Spite and Spite (1982) and subsequent observations are synthesized to separate the halo stars by age. The theory of surface Li abundance is illustrated by following the evolution of a reference halo star model from the contracting fully convective premain sequence to the giant branch phase. The theoretical models are compared with observed Li abundances. The results show that the halo star lithium abundances can be explained in the context of standard stellar evolution theory using completely standard assumptions and physics.

  14. The metallicity distributon function of halo stars

    NASA Astrophysics Data System (ADS)

    Beers, T. C.; Christlieb, N.

    2005-01-01

    Over the past two decades a worldwide effort to obtain medium-resolution spectroscopic confirmation of candidate low-metallicity stars in the halo and thick disk of the Galaxy has produced ~ 8000 1-2 A observations of stars selected from the HK objective prism survey of Beers and colleagues. More recently the Hamburg/ESO prism survey of Christlieb and collaborators has produced a larger and better understood selection of metal-poor candidates that explore a much larger volume of the Galaxy than was available to the HK survey. We summarize the final derived Metallicity Distribution Function (MDF) of the HK survey objects and compare it with that obtained from the first several years of the HES follow-up effort. In particular we investigate whether there is evidence for a change in the nature of the MDF as a function of distance from the Galactic center which could have profound implications for the nature of the formation and evolution of the Milky Way and for galaxy formation in general.

  15. MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY

    SciTech Connect

    De Propris, Roberto; Harrison, Craig D.; Mares, Peter J.

    2010-08-20

    We use 666 blue horizontal branch stars from the 2Qz Redshift Survey to map the Galactic halo in four dimensions (position, distance, and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index {approx}-2.5 in two different directions separated by about 150{sup 0} on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds, or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase toward large radii while the stellar velocity distribution is non-Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.

  16. Outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen

    2006-03-01

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  17. Outer crust of nonaccreting cold neutron stars

    SciTech Connect

    Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen

    2006-03-15

    The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.

  18. Stellar Over-Densities in the Outer Halo of the MilkyWay

    NASA Astrophysics Data System (ADS)

    Keller, Stefan C.

    2010-03-01

    This study presents a tomographic survey of a subset of the outer halo (10-40 kpc) drawn from the Sloan Digital Sky Survey Data Release 6. Halo substructure on spatial scales of >3 degrees is revealed as an excess in the local density of sub-giant stars. With an appropriate assumption of a model stellar isochrone it is possible for us to then derive distances to the sub-giant population. We describe three new candidate halo substructures; the 160- and 180-degree over-densities (at distances of 17 and 19 kpc respectively and radii of 1.3 and 1.5 kpc respectively) and an extended feature at 28 kpc that covers at least 162 deg2, the Virgo Equatorial Stream. In addition, we recover the Sagittarius dwarf galaxy (Sgr) leading-arm material and the Virgo Over-Density. The derived distances, together with the number of sub-giant stars associated with each substructure, enables us to derive the integrated luminosity for the features. The tenuous, low surface brightness of the features strongly suggests an origin from the tidal disruption of an accreted galaxy or galaxies. Given the dominance of the tidal debris of Sgr in this region of the sky we investigate if our observations can be accommodated by tidal disruption models for Sgr. The clear discordance between observations and model predictions for known Sgr features means it is difficult to tell unambiguously if the new substructures are related to Sgr or not. Radial velocities in the stellar over-densities will be critical in establishing their origins.

  19. Connecting Galaxies, Halos, and Star Formation Rates Across Cosmic Time

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2008-06-02

    A simple, observationally-motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs--i.e. more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity- and scale-dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate--stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M{sub star} {approx} 10{sup 10.0-10.5} M{sub {circle_dot}} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M{sub vir} {approx} 10{sup 11.5-12.5} M{sub {circle_dot}}. The star formation rate--halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of 'downsizing', (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar build-up of galaxies

  20. CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME

    SciTech Connect

    Conroy, Charlie; Wechsler, Risa H.

    2009-05-01

    A simple, observationally motivated model is presented for understanding how halo masses, galaxy stellar masses, and star formation rates are related, and how these relations evolve with time. The relation between halo mass and galaxy stellar mass is determined by matching the observed spatial abundance of galaxies to the expected spatial abundance of halos at multiple epochs, i.e., more massive galaxies are assigned to more massive halos at each epoch. This 'abundance matching' technique has been shown previously to reproduce the observed luminosity and scale dependence of galaxy clustering over a range of epochs. Halos at different epochs are connected by halo mass accretion histories estimated from N-body simulations. The halo-galaxy connection at fixed epochs in conjunction with the connection between halos across time provides a connection between observed galaxies across time. With approximations for the impact of merging and accretion on the growth of galaxies, one can then directly infer the star formation histories of galaxies as a function of stellar and halo mass. This model is tuned to match both the observed evolution of the stellar mass function and the normalization of the observed star formation rate (SFR)-stellar mass relation to z {approx} 1. The data demands, for example, that the star formation rate density is dominated by galaxies with M {sub star} {approx} 10{sup 10.0-10.5} M {sub sun} from 0 < z < 1, and that such galaxies over these epochs reside in halos with M {sub vir} {approx} 10{sup 11.5-12.5} M {sub sun}. The SFR-halo mass relation is approximately Gaussian over the range 0 < z < 1 with a mildly evolving mean and normalization. This model is then used to shed light on a number of issues, including (1) a clarification of {sup d}ownsizing{sup ,} (2) the lack of a sharp characteristic halo mass at which star formation is truncated, and (3) the dominance of star formation over merging to the stellar buildup of galaxies with M {sub star

  1. DUST-SCATTERED ULTRAVIOLET HALOS AROUND BRIGHT STARS

    SciTech Connect

    Murthy, Jayant; Henry, Richard Conn

    2011-06-10

    We have discovered ultraviolet (UV) halos extending as far as 5 deg. around four (of six) bright UV stars using data from the Galaxy Evolution Explorer satellite. These halos are due to scattering of the starlight from nearby thin, foreground dust clouds. We have placed limits of 0.58 {+-} 0.12 and 0.72 {+-} 0.06 on the phase function asymmetry factor (g) in the FUV (1521 A) and NUV (2320 A) bands, respectively. We suggest that these halos are a common feature around bright stars and may be used to explore the scattering function of interstellar grains at small angles.

  2. Deep CCD Photometry and RR Lyrae Survey for the Outer-Halo Globular Cluster NGC 6229

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Borissova, J.; Spassova, N.; Ferraro, F. R.; Buonanno, R.; Sweigart, A. V.

    1997-12-01

    Deep BV CCD photometry for a large field covering the outer-halo Galactic globular cluster NGC 6229 is presented. For the first time, a color-magnitude diagram (CMD) reaching below the main-sequence turnoff has been obtained for this cluster. Previous results regarding the overall morphology of the horizontal and giant branches are confirmed. In addition, several candidate blue straggler stars are identified. However, a preliminary analysis of the cluster's CMD suggests that the putative extreme horizontal branch population suggested by Borissova et al. (1997, AJ, 113, 692) may not be present. Unfortunately, the innermost cluster regions could not be studied due to crowding. Comparison of the cluster CMD locus with the latest isochrones from VandenBerg (1997, private communication) is also presented, as is a study of the cluster age relative to a few well-studied reference globulars, using both the ``horizontal" and ``vertical" methods. We also report on an investigation of the variable stars in NGC 6229. We obtained new light curves and re-derived the periods, amplitudes and mean V and B-V magnitudes for 17 RR Lyrae stars listed in Sawyer Hogg's (1973, Publ. David Dunlap Obs., 3, No. 6) catalog. We obtained the first light curves for the RR Lyrae candidates No. 155 and No. 88 (Carney et al. 1991, AJ, 101, 1699), and confirm variability of their star No. 134, as well as of the RR Lyrae stars V3, V8 and V12 suspected by Borissova et al. (1997). A search for variable stars in our 5 x 5 arcmin field does not lead to any new variable candidates.

  3. The Most Ancient Stars in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.; Casey, Andrew R.

    2015-08-01

    The earliest phase of the assembly of the Milky Way's stellar halo is encoded in the detailed abundances of its oldest stars. It is tempting to assert that extremely metal-poor stars in the halo are the direct descendants of the first stars. This is not necessarily the case though, as metal-poor stars form over a range of redshift in halos of varying mass and environment. Since halos form from the inside out, the oldest stars at a given metallicity are found near the center of a halo on the most tightly-bound orbits. The oldest stars in the Milky Way are therefore the most metal-poor stars in -- but not necessarily of -- the bulge. We have developed a new selection that uses only public infrared photometry to identify metal-poor star candidates through their lack of molecular absorption near 4.6 microns. A pilot high-resolution follow-up program has verified that our selection is as efficient as previous techniques, yet is capable of finding bright metal-poor stars in areas of high reddening. Our pilot survey has already identified three of the most metal-poor stars known in the bulge. We find that with the exception of scandium, all three stars follow the abundance trends identified previously for metal-poor halo stars. These three stars have the lowest [Sc/Fe] abundances yet seen in alpha-enhanced giant stars in the Galaxy. The only place that a similar abundance pattern has been observed is the ultra-faint dwarf spheroidal galaxy Coma Berenices, which is thought to have an age of 13.9 +/- 0.3 Gyr. Theoretical models predict that there is a 30% chance that at least one of these stars formed at z > 15, while there is a 70% chance that at least one formed at 10 < z < 15. These observations imply that by z ˜ 10, the progenitor galaxies of the Milky Way had both reached [Fe/H] ˜ -3.0 and established the abundance pattern observed in extremely metal-poor stars.

  4. The age of the halo as determined from halo field stars

    NASA Astrophysics Data System (ADS)

    Guo, Jin-Cheng; Liu, Chao; Liu, Ji-Feng

    2016-03-01

    The age of the Galactic halo is a critical parameter that can constrain the origin of the stellar halo. In general, the Galactic stellar halo is believed to be very old. However, different independent measurements and techniques based on various types of stars are required so that the age estimates of the Galactic halo are accurate, robust, and reliable. In this work, we provide a novel approach to determine the age of the halo with turn-off stars. We first carefully select 63 field halo turn-off stars from the literature. Then, we compare them with the GARSTEC model, which takes the process of atomic diffusion into account in the B - V vs. metallicity plane. Finally, we run Monte Carlo simulations to consider the uncertainty of the color index and obtain the age of 10.5 ± 1.5 Gyr. This result is in agreement with previous studies. Future works are needed to collect more turn-off samples with more accurate photometry to reduce the uncertainty of the age.

  5. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    SciTech Connect

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: wbrown@cfa.harvard.edu E-mail: skenyon@cfa.harvard.edu

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  6. STELLAR POPULATIONS IN THE OUTER HALO OF THE MASSIVE ELLIPTICAL M49

    SciTech Connect

    Mihos, J. Christopher; Harding, Paul; Rudick, Craig S.; Feldmeier, John J. E-mail: paul.harding@case.edu E-mail: jjfeldmeier@ysu.edu

    2013-02-20

    We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49's stellar halo out to {approx}100 kpc (7r{sub e}), where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B - V {approx} 0.7); if this is purely a metallicity effect, it argues for extremely metal-poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxy's surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49's outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49's halo. Thus the extremely metal-poor nature of M49's extended halo provides some tension against current models for elliptical galaxy formation.

  7. Visibility of stars, halos, and rainbows during solar eclipses.

    PubMed

    Können, Gunther P; Hinz, Claudia

    2008-12-01

    The visibility of stars, planets, diffraction coronas, halos, and rainbows during the partial and total phases of a solar eclipse is studied. The limiting magnitude during various stages of the partial phase is presented. The sky radiance during totality with respect to noneclipse conditions is revisited and found to be typically 1/4000. The corresponding limiting magnitude is +3.5. At totality, the signal-to-background ratio of diffraction coronas, halos, and rainbows has dropped by a factor of 250. It is found that diffraction coronas around the totally eclipsed Sun may nevertheless occur. Analyses of lunar halo observations during twilight indicate that bright halo displays may also persist during totality. Rainbows during totality seem impossible. PMID:19037334

  8. Star Streams in Triaxial Isochrone Potentials with Sub-halos

    NASA Astrophysics Data System (ADS)

    Carlberg, R. G.

    2015-07-01

    The velocity, position, and action variable evolutions of a tidal stream drawn out of a star cluster in a triaxial isochrone potential, containing a sub-halo population, reproduces many of the orbital effects of more general cosmological halos but allows for the easy calculation of orbital actions. We employ a spherical shell code, which we show accurately reproduces the results of a tree gravity code for a collisionless star cluster. Streams from clusters on high eccentricity orbits, e≳ 0.6, can spread out so much that the amount of material at high enough surface density to stand out on the sky may be only a few percent of the stream’s total mass. Low eccentricity streams remain more spatially coherent, but sub-halos both broaden the stream and displace the centerline with details depending on the orbits allowed within the potential. Overall, the majority of stream particles have changes in their total actions of only 1%-2%, leaving the mean stream relatively undisturbed. A halo with 1% of the mass in sub-halos typically spreads the velocity distribution about a factor of two wider than would be expected for a smooth halo. Strong density variations, “gaps,” along with mean velocity offsets, are clearly detected in low eccentricity streams for even a 0.2% sub-halo mass fraction. Around one hundred velocity measurements per kiloparsec of stream will enable tests for the presence of a local sub-halo density as small as 0.2%-0.5% of the local mass density, with about 1% predicted for 30 kpc orbital radii streams.

  9. The binary populations of eight globular clusters in the outer halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Marino, A. F.; Bedin, L. R.; Dotter, A.; Jerjen, H.; Kim, D.; Nardiello, D.; Piotto, G.; Cong, J.

    2016-01-01

    We analyse colour-magnitude diagrams of eight globular clusters (GCs) in the outer Galactic halo. Images were taken with the Wide Field Channel of the Advanced Camera for Survey and the Ultraviolet and Visual Channel of the Wide Field Camera 3 on board of the Hubble Space Telescope. We have determined the fraction of binary stars along the main sequence and combined results with those of a recent paper where some of us have performed a similar analysis on 59 Galactic GCs. In total, binaries have been now studied homogeneously in 67 GCs. We studied the radial and luminosity distributions of the binary systems, the distribution of their mass ratios and investigated univariate relations with several parameters of the host GCs. We confirm the anticorrelation between the binary fraction and the luminosity of the host cluster, and find that low-luminosity clusters can host a large population in excess of ˜40 per cent in the cluster core. However, our results do not support a significant correlation with the cluster age as suggested in the literature. In most GCs, binaries are more centrally concentrated than single stars. If the fraction of binaries is normalized to the core binary fraction the radial density profiles follow a common trend. It has a maximum in the centre and declines by a factor of 2 at a distance of about two core radii from the cluster centre. After dropping to its minimum at a radial distance of ˜5 core radii it stays approximately constant at larger radii. We also find that the mass ratio and the distribution of binaries as a function of the mass of the primary star is almost flat.

  10. The kinematics of globular clusters systems in the outer halos of the Aquarius simulations

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Helmi, A.

    2016-07-01

    Stellar halos and globular cluster (GC) systems contain valuable information regarding the assembly history of their host galaxies. Motivated by the detection of a significant rotation signal in the outer halo GC system of M 31, we investigate the likelihood of detecting such a rotation signal in projection, using cosmological simulations. To this end we select subsets of tagged particles in the halos of the Aquarius simulations to represent mock GC systems, and analyse their kinematics. We find that GC systems can exhibit a non-negligible rotation signal provided the associated stellar halo also has a net angular momentum. The ability to detect this rotation signal is highly dependent on the viewing perspective, and the probability of seeing a signal larger than that measured in M 31 ranges from 10% to 90% for the different halos in the Aquarius suite. High values are found from a perspective such that the projected angular momentum of the GC system is within ≲40 deg of the rotation axis determined via the projected positions and line-of-sight velocities of the GCs. Furthermore, the true 3D angular momentum of the outer stellar halo is relatively well aligned, within 35 deg, with that of the mock GC systems. We argue that the net angular momentum in the mock GC systems arises naturally when the majority of the material is accreted from a preferred direction, namely along the dominant dark matter filament of the large-scale structure that the halos are embedded in. This, together with the favourable edge-on view of M 31's disk suggests that it is not a coincidence that a large rotation signal has been measured for its outer halo GC system.

  11. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  12. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  13. Carbon Stars in the Satellites and Halo of M31

    NASA Astrophysics Data System (ADS)

    Hamren, Katherine; Beaton, Rachael L.; Guhathakurta, Puragra; Gilbert, Karoline M.; Tollerud, Erik J.; Boyer, Martha L.; Rockosi, Constance M.; Smith, Graeme H.; Majewski, Steven R.; Howley, Kirsten

    2016-09-01

    We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color–color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample’s eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch.

  14. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  15. Major substructure in the M31 outer halo: the South-West Cloud

    NASA Astrophysics Data System (ADS)

    Bate, N. F.; Conn, A. R.; McMonigal, B.; Lewis, G. F.; Martin, N. F.; McConnachie, A. W.; Veljanoski, J.; Mackey, A. D.; Ferguson, A. M. N.; Ibata, R. A.; Irwin, M. J.; Fardal, M.; Huxor, A. P.; Babul, A.

    2014-02-01

    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ˜100 kpc from the centre of M31 and extends for at least ˜50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793^{+45}_{-45} kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 ± 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 ± 0.15. We measure a brightness for the Cloud of MV = -12.1 mag; this is ˜75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.

  16. Structure in the motions of the fastest halo stars

    NASA Astrophysics Data System (ADS)

    Re Fiorentin, P.; Helmi, A.; Lattanzi, M. G.; Spagna, A.

    2005-08-01

    We analyzed the catalog published by Beers et al. (2000, ApJ, 119, 2866) of 2106 non-kinematically selected metal poor stars in the solar neighborhood, with the goal of quantifying the amount of substructure in the motions of the fastest halo stars. We computed the two-point velocity correlation function for a subsample of halo stars within 1-2 kpc of the Sun, and found statistical evidence of substructure with a similar amplitude to that predicted by high resolution CDM simulations. The signal is due to a small kinematic group whose dynamical properties are compared to the stellar "stream" previously discovered by Helmi et al. (1999). If real, this high velocity moving group would provide further support for the idea that substructures remain as fossils from the formation of the Galaxy as expected in the CDM scenario.

  17. The abundance of boron in three halo stars

    NASA Technical Reports Server (NTRS)

    Duncan, Douglas K.; Lambert, David L.; Lemke, Michael

    1992-01-01

    B abundances for three halo stars: HD 140283, HD 19445, and HD 201891 are presented. Using recent determinations of the Be abundance in HD 140283, B/Be of 10 +5/-4 is found for this star, and similar ratios are inferred for HD 19445 and HD 201891. This ratio is equal to the minimum value of 10 expected from a synthesis of B and Be by high-energy cosmic-ray spallation reactions in the interstellar medium. It is shown that the accompanying synthesis of Li by alpha on alpha fusion reactions is probably a minor contributor to the observed 'primordial' Li of halo stars. The observed constant ratios of B/O and Be/O are expected if the principal channel of synthesis involves cosmic-ray CNO nuclei from the supernovae colliding with interstellar protons.

  18. Puzzling outer-density profile of the dark matter halo in the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu; Miki, Yohei; Mori, Masao

    2014-12-01

    The cold dark matter (CDM) cosmology, which is the standard theory of the structure formation in the universe, predicts that the outer density profile of dark matter halos decreases with the cube of distance from the center. However, so far not much effort has been expended in examining this hypothesis. In the halo of the Andromeda galaxy (M 31), large-scale stellar structures detected by the recent observations provide a potentially suitable window to investigate the mass-density distribution of the dark matter halo. We explore the density structure of the dark matter halo in M 31 using an N-body simulation of the interaction between an accreting satellite galaxy and M 31. To reproduce the Andromeda Giant Southern Stream and the stellar shells at the east and west sides of M 31, we find the sufficient condition for the power-law index α of the outer density distribution of the dark matter halo. The best-fitting parameter is α = -3.7, which is steeper than the CDM prediction.

  19. Post-AGB Stars in the Halos of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    1999-02-01

    The visually brightest members of Population II are post-AGB (PAGB) stars evolving through spectral types F and A. The aim of this proposal is to find such PAGB stars in the halos of three galaxies that lie just outside the Local Group: Sextans A, NGC 3109, and NGC 5237. The importance of PAGB stars is: (1) they can probe the structure of galactic halos, in the form of test particles much more numerous than planetary nebulae or globular clusters, with which we can look for features such as clumps or tidal streams; (2) the number counts will tell us the theoretically poorly known transition time from AGB to planetary nebula; and (3) we believe that PAGB stars will prove to be a superb new PRIMARY distance indicator, comparable to or better than Cepheids. PAGB stars of types F and A are easily recognized because of their large Balmer jumps. Our uBVI photometric system is optimal for revealing them in galactic halos, due to their unique u-B colors, and the method is extremely efficient in its telescope time requirements. Sextans A and NGC 3109 have Cepheid and TRGB distances, so they are excellent test beds for a confrontation with our proposed Pop II primary standard candles. NGC 5237 has an uncertain distance, which PAGB stars should considerably improve. The 0.9-m telescope will be used (1) to obtain uBVI calibrations of our fields, thus saving the 4-m BTC mosaic for the deep observations; and (2) to complete our survey of Milky Way globular clusters for PAGB stars to used as Galactic calibrators of their luminosities and metallicity dependence.

  20. The Milky Way Halo and the First Stars: New Frontiers in Galactic Archaeology

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.; Tumlinson, Jason; O'Shea, Brian; Peruta, Carolyn; Carollo, Daniela

    2010-11-01

    We discuss plans for a new joint effort between observers and theorists to understand the formation of the Milky Way halo back to the first epochs of chemical evolution. New models based on high-resolution N-body simulations coupled to simple models of Galactic chemical evolution show that surviving stars from the epoch of the first galaxies remain in the Milky Way today and should bear the nucleosynthetic imprint of the first stars. We investigate the key physical influences on the formation of stars in the first galaxies and how they appear today, including the relationship between cosmic reionization and surviving Milky Way stars. These models also provide a physically motivated picture of the formation of the Milky Ways “outer halo,” which has been identified from recent large samples of stars from SDSS. The next steps are to use these models to guide rigorous gas simulations of Milky Way formation, including its disk, and to gradually build up the fully detailed theoretical “Virtual Galaxy” that is demanded by the coming generation of massive Galactic stellar surveys.

  1. STAR FORMATION IN THE OUTER DISK OF SPIRAL GALAXIES

    SciTech Connect

    Barnes, Kate L.; Van Zee, Liese; Cote, Stephanie; Schade, David E-mail: vanzee@astro.indiana.edu E-mail: David.Schade@nrc-cnrc.gc.ca

    2012-09-20

    We combine new deep and wide field of view H{alpha} imaging of a sample of eight nearby (d Almost-Equal-To 17 Mpc) spiral galaxies with new and archival H I and CO imaging to study the star formation and the star formation regulation in the outer disk. We find that, in agreement with previous studies, star formation in the outer disk has low covering fractions, and star formation is typically organized into spiral arms. The star formation in the outer disk is at extremely low levels, with typical star formation rate surface densities of {approx}10{sup -5} to 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}. We find that the ratio of the radial extent of detected H II regions to the radius of the H I disk is typically {approx}>85%. This implies that in order to further our understanding of the implications of extended star formation, we must further our understanding of the formation of extended H I disks. We measure the gravitational stability of the gas disk, and find that the outer gaseous disk is typically a factor of {approx}2 times more stable than the inner star-forming disk. We measure the surface density of outer disk H I arms, and find that the disk is closer to gravitational instability along these arms. Therefore, it seems that spiral arms are a necessary, but not sufficient, requirement for star formation in the outer disk. We use an estimation of the flaring of the outer gas disk to illustrate the effect of flaring on the Schmidt power-law index; we find that including flaring increases the agreement between the power-law indices of the inner and outer disks.

  2. Post-AGB Stars in the Halos of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    1999-02-01

    The visually brightest members of Population II are post-AGB (PAGB) stars evolving through spectral types F and A. The aim of this proposal is to find such PAGB stars in the halos of Sextans A and B (two galaxies just outside the Local Group) and of NGC 4236 (a nearly edge-on spiral in the M81 Group). The importance of these stars is: (1) they will serve as probes of the structure of galactic halos, in the form of test particles much more numerous than planetary nebulae or globular clusters, with which we can look for features such as clumps or tidal streams; (2) the number counts will tell us the theoretically poorly known transition time from AGB to planetary nebula; and (3) we believe that PAGB stars will prove to be a superb new PRIMARY distance indicator, comparable to or better than Cepheids. PAGB stars of types F and A are easily recognized because of their large Balmer jumps. Our uBVI photometric system is optimal for revealing them in galactic halos, due to their unique u-B colors, and the method is extremely efficient in its telescope time requirements. In Sextans A and B PAGB stars will appear at V~eq22.3, and in NGC 4236 at V~eq24. Sextans A and B have Cepheid and TRGB distances, and NGC 4236 is a Tully-Fisher calibrator, so they are excellent test beds for a confrontation with our proposed Pop II primary standard candles. We will use the 0.9-m telescope for uBVI calibrations of our fields, saving the 4-m for the deep observations.

  3. RADIAL VELOCITIES OF GALACTIC HALO STARS IN VIRGO

    SciTech Connect

    Brink, Thomas G.; Mateo, Mario; Martinez-Delgado, David E-mail: mmateo@umich.ed

    2010-11-15

    We present multi-slit radial velocity measurements for 111 stars in the direction of the Virgo Stellar Stream (VSS). The stars were photometrically selected to be probable main-sequence stars in the Galactic halo. When compared with the radial velocity distribution expected for the halo of the Milky Way, as well as the distribution seen in a control field, we observe a significant excess of negative velocity stars in the field, which can likely be attributed to the presence of a stellar stream. This kinematic excess peaks at a Galactic standard of rest radial velocity of -75 km s{sup -1}. A rough distance estimate suggests that this feature extends from {approx}15 kpc out to, and possibly beyond, the {approx}30 kpc limit of the study. The mean velocity of these stars is incompatible with those of the VSS itself (V{sub gsr} {approx} 130 km s{sup -1}), which we weakly detect, but it is consistent with radial velocity measurements of nearby 2MASS M-giants and SDSS+SEGUE K/M-giants and blue horizontal branch stars that constitute the leading tidal tail of the Sagittarius dwarf spheroidal galaxy. Some oblate models for the shape of the Milky Way's dark matter halo predict that the leading arm of the Sagittarius Stream should pass through this volume, and have highly negative (V{sub gsr} {approx}< -200 km s{sup -1}) radial velocities, as it descends down from the northern Galactic hemisphere toward the Galactic plane. The kinematic feature observed in this study, if it is in fact Sagittarius debris, is not consistent with these predictions, and instead, like other leading stream radial velocity measurements, is consistent with a recently published triaxial halo model, or, if axisymmetry is imposed, favors a prolate shape for the Galactic halo potential. However, a rough distance estimate to the observed kinematic feature places it somewhat closer (D {approx} 15-30 kpc) than the Sagittarius models predict (D {approx} 35-45 kpc).

  4. Dependence of the outer density profiles of halos on their mass accretion rate

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2014-07-01

    We present a systematic study of the density profiles of ΛCDM halos, focusing on the outer regions, 0.1 < r/R {sub vir} < 9. We show that the median and mean profiles of halo samples of a given peak height exhibit significant deviations from the universal analytic profiles discussed previously in the literature, such as the Navarro-Frenk-White and Einasto profiles, at radii r ≳ 0.5R {sub 200m}. In particular, at these radii the logarithmic slope of the median density profiles of massive or rapidly accreting halos steepens more sharply than predicted. The steepest slope of the profiles occurs at r ≈ R {sub 200m}, and its absolute value increases with increasing peak height or mass accretion rate, reaching slopes of –4 and steeper. Importantly, we find that the outermost density profiles at r ≳ R {sub 200m} are remarkably self-similar when radii are rescaled by R {sub 200m}. This self-similarity indicates that radii defined with respect to the mean density are preferred for describing the structure and evolution of the outer profiles. However, the inner density profiles are most self-similar when radii are rescaled by R {sub 200c}. We propose a new fitting formula that describes the median and mean profiles of halo samples selected by their peak height or mass accretion rate with accuracy ≲ 10% at all radii, redshifts, and masses we studied, r ≲ 9R {sub vir}, 0 < z < 6, and M {sub vir} > 1.7 × 10{sup 10} h {sup –1} M {sub ☉}. We discuss observational signatures of the profile features described above and show that the steepening of the outer profile should be detectable in future weak-lensing analyses of massive clusters. Such observations could be used to estimate the mass accretion rate of cluster halos.

  5. Infrared Halo Frames a Newborn Star

    NASA Astrophysics Data System (ADS)

    2003-08-01

    Summary: Observations with the VLT of a star-forming cloud have revealed, for the first time, a ring of infrared light around a nascent star. The images also show the presence of jets that emanate from the young object and collide with the surrounding cloud. ESO PR Photo 26a/03 ESO PR Photo 26a/03 [Preview - JPEG: 974 x 400 pix - 404k [Normal - JPEG: 1947 x 800 pix - 1M] The DC303.8-14.2 globule A small and dark interstellar cloud with the rather cryptic name of DC303.8-14.2 is located in the inner part of the Milky Way galaxy. It is seen in the southern constellation Chamaeleon and consists of dust and gas. Astronomers classify it as a typical example of a "globule". As many other globules, this cloud is also giving birth to a star. Some years ago, observations in the infrared spectral region with the ESA IRAS satellite observatory detected the signature of a nascent star at its centre. Subsequent observations with the Swedish ESO Submillimetre Telescope (SEST) at La Silla (Chile) were carried out by Finnish astronomer Kimmo Lehtinen . He revealed that DC303.8-14.2 is collapsing under its own gravity, a process which will ultimately result in the birth of a new star from the gas and dust in this cloud. Additional SEST observations of the millimetre emission of carbon monoxide (CO) molecules demonstrated a strong outflow from the nascent star. A small part of the gas that falls inward onto the central object is re-injected into the surrounding via this outward-bound "bipolar stream" . The structure of DC303.8-14.2 The left panel in PR Photo 26a/03 shows the DC303.8-14.2 globule as it looks in red light. This image was obtained at wavelength 700 nm and has been reproduced from the Digitized Sky Survey (DSS) [1]. It covers a sky region of 20 x 20 arcmin 2 , or about 50% of the area of the full moon. The dust particles in the cloud reflect the light from stars, causing the cloud to appear brighter than the adjacent sky. The brightness distribution over the cloud

  6. The evolution of galaxy star formation activity in massive haloes

    NASA Astrophysics Data System (ADS)

    Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; Berta, S.; Elbaz, D.; Dickinson, M.; Lutz, D.; Altieri, B.; Aussel, H.; Cimatti, A.; Fadda, D.; Ilbert, O.; Le Floch, E.; Nordon, R.; Poglitsch, A.; Xu, C. K.

    2015-02-01

    Context. There is now a large consensus that the current epoch of the cosmic star formation history (CSFH) is dominated by low mass galaxies while the most active phase, between redshifts 1 and 2, is dominated by more massive galaxies, which evolve more quickly. Aims: Massive galaxies tend to inhabit very massive haloes, such as galaxy groups and clusters. We aim to understand whether the observed "galaxy downsizing" could be interpreted as a "halo downsizing", whereas the most massive haloes, and their galaxy populations, evolve more rapidly than the haloes with lower mass. Methods: We studied the contribution to the CSFH of galaxies inhabiting group-sized haloes. This is done through the study of the evolution of the infra-red (IR) luminosity function of group galaxies from redshift 0 to redshift ~1.6. We used a sample of 39 X-ray-selected groups in the Extended Chandra Deep Field South (ECDFS), the Chandra Deep Field North (CDFN), and the COSMOS field, where the deepest available mid- and far-IR surveys have been conducted with Spitzer MIPS and with the Photodetector Array Camera and Spectrometer (PACS) on board the Herschel satellite. Results: Groups at low redshift lack the brightest, rarest, and most star forming IR-emitting galaxies observed in the field. Their IR-emitting galaxies contribute ≤10% of the comoving volume density of the whole IR galaxy population in the local Universe. At redshift ≳1, the most IR-luminous galaxies (LIRGs and ULIRGs) are mainly located in groups, and this is consistent with a reversal of the star formation rate (SFR) vs. density anti-correlation observed in the nearby Universe. At these redshifts, group galaxies contribute 60-80% of the CSFH, i.e. much more than at lower redshifts. Below z ~ 1, the comoving number and SFR densities of IR-emitting galaxies in groups decline significantly faster than those of all IR-emitting galaxies. Conclusions: Our results are consistent with a "halo downsizing" scenario and highlight the

  7. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  8. Using accurate phase space coordinates of ~100,00 halo field stars to constrain the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2015-08-01

    The current cosmological paradigm predicts that dark matter halos are triaxial overall, but oblate in regions where baryons dominate. However recent measurements of the shape of the Milky Way dark matter halo find it to be very triaxial with a shape and orientation that are significantly at odds with theoretical predictions. The ESA’s Gaia satellite will soon map the entire Milky Way giving us six phase-space coordinates, ages and abundances for hundreds of thousands of halo stars. I will report progress on a new code based on the Schwarzschild orbit superposition method and orbital frequency mapping, to determine the global shape of the Milky Way's dark matter halo using field stars from Gaia. This technique will simultaneously yield the self-consistent phase-space distribution function of the stellar halo in the inner 20-30kpc region. Detailed analysis of correlations between the chemical abundances, ages and orbits of halo stars in this distribution function will enable us to extract clues to the formation history of the Milky Way that are encoded in orbital properties of halo stars.

  9. HUBBLE'S SEARCH FOR FAINT FIELD STARS IN GALACTIC HALO

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a randomly selected area of sky taken to search for faint red stars that might constitute dark matter in our Milky Way Galaxy. (Dark matter is material of an unknown type that makes up most of the mass of our galaxy). If the dark matter in our Galaxy was made of faint red stars -- as many scientists have previously conjectured -- then about 38 such stars should have been visible in this HST image. The simulated stars (diamond-shaped symbols), based on theoretical calculations, illustrate what scientists would have seen if the dark matter were locked-up in faint red stars. These surprising results rule out dim stars as an explanation for dark matter in our Galaxy. Right The unmodified HST image shows the region is actually so devoid of stars that far more distant background galaxies can easily be seen. The field is in the constellation Eridanus, far outside the plane of our Milky Way Galaxy. This region was chosen to highlight stars in the galactic halo, where dark matter exists, and to avoid the contribution of faint stars in the plane of the Galaxy. Technical Information: The image was constructed from seven exposures totaling almost three hours of searching by HST. The field shown is about 1.5 arc-minutes across. The image was taken in near-infrared light (814 nm) with the Wide Field Planetary Camera 2, on Feb 8, 1994. This observation is part of the HST parallel observing program. Credit: J Bahcall, Institute for Advance Study, Princeton and NASA

  10. PROGRESSIVELY MORE PROLATE DARK MATTER HALO IN THE OUTER GALAXY AS TRACED BY FLARING H I GAS

    SciTech Connect

    Banerjee, Arunima; Jog, Chanda J. E-mail: cjjog@physics.iisc.ernet.in

    2011-05-01

    A galactic disk in a spiral galaxy is generally believed to be embedded in an extended dark matter halo, which dominates its dynamics in the outer parts. However, the shape of the halo is not clearly understood. Here we show that the dark matter halo in the Milky Way is prolate in shape. Further, it is increasingly more prolate at larger radii, with the vertical-to-planar axis ratio monotonically increasing to 2.0 at 24 kpc. This is obtained by modeling the observed steeply flaring atomic hydrogen gas layer in the outer Galactic disk, where the gas is supported by pressure against the net gravitational field of the disk and the halo. The resulting prolate-shaped halo can explain several long-standing puzzles in galactic dynamics, for example, it permits long-lived warps thus explaining their ubiquitous nature.

  11. An extremely primitive star in the Galactic halo.

    PubMed

    Caffau, Elisabetta; Bonifacio, Piercarlo; François, Patrick; Sbordone, Luca; Monaco, Lorenzo; Spite, Monique; Spite, François; Ludwig, Hans-G; Cayrel, Roger; Zaggia, Simone; Hammer, François; Randich, Sofia; Molaro, Paolo; Hill, Vanessa

    2011-09-01

    The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium; almost all other elements were subsequently created in stars and supernovae. The mass fraction of elements more massive than helium, Z, is known as 'metallicity'. A number of very metal-poor stars has been found, some of which have a low iron abundance but are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with Z < 1.5 × 10(-5), it has been suggested that low-mass stars cannot form from the primitive interstellar medium until it has been enriched above a critical value of Z, estimated to lie in the range 1.5 × 10(-8) to 1.5 × 10(-6) (ref. 8), although competing theories claiming the contrary do exist. (We use 'low-mass' here to mean a stellar mass of less than 0.8 solar masses, the stars that survive to the present day.) Here we report the chemical composition of a star in the Galactic halo with a very low Z (≤ 6.9 × 10(-7), which is 4.5 × 10(-5) times that of the Sun) and a chemical pattern typical of classical extremely metal-poor stars--that is, without enrichment of carbon, nitrogen and oxygen. This shows that low-mass stars can be formed at very low metallicity, that is, below the critical value of Z. Lithium is not detected, suggesting a low-metallicity extension of the previously observed trend in lithium depletion. Such lithium depletion implies that the stellar material must have experienced temperatures above two million kelvin in its history, given that this is necessary to destroy lithium. PMID:21886158

  12. Armchair cartography - A map of the Galactic halo based on observations of local, metal-poor stars

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper; Zhen, Chen

    1990-01-01

    The velocity distribution of metal-poor halo stars in the solar neighborhood is studied to extract data on the global spatial and kinematic properties of the Galactic stellar halo. A global model of the solar neighborhood stars is constructed from observed positions and three-dimensional velocity of local, metal-poor halo stars in terms of a discrete sum of orbits. The characteristics of the reconstructed halo are examined and used to study the evolution of the halo subsystems.

  13. Investigating the outer density profile of the dark matter halo of M31

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu

    2015-08-01

    In the context of the hierarchical structure formation in the universe, cosmological N -body simulations predict that cold dark matter (CDM) halos have a universal mass-density profile(Navarro et al. 1996; Fukushige & Makino 1997; Moore et al. 1998).Especially, the density profile of CDM outer halos decreases with the cube of the radius from the galactic center. However, so far, not much effort has examined this hypothesis because it is extremely difficult to measure the mass distribution of the outer region of a galaxy.On the other hand, a recent observation discovered a giant stellar stream (GSS) and stellar shells in the halo of the Andromeda galaxy (M31). The GSS extends over 120 kpc further away along the line of sight from M31, and its spatial and velocity structure have been observed in detail. So far, N -body simulations of a galaxy merger between a satellite dwarf galaxy and M31 nicely reproduced these structures (Fardal et al. 2007; Mori & Rich 2008).We present the result of the N -body simulation of the galaxy merger to investigate the mass distribution of the DM halo in M31. We vary the power-law index of the outer-density profile and the total mass of the CDM halo of M31. To reproduce the observed structures, we find the sufficient condition for the power-law index x. The best-fit parameter is x=-3.7, which is steeper than the CDM prediction (x=-3).In addition, we also focus on the morphology of the progenitor galaxy. We perform large parameter surveys of the galaxy merger varying thickness and rotation velocity of a disk-like component of the progenitor. The result suggests that a rotating component of the progenitor is required to reproduce an asymmetric internal structure of the GSS. Using the parameter that reproduces the observed structures in detail, we discuss the evolution and relaxation of the dark matter component that initially associated with the progenitor.

  14. Outer atmospheres of late-type stars

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1981-01-01

    Recent observational results concerning chromospheres and coronae in late-type stars are described. In particular, it is indicated where in the cool half of the HR diagram chromospheres, transition regions, coronae, and large mass loss occur and what the important parameters determining the energy balance of these layers are. The chromospheric modelling process is summarized and models of the late-type supergiants Beta Dra, Epsilon Gem, and Alpha Ori recently computed by Basri and Linsky (1980) are detailed.

  15. POPULATION III STAR FORMATION IN LARGE COSMOLOGICAL VOLUMES. I. HALO TEMPORAL AND PHYSICAL ENVIRONMENT

    SciTech Connect

    Crosby, Brian D.; O'Shea, Brian W.; Smith, Britton D.; Turk, Matthew J.; Hahn, Oliver

    2013-08-20

    We present a semi-analytic, computationally inexpensive model to identify halos capable of forming a Population III star in cosmological simulations across a wide range of times and environments. This allows for a much more complete and representative set of Population III star forming halos to be constructed, which will lead to Population III star formation simulations that more accurately reflect the diversity of Population III stars, both in time and halo mass. This model shows that Population III and chemically enriched stars coexist beyond the formation of the first generation of stars in a cosmological simulation until at least z {approx} 10, and likely beyond, though Population III stars form at rates that are 4-6 orders of magnitude lower than chemically enriched stars by z = 10. A catalog of more than 40,000 candidate Population III forming halos were identified, with formation times temporally ranging from z = 30 to z = 10, and ranging in mass from 2.3 Multiplication-Sign 10{sup 5} M{sub Sun} to 1.2 Multiplication-Sign 10{sup 10} M{sub Sun }. At early times, the environment that Population III stars form in is very similar to that of halos hosting chemically enriched star formation. At later times Population III stars are found to form in low-density regions that are not yet chemically polluted due to a lack of previous star formation in the area. Population III star forming halos become increasingly spatially isolated from one another at later times, and are generally closer to halos hosting chemically enriched star formation than to another halo hosting Population III star formation by z {approx} 10.

  16. Contributions to the Galactic halo from in-situ, kicked-out, and accreted stars

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Johnston, Kathryn V.; Cunha, Katia; Smith, Verne V.; Majewski, Steven R.

    2016-08-01

    We report chemical abundances for a sample of 66 M giants with high S/N high-resolution spectroscopy in the inner halo of the Milky Way. The program giant stars have radial velocities that vary significantly from those expected for stars moving on uniform circular orbits in the Galactic disk. Thus, based on kinematics, we expect a sample dominated by halo stars. Abundances are derived for α-elements and neutron capture elements. By analyzing the multi-dimensional abundance space, the formation site of the halo giants - in-situ or accreted - can be assessed. Of particular interest are a class of stars that form in-situ, deep in the Milky Way's gravitational potential well, but are ``kicked out'' of the disk into the halo due to a perturbation event. We find: (1) our sample is dominated by accreted stars and (2) tentative evidence of a small kicked-out population in our Milky Way halo sample.

  17. VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY

    SciTech Connect

    Garcia Perez, Ana E.; Majewski, Steven R.; Hearty, Fred R.; Cunha, Katia; Shetrone, Matthew; Johnson, Jennifer A.; Zasowski, Gail; Smith, Verne V.; Beers, Timothy C.; Schiavon, Ricardo P.; Holtzman, Jon; Nidever, David; Allende Prieto, Carlos; Bizyaev, Dmitry; Ebelke, Garrett; Malanushenko, Elena; Malanushenko, Viktor; Eisenstein, Daniel J.; Frinchaboy, Peter M.; Girardi, Leo; and others

    2013-04-10

    Despite its importance for understanding the nature of early stellar generations and for constraining Galactic bulge formation models, at present little is known about the metal-poor stellar content of the central Milky Way. This is a consequence of the great distances involved and intervening dust obscuration, which challenge optical studies. However, the Apache Point Observatory Galactic Evolution Experiment (APOGEE), a wide-area, multifiber, high-resolution spectroscopic survey within Sloan Digital Sky Survey III, is exploring the chemistry of all Galactic stellar populations at infrared wavelengths, with particular emphasis on the disk and the bulge. An automated spectral analysis of data on 2403 giant stars in 12 fields in the bulge obtained during APOGEE commissioning yielded five stars with low metallicity ([Fe/H] {<=} -1.7), including two that are very metal-poor [Fe/H] {approx} -2.1 by bulge standards. Luminosity-based distance estimates place the 5 stars within the outer bulge, where 1246 of the other analyzed stars may reside. A manual reanalysis of the spectra verifies the low metallicities, and finds these stars to be enhanced in the {alpha}-elements O, Mg, and Si without significant {alpha}-pattern differences with other local halo or metal-weak thick-disk stars of similar metallicity, or even with other more metal-rich bulge stars. While neither the kinematics nor chemistry of these stars can yet definitively determine which, if any, are truly bulge members, rather than denizens of other populations co-located with the bulge, the newly identified stars reveal that the chemistry of metal-poor stars in the central Galaxy resembles that of metal-weak thick-disk stars at similar metallicity.

  18. Rotational Velocities of B Stars in the Outer Galactic Disk

    NASA Astrophysics Data System (ADS)

    Garmany, Catharine D.; Glaspey, J. W.; Bensby, T.; Daflon, S.; Cunha, K.; Oey, M. S.; Wolff, S. C.

    2010-01-01

    Metallicity gradients in the Milky Way disk are important constraints to models of chemical evolution and galaxy formation. As part of a long term project to better constrain the galactic metallicity gradient (Daflon & Cunha) we have obtained spectra of early B stars in the outer disk with the Magellan 6.5m (Clay) and MIKE double echelle spectrograph. We present herein a preliminary analysis of the projected rotational velocities (v sin i), for 150 early B stars in the third galactic quadrant. The stars were selected from the Case-Hamburg Catalog of Luminous Stars (Reed, 2005). Distances have been computed from the reddening-free Q parameter and published Mv values. We use the spectral type information in the catalog to further refine distances of the non-main sequence B stars in our sample. We have followed the method described by Daflon et al (2007) to estimate v sin i for these stars from their He I lines. These stars are primarily field B stars, with galactocentric distances between 8 and 16 kpc, and most of them lie outside dense clusters and associations. Our analysis will address two questions: 1) Is there any evidence for a difference in mean rotation rate as a function of galactocentric distance and/or metallicity; and 2) Do these stars have on average low rotation rates, as seem to characterize stars in the field and in expanding associations near the Sun (Wolff, et al. 2007).

  19. Structural Parameters for Globular Clusters in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ma, Jun

    2012-06-01

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy Eb with mass M mod indicates that the "fundamental plane" does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  20. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Wang Song; Ma Jun

    2012-06-15

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy E{sub b} with mass M{sub mod} indicates that the 'fundamental plane' does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  1. Population and Star Formation Histories from the Outer Limits Survey

    NASA Astrophysics Data System (ADS)

    Brondel, Brian Joseph; Saha, Abhijit; Olszewski, Edward

    2015-08-01

    The Outer Limits Survey (OLS) is a deep survey of selected fields in the outlying areas of the Magellanic Clouds based on the MOSAIC-II instrument on the Blanco 4-meter Telescope at CTIO. OLS is designed to probe the outer disk and halo structures of Magellanic System. The survey comprises ~50 fields obtained in Landolt R, I and Washington C, M and DDO51 filters, extending to a depth of about 24th magnitude in I. While qualitative examination of the resulting data has yielded interesting published results, we report here on quantitative analysis through matching of Hess diagrams to theoretical isochrones. We present analysis based on techniques developed by Dolphin (e.g., 2002, MNRAS, 332, 91) for fields observed by OLS. Our results broadly match those found by qualitative examination of the CMDs, but interesting details emerge from isochrone fitting.

  2. Coronal Emission from dG Halo Stars

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Harnden, F. R.

    2005-01-01

    The halo dG star HD 114762 was observed with the XMM-Newton satellite on 28-29 June 2004, during orbit 834, and the data were processed using the XMM-Newton Science Analysis System (SAS), version 6.0.0. Somewhat surprisingly, the target was NOT detected during this approx.30 ks exposure, which yielded instead a count rate upper limit of less than 0.0041 cts/s. We computed an X-ray flux upper limit by assuming a Raymond-Smith thermal spectrum of coronal temperature 1 million degrees K, typical of quiet old stars, a hydrogen column density of 2-10$^{19)$ cm$^{-2)$ and sub-solar abundances of 0.2. Our calculated X-ray luminosity upper limit in the 0.25-7.8 keV band is L$_x < 4.95 $\\time$10$^{26)$ erg/s, where we have assumed a stellar distance of 28 pc. This relatively low upper limit has implications for the capability of metal poor stars to host solar-like dynamos, as we will report in a forthcoming paper (now in preparation).

  3. Ghostly Halos in Dwarf Galaxies: a probe of star formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kang, Hoyoung; Ricotti, Massimo

    2016-01-01

    We carry out numerical simulations to characterize the size, stellar mass, and stellar mass surface density of extended stellar halos in dwarf galaxies as a function of dark matter halo mass. We expect that for galaxies smaller than a critical value, these ghostly halos will not exist because the smaller galactic subunits that build it up, do not form any stars. The detection of ghostly halos around isolated dwarf galaxies is a sensitive test of the efficiency of star formation in the first galaxies and of whether ultra-faint dwarf satellites of the Milky Way are fossils of the first galaxies.

  4. Fractional Yields Inferred from Halo and Thick Disk Stars

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance

  5. THE CENTRAL BLUE STRAGGLER POPULATION IN FOUR OUTER-HALO GLOBULAR CLUSTERS

    SciTech Connect

    Beccari, Giacomo; Luetzgendorf, Nora; Olczak, Christoph; Ferraro, Francesco R.; Lanzoni, Barbara; Carraro, Giovanni; Boffin, Henri M. J.; Stetson, Peter B.; Sollima, Antonio

    2012-08-01

    Using Hubble Space Telescope/Wide Field Planetary Camera 2 data, we have performed a comparative study of the Blue Straggler Star (BSS) populations in the central regions of the globular clusters (GCs) AM 1, Eridanus, Palomar 3, and Palomar 4. Located at distances R{sub GC} > 50 kpc from the Galactic center, these are (together with Palomar 14 and NGC 2419) the most distant clusters in the halo. We determine their color-magnitude diagrams and centers of gravity. The four clusters turn out to have similar ages (10.5-11 Gyr), significantly smaller than those of the inner-halo globulars, and similar metallicities. By exploiting wide-field ground-based data, we build the most extended radial density profiles from resolved star counts ever published for these systems. These are well reproduced by isotropic King models of relatively low concentration. BSSs appear to be significantly more centrally segregated than red giants in all GCs, in agreement with the estimated core and half-mass relaxation times which are smaller than the cluster ages. Assuming that this is a signature of mass segregation, we conclude that AM 1 and Eridanus are slightly dynamically more evolved than Pal 3 and Pal 4.

  6. The outer layers of cool, non-Mira carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1991-01-01

    The outer layers and near circumstellar envelope (CSE) of a typical carbon star have been studied using available data from theoretical and empirical models. An attempt is made to match the density-velocity structure of the photosphere-chromosphere region to values from the radio CO observations, which arise from the outer CSE. It is concluded that the stellar atmosphere includes a relatively thin high-temperature region close to hydrostatic equilibrium and a much more extended cooler region of outflowing gas and dust. To extend the outer photosphere and chromosphere to match the mass loss density appears to require an injection of energy and momentum by some mechanism rather close to the stellar surface.

  7. The Frequency of Field Blue-Straggler Stars in the Thick Disk and Halo System of the Galaxy

    NASA Astrophysics Data System (ADS)

    Santucci, Rafael M.; Placco, Vinicius M.; Rossi, Silvia; Beers, Timothy C.; Reggiani, Henrique M.; Lee, Young Sun; Xue, Xiang-Xiang; Carollo, Daniela

    2015-03-01

    We present an analysis of a new, large sample of field blue-straggler stars (BSSs) in the thick disk and halo system of the Galaxy, based on stellar spectra obtained during the Sloan Digital Sky Survey (SDSS) and the Sloan Extension for Galactic Understanding and Exploration (SEGUE). Using estimates of stellar atmospheric parameters obtained from application of the SEGUE Stellar Parameter Pipeline, we obtain a sample of some 8000 BSSs, which are considered along with a previously selected sample of some 4800 blue horizontal-branch (BHB) stars. We derive the ratio of BSSs to BHB stars, FBSS/BHB, as a function of Galactocentric distance and distance from the Galactic plane. The maximum value found for FBSS/BHB is ∼ 4.0 in the thick disk (at 3 kpc\\lt |Z|\\lt 4 kpc), declining to on the order of ∼ 1.5-2.0 in the inner-halo region; this ratio continues to decline to ∼1.0 in the outer-halo region. We associate a minority of field BSSs with a likely extragalactic origin; at least 5% of the BSS sample exhibit radial velocities, positions, and distances commensurate with membership in the Sagittarius Stream.

  8. THE BIZARRE CHEMICAL INVENTORY OF NGC 2419, AN EXTREME OUTER HALO GLOBULAR CLUSTER

    SciTech Connect

    Cohen, Judith G.; Kirby, Evan N. E-mail: enk@astro.caltech.edu

    2012-11-20

    We present new Keck/HIRES observations of six red giants in the globular cluster (GC) NGC 2419. Although the cluster is among the most distant and most luminous in the Milky Way, it was considered chemically ordinary until very recently. Our previous work showed that the near-infrared Ca II triplet line strength varied more than expected for a chemically homogeneous cluster, and that at least one star had unusual abundances of Mg and K. Here, we confirm that NGC 2419 harbors a population of stars, comprising about one-third of its mass, that is depleted in Mg by a factor of eight and enhanced in K by a factor of six with respect to the Mg-normal population. Although the majority, Mg-normal population appears to have a chemical abundance pattern indistinguishable from ordinary, inner-halo GCs, the Mg-poor population exhibits dispersions of several elements. The abundances of K and Sc are strongly anti-correlated with Mg, and some other elements (Si and Ca among others) are weakly anti-correlated with Mg. These abundance patterns suggest that the different populations of NGC 2419 sample the ejecta of diverse supernovae in addition to asymptotic giant branch ejecta. However, the abundances of Fe-peak elements except Sc show no star-to-star variation. We find no nucleosynthetic source that satisfactorily explains all of the abundance variations in this cluster. Because NGC 2419 appears like no other GC, we reiterate our previous suggestion that it is not a GC at all, but rather the core of an accreted dwarf galaxy.

  9. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-01

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 1012 M ⊙ are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z ~ 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z ~ 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in ΛCDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  10. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0-8

    SciTech Connect

    Behroozi, Peter S.; Wechsler, Risa H.; Conroy, Charlie

    2013-06-10

    We present a robust method to constrain average galaxy star formation rates (SFRs), star formation histories (SFHs), and the intracluster light (ICL) as a function of halo mass. Our results are consistent with observed galaxy stellar mass functions, specific star formation rates (SSFRs), and cosmic star formation rates (CSFRs) from z = 0 to z = 8. We consider the effects of a wide range of uncertainties on our results, including those affecting stellar masses, SFRs, and the halo mass function at the heart of our analysis. As they are relevant to our method, we also present new calibrations of the dark matter halo mass function, halo mass accretion histories, and halo-subhalo merger rates out to z = 8. We also provide new compilations of CSFRs and SSFRs; more recent measurements are now consistent with the buildup of the cosmic stellar mass density at all redshifts. Implications of our work include: halos near 10{sup 12} M{sub Sun} are the most efficient at forming stars at all redshifts, the baryon conversion efficiency of massive halos drops markedly after z {approx} 2.5 (consistent with theories of cold-mode accretion), the ICL for massive galaxies is expected to be significant out to at least z {approx} 1-1.5, and dwarf galaxies at low redshifts have higher stellar mass to halo mass ratios than previous expectations and form later than in most theoretical models. Finally, we provide new fitting formulae for SFHs that are more accurate than the standard declining tau model. Our approach places a wide variety of observations relating to the SFH of galaxies into a self-consistent framework based on the modern understanding of structure formation in {Lambda}CDM. Constraints on the stellar mass-halo mass relationship and SFRs are available for download online.

  11. PROBING THE OUTER GALACTIC HALO WITH RR LYRAE FROM THE CATALINA SURVEYS

    SciTech Connect

    Drake, A. J.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A.; Donalek, C.; Williams, R.; Catelan, M.; Torrealba, G.; Belokurov, V.; Koposov, S. E.; Prieto, J. L.; Larson, S.; Christensen, E.; Beshore, E.

    2013-01-20

    We present analysis of 12,227 type-ab RR Lyraes (RRLs) found among the 200 million public light curves in Catalina Surveys Data Release 1. These stars span the largest volume of the Milky Way ever surveyed with RRLs, covering {approx}20,000 deg{sup 2} of the sky (0 Degree-Sign < {alpha} < 360 Degree-Sign , -22 Degree-Sign < {delta} < 65 Degree-Sign ) to heliocentric distances of up to 60 kpc. Each of the RRLs is observed between 60 and 419 times over a six-year period. Using period finding and Fourier fitting techniques we determine periods and apparent magnitudes for each source. We find that the periods are generally accurate to {sigma} = 0.002% in comparison to 2842 previously known RRLs and 100 RRLs observed in overlapping survey fields. We photometrically calibrate the light curves using 445 Landolt standard stars and show that the resulting magnitudes are accurate to {approx}0.05 mag using Sloan Digital Sky Survey (SDSS) data for {approx}1000 blue horizontal branch stars and 7788 RRLs. By combining Catalina photometry with SDSS spectroscopy, we analyze the radial velocity and metallicity distributions for >1500 of the RRLs. Using the accurate distances derived for the RRLs, we show the paths of the Sagittarius tidal streams crossing the sky at heliocentric distances from 20 to 60 kpc. By selecting samples of Galactic halo RRLs, we compare their velocity, metallicity, and distance with predictions from a recent detailed N-body model of the Sagittarius system. We find that there are some significant differences between the distances and structures predicted and our observations.

  12. The Scale Sizes of Globular Clusters: Tidal Limits, Evolution, and the Outer Halo

    NASA Astrophysics Data System (ADS)

    Harris, William

    2011-10-01

    The physical factors that determine the linear sizes of massive star clusters are not well understood. Their scale sizes were long thought to be governed by the tidal field of the parent galaxy, but major questions are now emerging. Globular clusters, for example, have mean sizes nearly independent of location in the halo. Paradoxically, the recently discovered "anomalous extended clusters" in M31 and elsewhere have scale sizes that fit much better with tidal theory, but they are puzzlingly rare. Lastly, the persistent size difference between metal-poor and metal-rich clusters still lacks a quantitative explanation. Many aspects of these observations call for better modelling of dynamical evolution in the outskirts of clusters, and also their conditions of formation including the early rapid mass loss phase of protoclusters. A new set of accurate measurements of scale sizes and structural parameters, for a large and homogeneous set of globular clusters, would represent a major advance in this subject. We propose to carry out a {WFC3+ACS} imaging survey of the globular clusters in the supergiant Virgo elliptical M87 to cover the complete run of the halo. M87 is an optimum target system because of its huge numbers of clusters and HST's ability to resolve the cluster profiles accurately. We will derive cluster effective radii, central concentrations, luminosities, and colors for more than 4000 clusters using PSF-convolved King-model profile fitting. In parallel, we are developing theoretical tools to model the expected distribution of cluster sizes versus galactocentric distance as functions of cluster mass, concentration, and orbital anisotropy.

  13. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  14. CONSTRAINING THE STAR FORMATION HISTORIES IN DARK MATTER HALOS. I. CENTRAL GALAXIES

    SciTech Connect

    Yang Xiaohu; Mo, H. J.; Lu Zhankui; Van den Bosch, Frank C.; Bonaca, Ana; Li Shijie; Lu Yi; Lu Yu

    2013-06-20

    Using the self-consistent modeling of the conditional stellar mass functions across cosmic time by Yang et al., we make model predictions for the star formation histories (SFHs) of central galaxies in halos of different masses. The model requires the following two key ingredients: (1) mass assembly histories of central and satellite galaxies and (2) local observational constraints of the star formation rates (SFRs) of central galaxies as a function of halo mass. We obtain a universal fitting formula that describes the (median) SFH of central galaxies as a function of halo mass, galaxy stellar mass, and redshift. We use this model to make predictions for various aspects of the SFRs of central galaxies across cosmic time. Our main findings are the following. (1) The specific star formation rate at high z increases rapidly with increasing redshift [{proportional_to}(1 + z){sup 2.5}] for halos of a given mass and only slowly with halo mass ({proportional_to}M{sub h}{sup 0.12}) at a given z, in almost perfect agreement with the specific mass accretion rate of dark matter halos. (2) The ratio between the SFR in the main branch progenitor and the final stellar mass of a galaxy peaks roughly at a constant value, {approx}10{sup -9.3} h {sup 2} yr{sup -1}, independent of the halo mass or the final stellar mass of the galaxy. However, the redshift at which the SFR peaks increases rapidly with halo mass. (3) More than half of the stars in the present-day universe were formed in halos with 10{sup 11.1} h {sup -1} M{sub Sun} < M{sub h} < 10{sup 12.3} h {sup -1} M{sub Sun} in the redshift range 0.4 < z < 1.9. (4) The star formation efficiencies (SFEs) of central galaxies reveal a ''downsizing'' behavior, in that the halo ''quenching'' mass, at which the SFE peaks, shifts from {approx}10{sup 12.5} h {sup -1} M{sub Sun} at z {approx}> 3.5 to {approx}10{sup 11.3} h {sup -1} M{sub Sun} at z = 0. (5) At redshift z {approx}> 2.5 more than 99% of the stars in the progenitors of massive

  15. Bolometric luminosities and colors for K and M dwarfs and the subluminous stars of the halo

    NASA Astrophysics Data System (ADS)

    Greenstein, Jesse L.

    1989-09-01

    The H-R diagrams of dM, sdK, and sdM proper-motion stars are examined. A method for integrating energy distributions using discrete weights is proposed. The bolometric corrections are assessed at various wavelengths and a method for obtaining luminosities even if a star lacks IR data is presented. The color-luminosity diagrams suggest that high-velocity, low-metallicity stars of the halo are subluminous. It is found that the apparent cutoff in the halo is a bolometric magnitude of about 12 m.

  16. Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor.

    PubMed

    Frebel, Anna; Kirby, Evan N; Simon, Joshua D

    2010-03-01

    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the alpha-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical. PMID:20203604

  17. ASCA Observation of MS 1603.6+2600 (=UW Coronae Borealis): A Dipping Low-Mass X-ray Binary in the Outer Halo?

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)

    2001-01-01

    MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.

  18. Neutron-capture element and Sc abundances in low- and high-alpha Galactic halo stars

    NASA Astrophysics Data System (ADS)

    Yong, David; Fishlock, Cherie; Karakas, Amanda

    2015-08-01

    Nissen & Schuster (2010) identified two samples of Galactic halo stars with distinct kinematic and chemical properties. The "high-alpha" population is associated with the dissipative monolithic collapse of a proto-Galactic gas cloud while the "low-alpha" population was likely accreted from dwarf galaxies having experienced slower star formation rates. For a subset of these stars, we measured precise abundances of Sc, Zr, La, Ce, Nd and Eu. We find differences in the abundance ratios of [Sc/Fe], [Zr/Fe], and [La/Zr] between the low- and high-alpha groups. The most intriguing result is that the low-alpha stars appear to have higher [Eu/Fe] ratios than the high-alpha stars, in contrast to the expectation that Eu should follow the alpha elements. These data challenge the hypothesis that the high-alpha stars formed in regions only enriched by massive stars and that the low-alpha received additional enrichment from SNeIa and low-mass AGB stars. This work has three main consequences for galaxy halos: 1. The new Eu data could be explained by different IMFs for the two halo populations; 2. The low [alpha/Fe] ratios in some, and perhaps all, dwarf galaxies may be driven (in part of in whole) by different IMFs rather than SNeIa contributions; 3. These data may provide important new constraints on the origin of Eu.

  19. Is main-sequence galaxy star formation controlled by halo mass accretion?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Primack, Joel R.; Behroozi, Peter; Faber, S. M.

    2016-01-01

    The galaxy stellar-to-halo mass relation (SHMR) is nearly time-independent for z < 4. We therefore construct a time-independent SHMR model for central galaxies, wherein the in situ star formation rate (SFR) is determined by the halo mass accretion rate (MAR), which we call stellar halo accretion rate coevolution (SHARC). We show that the ˜0.3 dex dispersion of the halo MAR matches the observed dispersion of the SFR on the star formation main sequence (MS). In the context of `bathtub'-type models of galaxy formation, SHARC leads to mass-dependent constraints on the relation between SFR and MAR. Despite its simplicity and the simplified treatment of mass growth from mergers, the SHARC model is likely to be a good approximation for central galaxies with M* = 109-1010.5 M⊙ that are on the MS, representing most of the star formation in the Universe. SHARC predictions agree with observed SFRs for galaxies on the MS at low redshifts, agree fairly well at z ˜ 4, but exceed observations at z ≳ 4. Assuming that the interstellar gas mass is constant for each galaxy (the `equilibrium condition' in bathtub models), the SHARC model allows calculation of net mass loading factors for inflowing and outflowing gas. With assumptions about preventive feedback based on simulations, SHARC allows calculation of galaxy metallicity evolution. If galaxy SFRs indeed track halo MARs, especially at low redshifts, that may help explain the success of models linking galaxy properties to haloes (including age-matching) and the similarities between two-halo galaxy conformity and halo mass accretion conformity.

  20. Post Asymptotic Giant Branch and Central Stars of Planetary Nebulae in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Weston, Simon

    2012-01-01

    Post asymptotic giant branch (post-AGB) stars, central stars of planetary nebulae (CSPNe) and planetary nebulae (PNe) are important phases of stellar evolution as the material they feedback is the seed of subsequent star formation in a galaxy. The majority of low and intermediate mass stars are expected to evolve through these channels, however, it is uncertain how many actually do, and at what rate. The Galactic halo, with its older population, provides a direct test of evolutionary models for low mass stars. Birthrate estimates of PNe are uncertain and worse still, are in contradiction with accepted white dwarf (WD) birthrate estimates. Much of the uncertainty stems from the lack of complete samples and poorly determined distance estimates. New surveys such as the Sloan Digital Sky Survey (SDSS), Galaxy Evolutionary Explorer (GALEX) and the INT Photometric Ha Survey (IPHAS) have discovered many new PNe and have observed the far edges of the Galaxy. Improved methods of determining distances to CSPNe are presented here, using model atmospheres, evolutionary tracks and high resolution reddening maps utilising these revolutionary surveys. Locating the CSPN is non-trivial particularly for evolved PNe, as they are extended with their central star often displaced from the centre of the nebula. Therefore, photometric criteria are required to locate the CSPN in the nebula's field. Synthetic photometry of the CSPNe is derived from spectral energy distributions (SEDs) computed from a grid of model atmospheres covering the parameter range of CSPNe. The SEDs are convolved with filter transmission curves to compute synthetic magnitudes for a given photometric system which are then calibrated with standard stars and WDs. A further project borne out of a search for luminous central stars of faint PNe, resulted in a systematic search for post-AGB stars in the Galactic halo. In this work, new candidate halo post-AGB stars are discovered from a search through the SDSS spectroscopic

  1. A giant stream of metal-rich stars in the halo of the galaxy M31.

    PubMed

    Ibata, R; Irwin, M; Lewis, G; Ferguson, A M; Tanvir, N

    2001-07-01

    Recent observations have revealed streams of gas and stars in the halo of the Milky Way that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes. PMID:11452300

  2. Attribution of halo merger mass ratio and star formation rate density

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Jo, Jeong-woon; Hwang, Jihe; Youn, Soyoung; Park, Boha

    2016-06-01

    We have used codes for implementing the merger tree algorithm by Cole et al. (2007) and Parkinson et al. (2008) and derived the halo merger mass ratio of protocluster of galaxies across the cosmic time. The authors compare the observed and simulated star formation rates reported by the various groups and derive the star formation rate densities at different red-shifts. This study implies that an investigation of different mass variables should be incorporated into the analysis in order to accurately estimate cumulative star formation rates of galaxies and star formation rate densities as a function of red-shifts.

  3. EXPLORING HALO SUBSTRUCTURE WITH GIANT STARS: SUBSTRUCTURE IN THE LOCAL HALO AS SEEN IN THE GRID GIANT STAR SURVEY INCLUDING EXTENDED TIDAL DEBRIS FROM {omega}CENTAURI

    SciTech Connect

    Majewski, Steven R.; Nidever, David L.; Damke, Guillermo J.; Patterson, Richard J.; Garcia Perez, Ana E.; Smith, Verne V.; Kunkel, William E.; Bizyaev, Dmitry E-mail: dln5q@virginia.edu E-mail: ricky@virginia.edu E-mail: vsmith@noao.edu E-mail: dmbiz@apo.nmsu.edu

    2012-03-10

    We present the latitude-normalized radial velocity (v{sub b} ) distribution of 3318 subsolar metallicity, V {approx}< 13.5 stars from the Grid Giant Star Survey (GGSS) in southern hemisphere fields. The sample includes giants mostly within {approx}5 kpc from the Galactic disks and halo. The nearby halo is found to (1) exhibit significant kinematical substructure, and (2) be prominently represented by several velocity coherent structures, including a very retrograde 'cloud' of stars at l {approx} 285 Degree-Sign and extended, retrograde 'streams' visible as relatively tight l-v{sub b} sequences. One sequence in the fourth Galactic quadrant lies within the l-v{sub b} space expected to contain tidal debris from the 'star cluster' {omega}Centauri. Not only does {omega}Cen lie precisely in this l-v{sub b} sequence, but the positions and v{sub b} of member stars match those of N-body simulations of tidally disrupting dwarf galaxies on orbits ending with {omega}Cen's current position and space motion. But the ultimate proof that we have very likely found extended parts of the {omega}Cen tidal stream comes from echelle spectroscopy of a subsample of the stars that reveals a very particular chemical abundance signature known to occur only in {omega}Cen. The newly discovered {omega}Cen debris accounts for almost all fourth Galactic quadrant retrograde stars in the southern GGSS, which suggests {omega}Cen is a dominant contributor of retrograde giant stars in the inner Galaxy.

  4. The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light

    NASA Astrophysics Data System (ADS)

    Longobardi, Alessia; Arnaboldi, Magda; Gerhard, Ortwin; Hanuschik, Reinhard

    2015-07-01

    -8NPN L⊙,bol-1, respectively. The M 87 halo PNLF has fewer bright PNs and a steeper slope towards faint magnitudes than the ICPNLF, and both are steeper than the standard PNLF for the M 31 bulge. Moreover, the ICPNLF has a dip at ~1-1.5 mag fainter than the bright cut-off, reminiscent of the PNLFs of systems with extended star formation history, such as M 33 or the Magellanic clouds. Conclusions: The BCG halo of M 87 and the Virgo ICL are dynamically distinct components with different density profiles and velocity distributions. Moreover, the different α-parameter values and PNLF shapes of the halo and ICL indicate distinct parent stellar populations, consistent with the existence of a gradient towards bluer colours at large radii. These results reflect the hierarchical build-up of the Virgo cluster. Based on observations made with the VLT at Paranal Observatory under programs 088.B-0288(A) and 093.B-066(A), and with the SUBARU Telescope under program S10A-039.

  5. Probable new halo stars toward L = 360 deg, B = +30 deg

    NASA Astrophysics Data System (ADS)

    Osborn, Wayne; MacConnell, D. J.

    1987-12-01

    Eighty-three probable halo giants have been identified in Stock's recently published objective-prism survey of an intermediate galactic latitude field. Approximate radial velocities derived from the objective-prism plates yield a velocity dispersion of 98±8 km sec-1 for these stars.

  6. La and Eu Abundances in Metal-poor Halo Stars

    NASA Astrophysics Data System (ADS)

    Cardillo, Harrison; Burris, Debra L.

    2016-01-01

    Elements with atomic number greater than Z=26 (the Iron Peak) cannot be formed through fusion in a star's core; the majority of these elements are produced through one of two neutron-capture processes. Early in the history of the Galaxy, the rapid neutron-capture process (r-process) is believed to be responsible for the production of elements Z=56 and beyond. These elements require at least one generation of stars to have completed their life cycle in order to be synthesized. Therefore, if we observe the heavy metal abundances in what are called Population II stars (metal-poor stars), then we can begin to make inferences about the chemistry of the earliest stars in the Galaxy. To contribute to this picture of the early universe, the Lanthanum and Europium abundances of low-metallicity stars will be measured and trends in these abundances based on comparisons to existing related literature will be sought.

  7. Resolving the stellar halos of six massive disk galaxies beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; de Jong, Roelof S.; Bailin, Jeremy; Holwerda, Benne; Streich, David

    2016-08-01

    Models of galaxy formation in a hierarchical universe predict substantial scatter in the halo-to-halo stellar properties, owing to stochasticity in galaxies' merger histories. Currently, only few detailed observations of stellar halos are available, mainly for the Milky Way and M31. We present the stellar halo color/metallicity and density profiles of red giant branch stars out to ~60 kpc along the minor axis of six massive nearby Milky Way-like galaxies beyond the Local Group from the Galaxy Halos, Outer disks, Substructure, Thick disks and Star clusters (GHOSTS) HST survey. This enlargement of the sample of galaxies with observations of stellar halo properties is needed to understand the range of possible halo properties, i.e. not only the mean properties but also the halo-to-halo scatter, what a `typical' halo looks like, and how similar the Milky Way halo is to other halos beyond the Local Group.

  8. THE CLUSTERING AND HALO MASSES OF STAR-FORMING GALAXIES AT z < 1

    SciTech Connect

    Dolley, Tim; Brown, Michael J. I.; Pimbblet, Kevin A.; Palamara, David P.; Beare, Richard; Weiner, Benjamin J.; Jannuzi, Buell T.; Brodwin, Mark; Kochanek, C. S.; Dey, Arjun; Atlee, David W.

    2014-12-20

    We present clustering measurements and halo masses of star-forming galaxies at 0.2 < z < 1.0. After excluding active galactic nuclei (AGNs), we construct a sample of 22,553 24 μm sources selected from 8.42 deg{sup 2} of the Spitzer MIPS AGN and Galaxy Evolution Survey of Boötes. Mid-infrared imaging allows us to observe galaxies with the highest star formation rates (SFRs), less biased by dust obscuration afflicting the optical bands. We find that the galaxies with the highest SFRs have optical colors that are redder than typical blue cloud galaxies, with many residing within the green valley. At z > 0.4 our sample is dominated by luminous infrared galaxies (LIRGs, L {sub TIR} > 10{sup 11} L {sub ☉}) and is composed entirely of LIRGs and ultraluminous infrared galaxies (ULIRGs, L {sub TIR} > 10{sup 12} L {sub ☉}) at z > 0.6. We observe weak clustering of r {sub 0} ≈ 3-6 h {sup –1} Mpc for almost all of our star-forming samples. We find that the clustering and halo mass depend on L {sub TIR} at all redshifts, where galaxies with higher L {sub TIR} (hence higher SFRs) have stronger clustering. Galaxies with the highest SFRs at each redshift typically reside within dark matter halos of M {sub halo} ≈ 10{sup 12.9} h {sup –1} M {sub ☉}. This is consistent with a transitional halo mass, above which star formation is largely truncated, although we cannot exclude that ULIRGs reside within higher mass halos. By modeling the clustering evolution of halos, we connect our star-forming galaxy samples to their local descendants. Most star-forming galaxies at z < 1.0 are the progenitors of L ≲ 2.5 L {sub *} blue galaxies in the local universe, but star-forming galaxies with the highest SFRs (L {sub TIR} ≳ 10{sup 11.7} L {sub ☉}) at 0.6 < z < 1.0 are the progenitors of early-type galaxies in denser group environments.

  9. Hubble Space Telescope Photometry for the Halo Stars in the Leo Elliptical NGC 3377

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Harris, Gretchen L. H.; Layden, Andrew C.; Stetson, Peter B.

    2007-07-01

    We have used the ACS camera on HST to obtain (V,I) photometry for 57,000 red giant stars in the halo of the Leo elliptical NGC 3377, an intermediate-luminosity elliptical. We use this sample of stars to derive the metallicity distribution function (MDF) for its halo field stars and comment on its chemical evolution history compared with both larger and smaller E galaxies. Our ACS WFC field spans a radial range extending from 4 to 18 kpc projected distance from the center of NGC 3377 and thus covers a significant portion of this galaxy's halo. We find that the MDF is broad, reaching a peak at log(Z/Zsolar)~=-0.6, but containing virtually no stars more metal-poor than log(Z/Zsolar)=-1.5. It may, in addition, have relatively few stars more metal-rich than log(Z/Zsolar)~=-0.3, although interpretation of the high-metallicity end of the MDF is limited by photometric completeness that affects the detection of the reddest, most metal-rich stars. NGC 3377 appears to have an enrichment history intermediate between those of normal dwarf ellipticals and the much larger giants. As yet, we find no clear evidence that the halo of NGC 3377 contains a significant population of ``young'' (<3 Gyr) stars. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9811. Support for this work was provided in part by NASA through grant HST-GO-09811.01-A from the Space Telescope Science Institute, under NASA contract NAS 5-26555.

  10. The first Population II stars formed in externally enriched mini-haloes

    NASA Astrophysics Data System (ADS)

    Smith, Britton D.; Wise, John H.; O'Shea, Brian W.; Norman, Michael L.; Khochfar, Sadegh

    2015-09-01

    We present a simulation of the formation of the earliest Population II stars, starting from cosmological initial conditions and ending when metals created in the first supernovae are incorporated into a collapsing gas cloud. This occurs after a supernova blast-wave collides with a nearby mini-halo, inducing further turbulence that efficiently mixes metals into the dense gas in the centre of the halo. The gas that first collapses has been enriched to a metallicity of Z ˜ 2 × 10-5 Z⊙. Due to the extremely low metallicity, collapse proceeds similarly to metal-free gas until dust cooling becomes efficient at high densities, causing the cloud to fragment into a large number of low-mass objects. This external enrichment mechanism provides a plausible origin for the most metal-poor stars observed, such as SMSS J031300.36-670839.3, that appear to have formed out of gas enriched by a single supernova. This mechanism operates on shorter time-scales than the time for low-mass mini-haloes (M ≤ 5 × 105 M⊙) to recover their gas after experiencing a supernova. As such, metal-enriched stars will likely form first via this channel if the conditions are right for it to occur. We identify a number of other externally enriched haloes that may form stars in this manner. These haloes have metallicities as high as 0.01 Z⊙, suggesting that some members of the first generation of metal-enriched stars may be hiding in plain sight in current stellar surveys.

  11. More evidence of substructure in the motions of nearby halo stars

    NASA Astrophysics Data System (ADS)

    Re Fiorentin, P.; Helmi, A.; Lattanzi, M. G.; Spagna, A.

    2004-07-01

    We explore the stellar halo of the Milky Way to search for fossil signatures of past mergers. We use the Beers et al. (2000) catalog of non-kinematically selected metal poor stars in the solar neighborhood to select subsets of halo stars within 1-2 kpc of the Sun. Motivated by the results of high resolution CDM simulations, we look for substructure in the kinematics of the fastest stars. When a two-point velocity correlation function is applied to these subsets, statistical evidence of substructure is found. This appears to be due to a small moving group with dynamical properties similar to the stellar "stream" previously discovered by Helmi et al. (1999).

  12. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    SciTech Connect

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher E-mail: chris@astro.as.utexas.edu E-mail: afrebel@cfa.harvard.edu E-mail: beers@pa.msu.edu E-mail: cthom@stsci.edu

    2011-11-20

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R {approx}15, 000) and corresponding high-resolution (R {approx}35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] < -3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< - 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] {approx}< -3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire {approx}500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  13. Highly-Ionized Gas in the Galactic Halo: A FUSE Survey of O 6 Absorption toward 22 Halo Stars

    NASA Astrophysics Data System (ADS)

    Zsargo, J.; Sembach, K. R.; Howk, J. C.; Savage, B. D.

    2002-12-01

    Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of 22 Galactic halo stars are studied to determine the amount of O 6 in the Galactic halo between ~0.3 and ~10 kpc from the Galactic mid-plane. Strong O 6 λ 1031.93 absorption was detected toward 21 stars, and a reliable 3 σ upper limit was obtained toward HD 97991. The weaker member of the O 6 doublet at 1037.62 Å could be studied toward only six stars. The observed columns are reasonably consistent with a patchy exponential O 6 distribution with a mid-plane density of 1.7x10-8 cm-3 and scale height between 2.3 and 4 kpc. We do not see clear signs of strong high-velocity components in O 6 absorption along the Galactic sight lines, which indicates the general absence of high velocity O 6 within 2-5 kpc of the Galactic mid-plane. The correlation between the H 1 and O 6 intermediate velocity absorption is also poor. The O 6 velocity dispersions are much larger than the value of ~18 km/s expected from thermal broadening for gas at T ~ 3x105 K, the temperature at which O 6 is expected to reach its peak abundance in collisional ionization equilibrium. Turbulence, inflow, and outflow must have an effect on the shape of the O 6 profiles. Kinematical comparisons of O 6 with Ar 1 reveal that 9 of 21 sight lines are closely aligned in LSR velocity (|Δ VLSR| <=5 km/s ), while 8 of 21 exhibit significant velocity differences (|Δ VLSR| >= 15 km/s ). This dual behavior may indicate the presence of two different types of O 6-bearing environments toward the Galactic sight lines. Comparison of O 6 with other highly-ionized species suggests that the high ions are produced primarily by cooling hot gas in the Galactic fountain flow, and that turbulent mixing also has a significant contribution. The role of turbulent mixing is most important toward sight lines that sample supernova remnants like Loop I and IV. We are also able to show that the O 6 enhancement toward the Galactic center region that was observed in the FUSE

  14. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    SciTech Connect

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-08-10

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100 Degree-Sign -117 Degree-Sign , within 30 Degree-Sign of the Galactic plane. For |b| < 15 Degree-Sign , we observe a symmetric RM distribution about the Galactic plane. This is consistent with a disk field in the Perseus arm of even parity across the Galactic mid-plane. In the range 15 Degree-Sign < |b| < 30 Degree-Sign , we find median RMs of -15 {+-} 4 rad m{sup -2} and -62 {+-} 5 rad m{sup -2} in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 {mu}G (7 {mu}G) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  15. r-Process Elements in EMP stars: Indicators of Inhomogeneous Early Halo Enrichment

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Nordström, Birgitta; Thidemann Hansen, Terese

    2015-08-01

    Extremely metal-poor (EMP) halo stars with [Fe/H] below ~ -3 are considered to be fossil records of conditions in the early halo. In the simplest picture where iron is a proxy for overall metallicity and indirectly for time, EMP stars formed before the oldest and most metal-poor Galactic globular clusters. High-resolution spectroscopy with 8m-class telescopes has shown the detailed abundance pattern of these stars to be surprisingly uniform (e.g. Bonifacio+ 2012) and essentially Solar, apart from the α-enhancement typical of SN II nucleosynthesis. A small fraction (~3%) of EMP stars, however, is strongly enhanced in the heaviest (r-process) neutron-capture elements, highlighting that the periodic system of elements was fully populated already this early.These striking departures from the general chemical homogeneity could be produced by local or distant sources. The former case is simple - mass transfer from a binary companion that evolved to produce a highly neutron-rich environment (one or more NS). Alternatively, the r-process elements were formed in a site at interstellar distance and preferentially seeded into the natal clouds of the present-day EMP-r stars. Our long-term, precise monitoring of the radial velocities of a sample of such stars (Hansen+ 2011) disproved the binary hypothesis, which would in fact also fail to explain the existence of r-process poor stars, such as HD 122653. We thus conclude that the chemical enrichment of the early halo was far more complex, patchy and likely anisotropic than assumed in current models of Galactic chemical evolution: The EMP-r stars are not just peculiarities to be ignored, but indicate that a new level of complexity must be invoked. That r-process elements have not (yet) been observed in high-redshift DLA systems is readily explained by their low abundance relative to the lighter species and the rarity of strong enrichment events.

  16. The Evolution of Pristine Gas: Implications for Milky Way Halo Stars

    NASA Astrophysics Data System (ADS)

    Sarmento, Richard J.; Scannapieco, Evan; Pan, Liubin

    2016-06-01

    We implement a new subgrid model for turbulent mixing to accurately follow the cosmological evolution of the first stars, the mixing of their supernova ejecta and the impact on the chemical composition of the Galactic Halo. Using the cosmological adaptive mesh refinement code RAMSES, we implement a model for the pollution of pristine gas as described in Pan et al. (2013). This allows us to account for the fraction of Z < Zcrit stars formed throughout the simulation volume, even in regions in which the average metallicity is well above Zcrit. Further, as a result of modeling the pristine fraction of gas, we also improve our modeling of the metallicity of the polluted fraction, fpol, of both the gas and stars.Additionally, we track the evolution of the “primordial metals” generated by Pop III supernovae. These metals are taken up by second-generation stars and are likely to lead to unique abundance signatures characteristic of carbon enhanced, metal poor (CEMP) stars. As an illustrative example, we associate primordial metals with abundance ratios used by Keller at al (2014) to explain the source of metals in the star SMSS J031300.36- 670839.3, finding good agreement with the observed [Fe/H], [C/H], [O/H] and [Mg/Ca] ratios in CEMP Milky Way (MW) halo stars.

  17. Evidence for recent star formation in the galactic halo

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.

    1986-09-01

    Observational data for PHL 346 obtained with the 2.5 m Issac Newton telescope on August 1985 are studied. Measured stellar Stromgren colors, hydrogen-line profiles, and helium and metal-line equivalent widths are compared with those predicted by local thermodynamic equilibrium model-atmosphere calculations. Effective temperature, surface gravity, microturbulent velocity, and helium and metal abundances for the star are derived. A mass of 13 + or - 2 solar masses, a lifetime of 11 x 10 to the 6th yr, a distance from the galactic plane of 8.7 + or - 1.5 kpc, and a velocity in the z direction of +56 + or - 10 km/s are calculated for the star. The data reveal that the star was not ejected from the galactic plane, but that it formed out of galactic fountain gas at about 6 kpc from the disc.

  18. Hot subdwarf stars in the Galactic halo Tracers of prominent events in late stellar evolution

    NASA Astrophysics Data System (ADS)

    Geier, Stephan; Kupfer, Thomas; Schaffenroth, Veronika; Heber, Ulrich

    2016-08-01

    Hot subdwarf stars (sdO/Bs) are the stripped cores of red giants located at the bluest extension of the horizontal branch. They constitute the dominant population of UV-bright stars in old stellar environments and are most likely formed by binary interactions. We perform the first systematic, spectroscopic analysis of a sample of those stars in the Galactic halo based on data from SDSS. In the course of this project we discovered 177 close binary candidates. A significant fraction of the sdB binaries turned out to have close substellar companions, which shows that brown dwarfs and planets can significantly influence late stellar evolution. Close hot subdwarf binaries with massive white dwarf companions on the other hand are good candidates for the progenitors of type Ia supernovae. We discovered a hypervelocity star, which not only turned out to be the fastest unbound star known in our Galaxy, but also the surviving companion of such a supernova explosion.

  19. Neutral hydrogen in galaxy haloes at the peak of the cosmic star formation history

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Hopkins, Philip F.; Kereš, Dušan; Muratov, Alexander L.; Quataert, Eliot; Murray, Norman

    2015-05-01

    We use high-resolution cosmological zoom-in simulations from the FIRE (Feedback in Realistic Environments) project to make predictions for the covering fractions of neutral hydrogen around galaxies at z = 2-4. These simulations resolve the interstellar medium of galaxies and explicitly implement a comprehensive set of stellar feedback mechanisms. Our simulation sample consists of 16 main haloes covering the mass range Mh ≈ 109-6 × 1012 M⊙ at z = 2, including 12 haloes in the mass range Mh ˜ 1011-1012 M⊙ corresponding to Lyman break galaxies (LBGs). We process our simulations with a ray tracing method to compute the ionization state of the gas. Galactic winds increase the H I covering fractions in galaxy haloes by direct ejection of cool gas from galaxies and through interactions with gas inflowing from the intergalactic medium. Our simulations predict H I covering fractions for Lyman limit systems (LLSs) consistent with measurements around z ˜ 2-2.5 LBGs; these covering fractions are a factor ˜2 higher than our previous calculations without galactic winds. The fractions of H I absorbers arising in inflows and in outflows are on average ˜50 per cent but exhibit significant time variability, ranging from ˜10 to ˜90 per cent. For our most massive haloes, we find a factor ˜3 deficit in the LLS covering fraction relative to what is measured around quasars at z ˜ 2, suggesting that the presence of a quasar may affect the properties of halo gas on ˜100 kpc scales. The predicted covering fractions, which decrease with time, peak at Mh ˜ 1011-1012 M⊙, near the peak of the star formation efficiency in dark matter haloes. In our simulations, star formation and galactic outflows are highly time dependent; H I covering fractions are also time variable but less so because they represent averages over large areas.

  20. The Century Survey Galactic Halo Project III: A Complete 4300 DEG2 Survey of Blue Horizontal Branch Stars in the Metal-Weak Thick Disk and Inner Halo

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Beers, Timothy C.; Wilhelm, Ronald; Allende Prieto, Carlos; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.

    2008-02-01

    We present a complete spectroscopic survey of 2414 2MASS-selected blue horizontal branch (BHB) candidates selected over 4300 deg2 of the sky. We identify 655 BHB stars in this non-kinematically selected sample. We calculate the luminosity function of field BHB stars, and find evidence for very few hot BHB stars in the field. The BHB stars located at a distance from the Galactic plane |Z| < 4 kpc trace what is clearly a metal-weak thick disk population, with a mean metallicity of [Fe/H] = -1.7, a rotation velocity gradient of dvrot/d|Z| = -28 ± 3.4 km s-1 in the region |Z| < 6 kpc, and a density scale height of hZ = 1.26 ± 0.1 kpc. The BHB stars located at 5 < |Z| < 9 kpc are a predominantly inner-halo population, with a mean metallicity of [Fe/H] = -2.0 and a mean Galactic rotation of -4 ± 31 km s-1. We infer the density of halo and thick disk BHB stars is 104 ± 37 kpc-3 near the Sun, and the relative normalization of halo to thick-disk BHB stars is 4 ± 1% near the Sun.

  1. Oxygen Abundances in Low- and High-α Field Halo Stars and the Discovery of Two Field Stars Born in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ramírez, I.; Meléndez, J.; Chanamé, J.

    2012-10-01

    Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and α-element (Mg, Si, Ca, Ti) abundances: thick disk, high-α halo, and low-α halo. We find the oxygen abundance trends of thick-disk and high-α halo stars very similar. The low-α stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the α elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% ± 2% of the local field metal-poor star population was born in GCs.

  2. OXYGEN ABUNDANCES IN LOW- AND HIGH-{alpha} FIELD HALO STARS AND THE DISCOVERY OF TWO FIELD STARS BORN IN GLOBULAR CLUSTERS

    SciTech Connect

    Ramirez, I.; Melendez, J.

    2012-10-01

    Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and {alpha}-element (Mg, Si, Ca, Ti) abundances: thick disk, high-{alpha} halo, and low-{alpha} halo. We find the oxygen abundance trends of thick-disk and high-{alpha} halo stars very similar. The low-{alpha} stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the {alpha} elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% {+-} 2% of the local field metal-poor star population was born in GCs.

  3. Chronography of the Milky Way's Halo System with Field Blue Horizontal-branch Stars

    NASA Astrophysics Data System (ADS)

    Santucci, Rafael M.; Beers, Timothy C.; Placco, Vinicius M.; Carollo, Daniela; Rossi, Silvia; Lee, Young Sun; Denissenkov, Pavel; Tumlinson, Jason; Tissera, Patricia B.

    2015-11-01

    In a pioneering effort, Preston et al. reported that the colors of blue horizontal-branch (BHB) stars in the halo of the Galaxy shift with distance, from regions near the Galactic center to about 12 kpc away, and interpreted this as a correlated variation in the ages of halo stars, from older to younger, spanning a range of a few Gyrs. We have applied this approach to a sample of some 4700 spectroscopically confirmed BHB stars selected from the Sloan Digital Sky Survey to produce the first “chronographic map” of the halo of the Galaxy. We demonstrate that the mean de-reddened g - r color, < {(g-r)}0> , increases outward in the Galaxy from -0.22 to -0.08 (over a color window spanning [-0.3: 0.0]) from regions close to the Galactic center to ˜40 kpc, independent of the metallicity of the stars. Models of the expected shift in the color of the field BHB stars based on modern stellar evolutionary codes confirm that this color gradient can be associated with an age difference of roughly 2-2.5 Gyr, with the oldest stars concentrated in the central ˜15 kpc of the Galaxy. Within this central region, the age difference spans a mean color range of about 0.05 mag (˜0.8 Gyr). Furthermore, we show that chronographic maps can be used to identify individual substructures, such as the Sagittarius Stream, and overdensities in the direction of Virgo and Monoceros, based on the observed contrast in their mean BHB colors with respect to the foreground/background field population.

  4. Long GRBs as a tool to investigate star formation in dark matter halos

    NASA Astrophysics Data System (ADS)

    Wei, Jun-Jie; Hao, Jing-Meng; Wu, Xue-Feng; Yuan, Ye-Fei

    2016-03-01

    First stars can only form in structures that are suitably dense, which can be parametrized by the minimum dark matter halo mass Mmin. Mmin must play an important role in star formation. The connection of long gamma-ray bursts (LGRBs) with the collapse of massive stars has provided a good opportunity for probing star formation in dark matter halos. We place some constraints on Mmin using the latest Swift LGRB data. We conservatively consider that LGRB rate is proportional to the cosmic star formation rate (CSFR) and an additional evolution parametrized as (1 + z) α, where the CSFR model is a function of Mmin. Using the χ2 statistic, the contour constraints on the Mmin-α plane show that at the 1σ confidence level, we have Mmin <1010.5M⊙ from 118 LGRBs with redshift z < 4 and luminosity Liso > 1.8 ×1051 ergs-1. We also find that adding 12 high-z (4 < z < 5) LGRBs (consisting of 104 LGRBs with z < 5 and Liso > 3.1 ×1051 ergs-1) could result in much tighter constraints on Mmin, for which, 107.7M⊙ star formation in dark matter halos.

  5. Stellar oxygen abundances. 3: The oxygen abundance of the very metal poor halo star BD -13 deg 3442

    NASA Technical Reports Server (NTRS)

    King, Jeremy R.

    1994-01-01

    A spectrum of the very metal poor ((Fe/H) approximately -3) halo star BD -13 deg 3442 is presented and used to determine this star's oxygen abundance. Our determination makes BD -13 deg 3442 the most metal poor dwarf (though a somewhat evolved one) with an O abundance determination. The O abundance (determined from the 7774 A O I triped) and (O/Fe) ratio is compared to that of two other metal-poor stars. The (O/Fe) ratio of BD -13 deg 3442 is found to be approximately 0.35 dex larger than that of the other two halo stars. Possible implications of this result are discussed.

  6. IUE observations of blue halo high luminosity stars

    NASA Technical Reports Server (NTRS)

    Hack, M.; Franco, M. L.; Stalio, R.

    1981-01-01

    Two high luminosity population II blue stars of high galactic latitude, BD+33 deg 2642 and HD 137569 were observed at high resolution. The stellar spectra show the effect of mass loss in BD+33 deg 2642 and abnormally weak metallic lines in HD 137569. The interstellar lines in the direction of BD+33 deg 2642, which lies at a height z greater than or equal to 6.2 kpc from the galactic plane, are split into two components. No high ionization stages are found at the low velocity component; nor can they be detected in the higher velocity clouds because of mixing with the corresponding stellar/circumstellar lines.

  7. WEAK GALACTIC HALO-DWARF SPHEROIDAL CONNECTION FROM RR LYRAE STARS

    SciTech Connect

    Fiorentino, Giuliana; Bono, Giuseppe; Monelli, Matteo; Gallart, Carme; Martínez-Vásquez, Clara E.; Tolstoy, Eline; Salaris, Maurizio; Bernard, Edouard J.

    2015-01-01

    We discuss the role that dwarf galaxies may have played in the formation of the Galactic halo (Halo) using RR Lyrae stars (RRL) as tracers of their ancient stellar component. The comparison is performed using two observables (periods, luminosity amplitudes) that are reddening and distance independent. Fundamental mode RRL in 6 dwarf spheroidals (dSphs) and 11 ultra faint dwarf galaxies (∼1300) show a Gaussian period distribution well peaked around a mean period of (Pab) = 0.610 ± 0.001 days (σ = 0.03). The Halo RRL (∼15,000) are characterized by a broader period distribution. The fundamental mode RRL in all the dSphs apart from Sagittarius are completely lacking in High Amplitude Short Period (HASP) variables, defined as those having P ≲ 0.48 days and A{sub V} ≥ 0.75 mag. Such variables are not uncommon in the Halo and among the globular clusters and massive dwarf irregulars. To further interpret this evidence, we considered 18 globulars covering a broad range in metallicity (–2.3 ≲ [Fe/H] ≲ –1.1) and hosting more than 35 RRL each. The metallicity turns out to be the main parameter, since only globulars more metal-rich than [Fe/H] ∼ –1.5 host RRL in the HASP region. This finding suggests that dSphs similar to the surviving ones do not appear to be the major building-blocks of the Halo. Leading physical arguments suggest an extreme upper limit of ∼50% to their contribution. On the other hand, massive dwarfs hosting an old population with a broad metallicity distribution (Large Magellanic Cloud, Sagittarius) may have played a primary role in the formation of the Halo.

  8. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  9. THE FRACTION OF GLOBULAR CLUSTER SECOND-GENERATION STARS IN THE GALACTIC HALO

    SciTech Connect

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2010-08-01

    Many observational studies have revealed the presence of multiple stellar generations in Galactic globular clusters. These studies suggest that second-generation stars make up a significant fraction of the current mass of globular clusters, with the second-generation mass fraction ranging from {approx}50% to 80% in individual clusters. In this Letter, we carry out hydrodynamical simulations to explore the dependence of the mass of second-generation stars on the initial mass and structural parameters and stellar initial mass function (IMF) of the parent cluster. We then use the results of these simulations to estimate the fraction f{sub SG,H} of the mass of the Galactic stellar halo composed of second-generation stars that originated in globular clusters. We study the dependence of f{sub SG,H} on the parameters of the IMF of the Galactic globular cluster system. For a broad range of initial conditions, we find that the fraction of mass of the Galactic stellar halo in second-generation stars is always small, f{sub SG,H} < 4%-6% for a Kroupa-1993 IMF and f{sub SG,H} < 7%-9% for a Kroupa-2001 IMF.

  10. Exploring the Milky Way halo with SDSS-II SN survey RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan

    This thesis details the creation of a large catalog of RR Lyrae stars, their lightcurves, and their associated photometric and kinematic parameters. This catalog contains 421 RR Lyrae stars with 305 RRab and 116 RRc. Of these, 241 stars have stellar spectra taken with either the Blanco 4m RC spectrograph or the SDSS/SEGUE survey, and in some cases taken by both. From these spectra and photometric methods derived from them, an analysis is conducted of the RR lyrae's distribution, metallicity, kinematics, and photometric properties within the halo. All of these RR Lyrae originate from the SDSS-II Supernova Survey. The SDSS-II SN Survey covers a 2.5 degree equatorial stripe ranging from -60 to +60 degrees in RA. This corresponds to relatively high southern galactic latitudes in the anti-center direction. The full catalog ranges from g 0 magnitude 13 to 20 which covers a distance of 3 to 95 kpc from the sun. Using this sample, we explore the Oosterhoff dichotomy through the D log P method as a function of | Z | distance from the plane. This results in a clear division of the RRab stars into OoI and OoII groups at lower | Z |, but the population becomes dominated by OoI stars at higher | Z |. The idea of a dual halo is explored primarily in the context of radial velocity distributions as a function of | Z |. In particular, V gsr , the radial velocity in the galactic standard of rest, is used as a proxy for V [straight phi] , the cylindrical rotational velocity. This is then compared against a single halo model galaxy, which results in very similar V gsr histograms for both at low to medium | Z |. However, at high | Z | there is a clear separation into two distinct velocity groups for the data without a corresponding separation in the model, suggesting that at least a two-component model for the halo is necessary. The final part of the analysis involves [Fe/H] measurements from both spectra and photometric relations cut in both | Z | and radial velocity. In this case

  11. The Abundance Pattern of Two Barium Stars in the Galactic Halo: HD 104340 and HD 206983

    NASA Astrophysics Data System (ADS)

    Junqueira, S.; Pereira, C. B.

    2001-07-01

    We present the abundance pattern of two barium stars in the Galactic halo, HD 104340 and HD 206983, based on high-resolution optical spectra. We also determined the spectroscopic stellar atmospheric parameters, temperature, and microturbulent velocity, as well as stellar surface gravity from a solution of excitation and ionization equilibria of Fe I and Fe II lines under the assumption of local thermodynamic equilibrium. The abundance analysis reveals HD 104340 to be a metal-poor K giant with [Fe/H]=-1.72 and HD 206983 also a metal-poor K giant with [Fe/H]=-1.43. From a set of Fe I lines, the radial velocity is found to be 263.3+/-0.6 km s-1 and -319.2+/-4.4 km s-1 for HD 104340 and HD 206983, respectively. Their high velocity, low metallicity, and high galactic latitude imply that both stars are members of a Galactic halo population. From our study and by using information from the literature we believe that HD 206983 is another member of a group known as metal-deficient barium stars. We compare the abundance pattern with the abundances of a halo population. We found that the abundances of the iron group, α-elements, manganese, copper, and zinc, as well as sodium and magnesium, of HD 104340 and HD 206983 follow the abundance pattern of a halo population. The heavy element abundance pattern of both stars shows enhancement by a factor of 4-8 with respect to the metal-poor stars with the same metallicity as that analyzed by us. We also discuss the abundances of the s-process elements and compare our results with other objects that display the same degree of enrichment due to neutron capture reactions, binary systems, and AGB stars, through a diagram of metallicity versus neutron exposure given by the [hs/ls] index. Based on the observations made with the 1.52 m telescope at the European Southern Observatory (La Silla, Chile) under agreement with Observatório Nacional (Brazil).

  12. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  13. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  14. KINEMATICS OF THE STELLAR HALO AND THE MASS DISTRIBUTION OF THE MILKY WAY USING BLUE HORIZONTAL BRANCH STARS

    SciTech Connect

    Kafle, Prajwal R.; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2012-12-20

    Here, we present a kinematic study of the Galactic halo out to a radius of {approx}60 kpc, using 4664 blue horizontal branch stars selected from the SDSS/SEGUE survey to determine key dynamical properties. Using a maximum likelihood analysis, we determine the velocity dispersion profiles in spherical coordinates ({sigma}{sub r}, {sigma}{sub {theta}}, {sigma}{sub {phi}}) and the anisotropy profile ({beta}). The radial velocity dispersion profile ({sigma}{sub r}) is measured out to a galactocentric radius of r {approx} 60 kpc, but due to the lack of proper-motion information, {sigma}{sub {theta}}, {sigma}{sub {phi}}, and {beta} could only be derived directly out to r {approx} 25 kpc. From a starting value of {beta} Almost-Equal-To 0.5 in the inner parts (9 < r/kpc < 12), the profile falls sharply in the range r Almost-Equal-To 13-18 kpc, with a minimum value of {beta} = -1.2 at r = 17 kpc, rising sharply at larger radius. In the outer parts, in the range 25 < r/kpc < 56, we predict the profile to be roughly constant with a value of {beta} Almost-Equal-To 0.5. The newly discovered kinematic anomalies are shown not to arise from halo substructures. We also studied the anisotropy profile of simulated stellar halos formed purely by accretion and found that they cannot reproduce the sharp dip seen in the data. From the Jeans equation, we compute the stellar rotation curve (v{sub circ}) of the Galaxy out to r {approx} 25 kpc. The mass of the Galaxy within r {approx}< 25 kpc is determined to be 2.1 Multiplication-Sign 10{sup 11} M{sub Sun }, and with a three-component fit to v{sub circ}(r), we determine the virial mass of the Milky Way dark matter halo to be M{sub vir} = 0.9{sup +0.4}{sub -0.3} Multiplication-Sign 10{sup 12} M{sub Sun} (R{sub vir} = 249{sup +34}{sub -31} kpc).

  15. STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7

    SciTech Connect

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Chiba, Masashi; Ivezic, Zeljko; Rockosi, Constance M.; Yanny, Brian E-mail: jen@mso.anu.edu.a E-mail: beers@pa.msu.ed E-mail: chiba@astr.tohoku.ac.j E-mail: crockosi@ucolick.or

    2010-03-20

    The structure and kinematics of the recognized stellar components of the Milky Way are explored, based on well-determined atmospheric parameters and kinematic quantities for 32360 'calibration stars' from the Sloan Digital Sky Survey (SDSS) and its first extension, SDSS-II, which included the sub-survey Sloan Extension for Galactic Understanding and Exploration (SEGUE). Full space motions for a sub-sample of 16,920 stars, exploring a local volume within 4 kpc of the Sun, are used to derive velocity ellipsoids for the inner- and outer-halo components of the Galaxy, as well as for the canonical thick-disk and proposed metal-weak thick-disk (MWTD) populations. This new sample of calibration stars represents an increase of 60% relative to the numbers used in a previous analysis. We first examine the question of whether the data require the presence of at least a two-component halo in order to account for the rotational behavior of likely halo stars in the local volume, and whether more than two components are needed. We also address the question of whether the proposed MWTD is kinematically and chemically distinct from the canonical thick disk, and point out that the Galactocentric rotational velocity inferred for the MWTD, as well as its mean metallicity, appear quite similar to the values derived previously for the Monoceros stream, suggesting a possible association between these structures. In addition, we consider the fractions of each component required to understand the nature of the observed kinematic behavior of the stellar populations of the Galaxy as a function of distance from the plane. Scale lengths and scale heights for the thick-disk and MWTD components are determined. Spatial density profiles for the inner- and outer-halo populations are inferred from a Jeans theorem analysis. The full set of calibration stars (including those outside the local volume) is used to test for the expected changes in the observed stellar metallicity distribution function

  16. Exploring Halo Substructure with Giant Stars. I. Survey Description and Calibration of the Photometric Search Technique

    NASA Astrophysics Data System (ADS)

    Majewski, Steven R.; Ostheimer, James C.; Kunkel, William E.; Patterson, Richard J.

    2000-11-01

    We have begun a survey of the structure of the Milky Way halo, as well as the halos of other Local Group galaxies, as traced by their constituent giant stars. These giant stars are identified via large-area, CCD photometric campaigns. Here we present the basis for our photometric search method, which relies on the gravity sensitivity of the Mg I triplet+MgH features near 5150 Å in F-K stars, and which is sensed by the flux in the intermediate-band DDO51 filter. Our technique is a simplified variant of the combined Washington/DDO51 four-filter technique described by Geisler, which we modify for the specific purpose of efficiently identifying distant giant stars for follow-up spectroscopic study: We show here that for most stars the Washington T1-T2 color is correlated monotonically with the Washington M-T2 color with relatively low scatter; for the purposes of our survey, this correlation obviates the need to image in the T1 filter, as originally proposed by Geisler. To calibrate our (M-T2, M-DDO51) diagram as a means to discriminate field giant stars from nearby dwarfs, we utilize new photometry of the main sequences of the open clusters NGC 3680 and NGC 2477 and the red giant branches of the clusters NGC 3680, Melotte 66, and ω Centauri, supplemented with data on field stars, globular clusters and open clusters by Doug Geisler and collaborators. By combining the data on stars from different clusters, and by taking advantage of the wide abundance spread within ω Centauri, we verify the primary dependence of the M-DDO51 color on luminosity and demonstrate the secondary sensitivity to metallicity among giant stars. Our empirical results are found to be generally consistent with those from analysis of synthetic spectra by Paltoglou & Bell. Finally, we provide conversion formulae from the (M, M-T2) system to the (V, V-I) system, corresponding reddening laws, as well as empirical red giant branch curves from ω Centauri stars for use in deriving photometric

  17. On the relevance of chaos for halo stars in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Maffione, N. P.; Gómez, F. A.; Cincotta, P. M.; Giordano, C. M.; Cooper, A. P.; O'Shea, B. W.

    2015-11-01

    We show that diffusion due to chaotic mixing in the neighbourhood of the Sun may not be as relevant as previously suggested in erasing phase space signatures of past Galactic accretion events. For this purpose, we analyse solar neighbourhood-like volumes extracted from cosmological simulations that naturally account for chaotic orbital behaviour induced by the strongly triaxial and cuspy shape of the resulting dark matter haloes, among other factors. In the approximation of an analytical static triaxial model, our results show that a large fraction of stellar halo particles in such local volumes have chaos onset times (i.e. the time-scale at which stars commonly associated with chaotic orbits will exhibit their chaotic behaviour) significantly larger than a Hubble time. Furthermore, particles that do present a chaotic behaviour within a Hubble time do not exhibit significant diffusion in phase space.

  18. Lithium in halo stars - Constraining the effects of helium diffusion on globular cluster ages and cosmology

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Demarque, Pierre

    1991-01-01

    Stellar evolutionary models with diffusion are used to show that observations of lithium in extreme halo stars provide crucial constraints on the magnitude of the effects of helium diffusion. The flatness of the observed Li-T(eff) relation severely constrains diffusion Li isochrones, which tend to curve downward toward higher T(eff). It is argued that Li observations at the hot edge of the plateau are particularly important in constraining the effects of helium diffusion; yet, they are currently few in number. It is proposed that additional observations are required there, as well as below 5500 K, to define more securely the morphology of the halo Li abundances. Implications for the primordial Li abundance are considered. It is suggested that a conservative upper limit to the initial Li abundance, due to diffusive effects alone, is 2.35.

  19. Chemical Tagging in the SDSS-III/APOGEE Survey: New Identifications of Halo Stars with Globular Cluster Origins

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.; Shetrone, Matthew D.; Lucatello, Sara; Schiavon, Ricardo P.; Mészáros, Szabolcs; Allende Prieto, Carlos; García Hernández, D. A.; Beers, Timothy C.; Nidever, David L.

    2016-07-01

    We present new identifications of five red giant stars in the Galactic halo with chemical abundance patterns that indicate they originally formed in globular clusters. Using data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Survey available through Sloan Digital Sky Survey (SDSS) Data Release 12, we first identify likely halo giants, and then search those for the well-known chemical tags associated with globular clusters, specifically enrichment in nitrogen and aluminum. We find that 2% of the halo giants in our sample have this chemical signature, in agreement with previous results. Following the interpretation in our previous work on this topic, this would imply that at least 13% of halo stars originally formed in globular clusters. Recent developments in the theoretical understanding of globular cluster formation raise questions about that interpretation, and we concede the possibility that these migrants represent a small fraction of the halo field. There are roughly as many stars with the chemical tags of globular clusters in the halo field as there are in globular clusters, whether or not they are accompanied by a much larger chemically untaggable population of former globular cluster stars.

  20. Lithium abundance in a turnoff halo star on an extreme orbit

    NASA Astrophysics Data System (ADS)

    Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P.

    2015-10-01

    Context. The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8 < [Fe/H] < -2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau. Aims: The recently identified very high velocity star, WISE J0725-2351 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star. Methods: The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined. Results: The abundance ratios in WISE J0725-2351 are those typical of old turnoff stars. The lithium abundance in this star is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars. Based on observations obtained at the ESO Paranal Observatory, Chile Programmes 093.D-0127, PI: S. Geier and 189.B-0925, PI: S. Trager.Table 2 (line by line abundances of the elements) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A74

  1. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  2. Very Low Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Takuma, Suda; Honda, Satoshi; Lee, Young Sun

    2015-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) have yet to be well explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013, AJ, 145, 13). The effective temperatures of these stars are 4500--5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres have obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010, ApJL 723, L201), and the other exhibits low abundances of the alpha-elements and odd-Z elements, suggested to be the signatures of the yields of very massive stars ( >100 solar masses; Aoki et al. 2014, Science 345, 912). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  3. Chronography of the Milky Way's Halo System with Field Blue Horizontal-Branch Stars

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.; Placco, Vinicius M.; Carollo, Daniela; Santucci, Rafael; Rossi, Siliva; Lee, Young Sun; Denissenkov, Pavel; Tumlinson, Jason; Tissera, Patricia; Lentner, Geoffrey

    2016-01-01

    In a pioneering effort, Preston et al. (1991, AJ 375, 121) reported that the colors of blue horizontal-branch (BHB) stars in the halo of the Galaxy shift with distance, from regions near the Galactic center to about 12 kpc away, and interpreted this as a correlated variation in the ages of halo stars, from older to younger, spanning a range of a few Gyrs. We have applied this approach to a sample of some 4700 spectroscopically confirmed BHB stars selected from the Sloan Digital Sky Survey to produce the first "chronographic map" of the halo of the Galaxy.We demonstrate that the mean de-reddened g-r color increases outward in the Galaxy from -0.22 to -0.08 (over a color window spanning [-0.3:0.0]) from regions close to the Galactic center to ~40 kpc, independent of the metallicity of the stars. Models of the expected shift in the color of the field BHB stars based on modern stellar evolutionary codes confirm that this color gradient can be associated with an age difference of roughly 2-2.5 Gyrs, with the oldest stars concentrated in the central ~15 kpc of the Galaxy. Within this centralregion, which we refer to as the Ancient Chronographic Sphere (ACS), the age difference spans a mean color range of about 0.05 mag (~0.8 Gyrs). Interestingly, the ACS extends far enough to include the Solar Neighborhood, suggesting that ancient metal-poor stars should be readily detectable in the vicinity of the Sun. Furthermore, we show that chronographic maps can be used to identify individual substructures, such as the Sagittarius Stream, and overdensities in the direction of Virgo and Monoceros, based on the observed contrast in their mean BHB colors with respect to the foreground/background field population.We acknowledge partial support from the grant PHY 14-30152; Physics Frontier Center/JINA Center for the Evolution of the Elements (JINA-CEE), awarded by the US National Science Foundation.

  4. The role of massive halos in the star formation history of the Universe

    NASA Astrophysics Data System (ADS)

    Popesso, P.; Biviano, A.; Finoguenov, A.; Wilman, D.; Salvato, M.; Magnelli, B.; Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Ziparo, F.; Berta, S.; Elbaz, D.; Dickinson, M.; Lutz, D.; Altieri, B.; Aussel, H.; Cimatti, A.; Fadda, D.; Ilbert, O.; Le Floch, E.; Nordon, R.; Poglitsch, A.; Genel, S.; Xu, C. K.

    2015-07-01

    Context. The most striking feature of the cosmic star formation history (CSFH) of the Universe is a dramatic drop in the star formation (SF) activity after z ~ 1. Aims: In this work we investigate whether the very same process of assembly and growth of structures is one of the major drivers of the observed decline in the Universe's SF activity. Methods: We study the contribution to the CSFH of galaxies in halos of different masses. This is done by studying the total SF rate-halo mass-redshift plane from redshift 0 to redshift ~1.6 in a sample of 57 groups and clusters by using the deepest available mid- and far-infrared surveys conducted with Spitzer MIPS and Herschel PACS and SPIRE, on blank (ECDFS, CDFN, and the COSMOS) and cluster fields. Results: Our results show that low mass groups (Mhalo ~ 6 × 1012-6 × 1013 M⊙) provide a 60-80% contribution to the CSFH at z ~ 1. This contribution has declined faster than the CSFH in the past 8 billion years to less than 10% at z < 0.3, where the overall SF activity is sustained by lower mass halos. More massive systems (Mhalo > 6 × 1013 M⊙) provide only a marginal contribution (<10%) at any epoch. A simplified abundance-matching method shows that the large contribution of low mass groups at z ~ 1 is due to a large fraction (>50%) of very massive, highly star-forming main sequence galaxies. Below z ~ 1 a quenching process must take place in massive halos to cause the observed faster suppression of their SF activity. Such a process must be a slow one, though, since most of the models implementing a rapid quenching of the SF activity in accreting satellites significantly underpredict the observed SF level in massive halos at any redshift. This would rule out short time-scale mechanisms such as ram pressure stripping. Instead, starvation or the satellite's transition from cold to hot accretion would provide a quenching timescale of 1 to few Gyr that is more consistent with the observations. Conclusions: Our results

  5. Estimating Gaia's performance for O stars in the Outer Galactic plane using Herschel data

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Molinari, S.; Prusti, T.; Antoja, T.; Elia, D.; de Bruijne, J.

    2014-07-01

    It is in the less dense Outer Galaxy where Gaia can contribute much to stellar studies of the Galactic Plane. As O stars are by definition young objects, their positions and kinematics can still be related to their formation site and history. O star astrometry will not only be important for studies of high-mass star formation, such as triggered star-formation in shells, but also an interesting complement to the radio maser astrometry of star-forming regions and the structure of spiral arms. With the TLUSTY (Lanz & Hubeny 2013) model atmospheres and the nominal Gaia parallax uncertainty, we estimate the parallax uncertainty for all subtypes of main sequence O stars given a visual extinction. The expected extinction is an important limitation for Gaia's astrometric performance and we estimate the extinction from the column density maps calculated from the Herschel Infrared Galactic Plane survey (Molinari et al. 2010), a thermal cold dust emission survey of unprecedented angular resolution and sensitivity. In the 10∘ strip, taken to represent the first estimate of the average extinction in the Outer Galaxy, we find that most of the visual extinction is less than 10 mag. Only the most dense parts of the clouds have AV > 10 mag. Given these extinctions toward the Outer Galaxy, Gaia will provide accurate (5σ) astrometry for O stars in the Outer Galaxy up to distances of at least 4-6 kpc, which means that Gaia's O star astrometry will be able to transgress the Perseus arm and reach the less-known Outer Arm of the Milky Way (Rygl et al.https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_Rygl%2cK.pdf).

  6. Abundances of D, O, and other species towards the Halo Star HD 93521

    NASA Astrophysics Data System (ADS)

    Kruk, J. W.; Oliveira, C.; Sembach, K. R.; Savage, B. D.

    2006-06-01

    FUSE spectra of the halo star HD 93521 have been analyzed to determine column densities of D I, O I, N I, Ar I, Fe II, and H2 in the intermediate velocity cloud (IVC) along the line of sight. Combining these results with those from GHRS and ground-based spectra provides a comprehensive inventory of abundances in the IVC. We find a relatively high value for D/H (17.4 ppm), near solar abundances and low depletions for refractory elements, and a very low molecular fraction.

  7. Constraints of the Origin of the Remarkable Lithium Abundance in the Halo Star BD+23 3912

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.; Deliyannis, Constantine P.; Boesgaard, Ann Merchant

    1996-12-01

    The Li abundance of the halo star BD+23 3912 ([Fe/H]=-1.5) lies a factor of 2 - 3 above the Spite plateau. This remarkable difference could reflect either less-than-average stellar Li depletion from a higher primordial Li abundance (as predicted by the Yale rotational stellar evolutionary models), which may have interesting implications for Big Bang nucleosynthesis, or the extraordinary action of Galactic Li production mechanisms. It is also possible that both processes have acted. We use our high resolution, high S/N Keck HIRES spectrum of BD+23 3912 to determine the s-process element abundances and 6Li/7Li ratio in this star. These values serve as signatures for two possible Li production scenarios: the 7Be transport mechanism in AGB stars, and cosmic ray interactions with the ISM. The unremarkable abundances of Y, Zr, Ba, La, Nd, and Sm that we derive argue against a significant contribution to this star' S excess Li from AGB production mechanisms carrying an s-process signature. Since halo subgiants like BD+23 3912 are expected to be particularly good 6Li preservers, our conservative upper limit of 6Li/7Li≤0.15 (compared to 0.25-0.50 expected from cosmic ray production) argues against cosmic ray + ISM interactions as the source for the excess Li, unless Li depletion from an even higher abundance has occurred with preferential 6Li depletion. Highly speculative RGB production scenarios also seem unlikely given the normal Na and M abundances we find and the normal C and 0 abundances determined by others. The totality of Li data on halo subgiants argues against possible diffusion scenarios, in which all such stars dredge up Li that diffused during the main sequence. While the high Li abundance in BD+23 3912 is consistent with that expected from Yale rotational models having a lower-than-average initial angular momentum, future observations of -process elements (particularly 11B) produced in supernovae should provide additional constraints on any enrichment

  8. A Peculiar Faint Satellite in the Remote Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Huxor, A. P.; Martin, N. F.; Ferguson, A. M. N.; Dotter, A.; McConnachie, A. W.; Ibata, R. A.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Tanvir, N. R.; Venn, K. A.

    2013-06-01

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age >~ 10 Gyr and [Fe/H] lsim -2.3. Our inferred distance modulus (m - M)0 = 24.57 ± 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149^{+19}_{-8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r_h=26^{+4}_{-3} pc, integrated luminosity MV = -4.8 ± 0.5, and ellipticity \\epsilon =0.30^{+0.08}_{-0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of ~2-3 smaller in spatial extent than any known counterpart of comparable luminosity. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO 12515.

  9. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    SciTech Connect

    Mackey, A. D.; Dotter, A.; Huxor, A. P.; Martin, N. F.; Ibata, R. A.; Ferguson, A. M. N.; McConnachie, A. W.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Venn, K. A.; Tanvir, N. R.

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.

  10. OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO

    SciTech Connect

    Ramirez, I.; Lambert, D. L.; Allende Prieto, C.

    2013-02-10

    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P {sub 1}), thick-disk (P {sub 2}), and halo (P {sub 3}) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P {sub 2} > 0.5) relative to thin-disk (P {sub 1} > 0.5) stars with [Fe/H] {approx}< -0.2, as well as a 'knee' that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H] {approx}> -0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with 'intermediate' kinematics (P {sub 1} < 0.7, P {sub 2} < 0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P {sub 3} > 0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V < -200 km s{sup -1}; halo stars with V > -200 km s{sup -1} follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with 'ambiguous' kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.

  11. Oxygen Abundances in Nearby FGK Stars and the Galactic Chemical Evolution of the Local Disk and Halo

    NASA Astrophysics Data System (ADS)

    Ramírez, I.; Allende Prieto, C.; Lambert, D. L.

    2013-02-01

    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-local thermodynamic equilibrium analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P 1), thick-disk (P 2), and halo (P 3) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P 2 > 0.5) relative to thin-disk (P 1 > 0.5) stars with [Fe/H] <~ -0.2, as well as a "knee" that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H] >~ -0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with "intermediate" kinematics (P 1 < 0.7, P 2 < 0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P 3 > 0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V < -200 km s-1 halo stars with V > -200 km s-1 follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with "ambiguous" kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.

  12. Deep HST/ACS Photometry of an Arc of Young Stars in the Southern Halo of M82

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong

    2016-01-01

    We present deep HST/ACS photometry of an arclike, overdense region of stars in the southern halo of M82, located approximately 5 kpc from its disk. This arc feature was originally identified about a decade ago. The early ground-based studies suggested that it contains young stars with ages and metallicities similar to those that formed in the tidal tails between M81, M82, and NGC3077 during their interactions. The arc is clearly presented in the spatial distribution of stars in our field with significantly higher stellar density than the background M82 halo stars. The location of the tip of the red giant branch (RGB) reveals the arc to have a similar distance to M81 and M82, therefore confirming that it belongs to this interacting system. Combining our data with those from the ACS Nearby Galaxy Survey Treasury (ANGST), we construct a color-magnitude diagram (CMD) for the arc. A sequence of young stars is clearly presented on its CMD. This young main sequence is not seen in other parts of the M82 halo. Single-metallicity isochrones are used to derive the age of the young stars in the arc. We confirm that these stars exhibit ages consistent with young stars found in the HI bridges between M81, M82 and NGC3077. Furthermore, the mean metallicity of the RGB stars is also derived from their metallicity distribution function and found to be similar to that found in the HI bridges.

  13. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    SciTech Connect

    Barnes, Kate L.; Van Zee, Liese; Dowell, Jayce D. E-mail: vanzee@astro.indiana.edu

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical

  14. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. II. TRACING THE INNER M31 HALO WITH BLUE HORIZONTAL BRANCH STARS

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Rosenfield, Philip; Bell, Eric F.; Guhathakurta, Puragra; Seth, Anil C.; Kalirai, Jason S.; Girardi, Leo E-mail: jd@astro.washington.edu E-mail: philrose@astro.washington.edu E-mail: raja@uco.lick.org E-mail: aseth@astro.utah.edu E-mail: lgirardi@pd.astro.it

    2012-11-01

    We attempt to constrain the shape of M31's inner stellar halo by tracing the surface density of blue horizontal branch (BHB) stars at galactocentric distances ranging from 2 kpc to 35 kpc. Our measurements make use of resolved stellar photometry from a section of the Panchromatic Hubble Andromeda Treasury survey, supplemented by several archival Hubble Space Telescope observations. We find that the ratio of BHB to red giant stars is relatively constant outside of 10 kpc, suggesting that the BHB is as reliable a tracer of the halo population as the red giant branch. In the inner halo, we do not expect BHB stars to be produced by the high-metallicity bulge and disk, making BHB stars a good candidate to be a reliable tracer of the stellar halo to much smaller galactocentric distances. If we assume a power-law profile r {sup -{alpha}} for the two-dimensional (2D) projected surface density BHB distribution, we obtain a high-quality fit with a 2D power-law index of {alpha} = 2.6{sup +0.3} {sub -0.2} outside of 3 kpc, which flattens to {alpha} < 1.2 inside of 3 kpc. This slope is consistent with previous measurements but is anchored to a radial baseline that extends much farther inward. Finally, assuming azimuthal symmetry and a constant mass-to-light ratio, the best-fitting profile yields a total halo stellar mass of 2.1{sup +1.7} {sub -0.4} Multiplication-Sign 10{sup 9} M {sub Sun }. These properties are comparable with both simulations of stellar halo formation by satellite disruption alone and simulations that include some in situ formation of halo stars.

  15. A model atmosphere analysis of the faint early-type halo star PHL 346

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Lennon, D. J.; Brown, P. J. F.; Dufton, P. L.

    1986-08-01

    Stellar equivalent widths and hydrogen line profiles, measured from high-resolution optical spectra obtained with the 2.5 m Issac Newton Telescope, are used in conjunction with model atmosphere calculations to determine the atmospheric parameters and chemical composition of the faint, high galactic latitude early-type star PHL 346. The effective temperature (Teff = 22,600 + or - 1000 K) and surface gravity (log g = 3.6 + or - 0.2), as well as the chemical composition, are found to be similar to those of normal OB stars. Therefore, it is concluded that PHL 346 is an ordinary Population I object, at a z distance of 8.7 + or - 1.5 kpc. The relatively small stellar velocity in the z-direction (Vz = +56 + or - 10 km/s) then implies that PHL 346 must have been formed in the halo, possibly from galactic fountain material at a z distance of about 6 kpc.

  16. Overcooled haloes at z ≥ 10: a route to form low-mass first stars

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Jimenez, Raul; Verde, Licia

    2014-01-01

    It has been shown by Shchekinov and Vasiliev (SV06) that HD molecules can be an important cooling agent in high redshift z ≥ 10 haloes if they undergo mergers under specific conditions so suitable shocks are created. Here, we build upon Prieto et al. who studied in detail the merger-generated shocks, and show that the conditions for HD cooling can be studied by combining these results with a suite of dark matter only simulations. We have performed a number of dark matter only simulations from cosmological initial conditions inside boxes with sizes from 1 to 4 Mpc. We look for haloes with at least two progenitors of which at least one has mass M ≥ Mcr(z), where Mcr(z) is the SV06 critical mass for HD overcooling. We find that the fraction of overcooled haloes with mass between Mcr(z) and 100.2Mcr(z), roughly below the atomic cooling limit, can be as high as ˜0.6 at z ≈ 10 depending on the merger mass ratio. This fraction decreases at higher redshift reaching a value ˜0.2 at z ≈ 15. For higher masses, i.e. above 100.2Mcr(z) up to 100.6Mcr(z), above the atomic cooling limit, this fraction rises to values ≳ 0.8 until z ≈ 12.5. As a consequence, a non-negligible fraction of high redshift z ≳ 10 mini-haloes can drop their gas temperature to the cosmic microwave background temperature limit allowing the formation of low-mass stars in primordial environments.

  17. An IUE's eye view of cool-star outer atmospheres

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1981-01-01

    Three topics are discussed which together demonstrate the power of the IUE to probe the occurrences of chromospheres and coronas in the cool half of the HR diagram. These are: (1) the complementary low dispersion and echelle observing modes; (2) Mg II h and k: chromospheric cooling and width luminosity correlation; and (3) empirical correlations among chromospheric, transition region, and coronal emission. The spectra of alpha Centauri (G2 V + K1 V) and Capella (G6 III + F9 III) are compared with that of the Sun and recent low dispersion surveys of cool star emission in the 1150 A to 2000 A short wavelength region are summarized.

  18. Outer Atmospheres of Low Mass Stars — Flare Characteristics.

    NASA Astrophysics Data System (ADS)

    Lalitha, S.; Schmitt, J. H. M. M.

    2013-04-01

    We compare the coronal properties during flares on active low mass stars CN Leonis, AB Doradus A and Proxima Centauri observed with XMM-Newton. From the X-ray data we analyze the temporal evolution of temperature, emission measure and coronal abundance. The nature of these flares are with secondary events following the first flare peak in the light curve, raising the question regarding the involved magnetic structure. We infer from the plasma properties and the geometry of the flaring structure that the flare originates from a compact arcade rather than in a single loop.

  19. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    SciTech Connect

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. We find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r-.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  20. Young Star Clusters in the Outer Disks of LITTLE THINGS Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Elmegreen, Bruce G.; Gehret, Elizabeth

    2016-06-01

    We examine FUV images of the LITTLE THINGS sample of nearby dwarf irregular (dIrr) and Blue Compact Dwarf galaxies to identify distinct young regions in their far outer disks. We use these data, obtained with the Galaxy Evolution Explorer satellite, to determine the furthest radius at which in situ star formation can currently be identified. The FUV knots are found at distances from the center of the galaxies of 1–8 disk scale lengths and have ages of ≤slant 20 Myr and masses of 20 M{}ȯ to 1 × 105M{}ȯ . The presence of young clusters and OB associations in the outer disks of dwarf galaxies shows that dIrrs do have star formation taking place there in spite of the extreme nature of the environment. Most regions are found where the H i surface density is ∼1 M{}ȯ pc‑2, though both the H i and dispersed old stars go out much further. This limiting density suggests a cutoff in the ability to form distinct OB associations and perhaps even stars. We compare the star formation rates in the FUV regions to the average rates expected at their radii and beyond from the observed gas, using the conventional correlation for gas-rich regions. The localized rates are typically 10% of the expected average rates for the outer disks. Either star formation in dIrrs at surface densities \\lt 1 {M}ȯ pc‑2 occurs without forming distinct associations, or the Kennicutt–Schmidt relation over-predicts the rate beyond this point. In the latter case, the stellar disks in the far-outer parts of dIrrs result from scattering of stars from the inner disk.

  1. Major substructure in the M31 outer halo: distances and metallicities along the giant stellar stream

    NASA Astrophysics Data System (ADS)

    Conn, A. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Ibata, R. A.; Martin, N. F.; McConnachie, A. W.; Ferguson, A. M. N.; Irwin, M. J.; Elahi, P. J.; Venn, K. A.; Mackey, A. D.

    2016-05-01

    We present a renewed look at M31's giant stellar stream along with the nearby structures streams C and D, exploiting a new algorithm capable of fitting to the red giant branch (RGB) of a structure in both colour and magnitude space. Using this algorithm, we are able to generate probability distributions in distance, metallicity and RGB width for a series of subfields spanning these structures. Specifically, we confirm a distance gradient of approximately 20 kpc per degree along a 6 deg extension of the giant stellar stream, with the farthest subfields from M31 lying ˜120 kpc more distant than the innermost subfields. Further, we find a metallicity that steadily increases from -0.7^{+0.1}_{-0.1} to -0.2^{+0.2}_{-0.1} dex along the inner half of the stream before steadily dropping to a value of -1.0^{+0.2}_{-0.2} dex at the farthest reaches of our coverage. The RGB width is found to increase rapidly from 0.4^{+0.1}_{-0.1} to 1.1^{+0.2}_{-0.1} dex in the inner portion of the stream before plateauing and decreasing marginally in the outer subfields of the stream. In addition, we estimate stream C to lie at a distance between 794 and 862 kpc and stream D between 758 and 868 kpc. We estimate the median metallicity of stream C to lie in the range -0.7 to -1.6 dex and a metallicity of -1.1^{+0.3}_{-0.2} dex for stream D. RGB widths for the two structures are estimated to lie in the range 0.4-1.2 dex and 0.3-0.7 dex, respectively. In total, measurements are obtained for 19 subfields along the giant stellar stream, four along stream C, five along stream D and three general M31 spheroid fields for comparison. We thus provide a higher resolution coverage of the structures in these parameters than has previously been available in the literature.

  2. Hα Surface Brightness Profiles of Star-Forming Galaxies and Dependence on Halo Mass Using the HAGGIS Survey

    NASA Astrophysics Data System (ADS)

    Kulkarni, S.; Wilman, D.; Erwin, P.; Koppenhöfer, J.; Gutierrez, L.; Beckman, J.; Saglia, R.; Bender, R.

    2014-03-01

    We present the first results from the Hα Galaxy Groups Imaging Survey (HAGGIS), a narrow-band imaging survey of SDSS groups at z < 0.05 conducted using the Wide Field Imager (WFI) on the ESO/MPG 2.2-meter telescope and the Wide Field Camera (WFC) on the Issac Newton Telescope (INT). In total, we observed 100 galaxy groups with a wide range of halo mass (1012 - 1014 M⊙) in pairs of narrow-band filters selected to get continuum subtracted rest-frame Hα images for each galaxy. The excellent data allows us to detect Hα down to the 10-18 ergs/s/cm2/arcsec2 level. Here, we examine the role played by halo mass and galaxy stellar mass in deciding the overall star formation activity in star forming disks by comparing stacked Hα profiles of galaxies in different halo mass and stellar mass bins. With this preliminary study, we have found that the star-formation activity in star-forming galaxies decreases in larger halos compared to the field galaxies. Using median equivalent width profiles, we can infer how environmental processes affect star-forming galaxies differently at different radii.

  3. Mass, radius and composition of the outer crust of nonaccreting cold neutron stars

    NASA Astrophysics Data System (ADS)

    Hempel, Matthias; Schaffner-Bielich, Jürgen

    2008-01-01

    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick and Sutherland, which was extended by including higher order corrections of the atomic binding, screening, exchange and zero-point energy. The most recent experimental nuclear data from the atomic mass table of Audi, Wapstra and Thibault from 2003 are used. Extrapolation to the drip line is utilized by various state-of-the-art theoretical nuclear models (finite range droplet, relativistic nuclear field and non-relativistic Skyrme Hartree Fock parameterizations). The different nuclear models are compared with respect to the mass and radius of the outer crust for different neutron star configurations and the nuclear compositions of the outer crust.

  4. The Multicolor Lyra Photometric System for Variable Stars and Halo Studies

    NASA Astrophysics Data System (ADS)

    Mironov, Alexey V.; Zakharov, Andrey I.; Prokhorov, Mikhail E.; Nikolaev, Fedor N.; Tuchin, Maxim N.

    2010-02-01

    The space photometric project ``Lyra" is being developed now in Russia. The project purpose is determination of photometric information and coordinates of natural and artificial space objects, from the brightest ones to 16^{m} in visual light. It is supposed to obtain data for about 40-400 million objects from board of the International Space Station, using an astronomical telescope with a diameter of the main mirror of 0.5 m. The observations will be carried out in a scanning mode. Photometry will be obtained in 10 spectral bands. The expected uncertainty for objects of 16^{m} in the V band is 0.01m. The scanning law is that each object will be observed, on average, one hundred times. The Sternberg Astronomical Institute of the Moscow University is the director of experiment and the head scientific organization. The launch of the apparatus into the orbit is planned for 2013. The central wavelengths of the 10 bands of the Lyra photometric system will be at 195, 218, 270, 350, 440, 550, 700, 825, 930 and 1000 nm. It is shown that combinations of various color indices will allow us to determine confidently both effective temperature and metallicity of stars. The presence of a 218-nm band allows to determine confidently interstellar extinction for stars of O-F spectral types. The photometric system will make it possible to separate halo stars from disk stars and to derive physical parameters of their atmospheres. The main results of the experiment should be: i) a spatial model of the Galaxy at distances to 3 kpc from the Sun; ii) specification of physical parameters of stars and models of stellar evolution; iii) discovering a huge number (millions) of variable stars and determining their variability parameters.

  5. Star formation efficiency in the outer filaments of Centaurus A

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.; Heywood, I.

    2015-12-01

    We present a multi-wavelength study of the northern filaments of Centaurus A (at a distance of ˜ 20 kpc from the galaxy center) based on FUV (GALEX), FIR (Herschel) and CO (SEST and ALMA) emission. We also searched for HCN and HCO^+ (ATCA) and observed optical emission lines (VLT/MUSE) in different places of the filament. An upper limit of the dense gas of L'_{HCN}<4.8× 10^3 K.km.s^{-1}.pc^2 at 3σ leads to a dense-to-molecular gas fraction <23% in this region. We compared the CO masses with the SFR estimates and found very long depletion times (11 Gyr on 730 pc scales) and a large scatter in the KS-relation with a standard conversion factor. Applying a metallicity correction to the CO/H_2 conversion factor would lead to even more massive clouds with higher depletion times. Using ALMA archive data, we found 3 unresolved CO(2-1) clumps of size <37× 21 pc and masses around 10^4 M_⊙. The 3 clumps show resolved line profiles (Δ v˜ 10 km.s^{-1}) and are all three dynamically clearly separated by ˜ 10-20 km.s^{-1}. We derived a virial parameter α_{vir}˜ 10-16 which indicates that the clumps are not gravitationally bound and input of energy likely inhibits star formation.

  6. Absolute proper motions to B approximately 22.5: Evidence for kimematical substructure in halo field stars

    NASA Technical Reports Server (NTRS)

    Majewski, Steven R.; Munn, Jeffrey A.; Hawley, Suzanne L.

    1994-01-01

    Radial velocities have been obtained for six of nine stars identified on the basis of similar distances and common, extreme transverse velocities in the proper motion survey of Majewski (1992) as a candidate halo moving group at the north Galactic pole. These radial velocities correspond to velocities perpendicular to the Galactic plane which span the range -48 +/- 21 to -128 +/- 9 km/sec (but a smaller range, -48 +/- 21 to -86 +/- 19 km/sec, when only our own measurements are considered), significantly different than the expected distribution, with mean 0 km/sec, for a random sample of either halo or thick disk stars. The probability of picking such a set of radial velocities at random is less than 1%. Thus the radial velocity data support the hypothesis that these stars constitute part of a halo moving group or star stream at a distance of approximately 4-5 kpc above the Galactic plane. If real, this moving group is evidence for halo phase space substructure which may be the fossil remains of a destroyed globular cluster, Galactic satellite, or Searle & Zinn (1978) 'fragment.'

  7. Star formation in the outer Galaxy: the young cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; Prisinzano, L.; Micela, G.; Caramazza, M.; Sciortino, S.

    2013-05-01

    Stellar formation in the outer Galaxy is expected to be less conspicuous due to worse conditions. Several stellar forming regions in the outer Galaxy have shown similar characteristics to others in the inner Galaxy. The very recent episodes of stellar formation in NGC 1893 (age ˜1.5 Myr) demonstrates it. This cluster is an optimal laboratory to study stellar formation phenomena: it includes the presence of at least 6 O-type stars, two pennant nebulae, dark nebular clouds, and a high disc frequency among its members. We are conducting a series of papers on this cluster based on multiwavelength data, including Spitzer and Chandra observations. We study membership, morphology of the cluster, the spatial distribution of stellar ages and circumstellar discs, and the influence of the massive stars of the cluster in the evolution of circumstellar discs. NGC 1893 has shown similar characteristics to other stellar forming regions at closer distances to the Sun. The ionizing UV flux from massive stars plays an important role in the earlier dissipation of circumstellar discs in closer stars. There is a disc frequency of 52% in a sample complete in the mass range 0.35-2 M_{⊙}. This frequency is slightly lower than in clusters of similar age at closer distance. We attribute this to the faster disc evaporation by radiation of massive stars, the use of a different mass range in each case, and/or the method employed to select stars with and without discs.

  8. An Extremely Fast Halo Hot Subdwarf Star in a Wide Binary System

    NASA Astrophysics Data System (ADS)

    Németh, Péter; Ziegerer, Eva; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-04-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: {T}{{eff}}=30\\600+/- 500 K, {log}g=5.57+/- 0.06 cm s-2, and He abundance {log}(n{{He}}/n{{H}})=-3.0+/- 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [{{Fe}}/{{H}}]=-1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d=5.5+/- 0.5 {{kpc}}, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way.

  9. An Extremely Fast Halo Hot Subdwarf Star in a Wide Binary System

    NASA Astrophysics Data System (ADS)

    Németh, Péter; Ziegerer, Eva; Irrgang, Andreas; Geier, Stephan; Fürst, Felix; Kupfer, Thomas; Heber, Ulrich

    2016-04-01

    New spectroscopic observations of the halo hyper-velocity star candidate SDSS J121150.27+143716.2 (V = 17.92 mag) revealed a cool companion to the hot subdwarf primary. The components have a very similar radial velocity and their absolute luminosities are consistent with the same distance, confirming the physical nature of the binary, which is the first double-lined hyper-velocity candidate. Our spectral decomposition of the Keck/ESI spectrum provided an sdB+K3V pair, analogous to many long-period subdwarf binaries observed in the Galactic disk. We found the subdwarf atmospheric parameters: {T}{{eff}}=30\\600+/- 500 K, {log}g=5.57+/- 0.06 cm s‑2, and He abundance {log}(n{{He}}/n{{H}})=-3.0+/- 0.2. Oxygen is the most abundant metal in the hot subdwarf atmosphere, and Mg and Na lines are the most prominent spectral features of the cool companion, consistent with a metallicity of [{{Fe}}/{{H}}]=-1.3. The non-detection of radial velocity variations suggest the orbital period to be a few hundred days, in agreement with similar binaries observed in the disk. Using the SDSS-III flux calibrated spectrum we measured the distance to the system d=5.5+/- 0.5 {{kpc}}, which is consistent with ultraviolet, optical, and infrared photometric constraints derived from binary spectral energy distributions. Our kinematic study shows that the Galactic rest-frame velocity of the system is so high that an unbound orbit cannot be ruled out. On the other hand, a bound orbit requires a massive dark matter halo. We conclude that the binary either formed in the halo or was accreted from the tidal debris of a dwarf galaxy by the Milky Way.

  10. Li-7 abundances in halo stars: Testing stellar evolution models and the primordial Li-7 abundance

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Demarque, P.

    1994-01-01

    A large number of stellar evolution models with (Fe/H) = -2.3 and -3.3 have been calculated in order to determine the primordial Li-7 abundance and to test current stellar evolution models by a comparison to the extensive database of accurate Li abundances in extremely metal-poor halo stars observed by Thorburn (1994). Standard models with gray atmospheres do a very good job of fitting the observed Li abundances in stars hotter than approximately 5600 K. They predict a primordial. Li-7 abundance of log N(Li) = 2.24 +/- 0.03. Models which include microscopic diffusion predict a downward curvature in the Li-7 destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of Li-7 from the surface of the star. Rotational mixing inhibits the microscopic diffusion and the (Fe/H) = -2.28 stellar models which include both diffusion and rotational mixing provide an excellent match to the mean trend in T(sub eff) which is present in the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rotational mixing leads to considerable Li-7 depletion in these models and the primordial Li-7 abundance inferred from these models is log N(Li) = 3.08 +/- 0.1. However, the (Fe/H) = -3.28 isochrones reveal problems with the combined models. These isochrones predict a trend of decreasing log N(Li) with increasing T(sub eff) which is not present in the observations. Possible causes for this discrepancy are discussed.

  11. On the Origin of the High Lithium Abundance in the Halo Star BD+23{\\ }3912

    NASA Astrophysics Data System (ADS)

    Deliyannis, C. P.; King, J. R.; Boesgaard, A. M.

    1996-09-01

    The Li abundance of the halo star BD+23{\\ }3912 ([Fe/H]=-1.5) lies a factor of 2-3 above the Spite plateau. This remarkable difference could reflect either less-than-average stellar Li depletion from a higher primordial Li abundance (as predicted by the Yale rotational stellar evolutionary models), which may have interesting implications for Big Bang nucleosynthesis, or the extraordinary action of Galactic Li production mechanisms (or both). We use our high resolution, high S/N Keck HIRES spectrum of BD+23{\\ }3912 to determine the s-process element abundances and (6) Li/(7) Li ratio in this star. These values serve as signatures for two possible Li production scenarios: {\\ }the (7) Be transport mechanism in AGB stars, and cosmic ray interactions with the ISM. The unremarkable abundances of Y, Zr, Ba, La, Nd, and Sm that we derive argue against a significant contribution to this star's excess Li from AGB production mechanisms carrying an s-process signature. Our conservative upper limit of (6) Li/(7) Li{<=}0.15 (compared to 0.25-0.50 expected from cosmic ray production) argues against cosmic ray + ISM interactions as the source for the excess Li, unless Li depletion from an even higher abundance has occurred with preferential (6) Li depletion. Highly speculative RGB production scenarios also seem unlikely given the normal Na and Al abundances we find and the normal C and O abundances determined by others. While the high Li abundance in BD+23{\\ }3912 is consistent with that expected from Yale rotational models having a lower-than-average initial angular momentum, future observations of ν-process elements (particularly (11) B) produced in supernovae should provide additional constraints on any enrichment scenarios seeking to explain the large Li abundance of this interesting star.

  12. Constraints on the Origin of the Remarkable Lithium Abundance of the Halo Star BD+23 3912

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.; Deliyannis, Constantine P.; Boesgaard, Ann M.

    1997-02-01

    The Li abundance of the halo star BD+23 3912 ([Fe/(H)] = -1.5) lies a factor of 2 - 3 above the Spite Plateau. This remarkable difference could reflect either less-than-average stellar Li depletion from a higher primordial Li abundance (as predicted by the Yale rotational stellar evolutionary models) having interesting implications for Big Bang nucleosynthesis, or the extraordinary action of Galactic Li production mechanisms. It is also possible that both mechanisms have acted. We use our high resolution, high S/(N) Keck HIRES spectrum of BD+23 3912 to determine the n-capture abundances and 6Li/(7Li) ratio in this star. These values serve as signatures for two possible Li production scenarios: the 7Be transport mechanism in AGB stars and cosmic ray interactions with the ISM. The unremarkable abundances of Y, Zr, Ba, La, Nd, and Sm that we derive argue against a significant contribution to this star's excess Li from AGB production mechanisms carrying an s-process signature. Our conservative upper limit of 6Li/(7Li)<=0.15, compared to 0.25 - 0.50 expected from cosmic ray production, argues against cosmic ray + ISM interactions as the source for the excess Li, unless Li depletion from an even higher abundance has occurred with preferential 6Li depletion. Highly speculative RGB production scenarios also seem unlikely given the normal Na and Al abundances we find and the normal C and O abundances determined by others. While the high Li abundance in BD+23 3912 is consistent with that expected from Yale rotational models having a lower-than-average initial angular momentum, future observations of ν-process elements (particularly 11B) produced in supernovae should provide additional constraints on any enrichment scenarios seeking to explain the large Li abundance of this interesting star.

  13. Li-7 abundances in halo stars: Testing stellar evolution models and the primordial Li-7 abundance

    NASA Astrophysics Data System (ADS)

    Chaboyer, Brian; Demarque, P.

    1994-10-01

    A large number of stellar evolution models with (Fe/H) = -2.3 and -3.3 have been calculated in order to determine the primordial Li-7 abundance and to test current stellar evolution models by a comparison to the extensive database of accurate Li abundances in extremely metal-poor halo stars observed by Thorburn (1994). Standard models with gray atmospheres do a very good job of fitting the observed Li abundances in stars hotter than approximately 5600 K. They predict a primordial. Li-7 abundance of log N(Li) = 2.24 +/- 0.03. Models which include microscopic diffusion predict a downward curvature in the Li-7 destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of Li-7 from the surface of the star. Rotational mixing inhibits the microscopic diffusion and the (Fe/H) = -2.28 stellar models which include both diffusion and rotational mixing provide an excellent match to the mean trend in Teff which is present in the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rotational mixing leads to considerable Li-7 depletion in these models and the primordial Li-7 abundance inferred from these models is log N(Li) = 3.08 +/- 0.1. However, the (Fe/H) = -3.28 isochrones reveal problems with the combined models. These isochrones predict a trend of decreasing log N(Li) with increasing Teff which is not present in the observations. Possible causes for this discrepancy are discussed.

  14. On the Contribution of Fluorescence to Lyα Halos around Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Mas-Ribas, Lluís; Dijkstra, Mark

    2016-05-01

    We quantify the contribution of Lyα fluorescence to observed spatially extended Lyα halos around Lyα emitters at redshift z = 3.1. The key physical quantities that describe the fluorescent signal include (i) the distribution of cold gas in the circumgalactic medium (CGM); we explore simple analytic models and fitting functions to recent hydrodynamical simulations; and (ii) local variations in the ionizing background due to ionizing sources that cluster around the central galaxy. We account for clustering by boosting the observationally inferred volumetric production rate of ionizing photons, {ɛ }{{LyC}}, by a factor of 1+{ξ }{{LyC}}(r), in which {ξ }{{LyC}}(r) quantifies the clustering of ionizing sources around the central galaxy. We compute {ξ }{{LyC}}(r) by assigning an “effective” bias parameter to the ionizing sources. This novel approach allows us to quantify our ignorance of the population of ionizing sources in a simple parametrized form. We find a maximum enhancement in the local ionizing background in the range 50–200 at r ˜ 10 physical kpc. For spatially uncorrelated ionizing sources and fluorescing clouds we find that fluorescence can contribute up to ˜ 50%–60% of the observed spatially extended Lyα emission. We briefly discuss how future observations can shed light on the nature of Lyα halos around star-forming galaxies.

  15. EXPLORING THE VARIABLE SKY WITH LINEAR. II. HALO STRUCTURE AND SUBSTRUCTURE TRACED BY RR LYRAE STARS TO 30 kpc

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Morgan, Dylan M.; Becker, Andrew C.; Stuart, J. Scott; Sharma, Sanjib; Palaversa, Lovro; Juric, Mario; Wozniak, Przemyslaw; Oluseyi, Hakeem

    2013-08-01

    We present a sample of {approx}5000 RR Lyrae stars selected from the recalibrated LINEAR data set and detected at heliocentric distances between 5 kpc and 30 kpc over {approx}8000 deg{sup 2} of sky. The coordinates and light curve properties, such as period and Oosterhoff type, are made publicly available. We analyze in detail the light curve properties and Galactic distribution of the subset of {approx}4000 type ab RR Lyrae (RRab) stars, including a search for new halo substructures and the number density distribution as a function of Oosterhoff type. We find evidence for the Oosterhoff dichotomy among field RR Lyrae stars, with the ratio of the type II and I subsamples of about 1:4, but with a weaker separation than for globular cluster stars. The wide sky coverage and depth of this sample allow unique constraints for the number density distribution of halo RRab stars as a function of galactocentric distance: it can be described as an oblate ellipsoid with an axis ratio q = 0.63 and with either a single or a double power law with a power-law index in the range -2 to -3. Consistent with previous studies, we find that the Oosterhoff type II subsample has a steeper number density profile than the Oosterhoff type I subsample. Using the group-finding algorithm EnLink, we detected seven candidate halo groups, only one of which is statistically spurious. Three of these groups are near globular clusters (M53/NGC 5053, M3, M13), and one is near a known halo substructure (Virgo Stellar Stream); the remaining three groups do not seem to be near any known halo substructures or globular clusters and seem to have a higher ratio of Oosterhoff type II to Oosterhoff type I RRab stars than what is found in the halo. The extended morphology and the position (outside the tidal radius) of some of the groups near globular clusters are suggestive of tidal streams possibly originating from globular clusters. Spectroscopic follow-up of detected halo groups is encouraged.

  16. Probing star formation in the dense environments of z ˜ 1 lensing haloes aligned with dusty star-forming galaxies detected with the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Welikala, N.; Béthermin, M.; Guery, D.; Strandet, M.; Aird, K. A.; Aravena, M.; Ashby, M. L. N.; Bothwell, M.; Beelen, A.; Bleem, L. E.; de Breuck, C.; Brodwin, M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Dole, H.; Doré, O.; Everett, W.; Flores-Cacho, I.; Gonzalez, A. H.; González-Nuevo, J.; Greve, T. R.; Gullberg, B.; Hezaveh, Y. D.; Holder, G. P.; Holzapfel, W. L.; Keisler, R.; Lagache, G.; Ma, J.; Malkan, M.; Marrone, D. P.; Mocanu, L. M.; Montier, L.; Murphy, E. J.; Nesvadba, N. P. H.; Omont, A.; Pointecouteau, E.; Puget, J. L.; Reichardt, C. L.; Rotermund, K. M.; Scott, D.; Serra, P.; Spilker, J. S.; Stalder, B.; Stark, A. A.; Story, K.; Vanderlinde, K.; Vieira, J. D.; Weiß, A.

    2016-01-01

    We probe star formation in the environments of massive (˜1013 M⊙) dark matter haloes at redshifts of z ˜ 1. This star formation is linked to a submillimetre clustering signal which we detect in maps of the Planck High Frequency Instrument that are stacked at the positions of a sample of high redshift (z > 2) strongly lensed dusty star-forming galaxies (DSFGs) selected from the South Pole Telescope (SPT) 2500 deg2 survey. The clustering signal has submillimetre colours which are consistent with the mean redshift of the foreground lensing haloes (z ˜ 1). We report a mean excess of star formation rate (SFR) compared to the field, of (2700 ± 700) M⊙ yr-1 from all galaxies contributing to this clustering signal within a radius of 3.5 arcmin from the SPT DSFGs. The magnitude of the Planck excess is in broad agreement with predictions of a current model of the cosmic infrared background. The model predicts that 80 per cent of the excess emission measured by Planck originates from galaxies lying in the neighbouring haloes of the lensing halo. Using Herschel maps of the same fields, we find a clear excess, relative to the field, of individual sources which contribute to the Planck excess. The mean excess SFR compared to the field is measured to be (370 ± 40) M⊙ yr-1 per resolved, clustered source. Our findings suggest that the environments around these massive z ˜ 1 lensing haloes host intense star formation out to about 2 Mpc. The flux enhancement due to clustering should also be considered when measuring flux densities of galaxies in Planck data.

  17. PARALLAXES OF STAR-FORMING REGIONS IN THE OUTER SPIRAL ARM OF THE MILKY WAY

    SciTech Connect

    Hachisuka, K.; Choi, Y. K.; Reid, M. J.; Dame, T. M.; Brunthaler, A.; Menten, K. M.; Sanna, A.

    2015-02-10

    We report parallaxes and proper motions of three water maser sources in high-mass star-forming regions in the Outer Spiral Arm of the Milky Way. The observations were conducted with the Very Long Baseline Array as part of Bar and Spiral Structure Legacy Survey and double the number of such measurements in the literature. The Outer Arm has a pitch angle of 14.°9 ± 2.°7 and a Galactocentric distance of 14.1 ± 0.6 kpc toward the Galactic anticenter. The average motion of these sources toward the Galactic center is 10.7 ± 2.1 km s{sup –1} and we see no sign of a significant fall in the rotation curve out to 15 kpc from the Galactic center. The three-dimensional locations of these star-forming regions are consistent with a Galactic warp of several hundred parsecs from the plane.

  18. The Formation and Evolution of Young Low-mass Stars within Halos with High Concentration of Dark Matter Particles

    NASA Astrophysics Data System (ADS)

    Casanellas, Jordi; Lopes, IlíDio

    2009-11-01

    The formation and evolution of low-mass stars within dense halos of dark matter (DM) leads to evolution scenarios quite different from the classical stellar evolution. As a result of our detailed numerical work, we describe these new scenarios for a range of DM densities on the host halo, for a range of scattering cross sections of the DM particles considered, and for stellar masses from 0.7 to 3 M sun. For the first time, we also computed the evolution of young low-mass stars in their Hayashi track in the pre-main-sequence phase and found that, for high DM densities, these stars stop their gravitational collapse before reaching the main sequence, in agreement with similar studies on first stars. Such stars remain indefinitely in an equilibrium state with lower effective temperatures (|ΔT eff|>103 K for a star of one solar mass), the annihilation of captured DM particles in their core being the only source of energy. In the case of lower DM densities, these protostars continue their collapse and progress through the main-sequence burning hydrogen at a lower rate. A star of 1 M sun will spend a time period greater than the current age of the universe consuming all the hydrogen in its core if it evolves in a halo with DM density ρχ = 109 GeV cm-3. We also show the strong dependence of the effective temperature and luminosity of these stars on the characteristics of the DM particles and how this can be used as an alternative method for DM research.

  19. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    SciTech Connect

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie; Renzini, Alvio

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  20. An Upper Limit for the Deuterium Abundance in the Halo Star HD 140283

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.; Pasachoff, Jay M.; Galloway, Robert P.; Kurucz, R. L.; Smith, Verne V.

    1994-12-01

    Because of the possible enhanced deuterium abundance of D/H = 2.5 10(-4) (the ISM D/H = 1.65x10(-5) ) recently reported in quasar absorption spectra, we searched for the D_alpha line at 6561 A in the metal-poor halo star HD 140283 (G2IV, [Fe/H] = -2.6; Teff= 5700K). We observed HD 140283 using the .9m KPNO coude feed and the 2.7m McDonald Observatory telescopes with echelle spectrographs having a resolution Delta lambda = .05 A/pixel with S/N= 200 and Delta lambda = .11 A/pixel with S/N = 600 respectively. We did not detect the D_alpha line and compared our results to model atmosphere calculations for this star. We estimate an upper limit of D/H < 1x10(-5) which is smaller than the primordial or and Early Galactic D/H = 8x10(-5) . Since D is destroyed via reactions with protons at T > 5x10(5) K, the atmospheric deuterium has probably been destroyed during the pre-main sequence convection phase. Because (7) Li, (9) Be, and (11) B have all been detected in this star (Li/H=1.5x10(-10) and B/H=2.9x10(-12) ) and Li is destroyed at T > 2.5x10(6) K, the temperature at the bottom of the pre-main sequence convection zone is 1x10(6) K < T < 2.5x10(6) .K

  1. Segue 3: An Old, Extremely Low Luminosity Star Cluster in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Fadely, Ross; Willman, Beth; Geha, Marla; Walsh, Shane; Muñoz, Ricardo R.; Jerjen, Helmut; Vargas, Luis C.; Da Costa, Gary S.

    2011-09-01

    We investigate the kinematic and photometric properties of the Segue 3 Milky Way companion using Keck/DEIMOS spectroscopy and Magellan/IMACS g- and r-band imaging. Using maximum likelihood methods to analyze the photometry, we study the structure and stellar population of Segue 3. We find that the half-light radius of Segue 3 is 26'' ± 5'' (2.1 ± 0.4 pc, for a distance of 17 kpc) and the absolute magnitude is a mere MV = 0.0 ± 0.8 mag, making Segue 3 the least luminous old stellar system known. We find Segue 3 to be consistent with a single stellar population, with an age of 12.0+1.5 - 0.4 Gyr and an [Fe/H] of -1.7+0.07 - 0.27. Line-of-sight velocities from the spectra are combined with the photometry to determine a sample of 32 stars which are likely associated with Segue 3. The member stars within three half-light radii have a velocity dispersion of 1.2 ± 2.6 km s-1. Photometry of the members indicates that the stellar population has a spread in [Fe/H] of <~ 0.3 dex. These facts, together with the small physical size of Segue 3, imply the object is likely an old, faint stellar cluster which contains no significant dark matter. We find tentative evidence for stellar mass loss in Segue 3 through the 11 candidate member stars outside of three half-light radii, as expected from dynamical arguments. Interpretation of the data outside of three half-light radii is complicated by the object's spatial coincidence with a previously known halo substructure, which may enhance contamination of our member sample.

  2. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY

    SciTech Connect

    Balbinot, E.; Santiago, B. X.; Da Costa, L.; Maia, M. A. G.; Rocha-Pinto, H. J.; Majewski, S. R.; Nidever, D.; Thomas, D.; Wechsler, R. H.; Yanny, B.

    2013-04-20

    We report on the discovery of a new Milky Way (MW) companion stellar system located at ({alpha}{sub J2000,}{delta}{sub J2000}) = (22{sup h}10{sup m}43{sup s}.15, 14 Degree-Sign 56 Prime 58 Double-Prime .8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using Canada-France-Hawaii-Telescope/MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9{sup +1.0}{sub -1.6} kpc, with a half-light radius of r{sub h}= 7.24{sup +1.94}{sub -1.29} pc and a concentration parameter of c = log{sub 10}(r{sub t} /r{sub c} ) = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log (age yr{sup -1}) = 10.07{sup +0.05}{sub -0.03} and [Fe/H] = -1.58{sup +0.08}{sub -0.13}. These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 95 {+-} 6 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of M{sub V} = -1.21 {+-} 0.66. The resulting surface brightness is {mu}{sub V} = 25.90 mag arcsec{sup -2}. Its position in the M{sub V} versus r{sub h} diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster-one of the faintest and lowest mass systems yet identified.

  3. Core-Halo Structure of a Chemically Homogeneous Massive Star and Bending of the Zero-Age Main Sequence

    NASA Astrophysics Data System (ADS)

    Ishii, Mie; Ueno, Munetaka; Kato, Mariko

    1999-08-01

    We have recalculated the interior structure of very massive stars of uniform chemical composition with the OPAL opacity. Very massive stars are found to develop a core-halo structure with an extended radiative-envelope. With the core-halo structure, because a more massive star has a more extended envelope, the track of the upper zero-age main-sequence (ZAMS) curves redward in the H-R diagram at > 100 MO (Z=0.02), >70 MO (Z=0.05), and > 15 MO for helium ZAMS (X=0, Z=0.02). Therefore, the effective temperatures of very massive ZAMS stars are rather low: e.g., for a 200 MO star, log T_eff=4.75 (Z=0.004), 4.60 (Z=0.02), 4.46 (Z=0.05), and 4.32 (Z=0.10). The effective temperatures of very luminous stars (> 120 MO ) found in the LMC, the SMC, and the Galaxy are discussed in relation to this metal dependence of a curving upper main-sequence.

  4. Star formation in the outer Galaxy: coronal properties of NGC 1893

    NASA Astrophysics Data System (ADS)

    Caramazza, M.; Micela, G.; Prisinzano, L.; Sciortino, S.; Damiani, F.; Favata, F.; Stauffer, J. R.; Vallenari, A.; Wolk, S. J.

    2012-03-01

    Context. The outer Galaxy, where the environmental conditions are different from the solar neighborhood, is a laboratory in which it is possible to investigate the dependence of star formation process on the environmental parameters. Aims: We investigate the X-ray properties of NGC 1893, a young cluster (~1-2 Myr) in the outer part of the Galaxy (galactic radius ≥11 kpc) where we expect differences in the disk evolution and in the mass distribution of the stars, to explore the X-ray emission of its members and compare it with that of young stars in star-forming regions near to the Sun. Methods: We analyze 5 deep Chandra ACIS-I observations with a total exposure time of 450 ks. Source events of the 1021 X-ray sources have been extracted with the IDL-based routine ACIS-Extract. Using spectral fitting and quantile analysis of X-ray spectra, we derive X-ray luminosities and compare the respective properties of Class II and Class III members. We also evaluate the variability of sources using the Kolmogorov-Smirnov test and identify flares in the lightcurves. Results: The X-ray luminosity of NGC 1893 X-ray members is in the range 1029.5-1031.5 erg s-1. Diskless stars are brighter in X-rays than disk-bearing stars, given the same bolometric luminosity. We found that 34% of the 1021 lightcurves appear variable and that they show 0.16 flare per source, on average. Comparing our results with those relative to the Orion Nebula Cluster, we find that, by accounting for observational biases, the X-ray properties of NGC 1893 and the Orion ones are very similar. Conclusions: The X-ray properties in NGC 1893 are not affected by the environment and the stellar population in the outer Galaxy may have the same coronal properties of nearby star-forming regions. The X-ray luminosity properties and the X-ray luminosity function appear to be universal and can therefore be used for estimating distances and for determining stellar properties. Full Tables 1 and 3 are only available at the

  5. The Century Survey Galactic Halo Project. II. Global Properties and the Luminosity Function of Field Blue Horizontal Branch Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Kurtz, Michael J.; Allende Prieto, Carlos; Beers, Timothy C.; Wilhelm, Ronald

    2005-09-01

    We discuss a 175 deg2 spectroscopic survey for blue horizontal branch (BHB) stars in the Galactic halo. We use the Two Micron All Sky Survey (2MASS) and the Sloan Digital Sky Survey (SDSS) to select BHB candidates, and we find that the 2MASS and SDSS color selection is 38% and 50% efficient, respectively, for BHB stars. Our samples include one likely runaway B7 star 6 kpc below the Galactic plane. The global properties of the BHB samples are consistent with membership in the halo population: the median metallicity is [Fe/H]=-1.7, the velocity dispersion is 108 km s-1, and the mean Galactic rotation of the BHB stars 3 kpc<|z|<15 kpc is -4+/-30 km s-1. We discuss the theoretical basis of the Preston, Shectman, and Beers MV-color relation for BHB stars and conclude that the intrinsic shape of the BHB MV-color relation results from the physics of stars on the horizontal branch. We calculate the luminosity function for the field BHB star samples using the maximum likelihood method of Efstathiou and coworkers, which is unbiased by density variations. The field BHB luminosity function exhibits a steep rise at bright luminosities, a peak between 0.8stars and BHB stars in globular clusters share a common distribution of luminosities, with the exception of globular clusters with extended BHBs.

  6. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  7. Radial Velocities of Very Metal-Poor Stars as Probes of the Dual Halo Model of the Milky Way

    NASA Astrophysics Data System (ADS)

    Beers, Timothy C.; Juric, M.; Carollo, D.; Lee, Y.; An, D.; Aoki, W.; Norris, J. E.; Yong, D.

    2012-05-01

    We consider the distribution of radial velocities (RVs) for a large sample of very metal-poor stars from SDSS/SEGUE (N > 25000 with [Fe/H]< -2.0, of which 900 have [Fe/H] < -3.0), and two smaller recent high-resolution spectroscopic studies of the most metal-poor stars known (N > 300, of which 150 have [Fe/H] < -3.0). The RVs are compared with the expected behavior obtained using the GALFAST code of Juric, under the assumption that the halo of the Milky Way comprises a single population with canonical kinematics (e.g., as described by Chiba & Beers 2000). We find clear evidence that the RVs of these stars are inconsistent with draws from such a model, and that they appear to require at least a two-component halo. This test is, by design, independent of questions related to assignment of estimated stellar distances, or selection criteria related to proper motions, and provides strong support of the dual halo model described by Carollo et al. (2007, 2010).

  8. Dark-matter halo mergers as a fertile environment for low-mass Population III star formation

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Latif, M. A.; Grassi, T.; Schleicher, D. R. G.

    2014-07-01

    While Population III (Pop III) stars are typically thought to be massive, pathways towards lower mass Pop III stars may exist when the cooling of the gas is particularly enhanced. A possible route is enhanced HD cooling during the merging of dark-matter haloes. The mergers can lead to a high ionization degree catalysing the formation of HD molecules and may cool the gas down to the cosmic microwave background temperature. In this paper, we investigate the merging of mini-haloes with masses of a few 105 M⊙ and explore the feasibility of this scenario. We have performed three-dimensional cosmological hydrodynamics calculations with the ENZO code, solving the thermal and chemical evolution of the gas by employing the astrochemistry package KROME. Our results show that the HD abundance is increased by two orders of magnitude compared to the no-merging case and the halo cools down to ˜60 K triggering fragmentation. Based on Jeans estimates, the expected stellar masses are about 10 M⊙. Our findings show that the merging scenario is a potential pathway for the formation of low-mass stars.

  9. The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared

    NASA Astrophysics Data System (ADS)

    Béthermin, Matthieu; Wang, Lingyu; Doré, Olivier; Lagache, Guilaine; Sargent, Mark; Daddi, Emanuele; Cousin, Morgane; Aussel, Hervé

    2013-09-01

    Recent studies have revealed a strong correlation between the star formation rate (SFR) and stellar mass of the majority of star-forming galaxies, the so-called star-forming main sequence. An empirical modeling approach (the 2-SFM framework) that distinguishes between the main sequence and rarer starburst galaxies is capable of reproducing most statistical properties of infrared galaxies, such as number counts, luminosity functions, and redshift distributions. In this paper, we extend this approach by establishing a connection between stellar mass and halo mass with the technique of abundance matching. Based on a few simple assumptions and a physically motivated formalism, our model successfully predicts the (cross-)power spectra of the cosmic infrared background (CIB), the cross-correlation between CIB and cosmic microwave background (CMB) lensing, and the correlation functions of bright, resolved infrared galaxies measured by Herschel, Planck, ACT, and SPT. We use this model to infer the redshift distribution of CIB-anisotropies and of the CIB × CMB lensing signal, as well as the level of correlation between CIB-anisotropies at different wavelengths. We study the link between dark matter halos and star-forming galaxies in the framework of our model. We predict that more than 90% of cosmic star formation activity occurs in halos with masses between 1011.5 and 1013.5 M⊙. If taking subsequent mass growth of halos into account, this implies that the majority of stars were initially (at z > 3) formed in the progenitors of clusters (Mh(z = 0) > 1013.5 M⊙), then in groups (1012.5 < Mh(z = 0) < 1013.5 M⊙) at 0.5 < z < 3, and finally in Milky-Way-like halos (1011.5 < Mh(z = 0) < 1012.5 M⊙) at z < 0.5. At all redshifts, the dominant contribution to the SFR density stems from halos of mass ~1012 M⊙, in which the instantaneous star formation efficiency - defined here as the ratio between SFR and baryonic accretion rate - is maximal (~70%). The strong redshift

  10. Mapping the outer bulge with RRab stars from the VVV Survey

    NASA Astrophysics Data System (ADS)

    Gran, F.; Minniti, D.; Saito, R. K.; Zoccali, M.; Gonzalez, O. A.; Navarrete, C.; Catelan, M.; Contreras Ramos, R.; Elorrieta, F.; Eyheramendy, S.; Jordán, A.

    2016-07-01

    Context. The VISTA Variables in the Vía Láctea (VVV) is a near-IR time-domain survey of the Galactic bulge and southern plane. One of the main goals of this survey is to reveal the 3D structure of the Milky Way through their variable stars. In particular, enormous numbers of RR Lyrae stars have been discovered in the inner regions of the bulge (-8° ≲ b ≲ -1°) by optical surveys such as OGLE and MACHO, but leaving an unexplored window of more than ~47 sq deg (-10.0° ≲ ℓ ≲ + 10.7° and - 10.3° ≲ b ≲ -8.0°) observed by the VVV Survey. Aims: Our goal is to characterize the RR Lyrae stars in the outer bulge in terms of their periods, amplitudes, Fourier coefficients, and distances in order to evaluate the 3D structure of the bulge in this area. The distance distribution of RR Lyrae stars will be compared to that of red clump stars, which is known to trace a X-shaped structure, in order to determine whether these two different stellar populations share the same Galactic distribution. Methods: A search for RR Lyrae stars was performed in more than ~47 sq deg at low Galactic latitudes (-10.3° ≲ b ≲ -8.0°). In the procedure the χ2 value and analysis of variance (AoV) statistic methods were used to determine the variability and periodic features of the light curves, respectively. To prevent misclassifications, the analysis was performed only on the fundamental mode RR Lyrae stars (RRab) owing to similarities found in the near-IR light curve shapes of contact eclipsing binaries (W UMa) and first overtone RR Lyrae stars (RRc). On the other hand, the red clump stars of the same analyzed tiles were selected, and cuts in the color-magnitude diagram were applied and the maximum distance restricted to ~20 kpc in order to construct a similar catalog in terms of distances and covered area compared to the RR Lyrae stars. Results: We report the detection of more than 1000 RR Lyrae ab-type stars in the VVV Survey located in the outskirts of the Galactic bulge

  11. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    SciTech Connect

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  12. Stability of outer planetary orbits around binary stars - A comparison of Hill's and Laplace's stability criteria

    NASA Technical Reports Server (NTRS)

    Kubala, A.; Black, D.; Szebehely, V.

    1993-01-01

    A comparison is made between the stability criteria of Hill and that of Laplace to determine the stability of outer planetary orbits encircling binary stars. The restricted, analytically determined results of Hill's method by Szebehely and coworkers and the general, numerically integrated results of Laplace's method by Graziani and Black (1981) are compared for varying values of the mass parameter mu. For mu = 0 to 0.15, the closest orbit (lower limit of radius) an outer planet in a binary system can have and still remain stable is determined by Hill's stability criterion. For mu greater than 0.15, the critical radius is determined by Laplace's stability criterion. It appears that the Graziani-Black stability criterion describes the critical orbit within a few percent for all values of mu.

  13. The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals.

    PubMed

    Tumlinson, J; Thom, C; Werk, J K; Prochaska, J X; Tripp, T M; Weinberg, D H; Peeples, M S; O'Meara, J M; Oppenheimer, B D; Meiring, J D; Katz, N S; Davé, R; Ford, A B; Sembach, K R

    2011-11-18

    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution. PMID:22096191

  14. Future Large-Scale Surveys of 'Interesting' Stars in The Halo and Thick Disk of the Galaxy

    NASA Astrophysics Data System (ADS)

    Beers, T. C.

    The age of slow, methodical, star-by-star, single-slit spectroscopic observations of rare stars in the halo and thick disk of the Milky Way has come to an end. As the result of the labors of numerous astronomers over the past 40 years, spectroscopic data for some 2000 stars with metallicity less than [Fe/H] = -1.5 has been obtained. Under the assumption of a constant flux of astronomers working in this area (and taking 50 major players over the years), the long-term average yield works out to ONE (1!) such star per astronomer per year. The use of new spectroscopic and photometric survey techniques which obtain large sky coverage to faint magnitudes will enable substantially better "return on investment" in the near future. We review the present state of surveys for low metallicity and field horizontal-branch stars in the Galaxy, and describe several new lines of attack which should open the way to a more than one hundred-fold increase in the numbers of interesting stars with available spectroscopic and photometric information. The age of slow, methodical, star-by-star, single-slit spectroscopic observations of rare stars in the halo and thick disk of the Milky Way has come to an end. As the result of the labors of numerous astronomers over the past 40 years, spectroscopic data for some 2000 stars with metallicity less than [Fe/H] = -1.5 has been obtained. Under the assumption of a constant flux of astronomers working in this area (and taking 50 major players over the years), the long-term average yield works out to ONE (1!) such star per astronomer per year. The use of new spectroscopic and photometric survey techniques which obtain large sky coverage to faint magnitudes will enable substantially better "return on investment" in the near future. We review the present state of surveys for low metallicity and field horizontal-branch stars in the Galaxy, and describe several new lines of attack which should open the way to a more than one hundred-fold increase in the

  15. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGESBeta

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ~ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ~ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙),more » and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  16. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ˜ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ˜ 108-1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108-109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (˜2%-5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (˜40%-80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (˜20%-60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  17. The Eating Habits of Milky Way-mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    We study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (Mvir ∼ 1012.1 M⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with Mstar ∼ 108–1010M⊙. Halos with more quiescent accretion histories tend to have lower mass progenitors (108–109 M⊙), and lower overall accreted stellar masses. Ultra-faint mass (Mstar < 105 M⊙) dwarfs contribute a negligible amount (≪1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (∼2%–5%) of the very metal-poor stars with [Fe/H] < ‑2. Dwarfs with masses 105 < Mstar/M⊙ < 108 provide a substantial amount of the very metal-poor stellar material (∼40%–80%), and even relatively metal-rich dwarfs with Mstar > 108 M⊙ can contribute a considerable fraction (∼20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. We suggest that the MW could be a “transient fossil” a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.

  18. Isotropic at the Break? 3D Kinematics of Milky Way Halo Stars in the Foreground of M31

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Toloba, Elisa; Gilbert, Karoline M.; Sohn, Sangmo Tony; Dorman, Claire E.

    2016-03-01

    We present the line-of-sight (LOS) velocities for 13 distant main sequence Milky Way halo stars with published proper motions (PMs). The PMs were measured using long baseline (5-7 years) multi-epoch Hubble Space Telescope/Advanced Camera for Surveys photometry, and the LOS velocities were extracted from deep (5-6 hr integrations) Keck II/DEIMOS spectra. We estimate the parameters of the velocity ellipsoid of the stellar halo using a Markov chain Monte Carlo ensembler sampler method. The velocity second moments in the directions of the Galactic (l, b, LOS) coordinate system are {< {v}l2> }1/2={138}-26+43 km s-1, {< {v}b2> }1/2={88}-17+28 {\\text{km s}}-1, and {< {v}{{LOS}}2> }1/2={91}-14+27 {\\text{km s}}-1. We use these ellipsoid parameters to constrain the velocity anisotropy of the stellar halo. Ours is the first measurement of the anisotropy parameter β using 3D kinematics outside of the solar neighborhood. We find β =-{0.3}-0.9+0.4, consistent with isotropy and lower than solar neighborhood β measurements by 2σ (βSN ˜ 0.5-0.7). We identify two stars in our sample that are likely members of the known TriAnd substructure, and excluding these objects from our sample increases our estimate of the anisotropy to β ={0.1}-1.0+0.4, which is still lower than solar neighborhood measurements by 1σ. The potential decrease in β with Galactocentric radius is inconsistent with theoretical predictions, though consistent with recent observational studies, and may indicate the presence of large, shell-type structure (or structures) at r ˜ 25 kpc. The methods described in this paper will be applied to a much larger sample of stars with 3D kinematics observed through the ongoing HALO7D program.

  19. The star formation history in the far outer disc of M33

    NASA Astrophysics Data System (ADS)

    Barker, Michael K.; Ferguson, A. M. N.; Cole, A. A.; Ibata, R.; Irwin, M.; Lewis, G. F.; Smecker-Hane, T. A.; Tanvir, N. R.

    2011-01-01

    The outer regions of disc galaxies are becoming increasingly recognized as key testing sites for models of disc assembly and evolution. Important issues are the epoch at which the bulk of the stars in these regions formed and how discs grow radially over time. To address these issues, we use Hubble Space Telescope Advanced Camera for Surveys imaging to study the star formation history (SFH) of two fields at 9.1 and 11.6 kpc along M33's northern major axis. These fields lie at ˜ 4 and 5 V-band disc scalelengths and straddle the break in M33's surface brightness profile. The colour-magnitude diagrams (CMDs) reach the ancient main-sequence turn-off with a signal-to-noise ratio of ˜ 5. From detailed modelling of the CMDs, we find that the majority of stars in both fields combined formed at z < 1. The mean age in the inner field, S1, is ˜ 3 ± 1 Gyr and the mean metallicity is [M/H]˜- 0.5 ± 0.2 dex. The SFH of S1 unambiguously reveals how the inside-out growth previously measured for M33's inner disc out to ? extends out to the disc edge at ?. In comparison, the outer field, S2, is older (mean age ˜ 7 ± 2 Gyr), more metal-poor (mean [M/H]˜- 0.8 ± 0.3 dex), and contains ˜ 30 times less stellar mass. These results provide the most compelling evidence yet that M33's age gradient reverses at large radii near the disc break and that this reversal is accompanied by a break in stellar mass surface density. We discuss several possible interpretations of this behaviour including radial stellar mixing, warping of the gaseous disc, a change in star formation efficiency and a transition to another structural component. These results offer one of the most detailed views yet of the peripheral regions of any disc galaxy and provide a much needed observational constraint on the last major epoch of star formation in the outer disc.

  20. Physical properties of star clusters in the outer LMC as observed by the DES

    NASA Astrophysics Data System (ADS)

    Pieres, A.; Santiago, B.; Balbinot, E.; Luque, E.; Queiroz, A.; da Costa, L. N.; Maia, M. A. G.; Drlica-Wagner, A.; Roodman, A.; Abbott, T. M. C.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-09-01

    The Large Magellanic Cloud (LMC) harbours a rich and diverse system of star clusters, whose ages, chemical abundances and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey (DES) to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalogue. We quantify the crowding effect for the stellar sample produced by the DES Data Management pipeline and conclude that the stellar completeness is <10 per cent inside typical LMC cluster cores. We therefore reanalysed the DES co-add images around each candidate cluster and remeasured positions and magnitudes for their stars. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal rich than [Fe/H] ≃ -0.7 beyond 8 kpc from the LMC centre. The age distribution has two peaks at ≃1.2 and ≃2.7 Gyr.

  1. STAR FORMATION IN THE OUTER DISKS OF SPIRAL GALAXIES: ULTRAVIOLET AND H{alpha} PHOTOMETRY

    SciTech Connect

    Barnes, Kate L.; Van Zee, Liese; Skillman, Evan D. E-mail: vanzee@astro.indiana.edu

    2011-12-20

    We present an analysis of ultradeep UV and H{alpha} imaging of five nearby spiral galaxies to study the recent star formation in the outer disk. Using azimuthally averaged ellipse photometry as well as aperture photometry of individual young stellar complexes, we measure how star formation rates (SFRs) and UV and H{alpha} colors vary with radius. We detect azimuthally averaged UV flux to {approx}1.2-1.4 R{sub 25} in most galaxies; at the edge of the detected UV disk, the surface brightnesses are 28-29 mag arcsec{sup -2}, corresponding to SFR surface densities of {approx}3 Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1} kpc{sup -2}. Additionally, we detect between 120 and 410 young stellar complexes per galaxy, with a significant number of detections out to {approx}1.5 R{sub 25}. We measure radial FUV-NUV profiles, and find that the dispersion in the UV colors of individual young stellar complexes increases with radius. We investigate how radial variations in the frequency of star formation episodes can create color gradients and increasing dispersion in the UV colors of star-forming regions, like those observed in our study. Specifically, we use recently published, high spatial and temporal resolution measurements of {Sigma}{sub SFR} throughout the disk of M33 to estimate the frequency of star formation episodes throughout the disk of a typical spiral galaxy. We use stellar synthesis models of these star formation histories (SFHs) to measure the variations in UV colors and find that we can replicate large dispersions in UV colors based on episodic SFHs.

  2. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-04-01

    Context. Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of the CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Aims: Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Methods: We have systematically monitored the radial velocities of a sample of 22 CEMP-s stars for several years with ~monthly, high-resolution, low S/N échelle spectra obtained at the Nordic Optical Telescope (NOT) at La Palma, Spain. From these spectra, radial velocities with an accuracy of ≈100 m s-1 were determined by cross-correlation with optimised templates. Results: Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82 ± 10%, while four stars appear to be single (18 ± 10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for eleven of the binaries and provisional orbits for six long-period systems (P > 3000 days), and orbital circularisation timescales are discussed. Conclusions: The conventional scenario of local mass transfer from a former asymptotic giant branch (AGB) binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their

  3. CN ANOMALIES IN THE HALO SYSTEM AND THE ORIGIN OF GLOBULAR CLUSTERS IN THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Martell, Sarah L.; Beers, Timothy C.; Freeman, Ken C. E-mail: smartell@aao.gov.au E-mail: kcf@mso.anu.edu.au

    2013-06-01

    We explore the kinematics and orbital properties of a sample of red giants in the halo system of the Milky Way that are thought to have formed in globular clusters based on their anomalously strong UV/blue CN bands. The orbital parameters of the CN-strong halo stars are compared to those of the inner- and outer-halo populations as described by Carollo et al., and to the orbital parameters of globular clusters with well-studied Galactic orbits. The CN-strong field stars and the globular clusters both exhibit kinematics and orbital properties similar to the inner-halo population, indicating that stripped or destroyed globular clusters could be a significant source of inner-halo field stars, and suggesting that both the CN-strong stars and the majority of globular clusters are primarily associated with this population.

  4. Star formation activity in spiral galaxy disks and the properties of radio halos: Observational evidence for a direct dependence

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Lisenfeld, Ute; Golla, Gotz

    1995-01-01

    In this article we address observationally the questions: how does star formation (SF) in the disks of galaxies lead to the creation of radio halos, and what minimum energy input into the interstellar medium (ISM) is needed to facilitate this? For the investigation we use a sample of five edge-on galaxies exhibiting radio continuum emmission in their halos and enhanced SF spread over large parts of their disks. In a detailed study of the two galaxies in our sample for which we have the best data, NGC 891 and NGC 4631, we show that the radio halos cut off abruptly at galactocentric radii smaller than those of the underlying thin radio disks. Our most important result is that the halo cutoffs are spatially coincident with the radii where the SF activity in the underlying disks drops sharply. The difference in radius of the emission distributions tracing ongoing SF in the disks (IRAS 50 micrometers, H alpha) versus that of the nonthermal radio continuum thin disks (tracing the distribution of cosmic-ray (CR) electrons) is typically a few kpc. This difference in extent is caused by CR diffusion. We have measured the CR diffusion coefficients in the thin disks of both NGC 891 and NGC 4631. For radial diffusion of CR electrons within the galactic disks the values are D(sub r) = 1.1-2.5 x 10 (exp 29) sq cm/s (NGC 4631) and D(sub r) = 1.2 x 10(exp 29) sq cm/s (NGC 891). For motions in the z-direction in areas within the thin disks where no outflows occur, we derive a firm upper limit of D(sub z) less than or equal to 0.2 x 10(exp 28) sq cm/s for NGC 891. The value for NGC 4631 is D(sub z = 1.4 x 10 (exp 28) sq cm/s. The other three galaxies in our sample, NGC 3044, NGC 4666, and NGC 5775 show (at the sensitivity of our data) less extended, more filamentary radio halos. Isolates spurs or filaments of nonthermal radio continuum emission in their halos are traced only above the most actively star-forming regions in the disks. This, in conjuction with the results obtained for

  5. Light versus dark in strong-lens galaxies: dark matter haloes that are rounder than their stars

    NASA Astrophysics Data System (ADS)

    Bruderer, Claudio; Read, Justin I.; Coles, Jonathan P.; Leier, Dominik; Falco, Emilio E.; Ferreras, Ignacio; Saha, Prasenjit

    2016-02-01

    We measure the projected density profile, shape and alignment of the stellar and dark matter mass distribution in 11 strong-lens galaxies. We find that the projected dark matter density profile - under the assumption of a Chabrier stellar initial mass function - shows significant variation from galaxy to galaxy. Those with an outermost image beyond ˜10 kpc are very well fit by a projected Navarro-Frenk-White (NFW) profile; those with images within 10 kpc appear to be more concentrated than NFW, as expected if their dark haloes contract due to baryonic cooling. We find that over several half-light radii, the dark matter haloes of these lenses are rounder than their stellar mass distributions. While the haloes are never more elliptical than edm = 0.2, their stars can extend to e* > 0.2. Galaxies with high dark matter ellipticity and weak external shear show strong alignment between light and dark; those with strong shear (γ ≳ 0.1) can be highly misaligned. This is reassuring since isolated misaligned galaxies are expected to be unstable. Our results provide a new constraint on galaxy formation models. For a given cosmology, these must explain the origin of both very round dark matter haloes and misaligned strong-lens systems.

  6. CaII K interstellar observations towards early-type disc and halo stars

    NASA Astrophysics Data System (ADS)

    Smoker, J. V.; Rolleston, W. R. J.; Kay, H. R. M.; Kilkenny, D.; Morras, R.; Arnal, M.; Keenan, F. P.; Mooney, C. J.; Dufton, P. L.; Ryans, R. S. I.; Hambly, N. C.; O'Donoghue, D.; McGillivray, H.

    2003-11-01

    We present high-resolution (R=λ/Δλ~ 40000) CaII K interstellar observations (λair= 3933.66Å) towards 88 mainly B-type stars, of which 74 are taken from the Edinburgh-Cape or Palomar-Green surveys, and 81 have |b| > 25°. The majority of the data come from previously existing spectroscopy, although also included are 18 new observations of stars with echelle spectra taken with UVES on the Very Large Telescope UT2 (Kueyen). Some 49 of the sample stars have distance estimates above the Galactic plane (|z|) >= 1 kpc, and are thus good probes of the halo interstellar medium. Of the 362 interstellar Ca K components that we detect, 75 (21 per cent) have absolute values of their LSR velocity values exceeding 40 km s-1. In terms of the deviation velocity for the sightlines with distance estimates, 46/273 (17 per cent) of components have velocity values exceeding those predicted by standard Galactic rotation by more than 40 km s-1. Combining this data set with previous observations, we find that the median value of the reduced equivalent width (REW) of stars with |z| >= 1 kpc (EW×sin|b|) is ~115 mÅ (n= 80), similar to that observed in extragalactic sightlines by Bowen. Using data of all z distances, the REW at infinity is found to be ~130 mÅ, with the scaleheight (l) of the CaII K column density distribution being ~800 pc (n= 196) and reduced column density at infinity of log[N(CaII K) cm-2]~12.24. This implies that ~30 per cent of CaII K absorption occurs at distances exceeding ~1 kpc. For nine sightlines with distance exceeding 1 kpc and with a companion object within 5°, we find that all but two have values of CaII reduced equivalent width the same to within ~20 per cent, when the REW of the nearest object is extrapolated to the distance of the further of the pair, and assuming l= 800 pc. For 29 of our sightlines with |z| >= 1 kpc and a HI detection from the Leiden-Dwingeloo survey (beamsize of 0.5°), we find log(N(CaII K)/N(HI)) ranging from -7.4 to -8.4. Values

  7. TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. IX. THE OUTER ARM IN THE FIRST QUADRANT

    SciTech Connect

    Sanna, A.; Menten, K. M.; Brunthaler, A.; Reid, M. J.; Dame, T. M.; Moscadelli, L.; Zheng, X. W.; Xu, Y.

    2012-01-20

    We report a trigonometric parallax measurement with the Very Long Baseline Array for the water maser in the distant high-mass star-forming region G75.30+1.32. This source has a heliocentric distance of 9.25{sup +0.45}{sub -0.40} kpc, which places it in the Outer arm in the first Galactic quadrant. It lies 200 pc above the Galactic plane and is associated with a substantial H I enhancement at the border of a large molecular cloud. At a Galactocentric radius of 10.7 kpc, G75.30+1.32 is in a region of the Galaxy where the disk is significantly warped toward the North Galactic Pole. While the star-forming region has an instantaneous Galactic orbit that is nearly circular, it displays a significant motion of 18 km s{sup -1} toward the Galactic plane. The present results, when combined with two previous maser studies in the Outer arm, yield a pitch angle of about 12 Degree-Sign for a large section of the arm extending from the first quadrant to the third.

  8. Probing the galactic disk and halo. 2: Hot interstellar gas toward the inner galaxy star HD 156359

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Lu, Limin

    1995-01-01

    We present Goddard High Resolution Spectrograph intermediate-resolution measurements of the 1233-1256 A spectral region of HD 156396, a halo star at l = 328.7 deg, b = -14.5 deg in the inner Galaxy with a line-of sight distance of 11.1 kpc and a z-distance of -2.8 kpc. The data have a resolution of 18 km/s Full Width at Half Maximum (FWHM) and a signal-to-noise ratio of approximately 50:1. We detect interstellar lines of Mg II, S II, S II, Ge II, and N V and determine log N/(Mg II) = 15.78 +0.25, -0.27, log N(Si II) greater than 13.70, log N(S II) greater than 15.76, log N(Ge II) = 12.20 +0.09,-0.11, and log N(N v) = 14.06 +/- 0.02. Assuming solar reference abundances, the diffuse clouds containing Mg, S, and Ge along the sight line have average logarithmic depletions D(Mg) = -0.6 +/- 0.3 dex, D(S) greater than -0.2 dex, and D(Ge) = -0.2 +/- 0.2 dex. The Mg and Ge depletions are approximately 2 times smaller than is typical of diffuse clouds in the solar vicinity. Galactic rotational modeling of the N v profiles indicates that the highly ionized gas traced by this ion has a scale height of approximately 1 kpc if gas at large z-distances corotates with the underlying disk gas. Rotational modeling of the Si iv and C iv profiles measured by the IUE satellite yields similar scale height estimates. The scale height results contrast with previous studies of highly ionized gas in the outer Milky Way that reveal a more extended gas distribtion with h approximately equals 3-4 kpc. We detect a high-velocity feature in N v and Si II v(sub LSR) approximately equals + 125 km/s) that is probably created in an interface between warm and hot gas.

  9. Elliptical halos, Bottlinger's rings, and the ice-plate snow-star transition.

    PubMed

    Tränkle, E; Riikonen, M

    1996-08-20

    Elliptical halos and Bottlinger's rings are simulated by the use of a Monte Carlo algorithm that includes multiple scattering. High multiple reflections are required to obtain a sufficient brightness of the elliptical halos. By introducing three populations of nearly horizontal, gyrating, and swinging crystals, we obtain good agreement for four photographs of displays with ringlike and disklike structures. Through model experiments on the aerodynamical behavior of crystals, we find a new interpretation of the three populations. In this view elliptical halos and Bottlinger's rings occur in the transition region of ice plates with broad branches and stellar crystals at temperatures near -15 °C and large supersaturations. This interpretation is supported by a review of 23 reports of elliptical halo phenomena by members of the Finnish Halo Observers Network. PMID:21102913

  10. High-Mass Star Formation in the Outer Scutum-Centaurus Arm

    NASA Astrophysics Data System (ADS)

    Armentrout, William P.; Anderson, Loren D.; Balser, Dana S.; Bania, Thomas M.; Dame, Thomas M.; Wenger, Trey

    2016-01-01

    The HII Region Discovery Survey (HRDS; Bania et al., 2010) has discovered nearly 1000 HII regions by detecting their radio recombination line (RRL) emission using the Green Bank Telescope (GBT) and the Arecibo Observatory. Observations of RRLs allow us to measure source velocities and determine positions within the Galaxy using a rotation curve model, but until recently our sample in the far outer Galaxy was incomplete. Using HI and CO data, Dame & Thaddeus (2011) identified an extension of the Scutum-Centaurus spiral arm, deemed the Outer Scutum-Centaurus arm, or OSC. This arm offers a new laboratory for the study of Galactic structure, high-mass star formation, and chemistry of the outer Galaxy. We searched for new Galactic HII regions in the OSC by targeting infrared-identified candidates that have an (l,b) location consistent with this arm. We have discovered 10 OSC HII regions thus far, using observations of: (1) VLA 9 GHz continuum to identify thermally emitting sources, (2) GBT RRLs to detect evolved HII regions, and (3) GBT NH3 to detect younger HII regions. Detected regions lie at an average Heliocentric distance of 20.0 ± 1.4 kpc and an average Galactocentric distance of 14.5 ± 1.4 kpc. The most distant region detected has a Heliocentric distance of 23.5 kpc and a Galactocentric distance of 17.0 kpc. These are the most distant known Galactic high-mass star formation regions. We will present the results of ongoing NH3 observations with the GBT, which will likely increase the sample of OSC HII regions further.

  11. A reservoir of ionized gas in the galactic halo to sustain star formation in the Milky Way.

    PubMed

    Lehner, Nicolas; Howk, J Christopher

    2011-11-18

    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of galactic stars. We show that iHVCs with 90 ≤ |v(LSR)| ≲ 170 kilometers per second (where v(LSR) is the velocity in the local standard of rest frame) are within one galactic radius of the Sun and have enough mass to maintain star formation, whereas iHVCs with |v(LSR)| ≳ 170 kilometers per second are at larger distances. These may be the next wave of infalling material. PMID:21868626

  12. Physical properties of star clusters in the outer LMC as observed by the DES

    NASA Astrophysics Data System (ADS)

    Pieres, A.; Santiago, B.; Balbinot, E.; Luque, E.; Queiroz, A.; da Costa, L. N.; Maia, M. A. G.; Drlica-Wagner, A.; Roodman, A.; Abbott, T. M. C.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D. L.; Walker, A. R.

    2016-09-01

    The Large Magellanic Cloud (LMC) harbors a rich and diverse system of star clusters, whose ages, chemical abundances, and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalog. We quantify the crowding effect for the stellar sample produced by the DES Data Management pipeline and conclude that the stellar completeness is < 10% inside typical LMC cluster cores. We therefore develop a pipeline to sample and measure stellar magnitudes and positions around the cluster candidates using DAOPHOT. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal-rich than [Fe/H] ~ -0.7 beyond 8 kpc from the LMC center. The age distribution has two peaks at ~ 1.2 Gyr and ~ 2.7 Gyr.

  13. The boron-to-beryllium ratio in halo stars - A signature of cosmic-ray nucleosynthesis in the early Galaxy

    NASA Technical Reports Server (NTRS)

    Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.

    1993-01-01

    We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.

  14. The SEGUE K Giant Survey. III. Quantifying Galactic Halo Substructure

    NASA Astrophysics Data System (ADS)

    Janesh, William; Morrison, Heather L.; Ma, Zhibo; Rockosi, Constance; Starkenburg, Else; Xue, Xiang Xiang; Rix, Hans-Walter; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer; Lee, Young Sun; Schneider, Donald P.

    2016-01-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125 kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey’s Sloan Extension for Galactic Understanding and Exploration project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (˜33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity.

  15. The Young Open Clusters King 12, NGC 7788, and NGC 7790: Pre-main-sequence Stars and Extended Stellar Halos

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2012-12-01

    The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistent with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin (~3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of ~7.5 arcmin (~5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  16. Dual Stellar Halos in Early-type Galaxies and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. It is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. We present photometry and metallicity of the resolved stars in the inner and outer regions of M105. These provide strong evidence that there are two distinct stellar halos in this galaxy, a metal-poor (blue) halo and a metal-rich (red) halo. Then we compare them with those in other early-type galaxies and use the dual halo mode formation scenario to describe how massive galaxies formed.

  17. Linking Galaxies to Dark Matter Halos at z ~ 1 : Dependence of Galaxy Clustering on Stellar Mass and Specific Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Im, Myungshin; Lee, Seong-Kook; Edge, Alastair C.; Wake, David A.; Merson, Alexander I.; Jeon, Yiseul

    2015-06-01

    We study the dependence of angular two-point correlation functions on stellar mass (M*) and specific star formation rate (sSFR) of {M}*\\gt {10}10{M}ȯ galaxies at z∼ 1. The data from the UK Infrared Telescope Infrared Deep Sky Survey Deep eXtragalactic Survey and Canada–France–Hawaii Telescope Legacy Survey cover 8.2 deg2 sample scales larger than 100 {h}-1 {Mpc} at z∼ 1, allowing us to investigate the correlation between clustering, M*, and star formation through halo modeling. Based on halo occupation distributions (HODs) of M* threshold samples, we derive HODs for M* binned galaxies, and then calculate the {M}*/{M}{halo} ratio. The ratio for central galaxies shows a peak at {M}{halo}∼ {10}12{h}-1{M}ȯ , and satellites predominantly contribute to the total stellar mass in cluster environments with {M}*/{M}{halo} values of 0.01–0.02. Using star-forming galaxies split by sSFR, we find that main sequence galaxies ({log} {sSFR}/{{yr}}-1∼ -9) are mainly central galaxies in ∼ {10}12.5{h}-1{M}ȯ halos with the lowest clustering amplitude, while lower sSFR galaxies consist of a mixture of both central and satellite galaxies where those with the lowest M* are predominantly satellites influenced by their environment. Considering the lowest {M}{halo} samples in each M* bin, massive central galaxies reside in more massive halos with lower sSFRs than low mass ones, indicating star-forming central galaxies evolve from a low M*–high sSFR to a high M*–low sSFR regime. We also find that the most rapidly star-forming galaxies ({log} {sSFR}/{{yr}}-1\\gt -8.5) are in more massive halos than main sequence ones, possibly implying galaxy mergers in dense environments are driving the active star formation. These results support the conclusion that the majority of star-forming galaxies follow secular evolution through the sustained but decreasing formation of stars.

  18. DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES

    SciTech Connect

    Amorisco, N. C.; Zavala, J.; De Boer, T. J. L.

    2014-02-20

    We combine the detailed star formation histories of the Fornax and Sculptor dwarf spheroidals with the mass assembly history of their dark matter (DM) halo progenitors to estimate if the energy deposited by Type II supernovae (SNe II) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNe II into DM particles is ε{sub gc} = 0.05, we find that a single early episode, z ≳ z {sub infall}, that combines the energy of all SNe II due to explode over 0.5 Gyr is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in cold dark matter (CDM) halos via early episodic gas outflows triggered by SNe II. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size halos.

  19. uvby-β photometry of high-velocity and metal-poor stars. XI. Ages of halo and old disk stars

    NASA Astrophysics Data System (ADS)

    Schuster, W. J.; Moitinho, A.; Márquez, A.; Parrao, L.; Covarrubias, E.

    2006-01-01

    New uvby-β data are provided for 442 high-velocity and metal-poor stars; 90 of these stars have been observed previously by us, and 352 are new. When combined with our previous two photometric catalogues, the data base is now made up of 1533 high-velocity and metal-poor stars, all with uvby-β photometry and complete kinematic data, such as proper motions and radial velocities taken from the literature. Hipparcos, plus a new photometric calibration for Mv also based on the Hipparcos parallaxes, provide distances for nearly all of these stars; our previous photometric calibrations give values for E(b-y) and [Fe/H]. The [Fe/H], V(rot) diagram allows us to separate these stars into different Galactic stellar population groups, such as old-thin-disk, thick-disk, and halo. The X histogram, where X is our stellar-population discriminator combining V(rot) and [Fe/H], and contour plots for the [Fe/H], V(rot) diagram both indicate two probable components to the thick disk. These population groups and Galactic components are studied in the (b-y)0, Mv diagram, compared to the isochrones of Bergbusch & VandenBerg (2001, ApJ, 556, 322), to derive stellar ages. The two thick-disk groups have the mean characteristics: ([Fe/H], V(rot), Age, σW') ≈ (-0.7 dex, 120 km s-1, 12.5 Gyr, 62.0 km s-1), and ≈(-0.4, 160, 10.0, 45.8). The seven most metal-poor halo groups, -2.31 ≤ [Fe/H] ≤ -1.31, show a mean age of 13.0 ± 0.2 (mean error) Gyr, giving a mean difference from the WMAP results for the age of the Universe of 0.7 ± 0.3 Gyr. These results for the ages and components of the thick disk and for the age of the Galactic halo field stars are discussed in terms of various models and ideas for the formation of galaxies and their stellar populations.

  20. Stellar haloes of simulated Milky-Way-like galaxies: chemical and kinematic properties

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Scannapieco, Cecilia; Beers, Timothy C.; Carollo, Daniela

    2013-07-01

    We investigate the chemical and kinematic properties of the diffuse stellar haloes of six simulated Milky-Way-like galaxies from the Aquarius Project. Binding energy criteria are adopted to define two dynamically distinct stellar populations: the diffuse inner and outer haloes, which comprise different stellar subpopulations with particular chemical and kinematic characteristics. Our simulated inner- and outer-halo stellar populations have received contributions from debris stars (formed in subgalactic systems while they were outside the virial radius of the main progenitor galaxies) and endo-debris stars (those formed in gas-rich subgalactic systems inside the dark matter haloes of the main progenitor galaxy). The inner haloes possess an additional contribution from disc-heated stars, in the range ˜3-30 per cent, with a mean of ˜20 per cent. Disc-heated stars might exhibit signatures of kinematical support, in particular among the youngest ones. Endo-debris plus disc-heated stars define the so-called in situ stellar populations. In both the inner- and outer-halo stellar populations, we detect contributions from stars with moderate to low [α/Fe] ratios, mainly associated with the endo-debris or disc-heated subpopulations. The observed abundance gradients in the inner-halo regions are influenced by both the level of chemical enrichment and the relative contributions from each stellar subpopulation. Steeper abundance gradients in the inner-halo regions are related to contributions from the disc-heated and endo-debris stars, which tend to be found at lower binding energies than debris stars. In the case of the outer-halo regions, although [Fe/H] gradients are relatively mild, the steeper profiles arise primarily due to contributions from stars formed in more massive satellites, which sink farther into the main halo system, and tend to have higher levels of chemical enrichment and lower energies. Our findings support the existence of (at least) two distinct diffuse

  1. The role of binaries in the enrichment of the early Galactic halo. II. Carbon-enhanced metal-poor stars: CEMP-no stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Placco, V. M.; Yoon, J.; Buchhave, L. A.

    2016-02-01

    Context. The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon; these are the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Aims: Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Methods: High-resolution, low S/N spectra of the stars were obtained at roughly monthly intervals over a time span of up to eight years with the FIES spectrograph at the Nordic Optical Telescope. Radial velocities of ~100 m s-1 precision were determined by cross-correlation after each observing night, allowing immediate, systematic follow-up of any variable object. Results: Most programme stars exhibit no statistically significant radial-velocity variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2000 days and normal eccentricity; the binary frequency for the sample is 17 ± 9%. The single stars mostly belong to the recently identified low-C band, while the binaries have higher absolute carbon abundances. Conclusions: We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic interstellar

  2. Do gamma-ray bursts originate from an extended Galactic Halo of high-velocity neutron stars?

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; The, Lih-Sin; Linder, Eric V.; Petrosian, Vahe; Blumenthal, George R.; Hurley, Kevin C.

    1994-01-01

    The gamma-ray burst brightness distribution is inhomogeneous and the distribution on the sky is nearly isotropic. These features argue against an association of gamma-ray bursts with those Galactic objects that are known to exhibit a strong concentration toward the Galactic center or plane. The observed statistical properties indicate a cosmological origin. Circumstantial evidence suggests that neutron stars are involved in the burst phenomenon. Here we consider Population II neutron stars in an extended Galactic Halo (EGH) as an alternative to cosmological scenarios. The Burst and Transient Source Experiment (BATSE) data indicate a small deviation from isotropy near the 2 sigma level of statistical significance. If confirmed for an increasing number of bursts, these anisotropies could rule out cosmological scenarios. On the other hand, EGH models require small anisotropies like those observed by BATSE. We consider simple distribution models to determine the generic properties such halos must have to be consistent with the observations and discuss the implications of the corresponding distance scale on burst models.

  3. Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures >~10000K

    NASA Astrophysics Data System (ADS)

    Regan, John A.; Haehnelt, Martin G.

    2009-06-01

    Large dynamic range numerical simulations of atomic cooling driven collapse of gas in pre-galactic dark matter haloes with Tvir ~ 10000 K show that the gas loses 90 per cent and more of its angular momentum before rotational support sets in. In a fraction of these haloes where the metallicity is low and ultraviolet (UV) radiation suppresses H2 cooling, conditions are thus very favourable for the rapid build-up of massive black holes. Depending on the progression of metal enrichment, the continued suppression of H2 cooling by external and internal UV radiation and the ability to trap the entropy produced by the release of gravitational energy, the gas at the centre of the halo is expected to form a supermassive star, a stellar-mass black hole accreting at super-Eddington accretion rates or a compact star-cluster undergoing collisional run-away of massive stars at its centre. In all three cases, a massive black hole of initially modest mass finds itself at the centre of a rapid inflow of gas with inflow rates of >~1Msolaryr-1. The massive black hole will thus grow quickly to a mass of 105- 106Msolar until further inflow is halted either by consumption of gas by star formation or by the increasing energy and momentum feedback from the growing massive black hole. Conditions for the formation of massive seed black holes in this way are most favourable in haloes with Tvir ~ 15000K and Vvir ~ 20 km s-1 with less massive haloes not allowing collapse of gas by atomic cooling and more massive haloes being more prone to fragmentation. This should imprint a characteristic mass on the mass spectrum of an early population of massive black hole seeds in pre-galactic haloes which will later grow into the observed population of supermassive black holes in galactic bulges.

  4. Global Properties of M31's Stellar Halo from the SPLASH Survey. II. Metallicity Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Beaton, Rachael L.; Geha, Marla C.; Kirby, Evan N.; Majewski, Steven R.; Patterson, Richard J.; Tollerud, Erik J.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ~100 kpc, with a magnitude of ~ - 0.01 dex kpc-1. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  5. Global properties of M31's stellar halo from the splash survey. II. Metallicity profile

    SciTech Connect

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra; Geha, Marla C.; Tollerud, Erik J.; Kirby, Evan N.; Bullock, James S.; Tanaka, Mikito; Chiba, Masashi

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradient from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.

  6. SEGUE-2 LIMITS ON METAL-RICH OLD-POPULATION HYPERVELOCITY STARS IN THE GALACTIC HALO

    SciTech Connect

    Kollmeier, Juna A.; Gould, Andrew; Johnson, Jennifer A.; Rockosi, Constance; Beers, Timothy C.; Lee, Young Sun; Knapp, Gillian; Morrison, Heather; Harding, Paul; Weaver, Benjamin A.

    2010-11-01

    We present new limits on the ejection of metal-rich old-population hypervelocity stars (HVSs) from the Galactic center (GC) as probed by the SEGUE-2 survey. Our limits are a factor of 3-10 more stringent than previously reported, depending on stellar type. Compared to the known population of B-star ejectees, there can be no more than 30 times more metal-rich old-population F/G stars ejected from the GC. Because B stars comprise a tiny fraction of a normal stellar population, this places significant limits on the combination of the GC mass function and the ejection mechanism for HVSs. In the presence of a normal GC mass function, our results require an ejection mechanism that is about 5.5 times more efficient at ejecting B stars compared to low-mass F/G stars.

  7. THE CASE FOR THE DUAL HALO OF THE MILKY WAY

    SciTech Connect

    Beers, Timothy C.; Lee, Young Sun; Carollo, Daniela; Norris, John E.; Freeman, Ken C. E-mail: lee@pa.msu.edu E-mail: jen@mso.anu.edu.au; and others

    2012-02-10

    Carollo et al. have recently resolved the stellar population of the Milky Way halo into at least two distinct components, an inner halo and an outer halo. This result has been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the relation adopted by Schoenrich et al. yields up to 18% shorter distances for stars near the main-sequence turnoff (TO). Use of the correct relationship yields agreement between the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs to within 6%-10%. Schoenrich et al. also point out that intermediate-gravity stars (3.5 {<=}log g < 4.0) with colors redder than the TO region are likely misclassified, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior demonstrate that the retrograde signature and high velocity dispersion of the outer-halo population remain. We summarize additional lines of evidence for a dual halo, including a test of the retrograde signature based on proper motions alone, and conclude that the preponderance of evidence strongly rejects the single-halo interpretation.

  8. GLOBULAR CLUSTERS IN THE OUTER GALACTIC HALO: NEW HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS IMAGING OF SIX GLOBULAR CLUSTERS AND THE GALACTIC GLOBULAR CLUSTER AGE-METALLICITY RELATION

    SciTech Connect

    Dotter, Aaron; Anderson, Jay; Sarajedini, Ata

    2011-09-01

    Color-magnitude diagrams (CMDs) derived from Hubble Space Telescope (HST) Advanced Camera for Surveys F606W, F814W photometry of six globular clusters (GCs) are presented. The six GCs form two loose groupings in Galactocentric distance (R{sub GC}): IC 4499, NGC 6426, and Ruprecht 106 at {approx}15-20 kpc and NGC 7006, Palomar 15, and Pyxis at {approx}40 kpc. The CMDs allow the ages to be estimated from the main-sequence turnoff in every case. In addition, the age of Palomar 5 (R{sub GC} {approx} 18 kpc) is estimated using archival HST Wide Field Planetary Camera 2 V, I photometry. The age analysis reveals the following: IC 4499, Ruprecht 106, and Pyxis are 1-2 Gyr younger than inner halo GCs with similar metallicities; NGC 7006 and Palomar 5 are marginally younger than their inner halo counterparts; NGC 6426 and Palomar 15, the two most metal-poor GCs in the sample, are coeval with all the other metal-poor GCs within the uncertainties. Combined with our previous efforts, the current sample provides strong evidence that the Galactic GC age-metallicity relation consists of two distinct branches. One suggests a rapid chemical enrichment in the inner Galaxy while the other suggests prolonged GC formation in the outer halo. The latter is consistent with the outer halo GCs forming in dwarf galaxies and later being accreted by the Milky Way.

  9. DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.; Kollmeier, Juna A.; Reddy, Naveen A.; Erb, Dawn K.; Pettini, Max

    2011-08-01

    Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteria for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed

  10. SMC west halo: a slice of the galaxy that is being tidally stripped?. Star clusters trace age and metallicity gradients

    NASA Astrophysics Data System (ADS)

    Dias, B.; Kerber, L.; Barbuy, B.; Bica, E.; Ortolani, S.

    2016-06-01

    Context. The evolution and structure of the Magellanic Clouds is currently under debate. The classical scenario in which both the Large and Small Magellanic Clouds (LMC, SMC) are orbiting the Milky Way has been challenged by an alternative in which the LMC and SMC are in their first close passage to our Galaxy. The clouds are close enough to us to allow spatially resolved observation of their stars, and detailed studies of stellar populations in the galaxies are expected to be able to constrain the proposed scenarios. In particular, the west halo (WH) of the SMC was recently characterized with radial trends in age and metallicity that indicate tidal disruption. Aims: We intend to increase the sample of star clusters in the west halo of the SMC with homogeneous age, metallicity, and distance derivations to allow a better determination of age and metallicity gradients in this region. Positions are compared with the orbital plane of the SMC from models. Methods: Comparisons of observed and synthetic V(B-V) colour-magnitude diagrams were used to derive age, metallicity, distance, and reddening for star clusters in the SMC west halo. Observations were carried out using the 4.1 m SOAR telescope. Photometric completeness was determined through artificial star tests, and the members were selected by statistical comparison with a control field. Results: We derived an age of 1.23 ± 0.07 Gyr and [Fe/H] = -0.87 ± 0.07 for the reference cluster NGC 152, compatible with literature parameters. Age and metallicity gradients are confirmed in the WH: 2.6 ± 0.6 Gyr/° and -0.19 ± 0.09 dex/°, respectively. The age-metallicity relation for the WH has a low dispersion in metallicity and is compatible with a burst model of chemical enrichment. All WH clusters seem to follow the same stellar distribution predicted by dynamical models, with the exception of AM-3, which should belong to the counter-bridge. Brück 6 is the youngest cluster in our sample. It is only 130 ± 40 Myr old and

  11. Characterizing stellar halo populations - I. An extended distribution function for halo K giants

    NASA Astrophysics Data System (ADS)

    Das, Payel; Binney, James

    2016-08-01

    We fit an extended distribution function (EDF) to K giants in the Sloan Extension for Galactic Understanding and Exploration survey. These stars are detected to radii ˜80 kpc and span a wide range in [Fe/H]. Our EDF, which depends on [Fe/H] in addition to actions, encodes the entanglement of metallicity with dynamics within the Galaxy's stellar halo. Our maximum-likelihood fit of the EDF to the data allows us to model the survey's selection function. The density profile of the K giants steepens with radius from a slope ˜-2 to ˜-4 at large radii. The halo's axis ratio increases with radius from 0.7 to almost unity. The metal-rich stars are more tightly confined in action space than the metal-poor stars and form a more flattened structure. A weak metallicity gradient ˜-0.001 dex kpc-1, a small gradient in the dispersion in [Fe/H] of ˜0.001 dex kpc-1, and a higher degree of radial anisotropy in metal-richer stars result. Lognormal components with peaks at ˜-1.5 and ˜-2.3 are required to capture the overall metallicity distribution, suggestive of the existence of two populations of K giants. The spherical anisotropy parameter varies between 0.3 in the inner halo to isotropic in the outer halo. If the Sagittarius stream is included, a very similar model is found but with a stronger degree of radial anisotropy throughout.

  12. Characterising stellar halo populations I: An extended distribution function for halo K giants

    NASA Astrophysics Data System (ADS)

    Das, Payel; Binney, James

    2016-05-01

    We fit an Extended Distribution Function (EDF) to K giants in the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey. These stars are detected to radii ˜80 kpc and span a wide range in [Fe/H]. Our EDF, which depends on [Fe/H] in addition to actions, encodes the entanglement of metallicity with dynamics within the Galaxy's stellar halo. Our maximum-likelihood fit of the EDF to the data allows us to model the survey's selection function. The density profile of the K giants steepens with radius from a slope ˜-2 to ˜-4 at large radii. The halo's axis ratio increases with radius from 0.7 to almost unity. The metal-rich stars are more tightly confined in action space than the metal-poor stars and form a more flattened structure. A weak metallicity gradient ˜-0.001 dex/kpc, a small gradient in the dispersion in [Fe/H] of ˜0.001 dex/kpc, and a higher degree of radial anistropy in metal-richer stars result. Lognormal components with peaks at ˜-1.5 and ˜-2.3 are required to capture the overall metallicity distribution, suggestive of the existence of two populations of K giants. The spherical anisotropy parameter varies between 0.3 in the inner halo to isotropic in the outer halo. If the Sagittarius stream is included, a very similar model is found but with a stronger degree of radial anisotropy throughout.

  13. Deep SDSS optical spectroscopy of distant halo stars. III. Chemical analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Allende Prieto, C.; Beers, T. C.; Lee, Y. S.; Masseron, T.; Schneider, D. P.

    2016-09-01

    Aims: We present the results of an analysis of 107 extremely metal-poor (EMP) stars with metallicities lower than [Fe/H] =- 3.0, identified in medium-resolution spectra in the Sloan Digital Sky Survey (SDSS). Our analysis provides estimates of the stellar effective temperatures and surface gravities, as well as iron, calcium, and magnesium abundances. Methods: We followed the same method as in previous papers of this series. The method is based on comparisons of the observed spectra with synthetic spectra. The abundances of Fe, Ca, and Mg were determined by fitting spectral regions that are dominated by lines of each element. In addition, we present a technique to determine upper limits for elements whose features are not detected in a given spectrum. We also analyzed our sample with the SEGUE stellar parameter pipeline to obtain additional determinations of the atmospheric parameters and iron and alpha-element abundances, which we thend compare with ours. In addition, we used these parameters to infer [C/Fe] ratios. Results: Ca is typically the only element in these spectra with a moderate to low signal-to-noise ratio and medium resolution in this metallicity regime with lines that are sufficiently strong to reliably measure its abundance. Fe and Mg exhibit weaker features that in most cases only provide upper limits. We measured [Ca/Fe] and [Mg/Fe] for EMP stars in the SDSS spectra and conclude that most of the stars exhibit the typical enhancement level for α-elements, ~+0.4, although some stars for which only [Fe/H] upper limits could be estimated indicate higher [α/Fe] ratios. We also find that 26% of the stars in our sample can be classified as carbon-enhanced metal-poor (CEMP) stars and that the frequency of CEMP stars also increases with decreasing metallicity, as has been reported for previous samples. We identify a rare, bright (g = 11.90) EMP star, SDSS J134144.61+474128.6, with [Fe/H] =- 3.27, [C/Fe] = + 0.95, and elevated magnesium ([Mg/Fe] =+ 0

  14. VizieR Online Data Catalog: Abundances of halo early-type stars (Rolleston+, 1999)

    NASA Astrophysics Data System (ADS)

    Rolleston, W. R. J.; Hambly, N. C.; Keenan, F. P.; Dufton, P. L.; Saffer, R. A.

    1999-04-01

    We present echelle (R~40,000) spectroscopic observations for a sample of apparently normal, high Galactic latitude, early-type stars drawn from the Palomar-Green Survey. The metal-line spectra show evidence for rotational velocity broadening with values of vsini<=300km/s. In conjunction with Kurucz model atmospheres, we derive stellar photospheric abundances that are consistent with a Population I chemical composition; differential abundances with respect to Galactic disk Population I stars indicate no abundance differences outside the estimated errors. From a comparison of the derived atmospheric parameters with recent theoretical evolutionary models, we derive distance and age estimates for individual stars. Using kinematical considerations, we conclude that all these objects are `runaway' stars, formed in the Galactic disk and subsequently ejected, possibly by supernovae explosions or dynamical interactions. (2 data files).

  15. A close halo of large transparent grains around extreme red giant stars.

    PubMed

    Norris, Barnaby R M; Tuthill, Peter G; Ireland, Michael J; Lacour, Sylvestre; Zijlstra, Albert A; Lykou, Foteini; Evans, Thomas M; Stewart, Paul; Bedding, Timothy R

    2012-04-12

    An intermediate-mass star ends its life by ejecting the bulk of its envelope in a slow, dense wind. Stellar pulsations are thought to elevate gas to an altitude cool enough for the condensation of dust, which is then accelerated by radiation pressure, entraining the gas and driving the wind. Explaining the amount of mass loss, however, has been a problem because of the difficulty of observing tenuous gas and dust only tens of milliarcseconds from the star. For this reason, there is no consensus on the way sufficient momentum is transferred from the light from the star to the outflow. Here we report spatially resolved, multiwavelength observations of circumstellar dust shells of three stars on the asymptotic giant branch of the Hertzsprung-Russell diagram. When imaged in scattered light, dust shells were found at remarkably small radii (less than about two stellar radii) and with unexpectedly large grains (about 300 nanometres in radius). This proximity to the photosphere argues for dust species that are transparent to the light from the star and, therefore, resistant to sublimation by the intense radiation field. Although transparency usually implies insufficient radiative pressure to drive a wind, the radiation field can accelerate these large grains through photon scattering rather than absorption--a plausible mass loss mechanism for lower-amplitude pulsating stars. PMID:22498626

  16. The Case for the Dual Halo of the Milky Way

    SciTech Connect

    Beers, Timothy C.; Carollo, Daniela; Ivezic, Zeljko; An, Deokkeun; Chiba, Masashi; Norris, John E.; Freeman, Ken C.; Lee, Young Sun; Munn, Jeffrey A.; Fiorentin, Paola Re; Sivarani, Thirupathi; /Bangalore, Indian Inst. Astrophys. /Kentucky U.

    2011-04-01

    Based on an analysis of the local kinematics of SDSS DR7 calibration stars, Carollo et al. have resolved the stellar population of the Milky Way halo into at least two components. This result has recently been criticized by Schoenrich et al., who claim that the retrograde signature associated with the outer halo is due to the adoption of faulty distances. We refute this claim, and demonstrate that the Schoenrich et al. photometric distances are themselves flawed because they adopted an incorrect main-sequence absolute magnitude relationship from the work of Ivezic et al.. When compared to the recommended relation from Ivezic et al., which is tied to a Milky Way globular cluster distance scale and accounts for age and metallicity effects, the incorrect relation adopted by Schoenrich et al. yields, on average, 18% shorter distances (independent of metallicity) for stars near the main-sequence turnoff (TO). When the correct relationship is used, the distances assigned by Carollo et al. and Ivezic et al. for low-metallicity dwarfs agree to within 6-10%, depending on the color range considered. We have also compared the Carollo et al. distances with the distances derived from the calibrated isochrones of An et al., and find a similar level of agreement for low-metallicity dwarfs. Schoenrich et al. also point out that stars of intermediate gravity (3.5 {<=} log g < 4.0, based on spectroscopic determinations) are likely misclassified, at least for colors significantly redder than the TO region, with which we concur. We implement a new procedure to reassign luminosity classifications for the TO stars that require it. New derivations of the rotational behavior for the Carollo et al. stars that are most likely associated with the outer halo demonstrate that, when either a sample of exclusively dwarf stars or the full sample of dwarf, TO, and subgiant/giant stars is used, the retrograde signature and high velocity dispersion of the outer-halo population remains, with values

  17. Gas phase abundances and conditions along the sight line to the low-halo, inner galaxy star HD 167756

    NASA Technical Reports Server (NTRS)

    Cardelli, Jason A.; Sembach, Kenneth R.; Savage, Blair D.

    1995-01-01

    We present high-resolution (3.5 km/s) Goddard High Resolution Spectrograph (GHRS) measurements of the Mg II, Si II, Cr II, Fe II, and Zn II lines toward HD 167756, a low-latitude halo star at a distance of 4 kpc in the direction l = 351.5 deg, b = -12.3 and at a Galactic altitude of z = -0.85 kpc. Supplemental Na I, Ca II, and H I data are also presented for comparison with the UV lines. Our analysis centers on converting the observed absoprtion-line data into measures of the apparent column density per unit velocity. N(sub a)(v), over the velocity range -25 less than or = v(sub lsr) less than 30 km/s for each species observed. We use these N(sub a)(v) profiles to construct logarithmic abundance ratios of Mg II, Si II, Cr II, Fe II, and Ca II relative to Zn II, normalized to solar abundances, as a function of velocity. Compared to Zn, these species show an underabundance relative to their solar values, with the largest underabundances occurring in the v(sub lsr) approximately equals 5 km/s component(s), for which we find logarithmic abundances A(sub Si/Zn) greater than -0.38, A(Mg/Zn) = -0.82, A(sub Cr/Zn) = -1.18, and A(sub Fe/Zn) greater than 1.40 dex. We show that ionization effects, abundance gradients, or intrinsic abundance variability cannot be significant sources for the underabundances observed. The most likely explanation is gas phase depletion of elements onto dust grains. Comparisons with the gas phase abundances along other diffuse, warm gas sight lines, like the halo sight line to HD 93521, support this interpretation as do the derived physical properties of the sight line.

  18. VizieR Online Data Catalog: The SEGUE K giant survey. III. Galactic halo (Janesh+, 2016)

    NASA Astrophysics Data System (ADS)

    Janesh, W.; Morrison, H. L.; Ma, Z.; Rockosi, C.; Starkenburg, E.; Xue, X. X.; Rix, H.-W.; Harding, P.; Beers, T. C.; Johnson, J.; Lee, Y. S.; Schneider, D. P.

    2016-03-01

    We statistically quantify the amount of substructure in the Milky Way stellar halo using a sample of 4568 halo K giant stars at Galactocentric distances ranging over 5-125kpc. These stars have been selected photometrically and confirmed spectroscopically as K giants from the Sloan Digital Sky Survey's Sloan Extension for Galactic Understanding and Exploration (SEGUE) project. Using a position-velocity clustering estimator (the 4distance) and a model of a smooth stellar halo, we quantify the amount of substructure in the halo, divided by distance and metallicity. Overall, we find that the halo as a whole is highly structured. We also confirm earlier work using blue horizontal branch (BHB) stars which showed that there is an increasing amount of substructure with increasing Galactocentric radius, and additionally find that the amount of substructure in the halo increases with increasing metallicity. Comparing to resampled BHB stars, we find that K giants and BHBs have similar amounts of substructure over equivalent ranges of Galactocentric radius. Using a friends-of-friends algorithm to identify members of individual groups, we find that a large fraction (~33%) of grouped stars are associated with Sgr, and identify stars belonging to other halo star streams: the Orphan Stream, the Cetus Polar Stream, and others, including previously unknown substructures. A large fraction of sample K giants (more than 50%) are not grouped into any substructure. We find also that the Sgr stream strongly dominates groups in the outer halo for all except the most metal-poor stars, and suggest that this is the source of the increase of substructure with Galactocentric radius and metallicity. (2 data files).

  19. Looking for building blocks of the Galactic halo: variable stars in the Fornax, Bootes I, Canes Venatici II dwarfs and in NGC 2419

    NASA Astrophysics Data System (ADS)

    Greco, Claudia; Clementini, Gisella; Held, E. V.; Poretti, E.; Catelan, M.; Federici, L.; Maio, M.; Gullieuszik, M.; Ripepi, V.; Dall'Ora, M.; Di Fabrizio, L.; Kinemuchi, K.; Di Crescienzo, M.; Marconi, M.; Musella, I.; Pritzl, B.; Rest, A.; De Lee, N.; Smith, H.

    2010-01-01

    Λ cold-dark-matter hierarchical models of galaxy formation suggest that the halo of the Milky Way (MW) has been assembled, at least in part, through accretion of protogalactic fragments partially resembling the present-day dwarf spheroidal (dSph) satellites of the MW. Investigation of the stellar populations of the MW's globular clusters (GCs) and dSph companions can thus provide excellent tests to infer the dominant Galaxy-formation scenario, whether merger/accretion or cloud collapse. Pulsating variable stars offer a very powerful tool in this context, since variables of different types allow tracing the different stellar generations in a galaxy and to reconstruct the galaxy's star-formation history and assembly back to the first epochs of galaxy formation. In particular, the RR Lyrae stars, belonging to the old population (t > 10 Gyr), witnessed the epoch of halo formation, and thus hold a crucial role to identify the MW satellites that may have contributed to build up the Galactic halo. In the MW, most GCs with an RR Lyrae population sharply divide into two distinct groups (Oosterhoff types I and II) based on the mean periods and relative proportion of fundamental-mode (RRab) and first-overtone (RRc) RR Lyrae stars. On the other hand, the Galactic-halo field RR Lyrae stars show a dominance of Oosterhoff I properties. Here, we investigate the Oosterhoff properties of a number of different stellar systems, starting from relatively undisturbed dwarf galaxies (the Fornax dSph and its globular clusters), through distorted and tidally disrupting ones (the Bootes and Canes Venatici II dSphs), to possible final relics of the disruption process (the Galactic globular cluster NGC 2419). We are addressing the crucial question of whether the RR Lyrae pulsation properties in these systems conform to the Oosterhoff dichotomy characterizing the MW variables. If they do not, the Galaxy's halo cannot have been assembled by dSph-like protogalactic fragments resembling the

  20. LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82

    SciTech Connect

    Sesar, Branimir; Ivezic, Zeljko; Grammer, Skyler H.; Morgan, Dylan P.; Becker, Andrew C.; Juric, Mario; De Lee, Nathan; Annis, James; Lampeitl, Hubert; Beers, Timothy C.; Fan Xiaohui; Jiang Linhua; Lupton, Robert H.; Gunn, James E.; Knapp, Gillian R.; Johnston, David E.; Jester, Sebastian

    2010-01-01

    We present an improved analysis of halo substructure traced by RR Lyrae stars in the Sloan Digital Sky Survey (SDSS) stripe 82 region. With the addition of SDSS-II data, a revised selection method based on new ugriz light curve templates results in a sample of 483 RR Lyrae stars that is essentially free of contamination. The main result from our first study persists: the spatial distribution of halo stars at galactocentric distances 5-100 kpc is highly inhomogeneous. At least 20% of halo stars within 30 kpc from the Galactic center can be statistically associated with substructure. We present strong direct evidence, based on both RR Lyrae stars and main-sequence stars, that the halo stellar number density profile significantly steepens beyond a Galactocentric distance of approx30 kpc, and a larger fraction of the stars are associated with substructure. By using a novel method that simultaneously combines data for RR Lyrae and main-sequence stars, and using photometric metallicity estimates for main-sequence stars derived from deep co-added u-band data, we measure the metallicity of the Sagittarius dSph tidal stream (trailing arm) toward R.A. approx2{sup h}-3{sup h} and decl. approx 0{sup 0} to be 0.3 dex higher ([Fe/H] = -1.2) than that of surrounding halo field stars. Together with a similar result for another major halo substructure, the Monoceros stream, these results support theoretical predictions that an early forming, smooth inner halo, is metal-poor compared to high surface brightness material that have been accreted onto a later-forming outer halo. The mean metallicity of stars in the outer halo that are not associated with detectable clumps may still be more metal-poor than the bulk of inner-halo stars, as has been argued from other data sets.

  1. Gaseous Halos and the Interstellar Disk-Halo Connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf Jurgen

    The presence of diffuse ionized gas (DIG) in the halos of spiral galaxies is discussed in the framework of the disk-halo interaction. The halo DIG is typically correlated with the presence of other components of the ISM in the halo including X-ray hot gas, cosmic rays, and magnetic fields. All these tracers of an extraplanar ISM correlate well with star formation in the disk thus corroborating the paradigm of an ISM driven by multiple and clustered supernovae.

  2. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    SciTech Connect

    Yong, David; Carney, Bruce W.; Friel, Eileen D. E-mail: bruce@physics.unc.edu

    2012-10-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [{alpha}/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance (<0.02 dex kpc{sup -1}), but for some elements, there is a hint that the local (R{sub GC} < 13 kpc) and distant (R{sub GC} > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age (<0.04 dex Gyr{sup -1}). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [{alpha}/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  3. THE BINARY FREQUENCY OF r-PROCESS-ELEMENT-ENHANCED METAL-POOR STARS AND ITS IMPLICATIONS: CHEMICAL TAGGING IN THE PRIMITIVE HALO OF THE MILKY WAY

    SciTech Connect

    Hansen, Terese; Andersen, Johannes; Nordstroem, Birgitta; Buchhave, Lars A.; Beers, Timothy C. E-mail: ja@astro.ku.dk E-mail: beers@pa.msu.edu

    2011-12-10

    A few rare halo giants in the range [Fe/H] {approx_equal} -2.9 {+-} 0.3 exhibit r-process element abundances that vary as a group by factors up to [r/Fe] {approx}80, relative to those of the iron peak and below. Yet, the astrophysical production site of these r-process elements remains unclear. We report initial results from four years of monitoring the radial velocities of 17 r-process-enhanced metal-poor giants to detect and characterize binaries in this sample. We find three (possibly four) spectroscopic binaries with orbital periods and eccentricities that are indistinguishable from those of Population I binaries with giant primaries, and which exhibit no signs that the secondary components have passed through the asymptotic giant branch stage of evolution or exploded as supernovae. The other 14 stars in our sample appear to be single-including the prototypical r-process-element-enhanced star CS 22892-052, which is also enhanced in carbon, but not in s-process elements. We conclude that the r-process (and potentially carbon) enhancement of these stars was not a local event due to mass transfer or winds from a binary companion, but was imprinted on the natal molecular clouds of these (single and binary) stars by an external source. These stars are thus spectacular chemical tracers of the inhomogeneous nature of the early Galactic halo system.

  4. Probing the outer atmosphere of carbon stars - C2H2, HCN and C3 features in the SWS range

    NASA Astrophysics Data System (ADS)

    Loidl, R.; Hron, J.; Jorgensen, U. G.; Höfner, S.

    2000-11-01

    We have obtained ISO-SWS spectra of a number of carbon-rich AGB stars in the wavelength range 2.4 - 44 μm with a resolution of about 400. We compare these spectra with results of hydrostatic and dynamic model atmospheres. Of special interest are the features which are formed far out in the atmosphere like the C2H2, HCN and C3 features. For these outer regions of the atmosphere deviations from hydrostatic structures are to be expected.

  5. Nucleosynthesis Modes in The High-Entropy Wind of Type II Supernovae: Comparison of Calculations With Halo-Star Observations

    NASA Astrophysics Data System (ADS)

    Farouqi, K.; Kratz, K.-L.; Mashonkina, L. I.; Pfeiffer, B.; Cowan, J. J.; Thielemann, F.-K.; Truran, J. W.

    2009-03-01

    While the high-entropy wind (HEW) of Type II supernovae remains one of the more promising sites for the rapid neutron-capture (r-) process, hydrodynamic simulations have yet to reproduce the astrophysical conditions under which the latter occurs. We have performed large-scale network calculations within an extended parameter range of the HEW, seeking to identify or to constrain the necessary conditions for a full reproduction of all r-process residuals N r,sun = N sun-N s,sun by comparing the results with recent astronomical observations. A superposition of weighted entropy trajectories results in an excellent reproduction of the overall N r,sun pattern beyond Sn. For the lighter elements, from the Fe group via Sr-Y-Zr to Ag, our HEW calculations indicate a transition from the need for clearly different sources (conditions/sites) to a possible co-production with r-process elements, provided a range of entropies are contributing. This explains recent halo-star observations of a clear noncorrelation of Zn and Ge and a weak correlation of Sr-Zr with heavier r-process elements. Moreover, new observational data on Ru and Pd also seem to confirm a partial correlation with Sr as well as the main r-process elements (e.g., Eu).

  6. Lick slit spectra of thirty-eight objective prism quasar candidates and low metallicity halo stars

    NASA Technical Reports Server (NTRS)

    Tytler, David; Fan, Xiao-Ming; Junkkarinen, Vesa T.; Cohen, Ross D.

    1993-01-01

    Lick Observatory slit spectra of 38 objects which were claimed to have pronounced UV excess and emission lines are presented. Eleven QSOs, four galaxies at z of about 0.1, 22 stars, and one unidentified object with a low S/N spectrum were found. Of 11 objects which Zhan and Chen (1987, 1989) suggested were QSO with z(prism) not greater than 2.8; eight are QSOs. Six of the QSOs show absorption systems, including Q0000+027A with a relatively strong associated C IV absorption system, and Q0008+008 with a damped Ly-alpha system with an H I column density of 10 exp 21/sq cm. The equivalent widths of the Ca II K line, the G band, and the Balmer lines in 10 stars with the best spectra are measured, and metallicities are derived. Seven of them are in the range -2.5 to -1.7, while the others are less metal-poor.

  7. Outer layers of a carbon star: The view from the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Ensman, Lisa M.; Alexander, D. R.; Avrett, E. H.; Brown, A.; Carpenter, K. G.; Eriksson, K.; Gustafsson, B.; Jorgensen, U. G.; Judge, Philip D.

    1995-01-01

    To advance our understanding of the relationship between stellar chromospheres and mass loss, which is a common property of carbon stars and other asymptotic giant branch stars, we have obtained ultraviolet spectra of the nearby N-type carbon star UU Aur using the Hubble Space Telescope (HST). In this paper we describe the HST observations, identify spectral features in both absorption and emission, and attempt to infer the velocity field in the chromosphere, upper troposphere, and circumstellar envelope from spectral line shifts. A mechanism for producing fluoresced emission to explain a previously unobserved emission line is proposed. Some related ground-based observations are also described.

  8. Red giant stars from Sloan Digital Sky Survey. I. The general field

    SciTech Connect

    Chen, Y. Q.; Zhao, G.; Carrell, K.; Zhao, J. K.; Tan, K. F.; Nissen, P. E.; Wei, P. E-mail: pen@phys.au.dk

    2014-11-01

    We have obtained a sample of ∼22,000 red giant branch (RGB) stars based on stellar parameters, provided by the ninth data release of the Sloan Digital Sky Survey, and the CH(G)/MgH indices, measured from the included spectra. The Galactic rest-frame velocity of V {sub gsr} versus longitude for the sample shows the existence of several groups of stars from globular clusters and known streams. Excluding these substructures, a sample of ∼16,000 RGB stars from the general field is used to investigate the properties of the thick disk, the inner halo, and the outer halo of our Galaxy. The metallicity and rotational velocity distributions are investigated for stars at 0 kpc < |Z| < 10 kpc. It is found that the canonical thick disk dominates at 0 kpc < |Z| < 2 kpc and its contribution becomes negligible at |Z| > 3 kpc. The MWTD is present and overlaps with the inner halo at 1 kpc < |Z| < 3 kpc. The inner halo starts at 2 kpc < |Z| < 3 kpc and becomes the dominated population for 4 kpc < |Z| < 10 kpc. For halo stars with |Z| > 5 kpc, bimodal metallicity distributions are found for 20 kpc < |Z| < 25 kpc and 35 kpc < RR < 45 kpc, which suggests a dual halo, the inner and the outer halo, as reported in Carollo et al. at low |Z| values. The peak of metallicity for the inner halo is at [Fe/H] ∼ –1.6 and appears to be at [Fe/H] ∼ –2.3 for the outer halo. The transition point from the inner to the outer halo is located at |Z| ∼ 20 kpc and RR ∼ 35 kpc.

  9. Properties of the highly ionized disk and halo gas toward two distant high-latitude stars

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Sembach, K. R.

    1994-01-01

    absorption, part of the C IV absorption, and has very little associated Si IV absorption. In this gas N(C IV)/N(N V) is approximately 1 to 3. This gas is hot (T greater than 2 x 10(exp 5) K) and may be tracing the cooling gas of supernova (SN) bubbles or a Galactic fountain. The relative mixture of these two types of highly ionized gas varies from one sight line to the next. The two sight lines in this study sample halo gas in the solar neighborhood and have a smaller percentage of the more highly ionized gas than inner Galaxy sight lines.

  10. The Hamburg/ESO R-process Enhanced Star survey (HERES). X. HE 2252-4225, one more r-process enhanced and actinide-boost halo star

    NASA Astrophysics Data System (ADS)

    Mashonkina, L.; Christlieb, N.; Eriksson, K.

    2014-09-01

    dating results in a stellar age of τ = 1.5 ± 1.5 Gyr that is not expected for a very metal-poor halo star. Based on observations collected at the European Southern Observatory, Paranal, Chile (Proposal numbers 170.D-0010, and 280.D-5011).Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A43

  11. Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey

    SciTech Connect

    Miceli, A; Rest, A; Stubbs, C W; Hawley, S L; Cook, K H; Magnier, E A; Krisciunas, K; Bowell, E; Koehn, B

    2007-02-23

    We present 838 ab-type RR Lyrae stars from the Lowell Observatory Near Earth Objects Survey Phase I (LONEOS-I). These objects cover 1430 deg{sup 2} and span distances ranging from 3-30kpc from the Galactic Center. Object selection is based on phased, photometric data with 28-50 epochs. We use this large sample to explore the bulk properties of the stellar halo, including the spatial distribution. The period-amplitude distribution of this sample shows that the majority of these RR Lyrae stars resemble Oosterhoff type I, but there is a significant fraction (26%) which have longer periods and appear to be Oosterhoff type II. We find that the radial distributions of these two populations have significantly different profiles ({rho}{sub OoI} {approx} R{sup -2.26{+-}0.07} and {rho}{sub OoII} {approx} R{sup -2.88{+-}0.11}). This suggests that the stellar halo was formed by at least two distinct accretion processes and supports dual-halo models.

  12. Star formation in the outer Galaxy: membership and fundamental parameters of the young open cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Prisinzano, L.; Sanz-Forcada, J.; Micela, G.; Caramazza, M.; Guarcello, M. G.; Sciortino, S.; Testi, L.

    2011-03-01

    Context. Different environmental conditions can play a crucial role in determining final products of the star formation process, and in this context, less favorable activities of star formation are expected in the external regions of our Galaxy. Aims: We studied the properties of the young open cluster NGC 1893 located about 12 Kpc from the galactic center, to investigate how different physical conditions can affect the process of star formation. Methods: By adopting a multiwavelength approach, we compiled a catalog extending from X-rays to NIR data to derive the cluster membership. In addition, optical and NIR photometric properties are used to evaluate the cluster parameters. Results: We find 415 diskless candidate members and 1061 young stellar objects with a circumstellar disk or class II candidate members, 125 of which are also Hα emitters. Considering the diskless candidate members, we find that the cluster distance is 3.6 ± 0.2 kpc and the mean interstellar reddening is E(B - V) = 0.6 ± 0.1 with evidence of differential reddening in the whole surveyed region. Conclusions: NGC 1893 contains a conspicuous population of pre-main sequence stars, together with the well-studied main sequence cluster population. We found a disk fraction of about 70% similar to the one found in clusters of similar age in the solar neighbor and then, despite expected unfavorable conditions for star formation, we conclude that very rich young clusters can also form in the outer regions of our Galaxy. Full Tables 5-8 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/527/A77

  13. Carbon Star Survey in the Local Group. V. The Outer Disk of M31

    NASA Astrophysics Data System (ADS)

    Battinelli, Paolo; Demers, Serge; Letarte, Bruno

    2003-03-01

    We employ the CFH12K mosaic to identify carbon stars, using the R, I, CN, and TiO photometric technique, in a 2240 arcmin2 area, ranging from 17 to 30 kpc of the southwest disk of M31, barely reaching the edge of the observed H I disk. We found 945 C stars with =19.94 and σ=0.47. The surface density of C stars along the major axis of M31 follows an exponential profile with a scale length of 4.85+/-0.35 kpc, in agreement with adopted values for the scale length of the disk population. Our survey partially overlaps with the recently discovered G1 density enhancement by Ferguson et al. We confirm that no AGB star excess is detectable in the surveyed part of the clump. The C/M ratio, along the major axis, is derived over a distance range of 7 kpc. The strong C/M gradient seen contrasts with results of previous studies of the C stars in M31.

  14. A Receding Halo Sub-structure Towards Norma

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sukanya

    2016-01-01

    We present results from follow-up spectroscopic observations of clustered Cepheid candidates identified from K-band light curves towards the Norma constellation (Chakrabarti et al. 2015), as well as others that we have found more recently. The average radial velocity of these stars is ~ 200 km/s, which is large and distinct from that of the Galaxy's stellar disk. These objects at l ~ -27 and b ~ -1 are therefore halo stars; using the period-luminosity relation of Type I Cepheids, they are at ~ 90 kpc. While the spectra do not have sufficient S/N to independently determine the metallicity and spectral type of the stars, there is a clear correspondence between the observed Brackett series lines in these observations and in known Type I Cepheids. Distances determined from the K-band period-luminosity relation (Matsunaga et al. 2013) and the 3.6 μm period-luminosity relation (Scowcroft et al. 2011) agree closely, and I-band observations have confirmed the periods of these sources. The extinction corrected J - Ks colors of these sources are comparable to known Type I Cepheids (Persson et al. 2004). The observed radial velocity of these stars agrees with predictions from dynamical models (Chakrabarti & Blitz 2009). If these stars are indeed members of the predicted dark-matter dominated dwarf galaxy that perturbed the outer HI disk of the Milky Way, this would represent the first application of Galactoseismology. These observations also challenge models of the Galactic halo. Young Cepheid variables are unexpected in models of the Galactic halo, though star formation due to infall of gas-rich dwarf galaxies may well produce a small population of yet undiscovered Cepheids in the outer halo.

  15. Large-scale clustering measurements with photometric redshifts: comparing the dark matter haloes of X-ray AGN, star-forming and passive galaxies at z ≈ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.

    2014-10-01

    We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.

  16. Statistical properties of diffuse Lyα haloes around star-forming galaxies at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Momose, Rieko; Ouchi, Masami; Nakajima, Kimihiko; Ono, Yoshiaki; Shibuya, Takatoshi; Shimasaku, Kazuhiro; Yuma, Suraphong; Mori, Masao; Umemura, Masayuki

    2016-04-01

    We present statistical properties of diffuse Lyα haloes (LAHs) around high-z star-forming galaxies with large Subaru samples of Lyα emitters (LAEs) at z = 2.2. We make subsamples defined by the physical quantities of LAEs' central Lyα luminosities, ultraviolet (UV) magnitudes, Lyα equivalent widths, and UV slopes, and investigate LAHs' radial surface brightness (SB) profiles and scale lengths rn as a function of these physical quantities. We find that there exist prominent LAHs around LAEs with faint Lyα luminosities, bright UV luminosities, and small Lyα equivalent widths in cumulative radial Lyα SB profiles. We confirm this trend with the anticorrelation between rn and Lyα luminosities (equivalent widths) based on the Spearman's rank correlation coefficient that is ρ = -0.9 (-0.7) corresponding to the 96 per cent (93 per cent) confidence level, although the correlation between rn and UV magnitudes is not clearly found in the rank correlation coefficient. Our results suggest that LAEs with properties similar to typical Lyman-break galaxies (with faint Lyα luminosities and small equivalent widths) possess more prominent LAHs. We investigate scenarios for the major physical origins of LAHs with our results. Because we find relatively small Lyα equivalent widths up to 77 Å in LAHs that include LAEs' central components, these results suggest that the cold stream scenario is not preferred. There remain two possible scenarios of Lyα scattering in circumgalactic medium and satellite galaxies that cannot be tested with our observational data.

  17. Explaining the Ba, Y, Sr, and Eu abundance scatter in metal-poor halo stars: constraints to the r-process

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Chiappini, C.

    2014-05-01

    Context. Thanks to the heroic observational campaigns carried out in recent years we now have large samples of metal-poor stars for which measurements of detailed abundances exist. In particular, large samples of stars with metallicities -5 < [Fe/H] <-1 and measured abundances of Sr, Ba, Y, and Eu are now available. These data hold important clues on the nature of the contribution of the first stellar generations to the enrichment of our Galaxy. Aims: We aim to explain the scatter in Sr, Ba, Y, and Eu abundance ratio diagrams unveiled by the metal-poor halo stars. Methods: We computed inhomogeneous chemical evolution models for the Galactic halo assuming different scenarios for the r-process site: the electron-capture (EC) supernovae and the magnetorotationally driven (MRD) supernovae scenarios. We also considered models with and without the contribution of fast-rotating massive stars (spinstars) to an early enrichment by the s-process. A detailed comparison with the now large sample of stars with measured abundances of Sr, Ba, Y, Eu, and Fe is provided (both in terms of scatter plots and number distributions for several abundance ratios). Results: The scatter observed in these abundance ratios of the very metal-poor stars (with [Fe/H] <-2.5) can be explained by combining the s-process production in spinstars, and the r-process contribution coming from massive stars. For the r-process we have developed models for both the EC and the MRD scenarios that match the observations. Conclusions: With the present observational and theoretical constraints we cannot distinguish between the EC and the MRD scenarios in the Galactic halo. Independently of the r-process scenarios adopted, the production of elements by an s-process in spinstars is needed to reproduce the spread in abundances of the light neutron capture elements (Sr and Y) over heavy neutron capture elements (Ba and Eu). We provide a way to test our suggestions by means of the distribution of the Ba isotopic

  18. CHEMICAL ABUNDANCES OF THE MILKY WAY THICK DISK AND STELLAR HALO. II. SODIUM, IRON-PEAK, AND NEUTRON-CAPTURE ELEMENTS

    SciTech Connect

    Ishigaki, M. N.; Aoki, W.; Chiba, M. E-mail: aoki.wako@nao.ac.jp

    2013-07-01

    We present chemical abundance analyses of sodium, iron-peak, and neutron-capture elements for 97 kinematically selected thick disk, inner halo, and outer halo stars with metallicities -3.3 < [Fe/H] <-0.5. The main aim of this study is to examine chemical similarities and differences among metal-poor stars belonging to these old Galactic components as a clue to determine their early chemodynamical evolution. In our previous paper, we obtained abundances of {alpha} elements by performing a one-dimensional LTE abundance analysis based on the high-resolution (R {approx} 50, 000) spectra obtained with the Subaru/HDS. In this paper, a similar analysis is performed to determine abundances of an additional 17 elements. We show that, in metallicities below [Fe/H] {approx}-2, the abundance ratios of many elements in the thick disk, inner halo, and outer halo subsamples are largely similar. In contrast, in higher metallicities ([Fe/H] {approx}> -1.5), differences in some of the abundance ratios among the three subsamples are identified. Specifically, the [Na/Fe], [Ni/Fe], [Cu/Fe], and [Zn/Fe] ratios in the inner and outer halo subsamples are found to be lower than those in the thick disk subsample. A modest abundance difference between the two halo subsamples in this metallicity range is also seen for the [Na/Fe] and [Zn/Fe] ratios. In contrast to that observed for [Mg/Fe] in our previous paper, [Eu/Fe] ratios are more enhanced in the two halo subsamples rather than in the thick disk subsample. The observed distinct chemical abundances of some elements between the thick disk and inner/outer halo subsamples with [Fe/H] >-1.5 support the hypothesis that these components formed through different mechanisms. In particular, our results favor the scenario that the inner and outer halo components formed through an assembly of multiple progenitor systems that experienced various degrees of chemical enrichments, while the thick disk formed through rapid star formation with an

  19. The Stellar Populations in the Outer Regions of M33. III. Star Formation History

    NASA Astrophysics Data System (ADS)

    Barker, Michael K.; Sarajedini, Ata; Geisler, Doug; Harding, Paul; Schommer, Robert

    2007-03-01

    We present a detailed analysis of the star formation history (SFH) of three fields in M33 located approximately four to six visual scale lengths from its nucleus. These fields were imaged with the Advanced Camera for Surveys on the Hubble Space Telescope and reach ~2.5 mag below the red clump of core helium-burning stars. The observed color-magnitude diagrams are modeled as linear combinations of individual synthetic populations with different ages and metallicities. To gain a better understanding of the systematic errors, we have conducted the analysis with two different sets of stellar evolutionary tracks, which we designate as Padova and Teramo. The precise details of the results depend on which tracks are used, but we can make several conclusions that are fairly robust despite the differences. Both sets of tracks predict the mean age to increase and the mean metallicity to decrease with radius. Allowing age and metallicity to be free parameters and assuming that star formation began ~14 Gyr ago, we find that the mean age of all stars and stellar remnants increases from ~6 to ~8 Gyr, and the mean global metallicity decreases from approximately -0.7 to approximately -0.9. The fraction of stars formed by 4.5 Gyr ago increases from ~65% to ~80%. The mean star formation rate 80-800 Myr ago decreases from ~30% of the lifetime average to just ~5%. The random errors on these estimates are ~10%, 1.0 Gyr, and 0.1 dex. By comparing the results of the two sets of stellar tracks for the real data and for test populations with known SFHs, we have estimated the systematic errors to be 15%, 1.0 Gyr, and 0.2 dex. These do not include uncertainties in the bolometric corrections or variations in α-element abundance, which deserve future study. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5

  20. RELICS OF GALAXY MERGING: OBSERVATIONAL PREDICTIONS FOR A WANDERING MASSIVE BLACK HOLE AND ACCOMPANYING STAR CLUSTER IN THE HALO OF M31

    SciTech Connect

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  1. Relics of Galaxy Merging: Observational Predictions for a Wandering Massive Black Hole and Accompanying Star Cluster in the Halo of M31

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  2. HERSCHEL-RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS AROUND A-TYPE STARS: HD 70313, HD 71722, HD 159492, AND F-TYPE: HD 104860

    SciTech Connect

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R.

    2013-10-20

    We present dual-band Herschel/Photodetector Array Camera and Spectrometer imaging for four stars whose spectral energy distributions (SEDs) suggest two-ring disk architectures that mirror that of the asteroid-Kuiper Belt geometry of our own solar system. The Herschel observations at 100 μm spatially resolve the cold/outer-dust component for each star-disk system for the first time, finding evidence of planetesimals at >100 AU, i.e., a larger size than assumed from a simple blackbody fit to the SED. By breaking the degeneracy between the grain properties and the dust's radial location, the resolved images help constrain the dust grain-size distribution for each system. Three of the observed stars are A-type and one solar-type. On the basis of the combined Spitzer/IRS+MIPS (5-70 μm), the Herschel/PACS (100 and 160 μm) dataset, and under the assumption of idealized spherical grains, we find that the cold/outer belts of the three A-type stars are well fit with a mixed ice/rock composition rather than pure rocky grains, while the debris around the solar-type star is consistent with either rock or ice/rock grains. For the solar-type star HD 104860, we find that the minimum grain size is larger than expected from the threshold set by radiative blowout. The A-type stars HD 71722 and HD 159492, on the other hand, require minimum grain sizes that are smaller than blowout for inner- and outer-ring populations. In the absence of spectral features for ice, we find that the behavior of the continuum can help constrain the composition of the grains (of icy nature and not pure rocky material) given the Herschel-resolved locations of the cold/outer-dust belts.

  3. Magnetic structure in cool stars. XVI - Emissions from the outer atmosphere of M-type dwarfs

    NASA Technical Reports Server (NTRS)

    Rutten, R. G. M.; Zwaan, C.; Schrijver, C. J.; Duncan, D. K.; Mewe, R.

    1989-01-01

    Consideration is given to emission from the outer atmospheres of M-type dwarfs in several spectral lines originating from the chromosphere, the transition-region, and the soft X-ray emission from the corona. It is shown that M-type dwarfs systematically deviate from relations between flux densities in soft X-rays and chromospheric and transition-region emission lines. The quantitative relation between the equivalent width of H-alpha and the Ca II, H, and K emission index is determined. It is suggested that the emission in the Balmer spectrum may result from back heating by coronal soft X-rays.

  4. Probing the outermost halo in a giant galaxy: is it metal-poor and where does it end?

    NASA Astrophysics Data System (ADS)

    Rejkuba, Marina

    2012-10-01

    Centaurus A {NGC 5128}, the nearest gE/S0 galaxy is taking up an increasingly important role in stellar population and galaxy evolution studies with the potential to rival the Local Group members. From our previous HST-based studies of its red-giant population, we know that 80% of its halo stars are old {11-13 Gyr}, and relatively metal-rich {[Fe/H] -0.5}. In contrast, new measurements of the outer-halo of NGC 3379 {Leo group}, and of M31 revealed the classically metal-poor component {as the Milky Way halo} at radii beyond R 10 R{eff} where the metal-rich stars disappear. This extremely extended "outermost halo" - which has long been suspected to exist in giant galaxies but has been hard to isolate - may be the evolutionary relic of the first stars formed in the extended dark-matter potential well of the galaxy at its earliest stages. This triggers the question whether such an extended halo also exists around NGC 5128 and what is its composition?We propose to use WFC3 and ACS in parallel to probe the NGC 5128 halo to its outermost detectable limits beyond 15 effective radii, in search for its oldest, most metal-poor stars. Combined with our earlier HST work, which has sampled the metallicity distribution function {MDF} from 10 to 38 kpc {1.5-7 Reff}, we will obtain a complete MDF profile extending from the outer bulge to the farthest limits of the halo. This study will be the first for any gE galaxy, and it will add entirely new constraints to understanding its formation history. We will be able to assess the relative importance of halo stars produced by protogalactic dwarfs at the beginning of hierarchical merging vs. late accretion from dwarf satellites.

  5. The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project. I. The Lithium-, s-, and r-enhanced Metal-poor Giant HKII 17435-00532

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Frebel, Anna; Shetrone, Matthew D.; Allende Prieto, Carlos; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Sneden, Christopher; Beers, Timothy C.; Cowan, John J.

    2008-06-01

    We present the first detailed abundance analysis of the metal-poor giant HKII 17435-00532. This star was observed as part of the University of Texas long-term project Chemical Abundances of Stars in the Halo (CASH). A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R ~ 15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = - 2.2) star has an unusually high lithium abundance [log ɛ (Li) = + 2.1], mild carbon ([C/Fe] = + 0.7) and sodium ([Na/Fe] = + 0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = + 0.8) and r-process ([Eu/Fe] = + 0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing that connects the convective envelope with the outer regions of the H-burning shell. If so, HKII 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The Na and n-capture enrichment can be explained by mass transfer from a companion that passed through the thermally pulsing AGB phase of evolution with only a small initial enrichment of r-process material present in the birth cloud. Despite the current nondetection of radial velocity variations (over ~180 days), it is possible that HKII 17435-00532 is in a long-period or highly inclined binary system, similar to other stars with similar n-capture enrichment patterns. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  6. A panoramic VISTA of the stellar halo of NGC 253

    NASA Astrophysics Data System (ADS)

    Greggio, L.; Rejkuba, M.; Gonzalez, O. A.; Arnaboldi, M.; Iodice, E.; Irwin, M.; Neeser, M. J.; Emerson, J.

    2014-02-01

    Context. Outskirts of large galaxies contain important information about galaxy formation and assembly. Resolved star count studies can probe the extremely low surface brightness of the outer halos. Aims: NGC 253 is a nearly edge-on disk galaxy in the Sculptor group, of which we resolved the halo stars from ground-based images, with the aim of studying its stellar population content, the structure and the overall extent of the halo. Methods: We use Z and J-band images from the VIRCAM camera mounted on the VISTA telescope to construct the spatially resolved J vs. Z-J color-magnitude diagrams (CMDs). The very deep photometry and the wide area covered allow us to trace the red giant branch (RGB) and asymptotic giant branch (AGB) stars that belong to the halo of NGC 253 out to 50 kpc along the galaxy's minor axis. Results: We confirm the existence of an extra-planar stellar component of the disk, with a very prominent southern shelf and a symmetrical feature on the north side. The only additional visible substructure is an overdensity in the north-west part of the halo ~28 kpc distant from the plane and extending over 20 kpc parallel with the disk of the galaxy. Our data are not deep enough to distinguish its stellar population from that of the surrounding halo, but the excess of stars above the smooth halo traces the mass of the parent population of ~7.5 × 106M⊙. From stellar counts, we measure the transition from the disk to the halo at a radial distance of about 25 kpc with a clear break in the number density profile. The isodensity contours show that the inner halo is a flattened structure that blends with a more extended, diffuse, rounder outer halo. Such external structure can be traced to the very edge of our image out to 50 kpc from the disk plane. The number density profile of the stars in the stellar halo follows a power law with index -1.6, as a function of radius. The CMD shows a very homogeneous stellar population across the field. By comparing

  7. Touching The Void: A Striking Drop in Stellar Halo Density Beyond 50 kpc

    NASA Astrophysics Data System (ADS)

    Deason, A. J.; Belokurov, V.; Koposov, S. E.; Rockosi, C. M.

    2014-05-01

    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 <~ D BS/kpc <~ 75, 40 <~ D BHB/kpc <~ 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index α ~ 6 beyond Galactocentric radii r = 50 kpc, and even steeper slopes favored (α ~ 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several gigayears. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass estimates.

  8. Touching the void: A striking drop in stellar halo density beyond 50 kpc

    SciTech Connect

    Deason, A. J.; Rockosi, C. M.; Belokurov, V.; Koposov, S. E.

    2014-05-20

    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 ≲ D {sub BS}/kpc ≲ 75, 40 ≲ D {sub BHB}/kpc ≲ 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index α ∼ 6 beyond Galactocentric radii r = 50 kpc, and even steeper slopes favored (α ∼ 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several gigayears. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass estimates.

  9. Effect of tidal fields on star clusters

    NASA Technical Reports Server (NTRS)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  10. Discovery of star formation in the extreme outer galaxy possibly induced by a high-velocity cloud impact

    SciTech Connect

    Izumi, Natsuko; Kobayashi, Naoto; Hamano, Satoshi; Yasui, Chikako; Tokunaga, Alan T.; Saito, Masao

    2014-11-01

    We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near-infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks of 'Digel Cloud 1' at the kinematic distance of D = 16 kpc (Galactocentric radius R {sub G} = 22 kpc). We identified 18 and 45 cluster members in the two peaks, and the estimated stellar densities are ∼5 and ∼3 pc{sup –2}, respectively. The observed K-band luminosity function suggests that the age of the clusters is less than 1 Myr and also that the distance to the clusters is consistent with the kinematic distance. On the sky, Cloud 1 is located very close to the H I peak of high-velocity cloud Complex H, and there are some H I intermediate velocity structures between the Complex H and the Galactic disk, which could indicate an interaction between them. We suggest the possibility that Complex H impacting on the Galactic disk has triggered star formation in Cloud 1 as well as the formation of the Cloud 1 molecular cloud.

  11. The Outer Disks of Herbig Stars From the UV to NIR

    NASA Technical Reports Server (NTRS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; Mcelwain, M.; Muto, T.; Kotani, T.; Kusakabe, N.; Kudo, T.; Hayashi, M.; Ishii, M.; Iye, M.; Morino, J.-I.; Suenaga, T.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Takami, H.; Usuda, T.; Tamura, M.

    2014-01-01

    Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.

  12. The outer disks of Herbig stars from the UV to NIR

    NASA Astrophysics Data System (ADS)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; Muto, T.; Kotani, T.; Kusakabe, N.; Feldt, M.; Sitko, M.; Follette, K.; Bonnefoy, M.; Henning, T.; Takami, M.; Karr, J.; Kwon, J.; Kudo, T.; Abe, L.; Brandner, W.; Brandt, T.; Carson, J.; Egner, S.; Goto, M.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Hodapp, K.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G.; Kuzuhara, M.; Matsuo, T.; Miyama, S.; Morino, J.-I.; Moro-Martín, A.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suenaga, T.; Suto, H.; Suzuki, R.; Takahashi, Y. H.; Takato, N.; Terada, H.; Thalmann, C.; Tomono, D.; Turner, E. L.; Watanabe, M.; Yamada, T.; Takami, H.; Usuda, T.; Tamura, M.

    2015-02-01

    Spatially-resolved imaging of Herbig stars and related objects began with HST, but intensified with commissioning of high-contrast imagers on 8-m class telescopes. The bulk of the data taken from the ground have been polarized intensity imagery at H-band, with the majority of the sources observed as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey. Sufficiently many systems have been imaged that we discuss disk properties in scattered, polarized light in terms of groups defined by the IR spectral energy distribution. We find novel phenomena in many of the disks, including spiral density waves, and discuss the disks in terms of clearing mechanisms. Some of the disks have sufficient data to map the dust and gas components, including water ice dissociation products.

  13. Quasar-microlensing versus star-microlensing evidence of small-planetary-mass objects as the dominant inner-halo galactic dark matter

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Schild, Rudolph E.

    2011-11-01

    We examine recent results of two kinds of microlensing experiments intended to detect galactic dark matter objects, and we suggest that the lack of short period star-microlensing events observed for stars near the Galaxy does not preclude either the "rogue planets" identified from quasar-microlensing by Schild 1996 as the missing-mass of a lens galaxy, or the "Primordial Fog Particles" (PFPs) in Proto-Globular-star-Cluster (PGC) clumps predicted by Gibson 1996 - 2000 as the dominant inner-halo galactic dark matter component from a new hydrodynamic gravitational structure formation theory. We point out that hydro-gravitational processes acting on a massive population of such micro-brown-dwarfs in their nonlinear accretional cascades to form stars gives intermittent lognormal number density np distributions for the PFPs within the PGC gas-stabilized-clumps. Hence, star-microlensing searches that focus on a small fraction of the sky assuming a uniform distribution for np are subject to vast underestimates of the mean ⟨np⟩mean. Sparse independent samples give modes 10-4 - 10-6 smaller than means of the highly skewed lognormal distributions expected. Quasar-microlensing searches with higher optical depths are less affected by np intermittency. We attempt to reconcile the results of the star-microlensing and quasar-microlensing studies, with particular reference to the necessarily hydrogenous and primordial small-planetary-mass range. We conclude that star microlensing searches cannot exclude and are unlikely even to detect these low-mass candidate-galactic-dark-matter-objects so easily observed by quasar-microlensing and so robustly predicted by the new theory.

  14. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions to single

  15. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  16. Constraints on Galaxy Formation from Stars in the Far Outer Disk of M31

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette M. N.; Johnson, Rachel A.

    2001-09-01

    Numerical simulations of galaxy formation within the cold dark matter (CDM) hierarchical clustering framework are unable to produce large disk galaxies without invoking some form of feedback to suppress gas cooling and collapse until a redshift of unity or below. An important observational consequence of delaying the epoch of disk formation until relatively recent times is that the stellar populations in the extended disk should be of predominantly young-to-intermediate age. We use a deep Hubble Space Telescope/Wide Field Planetary Camera 2 archival pointing to investigate the mean age and metallicity of the stellar population in a disk-dominated field at 30 kpc along the major axis of M31. Our analysis of the color-magnitude diagram reveals the dominant population to have a significant mean age (>~8 Gyr) and a moderately high mean metallicity ([Fe/H]~-0.7) tentative evidence is also presented for a trace population of ancient (>=10 Gyr) metal-poor stars. These characteristics are unexpected in CDM models, and we discuss the possible implications of this result as well as alternative interpretations. Based on observations with the NASA/ESA Hubble Space Telescope, obtained from the data archive of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. Dual Stellar Halos in the Standard Elliptical Galaxy M105 and Formation of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon

    2015-08-01

    M105 in the Leo I Group is a textbook example of a standard elliptical galaxy. Old red giant stars in the halo of M105 are easily resolved in the HST images so that it is an ideal target to study the structure and composition of stellar halos in elliptical galaxies. It is only one of the few elliptical galaxies for which we can study their stellar halos using the resolved stars. We present photometry of the resolved stars in its inner region at R~4 arcmin, obtained from F606W and F814W images in the Hubble Space Telescope archive. Then we combine this with photometry of the remote outer region at R~12 arcmin studied before. Deep color-magnitude diagrams of the resolved stars in the inner region show a prominent red giant branch (RGB) with a large color range, while those for the outer region show better a narrow blue RGB. We derive the metallicity of the RGB stars using the isochrones. The metallicity distribution function of the RGB stars shows the existence of two distinct subpopulations: a dominant metal-rich population and a much weaker metal-poor population. The peak metallicity of the metal-rich population changes little as galactocentric distance increases, while the fraction of the metal-poor population increases. The radial number density profile of the metal-poor RGB stars is flatter in the outer region than that of the metal-rich RGB stars. These provide strong evidence that there are two distinct stellar halos in this galaxy, blue (metal-poor) and red (metal-rich) halos, which is consistent with the results based on the study of the globular cluster systems in bright early-type galaxies (Park \\& Lee 2013,ApJ,773, 27). We discuss the implications of these results with regard to the formation of massive early-type galaxies in the dual halo mode formation scenario as well as in the two-phase formation scenario based on similuations.

  18. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-11-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar haloes. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening, and anisotropy, respectively. The DFs generate flattened stellar haloes with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic Centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based DF to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best-fitting model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from β ≈ 0.4 at Galactocentric radius of 15 kpc to ≈0.7 at 60 kpc. This is a gentler increase than is typically found in simulations of stellar haloes built from the multiple accretion of smaller systems. We find the potential corresponds to an almost flat rotation curve with amplitude of ≈200 km s-1 at these distances. This implies an enclosed mass of ≈4.5 × 1011 M⊙ within a spherical shell of radius 50 kpc.

  19. The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    NASA Astrophysics Data System (ADS)

    Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Yoon, J.; Buchhave, L. A.

    2015-11-01

    Context. The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later (post-birth) mass transfer of chemically processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Aims: Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether local mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. Methods: High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over eight years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m s-1 were determined by cross-correlation against an optimized template. Results: Fourteen of the programme stars exhibit no significant radial-velocity variation over this temporal window, while three are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18 ± 6% for the sample. Conclusions: Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies

  20. Tracing the stellar halo of an early type galaxy out to 25 effective radii

    NASA Astrophysics Data System (ADS)

    Rejkuba, Marina

    2016-08-01

    We have used ACS and WFC3 cameras on board HST to resolve stars in the halo of NGC 5128 out to 140 kpc (25 effective radii, R eff) along the major axis and 70 kpc (13 R eff) along the minor axis. This dataset provides an unprecedented radial coverage of stellar halo properties in any galaxy. Color-magnitude diagrams clearly reveal the presence of the red giant branch stars belonging to the halo of NGC 5128 even in the most distant fields. The V-I colors of the red giants enable us to measure the metallicity distribution in each field and so map the metallicity gradient over the sampled area. The stellar metallicity follows a shallow gradient and even out at 140 kpc (25 R eff) its median value does not go below [M/H]~-1 dex. We observe significant field-to-field metallicity and stellar density variations. The star counts are higher along the major axis when compared to minor axis field located 90 kpc from the galaxy centre, indicating flattening in the outer halo. These observational results provide new important constraints for the assembly history of the halo and the formation of this gE galaxy.

  1. Production and Recycling of Carbon in the Early Galactic Halo

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes; Thidemann Hansen, Terese; Nordström, Birgitta

    2015-08-01

    Extremely metal-poor (EMP) stars - [Fe/H] below ~ -3 - are fossil records of the conditions in the early halo. High-resolution 8m-class spectroscopy has shown that the detailed abundance pattern of EMP giant stars is surprisingly uniform and essentially Solar (e.g. Bonifacio+ 2012), apart from the usual α-enhancement in the halo. In the simplest picture, iron is a proxy for both overall metallicity and time, so the EMP stars should form before the oldest and most metal-poor Galactic globular clusters, notably at the lowest metallicities ([Fe/H] ≲ -3.5).It is thus striking that 20-40% of the EMP giants are strongly enhanced in carbon - the CEMP stars (Lucatello+ 2006). This is conventionally ascribed to mass transfer from a former AGB binary companion, and from a limited compilation of data, Lucatello+ (2005) concluded that most or all CEMP stars are indeed binaries, similar to the classical Ba and CH stars (e.g. Jorissen+ 1998). However, most of the sample was of the inner-halo CEMP-s variety (C and s-process elements both enhanced), while CEMP-no stars dominate the outer halo (Carollo+ 2014). Our precise radial velocity monitoring for CEMP stars over 8 years shed light on this issue.Our data suggest a normal binary frequency for the CEMP-no stars; i.e. the C was not produced in a binary companion, but in sites at interstellar distances, e.g. ‘faint’ SNe, and imprinted on the natal clouds of the low-mass stars we observe. This has immediate implications for the formation of dust in primitive, high-redshift galaxies (Watson+ 2015) and the origin of C-enhanced DLAs (Cooke+ 2011, 2012). The CEMP-s binary orbits are also revealing, with periods up to several decades and generally low amplitudes and eccentricities, suggesting that EMP AGB stars have very large radii, facilitating extensive mass loss. More work on faint SNe and EMP AGB envelopes is needed!

  2. A Classification Scheme for Young Stellar Objects Using the WIDE-FIELD INFRARED SURVEY EXPLORER ALLWISE Catalog: Revealing Low-Density Star Formation in the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Koening, X. P.; Leisawitz, D. T.

    2014-01-01

    We present an assessment of the performance of WISE and the AllWISE data release in a section of the Galactic Plane. We lay out an approach to increasing the reliability of point source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near and mid-infrared colors and magnitudes and test it in a section of the Outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  3. The very wide-field gzK Galaxy Survey - II. The relationship between star-forming galaxies at z ˜ 2 and their host haloes based upon HOD modelling

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shogo; Kashikawa, Nobunari; Hamana, Takashi; Toshikawa, Jun; Onoue, Masafusa

    2016-05-01

    We present the results of an halo occupation distribution (HOD) analysis of star-forming galaxies at z ˜ 2. We obtained high-quality angular correlation functions based on a large sgzK sample, which enabled us to carry out the HOD analysis. The mean halo mass and the HOD mass parameters are found to increase monotonically with increasing K-band magnitude, suggesting that more luminous galaxies reside in more massive dark haloes. The luminosity dependence of the HOD mass parameters was found to be the same as in the local Universe; however, the masses were larger than in the local Universe over all ranges of magnitude. This implies that galaxies at z ˜ 2 tend to form in more massive dark haloes than in the local Universe, a process known as downsizing. By analysing the dark halo mass evolution using the extended Press-Schechter formalism and the number evolution of satellite galaxies in a dark halo, we find that faint Lyman break galaxies at z ˜ 4 could evolve into the faintest sgzKs (22.0 < K ≤ 23.0) at z ˜ 2 and into the Milky-Way-like galaxies or elliptical galaxies in the local Universe, whereas the most luminous sgzKs (18.0 ≤ K ≤ 21.0) could evolve into the most massive systems in the local Universe. The stellar-to-halo mass ratio (SHMR) of the sgzKs was found to be consistent with the prediction of the model, except that the SHMR of the faintest sgzKs was smaller than the prediction at z ˜ 2. This discrepancy may be explained by the confinement of our samples to star-forming galaxies.

  4. The Formation and Evolution of Stripped Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zhu, Jessica; Tuan, Austin Zong; Lee, Christoph; Primack, Joel R.

    2016-01-01

    We implement a model to describe the density profiles of stripped dark matter halos. Our model generalizes the Navarro-Frenk-White (NFW) distribution to allow for more flexibility in the slope of the outer halo. We find that the density distributions of stripped halos tend to have outer slopes steeper than assumed by the NFW distribution. We also examine the relationship between severity of stripping and halo shape, spin parameter and concentration, and find that highly stripped halos are more spheroidal, have lower spin parameters, and have higher concentrations compared to less stripped halos.

  5. THE GALACTIC CENTER S-STARS AND THE HYPERVELOCITY STARS IN THE GALACTIC HALO: TWO FACES OF THE TIDAL BREAKUP OF STELLAR BINARIES BY THE CENTRAL MASSIVE BLACK HOLE?

    SciTech Connect

    Zhang Fupeng; Lu Youjun; Yu Qingjuan

    2013-05-10

    In this paper, we investigate the link between the hypervelocity stars (HVSs) discovered in the Galactic halo and the Galactic center (GC) S-stars, under the hypothesis that they are both the products of the tidal breakup of the same population of stellar binaries by the central massive black hole (MBH). By adopting several hypothetical models for binaries to be injected into the vicinity of the MBH and doing numerical simulations, we realize the tidal breakup processes of the binaries and their follow-up dynamical evolution. We find that many statistical properties of the detected HVSs and GC S-stars could be reproduced under some binary injecting models, and their number ratio can be reproduced if the stellar initial mass function is top-heavy (e.g., with slope {approx} - 1.6). The total number of the captured companions is {approx}50 that have masses in the range {approx}3-7 M{sub Sun} and semimajor axes {approx}< 4000 AU and survive to the present within their main-sequence lifetime. The innermost one is expected to have a semimajor axis {approx}300-1500 AU and a pericenter distance {approx}10-200 AU, with a significant probability of being closer to the MBH than S2. Future detection of such a close star would offer an important test to general relativity. The majority of the surviving ejected companions of the GC S-stars are expected to be located at Galactocentric distances {approx}< 20 kpc, and have heliocentric radial velocities {approx} - 500-1500 km s{sup -1} and proper motions up to {approx}5-20 mas yr{sup -1}. Future detection of these HVSs may provide evidence for the tidal breakup formation mechanism of the GC S-stars.

  6. The Making of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    1999-02-01

    "cannibalized" other nearby dwarf galaxies and clusters, and that this process is still going on. Some astronomers have even speculated that many of the globular clusters now observed may originally have been the particularly dense, central regions ("nuclei") of unfortunate, small galaxies whose more tenuous outer structures have since been dissipated into the Galactic halo. If this is the case, then the Milky Way halo may now contain fossil structures, left over from this process (referred to as "accretion"). A study of the halo and the objects therein may therefore provide very useful information about the formation and evolution of the Milky Way, our home galaxy. The VLT observations In order to investigate this basic issue in more detail, CCD images obtained with the Test Camera at the first 8.2-m VLT Unit Telescope (UT1) have been used to study one of the old globular clusters in the Milky Way. NGC 6712 [2] is an enormous swarm of stars in the southern constellation Scutum (The Shield). It is located at a distance of about 23,000 light-years, in the direction towards the Galactic Center. This cluster is of spherical form and contains somewhat fewer than 1 million stars, all of which are lighter than our Sun. NGC 6712 is one of about 150 globular clusters now known in the Milky Way. They all move in extended elliptical orbits that periodically take them through the densely populated main plane of our Galaxy in which the stars and nebulae form the well-known spiral structure. From there they move into the halo regions high above the plane and then down again. The orbit of NGC 6712 is comparatively small and the cluster passes particularly close to the Galactic Center. The orbital period is in the short range so this happens rather frequently. In fact, it appears that NGC 6712 crossed the Galactic plane just a few million years ago. ESO PR Photo 06a/99 ESO PR Photo 06a/99 [Preview - JPEG: 800 x 494 pix - 344k] [High-Res - JPEG: 3000 x 1851 pix - 2.3M] Caption to PR Photo 06a

  7. Fluorescence Processes in the Outer Atmospheres of the Evolved M-Stars Alpha Ori (M2 Iab) and Gamma Cru (M3.4 III)

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth; Kober, Gladys; Nielsen, Krister; Ayres, Thomas; Wahlgren, Glenn

    2015-08-01

    The prototypical M-giant and M-supergiant stars, Gamma Cru (M3.4 III)) and Alpha Ori (M2Iab), have been observed as part of the "Advanced Spectral Library (ASTRAL) Project: Cool Stars" (PI = T. Ayres). "ASTRAL-Cool Stars" is an HST Cycle 18 Treasury Program designed to collect, using the Space Telescope Imaging Spectrograph (STIS), a definitive set of representative, high-resolution (R~46,000 in the FUV up to ~1700 Å, R~30,000 for 1700-2150 Å, and R~114,000 >2150 Å) and high signal/noise (S/N>100) UV spectra of eight F-M evolved cool stars. These extremely high-quality UV echelle spectra are available from the HST archive and through the University of Colorado (http://casa.colorado.edu/~ayres/ASTRAL/). In this paper, we use the very rich emission-line spectra of the two evolved M stars in the sample, Gamma Cru (GaCrux) and Alpha Ori (Betelgeuse), to study the fluorescence processes operating in their outer atmospheres. We summarize the pumping transitions and fluorescent line products known on the basis of previous work and newly identified in our on-going analysis of these extraordinary new “Treasury” spectra. Detailed descriptions of selected processes are given to illustrate their operation. The wide variety of fluorescence processes in operation in these outer atmospheres, both molecular and atomic, suggest that there is a mixture of warm and cool plasmas present and that H I Ly-alpha in particular is locally very strong, even though, in the case of Alpha Ori, no flux is seen at earth due to strong circumstellar absorption at that wavelength. Many new fluorescence line products and several new processes have been identified in these spectra, which are more complete and of higher S/N than previously available for these stars.

  8. Artificial halos

    NASA Astrophysics Data System (ADS)

    Selmke, Markus

    2015-09-01

    Judged by their frequency and beauty, ice halos easily rival rainbows as a prominent atmospheric optics phenomenon. This article presents experimental halo demonstrations of varying complexity. Using a single commercially available hexagonal glass prism, a variety of artificial halos can be simulated. The experiments include laser beam path analysis, a modified classic spinning prism experiment, and a novel Monte-Carlo machine for three-dimensional rotations. Each of these experiments emulates different conditions of certain halo displays, and in combination, they allow a thorough understanding of these striking phenomena.

  9. The Chemical Abundances of Stars in the Halo (CASH) Project. III. A New Classification Scheme for Carbon-enhanced Metal-poor Stars with s-process Element Enhancement

    NASA Astrophysics Data System (ADS)

    Hollek, Julie K.; Frebel, Anna; Placco, Vinicius M.; Karakas, Amanda I.; Shetrone, Matthew; Sneden, Christopher; Christlieb, Norbert

    2015-12-01

    We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo Project. Its spectroscopic stellar parameters are Teff = 4863 K, {log}g=1.25,\\ξ = 2.20 km s-1, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has {{[C/Fe]}}=1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as a “CEMP-r/s” star. Based on abundance comparisons with asymptotic giant branch (AGB) star nucleosynthesis models, we suggest a new physically motivated origin and classification scheme for CEMP-s stars and the still poorly understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of thermal pulses the AGB companion underwent, the effect of different AGB star masses on their nucleosynthetic yields, and physics that is not well approximated in 1D stellar models such as proton ingestion episodes and rotation. Based on a set of detailed AGB models, we suggest the abundance signature of HE 0414-0343 to have arisen from a >1.3 M⊙ mass AGB star and a late-time mass transfer that transformed HE 0414-0343 into a CEMP-sC star. We also find that the [Y/Ba] ratio well parametrizes the classification and can thus be used to easily classify any future such stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  10. Living with a Red Dwarf: Rotation and X-Ray and Ultraviolet Properties of the Halo Population Kapteyn's Star

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn

    2016-04-01

    As part of Villanova's Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf -- Kapteyn's Star. Kapteyn's Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s-1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance-rotation-age relations, and an important test bed for stellar dynamos and the resulting X-ray-UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn's Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet's existence since its orbital period may be an artifact of activity, related to the star's rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray-UV effects on planets hosted by Kapteyn's Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn's Star's planets to coronal - chromospheric XUV emissions over time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13020. This work is also based on observations obtained with the Chandra X-ray Observatory, a NASA science mission, program #13200633.

  11. Gas infall into atomic cooling haloes: on the formation of protogalactic discs and supermassive black holes at z > 10

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Jimenez, Raul; Haiman, Zoltán

    2013-12-01

    We have performed hydrodynamical simulations from cosmological initial conditions using the Adaptive Mesh Refinement (AMR) code RAMSES to study atomic cooling haloes (ACHs) at z = 10 with masses in the range 5 × 107 M⊙ ≲ M ≲ 2 × 109 M⊙. We assume the gas has primordial composition and H2-cooling and prior star formation in the haloes have been suppressed. We present a comprehensive analysis of the gas and dark matter (DM) properties of 19 haloes at a spatial resolution of ˜10 (proper) pc, selected from simulations with a total volume of ˜2000 (comoving) Mpc3. This is the largest statistical hydro-simulation study of ACHs at z > 10 to date. We examine the morphology, angular momentum, thermodynamical state and turbulent properties of these haloes, in order to assess the prevalence of discs and massive overdensities that may lead to the formation of supermassive black holes (SMBHs). We find no correlation between either the magnitude or the direction of the angular momentum of the gas and its parent DM halo. Only three of the haloes form rotationally supported cores. Two of the most massive haloes, however, form massive, compact overdense blobs, which migrate to the outer region of the halo. These blobs have an accretion rate between ˜10-1 and 10-3 M⊙ yr-1 (at a distance of 100 pc from their centre), and are possible sites of SMBH formation. Our results suggest that the degree of rotational support and the fate of the gas in a halo is determined by its large-scale environment and merger history. In particular, the two haloes that form overdense blobs are located at knots of the cosmic web, cooled their gas early on (z > 17) and experienced many mergers. The gas in these haloes is thus lumpy and highly turbulent, with Mach numbers M≳ 5. In contrast, the haloes forming rotationally supported cores are relatively more isolated, located mid-way along filaments of the cosmic web, cooled their gas more recently and underwent fewer mergers. As a result, the

  12. The GHOSTS survey - II. The diversity of halo colour and metallicity profiles of massive disc galaxies

    NASA Astrophysics Data System (ADS)

    Monachesi, Antonela; Bell, Eric F.; Radburn-Smith, David J.; Bailin, Jeremy; de Jong, Roelof S.; Holwerda, Benne; Streich, David; Silverstein, Grace

    2016-04-01

    We study the stellar halo colour properties of six nearby massive highly inclined disc galaxies using Hubble space telescope Advanced Camera for Surveys and Wide Field Camera 3 observations in both F606W and F814W filters from the GHOSTS (Galaxy Halos, Outer disks, Substructure, Thick disks, and Star clusters) survey. The observed fields probe the stellar outskirts out to projected distances of ˜50-70 kpc from their galactic centre along the minor axis. The 50 per cent completeness levels of the colour-magnitude diagrams are typically at 2 mag below the tip of the red giant branch (RGB). We find that all galaxies have extended stellar haloes out to ˜50 kpc and two out to ˜70 kpc. We determined the halo colour distribution and colour profile for each galaxy using the median colours of stars in the RGB. Within each galaxy, we find variations in the median colours as a function of radius which likely indicates population variations, reflecting that their outskirts were built from several small accreted objects. We find that half of the galaxies (NGC 0891, NGC 4565, and NGC 7814) present a clear negative colour gradient in their haloes, reflecting a declining metallicity; the other have no significant colour or population gradient. In addition, notwithstanding the modest sample size of galaxies, there is no strong correlation between their halo colour/metallicity or gradient with galaxy's properties such as rotational velocity or stellar mass. The diversity in halo colour profiles observed in the GHOSTS galaxies qualitatively supports the predicted galaxy-to-galaxy scatter in halo stellar properties, a consequence of the stochasticity inherent in the assembling history of galaxies.

  13. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  14. The local density of halo giants

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.

    1993-01-01

    A new estimate of the local density of halo giants - 36 +/- 7 with M(V) less than 0.5 per cu kpc - is presented. This number is derived from an objective-prism survey for nearby metal-weak stars, and so is free from many of the assumptions needed to derive the local halo density in the traditional way, from high proper motion surveys. This number agrees well with estimates of the local density of halo horizontal-branch stars, but is approximately a factor of 2 smaller than the density derived by Bahcall and Casertano (1986). This may be due to the inclusion of some thick disk stars in their proper-motion selected sample. The halo density derived from giants can be expressed as a disk-to-halo ratio of 850:1 (+/- 35 percent). Using these results, a simple model is built to predict numbers of halo giants in specified directions in the Galaxy. It is shown that it performs much better than the Bahcall-Soniera model, in the specific case of halo giants. The surface brightness due to the halo at the solar radius is calculated to be 27.7 V magnitudes per sq arcsec, if the Galaxy was viewed from the outside, edge-on, thus raising the possibility of detecting light from halo field stars in other galaxies similar to our own.

  15. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  16. Structure and Population of the NGC 55 Stellar Halo from A Subaru/Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Tanaka, Mikito; Chiba, Masashi; Komiyama, Yutaka; Guhathakurta, Puragra; Kalirai, Jason S.

    2011-09-01

    As part of our survey of galactic stellar halos, we investigate the structure and stellar populations of the northern outer part of the stellar halo in NGC 55, a member galaxy of the Sculptor Group, using deep and wide-field V- and I-band images taken with Subaru/Suprime-Cam. Based on the analysis of the color-magnitude diagrams for red giant branch (RGB) stars, we derive a tip of RGB based distance modulus to the galaxy of (m - M)0 = 26.58 ± 0.11(d = 2.1 ± 0.1 Mpc). From the stellar density maps, we detect the asymmetrically disturbed, thick disk structure and two metal-poor overdense substructures in the north region of NGC 55, which may correspond to merger remnants associated with hierarchical formation of NGC 55's halo. In addition, we identify a diffuse metal-poor halo extended out to at least z ~ 16 kpc from the galactic plane. The surface brightness profiles toward the z-direction perpendicular to the galactic plane suggest that the stellar density distribution in the northern outer part of NGC 55 is described by a locally isothermal disk at z <~ 6 kpc and a likely diffuse metal-poor halo with V-band surface brightness of μV >~ 32 mag arcsec-2, where old RGB stars dominate. We derive the metallicity distributions (MDs) of these structures on the basis of the photometric comparison of RGB stars with the theoretical stellar evolutionary models. The MDs of the thick disk structures show the peak and mean metallicity of [Fe/H]peak ~ -1.4 and [Fe/H]mean ~ -1.7, respectively, while the outer substructures show more metal-poor features than the thick disk structure. Combined with the current results with our previous study for M31's halo, we discuss the possible difference in the formation process of stellar halos among different Hubble types. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  17. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  18. An ancient metal-poor population in M32, and halo satellite accretion in M31, identified by RR Lyrae stars

    NASA Astrophysics Data System (ADS)

    Sarajedini, Ata; Yang, S.-C.; Monachesi, A.; Lauer, Tod R.; Trager, S. C.

    2012-09-01

    We present time series photometry of two fields near M32 using archival observations from the Advanced Camera for Surveys Wide Field Channel on-board the Hubble Space Telescope. One field is centred about 2 arcmin from M32, while the other is located 15 arcmin to the south-east of M31. The imaging covers a time baseline sufficient for the identification and characterization of a total number of 1139 RR Lyrae variables of which 821 are ab-type and 318 are c-type. In the field near M32, we find a radial gradient in the density of RR Lyraes relative to the centre of M32. This gradient is consistent with the surface brightness profile of M32, suggesting that a significant number of the RR Lyraes in this region belong to M32. This provides further confirmation that M32 contains an ancient stellar population formed around the same time as the oldest population in M31 and the Milky Way. The RR Lyrae stars in M32 exhibit a mean metal abundance of <[Fe/H]> ≈ -1.42 ± 0.02, which is ≈15 times lower than the metal abundance of the overall M32 stellar population. Moreover, the abundance of RR Lyrae stars normalized to the luminosity of M32 in the field analysed further indicates that the ancient metal-poor population in M32 represents only a very minor component of this galaxy, consistent with the 1-4.5 per cent in mass inferred from the colour-magnitude diagram analysis of Monachesi et al. We also find that the measured reddening of the RR Lyrae stars is consistent with M32 containing little or no dust. In the other field, we find unprecedented evidence for two populations of RR Lyraes in M31 as shown by two distinct sequences among the ab-type variables in the Bailey diagram. When interpreted in terms of metal abundance, one population exhibits a peak at [Fe/H] ≈ -1.3 and the other is at [Fe/H] ≈ -1.9. One possible interpretation of this result is that the more metal-rich population represents the dominant M31 halo, while the metal-poorer group could be a disrupted

  19. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way.

    PubMed

    Howes, L M; Casey, A R; Asplund, M; Keller, S C; Yong, D; Nataf, D M; Poleski, R; Lind, K; Kobayashi, C; Owen, C I; Ness, M; Bessell, M S; Da Costa, G S; Schmidt, B P; Tisserand, P; Udalski, A; Szymański, M K; Soszyński, I; Pietrzyński, G; Ulaczyk, K; Wyrzykowski, Ł; Pietrukowicz, P; Skowron, J; Kozłowski, S; Mróz, P

    2015-11-26

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium ('metals') have been found in the outer regions ('halo') of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions ('bulges') of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon. PMID:26560034

  20. Mapping Baryons in the Halo of NGC 1097

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2012-10-01

    We propose observing 5 background QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of 53-183 kpc. NGC 1097 is a bright {-21.1} spiral galaxy that has the highest surface density of background, UV-bright QSOs in the nearby Universe. The galaxy hosts a low luminosity AGN at its core, surrounded by a ring of intense star-forming regions; there is also evidence from stellar tidal streams that the galaxy has recently cannibalized a number of dwarf galaxies, and a companion dwarf elliptical is still clearly merging with the outer disk. We aim to examine the physical conditions of gas that fills the halo of such an active galaxy. We will search primarily for Lya and SiIV absorption lines in the spectra of the background QSOs, as well as weak NV from hot gas. At the lowest impact parameters, we may also be able to find absorption lines from low ionization species. Our goals are to test whether the halo of NGC 1097 contains the same distribution of Lyman-alpha forest clouds seen at higher redshifts out to large distances from galaxies, and determine how the HI column density, covering fraction, and temperature of the gas decline with radius in a single galaxy halo. We will examine whether the velocities of the absorbers are consistent with those expected from gas co-rotating in the dark matter halo of the galaxy, or whether there exists a distribution of velocities that might indicate outflows from the galactic disk or from the central AGN, or, alternatively, from inflows from the IGM. Our map of Lya and SiIV around NGC 1097 will provide an important template for understanding the origin of higher redshift QSO absorption line systems.

  1. Dynamic Processes in Be Star Atmospheres. V. Helium Line Emissions from the Outer Atmosphere of λ Eridani

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.; Cohen, D. H.; Hubeny, I.; Plett, K.; Basri, G.; Johns-Krull, C. M.; MacFarlane, J. J.; Hirata, R.

    1997-05-01

    The He I lines of the mild B2e star λ Eri often exhibit rapid, small-amplitude emissions that can occur at random places in their photospheric lines, even when the star is in a ``nonemission state.'' New simultaneous observations of the triplet λ5876 and singlet λ6678 lines show that the emission ratio for these lines is near unity, contrary to the predictions of either non-LTE model atmospheres or nebular recombination theory. Several He I emission events point to the formation of short-lived structures near the star's surface. On 1995 September 12 the line λ6678 exhibited a strong (0.13Icont) emission lasting some 20 minutes. The rapid decay of this feature implies a density of >=1011.5 cm-3 for an emitting plasma structure near the star. This value is consistent with density estimates for slabs which may be responsible for ephemeral ``dimples'' in this star's He I lines on other occasions. We argue that photospheric helium emissions during Hα-quiescent phases are caused by foreground material and ask what mechanism might produce these features against the stellar background. To answer this question we have simulated He I line emission from model slabs having various properties and suspended over the star. We find that illumination by a source of extreme-ultraviolet (EUV) or X-ray flux depletes the He I column density so that it is difficult to form observable He I lines. A more interesting set of conditions occur for slabs with high densities (~1012 cm-3) and moderately large optical thicknesses in optical He I lines. Under these modified assumptions modest amounts of emission can be reproduced in singlet and triplet lines, and in the observed ratio. The key to producing this emission is for the slab to feel its own Lyman continuum radiation. This condition causes λ584 and other resonance lines to partially depopulate the ground state and to overpopulate the first few excited levels, ensuring that the departure coefficients of relevant atomic levels

  2. THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES

    SciTech Connect

    Greene, Jenny E.; Murphy, Jeremy D.; Comerford, Julia M.; Gebhardt, Karl; Adams, Joshua J.

    2012-05-01

    We use the Mitchell Spectrograph (formerly VIRUS-P) on the McDonald Observatory 2.7 m Harlan J. Smith Telescope to search for the chemical signatures of massive elliptical galaxy assembly. The Mitchell Spectrograph is an integral-field spectrograph with a uniquely wide field of view (107'' Multiplication-Sign 107''), allowing us to achieve remarkably high signal-to-noise ratios of {approx}20-70 pixel{sup -1} in radial bins of 2-2.5 times the effective radii of the eight galaxies in our sample. Focusing on a sample of massive elliptical galaxies with stellar velocity dispersions {sigma}{sub *} > 150 km s{sup -1}, we study the radial dependence in the equivalent widths (EW) of key metal absorption lines. By twice the effective radius, the Mgb EWs have dropped by {approx}50%, and only a weak correlation between {sigma}{sub *} and Mgb EW remains. The Mgb EWs at large radii are comparable to those seen in the centers of elliptical galaxies that are {approx} an order of magnitude less massive. We find that the well-known metallicity gradients often observed within an effective radius continue smoothly to 2.5 R{sub e} , while the abundance ratio gradients remain flat. Much like the halo of the Milky Way, the stellar halos of our galaxies have low metallicities and high {alpha}-abundance ratios, as expected for very old stars formed in small stellar systems. Our observations support a picture in which the outer parts of massive elliptical galaxies are built by the accretion of much smaller systems whose star formation history was truncated at early times.

  3. The complex structure of stars in the outer galactic disk as revealed by Pan-STARRS1

    SciTech Connect

    Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Martin, Nicolas F.; Rix, Hans-Walter; Morganson, Eric; Peñarrubia, Jorge; Bernard, Edouard J.; Ferguson, Annette M. N.; Martinez-Delgado, David; Wyse, Rosemary F. G.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Magnier, Eugene A.; Tonry, John L.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-08-10

    We present a panoptic view of the stellar structure in the Galactic disk's outer reaches commonly known as the Monoceros Ring, based on data from Pan-STARRS1. These observations clearly show the large extent of the stellar overdensities on both sides of the Galactic disk, extending between b = –25° and b = +35° and covering over 130° in Galactic longitude. The structure exhibits a complex morphology with both stream-like features and a sharp edge to the structure in both the north and the south. We compare this map to mock observations of two published simulations aimed at explaining such structures in the outer stellar disk, one postulating an origin as a tidal stream and the other demonstrating a scenario where the disk is strongly distorted by the accretion of a satellite. These morphological comparisons of simulations can link formation scenarios to observed structures, such as demonstrating that the distorted-disk model can produce thin density features resembling tidal streams. Although neither model produces perfect agreement with the observations—the tidal stream predicts material at larger distances that is not detected while in the distorted disk model, the midplane is warped to an excessive degree—future tuning of the models to accommodate these latest data may yield better agreement.

  4. Light-element abundance variations in the Milky Way halo

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Grebel, E. K.

    2010-09-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  5. Building Halos by Digesting Satellites

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  6. Scaling Laws for Dark Matter Halos in Late-type and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Freeman, K. C.

    2016-02-01

    Dark matter (DM) halos of Sc-Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes MV > -18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities Vcirc of test particles in their DM halos. Baryons become unimportant at Vcirc = 42 ± 4 km s-1. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ˜4.6 mag and dIm galaxies would be brighter by ˜3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from MB ˜ -5 to -22. This implies a Faber-Jackson law with halo mass M ∝ (halo dispersion)4.

  7. A CCD survey for faint high-latitude carbon stars

    NASA Technical Reports Server (NTRS)

    Green, Paul J.; Margon, Bruce; Anderson, Scott F.; Cook, Kem H.

    1994-01-01

    We describe a wide-area CCD survey to search for faint high-latitude carbon (FHLC) stars. Carbon giants provide excellent probes of the structure and kinematics of the outer Galactic halo. We use two-color photometric selection with large-format CCDs to cover 52 sq deg of sky to a depth of about V = 18. Of 94 faint C star candidates from our own CCD survey, one highly ranked V = 17 candidate was found to have a strong carbon and CN bands. We estimate that, to a depth of V = 18, the surface density of FHLC stars is 0.02 deg(exp -2). An updated FHLC sample is used to constrain halo kinematic and structural parameters. Although larger samples are needed, the effective radius of FHLC giants, assuming a de Vancouleurs law distribution, is larger than that for Galactic globular clusters.

  8. Kinematically Detected Halo Streams

    NASA Astrophysics Data System (ADS)

    Smith, Martin C.

    Clues to the origins and evolution of our Galaxy can be found in the kinematics of stars around us. Remnants of accreted satellite galaxies produce over-densities in velocity-space, which can remain coherent for much longer than spatial over-densities. This chapter reviews a number of studies that have hunted for these accretion relics, both in the nearby solar-neighborhood and the more-distant stellar halo. Many observational surveys have driven this field forwards, from early work with the Hipparcos mission, to contemporary surveys like RAVE and SDSS. This active field continues to flourish, providing many new discoveries, and will be revolutionized as the Gaia mission delivers precise proper motions for a billion stars in our Galaxy.

  9. THE MOST DISTANT STARS IN THE MILKY WAY

    SciTech Connect

    Bochanski, John J.; Willman, Beth; Caldwell, Nelson; Brown, Warren; Sanderson, Robyn; West, Andrew A.; Strader, Jay

    2014-07-20

    We report on the discovery of the most distant Milky Way (MW) stars known to date: ULAS J001535.72+015549.6 and ULAS J074417.48+253233.0. These stars were selected as M giant candidates based on their infrared and optical colors and lack of proper motions. We spectroscopically confirmed them as outer halo giants using the MMT/Red Channel spectrograph. Both stars have large estimated distances, with ULAS J001535.72+015549.6 at 274 ± 74 kpc and ULAS J074417.48+253233.0 at 238 ± 64 kpc, making them the first MW stars discovered beyond 200 kpc. ULAS J001535.72+015549.6 and ULAS J074417.48+253233.0 are both moving away from the Galactic center at 52 ± 10 km s{sup –1} and 24 ± 10 km s{sup –1}, respectively. Using their distances and kinematics, we considered possible origins such as: tidal stripping from a dwarf galaxy, ejection from the MW's disk, or membership in an undetected dwarf galaxy. These M giants, along with two inner halo giants that were also confirmed during this campaign, are the first to map largely unexplored regions of our Galaxy's outer halo.

  10. Lyman-Werner UV escape fractions from primordial haloes

    NASA Astrophysics Data System (ADS)

    Schauer, Anna T. P.; Whalen, Daniel J.; Glover, Simon C. O.; Klessen, Ralf S.

    2015-12-01

    Population III (Pop III) stars can regulate star formation in the primordial Universe in several ways. They can ionize nearby haloes, and even if their ionizing photons are trapped by their own haloes, their Lyman-Werner (LW) photons can still escape and destroy H2 in other haloes, preventing them from cooling and forming stars. LW escape fractions are thus a key parameter in cosmological simulations of early reionization and star formation but have not yet been parametrized for realistic haloes by halo or stellar mass. To do so, we perform radiation hydrodynamical simulations of LW UV escape from 9-120 M⊙ Pop III stars in 105-107 M⊙ haloes with ZEUS-MP. We find that photons in the LW lines (i.e. those responsible for destroying H2 in nearby systems) have escape fractions ranging from 0 to 85 per cent. No LW photons escape the most massive halo in our sample, even from the most massive star. Escape fractions for photons elsewhere in the 11.18-13.6 eV energy range, which can be redshifted into the LW lines at cosmological distances, are generally much higher, being above 60 per cent for all but the least massive stars in the most massive haloes. We find that shielding of H2 by neutral hydrogen, which has been neglected in most studies to date, produces escape fractions that are up to a factor of 3 smaller than those predicted by H2 self-shielding alone.

  11. Exploring Galaxy Halos and the Cosmic Web through X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bregman, Joel; Anderson, Mike; Dai, Xinyu; Miller, Matt; Hodges-Kluck, Edmund

    2015-10-01

    About 90 of the metals produced in the universe and 50 of the baryons are unaccounted for through UV-IR and radio studies of stars and gas. This large amount of gas and metals likely lies in a hot phase 0.5-10E6 K and must be enriched to about 0.2-0.3 of the solar metallicity, so it should be a good absorber of X-rays in the resonance lines of common elements. X-ray absorption lines against background AGNs should show hot extended halos around galaxies out to the virial radius, if not beyond. The outer parts of galaxy groups and some cosmic filaments are other potential sources of absorption. For the Milky Way, high X-ray spectral resolution allows us to determine the dynamics of the hot halo, including the rotation as a function of radius as well as the accretion or outflow rate.

  12. Resolved Stellar Halos of M87 and NGC 5128

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Harris, William; Flynn, Chris; Blakeslee, John P.; Valtonen, Mauri

    2015-08-01

    We search halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We resolve thousands of red-giant-branch stars in these stellar halo fields using V and I filters, and, in addition, measure the metallicity using stellar isochrones. In Cen A, we find that the density of metal-rich and metal-poor halo stars falls off with the same slope in the de Vaucouleurs' law profile, from the inner halo of 8 kpc out to 70 kpc, with no sign of a transition to dominance by metal-poor stars. We also find that the metallicity distribution of the inner stellar halo of M87 is most similar to that of NGC 5128's inner stellar halo.

  13. Erratum: "Chemical Inhomogeneities in the Milky Way Stellar Halo" (2009, AJ, 137, 272)

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2010-04-01

    We have been alerted that the angular momentum components listed for Galactic globular clusters in Table 4 of our original analysis are at odds with other recent determinations of these quantities (e.g., Smith et al. 2009), and we thank Martin C. Smith for pointing out this discrepancy. We have identified and corrected an error in our computation of the cluster coordinates that affected both the angular momentum components and the orbital parameters listed in Table 4. In this Erratum, we present a corrected version of Table 4, revised Figures 16-19, which relied on the data presented in Table 4, and a very brief description of the observed correlations. This material supersedes that presented in Section 7.2 of the original analysis. Orbital parameters are included in all cases where the cluster completed enough orbits to allow these quantities to settle to a constant value. We also include kinematic properties of two clusters (M13 and NGC 104) that did not meet this criterion in our original analysis. Using the kinematic criteria for inner and outer halo membership listed in Section 4 of our original study, three clusters fit the inner halo classification (M4, M22, and M55), and six clusters fit the outer halo classification (M3, M13, M68, NGC 5466, Pal 5, and Pal 12). Figures 16-19 display mean abundance ratios for these clusters using the corrected orbital parameters. There may be a hint that [Mg/Fe] in the outer halo clusters (lang[Mg/Fe]rang = +0.20 ± 0.09, σ= 0.15, N= 4) is slightly lower than in the inner halo clusters (lang[Mg/Fe]rang = +0.35 ± 0.07, σ= 0.10, N= 3), even if we exclude Pal 12, which shares the same low [α/Fe] abundance ratios as Sagittarius. The mean dispersions in [X/Fe] of the inner and outer halo clusters are comparable. The [Ba/Eu] ratio in the outer halo clusters (lang[Ba/Eu]rang = -0.32 ± 0.07, σ= 0.12, N= 4) is also lower than in the inner halo clusters (lang[Ba/Eu]rang = +0.00 ± 0.20, σ= 0.28, N= 3), again excluding Pal 12

  14. Outer radiation belt dynamics following the arrival of an interplanetary shock : What the Cluster-CIS and Double Star-HIA data can tell us

    NASA Astrophysics Data System (ADS)

    Dandouras, Iannis; Ganushkina, Natalia; Rème, Henri

    2014-05-01

    Following the launch by NASA of the Radiation Belt Storm Probes (RBSP) twin spacecraft, now named the Van Allen Probes, the discovery of a storage ring was announced: Baker et al., Science, 2013. This transient feature was observed during September 2012, following the arrival of an interplanetary shock, was located between L=3.0 and L=3.5 and consisted of about 4 to 6 MeV electrons. During that period the Cluster spacecraft had a high-inclination orbit, with a perigee just above 2 Re. The CIS experiment onboard Cluster is sensitive to penetrating energetic electrons (E > 2 MeV), which produce background counts and thus allow to localise the boundaries of the outer and inner radiation belts (Ganushkina et al., JGR, 2011). A search was undertaken in the September 2012 CIS data for eventual signatures of the storage ring, and indeed a small increase of the instrument background was observed between L=3.0 and L=3.5. This is clearly separated from the main outer radiation belt, which presents a much stronger background due to higher fluxes of relativistic electrons. A mono-energetic ion drift band was also observed by CIS inside the storage ring, at about 5 keV for He+ and O+ ions. This result provides an independent confirmation for the storage ring. In addition, it allows also to examine Cluster and Double Star data from earlier years, covering a solar cycle, for other such signatures of a transient storage ring. It results that this 3-belt structure is seen several times, following the arrival of an interplanetary shock and if the orbital configuration is suitable.

  15. Dual Stellar Halos in the Standard Elliptical Galaxy M105 and Formation of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-05-01

    M105 is a standard elliptical galaxy, located in the Leo I Group. We present photometry of the resolved stars in its inner region at R ≈ 4‧ ≈ 4R eff, obtained from F606W and F814W images in the Hubble Space Telescope archive. We combine this with photometry of the outer region at R ≈ 12‧ ≈ 12R eff from archival imaging data. Color–magnitude diagrams of the resolved stars in the inner region show a prominent red giant branch (RGB) with a large color range, while those for the outer region show better a narrow blue RGB. The metallicity distribution function (MDF) of the RGB stars shows the existence of two distinct subpopulations: a dominant metal-rich population (with a peak at [M/H] ≈ 0.0) and a much weaker metal-poor population (with a peak at [M/H] ≈ ‑1.1). The radial number density profiles of the metal-rich and metal-poor RGB stars are fit well by a Sérsic law with n = 2.75 ± 0.10 and n = 6.89 ± 0.94, and by a single power law (σ ∝ R ‑3.8 and σ ∝ R ‑2.6), respectively. The MDFs of the inner and outer regions can be described well by accretion gas models of chemical evolution with two components. These provide strong evidence that there are two distinct stellar halos in this galaxy, blue metal-poor and red metal-rich halos, consistent with the results based on globular cluster systems in bright early-type galaxies (ETGs). We discuss the implications of these results with regard to the formation of massive ETGs in the dual halo mode formation scenario.

  16. Gas accretion from halos to disks: observations, curiosities, and problems

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2016-08-01

    Accretion of gas from the cosmic web to galaxy halos and ultimately their disks is a prediction of modern cosmological models but is rarely observed directly or at the full rate expected from star formation. Here we illustrate possible large-scale cosmic HI accretion onto the nearby dwarf starburst galaxy IC10, observed with the VLA and GBT. We also suggest that cosmic accretion is the origin of sharp metallicity drops in the starburst regions of other dwarf galaxies, as observed with the 10-m GTC. Finally, we question the importance of cosmic accretion in normal dwarf irregulars, for which a recent study of their far-outer regions sees no need for, or evidence of, continuing gas buildup.

  17. SUBSTRUCTURE IN THE STELLAR HALOS OF THE AQUARIUS SIMULATIONS

    SciTech Connect

    Helmi, Amina; Cooper, A. P.; Cole, S.; Frenk, C. S.; White, S. D. M.; Navarro, J. F.

    2011-05-20

    We characterize the substructure in the simulated stellar halos of Cooper et al. which were formed by the disruption of satellite galaxies within the cosmological N-body simulations of galactic halos of the Aquarius project. These stellar halos exhibit a wealth of tidal features: broad overdensities and very narrow faint streams akin to those observed around the Milky Way. The substructures are distributed anisotropically on the sky, a characteristic that should become apparent in the next generation of photometric surveys. The normalized RMS of the density of stars on the sky appears to be systematically larger for our halos compared with the value estimated for the Milky Way from main-sequence turnoff stars in the Sloan Digital Sky Survey. We show that this is likely to be due in part to contamination by faint QSOs and redder main-sequence stars, and might suggest that {approx}10% of the Milky Way halo stars have formed in situ.

  18. GHRS Observations of Cool, Low-Gravity Stars. 5; The Outer Atmosphere and Wind of the Nearby K Supergiant Lambda Velorum

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J.

    1999-01-01

    UV spectra of lambda Velorum taken with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope are used to probe the structure of the outer atmospheric layers and wind and to estimate the mass-loss rate from this K5 lb-II supergiant. VLA radio observations at lambda = 3.6 cm are used to obtain an independent check on the wind velocity and mass-loss rate inferred from the UV observations, Parameters of the chromospheric structure are estimated from measurements of UV line widths, positions, and fluxes and from the UV continuum flux distribution. The ratios of optically thin C II] emission lines indicate a mean chromospheric electron density of log N(sub e) approximately equal 8.9 +/- 0.2 /cc. The profiles of these lines indicate a chromospheric turbulence (v(sub 0) approximately equal 25-36 km/s), which greatly exceeds that seen in either the photosphere or wind. The centroids of optically thin emission lines of Fe II and of the emission wings of self-reversed Fe II lines indicate that they are formed in plasma approximately at rest with respect to the photosphere of the star. This suggests that the acceleration of the wind occurs above the chromospheric regions in which these emission line photons are created. The UV continuum detected by the GHRS clearly traces the mean flux-formation temperature as it increases with height in the chromosphere from a well-defined temperature minimum of 3200 K up to about 4600 K. Emission seen in lines of C III] and Si III] provides evidence of material at higher than chromospheric temperatures in the outer atmosphere of this noncoronal star. The photon-scattering wind produces self-reversals in the strong chromospheric emission lines, which allow us to probe the velocity field of the wind. The velocities to which these self-absorptions extend increase with intrinsic line strength, and thus height in the wind, and therefore directly map the wind acceleration. The width and shape of these self

  19. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the disks of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of $33^{\\circ}$ in both cases. While the centrals are better aligned with the inner $10$ kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central - satellite alignment is weak (median misalignment angle of $52^{\\circ}$) and we find that around $20\\%$ of systems have a misalignment angle larger than $78^{\\circ}$, which is the value for the Milky Way. The central - satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central - halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disk) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  20. Alignments between galaxies, satellite systems and haloes

    NASA Astrophysics Data System (ADS)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Gao, Liang; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2016-08-01

    The spatial distribution of the satellite populations of the Milky Way and Andromeda are puzzling in that they are nearly perpendicular to the discs of their central galaxies. To understand the origin of such configurations we study the alignment of the central galaxy, satellite system and dark matter halo in the largest of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) simulation. We find that centrals and their satellite systems tend to be well aligned with their haloes, with a median misalignment angle of 33° in both cases. While the centrals are better aligned with the inner 10 kpc halo, the satellite systems are better aligned with the entire halo indicating that satellites preferentially trace the outer halo. The central-satellite alignment is weak (median misalignment angle of 52°) and we find that around 20 per cent of systems have a misalignment angle larger than 78°, which is the value for the Milky Way. The central-satellite alignment is a consequence of the tendency of both components to align with the dark matter halo. As a consequence, when the central is parallel to the satellite system, it also tends to be parallel to the halo. In contrast, if the central is perpendicular to the satellite system, as in the case of the Milky Way and Andromeda, then the central-halo alignment is much weaker. Dispersion-dominated (spheroidal) centrals have a stronger alignment with both their halo and their satellites than rotation-dominated (disc) centrals. We also found that the halo, the central galaxy and the satellite system tend to be aligned with the surrounding large-scale distribution of matter, with the halo being the better aligned of the three.

  1. Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way

    NASA Astrophysics Data System (ADS)

    Howes, L. M.; Casey, A. R.; Asplund, M.; Keller, S. C.; Yong, D.; Nataf, D. M.; Poleski, R.; Lind, K.; Kobayashi, C.; Owen, C. I.; Ness, M.; Bessell, M. S.; da Costa, G. S.; Schmidt, B. P.; Tisserand, P.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Ulaczyk, K.; Wyrzykowski, Ł.; Pietrukowicz, P.; Skowron, J.; Kozłowski, S.; Mróz, P.

    2015-11-01

    The first stars are predicted to have formed within 200 million years after the Big Bang, initiating the cosmic dawn. A true first star has not yet been discovered, although stars with tiny amounts of elements heavier than helium (‘metals’) have been found in the outer regions (‘halo’) of the Milky Way. The first stars and their immediate successors should, however, preferentially be found today in the central regions (‘bulges’) of galaxies, because they formed in the largest over-densities that grew gravitationally with time. The Milky Way bulge underwent a rapid chemical enrichment during the first 1-2 billion years, leading to a dearth of early, metal-poor stars. Here we report observations of extremely metal-poor stars in the Milky Way bulge, including one star with an iron abundance about 10,000 times lower than the solar value without noticeable carbon enhancement. We confirm that most of the metal-poor bulge stars are on tight orbits around the Galactic Centre, rather than being halo stars passing through the bulge, as expected for stars formed at redshifts greater than 15. Their chemical compositions are in general similar to typical halo stars of the same metallicity although intriguing differences exist, including lower abundances of carbon.

  2. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  3. The rotation curve conspiracy and neutron star/asteroid models for Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Salpeter, Edwin E.; Wasserman, Ira

    1993-01-01

    Gamma Ray Bursts (GRB) were analyzed using new GRO/BATSE results in conjunction with older PVO and KONUS data. It is suggested that the distribution in space of the GRB sources must have an outer bounding surface which is approximately a sphere centered on the location. Neutron stars in some kind of extended halo around the Galaxy with the required mass of an infalling object of order about 10 exp 21 to 10 exp 23 gm are considered.

  4. A classification scheme for young stellar objects using the wide-field infrared survey explorer AllWISE catalog: revealing low-density star formation in the outer galaxy

    SciTech Connect

    Koenig, X. P.; Leisawitz, D. T.

    2014-08-20

    We present an assessment of the performance of WISE and the AllWISE data release for a section of the Galactic Plane. We lay out an approach to increasing the reliability of point-source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near- and mid-infrared colors and magnitudes and test it in a section of the outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star-forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  5. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  6. STELLAR POPULATION VARIATIONS IN THE MILKY WAY's STELLAR HALO

    SciTech Connect

    Bell, Eric F.; Xue Xiangxiang; Rix, Hans-Walter; Ruhland, Christine; Hogg, David W.

    2010-12-15

    If the stellar halos of disk galaxies are built up from the disruption of dwarf galaxies, models predict highly structured variations in the stellar populations within these halos. We test this prediction by studying the ratio of blue horizontal branch stars (BHB stars; more abundant in old, metal-poor populations) to main-sequence turn-off stars (MSTO stars; a feature of all populations) in the stellar halo of the Milky Way using data from the Sloan Digital Sky Survey. We develop and apply an improved technique to select BHB stars using ugr color information alone, yielding a sample of {approx}9000 g < 18 candidates where {approx}70% of them are BHB stars. We map the BHB/MSTO ratio across {approx}1/4 of the sky at the distance resolution permitted by the absolute magnitude distribution of MSTO stars. We find large variations of the BHB/MSTO star ratio in the stellar halo. Previously identified, stream-like halo structures have distinctive BHB/MSTO ratios, indicating different ages/metallicities. Some halo features, e.g., the low-latitude structure, appear to be almost completely devoid of BHB stars, whereas other structures appear to be rich in BHB stars. The Sagittarius tidal stream shows an apparent variation in the BHB/MSTO ratio along its extent, which we interpret in terms of population gradients within the progenitor dwarf galaxy. Our detection of coherent stellar population variations between different stellar halo substructures provides yet more support to cosmologically motivated models for stellar halo growth.

  7. The edge of the M 87 halo and the kinematics of the diffuse light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Doherty, M.; Arnaboldi, M.; Das, P.; Gerhard, O.; Aguerri, J. A. L.; Ciardullo, R.; Feldmeier, J. J.; Freeman, K. C.; Jacoby, G. H.; Murante, G.

    2009-08-01

    Aims: We study the kinematics and dynamics of the extreme outer halo of M 87, the central galaxy in the Virgo cluster, and its transition to the intracluster light (ICL). Methods: We present high resolution FLAMES/VLT spectroscopy of intracluster planetary nebula (PN) candidates, targeting three new fields in the Virgo cluster core with surface brightness down to μB = 28.5. Based on the projected phase space information (sky positions and line-of-sight velocities) we separate galaxy and cluster components in the confirmed PN sample. We then use the spherical Jeans equation and the total gravitational potential as traced by the X-ray emission to derive the orbital distribution in the outer stellar halo of M 87. We determine the luminosity-specific PN number for the M 87 halo and the ICL from the photometric PN catalogs and sampled luminosities, and discuss the origin of the ICL in Virgo based on its measured PN velocities. Results: We confirm a further 12 PNs in Virgo, five of which are bound to the halo of M 87, and the remainder are true intracluster planetary nebulas (ICPNs). The M 87 PNs are confined to the extended stellar envelope of M 87, within a projected radius of ~160 kpc, while the ICPNs are scattered across the whole surveyed region between M 87 and M 86, supporting a truncation of M 87's luminous outer halo at a 2σ level. The line-of-sight velocity distribution of the M 87 PNs at projected radii of 60 kpc and 144 kpc shows (i) no evidence for rotation of the halo along the photometric major axis; and (ii) that the velocity dispersion decreases in the outer halo, down to σ_last = 78±25 km s-1 at 144 kpc. The Jeans model for the M 87 halo stars fits the observed line-of-sight velocity dispersion profile only if the stellar orbits are strongly radially anisotropic (β ≃ 0.4 at r ≃ 10 kpc increasing to 0.8 at the outer edge), and if additionally the stellar halo is truncated at ≃ 150 kpc average elliptical radius. The α-parameters for the M 87

  8. The Dual Origin of Stellar Halos. II. Chemical Abundances as Tracers of Formation History

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi; Willman, Beth; Brooks, Alyson M.; Governato, Fabio; Hogg, David W.; Shen, Sijing; Wadsley, James

    2010-09-01

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [α/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local Lsstarf galaxies.

  9. THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY

    SciTech Connect

    Zolotov, Adi; Hogg, David W.; Willman, Beth; Brooks, Alyson M.; Shen, Sijing; Wadsley, James E-mail: bwillman@haverford.ed

    2010-09-20

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.

  10. The Milky Way, the Galactic Halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2016-08-01

    The Milky Way, ``our'' Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the Gaia mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams and substructures in the Galactic halo. The data indicate that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To study these features requires exquisite, deep photometry and spectroscopy. These observations illustrate how galaxy halos are still growing, and sometimes can be used to ``time'' the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  11. Magnetic fields in halos of spiral galaxies and the interstellar disk-halo connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jürgen

    2005-09-01

    Observations of magnetic fields in halos of edge-on disk galaxies are discussed in relation to the different gaseous phases of the interstellar medium. For this comparison the presence of diffuse ionized gas (DIG) is introduced as a valuable tracer for gaseous halos which are originating from the star-formation driven disk-halo connection of the interstellar medium. The distribution of extraplanar DIG correlates on local and global scales with cosmic rays and magnetic fields as inferred from observations of the non-thermal radio continuum radiation and its polarization. From the polarization a large scale and well ordered magnetic field in these gaseous halos can be deduced. These observations indicate the presence of physical processes which generate and maintain magnetic fields on galactic scales. The importance of differential rotation of the gaseous halos for such processes is briefly discussed and the possible influence of magnetic fields on the dynamics of dust particles is addressed.

  12. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  13. QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO

    SciTech Connect

    Xue Xiangxiang; Zhao Gang; Luo Ali; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao; Yanny, Brian; Beers, Timothy C.; Lee, Young Sun; Bullock, James S.; Johnston, Kathryn V.; Morrison, Heather; Rockosi, Constance

    2011-09-01

    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative 'close pair distribution' as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r{sub gc} < 20 kpc.

  14. The age of the Milky Way inner halo.

    PubMed

    Kalirai, Jason S

    2012-06-01

    The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4 ± 0.7 billion years. The oldest globular clusters formed 13.5 billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo. PMID:22678285

  15. THE RESOLVED STELLAR HALO OF NGC 253

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Chappell, Samantha N.; Radburn-Smith, David J.; De Jong, Roelof S.

    2011-07-20

    We have obtained Magellan/IMACS and Hubble Space Telescope (HST)/Advanced Camera for Surveys imaging data that resolve red giant branch stars in the stellar halo of the starburst galaxy NGC 253. The HST data cover a small area, and allow us to accurately interpret the ground-based data, which cover 30% of the halo to a distance of 30 kpc, allowing us to make detailed quantitative measurements of the global properties and structure of a stellar halo outside of the Local Group. The geometry of the halo is significantly flattened in the same sense as the disk, with a projected axis ratio of b/a {approx} 0.35 {+-} 0.1. The total stellar mass of the halo is estimated to be M{sub halo} {approx} (2.5 {+-} 1.5) x 10{sup 9} M{sub sun}, or 6% of the total stellar mass of the galaxy, and has a projected radial dependence that follows a power law of index -2.8 {+-} 0.6, corresponding to a three-dimensional power-law index of {approx} - 4. The total luminosity and profile shape that we measure for NGC 253 are somewhat larger and steeper than the equivalent values for the Milky Way and M31, but are well within the scatter of model predictions for the properties of stellar halos built up in a cosmological context. Structure within the halo is seen at a variety of scales: there is small kpc-scale density variation and a large shelf-like feature near the middle of the field. The techniques that have been developed will be essential for quantitatively comparing our upcoming larger sample of observed stellar halos to models of halo formation.

  16. Halo Microlensing and Dark Baryons

    NASA Astrophysics Data System (ADS)

    Crotts, A. P. S.

    1993-12-01

    (While Pierce lectures review past accomplishments, customarily, this talk concerns efforts which we have pursued for some years and which are now reaching fruition. We present elsewhere at this meeting results from research cited for the Prize.) Dark matter exists in the halos of spiral galaxies, and the least radical alternative for its identity is normal matter produced by primordial nucleosynthesis. This matter could easily be hidden in large, condensed objects. Paczynski pointed out in 1986 that if condensations of Galactic halo matter are sufficiently massive, they will produce detectable amplification of background starlight by gravitational lensing. Several groups recently reported possible detections of this effect after surveying large numbers of stars in the Galactic Bulge and LMC. The connection between these events and massive, dark halos is unclear and likely to remain so for some time, given the rate at which they are detected. Following Paczynski's realization, we stressed that a much higher event rate, a statistical control sample, sensitivity to a much broader mass range, and modulation of the predicted lensing rate with galactocentric distance can all be realized by a different experiment: observing the halo of M31 (and the Galaxy) using stars in M31. In some ways, M31 is a more difficult target than the LMC or the Bulge, given the faintness of its stars, but our observations in 1991 and 1993 indicate that these problems have been surmounted. We can detect stellar variability even under extremely crowded conditions like those in M31's inner disk, and can monitor a sufficient number of stars to study halo lensing. We present results from our initial survey which indicates that the required sensitivity can be reached to confirm or reject the hypothesis that sub-solar masses like those detected in our Galaxy make up the missing spiral galaxy mass. It is possible that we may use the data already obtained (and still being analyzed) to place

  17. The halo Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Racco, Davide; Riotto, Antonio

    2016-04-01

    Dark matter halos are the building blocks of the universe as they host galaxies and clusters. The knowledge of the clustering properties of halos is therefore essential for the understanding of the galaxy statistical properties. We derive an effective halo Boltzmann equation which can be used to describe the halo clustering statistics. In particular, we show how the halo Boltzmann equation encodes a statistically biased gravitational force which generates a bias in the peculiar velocities of virialized halos with respect to the underlying dark matter, as recently observed in N-body simulations.

  18. The Gaseous Halo of NGC 891

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund

    2014-08-01

    The halos of disk galaxies contain a substantial mass of diffuse gas whose properties (temperature, density, structure, and metallicity) are important to understanding how the intergalactic medium was enriched and the long-term star-formation potential of the galaxy. However, we still do not know whether most of the halo material was expelled from the galaxy in a 'galactic fountain' or is fresh infall from the circum/intergalactic medium. NGC 891 is a nearby (D=10 Mpc), edge-on Milky Way analog whose halo has been intensively studied. I will present our recent work in the X-ray and UV bands aimed at trying to determine the origin of the hot and cool components of the halo gas by measuring their metal content, and discuss whether results from NGC 891 can be generalized to other galaxies.

  19. Distribution Function in the Center of the Dark Matter Halo

    NASA Astrophysics Data System (ADS)

    Ma, Ding; He, Ping

    N-body simulations of dark matter halos show that the density profiles of the halos behave as ρ(r) ∝ r-α(r), where the density logarithmic slope α ≃ 1-1.5 in the center and α ≃ 3-4 in the outer parts of the halos. However, some observations are not in agreement with simulations in the very central region of the halos. The simulations also show that the velocity dispersion anisotropy parameter β ≈ 0 in the inner part of the halo and the so-called pseudo-phase-space density ρ/σ3 behaves as a power law in radius r. With these results in mind, we study the distribution function and the pseudo-phase-space density ρ/σ3 of the center of dark matter halos and find that they are closely related.

  20. Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.

    2015-08-01

    Hypervelocity stars (HVSs) travel with such extreme velocities that dynamical ejection via gravitational interaction with a massive black hole (MBH) is their most likely origin. Observers have discovered dozens of unbound main-sequence stars since the first in 2005, and the velocities, stellar nature, spatial distribution, and overall numbers of unbound B stars in the Milky Way halo all fit an MBH origin. Theorists have proposed various mechanisms for ejecting unbound stars, and these mechanisms can be tested with larger and more complete samples. HVSs' properties are linked to the nature and environment of the Milky Way's MBH, and, with future proper motion measurements, their trajectories may provide unique probes of the dark matter halo that surrounds the Milky Way.

  1. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  2. MHF: MLAPM Halo Finder

    NASA Astrophysics Data System (ADS)

    Gill, Stuart P. D.; Knebe, Alexander

    2015-11-01

    MHF is a Dark Matter halo finder that is based on the refinement grids of MLAPM. The grid structure of MLAPM adaptively refines around high-density regions with an automated refinement algorithm, thus naturally "surrounding" the Dark Matter halos, as they are simply manifestations of over-densities within (and exterior) to the underlying host halo. Using this grid structure, MHF restructures the hierarchy of nested isolated MLAPM grids into a "grid tree". The densest cell in the end of a tree branch marks center of a prospective Dark Matter halo. All gravitationally bound particles about this center are collected to obtain the final halo catalog. MHF automatically finds halos within halos within halos.

  3. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  4. DETECTION OF A DISTINCT METAL-POOR STELLAR HALO IN THE EARLY-TYPE GALAXY NGC 3115

    SciTech Connect

    Peacock, Mark B.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.

    2015-02-10

    We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC 3115. Using deep Hubble Space Telescope observations, we analyze stars 2 mag fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37, and 54 kpc from its center—corresponding to 7, 14, and 21 effective radii (r{sub e} ). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ∼ –0.5 to –0.65. The fraction of metal-poor stars ([Z/H] < –0.95) increases from 17% at 16-37 kpc to 28% at ∼54 kpc. We observe a distinct low-metallicity population (peaked at [Z/H] ∼ –1.3 and with total mass 2 × 10{sup 10} M {sub ☉} ∼ 14% of the galaxy's stellar mass) and argue that this represents the detection of an underlying low-metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late-type galaxies, including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC 3115 are consistent with the galaxy's globular cluster system, which has a similar low-metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemodynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC 3115 of 30.05 ± 0.05 ± 0.10{sub sys} (10.2 ± 0.2 ± 0.5{sub sys} Mpc)

  5. Living with a Red Dwarf: Rotation and X-Ray and Ultraviolet Properties of the Halo Population Kapteyn’s Star

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn

    2016-04-01

    As part of Villanova’s Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf—Kapteyn’s Star. Kapteyn’s Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s‑1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance–rotation–age relations, and an important test bed for stellar dynamos and the resulting X-ray–UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn’s Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet’s existence since its orbital period may be an artifact of activity, related to the star’s rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray–UV effects on planets hosted by Kapteyn’s Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn’s Star's planets to coronal—chromospheric XUV emissions over time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13020. This work is also based on observations obtained with the Chandra X-ray Observatory, a NASA science

  6. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a

  7. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  8. On detecting halo assembly bias with galaxy populations

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mandelbaum, Rachel; Huang, Yun-Hsin; Huang, Hung-Jin; Dalal, Neal; Diemer, Benedikt; Kravtsov, Andrey

    2016-01-01

    The fact that the clustering and concentration of dark matter halos depend not only on their mass, but also the formation epoch, is a prominent, albeit subtle, feature of the cold dark matter structure formation theory, and is known as assembly bias. At low mass scales (~1012 Msun), early-forming halos are predicted to be more strongly clustered than the late-forming ones. In this study we aim to robustly detect the signature of assembly bias observationally, making use of formation time indicators of central galaxies in low mass halos as a proxy for the halo formation history. Weak gravitational lensing is employed to ensure our early- and late-forming halo samples have similar masses, and are free of contamination of satellites from more massive halos. For the two formation time indicators used (resolved star formation history and current specific star formation rate), we do not find convincing evidence of assembly bias. We attribute the lack of detection to the possibility that these indicators do not correlate well with the halo formation history, and suggest alternatives that should perform better for future studies. In addition, we have developed a method to constrain the probability distribution function of halo mass of a given galaxy sample, and also demonstrate that the abundance matching-based halo mass assignments to galaxy groups and clusters may be biased, likely due to interlopers from more massive galactic systems.

  9. The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

    NASA Astrophysics Data System (ADS)

    Lubowich, D. A.; Brammer, G.; Roberts, H.; Millar, T. J.; Henkel, C.; Pasachoff, J. M.

    Centimeter and millimeter-wave observations of a molecular cloud at the extreme outer edge of the Galactic disk (kinematic ga lactocentric distance: ˜28 kpc) are presented. We detected CO, 13CO, 18CO, CS, CN, SO, HCN, HNC, C2H, HCO+, H13CO+, HCS+, NH3, H2CO, C3H2 and CH3OH, while 17CO, 34CS, SiO, SiS, N2H+, D CN, DNC, DCO+, SO2 and HC3N remained undetected. From the NH3 and H2CO data, a kinetic temperature of Tkin ˜20 K and a density of n(H2) ˜5×103 cm-3 are derived. Nitrogen bearing molecules show , when detected, only weak lines. Commonly strong line emitters such as N2H+ and HC3N were not seen. Using a numeri cal network including 5300 chemical reactions we determined that N is depleted by approximately 24 times, and the metallicit y is reduced by a factor of five (similar to dwarf irregular galaxies or damped Lyman alpha systems) relative to the solar ne ighborhood. These unusual abundances are probably the result of the infall of halo gas enriched in O, C, and S from a burst o f massive star formation in the Galactic halo shortly after the Milky Way was formed. This activity would have produced both O and S, which are produced by massive stars; C, which is produced by massive and intermediate mass stars; but less N abundan ce because the secondary element N is produced primarily from low mass stars. Thus the edge cloud probably results from infal ling halo gas from the early Galaxy that was not significantly processed during the last 10 Gyr and provides a new way to und erstand the origin of the Galactic disk. Our observations of the early Galactic disk abundances will constrain models of nu cleosynthesis, Galactic chemical evolution, and astrochemistry.

  10. Discriminating strange star mergers from neutron star mergers by gravitational-wave measurements

    SciTech Connect

    Bauswein, A.; Oechslin, R.; Janka, H.-T.

    2010-01-15

    We perform three-dimensional relativistic hydrodynamical simulations of the coalescence of strange stars and explore the possibility to decide on the strange matter hypothesis by means of gravitational-wave measurements. Self-binding of strange quark matter and the generally more compact stars yield features that clearly distinguish strange star from neutron star mergers, e.g. hampering tidal disruption during the plunge of quark stars. Furthermore, instead of forming dilute halo structures around the remnant as in the case of neutron star mergers, the coalescence of strange stars results in a differentially rotating hypermassive object with a sharp surface layer surrounded by a geometrically thin, clumpy high-density strange quark matter disk. We also investigate the importance of including nonzero temperature equations of state in neutron star and strange star merger simulations. In both cases we find a crucial sensitivity of the dynamics and outcome of the coalescence to thermal effects, e.g. the outer remnant structure and the delay time of the dense remnant core to black hole collapse depend on the inclusion of nonzero temperature effects. For comparing and classifying the gravitational-wave signals, we use a number of characteristic quantities like the maximum frequency during inspiral or the dominant frequency of oscillations of the postmerger remnant. In general, these frequencies are higher for strange star mergers. Only for particular choices of the equation of state the frequencies of neutron star and strange star mergers are similar. In such cases additional features of the gravitational-wave luminosity spectrum like the ratio of energy emitted during the inspiral phase to the energy radiated away in the postmerger stage may help to discriminate coalescence events of the different types. If such characteristic quantities could be extracted from gravitational-wave signals, for instance with the upcoming gravitational-wave detectors, a decision on the

  11. Simultaneous modelling of the stellar halo and globular cluster system of NGC 5128

    NASA Astrophysics Data System (ADS)

    Beasley, Michael. A.; Harris, William E.; Harris, Gretchen L. H.; Forbes, Duncan A.

    2003-03-01

    An important test for models of galaxy formation lies in the metallicity distribution functions (MDFs) of spheroid stars and their globular clusters (GCs). We have compared the MDFs obtained from spectroscopy of the GCs and the star-by-star photometry of the old halo red giants in the nearby elliptical galaxy NGC 5128, with the predictions of a Λ-cold dark matter (ΛCDM) semi-analytic galaxy formation model. We have selected model ellipticals comparable in luminosity and environment to NGC 5128, and reconstructed their MDFs by summing the total star formation occurring over all their progenitors. A direct comparison between models and data shows that the MDFs are qualitatively similar, both have stellar components that are predominantly metal-rich (~0.8 Zsolar), with a small fraction of metal-poor stars extending down to 0.002 Zsolar. The model MDFs show only small variations between systems, whether they constitute brightest cluster galaxies or low-luminosity group ellipticals. Our comparison also reveals that these model MDFs harbour a greater fraction of stars at Z > Zsolar than the observations, producing generally more metal-rich (by ~0.1 dex) MDFs. One possibility is that the outer-bulge observations are missing some of the highest-metallicity stars in this galaxy. We find good agreement between the model and observed GC MDFs, provided that the metal-poor GC formation is halted early (z~ 5) in the model. Under this proviso, both the models and data are bimodal with peaks at 0.1 Zsolar and Zsolar, and cover similar metallicity ranges. This broad agreement for the stars and GCs suggests that the bulk of the stellar population in NGC 5128 may have been built up in a hierarchical fashion, involving both quiescent and merger-induced star formation. The predicted existence of age structure amongst the metal-rich GCs needs to be tested against high-quality data for this galaxy.

  12. A ''LIGHT'', CENTRALLY CONCENTRATED MILKY WAY HALO?

    SciTech Connect

    Rashkov, Valery; Pillepich, Annalisa; Deason, Alis J.; Madau, Piero; Rockosi, Constance M.; Mayer, Lucio

    2013-08-20

    We discuss a novel approach to ''weighing'' the Milky Way (MW) dark matter halo, one that combines the latest samples of halo stars selected from the Sloan Digital Sky Survey (SDSS) with state of the art numerical simulations of MW analogs. The fully cosmological runs employed in the present study include ''Eris'', one of the highest resolution hydrodynamical simulations of the formation of a M{sub vir} = 8 Multiplication-Sign 10{sup 11} M{sub Sun} late-type spiral, and the dark-matter-only M{sub vir} = 1.7 Multiplication-Sign 10{sup 12} M{sub Sun} ''Via Lactea II'' (VLII) simulation. Eris provides an excellent laboratory for creating mock SDSS samples of tracer halo stars, and we successfully compare their density, velocity anisotropy, and radial velocity dispersion profiles with the observational data. Most mock SDSS realizations show the same ''cold veil'' recently observed in the distant stellar halo of the MW, with tracers as cold as {sigma}{sub los} Almost-Equal-To 50 km s{sup -1} between 100 and 150 kpc. Controlled experiments based on the integration of the spherical Jeans equation as well as a particle tagging technique applied to VLII show that a ''heavy'' M{sub vir} Almost-Equal-To 2 Multiplication-Sign 10{sup 12} M{sub Sun} realistic host produces a poor fit to the kinematic SDSS data. We argue that these results offer added evidence for a ''light'', centrally concentrated MW halo.

  13. Mapping the Galactic Halo. VIII. Quantifying Substructure

    NASA Astrophysics Data System (ADS)

    Starkenburg, Else; Helmi, Amina; Morrison, Heather L.; Harding, Paul; van Woerden, Hugo; Mateo, Mario; Olszewski, Edward W.; Sivarani, Thirupathi; Norris, John E.; Freeman, Kenneth C.; Shectman, Stephen A.; Dohm-Palmer, R. C.; Frey, Lucy; Oravetz, Dan

    2009-06-01

    We have measured the amount of kinematic substructure in the Galactic halo using the final data set from the Spaghetti project, a pencil-beam high-latitude sky survey. Our sample contains 101 photometrically selected and spectroscopically confirmed giants with accurate distance, radial velocity, and metallicity information. We have developed a new clustering estimator: the "4distance" measure, which when applied to our data set leads to the identification of one group and seven pairs of clumped stars. The group, with six members, can confidently be matched to tidal debris of the Sagittarius dwarf galaxy. Two pairs match the properties of known Virgo structures. Using models of the disruption of Sagittarius in Galactic potentials with different degrees of dark halo flattening, we show that this favors a spherical or prolate halo shape, as demonstrated by Newberg et al. using the Sloan Digital Sky Survey data. One additional pair can be linked to older Sagittarius debris. We find that 20% of the stars in the Spaghetti data set are in substructures. From comparison with random data sets, we derive a very conservative lower limit of 10% to the amount of substructure in the halo. However, comparison to numerical simulations shows that our results are also consistent with a halo entirely built up from disrupted satellites, provided that the dominating features are relatively broad due to early merging or relatively heavy progenitor satellites.

  14. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P. )

    1993-12-25

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. We describe what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. We present initial results from a study of beam entropy for an intense space-charge dominated beam.

  15. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-06-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  16. Beam halo in high-intensity beams

    SciTech Connect

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam.

  17. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  18. Possible existence of wormholes in the central regions of halos

    SciTech Connect

    Rahaman, Farook; Salucci, P.; Kuhfittig, P.K.F.; Ray, Saibal; Rahaman, Mosiur

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.

  19. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    SciTech Connect

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: mgeller@cfa.harvard.edu

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  20. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  1. STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H. E-mail: azabludoff@as.arizona.edu

    2011-02-01

    We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.

  2. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  3. N-body dark matter haloes with simple hierarchical histories

    NASA Astrophysics Data System (ADS)

    Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.

    2014-05-01

    We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.

  4. Inhomogeneous chemical enrichment in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kobayashi, Chiaki

    2016-08-01

    In a galaxy, chemical enrichment takes place in an inhomogeneous fashion, and the Galactic Halo is one of the places where the inhomogeneous effects are imprinted and can be constrained from observations. I show this using my chemodynamical simulations of Milky Way type galaxies. The scatter in the elemental abundances originate from radial migration, merging/accretion of satellite galaxies, local variation of star formation and chemical enrichment, and intrinsic variation of nucleosynthesis yields. In the simulated galaxies, there is no strong age-metallicity relation. This means that the most metal-poor stars are not always the oldest stars, and can be formed in chemically unevolved clouds at later times. The long-lifetime sources of chemical enrichment such as asymptotic giant branch stars or neutron star mergers can contribute at low metallicities. The intrinsic variation of yields are important in the early Universe or metal-poor systems such as in the Galactic halo. The carbon enhancement of extremely metal-poor (EMP) stars can be best explained by faint supernovae, the low [α/Fe] ratios in some EMP stars naturally arise from low-mass (~ 13 - 15M ⊙) supernovae, and finally, the [α/Fe] knee in dwarf spheroidal galaxies can be produced by subclasses of Type Ia supernovae such as SN 2002cx-like objects and sub-Chandrasekhar mass explosions.

  5. On Detecting Halo Assembly Bias with Galaxy Populations

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Mandelbaum, Rachel; Huang, Yun-Hsin; Huang, Hung-Jin; Dalal, Neal; Diemer, Benedikt; Jian, Hung-Yu; Kravtsov, Andrey

    2016-03-01

    The fact that the clustering of dark matter halos depends not only on their mass, but also the formation epoch is a prominent, albeit subtle, feature of the cold dark matter structure formation theory and is known as assembly bias. At low-mass scales (˜ {10}12 {h}-1 {M}⊙ ), early-forming halos are predicted to be more strongly clustered than the late-forming ones. In this study, we aim to robustly detect the signature of assembly bias observationally, making use of formation time indicators of central galaxies in low-mass halos as a proxy for the halo formation history. Weak gravitational lensing is employed to ensure our early- and late-forming halo samples have similar masses, and are free of contamination of satellites from more massive halos. For the two formation time indicators used (resolved star formation history and current specific star formation rate), we do not find convincing evidence of assembly bias. For a pair of early- and late-forming galaxy samples with mean mass {M}200c≈ 9× {10}11 {h}-1 {M}⊙ , the relative bias is 1.00 ± 0.12. We attribute the lack of detection to the possibilities that either the current measurements of these indicators are too noisy, or they do not correlate well with the halo formation history. Alternative proxies for the halo formation history that should perform better are suggested for future studies.

  6. The shapes and alignments of dark matter halos

    SciTech Connect

    Schneider, Michael D.; Frenk, Carlos S.; Cole, Shaun E-mail: c.s.frenk@durham.ac.uk

    2012-05-01

    We present measurements of the triaxial dark matter halo shapes and alignment correlation functions in the Millennium and Millennium-2 dark matter N-body simulations. These two simulations allow us to measure the distributions of halo shapes down to 10% of the virial radius over a halo mass range of 6 × 10{sup 9}–2 × 10{sup 14} h{sup −1}M{sub s}un. We largely confirm previous results on the distributions of halo axis ratios as a function of halo mass, but we find that the median angle between halo major axes at different halo radii can vary by a factor of 2 between the Millennium-1 and 2 simulations because of the different mass resolution. Thus, error in the shape determinations from limited resolution is potentially degenerate with the misalignment of halo inner and outer shapes used to constrain Brightest Cluster Galaxy alignments in previous works. We also present simplifying parameterizations for the 3-D halo-mass alignment correlation functions that are necessary ingredients for triaxial halo models of large-scale structure and models of galaxy intrinsic alignments as contaminants for cosmic shear surveys. We measure strong alignments between halos of all masses and the surrounding dark matter overdensities out to several tens of h{sup −1} Mpc, in agreement with observed shear-galaxy and cluster shape correlations. We use these measurements to forecast the contribution to the weak lensing signal around galaxy clusters from correlated mass along the line-of-sight. For prolate clusters with major axes aligned with the line-of-sight the fraction of the weak lensing signal from mass external to the cluster can be twice that predicted if the excess halo alignment correlation is assumed to be zero.

  7. THE YOUNG OUTER DISK OF M83

    SciTech Connect

    Davidge, T. J.

    2010-08-01

    Deep near-infrared images recorded with NICI on Gemini South are used to investigate the evolved stellar content in the outer southeast quadrant of the spiral galaxy M83. A diffuse population of asymptotic giant branch (AGB) stars is detected, indicating that there are stars outside of the previously identified young and intermediate age star clusters in the outer disk. The brightest AGB stars have M {sub K} {>=} -8, and the AGB luminosity function (LF) is well matched by model LFs that assume ages {<=}1 Gyr. The specific star formation rate (SFR) during the past few Gyr estimated from AGB star counts is consistent with that computed from mid-infrared observations of star clusters at similar radii, and it is concluded that the disruption timescale for star clusters in the outer disk is <<1 Gyr. The LF and specific frequency of AGB stars vary with galactocentric radius, in a manner that is indicative of lower luminosity-weighted ages at larger radii. Modest numbers of red supergiants are also found, indicating that there has been star formation during the past 100 Myr, while the ratio of C stars to M giants is consistent with that expected for a solar metallicity system that has experienced a constant SFR for the past few Gyr. The results drawn from the properties of resolved AGB stars are broadly consistent with those deduced from integrated light observations in the UV.

  8. Outer atmospheres of cool stars. XIV - A model for the chromosphere and transition region of Beta Ceti (G9.5 III)

    NASA Technical Reports Server (NTRS)

    Eriksson, K.; Linsky, J. L.; Simon, T.

    1983-01-01

    In the present chromospheric and transition region model for Beta Ceti, which is consistent with IUE spectra of the Mg II, C II, and C IV resonance lines, the Mg II h and k lines are treated in partial redistribution and the C II and C IV lines in complete redistribution. Computed line fluxes are presented for a range of models to show the range of permitted temperature structures. A comparison of the Beta Ceti model to models previously computed in a similar way for other stars shows a trend of decreasing chromospheric pressures and increasing geometric scales as single stars evolve across the transition region boundary. The present analysis also suggests that transition region pressures drastically decrease and geometric scales rapidly increase as single giant stars evolve to the right, toward the boudnary. Beta Ceti's exceptional X-ray brightness is discussed.

  9. Cold dark matter halos

    NASA Astrophysics Data System (ADS)

    Dubinski, John Joseph

    The dark halos arising in the Cold Dark Matter (CDM) cosmology are simulated to investigate the relationship between the structure and kinematics of dark halos and galaxies. Realistic cosmological initial conditions and tidal field boundary conditions are used in N-body simulations of the collapse of density peaks to form dark halos. The core radii of dark halos are no greater than the softening radius, rs = 1.4 kpc. The density profiles can be fit with an analytical Hernquist (1990) profile with an effective power law which varies between -1 in the center to -4 at large radii. The rotation curves of dark halos resemble the flat rotation curves of spiral galaxies in the observed range, 1.5 approximately less than r approximately less than 30 kpc. The halos are strongly triaxial and very flat with (c/a) = 0.50 and (b/a) = 0.71. The distribution of ellipticities for dark halos reaches a maximum at epsilon = 0.5 in contrast to the distribution for elliptical galaxies which peaks at epsilon = 0.2 suggesting that ellipticals are much rounder than dark halos. Dark halos are generally flatter than their progenitor density peaks. The final shape and orientation of a dark halo are largely determined by tidal torquing and are sensitive to changes in the strength and orientation of a tidal field. Dark halos are pressure supported objects with negligible rotational support as indicated by the mean dimensionless spin, lamda = 0.042 +/- 0.024. The angular momentum vector tends to align with the true minor axis of dark halos. Elliptical galaxies have a similar behavior implied by the observation of the tendency for alignment of the rotation vector and the apparent minor axis. The origin of this behavior may be traced to the tendency for tidal torques to misalign with the major axis of a density peak. Tidal torques are found to isotropize the velocity ellipsoids of dark halos at large radii, contrary to the expectation of radially anisotropic velocity ellipsoids in cold collapse

  10. The UV Scattering Halo of the Central Source Associated with Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hillier, D. J.; Davidson, K.; Gull, T. R.; Humphreys, R. M.; Iping, R.; Sonneborn, G.

    2004-01-01

    Eta Carinae is one of the most massive and luminous stars within our galaxy. It consists of a compact central source which suffers circumstellar and interstellar extinction, local dense knots which emit strong narrow nebular-like emission lines, and an outer dusty nebula called the Homunculus. The optical spectrum of the central star, first observed directly and without obvious nebular contamination by the HST, can be modeled successfully using a hot star with a radius (at the wind sonic point) of 60\\,R\\odot. The central star is losing mass, via a dense stellar wind, at the prodigious rate of 10(exp -3)\\,M\\odot/yr. Its effective temperature is low (< 10,000\\,K), and is determined entirely by the wind properties. Until now the UV spectrum has not been explained. We show that HST UV spectrum, and the FUSE FUV spectrum, can both be understood using the same underlying model that explains the optical spectrum. To do so, however, it is necessary to take into account the occultation of the central source by dust. It is also important to realize that in the UV, the HST is partially resolving the central source. Due to strong mass loss, the wind is optically thick in UV resonance lines even at large radii. The UV resonance lines are responsible for the UV halo seen around Eta Carinae, and provide a partial explanation of why Eta Carinae can even be seen at UV wavelengths.

  11. Elliptical galaxies with rapidly decreasing velocity dispersion profiles: NMAGIC models and dark halo parameter estimates for NGC 4494

    NASA Astrophysics Data System (ADS)

    Morganti, Lucia; Gerhard, Ortwin; Coccato, Lodovico; Martinez-Valpuesta, Inma; Arnaboldi, Magda

    2013-06-01

    NGC 4494 is one of several intermediate-luminosity elliptical galaxies inferred to have an unusually diffuse dark matter halo. We use the χ2-made-to-measure particle code NMAGIC to construct axisymmetric models of NGC 4494 from photometric and various kinematic data. The extended kinematics include light spectra in multiple slitlets out to 3.5Re, and hundreds of planetary nebula velocities out to ≃7Re, thus allowing us to probe the dark matter content and orbital structure in the halo. We use Monte Carlo simulations to estimate confidence boundaries for the halo parameters, given our data and modelling set-up. We find that the true potential of the dark matter halo is recovered within ΔG (merit function) ≲ 26 (Δχ2 ≲ 59) at the 70 per cent confidence level (CL), and within ΔG ≲ 32 (Δχ2 ≲ 70) at the 90 per cent CL. These numbers are much larger than the usually assumed Δχ2 = 2.3 (4.6) for the 70 per cent (90 per cent) CL for two free parameters, perhaps case dependent, but calling into question the general validity of the standard assumptions used for halo and black hole mass determinations. The best-fitting models for NGC 4494 have a dark matter fraction of about 0.6 ± 0.1 at 5Re (70 per cent CL) and are embedded in a dark matter halo with circular velocity ˜200 km s-1. The total circular velocity curve (CVC) is approximately flat at vc = 220 km s-1 outside ˜0.5Re. The orbital anisotropy of the stars is moderately radial. These results are independent of the assumed inclination of the galaxy, and edge-on models are preferred. Comparing with the haloes of NGC 3379 and NGC 4697, whose velocity dispersion profiles also decrease rapidly from the centre outwards, the outer CVCs and dark matter haloes are quite similar. NGC 4494 shows a particularly high dark matter fraction inside ˜ 3Re, and a strong concentration of baryons in the centre.

  12. The distribution of stars in space.

    NASA Astrophysics Data System (ADS)

    Gilmore, G.

    Contents: 1. A didactic ramble. 2. Star counts and galactic structure. 3. Integrated surface-brightness measurements. 4. Specific tracers of galactic structure. 5. The analysis of star-count data. 6. The shape of the metal-poor halo.

  13. Interiors and atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1991-01-01

    This theoretical/observational project constrains structure of outer planet atmospheres and interiors through observational data. The primary observation tool is through observations of occultations of stars by outer solar system objects, which yield information about atmospheric temperatures and dynamics, and planetary dimensions and oblateness. The theoretical work relates the data to interior structures in a variety of ways.

  14. Building Blocks of the Milky Way's Stellar Halo

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Starkenburg, Else; Helmi, Amina; Nelemans, Gijs

    2016-08-01

    We study the assembly history of the stellar halo of Milky Way-like galaxies using the six high-resolution Aquarius dark matter simulations combined with the Munich-Groningen semi-analytic galaxy formation model. Our goal is to understand the stellar population contents of the building blocks of the Milky Way halo, including their star formation histories and chemical evolution, as well as their internal dynamical properties. We are also interested in how they relate or are different from the surviving satellite population. Finally, we will use our models to compare to observations of halo stars in an attempt to reconstruct the assembly history of the Milky Way's stellar halo itself.

  15. Dark matter annihilation in the first galaxy haloes

    NASA Astrophysics Data System (ADS)

    Schön, S.; Mack, K. J.; Avram, C. A.; Wyithe, J. S. B.; Barberio, E.

    2015-08-01

    We investigate the impact of energy released from self-annihilating dark matter (DM) on heating of gas in the small, high-redshift DM haloes thought to host the first stars. A supersymmetric (SUSY)-neutralino-like particle is implemented as our DM candidate. The PYTHIA code is used to model the final, stable particle distributions produced during the annihilation process. We use an analytic treatment in conjunction with the code MEDEA2 to find the energy transfer and subsequent partition into heating, ionizing and Lyman α photon components. We consider a number of halo density models, DM particle masses and annihilation channels. We find that the injected energy from DM exceeds the binding energy of the gas within a 105-106 M⊙ halo at redshifts above 20, preventing star formation in early haloes in which primordial gas would otherwise cool. Thus we find that DM annihilation could delay the formation of the first galaxies.

  16. The starformation driven interstellar disk-halo connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jürgen

    2005-08-01

    The evidence for starformation in the disks of spiral galaxies driving the disk-halo interaction is briefly reviewed. It is argued that diffuse ionized gas (DIG) in the halos of edge-on disk galaxies traces the presence of extraplanar gas well since it correlates with the star formation rate in the underlying disk as well as with other gaseous phases and components of the ISM such as X-ray hot gas, cosmic rays, and magnetic fields. The dependence on the starformation rate is demonstrated using a survey of H+ halos with more than 70 objects. This survey allows us to establish a minimum energy release per unit area that is required to start the disk-halo mass exchange. Observations of extraplanar HII regions let us conclude that also molecular hydrogen must be present. In addition, well ordered magnetic field in the gaseous halos can be deduced from the polarization of synchrotron radiocontinuum maps.

  17. The Mass of the Galaxy from Large Samples of Field Horizontal-Branch Stars in the SDSS Early Data Release

    NASA Astrophysics Data System (ADS)

    Beers, T. C.; Chiba, M.; Sakamoto, T.; Wilhelm, R.; Allende Prieto, C.; Sommer-Larsen, J.; Newberg, H. J.; Yanny, B.; Marsteller, B.; Pier, J. R.

    2004-07-01

    We present a new estimate of the mass of the Milky Way, making use of a large sample of 955 field horizontal-branch (FHB) stars from the Early Data Release of the Sloan Digital Sky Survey. This sample of stars has been classified on the basis of an automated analysis approach, in combination with other methods, in order to obtain estimates of the physical parameters of the stars, i.e., T_eff, log g, [Fe/H], and should be relatively free of contamination from halo blue stragglers. The stars all have measured radial velocities and photometric distance estimates, and the sample includes objects as distant as ˜ 75 kpc from the Galactic center. Application of a Bayesian likelihood method, for a specific model of the Galaxy, indicates that the total mass of the Galaxy lies in the range 1.5-4.0 x 1012 M⊙. Our sample appears to reveal a clear signature of a dual halo population of FHB stars, with the boundary between the inner and outer halo around 20 kpc, and the possibility of rather striking differences in the rotational properties of the Galaxy at low metallicity.

  18. THE GROWTH OF GALAXY STELLAR MASS WITHIN DARK MATTER HALOS

    SciTech Connect

    Zehavi, Idit; Patiri, Santiago; Zheng Zheng

    2012-02-20

    We study the evolution of stellar mass in galaxies as a function of host halo mass, using the 'MPA' and 'Durham' semi-analytic models, implemented on the Millennium Run simulation. For both models, the stellar mass of the central galaxies increases rapidly with halo mass at the low-mass end and more slowly in halos of larger masses at the three redshifts probed (z {approx} 0, 1, 2). About 45% of the stellar mass in central galaxies in present-day halos less massive than {approx}10{sup 12} h{sup -1} M{sub Sun} is already in place at z {approx} 1, and this fraction increases to {approx}65% for more massive halos. The baryon conversion efficiency into stars has a peaked distribution with halo mass, and the peak location shifts toward lower mass from z {approx} 1 to z {approx} 0. The stellar mass in low-mass halos grows mostly by star formation since z {approx} 1, while in high-mass halos most of the stellar mass is assembled by mergers, reminiscent of 'downsizing'. We compare our findings to empirical results from the Sloan Digital Sky Survey and DEEP2 surveys utilizing galaxy clustering measurements to study galaxy evolution. The theoretical predictions are in qualitative agreement with these phenomenological results, but there are large discrepancies. The most significant one concerns the number of stars already in place in the progenitor galaxies at z {approx} 1, which is about a factor of two larger in both semi-analytic models. We demonstrate that methods studying galaxy evolution from the galaxy-halo connection are powerful in constraining theoretical models and can guide future efforts of modeling galaxy evolution. Conversely, semi-analytic models serve an important role in improving such methods.

  19. Linking the Halo to its Surroundings

    NASA Astrophysics Data System (ADS)

    Arimoto, N.

    The Galactic halo is unlikely built up from galaxy populations similar to the dwarf spheroidal galaxies (dSph's) in the Local Group, but it is possible that the halo was formed by accreted dwarf galaxies that had much larger mass and higher star formation rates such as the Saggitarius dSph. Cosmological simulations show that dSph galaxies formed via hierarchical clustering of numerous smaller building blocks. Stars formed at the galaxy centre tend to form from metal-rich infall gas, which builds up the metallicity gradients. Infalling gas has larger rotational velocity and smaller velocity dispersion due to the dissipative processes, resulting the two distinct old stellar populations of different chemical and kinematic properties, which are recently discovered in the Sculptor dSph galaxy.

  20. The Milky Way, the Galactic halo, and the Halos of Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin

    2015-08-01

    The Milky Way, "our" Galaxy, is currently the subject of intense study with many ground-based surveys, in anticipation of upcoming results from the GAIA mission. From this work we have been learning about the full three-dimensional structure of the Galactic box/peanut bulge, the distribution of stars in the bar and disk, and the many streams in the Galactic halo. The data tell us that most of the Galactic bulge formed from the disk, and that a large fraction of the Galactic halo has been accreted from outside. Similarly, in many external galaxy halos there is now evidence for tidal streams and accretion of satellites. To see these features requires exquisite data - mostly very deep photometry, but some halo substructures have also been found with kinematic data. These observations illustrate how galaxy halos are still growing, and sometimes can be used to "time" the accretion events. In comparison with cosmological simulations, the structure of galaxy halos gives us a vivid illustration of the hierarchical nature of our Universe.

  1. A DIRECT MEASUREMENT OF THE HEAT RELEASE IN THE OUTER CRUST OF THE TRANSIENTLY ACCRETING NEUTRON STAR XTE J1709-267

    SciTech Connect

    Degenaar, N.; Miller, J. M.; Wijnands, R.

    2013-04-20

    The heating and cooling of transiently accreting neutron stars provides a powerful probe of the structure and composition of their crust. Observations of superbursts and cooling of accretion-heated neutron stars require more heat release than is accounted for in current models. Obtaining firm constraints on the depth and magnitude of this extra heat is challenging and therefore its origin remains uncertain. We report on Swift and XMM-Newton observations of the transient neutron star low-mass X-ray binary XTE J1709-267, which were made in 2012 September-October when it transitioned to quiescence after a {approx_equal}10 week long accretion outburst. The source is detected with XMM-Newton at a 0.5-10 keV luminosity of L{sub X} {approx_equal} 2 Multiplication-Sign 10{sup 34}(D/8.5 kpc){sup 2} erg s{sup -1}. The X-ray spectrum consists of a thermal component that fits to a neutron star atmosphere model and a non-thermal emission tail, each of which contribute {approx_equal}50% to the total flux. The neutron star temperature decreases from {approx_equal}158 to {approx_equal}152 eV during the {approx_equal}8 hr long observation. This can be interpreted as cooling of a crustal layer located at a column density of y {approx_equal} 5 Multiplication-Sign 10{sup 12} g cm{sup -2} ({approx_equal}50 m inside the neutron star), which is just below the ignition depth of superbursts. The required heat generation in the layers on top would be {approx_equal}0.06-0.13 MeV per accreted nucleon. The magnitude and depth rule out electron captures and nuclear fusion reactions as the heat source, but it may be accounted for by chemical separation of light and heavy nuclei. Low-level accretion offers an alternative explanation for the observed variability.

  2. Kinematic imprint of clumpy disk formation on halo objects

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2013-02-01

    Context. Clumpy disk galaxies in the distant universe, at redshift of z ≳ 1, have been observed to host several giant clumps in their disks. They are thought to correspond to early formative stages of disk galaxies. On the other hand, halo objects, such as old globular clusters and halo stars, are likely to consist of the oldest stars in a galaxy (age ≳ 10 Gyr), clumpy disk formation can thus be presumed to take place in a pre-existing halo system. Aims: Giant clumps orbit in the same direction in a premature disk and are so massive that they may be expected to interact gravitationally with halo objects and exercise influence on the kinematic state of the halo. Accordingly, I scrutinize the possibility that the clumps leave a kinematic imprint of the clumpy disk formation on a halo system. Methods: I perform a restricted N-body calculation with a toy model to study the kinematic influence on a halo by orbital motions of clumps and the dependence of the results on masses (mass loss), number, and orbital radii of the clumps. Results: I show that halo objects can catch clump motions and acquire disky rotation in a dynamical friction time scale of the clumps, ~0.5 Gyr. The influence of clumps is limited within a region around the disk, while the halo system shows vertical gradients of net rotation velocity and orbital eccentricity. The significance of the kinematic influence strongly depends on the clump masses; the lower limit of postulated clump mass would be ~5 × 108 M⊙. The result also depends on whether the clumps are subjected to rapid mass loss or not, which is an open question under debate in recent studies. The existence of such massive clumps is not unrealistic. I therefore suggest that the imprints of past clumpy disk formation could remain in current galactic halos.

  3. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Wu, Hong; Zhang, Tian-Meng; Zhao, Yong-Heng

    2011-11-01

    We present spectroscopic observations for 11 confirmed globular clusters (GCs) of M31 with the OMR spectrograph on the 2.16 m telescope at the Xinglong site of National Astronomical Observatories, Chinese Academy of Sciences. Nine of our sample clusters are located in the halo of M31 and the most remote one is out to a projected radius of 78.75 kpc from the galactic center. For all our sample clusters, we measured the Lick absorption-line indices and radial velocities. It is noted that most GCs in our sample are distinct from the HI rotation curve of galaxy M31, especially for B514, MCGC5, H12 and B517, suggesting that most of our sample clusters do not have a kinematic association with the star-forming young disk of the galaxy. We separately fitted the absorption line indices from the updated stellar population model of Thomas et al. with two different tracks of Cassisi and Padova, by applying the χ2—minimization method. The fitting results show that all our sample clusters are older than 10Gyr, and metal-poor (-2.38 <= [Fe/H] <= -0.91dex). After merging the spectroscopic metallicity of our work with the previously published ones, we extended the cluster sample out to a projected radius of 117 kpc from the galaxy's center. We found the metallicity gradient exists for all the confirmed clusters with a slope of -0.028 ± 0.001 dex kpc-1. However, the slope turns out to be -0.018 ± 0.001 dex kpc-1 for all the halo clusters, which is much shallower. If we only consider the outer halo clusters with rp > 25 kpc, the slope becomes -0.010 ± 0.002 dex kpc-1 and if one cluster G001 is excluded from the outer halo sample, the slope is -0.004 ± 0.002 dex kpc-1. Thus, we conclude that the metallicity gradient for M31's outer halo clusters is not significant, which agrees well with previous findings.

  4. Are ancient dwarf satellites the building blocks of the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.; Romano, D.

    2016-05-01

    According to the current cosmological cold dark matter paradigm, the Galactic halo could have been the result of the assemblage of smaller structures. Here we explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [α/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. The α elements deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than -2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio, the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [α/Fe] ratios. Moreover, for the first time we consider the effects of an enriched infall of gas with the same chemical abundances as the matter ejected and/or stripped from dwarf satellites of the Milky Way on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the assumed infall time-scale, and the presence of a threshold in the gas for star formation. In particular, in models with an infall time-scale for the halo around 0.8 Gyr coupled with a threshold in the surface gas density for the star formation (4 M⊙ pc-2), and the enriched infall from dwarf spheroidal satellites, the first halo stars formed show [Fe/H]>-2.4 dex. In this case, to explain [α/Fe] data for stars with [Fe/H]<-2.4 dex, we need stars formed in dSph systems.

  5. Tokamak halo currents

    SciTech Connect

    Boozer, Allen H.

    2013-08-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components. Two discordant constraints are central to the theory: (1) Halo currents must produce the magnetic field distribution required to maintain plasma force balance—a distribution that depends on the two angular coordinates of a torus. (2) Halo currents must flow along the magnetic field lines in the plasma, which implies a dependence on a linear combination of the two angular coordinates—only one angular coordinate is free. The physics basis of these two constraints is explained as is their application to the calculation of the properties of halo currents, such as their broad toroidal spectrum. Existing codes could be used to (1) provide detailed comparisons with experiments to validate that the critical elements of physics are adequately included, (2) allow more complete predictions for future machines such as ITER, and (3) design shunts and resistive elements to ensure halo currents follow paths that are the least damaging to the machine. The physics of halo currents implies that it may be possible to feedback stabilize resistive wall modes beyond the ideal-wall limit.

  6. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  7. Carbon-enhanced metal-poor stars: probes of nucleosynthesis from the first generation of stars in the Universe

    NASA Astrophysics Data System (ADS)

    Beers, T. C.

    CEMP-no stars are a subclass of very metal-poor (VMP; [Fe/H] < -2.0) and extremely metal-poor (EMP; [Fe/H] < -3.0) stars in the Milky Way (including the most iron-deficient stars known) with no strong enhancements of s-process elements (which might be attributed to mass transfer from a binary companion). In addition to C, these stars exhibit enhancements of N, O, and other light elements such as Na, Mg, Al, and Si, a pattern that may be uniquely produced by the first-generation stars in the early Universe. These stars have also been recently linked to the observed abundance pattern in a high redshift (z = 3.1), EMP damped Lyman-alpha cloud. I discuss the discovery of CEMP-no stars, connections with their progenitors in the outer-halo component of the Galaxy, new surveys that are expanding their numbers, and planned future spectroscopic exploration of these fascinating objects.

  8. Building the Galactic halo from globular clusters: evidence from chemically unusual red giants

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Smolinski, J. P.; Beers, T. C.; Grebel, E. K.

    2011-10-01

    We present a spectroscopic search for halo field stars that originally formed in globular clusters. Using moderate-resolution SDSS-III/SEGUE-2 spectra of 561 red giants with typical halo metallicities (-1.8 ≤ [Fe/H] ≤ -1.0), we identify 16 stars, 3% of the sample, with CN and CH bandstrength behavior indicating depleted carbon and enhanced nitrogen abundances relative to the rest of the data set. Since globular clusters are the only environment known in which stars form with this pattern of atypical light-element abundances, we claim that these stars are second-generation globular cluster stars that have been lost to the halo field via normal cluster mass-loss processes. Extrapolating from theoretical models of two-generation globular cluster formation, this result suggests that globular clusters contributed significant numbers of stars to the construction of the Galactic halo: we calculate that a minimum of 17% of the present-day mass of the stellar halo was originally formed in globular clusters. The ratio of CN-strong to CN-normal stars drops with Galactocentric distance, suggesting that the inner-halo population may be the primary repository of these stars. Full Tables 1 and 3 are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A136

  9. The stellar populations of M33's outer regions - IV. Inflow history and chemical evolution

    NASA Astrophysics Data System (ADS)

    Barker, Michael K.; Sarajedini, A.

    2008-10-01

    We have modelled the observed colour-magnitude diagram (CMD) at one location in M33's outskirts under the framework of a simple chemical evolution scenario which adopts instantaneous and delayed recycling for the nucleosynthetic products of Type II and Ia supernovae. In this scenario, interstellar gas forms stars at a rate modulated by the Kennicutt-Schmidt relation and gas outflow occurs at a rate proportional to the star formation rate (SFR). With this approach, we put broad constraints on the role of gas flows during this region's evolution and compare its [α/Fe] versus [Fe/H] relation with that of other Local Group systems. We find that models with gas inflow are significantly better than the closed-box model at reproducing the observed distribution of stars in the CMD. The best models have a majority of gas inflow taking place in the last 7 Gyr, and relatively little in the last 3 Gyr. These models predict most stars in this region to have [α/Fe] ratios lower than the bulk of the Milky Way's halo. The predictions for the present-day SFR, gas mass and oxygen abundance compare favourably to independent empirical estimates. Our results paint a picture in which M33's outer disc formed from the protracted inflow of gas over several Gyr with at least half of the total inflow occurring since z ~ 1.

  10. The Longest Stellar Stream in M31's Halo

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; PAndAS Collaboration

    2016-01-01

    We present updated data and dynamical modeling of several tidal features in the M31 halo. We focus on the NW Stream, a nearly radial feature extending outwards from M31. Using new distance estimates fromevolved stars and embedded globular clusters, we find this stream extends to a greater distance from its host than any other known tidal stream. We update the stream velocity profile with new measures from resolved stars and globular clusters. We use Bayesian dynamical modeling to discover the stream's implications for M31's halo mass and the life history of its progenitor galaxy.

  11. HOW WELL DO COSMOLOGICAL SIMULATIONS REPRODUCE INDIVIDUAL HALO PROPERTIES?

    SciTech Connect

    Trenti, Michele; Smith, Britton D.; Hallman, Eric J.; Skillman, Samuel W.; Shull, J. Michael

    2010-03-10

    Cosmological simulations of galaxy formation often rely on prescriptions for star formation and feedback that depend on halo properties such as halo mass, central overdensity, and virial temperature. In this paper, we address the convergence of individual halo properties, based on their number of particles N, focusing, in particular, on the mass of halos near the resolution limit of a simulation. While it has been established that the halo mass function is sampled on average down to N {approx} 20-30 particles, we show that individual halo properties exhibit significant scatter, and some systematic biases, as one approaches the resolution limit. We carry out a series of cosmological simulations using the Gadget2 and Enzo codes with N{sub p} = 64{sup 3} to N{sub p} = 1024{sup 3} total particles, keeping the same large-scale structure in the simulation box. We consider boxes of small (l{sub box} = 8 Mpc h {sup -1}), medium (l{sub box} = 64 Mpc h {sup -1}), and large (l{sub box} = 512 Mpc h {sup -1}) size to probe different halo masses and formation redshifts. We cross-identify dark matter halos in boxes at different resolutions and measure the scatter in their properties. The uncertainty in the mass of single halos depends on the number of particles (scaling approximately as N {sup -1/3}), but the rarer the density peak, the more robust its identification. The virial radius of halos is very stable and can be measured without bias for halos with N {approx}> 30. In contrast, the average density within a sphere containing 25% of the total halo mass is severely underestimated (by more than a factor 2) and the halo spin is moderately overestimated for N {approx}< 100. If sub-grid physics is implemented upon a cosmological simulation, we recommend that rare halos ({approx}3sigma peaks) be resolved with N {approx}> 100 particles and common halos ({approx}1sigma peaks) with N {approx}> 400 particles to avoid excessive numerical noise and possible systematic biases in the

  12. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  13. GAS CONDENSATION IN THE GALACTIC HALO

    SciTech Connect

    Joung, M. Ryan; Bryan, Greg L.; Putman, Mary E.

    2012-02-01

    Using adaptive mesh refinement (AMR) hydrodynamic simulations of vertically stratified hot halo gas, we examine the conditions under which clouds can form and condense out of the hot halo medium to potentially fuel star formation in the gaseous disk. We find that halo clouds do not develop from linear isobaric perturbations. This is a regime where the cooling time is longer than the Brunt-Vaeisaelae time, confirming previous linear analysis. We extend the analysis into the nonlinear regime by considering mildly or strongly nonlinear perturbations with overdensities up to 100, also varying the initial height, the cloud size, and the metallicity of the gas. Here, the result depends on the ratio of cooling time to the time required to accelerate the cloud to the sound speed (similar to the dynamical time). If the ratio exceeds a critical value near unity, the cloud is accelerated without further cooling and gets disrupted by Kelvin-Helmholtz and/or Rayleigh-Taylor instabilities. If it is less than the critical value, the cloud cools and condenses before disruption. Accreting gas with overdensities of 10-20 is expected to be marginally unstable; the cooling fraction will depend on the metallicity, the size of the incoming cloud, and the distance to the galaxy. Locally enhanced overdensities within cold streams have a higher likelihood of cooling out. Our results have implications on the evolution of clouds seeded by cold accretion that are barely resolved in current cosmological hydrodynamic simulations and absorption line systems detected in galaxy halos.

  14. Identification of an Extensive Luminous Halo Around the Ringed Spiral Galaxy NGC 7217

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.

    1993-12-01

    The isolated spiral galaxy NGC 7217 is characterized by flocculent spiral structure and three optical ring-like zones: a stellar nuclear ring, a weak inner pseudoring, and a bright patchy outer ring. The rings all have nearly the same shape and position angle in projection. To understand this kind of ringed galaxy, we have obtained deep CCD BVRI surface photometry and mapping of the CO and HI gas distributions and kinematics. Our images reveal something that was missed in previous studies: a large, nearly round halo of light extending far beyond the outer ring. We interpret this as bulge light which comes back to dominate the luminosity distribution at large radii. Ellipse fits to isophotes out to 240('') radius reveal a minimum axis ratio of 0.83 just outside the outer ring at 90('') , and then a rise to 0.96 at about 140('') . The luminosity profiles are well-fitted by a combined r({1/) 4} bulge and exponential disk model. In all filters, the bulge dominates at all radii, and the bulge-to-total disk ratio is about 2.3 (B). If the minimum axis ratio of 0.83 approximates the apparent flattening of the disk, then NGC 7217 is remarkably axisymmetric. Nevertheless, the I-band image reveals a tightly-wrapped, two-armed spiral pattern in the outer ring region. The outer ring includes 4.5% of the total B luminosity and is the locus of most of the recent star formation in the galaxy; it is also where the HI gas is concentrated. An additional noteworthy feature is a circumnuclear dust ring 1.2 kpc in diameter. Other dust lanes are seen only on the near side of the galaxy. The rings of NGC 7217 could be resonances with a very weak internal perturbation. We are attempting to simulate the structure using the I-band light distribution to help define the potential. But most interesting is the recent discovery of a substantial population of counter-rotating stars in the galaxy (Kuijken 1993, PASP, 105, 1016). One possible explanation for these stars is that the bulge is more

  15. PARAMETERS FOR QUANTIFYING BEAM HALO

    SciTech Connect

    C.K. ALLEN; T.P. WANGLER

    2001-06-01

    Two different parameters for the quantitative description of beam halo are introduced, both based on moments of the particle distribution. One parameter is a measure of spatial halo formation and has been defined previously by Wangler and Crandall [3], termed the profile parameter. The second parameter relies on kinematic invariants to quantify halo formation in phase space; we call it the halo parameter. The profile parameter can be computed from experimental beam profile data. The halo parameter provides a theoretically more complete description of halo in phase space, but is difficult to obtain experimentally.

  16. Outer rotation curve of the Galaxy with VERA. II. Annual parallax and proper motion of the star-forming region IRAS 21379+5106

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hiroyuki; Sakai, Nobuyuki; Kurayama, Tomoharu; Matsuo, Mitsuhiro; Imai, Hiroshi; Burns, Ross A.; Ozawa, Takeaki; Honma, Mareki; Shibata, Katsunori M.; Kawaguchi, Noriyuki

    2015-08-01

    We conducted astrometric very long baseline interferometry (VLBI) observations of water-vapor maser emission in the massive star-forming region IRAS 21379+5106 in order to measure the annual parallax and proper motion, using VLBI Exploration of Radio Astrometry (VERA). The annual parallax measured 0.262 ± 0.031 mas, corresponding to a distance of 3.82^{+0.51}_{-0.41}kpc. The proper motion was (μαcos δ, μδ) = (-2.74 ± 0.08, -2.87 ± 0.18) mas yr-1. By using this result, the Galactic rotational velocity was estimated to be Vθ = 218 ± 19 km s-1 at the galactocentric distance R = 9.22 ± 0.43 kpc, when we adopted the Galactic constants R0 = 8.05 ± 0.45 kpc and V0 = 238 ± 14 km s-1. With the newly determined distance, the bolometric luminosity of the central young stellar object was reestimated to be (2.15 ± 0.54) × 103 L⊙, which corresponds to the spectral type of B2-B3. The maser features were found to be distributed along a straight line extending from the southwest to the northeast. In addition, a vector map of the internal motions, constructed from the residual proper motions, implies that the maser features trace a bipolar flow, and that it cannot be explained by simple ballistic motions.

  17. Relations between the photospheric magnetic field and the emission from the outer atmospheres of cool stars. I - The solar Ca II K line core emission

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Cote, J.; Zwaan, C.; Saar, S. H.

    1989-01-01

    Observations of a solar active region complex and its surroundings are used to establish a quantitative relation between the Ca II K line core intensity and magnetic flux density. The Ca II K line core intensity is transformed to a Ca II H + K line core flux density to facilitate a comparison of solar and stellar data. A new absolute calibration for the Mount Wilson Ca II H + K fluxes for G-type dwarfs is derived. The minimum Ca II K flux, found in the centers of supergranulation cells in quiet regions on the sun, is identical to the minimum flux that is observed for solar-type stars. An expression is presented for the nonlinear trend between the Ca II H + K line core excess flux density and the absolute value of the magnetic flux density. Models that explain the nonlinearity of the mean trend and the large intrinsic scatter about it are discussed. The solar data define a relation that is similar to the relation between stellar hemisphere-average magnetic flux densities and Ca II H + K excess flux densities.

  18. Is the dark halo of the Milky Way prolate?

    NASA Astrophysics Data System (ADS)

    Bowden, A.; Evans, N. W.; Williams, A. A.

    2016-07-01

    We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15 000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 km s-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.

  19. Is the Dark Halo of the Milky Way Prolate?

    NASA Astrophysics Data System (ADS)

    Bowden, A.; Evans, N. W.; Williams, A. A.

    2016-04-01

    We introduce the flattening equation, which relates the shape of the dark halo to the angular velocity dispersions and the density of a tracer population of stars. It assumes spherical alignment of the velocity dispersion tensor, as seen in the data on stellar halo stars in the Milky Way. The angular anisotropy and gradients in the angular velocity dispersions drive the solutions towards prolateness, whilst the gradient in the stellar density is a competing effect favouring oblateness. We provide an efficient numerical algorithm to integrate the flattening equation. Using tests on mock data, we show that the there is a strong degeneracy between circular speed and flattening, which can be circumvented with informative priors. Therefore, we advocate the use of the flattening equation to test for oblateness or prolateness, though the precise value of q can only be measured with the addition of the radial Jeans equation. We apply the flattening equation to a sample extracted from the Sloan Digital Sky Survey of ˜15000 halo stars with full phase space information and errors. We find that between Galactocentric radii of 5 and 10 kpc, the shape of the dark halo is prolate, whilst even mildly oblate models are disfavoured. Strongly oblate models are ruled out. Specifically, for a logarithmic halo model, if the asymptotic circular speed v0 lies between 210 and 250 kms-1, then we find the axis ratio of the equipotentials q satisfies 1.5 ≲ q ≲ 2.

  20. Galactic evolution. II - Disk galaxies with massive halos

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Thuan, T. X.

    1975-01-01

    Models of galactic evolution are computed in which matter shed by dying halo stars accumulates in a smaller, more rapidly rotating disk. The models are simpler and more successful than one-zone (pure disk) models in that (1) the observed absence of low-metal-abundance low-mass dwarfs is expected, not anomalous and (2) the relative birthrate function (or IMF) need not be a strongly variable function of time in agreement with recent interpretations of observed stellar populations and neutral hydrogen in our own and other galaxies. Even a simple 'Salpeter' IMF for both disk and halo will produce an acceptable model. The model with a halo 'Salpeter' IMF, roughly one-quarter of the mass in the secondary disk, and approximately half the metals produced in the halo seems most compatible with observations of the metal abundance in low-mass stars, the deuterium abundance, halo planetary nebulae, and light from Population II stars, as well as with arguments on the stability of the disk.

  1. Subaru Hyper Suprime Cam Survey of the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Chiba, Masashi; Tanaka, Mikito; Komiyama, Yutaka

    2015-08-01

    We present a progress report on our deep and wide-field imaging survey of the Andromeda halo with Hyper Suprime Cam (HSC) mounted on Subaru. HSC is the upgraded prime focus camera after Suprime-Cam, having a field of view of 1.77 square degree (1.5 degree in diameter), namely about 10 times larger than that of Suprime-Cam. This camera will thus offer us great opportunities to explore unique and legacy surveys for the Andromeda halo, as well as for other Galactic Archaeology science cases. We are now carrying out an intensive survey program of the Andromeda halo reaching a depth of 27.4 and 26.4 mag in g and i bands, respectively, which allows us to map out numerous horizontal branch (HB) stars in large halo areas: a wealth of new, faint halo features as expected from LCDM models can be identified through these HB stars. whereas these were not detected by previous surveys based on the analysis of RGB stars. This HSC survey will also provide lower luminosity dwarf satellites and globular clusters through identification of member HBs than hitherto possible, thereby providing important insight into the true luminosity and spatial distributions of these objects. We will report on the progress we have made so far and show our further survey plan.

  2. The Halo of the Milky Way

    SciTech Connect

    Newberg, Heidi Jo; Yanny, Brian; /Rensselaer Poly. /Fermilab

    2005-02-01

    The authors show that the star counts in the spheroid of the Milky Way are not symmetric about the l = 0{sup o}, l = 180{sup o} plane. The minimum counts are found towards l = 155{sup o}. The Galactic longitude of maximum star counts depends on the magnitude and color selection of the halo stars. They interpret this as evidence that the spheroid population is triaxial with a major axis oriented 65{sup o} from the line of sight from the Sun to the Galactic center, and approximately perpendicular to the Galactic bar. Large local star concentrations from tidal debris and possible tidal debris are also observed. A full understanding of the Galactic spheroid population awaits position information and three dimensional space velocities for a representative set of stars in every substructure. Tangential velocities for many stars will be provided by current and planned astrometry missions, but no planned mission will measure stars faint enough to unravel the more distant parts of the spheroid, which contain the majority of the spatial substructure. This paper uses data from the Sloan Digital Sky Survey (SDSS) public data release DR3.

  3. HALOE Science Investigation

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris

    1998-01-01

    This cooperative agreement has investigated a number of spectroscopic problems of interest to the Halogen Occultation Experiment (HALOE). The types of studies performed are in two parts, namely, those that involve the testing and characterization of correlation spectrometers and those that provide basic molecular spectroscopic information. In addition, some solar studies were performed with the calibration data returned by HALOE from orbit. In order to accomplish this a software package was written as part of this cooperative agreement. The HALOE spectroscopic instrument package was used in various tests of the HALOE flight instrument. These included the spectral response test, the early stages of the gas response test and various spectral response tests of the detectors and optical elements of the instruments. Considerable effort was also expended upon the proper laboratory setup for many of the prelaunch tests of the HALOE flight instrument, including the spectral response test and the gas response test. These tests provided the calibration and the assurance that the calibration was performed correctly.

  4. The Young Outer Disk of M83

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2010-08-01

    Deep near-infrared images recorded with NICI on Gemini South are used to investigate the evolved stellar content in the outer southeast quadrant of the spiral galaxy M83. A diffuse population of asymptotic giant branch (AGB) stars is detected, indicating that there are stars outside of the previously identified young and intermediate age star clusters in the outer disk. The brightest AGB stars have M K >= -8, and the AGB luminosity function (LF) is well matched by model LFs that assume ages <=1 Gyr. The specific star formation rate (SFR) during the past few Gyr estimated from AGB star counts is consistent with that computed from mid-infrared observations of star clusters at similar radii, and it is concluded that the disruption timescale for star clusters in the outer disk is Lt1 Gyr. The LF and specific frequency of AGB stars vary with galactocentric radius, in a manner that is indicative of lower luminosity-weighted ages at larger radii. Modest numbers of red supergiants are also found, indicating that there has been star formation during the past 100 Myr, while the ratio of C stars to M giants is consistent with that expected for a solar metallicity system that has experienced a constant SFR for the past few Gyr. The results drawn from the properties of resolved AGB stars are broadly consistent with those deduced from integrated light observations in the UV. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a co-operative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council of Canada (Canada), CONICYT (Chile), the Australian Research Council (Australia), the Ministerio da Ciencia e Technologia (Brazil), and the Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina).

  5. Summary of the 2014 Beam-Halo Monitoring Workshop

    SciTech Connect

    Fisher, Alan

    2015-09-25

    Understanding and controlling beam halo is important for high-intensity hadron accelerators, for high-brightness electron linacs, and for low-emittance light sources. This can only be achieved by developing suitable diagnostics. The main challenge faced by such instrumentation is the high dynamic range needed to observe the halo in the presence of an intense core. In addition, measurements must often be made non-invasively. This talk summarizes the one-day workshop on Beam-Halo Monitoring that was held at SLAC on September 19 last year, immediately following IBIC 2014 in Monterey. Workshop presentations described invasive techniques using wires, screens, or crystal collimators, and non-invasive measurements with gas or scattered electrons. Talks on optical methods showed the close links between observing halo and astronomical problems like observing the solar corona or directly observing a planet orbiting another star.

  6. Halo formation and evolution: unification of structure and physical properties

    NASA Astrophysics Data System (ADS)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  7. The LMC geometry and outer stellar populations from early DES data

    DOE PAGESBeta

    Balbinot, Eduardo; Plazas, A.; Santiago, B. X.; Girardi, L.; Pieres, A.; da Costa, L. N.; Maia, M. A. G.; Gruendl, R. A.; Walker, A. R.; Yanny, B.; et al

    2015-03-20

    The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = –38.14°±0.08° (near side in the North) and a position angle for the line of nodes of θ₀ = 129.51°±0.17°. Wemore » find that stars younger than ~4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4Gyr = 1.41 ± 0.01 kpc, while the younger population has R<4Gyr = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is ≃24+9–6 times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. As a result, our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component.« less

  8. The LMC geometry and outer stellar populations from early DES data

    SciTech Connect

    Balbinot, Eduardo; Plazas, A.; Santiago, B. X.; Girardi, L.; Pieres, A.; da Costa, L. N.; Maia, M. A. G.; Gruendl, R. A.; Walker, A. R.; Yanny, B.; Drlica-Wagner, A.; Benoit-Levy, A.; Abbott, T. M. C.; Allam, S. S.; Annis, J.; Bernstein, J. P.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Rosell, A. Carnero; Cunha, C. E.; Depoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Frieman, J. A.; Gruen, D.; Honscheid, K.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; March, M.; Marshall, J. L.; Miller, C.; Miquel, R.; Ogando, R.; Peoples, J.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Tucker, D. L.; Wechsler, R.; Zuntz, J.

    2015-03-20

    The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = –38.14°±0.08° (near side in the North) and a position angle for the line of nodes of θ₀ = 129.51°±0.17°. We find that stars younger than ~4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4Gyr = 1.41 ± 0.01 kpc, while the younger population has R<4Gyr = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is ≃24+9–6 times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. As a result, our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component.

  9. Spitzer/Infrared Array Camera near-infrared features in the outer parts of S4G galaxies

    NASA Astrophysics Data System (ADS)

    Laine, Seppo; Knapen, Johan H.; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun; Comerón, Sébastien; Martig, Marie; Holwerda, Benne W.; Athanassoula, E.; Bosma, Albert; Johansson, Peter H.; Erroz-Ferrer, Santiago; Gadotti, Dimitri A.; Gil de Paz, Armando; Hinz, Joannah; Laine, Jarkko; Laurikainen, Eija; Menéndez-Delmestre, Karín; Mizusawa, Trisha; Regan, Michael W.; Salo, Heikki; Sheth, Kartik; Seibert, Mark; Buta, Ronald J.; Cisternas, Mauricio; Elmegreen, Bruce G.; Elmegreen, Debra M.; Ho, Luis C.; Madore, Barry F.; Zaritsky, Dennis

    2014-11-01

    We present a catalogue and images of visually detected features, such as asymmetries, extensions, warps, shells, tidal tails, polar rings, and obvious signs of mergers or interactions, in the faint outer regions (at and outside of R25) of nearby galaxies. This catalogue can be used in future quantitative studies that examine galaxy evolution due to internal and external factors. We are able to reliably detect outer region features down to a brightness level of 0.03 MJy sr-1 pixel-1 at 3.6 μm in the Spitzer Survey of Stellar Structure in Galaxies (S4G). We also tabulate companion galaxies. We find asymmetries in the outer isophotes in 22 ± 1 per cent of the sample. The asymmetry fraction does not correlate with galaxy classification as an interacting galaxy or merger remnant, or with the presence of companions. We also compare the detected features to similar features in galaxies taken from cosmological zoom re-simulations. The simulated images have a higher fraction (33 per cent) of outer disc asymmetries, which may be due to selection effects and an uncertain star formation threshold in the models. The asymmetries may have either an internal (e.g. lopsidedness due to dark halo asymmetry) or external origin.

  10. Population III Stars Around the Milky Way

    NASA Astrophysics Data System (ADS)

    Komiya, Yutaka; Suda, Takuma; Fujimoto, Masayuki Y.

    2016-03-01

    We explore the possibility of observing Population III (Pop III) stars, born of primordial gas. Pop III stars with masses below 0.8 M⊙ should survive to date though are not yet observed, but the existence of stars with low metallicity as [{{Fe}}/{{H}}]\\lt -5 in the Milky Way halo suggests the surface pollution of Pop III stars with accreted metals from the interstellar gas after birth. In this paper, we investigate the runaway of Pop III stars from their host mini-halos, considering the ejection of secondary members from binary systems when their massive primaries explode as supernovae. These stars save them from surface pollution. By computing the star formation and chemical evolution along with the hierarchical structure formation based on the extended Press-Schechter merger trees, we demonstrate that several hundreds to tens of thousands of low-mass Pop III stars escape from the building blocks of the Milky Way. The second and later generations of extremely metal-poor stars also escaped from the mini-halos. We discuss the spatial distributions of these escaped stars by evaluating the distances between the mini-halos in the branches of merger trees under the spherical collapse model of dark matter halos. It is demonstrated that the escaped stars distribute beyond the stellar halo with a density profile close to the dark matter halo, while Pop III stars are slightly more centrally concentrated. 6%-30% of the escaped stars leave the Milky Way and go out into the intergalactic space. Based on the results, we discuss the feasibility of observing the Pop III stars with the pristine surface abundance.

  11. η Carinae - The outer ejecta

    NASA Astrophysics Data System (ADS)

    Weis, K.

    2009-03-01

    η Carinae is a unique object among the most massive evolved stars in the LBV phase. The central object(s) is(are) surrounded by a complex circumstellar nebula ejected during more than one eruption in the 19th century. Beyond the well-defined edges of its famous bipolar nebula, the Homunculus, are additional nebulous features referred to as the outer ejecta. The outer ejecta contains a large variety of structures of very different sizes and morphologies distributed in a region 0.67 pc in diameter. Individual features in the outer ejecta are moving extremely fast, up to 3200 km/s, in general the expansion velocities are between 400-900 km/s. A consequence of these high velocities is that structures in the outer ejecta interact with the surrounding medium and with each other. The strong shocks that arise from these interactions give rise to soft X-ray emission. The global expansion pattern of the outer ejecta reveals an overall bipolar distribution, giving a symmetric structure to its morphologically more irregular appearance. The long, highly collimated filaments, called strings, are particularly unusual. The material in the strings follows a Hubble-flow and appears to originate at the central object.

  12. Renormalized halo bias

    SciTech Connect

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias E-mail: dbaumann@damtp.cam.ac.uk E-mail: matiasz@ias.edu

    2014-08-01

    This paper provides a systematic study of renormalization in models of halo biasing. Building on work of McDonald, we show that Eulerian biasing is only consistent with renormalization if non-local terms and higher-derivative contributions are included in the biasing model. We explicitly determine the complete list of required bias parameters for Gaussian initial conditions, up to quartic order in the dark matter density contrast and at leading order in derivatives. At quadratic order, this means including the gravitational tidal tensor, while at cubic order the velocity potential appears as an independent degree of freedom. Our study naturally leads to an effective theory of biasing in which the halo density is written as a double expansion in fluctuations and spatial derivatives. We show that the bias expansion can be organized in terms of Galileon operators which aren't renormalized at leading order in derivatives. Finally, we discuss how the renormalized bias parameters impact the statistics of halos.

  13. THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5

    SciTech Connect

    Elia, D.; Molinari, S.; Schisano, E.; Pestalozzi, M.; Benedettini, M.; Di Giorgio, A. M.; Pezzuto, S.; Rygl, K. L. J.; Fukui, Y.; Hayakawa, T.; Yamamoto, H.; Olmi, L.; Veneziani, M.; Schneider, N.; Piazzo, L.; Mizuno, A.; Onishi, T.; Polychroni, D.; Maruccia, Y.

    2013-07-20

    We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5 and -2 Degree-Sign {approx}< b {approx}< 0 Degree-Sign ) as a part of the Hi-GAL survey. The maps between 70 and 500 {mu}m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to {approx}5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d {approx}< 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M){proportional_to}M {sup -1.0{+-}0.2}. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.

  14. The chosen few: the low-mass haloes that host faint galaxies

    NASA Astrophysics Data System (ADS)

    Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Theuns, Tom; Bower, Richard G.; Crain, Robert A.; Furlong, Michelle; Jenkins, Adrian; Schaller, Matthieu; Schaye, Joop

    2016-02-01

    Since reionization prevents star formation in most haloes less massive than 3 × 109 M⊙, dwarf galaxies only populate a fraction of existing dark matter haloes. We use hydrodynamic cosmological simulations of the Local Group to study the discriminating factors for galaxy formation in the early Universe and connect them to the present-day properties of galaxies and haloes. A combination of selection effects related to reionization, and the subsequent evolution of haloes in different environments, introduces strong biases between the population of haloes that host dwarf galaxies, and the total halo population. Haloes that host galaxies formed earlier and are more concentrated. In addition, haloes more affected by tidal stripping are more likely to host a galaxy for a given mass or maximum circular velocity, vmax, today. Consequently, satellite haloes are populated more frequently than field haloes, and satellite haloes of 108-109 M⊙ or vmax of 12-20 km s-1, compatible with stellar kinematics of Local Group dwarf spheroidals, have experienced a greater than average reduction in both mass and vmax after infall. They are on closer, more radial orbits with higher infall velocities and earlier infall times. Together, these effects make dwarf galaxies highly biased tracers of the underlying dark matter distribution.

  15. Resolved Stellar Halos of M87 and NGC 5128: Metallicities from the Red-Giant Branch

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.

    2016-08-01

    We have searched halo fields of two giant elliptical galaxies: M87, using HST images at 10 kpc from the galactic center, and NGC 5128 (Cen A), using VIMOS VLT images at 65 kpc from the center and archival HST data from 8 to 38 kpc from the center. We have resolved thousands of red-giant-branch (RGB) stars in these stellar halo fields using V and I filters, and, in addition, measured the metallicity using stellar isochrones. The metallicity distribution function (MDF) of the inner stellar halo of M87 is similar to that of NGC 5128's stellar halo.

  16. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-han; Allen, R. J.; Hu, Fu-xing

    1987-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here are mainly based on two physical assumptions: a) the relativistic electrons belong to two families, a halo family and a disk family: the disk family originating in supernova events throughout the disk and the halo family, in a violent explosion of the galactic nucleus in the distant past. b) Energy equipartition, that is, the magnetic energy density be proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  17. An explosion model for the formation of the radio halo of NGC 891

    NASA Astrophysics Data System (ADS)

    You, Jun-Han; Allen, R. J.; Hu, Fu-Xing

    1986-06-01

    The explosion model for the formation of the radio halo of NGC 891 proposed here is mainly based on two physical assumptions: (1) the relativistic electrons belong to two families, a halo family and a disk family, the disk family originating in supernova events throughout the disk, and the halo family in a violent explosion of the galactic nucleus in the distant past; and (2) energy equipartition, where the magnetic energy density is proportional to the number density of stars. On these two assumptions, the main observed features of the radio halo of NGC 891 can be satisfactorily explained.

  18. Distant Galactic Halo Substructures Observed by the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Sesar, Branimir

    2013-01-01

    Characterization of Galactic halo substructures is important as their kinematic and chemical properties help constrain the properties of the Galactic dark matter halo, the formation history of the Milky Way, and the galaxy formation process in general. The best practical choice for finding distant halo substructures are pulsating RR Lyrae stars, due to their intrinsic brightness (M_V = 0.6 mag) and distinct light curves. I will present kinematic and chemical properties of two distant halo substructures that were traced using RR Lyrae stars observed by the Palomar Transient Factory. One of these substructures, located at 90 kpc from the Sun in the Cancer constellation, consists of two groups of RR Lyrae stars moving away from the Galaxy at ~80 and ~20 km/s, respectively. The second substructure is located at ~65 kpc from the Sun in the Hercules constellation. The kinematics of RR Lyrae stars tracing this substructure suggest a presence of 2 or 3 stellar streams extending in the similar direction on the sky. Due to their spatial extent, both of these substructures are clearly disrupted and would be very difficult to detect using tradiitonal techniques such as the color-magnitude diagram filtering.

  19. Detection of a Distinct Metal-poor Stellar Halo in the Early-type Galaxy NGC 3115†

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.

    2015-02-01

    We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC 3115. Using deep Hubble Space Telescope observations, we analyze stars 2 mag fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37, and 54 kpc from its center—corresponding to 7, 14, and 21 effective radii (re ). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ~ -0.5 to -0.65. The fraction of metal-poor stars ([Z/H] < -0.95) increases from 17% at 16-37 kpc to 28% at ~54 kpc. We observe a distinct low-metallicity population (peaked at [Z/H] ~ -1.3 and with total mass 2 × 1010 M ⊙ ~ 14% of the galaxy's stellar mass) and argue that this represents the detection of an underlying low-metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late-type galaxies, including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC 3115 are consistent with the galaxy's globular cluster system, which has a similar low-metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemodynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC 3115 of 30.05 ± 0.05 ± 0.10sys (10.2 ± 0.2 ± 0.5sys Mpc). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13048.

  20. Observation and analysis of halo current in EAST

    NASA Astrophysics Data System (ADS)

    Chen, Da-Long; Shen, Biao; Qian, Jin-Ping; Sun, You-Wen; Liu, Guang-Jun; Shi, Tong-Hui; Zhuang, Hui-Dong; Xiao, Bing-Jia

    2014-06-01

    Plasma in a typically elongated cross-section tokamak (for example, EAST) is inherently unstable against vertical displacement. When plasma loses the vertical position control, it moves downward or upward, leading to disruption, and a large halo current is generated helically in EAST typically in the scrape-off layer. When flowing into the vacuum vessel through in-vessel components, the halo current will give rise to a large J × B force acting on the vessel and the in-vessel components. In EAST VDE experiment, part of the eddy current is measured in halo sensors, due to the large loop voltage. Primary experimental data demonstrate that the halo current first lands on the outer plate and then flows clockwise, and the analysis of the information indicates that the maximum halo current estimated in EAST is about 0.4 times the plasma current and the maximum value of TPF × Ih/IP0 is 0.65, furthermore Ih/Ip0 and TPF × Ih/Ip0 tend to increase with the increase of Ip0. The test of the strong gas injection system shows good success in increasing the radiated power, which may be effective in reducing the halo current.

  1. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  2. The extended disc and halo of the Andromeda galaxy observed with Spitzer-IRAC

    NASA Astrophysics Data System (ADS)

    Rafiei Ravandi, Masoud; Barmby, Pauline; Ashby, Matthew L. N.; Laine, Seppo; Davidge, T. J.; Zhang, Jenna; Bianchi, Luciana; Babul, Arif; Chapman, S. C.

    2016-06-01

    We present the first results from an extended survey of the Andromeda galaxy (M31) using 41.1 h of observations by Spitzer-IRAC at 3.6 and 4.5 µm. This survey extends previous observations to the outer disc and halo, covering total lengths of 4.4° and 6.6° along the minor and major axes, respectively. We have produced surface brightness profiles by combining the integrated light from background-corrected maps with stellar counts from a new catalogue of point sources. Using auxiliary catalogues, we have carried out a statistical analysis in colour-magnitude space to discriminate M31 objects from foreground Milky Way stars and background galaxies. The catalogue includes 426 529 sources, of which 66 per cent have been assigned probability values to identify M31 objects with magnitude depths of [3.6] = 19.0 ± 0.2, [4.5] = 18.7 ± 0.2. We discuss applications of our data for constraining the stellar mass and characterizing point sources in the outer radii.

  3. A Search for a Near-Infrared Halo Around NGC 4565

    NASA Technical Reports Server (NTRS)

    Uemizu, Kazunori; Bock, James J.; Kawada, Mitsunobu; Lange, Andrew E.; Matsumoto, Toshio; Watabe, Toyoki; Yost, Sarah A.

    1998-01-01

    We present a near-infrared (3.5-5 micron) search for the integrated emission from low-mass stars and/or brown dwarfs in the halo of the nearby edge-on spiral galaxy NGC 4565. The observation was made with a liquid-helium-cooled rocket-borne telescope using a 256 x 256 InSb array with a pixel scale of 17". Images of NGC 4565 were successfully obtained with sensitivity near the natural background limit. Our search reveals no evidence of a faint halo around the galaxy, in contrast with the previous reports of a halo around NGC 5907. The lower limit of the mass-to-light ratio for the halo of NGC 4565 is 260 (2 delta) in solar units at 3.5-5 microns. This implies that hydrogen-burning stars do not contribute significantly to the mass of the dark halo in NGC 4565.

  4. X-ray observations of the starburst galaxy NGC 253 --- II. Extended emission from hot gas in the nuclear area, disk, and halo

    NASA Astrophysics Data System (ADS)

    Pietsch, W.; Vogler, A.; Klein, U.; Zinnecker, H.

    2000-08-01

    emission (T = 0.2 keV, LXintr = 7.8 1038 erg s-1) is only detected from the near side of the disk (in the SE), emission from the back (in the NW) is shadowed by the intervening interstellar medium unambiguously determining the orientation of NGC 253 in space. In the NW we see the near edge of the disk is seen, but the far component of the halo, and vice versa in the SE. The emission in the outer halo can be traced to projected distances from the disk of 9 kpc, and shows a horn-like structure. Luminosities are higher (10 and 5 1038 erg s-1, respectively) and spectra harder in the NW halo than in the SE. The emission in the corona and outer halo is most likely caused by a strong galactic wind emanating from the starburst nucleus. As an additional contribution to the coronal emission floating on the disk like a spectacle-glass, we propose hot gas fueled from galactic fountains originating within the boiling star-forming disk. A two temperature thermal plasma model with temperatures of 0.13 and 0.62 keV or a thin thermal plasma model with temperature of 0.15 keV and Gaussian components above ~0.7 keV and Galactic foreground absorption are needed to arrive at acceptable fits for the NW halo. This may be explained by starburst-driven super-winds or by effects of a non- equilibrium cooling function in a plasma expanding in fountains or winds. We compare our results to observations at other wavelengths and from other galaxies.

  5. HUBBLE CAPTURES THE HEART OF STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) has captured a flurry of star birth near the heart of the barred spiral galaxy NGC 1808. On the left are two images, one superimposed over the other. The black-and-white picture is a ground-based view of the entire galaxy. The color inset image, taken with the Hubble telescope's Wide Field and Planetary Camera 2 (WFPC2), provides a close-up view of the galaxy's center, the hotbed of vigorous star formation. The ground-based image shows that the galaxy has an unusual, warped shape. Most spiral galaxies are flat disks, but this one has curls of dust and gas at its outer spiral arms (upper right-hand corner and lower left-hand corner). This peculiar shape is evidence that NGC 1808 may have had a close interaction with another nearby galaxy, NGC 1792, which is not in the picture Such an interaction could have hurled gas towards the nucleus of NGC 1808, triggering the exceptionally high rate of star birth seen in the WFPC2 inset image. The WFPC2 inset picture is a composite of images using colored filters that isolate red and infrared light as well as light from glowing hydrogen. The red and infrared light (seen as yellow) highlight older stars, while hydrogen (seen as blue) reveals areas of star birth. Colors were assigned to this false-color image to emphasize the vigorous star formation taking place around the galaxy's center. NGC 1808 is called a barred spiral galaxy because of the straight lines of star formation on both sides of the bright nucleus. This star formation may have been triggered by the rotation of the bar, or by matter which is streaming along the bar towards the central region (and feeding the star burst). Filaments of dust are being ejected from the core into a faint halo of stars surrounding the galaxy's disk (towards the upper left corner) by massive stars that have exploded as supernovae in the star burst region. The portion of the galaxy seen in this 'wide-field' image is

  6. X-Ray Emission from the Halo of M31

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  7. Does SEGUE/SDSS indicate a dual galactic halo?

    SciTech Connect

    Schönrich, Ralph; Asplund, Martin; Casagrande, Luca

    2014-05-01

    We re-examine recent claims of observational evidence for a dual Galactic halo in SEGUE/SDSS data, and trace them back to improper error treatment and neglect of selection effects. In particular, the detection of a vertical abundance gradient in the halo can be explained as a metallicity bias in distance. A similar bias and the impact of disk contamination affect the sample of blue horizontal branch stars. These examples highlight why non-volume complete samples require forward modeling from theoretical models or extensive bias-corrections. We also show how observational uncertainties produce the specific non-Gaussianity in the observed azimuthal velocity distribution of halo stars, which can be erroneously identified as two Gaussian components. A single kinematic component yields an excellent fit to the observed data, when we model the measurement process including distance uncertainties. Furthermore, we show that sample differences in proper motion space are the direct consequence of kinematic cuts and are enhanced when distance estimates are less accurate. Thus, their presence is neither proof of a separate population nor a measure of reliability for the applied distances. We conclude that currently there is no evidence from SEGUE/SDSS that would favor a dual Galactic halo over a single halo that is full of substructure.

  8. Stellar orbital properties as diagnostics of the origin of the stellar halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Loebman, Sarah R.; Bailin, Jeremy; Clarke, Adam; Debattista, Victor P.; Stinson, Greg

    2016-08-01

    We examine metallicities, ages and orbital properties of halo stars in a Milky-Way like disk galaxy formed in the cosmological hydrodynamical MaGICC simulations. Halo stars were either accreted from satellites or they formed in situ in the disk or bulge of the galaxy and were then kicked up into the halo (``in situ/kicked-up'' stars). Regardless of where they formed both types show surprisingly similar orbital properties: the majority of both types are on short-axis tubes with the same sense of rotation as the disk - implying that a large fraction of satellites are accreted onto the halo with the same sense of angular momentum as the disk.

  9. Probing the Shape and History of the Milky Way Halo with Stellar Orbits

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2010-05-01

    One of the key predictions of Lambda-CDM cosmological simulations is that the dark matter halos of galaxies such as the Milky Way are prolate or triaxial. However simulations show that both the shapes and density profiles of dark matter halos can be dramatically altered by the condensation of baryons. I will describe how Laskar's Frequency mapping technique can be used to analyze the phase-space structure of the Milky Way's halo with halo stellar orbits. From Frequency Maps of halo stars it is possible to set constrains, not just on the present shape and phase space distribution of the Milky Way halo, but also on its past shape history. The power of this technique is demonstrated by applying it to a series of controlled simulations in which dynamically realistic disks are grown in isolated triaxial dark matter halos. I will demonstrate that even when the growth of a baryonic disk causes the halo's shape to become oblate or close to spherical, it is possible to determine if it was originally prolate or triaxial as predicted by cosmological N-body simulations. Current and future Galactic surveys (e.g. RAVE, Segue, Gaia and LAMOST) are expected to obtain the full 6 dimensional phase space orbits of hundreds of thousands of halo stars. This technique will be a new and valuable tool that will complement on-going efforts to constrain the shape of the halo with tidal streams. Reliable indicators of the halo's shape can be obtained with as few as 5000-10000 halo stellar orbits.

  10. Stellar Haloes with the Illustris Simulation: Mock Observations and Assembly

    NASA Astrophysics Data System (ADS)

    Pillepich, Annalisa; Torrey, Paul; Nelson, Dylan; Snyder, Greg; Rodriguez-Gomez, Vicente; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2015-08-01

    Illustris is a state-of-the-art simulation which combines the statistical power of a ˜106 Mpc-side cosmological volume with gasdynamics, prescriptions for star formation, feedback, and kpc resolution. It allows us to analyze about ˜5,000 well-resolved galaxies spanning a variety of morphologies, environments, and halo masses (3×10^11 < Mvir < 10^14 Msun). Illustris therefore provides the most realistic and richest sample of simulated galactic stellar haloes available up to date. Based on the properties of the stellar particles in each simulated galaxy/halo, we have produced synthetic images in different luminosity bands and extracted information about the mass distribution, smoothness, and phase-space structures up to large galactocentric distances at different limits of surface brightness. We can therefore gain insight and provide theoretically-motivated expectations for the build-up and properties of the stellar haloes, and their relation to the underlying DM haloes, their central galaxies, and their halo assembly histories.

  11. Could wormholes form in dark matter galactic halos?

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Shit, G. C.; Sen, Banashree; Ray, Saibal

    2016-01-01

    We estimate expression for velocity as a function of the radial coordinate r by using polynomial interpolation based on the experimental data of rotational velocities at distant outer regions of galaxies. The interpolation technique has been used to estimate fifth degree polynomial followed by cubic spline interpolation. This rotational velocity is used to find the geometry of galactic halo regions within the framework of Einstein's general relativity. In this paper we have analyzed features of galactic halo regions based on two possible choices for the dark matter density profile, viz. Navarro, Frenk & White (NFW) type (Navarro et al. in Astrophys. J. 462:563, 1996) and Universal Rotation Curve (URC) (Castignani et al. in Nat. Sci. 4:265, 2012). It is argued that spacetime of the galactic halo possesses some of the characteristics needed to support traversable wormholes.

  12. Centaurus A: Stellar Metallicity Transition in the Halo

    NASA Astrophysics Data System (ADS)

    Bird, Sarah; Flynn, C.; Harris, W. E.; Valtonen, M.

    2013-01-01

    The very earliest stars in giant galaxies - the most metal-poor halo stars and globular clusters - may have formed before the onset of hierarchical merging, within small pregalactic dwarfs that populated the large-scale dark-matter potential well. Today, these relic stars should be found in a sparse and extremely extended “outermost-halo” component. Finding clear traces of this component in other giant galaxies, and deconvolving it from the more obvious and metal-rich spheroid component generated later by mergers, has been extraordinarily difficult. Now, striking new evidence discovered in M 31 and NGC 3379 suggests that the metal-poor outermost halo can be isolated at very large radii, R > 12Reff . We now have a new deep imaging study with ESO VLT of the nearest giant elliptical and merger remnant, Centaurus A, to search for this extended remnant of the galaxy’s earliest history.

  13. AN EXTREMELY CARBON-RICH, EXTREMELY METAL-POOR STAR IN THE SEGUE 1 SYSTEM

    SciTech Connect

    Norris, John E.; Yong, David; Gilmore, Gerard; Wyse, Rosemary F. G.; Frebel, Anna

    2010-10-10

    We report the analysis of high-resolution, high signal-to-noise ratio, spectra of an extremely metal-poor, extremely C-rich red giant, Seg 1-7, in Segue 1-described in the literature alternatively as an unusually extended globular cluster or an ultra-faint dwarf galaxy. The radial velocity of Seg 1-7 coincides precisely with the systemic velocity of Segue 1, and its chemical abundance signature of [Fe/H] = -3.52, [C/Fe] = +2.3, [N/Fe] = +0.8, [Na/Fe] = +0.53, [Mg/Fe] = +0.94, [Al/Fe] = +0.23, and [Ba/Fe] < -1.0 is similar to that of the rare and enigmatic class of Galactic halo objects designated CEMP-no (carbon-rich, extremely metal-poor with no enhancement (over solar ratios) of heavy neutron-capture elements). This is the first star in a Milky Way 'satellite' that unambiguously lies on the metal-poor, C-rich branch of the Aoki et al. bimodal distribution of field halo stars in the ([C/Fe], [Fe/H])-plane. Available data permit us only to identify Seg 1-7 as a member of an ultra-faint dwarf galaxy or as debris from the Sgr dwarf spheroidal galaxy. In either case, this demonstrates that at extremely low abundance, [Fe/H ] <-3.0, star formation and associated chemical evolution proceeded similarly in the progenitors of both the field halo and satellite systems. By extension, this is consistent with other recent suggestions that the most metal-poor dwarf spheroidal and ultra-faint dwarf satellites were the building blocks of the Galaxy's outer halo.

  14. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  15. Unraveling the History of the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Debattista, V. P.

    2010-01-01

    One of the key predictions of Lambda-CDM cosmological simulations is that the dark matter halos of galaxies, such as the Milky Way, are strongly prolate or triaxial. However simulations with gas show that both the shapes and density profiles of dark matter halos can be dramatically altered by the condensation of baryons into a disk or spheroidal component. Current and future astrometric mission (e.g. RAVE, Segue, Gaia and NASA's SIM Lite Astrometric Observatory) are expected to obtain the full 6 dimensional phase space information of several thousands of halo stars. We describes a novel method to analyze this phase-space information that be used to set constrains, not just on the present shape and phase space distribution of the Milky Way halo, but also on its past shape history. We exploit a technique for revealing the phase space structure and orbital content of galaxies: "The Laskar Frequency Map". The power of this technique is demonstrated by applying it to a series of controlled simulations in which dynamically realistic disks are grown in isolated triaxial dark matter halos. We show that even when the growth of a baryonic disk causes the halo's shape to become oblate or close to spherical, it is possible to determine if it was originally prolate or triaxial as predicted by cosmological N-body simulations. It is also possible to determine if the original halo's major axis was perpendicular to the major axis or the minor axis of the disk. The technique can yield valuable information on the shape history of the halo form as few as a 1000- 5000 orbits.

  16. Halo Orbits in Cosmological Disk Galaxies: Tracers of Formation History

    NASA Astrophysics Data System (ADS)

    Valluri, Monica; Debattista, Victor P.; Stinson, Gregory S.; Bailin, Jeremy; Quinn, Thomas R.; Couchman, H. M. P.; Wadsley, James

    2013-04-01

    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner ~20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes—the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity >~ 0.6. We find that randomly selected samples of halo stars show no substructure in "integrals of motion" space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible.

  17. HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY

    SciTech Connect

    Valluri, Monica; Debattista, Victor P.; Stinson, Gregory S.; Bailin, Jeremy; Quinn, Thomas R.; Couchman, H. M. P.; Wadsley, James

    2013-04-10

    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner {approx}20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes-the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity {approx}> 0.6. We find that randomly selected samples of halo stars show no substructure in 'integrals of motion' space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible.

  18. The rise and fall of galaxy activity in dark matter haloes

    NASA Astrophysics Data System (ADS)

    Pasquali, Anna; van den Bosch, Frank C.; Mo, H. J.; Yang, Xiaohu; Somerville, Rachel

    2009-03-01

    We use the catalogue of galaxy groups constructed from the Sloan Digital Sky Survey (SDSS DR4) by Yang et al. to study the dependence of galaxy activity on stellar mass, M*, halo mass, Mh, and group hierarchy (central versus satellite galaxies). The wealth of data provided by the SDSS allows us to split the sample on the basis of galaxy activity in star-forming galaxies, galaxies with optical active galactic nuclei (AGN), composite galaxies (both star formation and optical AGN activity) and radio sources. We find a smooth transition in halo mass as the activity of central galaxies changes from star formation to optical AGN activity to radio emission. Star-forming centrals preferentially reside in haloes with Mh < 1012h-1Msolar, central galaxies with optical AGN activity typically inhabit haloes with Mh ~ 1013h-1Msolar and centrals emitting in the radio mainly reside in haloes more massive than 1014h-1Msolar. Although this seems to suggest that the environment (halo mass) determines the type of activity of its central galaxy, we find a similar trend with stellar mass: central star formers typically have stellar masses less than 1010h-2Msolar, while optical AGN hosts and central radio sources have characteristic stellar masses of ~1010.8 and ~1011.6h-2Msolar, respectively. Since more massive haloes typically host more massive centrals, it is unclear whether the activity of a central galaxy is causally connected to its stellar mass or to its halo mass. In general, satellite galaxies have their activity suppressed with respect to central galaxies of the same stellar mass. This holds not only for star formation activity, but also for AGN activity in the optical and the radio. At fixed stellar mass, we find that the activity of satellite galaxies depends only weakly on halo mass. In fact, using a set of reduced conditional probability functions, we find that for satellite galaxies the dependence of galaxy activity on halo mass is more than four times weaker than the

  19. Moving Groups in the Milky Way Halo and Disk Induced by the Bar and Spiral Arms

    NASA Astrophysics Data System (ADS)

    Schuster, William John

    2015-08-01

    In a previous study (Moreno et al. 2015), the use of a detailed Milky Way potential (observationally and dynamically constrained) has shown that the Galactic bar is able to efficiently concentrate stars of the stellar halo and disk into several main resonances. With the tools introduced here, the Galactic bar is shown to produce significant phase-space structure attracting stars to several main resonances. This new study is dedicated to the study of known groups of the Galactic halo and disk, and their relation to these resonances. Stars belonging to some known halo and disk moving groups have settled down along these bar resonant families, showing, in some cases, a likely Galactic secular origin. In general, the 2D resonant orbits of the disk produced by the bar, seem to dominate at large scale-heights (several kiloparsecs) into the Galactic halo. In particular, provisionally six of the members of the Kapteyn halo moving group seem to be associated with one of these resonances, and also the Groombridge 1830 (Eggen 1996a; Eggen & Sandage 1959) and especially the newer halo moving groups G21-22 and G18-39 (Silva et al. 2012) show some correlation with these resonances suggesting possible secular origins, while the halo moving group Ross 451 (Eggen 1996b) does not show any such correlation, indicating a more probable cosmological (non-secular) ancestry. All Galactic disk moving groups (such as Arcturus, Hercules, Castor, IC 2391, Hyades, Pleiades, and Ursa Major) show considerable association with these resonances.

  20. The response of dark matter haloes to elliptical galaxy formation: a new test for quenching scenarios

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Macciò, Andrea V.; Stinson, Gregory S.; Gutcke, Thales A.; Penzo, Camilla; Buck, Tobias

    2015-11-01

    We use cosmological hydrodynamical zoom-in simulations with the smoothed particle hydrodynamics code GASOLINE of four haloes of mass M200 ˜ 1013 M⊙ to study the response of the dark matter to elliptical galaxy formation. Our simulations include metallicity-dependent gas cooling, star formation and feedback from massive stars and supernovae, but not active galactic nuclei (AGN). At z = 2 the progenitor galaxies have stellar-to-halo mass ratios consistent with halo abundance matching, assuming a Salpeter initial mass function. However, by z = 0 the standard runs suffer from the well-known overcooling problem, overpredicting the stellar masses by a factor of ≳ 4. To mimic a suppressive halo quenching scenario, in our forced quenching (FQ) simulations, cooling and star formation are switched off at z = 2. The resulting z = 0 galaxies have stellar masses, sizes and circular velocities close to what is observed. Relative to the control simulations, the dark matter haloes in the FQ simulations have contracted, with central dark matter density slopes d log ρ/d log r ˜ -1.5, showing that dry merging alone is unable to fully reverse the contraction that occurs at z > 2. Simulations in the literature with AGN feedback, however, have found expansion or no net change in the dark matter halo. Thus, the response of the dark matter halo to galaxy formation may provide a new test to distinguish between ejective and suppressive quenching mechanisms.

  1. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2014-11-01

    High-redshift quasar observations imply that supermassive black holes (SMBHs) larger than ˜109 M⊙ formed before z ˜ 6. That such large SMBHs formed so early in the history of the Universe remains an open theoretical problem. One possibility is that gas in atomic cooling haloes exposed to strong Lyman-Werner (LW) radiation forms 104-106 M⊙ supermassive stars which quickly collapse into black holes. We propose a scenario for direct collapse black hole (DCBH) formation based on synchronized pairs of pristine atomic cooling haloes. We consider haloes at very small separation with one halo being a subhalo of the other. The first halo to surpass the atomic cooling threshold forms stars. Soon after these stars are formed, the other halo reaches the cooling threshold and due to its small distance from the newly formed galaxy, it is exposed to the critical LW intensity required to form a DCBH. The main advantage of this scenario is that synchronization can potentially prevent photoevaporation and metal pollution in DCBH-forming haloes. We use N-body simulations and an analytic approximation to estimate the abundance of DCBHs formed in this way. The density of DCBHs formed in this scenario could explain the SMBHs implied by z ˜ 6 quasar observations. Metal pollution and photoevaporation could potentially reduce the abundance of DCBHs below that required to explain the observations in other models that rely on a high LW flux.

  2. Estimating the dark matter halo mass of our Milky Way using dynamical tracers

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; Han, Jiaxin; Cooper, Andrew P.; Cole, Shaun; Frenk, Carlos; Lowing, Ben

    2015-10-01

    The mass of the dark matter halo of the Milky Way can be estimated by fitting analytical models to the phase-space distribution of dynamical tracers. We test this approach using realistic mock stellar haloes constructed from the Aquarius N-body simulations of dark matter haloes in the Λ cold dark matter cosmology. We extend the standard treatment to include a Navarro-Frenk-White potential and use a maximum likelihood method to recover the parameters describing the simulated haloes from the positions and velocities of their mock halo stars. We find that the estimate of halo mass is highly correlated with the estimate of halo concentration. The best-fitting halo masses within the virial radius, R200, are biased, ranging from a 40 per cent underestimate to a 5 per cent overestimate in the best case (when the tangential velocities of the tracers are included). There are several sources of bias. Deviations from dynamical equilibrium can potentially cause significant bias; deviations from spherical symmetry are relatively less important. Fits to stars at different galactocentric radii can give different mass estimates. By contrast, the model gives good constraints on the mass within the half-mass radius of tracers even when restricted to tracers within 60 kpc. The recovered velocity anisotropies of tracers, β, are biased systematically, but this does not affect other parameters if tangential velocity data are used as constraints.

  3. Expanded haloes, abundance matching and too-big-to-fail in the Local Group

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.; Di Cintio, Arianna

    2015-07-01

    Observed kinematical data of 40 Local Group (LG) members are used to derive the dark matter halo mass of such galaxies. Haloes are selected from the theoretically expected LG mass function and two different density profiles are assumed, a standard universal cuspy model and a mass-dependent profile which accounts for the effects of baryons in modifying the dark matter distribution within galaxies. The resulting relations between stellar and halo mass are compared with expectations from abundance matching. Using a universal cuspy profile, the ensemble of LG galaxies is fit in relatively low-mass haloes, leaving `dark' many massive haloes of Mhalo ≳ 1010 M⊙: this reflects the `too-big-to-fail' problem and results in a Mstar-Mhalo relation that differs from abundance matching predictions. Moreover, the star formation efficiency of isolated LG galaxies increases with decreasing halo mass when adopting a cuspy model. By contrast, using the mass-dependent density profile, dwarf galaxies with Mstar ≳ 106 M⊙ are assigned to more massive haloes, which have a central cored distribution of dark matter: the `too-big-to-fail' problem is alleviated, the resultant Mstar-Mhalo relation follows abundance matching predictions down to the completeness limit of current surveys, and the star formation efficiency of isolated members decreases with decreasing halo mass, in agreement with theoretical expectations. Finally, the cusp/core space of LG galaxies is presented, providing a framework to understand the non-universality of their density profiles.

  4. THE CATALINA SURVEYS PERIODIC VARIABLE STAR CATALOG

    SciTech Connect

    Drake, A. J.; Graham, M. J.; Djorgovski, S. G.; Mahabal, A. A.; Donalek, C.; Williams, R.; Catelan, M.; Torrealba, G.; García-Álvarez, D.; Prieto, J. L.; Beshore, E.; Larson, S.; Christen sen, E.; Boattini, A.; Gibbs, A.; Hill, R.; Kowalski, R.; Johnson, J.; Belokurov, V.; Koposov, S. E.; and others

    2014-07-01

    We present ∼47,000 periodic variables found during the analysis of 5.4 million variable star candidates within a 20,000 deg{sup 2} region covered by the Catalina Surveys Data Release-1 (CSDR1). Combining these variables with type ab RR Lyrae from our previous work, we produce an online catalog containing periods, amplitudes, and classifications for ∼61,000 periodic variables. By cross-matching these variables with those from prior surveys, we find that >90% of the ∼8000 known periodic variables in the survey region are recovered. For these sources, we find excellent agreement between our catalog and prior values of luminosity, period, and amplitude as well as classification. We investigate the rate of confusion between objects classified as contact binaries and type c RR Lyrae (RRc's) based on periods, colors, amplitudes, metallicities, radial velocities, and surface gravities. We find that no more than a few percent of the variables in these classes are misidentified. By deriving distances for this clean sample of ∼5500 RRc's, we trace the path of the Sagittarius tidal streams within the Galactic halo. Selecting 146 outer-halo RRc's with SDSS radial velocities, we confirm the presence of a coherent halo structure that is inconsistent with current N-body simulations of the Sagittarius tidal stream. We also find numerous long-period variables that are very likely associated within the Sagittarius tidal stream system. Based on the examination of 31,000 contact binary light curves we find evidence for two subgroups exhibiting irregular light curves. One subgroup presents significant variations in mean brightness that are likely due to chromospheric activity. The other subgroup shows stable modulations over more than a thousand days and thereby provides evidence that the O'Connell effect is not due to stellar spots.

  5. Dark matter mini-halo around the compact objects: the formation, evolution and possible contribution to the cosmic ray electrons/positrons

    SciTech Connect

    Yang, Rui-Zhi; Fan, Yi-Zhong; Chang, Jin; Waldman, Roni E-mail: yzfan@pmo.ac.cn E-mail: chang@pmo.ac.cn

    2012-01-01

    Dark matter particles may be captured by a star and then thermalized in the star's core. At the end of its life a massive star collapses suddenly and a compact object is formed. The dark matter particles redistribute accordingly. In the inelastic dark matter model, an extended dense dark matter mini-halo surrounding the neutron star may be formed. Such mini-halos may be common in the Galaxy. The electron/positron flux resulting in the annihilation of dark matter particles, however, is unable to give rise to observable signal unless a nascent mini-halo is within a distance ∼ a few 0.1 pc from the Earth.

  6. Kinematic evidence for an old stellar halo in the Large Magellanic Cloud.

    PubMed

    Minniti, Dante; Borissova, Jura; Rejkuba, Marina; Alves, David R; Cook, Kem H; Freeman, Kenneth C

    2003-09-12

    The oldest and most metal-poor Milky Way stars form a kinematically hot halo, which motivates the two major formation scenarios for our galaxy: extended hierarchical accretion and rapid collapse. RR Lyrae stars are excellent tracers of old and metal-poor populations. We measured the kinematics of 43 RR Lyrae stars in the inner regions of the nearby Large Magellanic Cloud (LMC) galaxy. The velocity dispersion equals 53 +/- 10 kilometers per second, which indicates that a kinematically hot metal-poor old halo also exists in the LMC. This result suggests that our galaxy and smaller late-type galaxies such as the LMC have similar early formation histories. PMID:12970558

  7. Methods for Identifying Pair Halos

    NASA Astrophysics Data System (ADS)

    Wells, Brendan; Caputo, Regina; Atwood, William; Ritz, Steven M.

    2016-01-01

    The flux of very high energy gamma rays from active galactic nuclei (AGN) is attenuated via interactions with extragalactic background photons and is converted into e+e- pairs. With non-zero intergalactic magnetic fields, the electrons and positrons will deflect as they propagate and simultaneously lose energy by upscattering cosmic microwave background photons. "Pair halos," the visible consequences of these electromagnetic cascades, are faint and difficult to observe against their AGN counterparts. We investigate three methods for indirectly identifying pair halos, using a two-component approach to model the AGN core/halo image. We estimate each method's sensitivity by utilizing a new, detailed Monte Carlo pair-halo simulation.

  8. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  9. Baryonic dark clusters in galactic halos and their observable consequences

    NASA Technical Reports Server (NTRS)

    Wasserman, Ira; Salpeter, Edwin E.

    1994-01-01

    We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron