Sample records for outer space testing

  1. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  2. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  3. Testing of a femtosecond pulse laser in outer space

    PubMed Central

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  4. Testing of a femtosecond pulse laser in outer space.

    PubMed

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-30

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  5. The Outer Space Treaty

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher Daniel

    2018-01-01

    Negotiated at the United Nations and in force since 1967, the Outer Space Treaty has been ratified by over 100 countries and is the most important and foundational source of space law. The treaty, whose full title is "Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies," governs all of humankind's activities in outer space, including activities on other celestial bodies and many activities on Earth related to outer space. All space exploration and human spaceflight, planetary sciences, and commercial uses of space—such as the global telecommunications industry and the use of space technologies such as position, navigation, and timing (PNT), take place against the backdrop of the general regulatory framework established in the Outer Space Treaty. A treaty is an international legal instrument which balances rights and obligations between states, and exists as a kind of mutual contract of shared understandings, rights, and responsibilities between them. Negotiated and drafted during the Cold War era of heightened political tensions, the Outer Space Treaty is largely the product of efforts by the United States and the USSR to agree on certain minimum standards and obligations to govern their competition in "conquering" space. Additionally, the Outer Space Treaty is similar to other treaties, including treaties governing the high seas, international airspace, and the Antarctic, all of which govern the behavior of states outside of their national borders. The treaty is brief in nature and only contains 17 articles, and is not comprehensive in addressing and regulating every possible scenario. The negotiating states knew that the Outer Space Treaty could only establish certain foundational concepts such as freedom of access, state responsibility and liability, non-weaponization of space, the treatment of astronauts in distress, and the prohibition of non-appropriation of

  6. Peaceful Use of Outer Space: principles of Japanese Policies on Utilization and Activities in Outer space

    NASA Astrophysics Data System (ADS)

    Kosuge, Toshio

    2002-01-01

    " P e aceful use of outer space of outer space.....Principles of exploitation of outer space was passed in the Japanese Diet. It clearly mentioned that any activity of launching space object into outer space and developing launching rocket should be exclusively for peaceful purpose. NASDA was also established based upon the same principles of the public law. Japanese interpretation of Space Treaty and other related international agreements has been more strict on peaceful use of outer space, like non-military use rather than non-aggressive, because of influence of Japanese Constitution. Treaty and other agreements is analyzed through rapid development of its space activities, technologies and international cooperation with other space powers. Through more than thirty years experiences in space activities in public and private sectors, Japanese domestic laws and policies have not been changed in relation with basic principles. and laws relating to space activities in order to develop new space law and more international cooperation for space utilization rather than military use in new century.

  7. Management of outer space

    NASA Astrophysics Data System (ADS)

    Perek, Lubos

    1993-10-01

    Various aspects of space-environment management are discussed. Attention is called to the fact that, while space radio communications are already under an adequate management by the International Communications Union, the use of nuclear power sources is regulated by the recently adopted set of principles, and space debris will be discussed in the near future at the UN COPUOS, other aspects of management of outer space received little or no attention of the international community. These include the competency of crews and technical equipment of spacecraft launched by newcomers to space exploration; monitoring of locations and motions of space objects (now in national hands), with relevant data made accessible through a computer network; and the requirement to use space only for beneficial purposes and not for promoting narrow and debatable interests damaging the outer space environment and impeding on astronomical observations. It is suggested that some of these tasks would be best performed by an international space agency within the UN system of organizations.

  8. Prevention of the Outer Space Weaponization

    NASA Astrophysics Data System (ADS)

    Zhukov, Gennady P.

    2002-01-01

    9 states. The satellites of various functions (early warning, communication, data acquisition, reconnaissance and navigation) were actively used and continue to be used with the purposes of raising efficiency of ground armed forces, especially in fight against international terrorism. At the same time such satellites are not a weapon in the sense of that word since they do not create the threats of armed attack in outer space or from outer space. Moreover, they promote maintaining of stability in the international relations. For this reason the reconnaissance and data acquisition satellites used for the verification of observance by States of the arms limitation agreements are under international protection as national technical means of the control. Similar protection is enjoyed by the early warning satellites. With the help of space communication facilities the more reliable operative connection of the statesmen is organized in the strained situations. By this way the probability of making of the incorrect retaliatory decisions in critical political situations is reduced. At the same time it's necessary to take into consideration that the activities of such satellite systems are tightly connected with ground armed forces of the states. the earth, what from the point of view of international law may be qualified as establishing a partial demilitarization regime in outer space. After the prohibition of anti-satellite weapons (ASAT) and anti-satellite (ASAT) weapons it will be possible to speak about establishing of an international legal regime of complete demilitarization in outer space eliminating any kinds of weapon from outer space. in a peaceful time. weaponization.The main task of this paper is to analyze and to discuss the present binding regime of the outer space deweaponization and particular measures on consolidation and strengthening of this regime. agreements of the Russian Federation and the USA into multilateral Treaties. Such "immunity" would cover

  9. Characterization of Outer Space Radiation Induced Changes in Extremophiles Utilizing Deep Space Gateway Opportunities

    NASA Astrophysics Data System (ADS)

    Venkateswaran, K.; Wang, C.; Smith, D.; Mason, C.; Landry, K.; Rettberg, P.

    2018-02-01

    Extremophilic microbial survival, adaptation, biological functions, and molecular mechanisms associated with outer space radiation can be tested by exposing them onto Deep Space Gateway hardware (inside/outside) using microbiology and molecular biology techniques.

  10. Delimitation of air space and outer space - Is such a boundary needed now?

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    A discussion is presented of the question of establishing a boundary between air space and outer space. Four theories and approaches for establishing a delimitation between air space and outer space are examined. Spatial approaches include demarcation based on the division of the atmosphere into layers, demarcation based on aerodynamic characteristics of flight instrumentalities (von Karman Line), demarcation according to the lowest perigee of an orbiting satellite, and demarcation based upon the earth's gravitational effects. The functionalist approach is based on the delimitation or definition of the air space/outer space regime by the purpose and activities for which an object is designed in air space or outer space. The arbitrarist approach is supported by those who wish to draw an arbitrary line between air space and outer space. It is proposed that a pragmatist approach will be more useful than the other three approaches. The pragmatist approach advocates not establishing a boundary between air space and outer space at the present time or in the immediate future. It is argued that there are at present no serious problems that can be resolved by the definition/delimitation of air space and outer space.

  11. Law in Outer Space.

    ERIC Educational Resources Information Center

    Schmidt, William G.

    1997-01-01

    Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…

  12. Long-Lived Glass Mirrors For Outer Space

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.; Heggen, Philip M.

    1988-01-01

    Paper summarizes available knowledge about glass mirrors for use in outer space. Strengths and weaknesses of various types of first and second reflective surfaces identified. Second-surface glass mirrors used in outer space designed to different criteria more stringent for terrestrial mirrors. Protons, electrons, cosmic rays, meteorites, and orbiting space debris affect longevities of components. Contamination also factor in space.

  13. Design Of Robots For Outer Space

    NASA Technical Reports Server (NTRS)

    Roston, Gerald P.

    1990-01-01

    Report discusses design of robots for use in zero gravity and vacuum, with attention to differences between requirements imposed on designs by outer space and by terrestrial applications. Terrestrial robots designed for multiple purposes and for minimal cost. Outer-space robots designed specialized to one task where cost has relatively low priority. Design optimal in one environment unlikely optimal in another.

  14. Evaluation of inner-outer space distinction and verbal hallucinations in schizophrenia.

    PubMed

    Stephane, Massoud; Kuskowski, Michael; McClannahan, Kate; Surerus, Christa; Nelson, Katie

    2010-09-01

    Verbal hallucinations could result from attributing one's own inner speech to another. Inner speech is usually experienced in inner space, whereas hallucinations are often experienced in outer space. To clarify this paradox, we investigated schizophrenia patients' ability to distinguish between speech experienced in inner space, and speech experienced in outer space. 32 schizophrenia patients and 26 matched healthy controls underwent a two-stage experiment. First, they read sentences aloud or silently. Afterwards, they were required to distinguish between the sentences read aloud (experienced in outer space), the sentences read silently (experienced in inner space), and new sentences not previously read (no space coding). The sentences were in the first, second, or third person in equal proportions. Linear mixed models were used to investigate the effects of group, sentence location, pronoun, and hallucinations status. Schizophrenia patients were similar to controls in recognition capacity of sentences without space coding. They exhibited both inner-outer and outer-inner space confusion (they confused silently read sentences for sentences read aloud, and vice versa). Patients who experienced hallucinations inside their head were more likely to have outer-inner space bias. For speech generated by one's own brain, schizophrenia patients have bidirectional failure of inner-outer space distinction (inner-outer and outer-inner space biases); this might explain why hallucinations (abnormal inner speech) could be experienced in outer space. Furthermore, the direction of inner-outer space indistinction could determine the spatial location of the experienced hallucinations (inside or outside the head).

  15. Legal Consequences of the Pollution of Outer Space with Space Debris

    NASA Astrophysics Data System (ADS)

    Stubbe, Peter

    2017-07-01

    Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting

  16. TCBMs over the military use of outer space

    NASA Astrophysics Data System (ADS)

    Takaya-Umehara, Yuri

    2010-11-01

    Although no legal instrument resulted from long negotiations in the UN and Conference on Disarmament (CD), the application of confidence-building measures (CBMs) that was once considered in the 1990's attracted attention again to restrict military use of outer space. Since 2005, the concept of "Transparency and confidence-building measures (TCBMs)" entered into the lexicon of space law to explore the possibility of reinforcing security in outer space activities. While CBMs have been developed and applied to treaty-based verification mechanisms, the introduction of TCBMs in space law needs further examination to fit in the context of space security. Therefore, by evaluating the function of CBMs applied to the existing law on disarmament and arms control, the author examines the application of TCBMs to space law and calls for the need to establish non-treaty-based monitoring mechanisms for transparency and confidence-building in outer space activities.

  17. Legal Implications of Military Uses of Outer Space

    NASA Astrophysics Data System (ADS)

    Catena, Johanna

    2002-01-01

    -fuelled rocket. Goddard's work coincided with the work of a German scientist Werner Von Braun, (1912-77) who designed the V1 and V2 rocket. The V2 was the first intercontinental ballistic missile. Compared to the V1, the V2 could carry a heavier payload and the range was much longer. Von Braun had originally sketched his ideas to the Germans, that the V2 was an effective design for space travel and it was rejected. After the war the V2 became the foundation to many new technologies and these modifications marked the beginning of the space race. This competition led to space travel, taking men to the moon using the Saturn V rocket, robotic missions to the planets, and into tactical nuclear missiles (Redstone). This also marked the future for such dual-purpose technologies (i.e. military and/or civilian use) and more interestingly it took the design of weapons for space travel to be taken seriously. Arthur C Clarke commented on the possibilities of placing weapons in outer space, `the only defence against the weapons of the future is to prevent them ever being used. The problem is political and not military at all.' Ambassador Peter Jankowitsch, quoting Stockholm International Peace Research Institute in his opening address to COPUOS in Austria 1978, `we must make sure that outer space can be spared the fate of so many human discoveries of previous ages, namely becoming a mere battlefield.' These statements may be analysed by applying the United Nations Charter alongside other international treaties, such as the Outer Space Treaty 1967, the Test Ban Treaty 1963 and the Anti-Ballistic Missile Treaty in conjunction with the new Agreement signed by Russian and the USA. This may assist to highlight and conclude where problems reside whether political, legal, military, or a combination; and the impact for international peace and security.

  18. Assessment of Identity Status in College Women Using Outer Space and Inner Space Interviews.

    ERIC Educational Resources Information Center

    Hopkins, Linda B.

    1982-01-01

    Investigated the validity of two approaches to the assessment of female identity status: the standard Outer Space interview used with males, and an Inner Space interview specifically developed for females. Found that, contrary to Erikson's theory, college women form their identities around Outer Space as well as Inner Space issues. (Author/GC)

  19. The Outer Space as an Educational Motivation

    NASA Astrophysics Data System (ADS)

    Pérez-Pérez, Melquíades; Hernández-López, Montserrat

    2017-06-01

    STEAM is an educational approach to learning that uses Science, Technology, Engineering, the Arts and Mathematics as access points for guiding student inquiry, dialogue, and critical thinking. The end results are students who take thoughtful risks, engage in experiential learning, persist in problem-solving, embrace collaboration, and work through the creative process. The Outer Space is a window to the past and the future of our travel around the history of the Universe and can be used as a educational tool in primary and secondary education. This paper talks about the integration of the resources of European Space Agency, Space Awareness, Nuclio, Scientix and Schoolnet as motivation to integrate STEAM methodology in secondary education. Keywords: STEAM, outer space, motivation, methodology

  20. Autofluorescence from the outer retina and subretinal space: hypothesis and review.

    PubMed

    Spaide, Richard

    2008-01-01

    To review the pathophysiologic principles underlying increased autofluorescence from the outer retina and subretinal space using selected diseases as examples. The ocular imaging information and histopathologic features, when known, were integrated for diseases causing increased autofluorescence from the outer retina and subretinal space. Inferences were taken from this information and used to create a classification scheme. These diseases are principally those that cause separation of the outer retina from the retinal pigment epithelium, thereby preventing proper phagocytosis of photoreceptor outer segments. The separation can arise from increased exudation into the subretinal space or inadequate removal of fluid from the subretinal space. Lack of normal outer segment processing initially leads to increased accumulation of outer segments on the outer retina and subretinal space. Over time, this material is visible as an increasingly thick coating on the outer retina, is yellow, and is autofluorescent. Over time, atrophy develops with thinning of the deposited material and decreasing autofluorescence. The accumulated material is ultimately capable of inducing damage to the retinal pigment epithelium. Diseases causing accumulation of the material include central serous chorioretinopathy, vitelliform macular dystrophy, acute exudative polymorphous vitelliform maculopathy, choroidal tumors, and vitreomacular traction syndrome. The physical separation of the retinal outer segments from the retinal pigment epithelium hinders proper phagocytosis of the outer segments. Accumulation of the shed but not phagocytized outer segments plays a role in disease manifestations for a number of macular diseases.

  1. Regimes for the ocean, outer space, and weather

    NASA Technical Reports Server (NTRS)

    Brown, S.; Cornell, N. W.; Fabian, L. L.; Weiss, E. B.

    1977-01-01

    The allocation of resources among users of the oceans, outer space and the weather is discussed. Attention is given to the international management of maritime navigation, the control of fisheries, offshore oil and gas exploitation, mineral exploitation in the deep seabed (especially the mining of manganese nodules), and the regulation of oceanographic studies. The management of outer space is considered, with special reference to remote sensing by satellites, television broadcasting, the technical requirements of maritime satellites, and problems associated with satellite frequency and orbit allocation. Rainmaking and typhoon modification, as well as the distribution of weather modification capabilities in the world, are also mentioned. The United Nations, international agencies and tribunals, and multi- or bilateral agreements are some of the implements suggested for use in the regulation of the oceans, outer space and the weather.

  2. Assembly Platform For Use In Outer Space

    NASA Technical Reports Server (NTRS)

    Rao, Niranjan S.; Buddington, Patricia A.

    1995-01-01

    Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.

  3. The processing of materials in outer space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Colling, E. W.

    1977-01-01

    Zero-gravity environment may lead to fabrication of new and improved materials. According to comprehensive study of application of this promising technology to superconducting and electrical contact materials, outer space processing could improve microstructure and homogeneity of many single and multicomponent systems formed from solidification of fluid phases. New structures that are impossible to form terrestrially may also be accessible in space environment.

  4. Advanced space storable propellants for outer planet exploration

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.

    2004-01-01

    An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.

  5. Humanizing outer space: architecture, habitability, and behavioral health

    NASA Astrophysics Data System (ADS)

    Harrison, Albert A.

    2010-03-01

    Space architecture is the theory and practice of designing and building environments for humans in outer space. In our present century professional astronauts and cosmonauts will remain a focus for space architects, but new designs must better accommodate passengers (tourists and industrial workers) and settlers who set forth to establish off-world societies. Psychologists and architects can work together to assure good spaceflight behavioral health, defined by a lack of neuropsychiatric dysfunction, and the presence of high levels of personal adjustment, cordial interpersonal relations, and positive interactions with the physical and social environments. By designing and constructing facilities that are occupant centered and activity oriented, architects increase habitability thereby decreasing environmental challenges to behavioral health. Simulators and spaceflight-analogous environments make it possible to test design solutions prior to their deployment in space. This paper concludes with suggestions for increasing collaboration between architects and psychologists. These include increased sharing of hypotheses and data, articulating complementary research styles, and mutual advocacy for early, potent, and sustained involvement in mission planning and execution.

  6. Protection of celestial environments and the law of outer space

    NASA Astrophysics Data System (ADS)

    Tennen, Leslie; Race, Margaret

    The law of outer space expressly addresses the matter of preservation and protection of natural celestial environments from harmful contamination and disruption by mankind in the explo-ration and use of outer space, including the moon and other celestial bodies. The Outer Space Treaty, however, does not prohibit all human impact to an extraterrestrial environment, but rather permits a wide range of activities that could have significant environmental ramifications. This legal regime may be in conflict with the interests of preserving celestial environments for scientific research, especially when considered in relation to activities conducted for commercial purposes. Nevertheless, the Moon Agreement provides a mechanism by which special protective measures can be implemented to protect particular areas of the moon and other celestial bodies for scientific investigation. This paper examines the current status of the law of outer space vis-a-vis the protection and preservation of natural celestial environments. Particular emphasis is placed on the policies on which the legal obligations are based, together with consideration of the non-appropriation principle, and the commercial use of lunar and other celestial resources and areas. In addition, the concepts of international scientific preserves, special regions, keep out zones, and planetary parks are compared and evaluated as potential means to limit the disturbance to celestial environments caused by the activities of mankind.

  7. Nuclear power sources in outer space. [spacecraft propulsion legal aspects

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1978-01-01

    Legal problems associated with nuclear power sources in space are discussed with particular reference to the Cosmos 954 incident. Deliberations of the Legal and Scientific and Technical Subcommittees on the Peaceful Uses of Outer Space on this subject are discussed.

  8. Outer Space Place: Exploring Space at the Maryland Science Center

    NASA Astrophysics Data System (ADS)

    Jan, M. W.; Mendez, F.

    1999-05-01

    The Maryland Science Center has been the state's premier vehicle for informal science education for over 20 years. Every day thousands of school children, families, and out-of-state visitors come for fun and come away with ideas, exciting experiences, and an appetite for more information about science. Opened on April 15, 1999, Outer Space Place (OSP) consolidates the Science Center's space exhibits and activities, both new and refurbished. In this paper, we describe OSP, which features SpaceLink, the Crosby Ramsey Memorial Observatory, the Davis Planetarium, Earth Orbit Gallery, and the Hubble Space Telescope National Visitor Center and provides hands-on educational experiences for kids of all ages. We illustrate how astronomers contribute to and educators benefit from OSP. We conclude with concrete suggestions for astronomers and educators who wish to enhance astronomy education in their local areas.

  9. Law and politics in outer space: A bibliography.

    NASA Technical Reports Server (NTRS)

    White, I. L.; Wilson, C. E.; Vosburgh, J. A.

    1972-01-01

    The materials are categorized by specific topics and by types of materials. The sources are books, articles, reports, United Nations materials, U.S. Government documents, etc. Books are listed by geographical areas, and articles are divided into what are considered to be the major space topics. Book and article sections are also divided into English and foreign language entries. A bibliographical essay introduces the literature to those unacquainted with law and politics of outer space.

  10. Outer Space Treaty Signed in Moscow (1967)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Various shots of the representatives of various countries signing the outer space treaty in Moscow. Various shots as the 'big 3' sign the agreement - Mr Andrei Gromyko for Russia, then British Ambassador Sir Geoffrey Harrison for Britain and American Ambassador Llewllyn Thompson for America. Prime Minister of USSR Alexei Kosygin stands behind and watches events. They address the assembly after signing.

  11. Dishwasher For Earth Or Outer Space

    NASA Technical Reports Server (NTRS)

    Tromble, Jon D.

    1991-01-01

    Dishwashing machine cleans eating utensils in either Earth gravity or zero gravity of outer space. Cycle consists of three phases: filling, washing, and draining. Rotation of tub creates artificial gravity aiding recirculation of water during washing phase in absence of true gravity. Centrifugal air/water separator helps system function in zero gravity. Self-cleaning filter contains interdigitating blades catching solid debris when water flows between them. Later, blades moved back and forth in scissor-like manner to dislodge debris, removed by backflow of water.

  12. Results of studies on long-term exposition of dormant forms of various organisms in outer space environment

    NASA Astrophysics Data System (ADS)

    Novikova, Nataliya; Gusev, Oleg; Sugimoto, Manabu; Deshevaya, Elena; Levinskikh, Margarita; Sychev, Vladimir; Okuda, Takashi; Orlov, Oleg; Alekseev, Victor; Poddubko, Svetlana; Polikarpov, Nikolay

    The planetary quarantine is one of the key problems of deep space exploration. Risks of the possible transfer of biological objects across interplanetary space should be necessarily assessed during space exploration. The risks associated with a possible transfer of biological objects and primarily microorganisms in interplanetary space is a priority for space studies We can assume, that on the exterior side of both unmanned and manned space stations there can be millions of microbial cells, many of which are in spore forms, the stability of which towards the unfavorable factors is extremely high. However, direct evidence to support this assumption, obtained only in recent years. “Biorisk” is an apparatus designed for conduction of space experiments focused on long-term exposition of latent stages of different forms of organism on the outer side of Russian Segment of International Space Station was developed and used in SSC RF - Institute for Biomedical Problems RAS. The purpose of this experiment is to determine the principle capability of preservation of life capacity in test-cultures of microorganisms during long-term exposure (comparable with the term of interplanetary flight) in space. The first experiment was performed using spores of bacteria (Bacillus) and fungi (Penicillium, Aspergillus and Cladosporium) housed in 3 boxes that were exposed to outer space for 7, 12 or 18 months. It was for the first time demonstrated that bacterial and fungal spores could survive an exposure to outer space during the time period comparable with the duration of a return mission to Mars. Moreover, the microbial strains proved viable and highly active. The second experiment was expanded by flying, in addition to the above spores, dormant forms of higher plants, insects, lower crustaceans and vertebrates. The 31-month experiment showed that, in spite of harsher than in the first study temperatures, some specimens remained viable and capable of further multiplication. In

  13. Fabrication of Spherical Reflectors in Outer Space

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Dooley, Jennifer; Dragovan, Mark; Serivens, Wally

    2005-01-01

    A process is proposed for fabrication of lightweight spherical reflectors in outer space for telescopes, radio antennas, and light collectors that would be operated there. The process would obviate the relatively massive substrates and frames needed to support such reflectors in normal Earth gravitation. According to the proposal, fabrication of a reflector would begin with blowing of a bubble to the specified reflector radius. Taking advantage of the outer-space vacuum as a suitable environment for evaporative deposition of metal, a metal-evaporation source would be turned on and moved around the bubble to deposit a reflective metal film over the specified reflector area to a thickness of several microns. Then the source would be moved and aimed to deposit more metal around the edge of the reflector area, increasing the thickness there to approximately equal to 100 micron to form a frame. Then the bubble would be deflated and peeled off the metal, leaving a thin-film spherical mirror having an integral frame. The mirror would then be mounted for use. The feasibility of this technology has been proved by fabricating a prototype at JPL. As shown in the figure, a 2-in. (.5-cm) diameter hemispherical prototype reflector was made from a polymer bubble coated with silver, forming a very smooth surface.

  14. Applications Of Graphite Fluoride Fibers In Outer Space

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheng; Long, Martin; Dever, Therese

    1993-01-01

    Report characterizes graphite fluoride fibers made from commercially available graphitized carbon fibers and discusses some potential applications of graphite fluoride fibers in outer space. Applications include heat-sinking printed-circuit boards, solar concentrators, and absorption of radar waves. Other applications based on exploitation of increased resistance to degradation by atomic oxygen, present in low orbits around Earth.

  15. Nuclear Electric Propulsion for Outer Space Missions

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    2003-01-01

    Today we know of 66 moons in our very own Solar System, and many of these have atmospheres and oceans. In addition, the Hubble (optical) Space Telescope has helped us to discover a total of 100 extra-solar planets, i.e., planets going around other suns, including several solar systems. The Chandra (X-ray) Space Telescope has helped us to discover 33 Black Holes. There are some extremely fascinating things out there in our Universe to explore. In order to travel greater distances into our Universe, and to reach planetary bodies in our Solar System in much less time, new and innovative space propulsion systems must be developed. To this end NASA has created the Prometheus Program. When one considers space missions to the outer edges of our Solar System and far beyond, our Sun cannot be relied on to produce the required spacecraft (s/c) power. Solar energy diminishes as the square of the distance from the Sun. At Mars it is only 43% of that at Earth. At Jupiter, it falls off to only 3.6% of Earth's. By the time we get out to Pluto, solar energy is only .066% what it is on Earth. Therefore, beyond the orbit of Mars, it is not practical to depend on solar power for a s/c. However, the farther out we go the more power we need to heat the s/c and to transmit data back to Earth over the long distances. On Earth, knowledge is power. In the outer Solar System, power is knowledge. It is important that the public be made aware of the tremendous space benefits offered by Nuclear Electric Propulsion (NEP) and the minimal risk it poses to our environment. This paper presents an overview of the reasons for NEP systems, along with their basic components including the reactor, power conversion units (both static and dynamic), electric thrusters, and the launch safety of the NEP system.

  16. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  17. Conceptual Change about Outer Space: How Does Informal Training Combined with Formal Teaching Affect Seventh Graders' Understanding of Gravitation?

    ERIC Educational Resources Information Center

    Frappart, Sören; Frède, Valérie

    2016-01-01

    Concepts relating to outer space are difficult to grasp because we lack direct experience of this environment. We analysed students' understanding of gravitation on Earth and beyond by testing the effect of training on it. In a pretest (T1), 28 seventh graders answered a questionnaire about space concepts. They all then underwent the same formal…

  18. Estimating Relative Positions of Outer-Space Structures

    NASA Technical Reports Server (NTRS)

    Balian, Harry; Breckenridge, William; Brugarolas, Paul

    2009-01-01

    A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.

  19. Outer Space: A Multi-Age, Integrated Subjects Curriculum Unit.

    ERIC Educational Resources Information Center

    Hall, William D.

    This multi-age integrated teaching unit on outer space was developed by 19 rural teachers (grades K-8) from 12 Gallatin County (Montana) districts to associate all school subjects with a common theme, promote teaching efficiency by focusing on more than one subject at the same time, and increase student excitement. Topics explored by each grade…

  20. The sleeping chironomid: an insect survived 18 months of exposure to outer space

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg; Sakashita, Tetsuya; Sychev, Vladimir; Novikova, Nataliya; Sugimoto, Manabu; Malyutina, Ludmila; Kikawada, Takahiro; Okuda, Takashi

    Anhydrobiosis is an ametabolic state of life entered by an organism in response to desiccation. There are only few groups of higher invertebrates capable to survival complete water loss. An African chironomid Polypedilum vanderpalnki is the only anhydrobiotic insect. Larvae of this sleeping chironomid living in temporary pools in semi-arid areas on the African continent become completely desiccated upon drought, but can revive after water becomes available upon the next rain. Dry larvae can revive after several decades of anhydrobiosis and show cross-resistance to different environmental stresses, including temperature fluctuation, high doses of ionizing radiation and organic solvents. This enormous resistance of the sleeping chironomid to extreme environments points to the high probability of their survival and transfer across outer space and makes this species promising model organism for astrobiological studies. In period from 2005 to 2010 the sleeping chironomid was utilized as a model organism in experiments on resistance of resting stages of invertebrates to space environment both inside of ISS ("Aquarium" research program) and on the outer side of ISS ("Biorisk-2" and "EXPOSE-R" experiments) . In the present report we mainly focus on results of "Biorisk-2" experiment where there containers with anhydrobiotic larvae were continuously exposed to outer space environment. Container 1 (FC1) remained exposed to outer space for 405 days (from June 6, 2007 to July 15, 2008), Container 2 (FC2) for 566 days (from June 6, 2007 to December 23, 2008), and Container 3 (FC3) is expected to be returning to the Earth later this year. First analysis of the larvae from the first two containers FC1 and FC2 showed that the sleeping chironomid have succesfully survived the continous space exposure comparable with duration of interpanetary spaceflight and recovered both biomolecules and cells complexes upon rehydration

  1. Low-Outgassing Photogrammetry Targets for Use in Outer Space

    NASA Technical Reports Server (NTRS)

    Gross, Jason N.; Sampler, Henry; Reed, Benjamin B.

    2011-01-01

    A short document discusses an investigation of materials for photogrammetry targets for highly sensitive optical scientific instruments to be operated in outer space and in an outer-space-environment- simulating thermal vacuum chamber on Earth. A key consideration in the selection of photogrammetry-target materials for vacuum environments is the need to prevent contamination that could degrade the optical responses of the instruments. Therefore, in addition to the high levels and uniformity of reflectivity required of photogrammetry-target materials suitable for use in air, the materials sought must exhibit minimal outgassing. Commercially available photogrammetry targets were found to outgas excessively under the thermal and vacuum conditions of interest; this finding prompted the investigators to consider optically equivalent or superior, lower-outgassing alternative target materials. The document lists several materials found to satisfy the requirements, but does not state explicitly whether the materials can be used individually or must be combined in the proper sequence into layered target structures. The materials in question are an aluminized polyimide tape, an acrylic pressure- sensitive adhesive, a 500-A-thick layer of vapor-deposited aluminum, and spherical barium titanate glass beads having various diameters from 20 to 63 microns..

  2. [Analysis of the 4th generation outer space bred Angelica dahurica by FTIR spectroscopy].

    PubMed

    Zhu, Yan-ying; Wu, Peng-le; Liu, Mei-yi; Wang, Zhi-zhou; Guo, Xi-hua; Guan, Ying

    2012-03-01

    The major components of the 4th generation outer space bred angelica and the ground group were determined and analyzed by Fourier transform infrared spectroscopy (FTIR) and second derivative spectrum, considering the large mutation of the plants with space mutagenesis. The results show that the content of the coumarin (1741 cm(-1)), which is the main active components of the space angelica dahurica increased, and the content of the protein (1 459, 1 419 cm(-1)) and the fat (930 cm(-1)) increased slightly, whereas the content of the starch and the dietary fiber reduced drastically. There are obvious differences between the peak values of the second derivative spectra of the plants, revealing that the outer space angelica dahurica contained amine component at 1 279 cm(-1). Space mutation breeding is favor of breeding angelica with better idiosyncrasy.

  3. Survival of rock-colonizing organisms after 1.5 years in outer space.

    PubMed

    Onofri, Silvano; de la Torre, Rosa; de Vera, Jean-Pierre; Ott, Sieglinde; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J; Rabbow, Elke; Sánchez Iñigo, Francisco J; Horneck, Gerda

    2012-05-01

    Cryptoendolithic microbial communities and epilithic lichens have been considered as appropriate candidates for the scenario of lithopanspermia, which proposes a natural interplanetary exchange of organisms by means of rocks that have been impact ejected from their planet of origin. So far, the hardiness of these terrestrial organisms in the severe and hostile conditions of space has not been tested over extended periods of time. A first long-term (1.5 years) exposure experiment in space was performed with a variety of rock-colonizing eukaryotic organisms at the International Space Station on board the European EXPOSE-E facility. Organisms were selected that are especially adapted to cope with the environmental extremes of their natural habitats. It was found that some-but not all-of those most robust microbial communities from extremely hostile regions on Earth are also partially resistant to the even more hostile environment of outer space, including high vacuum, temperature fluctuation, the full spectrum of extraterrestrial solar electromagnetic radiation, and cosmic ionizing radiation. Although the reported experimental period of 1.5 years in space is not comparable with the time spans of thousands or millions of years believed to be required for lithopanspermia, our data provide first evidence of the differential hardiness of cryptoendolithic communities in space.

  4. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  5. Space Weathering on Icy Satellites in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Perlman, Z.; Pearson, N.; Cruikshank, D. P.

    2014-01-01

    Space weathering produces well-known optical effects in silicate minerals in the inner Solar System, for example, on the Moon. Space weathering from solar wind and UV (ultraviolet radiation) is expected to be significantly weaker in the outer Solar System simply because intensities are low. However, cosmic rays and micrometeoroid bombardment would be similar to first order. That, combined with the much higher volatility of icy surfaces means there is the potential for space weathering on icy outer Solar System surfaces to show optical effects. The Cassini spacecraft orbiting Saturn is providing evidence for space weathering on icy bodies. The Cassini Visible and Infrared Mapping Spectrometer (VIMS) instrument has spatially mapped satellite surfaces and the rings from 0.35-5 microns and the Ultraviolet Imaging Spectrograph (UVIS) instrument from 0.1 to 0.2 microns. These data have sampled a complex mixing space between H2O ice and non-ice components and they show some common spectral properties. Similarly, spectra of the icy Galilean satellites and satellites in the Uranian system have some commonality in spectral properties with those in the Saturn system. The UV absorber is spectrally similar on many surfaces. VIMS has identified CO2, H2 and trace organics in varying abundances on Saturn's satellites. We postulate that through the spatial relationships of some of these compounds that they are created and destroyed through space weathering effects. For example, the trapped H2 and CO2 observed by VIMS in regions with high concentrations of dark material may in part be space weathering products from the destruction of H2O and organic molecules. The dark material, particularly on Iapetus which has the highest concentration in the Saturn system, is well matched by space-weathered silicates in the .4 to 2.6 micron range, and the spectral shapes closely match those of the most mature lunar soils, another indicator of space weathered material.

  6. Outer Space...Calling All Readers. 1991 Summer Reading Program Manual.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Cultural Resources, Raleigh. Div. of State Library.

    This manual provides guidelines and materials for librarians planning a summer reading program for children in North Carolina on the theme of outer space. An evaluation form to be returned to the State Library of North Carolina at the end of the summer is included. The introduction includes discussions of summer reading materials and programs;…

  7. Architecture in outer space. [multilayer shell systems filled with gas

    NASA Technical Reports Server (NTRS)

    Pokrovskiy, G. I.

    1974-01-01

    Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.

  8. Planning Assembly Of Large Truss Structures In Outer Space

    NASA Technical Reports Server (NTRS)

    De Mello, Luiz S. Homem; Desai, Rajiv S.

    1992-01-01

    Report dicusses developmental algorithm used in systematic planning of sequences of operations in which large truss structures assembled in outer space. Assembly sequence represented by directed graph called "assembly graph", in which each arc represents joining of two parts or subassemblies. Algorithm generates assembly graph, working backward from state of complete assembly to initial state, in which all parts disassembled. Working backward more efficient than working forward because it avoids intermediate dead ends.

  9. Legal Provisions Applicable to the Definition of Outer Space

    NASA Astrophysics Data System (ADS)

    Thorin, T.

    2002-01-01

    Whether it be the adjective "spatial" or the definition "space", these two terms have, in many respects, a non-identifiable dimension, which serves as a reference point for all players in this field, without being concerned with the exact area of application. This is evident from the vast diversity of corporate names, acronyms, logos and other designations that we often use. Among some of the most worldwide common include: NASA, ISS, ESA, and so on. Without of course forgetting , a field which concerns all legal experts and should not be overlooked is "space law". Thus, it is apparent that although the "space" community (i.e. influential and space- minded governments and relevant international authorities) has been involved in this field over the last few decades, no specific and universally-accepted definition has been adopted to date. Apart from certain demands made or unilateral positions taken by a given state particularly concerned by the matter, it is important to underline that the international community has refrained from making legislation in this area, apart from some rather limited or symbolic provisions introduced. This vagueness, in legal terms, should clearly be taken as the assertion of nationalistic demands, but also shows divergence or even antagonism between states fuelled by hypothetical profits, as was the case when attempts were made to establish maritime boundaries. We can thus by now summarise this issue by asking the following question: "Where does outer space begin?" We shall begin by looking at the sketchy legal references that we have at our disposal, which as lawyers we must use to attempt to find a solution to practical commercial or scientific contingencies which we are increasingly confronted with. Such references include the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies of 10th October 1967, constituting the fundamental space charter

  10. Astroparticles: Messengers from Outer Space

    NASA Astrophysics Data System (ADS)

    Desiati, Paolo

    2016-07-01

    Since Galileo pointed a spyglass toward the sky, 400 years ago, observations empowered by man-made instrumentation have provided us with an enormous leap in the knowledge of how the Universe functions. More and more powerful optical telescopes made it possible for us to reach the farthest corners of space. At the same time, the advances in microphysics and the discovery of the electromagnetic spectrum, made it possible to directly look at the Universe in a way that our eyes cannot see. The discoveries of the intimate structure of matter, of subatomic particles and of how they interact with each other, have led astronomers to use the smallest objects in Nature to observe the farthest reaches of the otherwise invisible Universe. Not unlike Galileo, today we observe Outer Space with visible light and beyond, across the entire electromagnetic spectrum, from long wavelength radio waves to short wavelength gamma rays. But also with instruments detecting cosmic rays (the atomic nuclei we know on Earth) neutrinos (neutral subatomic particles that interact very weakly with matter) and gravitational waves (perturbations of spacetime predicted by General Relativity). Each cosmic messenger provides us with a unique piece of information about their source and the history of their journey to us. Modern astrophysics has the challenging goal to collect as much information as possible from all those messengers, to reconstruct the story of the Universe and how it became what it is today. This journey started with the unsettling discovery that we are only one minuscule dot in the immensity of the Universe and yet we are able to observe objects that are far in space and time. This journey is yet to complete its course, and the more we advance our knowledge, the more we need to understand. This interdisciplinary talk provides an overview of this journey and the future perspectives.

  11. Space Shuttle Orbiter Digital Outer Mold Line Scanning

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.

  12. Dialogue between the Inner and Outer Space of the Building

    NASA Astrophysics Data System (ADS)

    Orchowska, Anita

    2017-10-01

    The article presents the issues connected with the creation of the flow of space and the dialogue between the inner and outer space of the existing architectural objects. While the building industry and contemporary architectural concepts are developing, a man constantly turns to nature. He expresses his incessant longing for being in touch with the natural landscape by using these mutual relations in his solutions. In many cases a building may absorb its closest surroundings to the interior creating the illusive impression of its integrity with nature. Such solutions are commonly used and justified especially in suburban areas, where the natural landscape is an inspiration for every kind of spatial solution. Functional and spatial analysis of the solutions for buildings of different purposes prove that the role of the space flow between the inner and outer space of architectural objects is of great significance in shaping the quality of space, living comfort and aesthetic attractiveness of an object. Another beneficial activity is using transparency in the designed objects, letting the natural light into the inside and taking advantage of open spaces such as patios or atriums. A big role in building the relation between the inside and the outside of an object has the use of adequate materials and material borrowings, which integrate these two separate surroundings and make them similar. Finally, the creation of the junctures and the panoramic views from the interior of the object, of the designed place, emphasizes the interaction between the object and its natural surroundings. Which of these solutions create the best microclimate? May the creation of the relationship between the inside and the outside make the architecture more human, bring a man closer to nature, pretend in an unrestrained way the naturalness of the not natural landscape? What role does the spatial dialogue play from the environmental psychology point of view? Is it a desired phenomenon in

  13. Microwave Brightness Of Land Surfaces From Outer Space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1991-01-01

    Mathematical model approximates microwave radiation emitted by land surfaces traveling to microwave radiometer in outer space. Applied to measurements made by Scanning Multichannel Microwave Radiometer (SMMR). Developed for interpretation of microwave imagery of Earth to obtain distributions of various chemical, physical, and biological characteristics across its surface. Intended primarily for use in mapping moisture content of soil and fraction of Earth covered by vegetation. Advanced Very-High-Resolution Radiometer (AVHRR), provides additional information on vegetative cover, thereby making possible retrieval of soil-moisture values from SMMR measurements. Possible to monitor changes of land surface during intervals of 5 to 10 years, providing significant data for mathematical models of evolution of climate.

  14. Maintaining Peace in Outer Space. Conference on the United Nations of the Next Decade (17th, Cooperstown, NY, June 19-24, 1982).

    ERIC Educational Resources Information Center

    Stanley Foundation, Muscatine, IA.

    This is a report of a conference held to discuss maintaining peace in outer space. Nineteen space specialists participated in the conference. Topics discussed were recent technological developments, international cooperation for peaceful uses of outer space, prevention of weapons in space, and the future role of the United Nations. The report's…

  15. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.

    PubMed

    Zhang, Cui; Li, Liang; Chen, Jianling; Wang, Jinfu

    2015-06-01

    With rapid development of space engineering, research on life sciences in space is being conducted extensively, especially cellular and molecular studies on space medicine. Stem cells, undifferentiated cells that can differentiate into specialized cells, are considered a key resource for regenerative medicine. Research on stem cells under conditions of microgravity during a space flight or a ground-based simulation has generated several excellent findings. To help readers understand the effects of outer space and ground-based simulation conditions on stem cells, we reviewed recent studies on the effects of microgravity (as an obvious environmental factor in space) on morphology, proliferation, migration, and differentiation of stem cells. © 2015 International Federation for Cell Biology.

  16. Technical Guidance from the International Safety Framework for Nuclear Power Source Applications in Outer Space for Design and Development Phases

    NASA Astrophysics Data System (ADS)

    Summerer, Leopold

    2014-08-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space [1] has been adopted, following a multi-year process that involved all major space faring nations in the frame of the International Atomic Energy Agency and the UN Committee on the Peaceful Uses of Outer Space. The safety framework reflects an international consensus on best practices. After the older 1992 Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second document at UN level dedicated entirely to space nuclear power sources.This paper analyses aspects of the safety framework relevant for the design and development phases of space nuclear power sources. While early publications have started analysing the legal aspects of the safety framework, its technical guidance has not yet been subject to scholarly articles. The present paper therefore focuses on the technical guidance provided in the safety framework, in an attempt to assist engineers and practitioners to benefit from these.

  17. Viability of barley seeds after long-term exposure to outer side of international space station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.

    2011-09-01

    Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

  18. Legal regime of human activities in outer space law

    NASA Technical Reports Server (NTRS)

    Golda, Carlo

    1994-01-01

    Current developments in space activities increasingly involve the presence of humans on board spacecraft and, in the near future, on the Moon, on Mars, on board Space Stations, etc. With respect to these challenges, the political and legal issues connected to the status of astronauts are largely unclear and require a new doctrinal attention. In the same way, many legal and political questions remain open in the structure of future space crews: the need for international standards in the definition and training of astronauts, etc.; but, first of all, an international uniform legal definition of astronauts. Moreover, the legal structure for human life and operations in outer space can be a new and relevant paradigm for the definition of similar rules in all the situations and environments in which humans are involved in extreme frontiers. The present article starts from an overview on the existing legal and political definitions of 'astronauts', moving to the search of a more useful definition. This is followed by an analysis of the concrete problems created by human space activities, and the legal and political responses to them (the need for a code of conduct; the structure of the crew and the existing rules in the US and ex-USSR; the new legal theories on the argument; the definition and structure of a code of conduct; the next legal problems in fields such as privacy law, communications law, business law, criminal law, etc.).

  19. Cylindrical Asymmetrical Capacitors for Use in Outer Space

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W.

    2007-01-01

    A report proposes that cylindrical asymmetrical capacitors (CACs) be used to generate small thrusts for precise maneuvering of spacecraft on long missions. The report notes that it has been known for decades that when high voltages are applied to CACs in air, thrusts are generated - most likely as a result of ionization of air molecules and acceleration of the ions by the high electric fields. The report goes on to discuss how to optimize the designs of CACs for operation as thrusters in outer space. Components that could be used to enable outerspace operation include a supply of gas and a shroud, partly surrounding a CAC, into which the gas would flow. Other elements of operation and design discussed in the report include variation of applied voltage and/or of gas flow to vary thrust, effects of CAC and shroud dimensions on thrust and weight, some representative electrode configurations, and several alternative designs, including one in which the basic CAC configuration would be modified into something shaped like a conventional rocket engine with converging/diverging nozzle and an anode with gas feed in the space that, in a conventional rocket engine, would be the combustion chamber.

  20. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  1. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria.

    PubMed

    Gornicka, Agnieszka; Bragoszewski, Piotr; Chroscicki, Piotr; Wenz, Lena-Sophie; Schulz, Christian; Rehling, Peter; Chacinska, Agnieszka

    2014-12-15

    Mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria with the help of protein translocases. For the majority of precursor proteins, the role of the translocase of the outer membrane (TOM) and mechanisms of their transport across the outer mitochondrial membrane are well recognized. However, little is known about the mode of membrane translocation for proteins that are targeted to the intermembrane space via the redox-driven mitochondrial intermembrane space import and assembly (MIA) pathway. On the basis of the results obtained from an in organello competition import assay, we hypothesized that MIA-dependent precursor proteins use an alternative pathway to cross the outer mitochondrial membrane. Here we demonstrate that this alternative pathway involves the protein channel formed by Tom40. We sought a translocation intermediate by expressing tagged versions of MIA-dependent proteins in vivo. We identified a transient interaction between our model substrates and Tom40. Of interest, outer membrane translocation did not directly involve other core components of the TOM complex, including Tom22. Thus MIA-dependent proteins take another route across the outer mitochondrial membrane that involves Tom40 in a form that is different from the canonical TOM complex. © 2014 Gornicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. A Test of the Interstellar Boundary EXplorer Ribbon Formation in the Outer Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamayunov, Konstantin V.; Rassoul, Hamid; Heerikhuisen, Jacob, E-mail: kgamayunov@fit.edu

    NASA’s Interstellar Boundary EXplorer ( IBEX ) mission is imaging energetic neutral atoms (ENAs) propagating to Earth from the outer heliosphere and local interstellar medium (LISM). A dominant feature in all ENA maps is a ribbon of enhanced fluxes that was not predicted before IBEX . While more than a dozen models of the ribbon formation have been proposed, consensus has gathered around the so-called secondary ENA model. Two classes of secondary ENA models have been proposed; the first class assumes weak scattering of the energetic pickup protons in the LISM, and the second class assumes strong but spatially localizedmore » scattering. Here we present a numerical test of the “weak scattering” version of the secondary ENA model using our gyro-averaged kinetic model for the evolution of the phase-space distribution of protons in the outer heliosheath. As input for our test, we use distributions of the primary ENAs from our MHD-plasma/kinetic-neutral model of the heliosphere-LISM interaction. The magnetic field spectrum for the large-scale interstellar turbulence and an upper limit for the amplitude of small-scale local turbulence (SSLT) generated by protons are taken from observations by Voyager 1 in the LISM. The hybrid simulations of energetic protons are also used to set the bounding wavenumbers for the spectrum of SSLT. Our test supports the “weak scattering” version. This makes an additional solid step on the way to understanding the origin and formation of the IBEX ribbon and thus to improving our understanding of the interaction between the heliosphere and the LISM.« less

  3. Study of the effects of the outer space environment on dormant forms of microorganisms, fungi and plants in the `Expose-R' experiment

    NASA Astrophysics Data System (ADS)

    Novikova, N.; Deshevaya, E.; Levinskikh, M.; Polikarpov, N.; Poddubko, S.; Gusev, O.

    2015-01-01

    Investigations of the effects of solar radiation combined with the spaceflight factors on biological objects were performed in the «EXPOSE-R» experiment on the outer surface of ISS. After more than 1 year of outer space exposure, the spores of microorganisms and fungi, as well as two species of plant seeds were analysed for viability and the set of biological properties. The experiment provided evidence that not only bacterial and fungal spores but also dormant forms of plants had the capability to survive a long-term exposure to outer space.

  4. Space Law and Weapons in Space

    NASA Astrophysics Data System (ADS)

    Mosteshar, Sa'id

    2017-07-01

    Although legal principles to govern space were discussed as early as the mid-1950s, they were not formalized until the Outer Space Treaty (OST) of 1967 was adopted and came into force. The Outer Space Treaty establishes a number of principles affecting the placement of weapons in outer space. In particular, it provides for the peaceful use of earth's moon along with other celestial bodies and prohibits the testing of any types of weapons on such bodies. More generally the OST forbids the placement of nuclear weapons or other weapons of mass destruction in outer space. In addition, there are a number of disarmament treaties and agreements emanating from the UN Office for Disarmament Affairs and the Conference on Disarmament that are relevant to weapons in space. One of the fundamental question that arises is what constitutes a weapon and does its placement in space breach the requirement that outer space be used exclusively for peaceful purposes. For example, does a satellite used to control and direct an armed drone breach the peaceful use provision of the OST? There may be risks that without international norms governments and sub-state groups may acquire and use armed drones in ways that threaten regional stability, laws of war, and the role of domestic rule of law in decisions to use force. The nature of weapons and other questions of laws affecting the placement of weapons in space, as well as the use of space assets for non-peaceful purposes, are thus of real significance when considering space law and weapons in space. Examining the characteristics that render a space object a weapon and the role of intent and perception in the issues that arise become essential aspects to consider. This also necessitates examining dual-use systems common to many space systems and operations.

  5. Plasma-Based Detector of Outer-Space Dust Particles

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce; Brinza, David E.; Henry, Michael D.; Clay, Douglas R.

    2006-01-01

    A report presents a concept for an instrument to be flown in outer space, where it would detect dust particles - especially those associated with comets. The instrument would include a flat plate that would intercept the dust particles. The anticipated spacecraft/dust-particle relative speeds are so high that the impingement of a dust particle on the plate would generate a plasma cloud. Simple electric dipole sensors located equidistantly along the circumference of the plate would detect the dust particle indirectly by detecting the plasma cloud. The location of the dust hit could be estimated from the timing of the detection pulses of the different dipoles. The mass and composition of the dust particle could be estimated from the shapes and durations of the pulses from the dipoles. In comparison with other instruments for detecting hypervelocity dust particles, the proposed instrument offers advantages of robustness, large collection area, and simplicity.

  6. The Outer Limits: English.

    ERIC Educational Resources Information Center

    Tyler, Barbara R.; Biesekerski, Joan

    The Quinmester course "The Outer Limits" involves an exploration of unknown worlds, mental and physical, through fiction and nonfiction. Its purpose is to focus attention on the ongoing conquest of the frontiers of the mind, the physical world, and outer space. The subject matter includes identification and investigation of unknown…

  7. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX?1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 minute tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, CA) with the pressure maintained at 20?2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars?1) off of the floor, and one of the authors (Lee) wearing the NDX?1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  8. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX-1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 min tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, California) with the pressure maintained at 20 2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars-1) off of the floor, and one of the authors (Lee) wearing the NDX-1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  9. "Where do auditory hallucinations come from?"--a brain morphometry study of schizophrenia patients with inner or outer space hallucinations.

    PubMed

    Plaze, Marion; Paillère-Martinot, Marie-Laure; Penttilä, Jani; Januel, Dominique; de Beaurepaire, Renaud; Bellivier, Franck; Andoh, Jamila; Galinowski, André; Gallarda, Thierry; Artiges, Eric; Olié, Jean-Pierre; Mangin, Jean-François; Martinot, Jean-Luc; Cachia, Arnaud

    2011-01-01

    Auditory verbal hallucinations are a cardinal symptom of schizophrenia. Bleuler and Kraepelin distinguished 2 main classes of hallucinations: hallucinations heard outside the head (outer space, or external, hallucinations) and hallucinations heard inside the head (inner space, or internal, hallucinations). This distinction has been confirmed by recent phenomenological studies that identified 3 independent dimensions in auditory hallucinations: language complexity, self-other misattribution, and spatial location. Brain imaging studies in schizophrenia patients with auditory hallucinations have already investigated language complexity and self-other misattribution, but the neural substrate of hallucination spatial location remains unknown. Magnetic resonance images of 45 right-handed patients with schizophrenia and persistent auditory hallucinations and 20 healthy right-handed subjects were acquired. Two homogeneous subgroups of patients were defined based on the hallucination spatial location: patients with only outer space hallucinations (N=12) and patients with only inner space hallucinations (N=15). Between-group differences were then assessed using 2 complementary brain morphometry approaches: voxel-based morphometry and sulcus-based morphometry. Convergent anatomical differences were detected between the patient subgroups in the right temporoparietal junction (rTPJ). In comparison to healthy subjects, opposite deviations in white matter volumes and sulcus displacements were found in patients with inner space hallucination and patients with outer space hallucination. The current results indicate that spatial location of auditory hallucinations is associated with the rTPJ anatomy, a key region of the "where" auditory pathway. The detected tilt in the sulcal junction suggests deviations during early brain maturation, when the superior temporal sulcus and its anterior terminal branch appear and merge.

  10. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  11. Young Scientists Explore Inner & Outer Space. Book 6--Intermediate Level. A Good Apple Activity Book.

    ERIC Educational Resources Information Center

    DeBruin, Jerry

    Designed to develop creativity in young learners, this book contains interdisciplinary activities which focus on the theme of space (inner and outer). Activity pages are provided that can serve as front and back covers of a student booklet and the suggested activities can be duplicated for insertion between the covers resulting in a booklet for…

  12. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  13. Space headache on Earth: head-down-tilted bed rest studies simulating outer-space microgravity.

    PubMed

    van Oosterhout, W P J; Terwindt, G M; Vein, A A; Ferrari, M D

    2015-04-01

    Headache is a common symptom during space travel, both isolated and as part of space motion syndrome. Head-down-tilted bed rest (HDTBR) studies are used to simulate outer space microgravity on Earth, and allow countermeasure interventions such as artificial gravity and training protocols, aimed at restoring microgravity-induced physiological changes. The objectives of this article are to assess headache incidence and characteristics during HDTBR, and to evaluate the effects of countermeasures. In a randomized cross-over design by the European Space Agency (ESA), 22 healthy male subjects, without primary headache history, underwent three periods of -6-degree HDTBR. In two of these episodes countermeasure protocols were added, with either centrifugation or aerobic exercise training protocols. Headache occurrence and characteristics were daily assessed using a specially designed questionnaire. In total 14/22 (63.6%) subjects reported a headache during ≥1 of the three HDTBR periods, in 12/14 (85.7%) non-specific, and two of 14 (14.4%) migraine. The occurrence of headache did not differ between HDTBR with and without countermeasures: 12/22 (54.5%) subjects vs. eight of 22 (36.4%) subjects; p = 0.20; 13/109 (11.9%) headache days vs. 36/213 (16.9%) headache days; p = 0.24). During countermeasures headaches were, however, more often mild (p = 0.03) and had fewer associated symptoms (p = 0.008). Simulated microgravity during HDTBR induces headache episodes, mostly on the first day. Countermeasures are useful in reducing headache severity and associated symptoms. Reversible, microgravity-induced cephalic fluid shift may cause headache, also on Earth. HDTBR can be used to study space headache on Earth. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Long-life mission reliability for outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Mccall, M. T.; Rouch, L.; Maycock, J. N.

    1976-01-01

    The results of a literature analysis on the effects of prolonged exposure to deep space environment on the properties of outer planet atmospheric entry probe components are presented. Materials considered included elastomers and plastics, pyrotechnic devices, thermal control components, metal springs and electronic components. The rates of degradation of each component were determined and extrapolation techniques were used to predict the effects of exposure for up to eight years to deep space. Pyrotechnic devices were aged under accelerated conditions to an equivalent of eight years in space and functionally tested. Results of the literature analysis of the selected components and testing of the devices indicated that no severe degradation should be expected during an eight year space mission.

  15. A Code of Ethics and Standards for Outer-Space Commerce

    NASA Astrophysics Data System (ADS)

    Livingston, David M.

    2002-01-01

    Now is the time to put forth an effective code of ethics for businesses in outer space. A successful code would be voluntary and would actually promote the growth of individual companies, not hinder their efforts to provide products and services. A properly designed code of ethics would ensure the development of space commerce unfettered by government-created barriers. Indeed, if the commercial space industry does not develop its own professional code of ethics, government- imposed regulations would probably be instituted. Should this occur, there is a risk that the development of off-Earth commerce would become more restricted. The code presented in this paper seeks to avoid the imposition of new barriers to space commerce as well as make new commercial space ventures easier to develop. The proposed code consists of a preamble, which underscores basic values, followed by a number of specific principles. For the most part, these principles set forth broad commitments to fairness and integrity with respect to employees, consumers, business transactions, political contributions, natural resources, off-Earth development, designated environmental protection zones, as well as relevant national and international laws. As acceptance of this code of ethics grows within the industry, general modifications will be necessary to accommodate the different types of businesses entering space commerce. This uniform applicability will help to assure that the code will not be perceived as foreign in nature, potentially restrictive, or threatening. Companies adopting this code of ethics will find less resistance to their space development plans, not only in the United States but also from nonspacefaring nations. Commercial space companies accepting and refining this code would demonstrate industry leadership and an understanding that will serve future generations living, working, and playing in space. Implementation of the code would also provide an off-Earth precedent for a modified

  16. Reusable Hybrid Propellant Modules for Outer-Space Transport

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Mankins, John C.

    2005-01-01

    A report summarizes the concept of reusable hybrid propellant modules (HPMs), which would be used in outer space for long-term cryogenic storage of liquefied spacecraft-propellant gases, including for example, oxygen and hydrogen for combustion-based chemical rocket engines and xenon for electric thrusters. The HPM concept would provide the fundamental building block for an efficient, reusable in-space transportation system for both crewed and uncrewed missions. Each HPM would be equipped to implement an advanced zero-boil-off method of managing cryogenic fluids, and would include a fluid-transfer interface comprising standardized fittings that would be compatible with fittings on all supply facilities and on spacecraft to be supplied. The HPM, combined with a chemical or electric orbital transfer spacecraft, would provide an integrated propulsion system. HPMs would supply chemical propellant for time-critical transfers such as crewed missions, and utilize the more efficient electric-propulsion transfer vehicles to transport filled HPMs to the destinations and to return empty HPMs back to near-Earth orbits or other intermediate locations for replenishment and reuse. The HPM prepositioned using electric propulsion would provide the chemical propellant for the crew s return trip in a much more efficient manner than a chemical-only approach. The propellants to fill the HPMs would be delivered from the Earth or other initial supply locations to the intermediate locations by use of automated, compatible spacecraft designed specifically for that purpose. Additionally, multiple HPMs could be aggregated and positioned in orbits and on planets, moons, and asteroids to supply fluids to orbiting and interplanetary spacecraft.

  17. Space weathering and the color indexes of minor bodies in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Zuzana; Brunetto, Rosario; Melita, Mario; Strazzulla, Giovanni

    2012-09-01

    The surfaces of small bodies in the outer Solar System are rich in organic compounds and carbonaceous refractories mixed with ices and silicates. As made clear by dedicated laboratory experiments space weathering (e.g. energetic ion bombardment) can produce red colored materials starting from bright and spectrally flat ices. In a classical scenario, the space weathering processes “nurture” alter the small bodies surface spectra but are in competition with resurfacing agents that restore the original colors, and the result of these competing processes continuously modifying the surfaces is supposed to be responsible for the observed spectral variety of those small bodies. However an alternative point of view is that the different colors are due to “nature” i.e. to the different primordial composition of different objects. In this paper we present a model, based on laboratory results, that gives an original contribution to the “nature” vs. “nurture” debate by addressing the case of surfaces showing different fractions of rejuvenated vs. space weathered surface, and calculating the corresponding color variations. We will show how a combination of increasing dose coupled to different resurfacing can reproduce the whole range of observations of small outer Solar System bodies. Here we demonstrate, for the first time that objects having a fully weathered material turn back in the color-color diagrams. At the same time, object with the different ratio of pristine and weathered surface areas lay on specific lines in color-color diagrams, if exposed to the same amount of irradiation.

  18. The Role of the United Nations Committee on the Peaceful Uses of Outer Space in Building Capacity

    NASA Astrophysics Data System (ADS)

    Haubold, Hans

    The Office for Outer Space Affairs (OOSA) will provide an overview of achievements of UN- COPUOS, UNISPACE Conferences, particularly the establishment of the Programme on Space Applications and its priority thematic areas, UN-affiliated Regional Centres for Space Science and Technology Education, the International Committee on Global Navigation Satellite Systems (ICG), the UN Platform for Space-based Information for Disaster Management and Emergency Response (UN-Spider), and legal framework governing space activities of UN Member States. OOSA will review results of the United Nations Basic Space Science Initiative, particularly the development of networks of astronomical telescope facilities, planetariums, and instrument arrays for space research in developing nations. The mission of OOSA, implemented through on-going programmes developed for the International Heliophysical Year 2007 (IHY2007) and the International Year of Astronomy 2009 (IYA2009) will be highlighted.

  19. Diagenetic patterns and pore space distribution along a platform to outer-shelf transect (Urgonian limestone, Barremian-Aptian, SE France)

    NASA Astrophysics Data System (ADS)

    Léonide, Philippe; Fournier, François; Reijmer, John J. G.; Vonhof, Hubert; Borgomano, Jean; Dijk, Jurrien; Rosenthal, Maelle; van Goethem, Manon; Cochard, Jean; Meulenaars, Karlien

    2014-06-01

    The Urgonian limestones of Late Barremian/Early Aptian from Provence (SE, France) are characterized by the occurrence of microporous limestones at regional scale alternating with tight carbonates. This study, based on petrographical (sediment texture, facies) and diagenetical analyses (cement stratigraphy, porosity and isotope geochemistry) of more than 800 limestone samples provides insight into the parameters controlling the genesis, preservation or occlusion of microporosity along an inner platform to outer shelf transect. The tight and microporous Urgonian limestones from Provence can be grouped into 5 rock-types based on textures, associated depositional environments, porosity and pore-type, being: (1) tight inner-platform: TIP; (2) porous inner platform: PIP; (3) tight outer platform: TOP; (4) porous outer platform: POP and (5) tight outer shelf: TOS. In tight (TIP, TOP and TOS types) limestones intergranular and intragranular pore spaces were entirely occluded by early marine and/or early meteoric cementation, whereas in microporous (PIP, POP) limestones a significant fraction of the intergranular macroporosity was preserved during early and shallow burial diagenesis. Micrite neomorphism (hybrid Ostwald ripening process) occurred during meteoric shallow burial diagenesis in PIP and POP limestones during the regional Durancian Uplift event (Albian-Lower Cenomanian). This process resulted in microporosity enhancement and preservation. Circulation of meteoric fluids during exhumation produces intercrystalline microporosity enhancement and moldic porosity development. The present study documents the important role that both early diagenetic and depositional cycles and long-term tectonic processes have on pore space evolution and distribution in Mesozoic platform carbonates.

  20. Leader psychobiography and social movement studies: a Kleinian case study of Bruce Gagnon and the outer space protection movement.

    PubMed

    Ormrod, James S

    2012-10-01

    This paper begins by highlighting the necessity of combining sociological and psychoanalytic approaches in the study of social movements, but acknowledges that psychobiographical studies of prominent movement leaders sit uneasily within the sociological tradition. The author attempts to illustrate that leader psychobiography can make a contribution to understanding social movements, however, provided it offers a way into understanding broader psychosocial issues within the movement. This is achieved through a psychobiographical portrait of Bruce Gagnon, a leader within the outer space protection movement. The author argues for the central importance of both paranoid-schizoid and depressive mechanisms throughout Gagnon's activist career. These eventually came to underpin Gagnon's commitment to protecting outer space as a Kleinian "good object." The paper concludes by suggesting how Gagnon's psychobiography might be instructive in attempts to understand the wider movement, utilizing Erikson's model for psychohistorical study as a framework.

  1. Reacting to nuclear power systems in space: American public protests over outer planetary probes since the 1980s

    NASA Astrophysics Data System (ADS)

    Launius, Roger D.

    2014-03-01

    The United States has pioneered the use of nuclear power systems for outer planetary space probes since the 1970s. These systems have enabled the Viking landings to reach the surface of Mars and both Pioneers 10 and 11 and Voyagers 1 and 2 to travel to the limits of the solar system. Although the American public has long been concerned about safety of these systems, in the 1980s a reaction to nuclear accidents - especially the Soviet Cosmos 954 spacecraft destruction and the Three Mile Island nuclear power plant accidents - heightened awareness about the hazards of nuclear power and every spacecraft launch since that time has been contested by opponents of nuclear energy. This has led to a debate over the appropriateness of the use of nuclear power systems for spacecraft. It has also refocused attention on the need for strict systems of control and rigorous checks and balances to assure safety. This essay describes the history of space radioisotope power systems, the struggles to ensure safe operations, and the political confrontation over whether or not to allow the launch the Galileo and Cassini space probes to the outer planets. Effectively, these efforts have led to the successful flights of 12 deep space planetary probes, two-thirds of them operated since the accidents of Cosmos 954, Three Mile Island, and Chernobyl.

  2. Marginally outer trapped surfaces and symmetries

    NASA Astrophysics Data System (ADS)

    Carrasco, Alberto; Mars, Marc

    2009-05-01

    We study properties of outermost marginally outer trapped surfaces in slices of space-times possessing certain symmetries, like isometries, homotheties or conformal Killings. In particular, we find restrictions on these surfaces for the vector field generating the symmetry. As an application we give a result of non-existence of outermost marginally outer trapped surfaces in accelerated Friedmann-Lemaître-Roberson-Walker spacetimes.

  3. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-10-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.

  4. Distinct constrictive processes, separated in time and space, divide caulobacter inner and outer membranes.

    PubMed

    Judd, Ellen M; Comolli, Luis R; Chen, Joseph C; Downing, Kenneth H; Moerner, W E; McAdams, Harley H

    2005-10-01

    Cryoelectron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner membrane (IM) and then the outer membrane (OM) in a manner distinctly different from that of septum-forming bacteria. FLIP experiments had previously shown cytoplasmic compartmentalization (when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments) occurring 18 min before daughter cell separation in a 135-min cell cycle so the two constrictive processes are separated in both time and space. In the very latest stages of both IM and OM constriction, short membrane tether structures are observed. The smallest observed pre-fission tethers were 60 nm in diameter for both the inner and outer membranes. Here, we also used FLIP experiments to show that both membrane-bound and periplasmic fluorescent proteins diffuse freely through the FtsZ ring during most of the constriction procession.

  5. Preprotein transport machineries of yeast mitochondrial outer membrane are not required for Bax-induced release of intermembrane space proteins.

    PubMed

    Sanjuán Szklarz, Luiza K; Kozjak-Pavlovic, Vera; Vögtle, F-Nora; Chacinska, Agnieszka; Milenkovic, Dusanka; Vogel, Sandra; Dürr, Mark; Westermann, Benedikt; Guiard, Bernard; Martinou, Jean-Claude; Borner, Christoph; Pfanner, Nikolaus; Meisinger, Chris

    2007-04-20

    The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.

  6. International Directory of Facilities for Education and Training in Basic Subjects Related to the Peaceful Uses of Outer Space.

    ERIC Educational Resources Information Center

    United Nations, New York, NY.

    International facilities are described in the first section of this directory on the facilities for education and training in basic subjects related to the peaceful uses of outer space. Entries are organized into these categories: organizations of the United Nations system; intergovernmental agencies; international agencies; international…

  7. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth

    PubMed Central

    Cockell, Charles S; Rettberg, Petra; Rabbow, Elke; Olsson-Francis, Karen

    2011-01-01

    An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration. PMID:21593797

  8. Simulating Scenes In Outer Space

    NASA Technical Reports Server (NTRS)

    Callahan, John D.

    1989-01-01

    Multimission Interactive Picture Planner, MIP, computer program for scientifically accurate and fast, three-dimensional animation of scenes in deep space. Versatile, reasonably comprehensive, and portable, and runs on microcomputers. New techniques developed to perform rapidly calculations and transformations necessary to animate scenes in scientifically accurate three-dimensional space. Written in FORTRAN 77 code. Primarily designed to handle Voyager, Galileo, and Space Telescope. Adapted to handle other missions.

  9. Gradient rotating outer volume excitation (GROOVE): A novel method for single-shot two-dimensional outer volume suppression.

    PubMed

    Powell, Nathaniel J; Jang, Albert; Park, Jang-Yeon; Valette, Julien; Garwood, Michael; Marjańska, Małgorzata

    2015-01-01

    To introduce a new outer volume suppression (OVS) technique that uses a single pulse and rotating gradients to accomplish frequency-swept excitation. This new technique, which is called gradient rotating outer volume excitation (GROOVE), produces a circular or elliptical suppression band rather than suppressing the entire outer volume. Theoretical and k-space descriptions of GROOVE are provided. The properties of GROOVE were investigated with simulations, phantom, and human experiments performed using a 4T horizontal bore magnet equipped with a TEM coil. Similar suppression performance was obtained in phantom and human brain using GROOVE with circular and elliptical shapes. Simulations indicate that GROOVE requires less SAR and time than traditional OVS schemes, but traditional schemes provide a sharper transition zone and less residual signal. GROOVE represents a new way of performing OVS in which spins are excited temporally in space on a trajectory that can be tailored to fit the shape of the suppression region. In addition, GROOVE is capable of suppressing tailored regions of space with more flexibility and in a shorter period of time than conventional methods. GROOVE provides a fast, low SAR alternative to conventional OVS methods in some applications (e.g., scalp suppression). © 2014 Wiley Periodicals, Inc.

  10. Welcome to Outer Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This video gives a brief history of the Jet Propulsion Laboratory, current missions and what the future may hold. Scenes includes various planets in the solar system, robotic exploration of space, discussions on the Hubble Space Telescope, the source of life, and solar winds. This video was narrated by Jodie Foster. Animations include: close-up image of the Moon; close-up images of the surface of Mars; robotic exploration of Mars; the first mapping assignment of Mars; animated views of Jupiter; animated views of Saturn; and views of a Giant Storm on Neptune called the Great Dark Spot.

  11. Ground Based Studies of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Trafton, Laurence M.

    2005-01-01

    This report covers progress to date under this grant on our continuing program to conduct ground based studies of the outer solar system planets and satellites, with emphasis on spectroscopy and atmospheric phenomena. The research continues under our new PAST grant, NNG04G131G beginning 5/1/2004. The original period of performance of the subject grant was 3/1/2001 to 2/28/2004, but was extended one year at no cost. Although there is some overlap in the scientific projects conducted during the extended year with those of the new grant, this report is confined to the portion of the work funded under NAG5-10435. The primary goals for this grant period were a comparative study of outer planet thermospheres/ionospheres near solar maximum, extended to the mid-IR, and the investigation of molecular dimers in outer solar system atmospheres. This project supports NASA's planned space missions, Jupiter Polar Orbiter, outer Planet Microprobes, and the recent Cassini flyby of Jupiter. It also supports the OSS strategic plan themes, The Exploration of the Solar System and The Sun-Earth Connection/ Understanding comparative planetary space environments.

  12. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission

    PubMed Central

    Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.

    2012-01-01

    Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691

  13. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission.

    PubMed

    Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J

    2012-05-01

    Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.

  14. Austrian National Space Law

    NASA Astrophysics Data System (ADS)

    Steinkogler, Cordula

    2017-08-01

    The Austrian Outer Space Act, which entered into force in December 2011; and the Austrian Outer Space Regulation, which has been in force since February 2015, form the legal framework for Austrian national space activities. The elaboration of national space legislation became necessary to ensure compliance with Austria's obligations as State Party to the five United Nations Space Treaties when the first two Austrian satellites were launched in 2012 and Austria became a launching state on its own. The legislation comprehensively regulates legal aspects related to space activities, such as authorization, supervision, and termination of space activities; registration and transfer of space objects; recourse of the government against the operator; as well as implementation of the law and sanctions for its infringement. One of the main purposes of the law is to ensure the authorization of national space activities. The Outer Space Act sets forth the main conditions for authorization, which inter alia refer to the expertise of the operator; requirements for orbital positions and frequency assignments; space debris mitigation, insurance requirements, and the safeguard of public order; public health; national security as well as Austrian foreign policy interests; and international law obligations. The Austrian Outer Space Regulation complements these provisions by specifying the documents the operator must submit as evidence of the fulfillment of the authorization conditions, which include the results of safety tests, emergency plans, and information on the collection and use of Earth observation data. Particular importance is attached to the mitigation of space debris. Operators are required to take measures in accordance with international space debris mitigation guidelines for the avoidance of operational debris, the prevention of on-orbit break-ups and collisions, and the removal of space objects from Earth orbit after the end of the mission. Another specificity of the

  15. Eighteenth Space Simulation Conference: Space Mission Success Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1994-01-01

    The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.'

  16. Spend a Day in Outer Space

    ERIC Educational Resources Information Center

    Journal of Aerospace Education, 1975

    1975-01-01

    Describes the Alabama Space and Rocket Center in Huntsville, Alabama as stimulating experience for students in aerospace education. The center has the largest collection of space-age hardware assembled under one roof, a Space Flight simulator, a Skylab space station mock-up and many more interesting exhibits. (BR)

  17. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  18. Suprachoroidal layer and suprachoroidal space delineating the outer margin of the choroid in swept-source optical coherence tomography.

    PubMed

    Michalewska, Zofia; Michalewski, Janusz; Nawrocka, Zofia; Dulczewska-Cichecka, Karolina; Nawrocki, Jerzy

    2015-02-01

    To define the morphology of outer choroidal margins in swept-source optical coherence tomography. This is a prospective observational study of 180 eyes: 20 eyes of healthy volunteers, 20 eyes of myopic patients, and 20 eyes from each of the following groups: macular hole, lamellar macular hole, epiretinal membranes, drusen, dry age-related macular degeneration (AMD), neovascular AMD, and vitreomacular traction. A single 12-mm wide swept-source optical coherence tomography image for each of the examined eyes consisting of 1,024 A-scans has been created. The main outcome measure selected was to estimate the presence of suprachoroidal layer, as well as to estimate the ability to delineate the outer choroidoscleral boundary using the software available (DRI-OCT) and to determine its shape. Suprachoroidal layer was observed in 5% of healthy emmetropic eyes, in 50% of eyes with full-thickness macular holes, and in 60% of eyes with vitreomacular traction syndrome. It was also present in 50% of eyes with dry AMD and in 20% of eyes with neovascular AMD. The outer margin of the choroid in all eyes of the healthy volunteers and in eyes with macular diseases has been delineated correctly. In all healthy and myopic eyes, we recognized the outer choroidoscleral boundary as having a regular shape following the natural oval contour of the globe. In eyes with epiretinal membranes, macular hole, vitreomacular traction, and AMD, the outer choroidoscleral boundary was irregular; the choroid varied in thickness from point to point. Swept-source optical coherence tomography enables exact visualization of the outer choroidoscleral boundary. Suprachoroidal layer consisting of two bands has been recognized, the upper of which is hyperreflective and the lower of which is hyporeflective. It may be supposed that the lower hyporeflective band corresponds to suprachoroidal space, which was not earlier visualized in vivo in eyes without choroidal effusion. Suprachoroidal layer in myopic and

  19. Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as the outer boundary

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M. K.; Chen, Y.

    2013-12-01

    The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on THEMIS measurements to express the boundary flux as three fit functions of solar wind parameters in a response window, that depend on energy and which solar parameter is used: speed, density, or both (Shin and Lee, 2013). The Dartmouth radial diffusion model has been run using LANL geosynchronous satellite measurements as the outer boundary for a one-month interval in July to August 2004 and the calculated phase space density (PSD) is compared with GPS measurements at the GPS orbit (L=4.16), at magnetic equatorial plane crossings, as a test of the model. We also used the outer boundary generated from the Shin and Lee model and examined this boundary condition by computing the error relative to the simulation using a LANL geosynchronous spacecraft data-driven outer boundary. The calculation shows that there is overestimation and underestimation at different times, however the new boundary condition can be used to drive the radial diffusion model generally, producing the phase space density increase and dropout during a storm with a relatively small error. Having this new method based on a solar wind parametrized data set, we can run the radial diffusion model for storms when particle measurements are not available at the outer boundary. We chose the Whole Heliosphere Interval (WHI) as an example and compared the result with MHD/test-particle simulations (Hudson et al., 2012), obtaining much better agreement with PSD based on GPS measurements at L=4.16 using the diffusion model, which incorporates atmospheric losses.

  20. Conceptual Design of In-Space Vehicles for Human Exploration of the Outer Planets

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Alexander, R. A.; Chapman, J. M.; Fincher, S. S.; Hopkins, R. C.; Philips, A. D.; Polsgrove, T. T.; Litchford, R. J.; Patton, B. W.; Statham, G.

    2003-01-01

    During FY-2002, a team of engineers from TD30/Advanced Concepts and TD40/Propulsion Research Center embarked on a study of potential crewed missions to the outer solar system. The study was conducted under the auspices of the Revolutionary Aerospace Systems Concepts activity administered by Langley Research Center (LaRC). The Marshall Space Flight Center (MSFC) team interacted heavily with teams from other Centers including Glenn Research Center, LaRC, Jet Propulsion Laboratory, and Johnson Space Center. The MSFC team generated five concept missions for this project. The concept missions use a variety of technologies, including magnetized target fusion (MTF), magnetoplasmadynamic thrusters, solid core reactors, and molten salt reactors in various combinations. The Technical Publication (TP) reviews these five concepts and the methods used to generate them. The analytical methods used are described for all significant disciplines and subsystems. The propulsion and power technologies selected for each vehicle are reviewed in detail. The MSFC team also expended considerable effort refining the MTF concept for use with this mission. The results from this effort are also contained within this TP. Finally, the lessons learned from this activity are summarized in the conclusions section.

  1. Space Electronic Test Engineering

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  2. Evolution of Magnetic Rayleigh–Taylor Instability into the Outer Solar Corona and Low Interplanetary Space

    NASA Astrophysics Data System (ADS)

    Mishra, Sudheer K.; Singh, Talwinder; Kayshap, P.; Srivastava, A. K.

    2018-03-01

    We analyze the observations from Solar TErrestrial RElations Observatory (STEREO)-A and B/COR-1 of an eruptive prominence in the intermediate corona on 2011 June 7 at 08:45 UT, which consists of magnetic Rayleigh–Taylor (MRT) unstable plasma segments. Its upper-northward segment shows spatio-temporal evolution of MRT instability in form of finger structures up to the outer corona and low interplanetary space. Using the method of Dolei et al., It is estimated that the density in each bright finger is greater than the corresponding dark region lying below it in the surrounding intermediate corona. The instability is evolved due to wave perturbations that are parallel to the magnetic field at the density interface. We conjecture that the prominence plasma is supported by tension component of the magnetic field against gravity. Through the use of linear stability theory, the magnetic field is estimated as 21–40 mG to suppress growth of MRT instability in the observed finger structures. In the southward plasma segment, a horn-like structure is observed at 11:55 UT in the intermediate corona that also indicates MRT instability. Falling blobs are also observed in both of the plasma segments. In the outer corona, up to 6–13 solar radii, the mushroom-like plasma structures have been identified in the upper-northward MRT unstable plasma segment using STEREO-A/COR-2. These structures most likely grew due to the breaking and twisting of fingers at large spatial scales in weaker magnetic fields. In the lower interplanetary space up to 20 solar radii, these structures are fragmented into various small-scale localized plasma spikes, most likely due to turbulent mixing.

  3. Space Microbiology

    PubMed Central

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.

    2010-01-01

    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  4. Emerging communications technologies for outer-planet exploration

    NASA Technical Reports Server (NTRS)

    Stelzried, C.; Lesh, J.

    2001-01-01

    Communication over long free space distances is extremely difficult due to the inverse squared propagation losses associated with link distance. That makes communications particularly difficult from outer planet destinations.

  5. Outer planet probe navigation. [considering Pioneer space missions

    NASA Technical Reports Server (NTRS)

    Friedman, L.

    1974-01-01

    A series of navigation studies in conjunction with outer planet Pioneer missions are reformed to determine navigation requirements and measurement systems in order to target probes. Some particular cases are established where optical navigation is important and some cases where radio alone navigation is suffucient. Considered are a direct Saturn mission, a Saturn Uranus mission, a Jupiter Uranus mission, and a Titan probe mission.

  6. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  7. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  8. The Seventeenth Space Simulation Conference. Terrestrial Test for Space Success

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1992-01-01

    The Institute of Environmental Sciences' Seventeenth Space Simulation Conference, 'Terrestrial Test for Space Success' provided participants with a forum to acquire and exchange information on the state of the art in space simulation, test technology, atomic oxygen, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme of 'terrestrial test for space success.'

  9. Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Benson, Scott; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey

    2002-01-01

    Recent interest in outer planetary targets by the Office of Space Science has spurred the search for technology options to enable relatively quick missions to outer planetary targets. Several options are being explored including solar electric propelled stages combined with aerocapture at the target and nuclear electric propulsion. Another option uses radioisotope powered electric thrusters to reach the outer planets. Past work looked at using this technology to provide faster flybys. A better use for this technology is for outer planet orbiters. Combined with medium class launch vehicles and a new direct trajectory these small, sub-kilowatt ion thrusters and Stirling radioisotope generators were found to allow missions as fast as 5 to 12 years for objects from Saturn to Pluto, respectively. Key to the development is light spacecraft and science payload technologies.

  10. 30 CFR 33.31 - Test space.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Test space. 33.31 Section 33.31 Mineral... § 33.31 Test space. (a) Drilling tests shall be conducted in a test space formed by two curtains suspended across a mine opening in such a manner that the volume of the test space shall be approximately 2...

  11. 30 CFR 33.31 - Test space.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Test space. 33.31 Section 33.31 Mineral... § 33.31 Test space. (a) Drilling tests shall be conducted in a test space formed by two curtains suspended across a mine opening in such a manner that the volume of the test space shall be approximately 2...

  12. Exploring the outer planets

    NASA Technical Reports Server (NTRS)

    Parks, R. J.

    1979-01-01

    Initial, current and planned United States projects for the spacecraft exploration of the outer planets of the solar system are presented. Initial plans were developed in the mid-1960's for the exploration of the outer planets by utilizing the gravity-assist technique during a fortuitous alignment of the outer planets in the Grand Tour Project, however although state-of-the-art space technology could have supported the project, it was considered too expensive, therefore politically infeasible. Subsequently, the Pioneer Project was undertaken to explore the asteroid belt and the environment around Jupiter and the Voyager Project was undertaken to send two spacecraft to fly by Jupiter and utilize its gravity assist to reach Saturn. The successful Pioneer 10 and 11 missions have provided important information on the effects of the asteroid belt and the severe radiation environment around Jupiter, and Voyager 1 has collected information about Jupiter, its magnetic fields and radiation zones, and its satellites. Project Galileo is intended to be launched in January 1982 to conduct an intensive investigation of Jupiter, its satellites and immediate environment and a Saturn Orbiter dual probe mission and a Uranus orbiter are also under consideration.

  13. Drug discovery strategies to outer membrane targets in Gram-negative pathogens.

    PubMed

    Brown, Dean G

    2016-12-15

    This review will cover selected recent examples of drug discovery strategies which target the outer membrane (OM) of Gram-negative bacteria either by disruption of outer membrane function or by inhibition of essential gene products necessary for outer membrane assembly. Significant advances in pathway elucidation, structural biology and molecular inhibitor designs have created new opportunities for drug discovery within this target-class space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An Overview of Integration and Test of the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Drury, Michael; Becker, Neil; Bos, Brent; Davila, Pamela; Frey, Bradley; Hylan, Jason; Marsh, James; McGuffey, Douglas; Novak, Maria; Ohl, Raymond; hide

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1x2.2x1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are integrated and aligned to the structure under ambient, clean room conditions. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature. We present an overview of the ISIM integration within the context of Observatory-level construction. We describe the integration and verification plan for the ISIM element, including an overview of our incremental verification approach, ambient mechanical integration and test plans and optical alignment and cryogenic test plans. We describe key ground support equipment and facilities.

  15. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  16. Space Junk Norms: US Advantages in Creating a Debris Reducing Outer Space Norm

    DTIC Science & Technology

    2011-05-01

    and White Knight ,” http://www.scaled.com/projects/tierone/ (accessed 25 March 2011). 26 Mike Moore argues that the nearest global competitor to the...formation of norms. 27 For an explanation of the US 2008 ASAT test, see Jamie McIntyre...the Space Age. Baltimore: Johns Hopkins University Press, 1997. McIntyre, Jamie , Suzanne Malveaux and Miles O’Brien. “Navy Missile Hits Dying Spy

  17. Self-sterilization of bodies during outer planet entry

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Jaworski, W.; Taylor, D. M.

    1974-01-01

    A body encountering the atmosphere of an outer planet is subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body nonviable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter.

  18. Marshall Space Flight Center Research and Technology Report 2015

    NASA Technical Reports Server (NTRS)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler); Morris, H. C. (Compiler)

    2015-01-01

    The investments in technology development we made in 2015 not only support the Agency's current missions, but they will also enable new missions. Some of these projects will allow us to develop an in-space architecture for human space exploration; Marshall employees are developing and testing cutting-edge propulsion solutions that will propel humans in-space and land them on Mars. Others are working on technologies that could support a deep space habitat, which will be critical to enable humans to live and work in deep space and on other worlds. Still others are maturing technologies that will help new scientific instruments study the outer edge of the universe-instruments that will provide valuable information as we seek to explore the outer planets and search for life.

  19. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  20. 30 CFR 33.31 - Test space.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test space. 33.31 Section 33.31 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.31 Test space. (a) Drilling tests shall be conducted in a test space formed by two curtains...

  1. 30 CFR 33.31 - Test space.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Test space. 33.31 Section 33.31 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.31 Test space. (a) Drilling tests shall be conducted in a test space formed by two curtains...

  2. 30 CFR 33.31 - Test space.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Test space. 33.31 Section 33.31 Mineral... MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Test Requirements § 33.31 Test space. (a) Drilling tests shall be conducted in a test space formed by two curtains...

  3. Chicago Meets Outer Space program

    NASA Technical Reports Server (NTRS)

    Allen, H., Jr.

    1978-01-01

    The symposium included personal appearances by NASA astronauts, NASA exhibits, souvenir photos for each student attending the symposium, live demonstrations of how the Communication Technology Satellite links the U. S. with people around the world, and talks on job opportunities in aerospace and on the benefits of space. Monday through Friday, the program was directed mainly at (public, parochial and private) student groups, each of which spent a half day on the CSU campus to participate in the symposium activities. On Saturday and Sunday, the symposium was open to the general public and consisted of the NASA exhibits, films, a shorter version of the lectures and a special demonstration and tasting opportunity of space food meal systems. These quick meal systems that were designed for senior citizens.

  4. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  5. Space Environmental Effects Testing Capability at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.

  6. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  7. Compartmentalization of the outer hair cell demonstrated by slow diffusion in the extracisternal space.

    PubMed

    Gliko, Olga; Saggau, Peter; Brownell, William E

    2009-08-19

    In the outer hair cell (OHC), the extracisternal space (ECiS) is a conduit and reservoir of the molecular and ionic substrates of the lateral wall, including those necessary for electromotility. To determine the mechanisms through which molecules are transported in the ECiS of the OHC, we selectively imaged the time-dependent spatial distribution of fluorescent molecules in a <100 nm layer near the cell/glass interface of the recording chamber after their photolytic activation in a diffraction-limited volume. The effective diffusion coefficient was calculated using the analytical solution of the diffusion equation. It was found that diffusion in the ECiS is isotropic and not affected by depolarizing the OHC. Compared with free solution, the diffusion of 10 kDa dextran was slowed down in both the ECiS and the axial core by a factor of 4.6 and 1.6, respectively.

  8. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  9. Jellyfish: Special Tools for Biological Research on Earth and in Space

    NASA Technical Reports Server (NTRS)

    Spangenberg, Dorothy B.

    1991-01-01

    The most intriguing nature of the jellyfish polyps is their ability to metamorphose, giving rise to tiny immature medusae called ephyrae which have a different form or shape from the polyps. The Aurelia Metamorphosis Test System was used to determine the subtle effects of hydrocarbons found in oil spills and the effects of X-irradiation on developing ephyrae. Currently, this test system is used to determine the effects of the gravity-less environment of outer space on the development and behavior of ephyrae. For this purpose, the effects of clinostat rotation on development of the ephyrae and their gravity receptor are being studied. The behavior of the ephyrae during 0 gravity achieved for short intervals of 30 seconds in parabolic flight is examined. The developing ephyrae and the mature ephyrae are exposed to gravity-less environment of outer space via a six or seven day shuttle experiment. If gravity receptors do form in outer space, they will be studied in detail using various types of microscopes, including the electron microscope, to determin whether they developed normally in space as compared with control on Earth.

  10. Expandable space frames

    NASA Technical Reports Server (NTRS)

    Schoen, A. H. (Inventor)

    1973-01-01

    Expandable space frames having essentially infinite periodicity limited only by practical considerations, are described. Each expandable space frame comprises a plurality of hinge joint assemblies having arms that extend outwardly in predetermined symmetrically related directions from a central or vertex point. The outer ends of the arms form one part of a hinge point. The outer expandable space frame also comprises a plurality of struts. The outer ends of the struts from the other part of the hinged joint. The struts interconnect the plurality of hinge point in sychronism, the spaceframes can be expanded or collapsed. Three-dimensional as well as two-dimensional spaceframes of this general nature are described.

  11. Identifying On-Orbit Test Targets for Space Fence Operational Testing

    NASA Astrophysics Data System (ADS)

    Pechkis, D.; Pacheco, N.; Botting, T.

    2014-09-01

    Space Fence will be an integrated system of two ground-based, S-band (2 to 4 GHz) phased-array radars located in Kwajalein and perhaps Western Australia [1]. Space Fence will cooperate with other Space Surveillance Network sensors to provide space object tracking and radar characterization data to support U.S. Strategic Command space object catalog maintenance and other space situational awareness needs. We present a rigorous statistical test design intended to test Space Fence to the letter of the program requirements as well as to characterize the system performance across the entire operational envelope. The design uses altitude, size, and inclination as independent factors in statistical tests of dependent variables (e.g., observation accuracy) linked to requirements. The analysis derives the type and number of necessary test targets. Comparing the resulting sample sizes with the number of currently known targets, we identify those areas where modelling and simulation methods are needed. Assuming hypothetical Kwajalein radar coverage and a conservative number of radar passes per object per day, we conclude that tests involving real-world space objects should take no more than 25 days to evaluate all operational requirements; almost 60 percent of the requirements can be tested in a single day and nearly 90 percent can be tested in one week or less. Reference: [1] L. Haines and P. Phu, Space Fence PDR Concept Development Phase, 2011 AMOS Conference Technical Papers.

  12. Space station propulsion test bed

    NASA Technical Reports Server (NTRS)

    Briley, G. L.; Evans, S. A.

    1989-01-01

    A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.

  13. Fifteenth Space Simulation Conference: Support the Highway to Space Through Testing

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph (Editor)

    1988-01-01

    The Institute of Environmental Sciences Fifteenth Space Simulation Conference, Support the Highway to Space Through Testing, provided participants a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, thermal simulation and protection, contamination, and techniques of test measurements.

  14. Fourteenth Space Simulation Conference: Testing for a Permanent Presence in Space

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Editor)

    1986-01-01

    The Institute of Environmental Sciences Fourteenth Space Simulation Conference, Testing for a Permanent Presence in Space, provided participants a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, thermal simulation, and protection, contamination, and techniques of test measurements.

  15. OUTER GALACTIC DISKS AND A QUANTITATIVE TEST OF GRAVITY AT LOW ACCELERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Psaltis, Dimitrios, E-mail: dzaritsky@as.arizona.ed, E-mail: psaltis@as.arizona.ed

    We use the recent measurement of the velocity dispersion of star-forming, outer-disk knots by Herbert-Fort et al. in the nearly face-on galaxy NGC 628, in combination with other data from the literature, to execute a straightforward test of gravity at low accelerations. Specifically, the rotation curve at large radius sets the degree of non-standard acceleration and then the predicted scale height of the knots at that radius provides the test of the scenario. For our demonstration, we presume that the H{alpha} knots, which are young (age < 10 Myr), are distributed like the gas from which they have recently formedmore » and find a marginal (>97% confidence) discrepancy with a modified gravity scenario given the current data. More interestingly, we demonstrate that there is no inherent limitation that prevents such a test from reaching possible discrimination at the >4{sigma} level with a reasonable investment of observational resources.« less

  16. Spacecraft outer thermal blankets as hypervelocity impact bumpers

    NASA Astrophysics Data System (ADS)

    Cour-Palais, B. G.

    1996-05-01

    A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.

  17. Space prospects. [european space programs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A strategy for keeping the Common Market's space effort independent of and competitive with NASA and the space shuttle is discussed. Limited financing is the chief obstacle to this. Proposals include an outer space materials processing project and further development of the Ariane rocket. A manned space program is excluded for the foreseeable future.

  18. Making astronomy incredibly easy, engaging and affordable for anyone with a desire to see outer space for themselves.

    NASA Astrophysics Data System (ADS)

    Paolucci, Michael

    2015-08-01

    We have built a social interface and funding model based on collaborative consumption to empower public access to powerful telescopes.Slooh’s robotic observatories put anyone with a desire to look up and wonder in the driver’s seat of powerful mountaintop telescopes. Our members have taken millions of images of over 50,000 objects in the night sky, from tracking asteroids for NASA to discovering supernovae. Slooh launched December 25th, 2003 from our flagship observatory at the Institute of Astrophysics of the Canary Islands and in the ensuing decade we’ve built a network of 20+ observatory partners around the world to capture every magical moment in outer space. We are the world’s largest community of people peering into space together.About SloohSlooh makes astronomy incredibly easy, engaging and affordable for anyone with a desire to see outer space for themselves. Since 2003 Slooh has connected telescopes to the Internet for access by the broader public. Slooh’s automated observatories develop celestial images in real-time for broadcast to the Internet. Slooh’s technology is protected by Patent No.: US 7,194,146 B2 which was awarded in 2006. Slooh members have taken over 3m photos/150,000 FITS of over 50,000 celestial objects, participated in numerous discoveries with leading astronomical institutions and made over 2,000 submissions to the Minor Planet Center. Slooh’s flagship observatories are situated on Mt. Teide, in partnership with the Institute of Astrophysics of the Canary Islands (IAC), and in Chile, in partnership with the Catholic University. Slooh has also broadcast live celestial events from partner observatories in Arizona, Japan, Hawaii, Cypress, Dubai, South Africa, Australia, New Zealand and Norway. Slooh’s free live broadcasts of potentially hazardous asteroids (PHAs), comets, transits, eclipses, solar activity etc. feature narration by astronomy experts Will Gater, Bob Berman, Paul Cox and Eric Edelman and are syndicated to

  19. Metagenomic ventures into outer sequence space.

    PubMed

    Dutilh, Bas E

    Sequencing DNA or RNA directly from the environment often results in many sequencing reads that have no homologs in the database. These are referred to as "unknowns," and reflect the vast unexplored microbial sequence space of our biosphere, also known as "biological dark matter." However, unknowns also exist because metagenomic datasets are not optimally mined. There is a pressure on researchers to publish and move on, and the unknown sequences are often left for what they are, and conclusions drawn based on reads with annotated homologs. This can cause abundant and widespread genomes to be overlooked, such as the recently discovered human gut bacteriophage crAssphage. The unknowns may be enriched for bacteriophage sequences, the most abundant and genetically diverse component of the biosphere and of sequence space. However, it remains an open question, what is the actual size of biological sequence space? The de novo assembly of shotgun metagenomes is the most powerful tool to address this question.

  20. "Space, the Final Frontier"; Books on Space and Space Exploration.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)

  1. Space shuttle orbiter test flight series

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Gordon, R.; Jackson, R. B.

    1977-01-01

    The proposed studies on the space shuttle orbiter test taxi runs and captive flight tests were set forth. The orbiter test flights, the approach and landing tests (ALT), and the ground vibration tests were cited. Free flight plans, the space shuttle ALT crews, and 747 carrier aircraft crew were considered.

  2. DOD Space Test Program (STP)

    NASA Technical Reports Server (NTRS)

    Smith, Llwyn

    1995-01-01

    This paper describes the Space Test Program (STP) which provides access to space for the DOD-wide space research and development (R&D) community. STP matches a ranked list of sanctioned experiments with available budgets and searches for the most cost effective mechanisms to get the experiments into space. The program has successfully flown over 350 experiments, using dedicated freeflyer spacecraft, secondary space on the Space Shuttle, and various host satellites.

  3. Outer space law: A problem of astronautics

    NASA Technical Reports Server (NTRS)

    Mandl, V.

    1984-01-01

    The theory of space law is discussed from the point of view of similarities and differences between hypothetical space law and current (1932) aviation law. International legal aspects and economic and cultural effects are also addressed.

  4. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  5. The Space Launch System and Missions to the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Post, Kevin

    2015-11-01

    Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and

  6. Survival of Spores of Trichoderma longibrachiatum in Space: data from the Space Experiment SPORES on EXPOSE-R

    NASA Astrophysics Data System (ADS)

    Neuberger, Katja; Lux-Endrich, Astrid; Panitz, Corinna

    2015-01-01

    In the space experiment `Spores in artificial meteorites' (SPORES), spores of the fungus Trichoderma longibrachiatum were exposed to low-Earth orbit for nearly 2 years on board the EXPOSE-R facility outside of the International Space Station. The environmental conditions tested in space were: space vacuum at 10-7-10-4 Pa or argon atmosphere at 105 Pa as inert gas atmosphere, solar extraterrestrial ultraviolet (UV) radiation at λ > 110 nm or λ > 200 nm with fluences up to 5.8 × 108 J m-2, cosmic radiation of a total dose range from 225 to 320 mGy, and temperature fluctuations from -25 to +50°C, applied isolated or in combination. Comparable control experiments were performed on ground. After retrieval, viability of spores was analysed by two methods: (i) ethidium bromide staining and (ii) test of germination capability. About 30% of the spores in vacuum survived the space travel, if shielded against insolation. However, in most cases no significant decrease was observed for spores exposed in addition to the full spectrum of solar UV irradiation. As the spores were exposed in clusters, the outer layers of spores may have shielded the inner part. The results give some information about the likelihood of lithopanspermia, the natural transfer of micro-organisms between planets. In addition to the parameters of outer space, sojourn time in space seems to be one of the limiting parameters.

  7. Space Discovery.

    ERIC Educational Resources Information Center

    Blackman, Joan

    1998-01-01

    Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)

  8. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  9. Legal Implications of Nuclear Propulsion for Space Objects

    NASA Astrophysics Data System (ADS)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  10. Space Shuttle wind tunnel testing program

    NASA Technical Reports Server (NTRS)

    Whitnah, A. M.; Hillje, E. R.

    1984-01-01

    A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.

  11. Space radiation test model study. Report for 20 May 1985-20 February 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nightingale, R.W.; Chiu, Y.T.; Davidson, G.T.

    1986-03-14

    Dynamic models of the energetic populations in the outer radiation belts are being developed to better understand the extreme variations of particle flux in response to magnetospheric and solar activity. The study utilizes the SCATHA SC3 high-energy electron data, covering energies from 47 keV to 5 MeV with fine pitch-angle measurements (3 deg field of view) over the L-shell range of 5.3 to 8.7. Butter-fly distributions in the dusk sector signify particle losses due to L shell splitting of the particle-drift orbits and the subsequent scattering of the particles from the orbits by the magnetopause. To model the temporal variationsmore » and diffusion procsses of the particle populations, the data were organized into phase-space distributions, binned according to altitude (L shell), energy, pitch angle, and time. These distributions can then be mapped to the equator and plotted for fixed first and second adiabatic invariants of the inherent particle motion. A new and efficient method for calculating the third adiabatic invariant using a line integral of the relevant magnetic potential at the particle mirror points has been developed and is undergoing testing. This method will provide a useful means of displaying the radial diffusion signatures of the outer radiation belts during the more-active periods when the L shell parameter is not a good concept due to severe drift-shell splitting. The first phase of fitting the energetic-electron phase-space distributions with a combined radial and pitch-angle diffusion formulation is well underway. Bessel functions are being fit to the data in an eigenmode expansion method to determine the diffusion coefficients.« less

  12. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Sowards, Stephanie; Honeycutt, Timothy

    2008-01-01

    This paper discusses the benefits of conducting multi-system integration testing of space flight elements in lieu of merely shipping and shooting to the launch site and launching. "Ship and shoot" is a philosophy that proposes to transport flight elements directly from the factory to the launch site and begin the mission without further testing. Integration testing, relevant to validation testing in this context, is a risk mitigation effort that builds upon the individual element and system levels of qualification and acceptance tests, greatly improving the confidence of operations in space. The International Space Station Program (ISSP) experience is the focus of most discussions from a historical perspective, while proposed integration testing of the Constellation Program is also discussed. The latter will include Multi-Element Integration Testing (MElT) and Flight Element Integration Testing (FElT).

  13. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalksy, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  14. Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project

    NASA Technical Reports Server (NTRS)

    Vernier, Robert; Bonalosky, Todd; Slavin, James

    2004-01-01

    The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.

  15. A serendipitous all sky survey for bright objects in the outer solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M. E.; Drake, A. J.; Djorgovski, S. G.

    2015-02-01

    We use seven year's worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintestmore » having V=19.8±0.1, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for V≲19.1 (V≲18.6 in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.« less

  16. Aerocapture Technology Development Needs for Outer Planet Exploration

    NASA Technical Reports Server (NTRS)

    Wercinski, Paul; Munk, Michelle; Powell, Richard; Hall, Jeff; Graves, Claude; Partridge, Harry (Technical Monitor)

    2002-01-01

    The purpose of this white paper is to identify aerocapture technology and system level development needs to enable NASA future mission planning to support Outer Planet Exploration. Aerocapture is a flight maneuver that takes place at very high speeds within a planet's atmosphere that provides a change in velocity using aerodynamic forces (in contrast to propulsive thrust) for orbit insertion. Aerocapture is very much a system level technology where individual disciplines such as system analysis and integrated vehicle design, aerodynamics, aerothermal environments, thermal protection systems (TPS), guidance, navigation and control (GN&C) instrumentation need to be integrated and optimized to meet mission specific requirements. This paper identifies on-going activities, their relevance and potential benefit to outer planet aerocapture that include New Millennium ST7 Aerocapture concept definition study, Mars Exploration Program aeroassist project level support, and FY01 Aeroassist In-Space Guideline tasks. The challenges of performing aerocapture for outer planet missions such as Titan Explorer or Neptune Orbiter require investments to advance the technology readiness of the aerocapture technology disciplines for the unique application of outer planet aerocapture. This white paper will identify critical technology gaps (with emphasis on aeroshell concepts) and strategies for advancement.

  17. Testing space weather connections in the solar system

    NASA Astrophysics Data System (ADS)

    Grison, B.; Souček, J.; Krupař, V.; Píša, D.; Santolík, O.; Taubenschuss, U.; Němec, F.

    2017-09-01

    This study aims at testing and validating tools for prediction of the impact of solar events in the vicinity of inner and outer solar system planets using in-situ spacecraft data (primarily MESSENGER, STEREO and ACE, but also VEX and Cassini), remote Jovian observations (Hubble telescope, Nançay decametric array), existing catalogues (HELCATS and Tao et al. (2005)) and the tested propagating models (the ICME radial propagation tool of the CDPP and the 1-D MHD code propagation model presented in Tao et al. (2005)).

  18. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy

    2013-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two-fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z-2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z-1 prototype and to suit testing techniques will be presented.

  19. Z-1 Prototype Space Suit Testing Summary

    NASA Technical Reports Server (NTRS)

    Ross, Amy J.

    2012-01-01

    The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.

  20. National space test centers - Lewis Research Center Facilities

    NASA Technical Reports Server (NTRS)

    Roskilly, Ronald R.

    1990-01-01

    The Lewis Research Center, NASA, presently has a number of test facilities that constitute a significant national space test resource. It is expected this capability will continue to find wide application in work involving this country's future in space. Testing from basic research to applied technology, to systems development, to ground support will be performed, supporting such activities as Space Station Freedom, the Space Exploration Initiative, Mission to Planet Earth, and many others. The major space test facilities at both Cleveland and Lewis' Plum Brook Station are described. Primary emphasis is on space propulsion facilities; other facilities of importance in space power and microgravity are also included.

  1. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture

  2. Study of Power Options for Jupiter and Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  3. Unique Challenges Testing SDRs for Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Downey, Joseph A.; Johnson, Sandra K.; Nappier, Jennifer M.

    2013-01-01

    This paper describes the approach used by the Space Communication and Navigation (SCaN) Testbed team to qualify three Software Defined Radios (SDR) for operation in space and the characterization of the platform to enable upgrades on-orbit. The three SDRs represent a significant portion of the new technologies being studied on board the SCAN Testbed, which is operating on an external truss on the International Space Station (ISS). The SCaN Testbed provides experimenters an opportunity to develop and demonstrate experimental waveforms and applications for communication, networking, and navigation concepts and advance the understanding of developing and operating SDRs in space. Qualifying a Software Defined Radio for the space environment requires additional consideration versus a hardware radio. Tests that incorporate characterization of the platform to provide information necessary for future waveforms, which might exercise extended capabilities of the hardware, are needed. The development life cycle for the radio follows the software development life cycle, where changes can be incorporated at various stages of development and test. It also enables flexibility to be added with minor additional effort. Although this provides tremendous advantages, managing the complexity inherent in a software implementation requires a testing beyond the traditional hardware radio test plan. Due to schedule and resource limitations and parallel development activities, the subsystem testing of the SDRs at the vendor sites was primarily limited to typical fixed transceiver type of testing. NASA s Glenn Research Center (GRC) was responsible for the integration and testing of the SDRs into the SCaN Testbed system and conducting the investigation of the SDR to advance the technology to be accepted by missions. This paper will describe the unique tests that were conducted at both the subsystem and system level, including environmental testing, and present results. For example, test

  4. Unique Challenges Testing SDRs for Space

    NASA Technical Reports Server (NTRS)

    Johnson, Sandra; Chelmins, David; Downey, Joseph; Nappier, Jennifer

    2013-01-01

    This paper describes the approach used by the Space Communication and Navigation (SCaN) Testbed team to qualify three Software Defined Radios (SDR) for operation in space and the characterization of the platform to enable upgrades on-orbit. The three SDRs represent a significant portion of the new technologies being studied on board the SCAN Testbed, which is operating on an external truss on the International Space Station (ISS). The SCaN Testbed provides experimenters an opportunity to develop and demonstrate experimental waveforms and applications for communication, networking, and navigation concepts and advance the understanding of developing and operating SDRs in space. Qualifying a Software Defined Radio for the space environment requires additional consideration versus a hardware radio. Tests that incorporate characterization of the platform to provide information necessary for future waveforms, which might exercise extended capabilities of the hardware, are needed. The development life cycle for the radio follows the software development life cycle, where changes can be incorporated at various stages of development and test. It also enables flexibility to be added with minor additional effort. Although this provides tremendous advantages, managing the complexity inherent in a software implementation requires a testing beyond the traditional hardware radio test plan. Due to schedule and resource limitations and parallel development activities, the subsystem testing of the SDRs at the vendor sites was primarily limited to typical fixed transceiver type of testing. NASA's Glenn Research Center (GRC) was responsible for the integration and testing of the SDRs into the SCaN Testbed system and conducting the investigation of the SDR to advance the technology to be accepted by missions. This paper will describe the unique tests that were conducted at both the subsystem and system level, including environmental testing, and present results. For example, test

  5. Ground test experiment for large space structures

    NASA Technical Reports Server (NTRS)

    Tollison, D. K.; Waites, H. B.

    1985-01-01

    In recent years a new body of control theory has been developed for the design of control systems for Large Space Structures (LSS). The problems of testing this theory on LSS hardware are aggravated by the expense and risk of actual in orbit tests. Ground tests on large space structures can provide a proving ground for candidate control systems, but such tests require a unique facility for their execution. The current development of such a facility at the NASA Marshall Space Flight Center (MSFC) is the subject of this report.

  6. Weaponisation of Space - Some Legal Considerations

    NASA Astrophysics Data System (ADS)

    Jolly, C.

    2002-01-01

    , negation of adversarial use of space and a fully-capable National Missile Defense (NMD). [American] ICBMs will continue to provide a credible strategic deterrence, while advanced, conventional weapons operating in or through space will provide our National Command Authorities (NCA) with formidable and flexible options for prompt, global, conventional strike." As we will see in this paper, the current international legal framework restricting the stationing and use of weapons in space is composed mainly of three treaties. They are: the Treaty between the United States of America and the Union of Soviet Socialist Republics on the Limitation of Anti-Ballistic Missile Systems (1972), called commonly the `ABM treaty', the `Outer Space Treaty' (1967) and the Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space and Under Water (1963). We will also see that - contrary to public opinion - those current legal instruments, even coupled with other international legal texts, do not prohibit the `weaponisation' of space. For instance, The Article Four of the Outer Space Treaty is often cited as the main legal argument against militarisation of space. This article does indeed prohibit the installation or stationing of "any objects carrying nuclear weapons or any other kinds of weapons of mass destruction", "in orbit around the Earth", "on celestial bodies", "in outer space" and "in any other manner". But, aside from the weapons identified (nuclear weapons and weapons of mass destruction), nothing prohibits a government signatory to the Outer Space Treaty, to actually station other types of weapons in space, such as laser-based systems. In this paper, the current situation of potential `weaponisation' of space, the international impacts of such a policy and the gaps of the international legal framework concerning the militarisation of space, will prompt some comments and practical recommendations.

  7. Photochemical Studies of Chemistry in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2003-01-01

    The goal of the proposed science investigation is to gain a quantitative understanding of chemical processes and their coupling with atmospheric dynamics in the reducing atmospheres of the outer solar system, with a particular focus on Infrared Space Observatory (ISO) observations and future experiments such as the Cassini Mission to Saturn and Titan. The proposed work is divided into two related tasks. We have carried out a systematic comparison between atmospheric models for every giant planet and Titan, which employ a consistent set of photochemical reactions. Combined with recent observations of hydrocarbon species by ISO, this can provide the most rigorous test of our current understanding of the photochemistry of hydrocarbon in the outer solar system. The emphasis will be on the methyl radical (CH3), first detected by IS0 in the atmospheres of Saturn and Neptune (Bezard et al. 1998). CH3 is one of the most important radicals in the hydrocarbon photochemistry because it is the primary product of methane photolysis and plays an essential role in forming C2H6, the most abundant and stable C2 species. A fundamental understanding of the distribution of CH3 provides unique insights into the chemistry of hydrocarbons as well as comparative planetology.

  8. Outer-Planet Mission Analysis Using Solar-Electric Ion Propulsion

    NASA Technical Reports Server (NTRS)

    Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.; Cupples, Michael

    2003-01-01

    Outer-planet mission analysis was performed using three next generation solar-electric ion thruster models. Optimal trajectories are presented that maximize the delivered mass to the designated outer planet. Trajectories to Saturn and Neptune with a single Venus gravity assist are investigated. For each thruster model, the delivered mass versus flight time curve was generated to obtain thruster model performance. The effects of power to the thrusters and resonance ratio of Venutian orbital periods to spacecraft period were also studied. Multiple locally optimal trajectories to Saturn and Neptune have been discovered in different regions of the parameter search space. The characteristics of each trajectory are noted.

  9. Space Power Facility-Capabilities for Space Environmental Testing Within a Single Facility

    NASA Technical Reports Server (NTRS)

    Sorge, Richard N.

    2013-01-01

    The purpose of this paper is to describe the current and near-term environmental test capabilities of the NASA Glenn Research Center's Space Power Facility (SPF) located at Sandusky, Ohio. The paper will present current and near-term capabilities for conducting electromagnetic interference and compatibility testing, base-shake sinusoidal vibration testing, reverberant acoustic testing, and thermal-vacuum testing. The paper will also present modes of transportation, handling, ambient environments, and operations within the facility to conduct those tests. The SPF is in the midst of completing and activating new or refurbished capabilities which, when completed, will provide the ability to conduct most or all required full-scale end-assembly space simulation tests at a single test location. It is envisioned that the capabilities will allow a customer to perform a wide range of space simulation tests in one facility at reasonable cost.

  10. ETR, TRA642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. ON GROUND FLOOR. WITH OUTER THERMAL RING IN PLACE AND CONDUIT PRESERVED, HIGH-DENSITY CONCRETE IS PLACED BETWEEN THE THERMAL RING AND THE OUTER REACTOR FORM. INL NEGATIVE NO. 56-2400. Jack L. Anderson, Photographer, 6/10/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Water and Volatiles in the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Grasset, O.; Castillo-Rogez, J.; Guillot, T.; Fletcher, L. N.; Tosi, F.

    2017-10-01

    Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our current understanding of the nature and distribution of water and water-rich materials from the water snow line to the Kuiper Belt. This synthesis is timely, since a thorough exploration of at least one object in each region of the outer solar system has now been achieved. Next steps, starting with the Juno mission now in orbit around Jupiter, will be more focused on understanding the processes at work than on describing the general characteristics of each giant planet systems. This review is organized in three parts. First, the nature and the distribution of water and volatiles in giant and intermediary planets are described from their inner core to their outer envelopes. A special focus is given to Jupiter and Saturn, which are much better understood than the two ice giants (Uranus and Neptune) thanks to the Galileo and Cassini missions. Second, the icy moons will be discussed. Space missions and ground-based observations have revealed the variety of icy surfaces in the outer system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billion years. Ice compositions found at these bodies are also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. A detailed review of the distribution of non-ice materials on the surfaces and in the tenuous atmospheres of the moons is proposed, followed by a more focused discussion on the nature and the characteristics of the liquid layers trapped below the cold icy crusts that have been suggested in the icy Galilean moons, and in Enceladus, Dione, and Titan at Saturn. Finally, the recent observations collected by Dawn at Ceres and New Horizons at Pluto, as well as the state of knowledge of other transneptunian objects

  12. INFLIGHT (CREW ACTIVITY) - STS-2 - OUTER SPACE

    NASA Image and Video Library

    1981-11-16

    S81-39570 (12-14 Nov 1981) --- Astronaut Joe H. Engle, STS-2 commander, enjoys a rare in-space exercise session on a device called a treadmill, which is specially designed for astronauts in zero gravity. He is in the mid-deck are of the Space Shuttle Columbia flying 160 miles (226 kilometers) above the Earth. The STS-2 mission of Astronauts Engle and Richard H. Truly, pilot, lasted a total of two days, six hours, 13 minutes and 10 seconds. Truly took the picture with a 35mm camera.

  13. Self sterilization of bodies during outer planet entry. [atmospheric temperature effects

    NASA Technical Reports Server (NTRS)

    Hoffman, A. R.; Jaworski, W.; Taylor, D. M.

    1975-01-01

    As a body encounters the atmosphere of an outer planet, whether accidentally or by plan, it will be subjected to heat loads which could result in high temperature conditions that render terrestrial organisms on or within the body non-viable. To determine whether an irregularly shaped entering body, consisting of several different materials, would be sterilized during inadvertent entry at high velocity, the thermal response of a typical outer planet spacecraft instrument was studied. The results indicate that the Teflon-insulated cable and electronic circuit boards may not experience sterilizing temperatures during a Jupiter, Saturn, or Titan entry. Another conclusion of the study is that small plastic particles entering Saturn from outer space have wider survival corridors than do those at Jupiter.

  14. Planetary quarantine: Space research and technology. [satellite quarantine constraints on outer planet mission

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The impact of satisfying satellite quarantine constraints on current outer planet mission and spacecraft designs is considered. Tools required to perform trajectory and navigation analyses for determining satellite impact probabilities are developed.

  15. Marshall Space Flight Center Test Capabilities

    NASA Technical Reports Server (NTRS)

    Hamilton, Jeffrey T.

    2005-01-01

    The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.

  16. Space shuttle L-tube radiator testing

    NASA Technical Reports Server (NTRS)

    Phillips, M. A.

    1976-01-01

    A series of tests were conducted to support the development of the Orbiter Heat Rejection System. The details of the baseline radiator were defined by designing, fabricating, and testing representative hardware. The tests were performed in the Space Environmental Simulation Laboratory Chamber A. An IR source was used to simulate total solar and infrared environmental loads on the flowing shuttle radiators panel. The thermal and mechanical performance of L tube space radiators and their thermal coating were established.

  17. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  18. Assembly of β-barrel proteins in the mitochondrial outer membrane.

    PubMed

    Höhr, Alexandra I C; Straub, Sebastian P; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils

    2015-01-01

    Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER). Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Component Selection, Accelerated Testing, and Improved Modeling of AMTEC Systems for Space Power (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Suitor, J.; O'Connor, D.

    1993-01-01

    Alkali metal thermal to electric converter (AMTEC) designs for space power are numerous, but selection of materials for construction of long-lived AMTEC devices has been limited to electrodes, current collectors, and the solid electrolyte. AMTEC devices with lifetimes greater than 5 years require careful selection and life testing of all hot-side components. The likely selection of a remote condensed design for initial flight test and probable use with a GPHS in AMTEC powered outer planet probes requires the device to be constructed to tolerate T greater than 1150K, as well as exposure to Na(sub (g)), and Na(sub (liq)) on the high pressure side. The temperatures involved make critical high strength and chemical resistance to Na containing Na(sub 2)O. Selection among materials which can be worked should not be driven by ease of fabricability, as high temperature stability is the critical issue. These concepts drive the selection of Mo alloys for Na(sub (liq)) containment in AMTEC cells for T to 1150K operation, as they are significantly stronger than comparable NB or Ta alloys, are less soluble in Na(sub (liq)) containing dissolved Na(sub 2)O, are workable compared to W alloys (which might be used for certain components), and are ductile at the T greater than 500K of proposed AMTEC modules in space applications.

  20. Applying Psychology in Outer Space: Unfulfilled Promises Revisited.

    ERIC Educational Resources Information Center

    Helmreich, Robert L.

    1983-01-01

    Argues that research in personality and social psychology has an important role in the nation's spage program. Holds that psychologists' indifference and the structure of the National Aeronautics and Space Administration have led to underutilization of psychological data in space exploration. Presents suggestions for increasing psychology's role…

  1. Dysbiosis and Immune Dysregulation in Outer Space.

    PubMed

    Cervantes, Jorge L; Hong, Bo-Young

    2016-01-01

    In space, the lifestyle, relative sterility of spaceship and extreme environmental stresses, such as microgravity and cosmic radiation, can compromise the balance between human body and human microbiome. An astronaut's body during spaceflight encounters increased risk for microbial infections and conditions because of immune dysregulation and altered microbiome, i.e. dysbiosis. This risk is further heightened by increase in virulence of pathogens in microgravity. Health status of astronauts might potentially benefit from maintaining a healthy microbiome by specifically managing their diet on space in addition to probiotic therapies. This review focuses on the current knowledge/understanding of how spaceflight affects human immunity and microbiome.

  2. Resistance of spacecraft isolates to outer space for planetary protection purposes -first results of the experiment PROTECT of the EXPOSE-E mission.

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda; Moeller, Ralf

    Spore-forming microbes are of particular concern in the context of planetary protection, be-cause their endospores are highly resistant to a variety of environmental extremes, including certain sterilization procedures and the harsh environment of outer space or planetary sur-faces (Nicholson et al., 2000; Horneck et al. 2009). Furthermore, isolates from space craft and space craft assembly facilities have been identified that form spores of an elevated resistance to various physical and chemical conditions, such as ionizing and UV radiation, desiccation and oxidative stress (La Duc et al., 2007). This observation led to the supposition that the spe-cial conditions of ultraclean spacecraft assembly facilities and the applied spacecraft cleaning and decontamination measures cause a selection of the most resistant organisms as survivors. To test this hypothesis, spores of B. pumilus SAFR-032 isolated from these environments as well as spores of the laboratory strain B. subtilis 168 were subjected to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission (February 7, 2008 -September 12, 2009), attached to the EuTEF platform outside of the Columbus module of the International Space Station. The spores were mounted as dry layers onto spacecraft-qualified material (aluminum coupons) and exposed to the following parameters of space, applied sep-arately or in selected combinations: (i) space vacuum, (ii) solar extraterrestrial UV radiation including vacuum-UV, (iii) simulated Mars atmosphere and UV radiation climate, and (iv) galactic cosmic radiation. After recovery, visual inspection showed color changes of the sun-exposed spore samples from white to brownish demonstrating photochemical damage caused by solar extraterrestrial UV radiation. On-going analyses include studies of viability and capabil-ity of repair of damage, mutagenic spectrum, e.g. trp-revertants, rifampicin-resistant mutants, DNA lesion, global gene expression, and genomic and

  3. Analysis of radiative and phase-change phenomena with application to space-based thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lund, Kurt O.

    1991-01-01

    The simplified geometry for the analysis is an infinite, axis symmetric annulus with a specified solar flux at the outer radius. The inner radius is either adiabatic (modeling Flight Experiment conditions), or convective (modeling Solar Dynamic conditions). Liquid LiF either contacts the outer wall (modeling ground based testing), or faces a void gap at the outer wall (modeling possible space based conditions). The analysis is presented in three parts: Part 3 considers and adiabatic inner wall and linearized radiation equations; part 2 adds effects of convection at the inner wall; and part 1 includes the effect of the void gap, as well as previous effects, and develops the radiation model further. The main results are the differences in melting behavior which can occur between ground based 1 g experiments and the microgravity flight experiments. Under 1 gravity, melted PCM will always contact the outer wall having the heat flux source, thus providing conductance from this source to the phase change front. In space based tests where a void gap may likely form during solidification, the situation is reversed; radiation is now the only mode of heat transfer and the majority of melting takes place from the inner wall.

  4. Space Environmental Effects (SEE) Testing Capability: NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    DeWittBurns, H.; Crave, Paul; Finckenor, Miria; Finchum, Charles; Nehls, Mary; Schneider, Todd; Vaughn, Jason

    2012-01-01

    Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the space environment can lead to materials degradation, reduction of functional lifetime, and system failure. Ground based testing is critical in predicting performance NASA/MSFC's expertise and capabilities make up the most complete SEE testing capability available.

  5. Developing and Testing SpaceWire Devices and Networks

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  6. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  7. Maintaining outer space for peaceful purposes through international cooperation

    NASA Technical Reports Server (NTRS)

    Reese, George E.; Thacher, David J.; Kupperman, Helen S.

    1988-01-01

    NASA activities in support of international cooperation in space exploration and exploitation are briefly reviewed, with a focus on their compatibility with UN treaties. Particular attention is given to the provisions of the National Aeronautics and Space Act of 1958 and other applicable legislation, the over 1000 bilateral and international agreements NASA has entered into since 1958, international participation in currently ongoing NASA projects (Hubble Space Telescope, Galileo, Ulysses, Rosat, the D-2 Spacelab mission), and plans for the International Space Station.

  8. Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program

    NASA Astrophysics Data System (ADS)

    Simon, Amy

    2017-08-01

    Long time base observations of the outer planets are critical in understanding the atmospheric dynamics and evolution of the gas giants. We propose yearly monitoring of each giant planet for the remainder of Hubble's lifetime to provide a lasting legacy of increasingly valuable data for time-domain studies. The Hubble Space Telescope is a unique asset to planetary science, allowing high spatial resolution data with absolute photometric knowledge. For the outer planets, gas/ice giant planets Jupiter, Saturn, Uranus and Neptune, many phenomena happen on timescales of years to decades, and the data we propose are beyond the scope of a typical GO program. Hubble is the only platform that can provide high spatial resolution global studies of cloud coloration, activity, and motion on a consistent time basis to help constrain the underlying mechanics.

  9. A High-power Electric Propulsion Test Platform in Space

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J.; Reed, Brian; Chavers, D. Greg; Sarmiento, Charles; Cenci, Susanna; Lemmons, Neil

    2005-01-01

    This paper will describe the results of the preliminary phase of a NASA design study for a facility to test high-power electric propulsion systems in space. The results of this design study are intended to provide a firm foundation for subsequent detailed design and development activities leading to the deployment of a valuable space facility. The NASA Exploration Systems Mission Directorate is sponsoring this design project. A team from the NASA Johnson Space Center, Glenn Research Center, the Marshall Space Flight Center and the International Space Station Program Office is conducting the project. The test facility is intended for a broad range of users including government, industry and universities. International participation is encouraged. The objectives for human and robotic exploration of space can be accomplished affordably, safely and effectively with high-power electric propulsion systems. But, as thruster power levels rise to the hundreds of kilowatts and up to megawatts, their testing will pose stringent and expensive demands on existing Earth-based vacuum facilities. These considerations and the human access to near-Earth space provided by the International Space Station (ISS) have led to a renewed interest in space testing. The ISS could provide an excellent platform for a space-based test facility with the continuous vacuum conditions of the natural space environment and no chamber walls to modify the open boundary conditions of the propulsion system exhaust. The test platform could take advantage of the continuous vacuum conditions of the natural space environment. Space testing would provide open boundary conditions without walls, micro-gravity and a realistic thermal environment. Testing on the ISS would allow for direct observation of the test unit, exhaust plume and space-plasma interactions. When necessary, intervention by on-board personnel and post-test inspection would be possible. The ISS can provide electrical power, a location for

  10. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  11. Space Biology in Russia Today

    NASA Astrophysics Data System (ADS)

    Grigoriev, Anatoly; Sychev, Vladimir; Ilyin, Eugene

    At present space biology research in Russia is making significant progress in several areas of high priority. Gravitational biology. In April-May 2013, a successful 30-day flight of the biological satellite (biosatellite) Bion-M1 was conducted, which carried rodents (mice and gerbils), geckos, fish, mollusks, crustaceans, microorganisms, insects, lower and higher plants, seeds, etc. The investigations were performed by Russian scientists as well as by researchers from NASA, CNES, DLR and South Korea. Foton-M4 carrying various biological specimens is scheduled to launch in 2014. Work has begun to develop science research programs to be implemented onboard Bion-M2 and Bion-M3 as well as on high apogee recoverable spacecraft. Study of the effects of microgravity on the growth and development of higher plants cultivated over several generations on the International Space Station (ISS) has been recently completed. Space radiobiology. Regular experiments aimed at investigating the effects of high-energy galactic cosmic rays on the animal central nervous system and behavior are being carried out using the Particle Accelerator in the town of Dubna. Biological (environmental) life support systems. In recent years, experiments have been performed on the ISS to upgrade technologies of plant cultivation in microgravity. Advanced greenhouse mockups have been built and are currentlyundergoing bioengineering tests. Technologies of waste utilization in space are being developed. Astrobiology experiments in orbital missions. In 2010, the Biorisk experiment on bacterial and fungal spores, seeds and dormant forms of organisms was completed. The payload containing the specimens was installed on the exterior wall of the ISS and was exposed to outer space for 31 months. In addition, Bion-M1 also carried seeds, bacterial spores and microbes that were exposed to outer space effects. The survival rate of bacterial spores incorporated into man-made meteorites, that were attached to the

  12. Correlation between the outer flow and the turbulent production in a boundary layer

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Sandborn, V. A.

    1975-01-01

    Space-time velocity correlation measurements between fluctuations occurring in the convoluting outer edge of a flat boundary layer with fluctuations occurring near the viscous subregion were made. The correlations indicate that information is propagated from the outer region to the inner region. The migration of turbulence away from the wall was previously studied in the open literature. The results presented here along with the migration results lend support to the limit cycle model for turbulence production.

  13. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  14. NIF Double Shell outer/inner shell collision experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  15. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  16. Preparing to Test for Deep Space

    NASA Image and Video Library

    2015-07-15

    A structural steel section is lifted into place atop the B-2 Test Stand at NASA’s Stennis Space Center as part of modification work to prepare for testing the core stage of NASA’s new Space Launch System. The section is part of the Main Propulsion Test Article (MPTA) framework, which will support the SLS core stage for testing. The existing framework was installed on the stand in the late 1970s to test the shuttle MPTA. However, that framework had to be repositioned and modified to accommodate the larger SLS stage. About 1 million pounds of structural steel has been added, extending the framework about 100 feet higher and providing a new look to the Stennis skyline. Stennis will test the actual flight core stage for the first uncrewed SLS mission, Exploration Mission-1.

  17. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  18. Periplasmic quality control in biogenesis of outer membrane proteins.

    PubMed

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  19. Long-lived thermal control materials for high temperature and deep space applications

    NASA Technical Reports Server (NTRS)

    Whitt, Robin; O'Donnell, Tim

    1988-01-01

    Considerable effort has been put into developing thermal-control materials for the Galileo space-craft. This paper presents a summary of these findings to date with emphasis on requirements, testing and results for the post-Challenger Galileo mission. Polyimide film (Kapton), due to its inherent stability in vacuum, UV, and radiation environments, combined with good mechanical properties over a large temperature range, has been the preferred substrate for spacecraft thermal control materials. Composite outer layers, using Kapton substrates, can be fabricated to meet the requirements of severe space environments. Included in the processing of Kapton-based composite outer layers can be the deposition of metal oxide, metallic and/or polymeric thin-film coatings to provide desirable electrical, optical and thermo-optical properties. In addition, reinforcement of Kapton substrates with fabrics and films is done to improve mechanical properties. Also these substrates can be filled with varying amounts of carbon to achieve particular electrical properties. The investigation and material development reported on here has led to improved thermo-gravimetric stability, surface conductivity, RF transparency, radiation and UV stability, flammability and handle-ability of outer layer thermal control materials for deep space and near-sun spacecraft. Designing, testing, and qualifying composite thermal-control film materials to meet the requirements of the Galileo spacecraft is the scope of this paper.

  20. Space Launch Initiative (SLI) Engine Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, has begun a series of engine tests on the Reaction Control Engine developed by TRW Space and Electronics for NASA's Space Launch Initiative (SLI). SLI is a technology development effort aimed at improving the safety, reliability, and cost effectiveness of space travel for reusable launch vehicles. The engine in this photo, the first engine tested at MSFC that includes SLI technology, was tested for two seconds at a chamber pressure of 185 pounds per square inch absolute (psia). Propellants used were liquid oxygen as an oxidizer and liquid hydrogen as fuel. Designed to maneuver vehicles in orbit, the engine is used as an auxiliary propulsion system for docking, reentry, fine-pointing, and orbit transfer while the vehicle is in orbit. The Reaction Control Engine has two unique features. It uses nontoxic chemicals as propellants, which creates a safer environment with less maintenance and quicker turnaround time between missions, and it operates in dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The force of low level thrust allows the vehicle to fine-point maneuver and dock, while the force of the high level thrust is used for reentry, orbital transfer, and course positioning.

  1. Analysis of space telescope data collection systems

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1984-01-01

    The Multiple Access (MA) communication link of the Space Telescope (ST) is described. An expected performance bit error rate is presented. The historical perspective and rationale behind the ESTL space shuttle end-to-end tests are given. The concatenated coding scheme using a convolutional encoder for the outer coder is developed. The ESTL end-to-end tests on the space shuttle communication link are described. Most important is how a concatenated coding system will perform. This is a go-no-go system with respect to received signal-to-noise ratio. A discussion of the verification requirements and Specification document is presented, and those sections that apply to Space Telescope data and communications system are discussed. The Space Telescope System consists of the Space Telescope Orbiting Observatory (ST), the Space Telescope Science Institute, and the Space Telescope Operation Control Center. The MA system consists of the ST, the return link from the ST via the Tracking and Delay Relay Satellite system to White Sands, and from White Sands via the Domestic Communications Satellite to the STOCC.

  2. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2007-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. Discussed herein are neutral gas conditions, plasma densities and uniformity, vacuum chamber sizes, sample sizes and Debye lengths, biasing samples versus self-generated voltages, floating samples versus grounded samples, test electrical conditions, arc detection, preventing sustained discharges during testing, real samples versus idealized samples, validity of LEO tests for GEO samples, extracting arc threshold information from arc rate versus voltage tests, snapover, current collection, and glows at positive sample bias, Kapton pyrolysis, thresholds for trigger arcs, sustained arcs, dielectric breakdown and Paschen discharge, tether arcing and testing in very dense plasmas (i.e. thruster plumes), arc mitigation strategies, charging mitigation strategies, models, and analysis of test results. Finally, the necessity of testing will be emphasized, not to the exclusion of modeling, but as part of a complete strategy for determining when and if arcs will occur, and preventing them from occurring in space.

  3. 21st Space Simulation Conference: The Future of Space Simulation Testing in the 21st Century

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    2000-01-01

    The Institute of Environmental Sciences and Technology's Twenty-first Space Simulation Conference, "The Future of Space Testing in the 21st Century" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, programs/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Future of Space Testing in the 21st Century."

  4. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  5. Skylab rescue space vehicle flight readiness test

    NASA Technical Reports Server (NTRS)

    Jevitt, S. J.

    1973-01-01

    A Skylab Rescue Space Vehicle flight readiness test is described which ensures that space vehicle systems are in a state of flight readiness and are compatible with associated ground support equipment. The functions of propellant loading, umbilical ejection, ignition, holddown arm release, liftoff, and service arm and tail service mast retraction are simulated. The test outline is presented along with a list of references, intercommunications information, operations interface control chart, and flight test.

  6. Space science education based on the usage of microsatellites

    NASA Astrophysics Data System (ADS)

    Zaitzev, A.; Boyrchuk, K.; Panasuk, M.; Krasotkin, S.; Radchenko, V.; Fateev, V.; Tereshkov, A.

    Lomonosov Moscow State University, Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation and Mozhaisky Engineering Space Forces Academy together with collaborators are planning to launch two microsatellites - "Kompas-Tatyana" and "Universitetsky" in 2004. In the Skobeltsyn Institute of Nuclear Physics of Moscow University the team of educators and students was formed in order to develop and to test the space science education program. The program includes few directions. First, the curriculum materials which include all basic knowledge regarding the operation of satellites in outer space. There are cover the telecommunications, navigation, and physical conditions in outer space, the instruments and related subjects. Second stage of the program includes some practical works with real satellite data. When satellite telemetry received, the data must be processed and quick-look graphs constructed. The main task for students in the second stage is the approach to the analysis and the comparison with the data that already exist. They will solve the tasks how to infer some original results from raw data and how to the received data corresponds to the models of outer space. Third, after analysis the students are expected to prepare the written reports and display the results on the open lessons in the web-page formats. The practical realization of the educational program is planned for "Kompas-Tatyana" and "Universitetsky" satellites which will be launched in the end of 2004. It will carry out several scientific instruments with telemetry in the 137 Mhz open channel. Students will able to receive the "live" telemetry data. Such practice is rather exiting and motivates them to work hard with the program tasks. The simple receiving devices will allow to get some data in the high schools as well. Additional support for teachers and students will be provided via main server in the Internet. The pilot version of curriculum materials will be tested on the

  7. Hubble Space Telescope Thermal Blanket Repair Design and Implementation

    NASA Technical Reports Server (NTRS)

    Ousley, Wes; Skladany, Joseph; Dell, Lawrence

    2000-01-01

    Substantial damage to the outer layer of Hubble Space Telescope (HST) thermal blankets was observed during the February 1997 servicing mission. After six years in LEO, many areas of the aluminized Teflon(R) outer blanket layer had significant cracks, and some material was peeled away to expose inner layers to solar flux. After the mission, the failure mechanism was determined, and repair materials and priorities were selected for follow-on missions. This paper focuses on the thermal, mechanical, and EVA design requirements for the blanket repair, the creative solutions developed for these unique problems, hardware development, and testing.

  8. Hubble space telescope six-battery test bed

    NASA Technical Reports Server (NTRS)

    Pajak, J. A.; Bush, J. R., Jr.; Lanier, J. R., Jr.

    1990-01-01

    A test bed for a large space power system breadboard for the Hubble Space Telescope (HST) was designed and built to test the system under simulated orbital conditions. A discussion of the data acquisition and control subsystems designed to provide for continuous 24 hr per day operation and a general overview of the test bed is presented. The data acquisition and control subsystems provided the necessary monitoring and protection to assure safe shutdown with protection of test articles in case of loss of power or equipment failure over the life of the test (up to 5 years).

  9. Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?

    NASA Astrophysics Data System (ADS)

    Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.

    2017-12-01

    Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.

  10. Spaceport operations for deep space missions

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Space Station Freedom is designed with the capability to cost-effectively evolve into a transportation node which can support manned lunar and Mars missions. To extend a permanent human presence to the outer planets (moon outposts) and to nearby star systems, additional orbiting space infrastructure and great advances in propulsion system and other technologies will be required. To identify primary operations and management requirements for these deep space missions, an interstellar design concept was developed and analyzed. The assembly, test, servicing, logistics resupply, and increment management techniques anticipated for lunar and Mars missions appear to provide a pattern which can be extended in an analogous manner to deep space missions. A long range, space infrastructure development plan (encompassing deep space missions) coupled with energetic, breakthrough level propulsion research should be initiated now to assist in making the best budget and schedule decisions.

  11. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1990-04-01

    This photograph shows the Hubble Space Telescope (HST) installed in the cargo bay of the Space Shuttle Orbiter Discovery for the STS-31 Mission at The Kennedy Space Center prior to launch on April 24, 1990. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  12. Large space structures testing

    NASA Technical Reports Server (NTRS)

    Waites, Henry; Worley, H. Eugene

    1987-01-01

    There is considerable interest in the development of testing concepts and facilities that accurately simulate the pathologies believed to exist in future spacecraft. Both the Government and Industry have participated in the development of facilities over the past several years. The progress and problems associated with the development of the Large Space Structure Test Facility at the Marshall Flight Center are presented. This facility was in existence for a number of years and its utilization has run the gamut from total in-house involvement, third party contractor testing, to the mutual participation of other goverment agencies in joint endeavors.

  13. Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand

    NASA Image and Video Library

    2018-05-04

    Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.

  14. GEMINI-6 - EARTH-SKY - ETHIOPIA - OUTER SPACE

    NASA Image and Video Library

    1965-12-16

    S65-63162 (16 Dec. 1965) --- Central area of Ethiopia, south of Addis Ababa, showing Lakes Zwai, Langana, and Shala, as seen from the Gemini-6 spacecraft during its 14th revolution of Earth. Photo credit: NASA or National Aeronautics and Space Administration

  15. Problem-Solving Test: Submitochondrial Localization of Proteins

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…

  16. Safety Assurances at Space Test Centres: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Alarcon Ruiz, Raul; O'Neil, Sean; Valls, Rafel Prades

    2010-09-01

    The European Space Agency’s(ESA) experts in quality, cleanliness and contamination control, safety, test facilities and test methods have accumulated valuable experience during the performance of dedicated audits of space test centres in Europe over a period of 10 years. This paper is limited to a summary of the safety findings and provides a valuable reference to the lessons learned, identifying opportunities for improvement in the areas of risk prevention measures associated to the safety of all test centre personnel, the test specimen, the test facilities and associated infrastructure. Through the analysis of the audit results the authors present what are the main lessons learned, and conclude how an effective safety management system will contribute to successful test campaigns and have a positive impact on the cost and schedule of space projects.

  17. Registration of Space Objects

    NASA Astrophysics Data System (ADS)

    Schmidt-Tedd, Bernhard

    2017-07-01

    Space objects are subject to registration in order to allocate "jurisdiction and control" over those objects in the sovereign-free environment of outer space. This approach is similar to the registration of ships in view of the high sea and for aircrafts with respect to the international airspace. Registration is one of the basic principles of space law, starting with UN General Assembly Resolution 1721 B (XVI) of December 20, 1961, followed by Resolution 1962 (XVIII) of December 13, 1963, then formulated in Article VIII of the Outer Space Treaty of 1967 and as specified in the Registration Convention of 1975. Registration of space objects can be seen today as a principle of customary international law, relevant for each spacefaring state. Registration is divided into a national and an international level. The State Party establishes a national registry for its space objects, and those registrations have to be communicated via diplomatic channel to the UN Register of space objects. This UN Register is handled by the UN Office for Outer Space Affairs (UNOOSA) and is an open source of information for space objects worldwide. Registration is linked to the so-called launching state of the relevant space object. There might be more than one launching state for the specific launch event, but only one state actor can register a specific space object. The state of registry gains "jurisdiction and control" over the space object and therefore no double registration is permissible. Based on the established UN Space Law, registration practice was subject to some adaptions due to technical developments and legal challenges. After the privatization of the major international satellite organizations, a number of non-registrations had to be faced. The state actors reacted with the UN Registration Practice Resolution of 2007 as elaborated in the Legal Subcommittee of UNCOPUOS, the Committee for the Peaceful Use of Outer Space. In this context an UNOOSA Registration Information

  18. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  19. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  20. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  1. Architectures of Lipid Transport Systems for the Bacterial Outer Membrane.

    PubMed

    Ekiert, Damian C; Bhabha, Gira; Isom, Georgia L; Greenan, Garrett; Ovchinnikov, Sergey; Henderson, Ian R; Cox, Jeffery S; Vale, Ronald D

    2017-04-06

    How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hybrid Propulsion In-Situ Resource Utilization Test Facility Results

    NASA Technical Reports Server (NTRS)

    Karp, Ashley Chandler; Nakazono, Barry; Vaughan, David; Warner, William N.

    2015-01-01

    Hybrid rockets present a promising alternative to conventional chemical propulsion systems for In-Situ Resource Utilization (ISRU) and in-space applications. While they have many benefits for these applications, there are still many small details that require research before they can be adopted into flight systems. A flexible test facility was developed at JPL to test operation of hybrid motors at small scale (5 cm outer diameter fuel grains) over a range of conditions. Specifically, this paper studies two of the major advantages: low temperature performance and throttling. Paraffin-based hybrid rockets are predicted to have good performance at low temperatures. This could significantly decrease the overall system mass by minimizing the thermal conditioning required for Mars or outer planet applications. Therefore, the coefficient of thermal expansion and glass transition of paraffin are discussed. Additionally, deep throttling has been considered for several applications. This was a natural starting point for hotfire testing using the hybrid propulsion ISRU test facility. Additionally, short length to diameter ratio (L/D) fuel grains are tested to determine if these systems can be packaged into geometrically constrained spaces.

  3. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    After more than four decades exploring the space environment from low Earth orbit and developing long-duration spaceflight operational experience with the International Space Station (ISS), NASA is once again preparing to send explorers into deep space. Development, test and manufacturing is now underway on the launch vehicle, the crew spacecraft and the ground processing and launch facilities to support human and robotic missions to the moon, Mars and the outer solar system. The enabling launch vehicle for these ambitious new missions is the Space Launch System (SLS), managed by NASA's Marshall Space Flight Center (MSFC). Since the program began in 2011, the design has passed Critical Design Review, and extensive development, test and flight hardware has been produced by every major element of the SLS vehicle. Testing continues on engines, boosters, tanks and avionics. While the program has experienced engineering challenges typical of a new development, it continues to make steady progress toward the first SLS mission in roughly two years and a sustained cadence of missions thereafter. This paper will discuss these and other technical and SLS programmatic successes and challenges over the past year and provide a preview of work ahead before first flight.

  4. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Vayner, Boris V.; Galofaro, Joel T,; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing-testing standardization. To be discussed are: 1.Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debuy lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. 5. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Prevention sustained discharges during testing. 6. Real array or structure samples versus idealized samples. 7. Validity of LEO tests for GEO samples. 8. Extracting arc threshold information from arc rate versus voltage tests. 9. Snapover and current collection at positive sample bias. Glows at positive bias. Kapon (R) pyrolisis. 10. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 11. Testing for Paschen discharge threshold. Testing for dielectric breakdown thresholds. Testing for tether arcing. 12. Testing in very dense plasmas (ie thruster plumes). 13. Arc mitigation strategies. Charging mitigation strategies. Models. 14. Analysis of test results

  5. NASA GRC and MSFC Space-Plasma Arc Testing Procedures

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.a; Vayner, Boris V.; Galofaro, Joel T.; Hillard, G. Barry; Vaughn, Jason; Schneider, Todd

    2005-01-01

    Tests of arcing and current collection in simulated space plasma conditions have been performed at the NASA Glenn Research Center (GRC) in Cleveland, Ohio, for over 30 years and at the Marshall Space flight Center (MSFC) for almost as long. During this period, proper test conditions for accurate and meaningful space simulation have been worked out, comparisons with actual space performance in spaceflight tests and with real operational satellites have been made, and NASA has achieved our own internal standards for test protocols. It is the purpose of this paper to communicate the test conditions, test procedures, and types of analysis used at NASA GRC and MSFC to the space environmental testing community at large, to help with international space-plasma arcing testing standardization. To be discussed are: 1. Neutral pressures, neutral gases, and vacuum chamber sizes. 2. Electron and ion densities, plasma uniformity, sample sizes, and Debye lengths. 3. Biasing samples versus self-generated voltages. Floating samples versus grounded. 4. Power supplies and current limits. Isolation of samples from power supplies during arcs. Arc circuits. Capacitance during biased arc-threshold tests. Capacitance during sustained arcing and damage tests. Arc detection. Preventing sustained discharges during testing. 5. Real array or structure samples versus idealized samples. 6. Validity of LEO tests for GEO samples. 7. Extracting arc threshold information from arc rate versus voltage tests. 8 . Snapover and current collection at positive sample bias. Glows at positive bias. Kapton pyrolization. 9. Trigger arc thresholds. Sustained arc thresholds. Paschen discharge during sustained arcing. 10. Testing for Paschen discharge thresholds. Testing for dielectric breakdown thresholds. Testing for tether arcing. 11. Testing in very dense plasmas (ie thruster plumes). 12. Arc mitigation strategies. Charging mitigation strategies. Models. 13. Analysis of test results. Finally, the necessity of

  6. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  7. Space Photography 1977 Index

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An index is provided to representative photographs and transparencies available from NASA. Subjects include spacecraft, astronauts, lunar surface, planets and outer space phenomena, earth observations, and aviation. High altitude aircraft infrared photographs are included along with artists' conceptions of space shuttle and space colonies.

  8. Apparatus for assembling space structure

    NASA Technical Reports Server (NTRS)

    Johnston, J. D.; Tuggle, R. H., Jr.; Burch, J. L.; Clark, K. H. (Inventor)

    1978-01-01

    An apparatus for producing a structure in outer space from rolls of prepunched ribbon or sheet material that are transported from the earth to the apparatus located in outer space is described. The apparatus spins the space structure similar to a spider spinning a web utilizing the prepunched ribbon material. The prepunched ribbon material is fed through the apparatus and is shaped into a predetermined channel-shaped configuration. Trusses are punched out of the ribbon and are bent downwardly and attached to a track which normally is a previously laid sheet of material. The size of the overall space structure may be increased by merely attaching an additional roll of sheet material to the apparatus.

  9. Space Environment Testing of Photovoltaic Array Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry.

  10. A proposal for epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.

  11. Anaesthesia in outer space: the ultimate ambulatory setting?

    PubMed

    Komorowski, Matthieu; Fleming, Sarah; Hinkelbein, Jochen

    2016-12-01

    Missions to the Moon or more distant planets are planned in the next future, and will push back the limits of our experience in providing medical support in remote environments. Medical preparedness is ongoing, and involves planning for emergency surgical interventions and anaesthetic procedures. This review will summarize what principles of ambulatory anaesthesia on Earth could benefit the environment of a space mission with its unique constraints. Ambulatory anaesthesia relies on several principles such as improved patient pathway, correct patient selection, optimized procedural strategies to hasten recovery and active prevention of postoperative complications. Severe limitations in the equipment available and the skills of the crew members represent the key factors to be taken into account when designing the on-board medical system for future interplanetary space missions. The application of some of the key principles of ambulatory anaesthesia, as well as recent advances in anaesthetic techniques and better understanding of human adaptation to the space environment might allow nonanaesthesiologist physicians to perform common anaesthetic procedures, whilst maximizing crew safety and minimizing the impact of medical events on the mission.

  12. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  13. Cosmological perturbations in the (1 + 3 + 6)-dimensional space-times

    NASA Astrophysics Data System (ADS)

    Tomita, K.

    2014-12-01

    Cosmological perturbations in the (1+3+6)-dimensional space-times including photon gas without viscous processes are studied on the basis of Abbott et al.'s formalism [R. B. Abbott, B. Bednarz, and S. D. Ellis, Phys. Rev. D 33, 2147 (1986)]. Space-times consist of outer space (the 3-dimensional expanding section) and inner space (the 6-dimensional section). The inner space expands initially and later contracts. Abbott et al. derived only power-type solutions, which appear at the final stage of the space-times, in the small wave-number limit. In this paper, we derive not only small wave-number solutions, but also large wave-number solutions. It is found that the latter solutions depend on the two wave-numbers k_r and k_R (which are defined in the outer and inner spaces, respectively), and that the k_r-dependent and k_R-dependent parts dominate the total perturbations when (k_r/r(t))/(k_R/R(t)) ≫ 1 or ≪ 1, respectively, where r(t) and R(t) are the scale-factors in the outer and inner spaces. By comparing the behaviors of these perturbations, moreover, changes in the spectrum of perturbations in the outer space with time are discussed.

  14. Suitport Feasibility: Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a space suit prototype on the second generation MMSEV cabin, and testing is planned using the pressure differentials of the spacecraft. Pressurized testing will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, a suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents

  15. Basic approaches to and tasks of space technology

    NASA Technical Reports Server (NTRS)

    Okhotin, A. S.

    1978-01-01

    The high vacuum and weightlessness of outer space offer great possibilities for the new field of space technology. To take advantage of this, it is necessary to study such physical and chemical phenomena as diffusion, surface tension, heat exchange, and crystallization. The research shows the possibility of obtaining materials with a more perfect structure. Methods of treating materials can be used in space which are impossible on earth. Achievements in material science in outer space will have a large impact on the national economy.

  16. The membrane current of single rod outer segments.

    PubMed

    Baylor, D A; Lamb, T D; Yau, K W

    1979-03-01

    1. Outer segments of individual rods in the retina of the toad, Bufo marinus, were drawn into a glass pipette to record the membrane current. 2. Light flashes evoked transient outward currents. The peak response amplitude was related to flash intensity by a Michaelis equation with half-saturating intensity about 1 photon mum-2. 3. The saturating response amplitude ranged up to 27 pA and corresponded closely to complete suppression of the steady inward current present in darkness. 4. For a given cell the saturating response amplitude varied linearly with the length of outer segment within the pipette. This is consistent with a uniform density of light-sensitive channels and negligible gradient of membrane potential along the outer segment. 5. Responses to bright flashes never showed the relaxation from an initial peak seen previously in intracellular voltage recordings, suggesting that the conductance change responsible for the relaxation does not occur in the outer segment. 6. Responses to local illumination of only the recorded outer segment were very similar to those obtained with diffuse light at the same intensity, indicating that peripheral rods made little contribution to the responses. 7. The spectral sensitivity of 'red' rods was consistent with a retinal1-based pigment with lambda max = 498 +/- 2 nm. 8. The kinetics of the response were consistent with four stages of delay affecting action of the internal transmitter. Responses were faster at the basal end of the outer segment than at the distal tip. 9. Background light reduced the sensitivity to a superposed dim test flash and shortened the time course of the response, indicating that adapting light modifies the kinetics and gain of the transduction mechanism within the outer segment. 10. Responses to dim lights exhibited pronounced fluctuations which are attributed in the succeeding paper (Baylor, Lamb & Yau, 1979) to the quantal nature of light.

  17. Voyager: The grandest tour. The mission to the outer planets

    NASA Astrophysics Data System (ADS)

    1991-04-01

    A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.

  18. Voyager: The grandest tour. The mission to the outer planets

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history and general accomplishments of the Voyager 1 and 2 missions to the outer planets are presented. Over the course of 12 years, these spacecraft drew back the curtain on nearly half the solar system. They brought into sharp focus the faces of the four giant outer planets - Jupiter, Saturn, Uranus, and Neptune - and their families of disparate moons. The Voyagers showed us unimagined worlds: frozen beauty in the rings of Saturn, and molten violence in the explosive sulfur volcanoes on Jupiter's moon Io. They brought us close-ups of the florid and intricate storms of Jupiter itself. Voyager 2 went on to reveal the peculiarities of cockeyed Uranus and its equally skewed rings and moons. Then finally, Neptune, nearly invisible from earth, was unveiled in all its big, blue splendor, circled by shadowy rings and a bright pastel moon called Triton. Both Voyagers are headed toward the outer boundary of the solar system in search of the heliopause, the region where the sun's influence wanes and the beginning of interstellar space can be sensed.

  19. Towards testing quantum physics in deep space

    NASA Astrophysics Data System (ADS)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  20. 16 CFR 1509.5 - Component-spacing test apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Component-spacing test apparatus. 1509.5 Section 1509.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.5 Component-spacing test apparatus. (a) Loading...

  1. 16 CFR 1509.5 - Component-spacing test apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Component-spacing test apparatus. 1509.5 Section 1509.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS § 1509.5 Component-spacing test apparatus. (a) Loading...

  2. Prompt enhancement of the Earth's outer radiation belt due to substorm electron injections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, C. L.; Zhang, J. -C.; Reeves, G. D.

    Here, we present multipoint simultaneous observations of the near-Earth magnetotail and outer radiation belt during the substorm electron injection event on 16 August 2013. Time History of Events and Macroscale Interactions during Substorms A in the near-Earth magnetotail observed flux-enhanced electrons of 300 keV during the magnetic field dipolarization. Geosynchronous orbit satellites also observed the intensive electron injections. Located in the outer radiation belt, RBSP-A observed enhancements of MeV electrons accompanied by substorm dipolarization. The phase space density (PSD) of MeV electrons at L* ~5.4 increased by 1 order of magnitude in 1 h, resulting in a local PSD peakmore » of MeV electrons, which was caused by the direct effect of substorm injections. We also detected an enhanced MeV electrons in the heart of the outer radiation belt within 2 h, which may be associated with intensive substorm electron injections and subsequent local acceleration by chorus waves. Multipoint observations have shown that substorm electron injections not only can be the external source of MeV electrons at the outer edge of the outer radiation belt (L* ~5.4) but also can provide the intensive seed populations in the outer radiation belt. These initial higher-energy electrons from injection can reach relativistic energy much faster. Furthermore, these observations also provide evidence that enhanced substorm electron injections can explain rapid enhancements of MeV electrons in the outer radiation belt.« less

  3. Prompt enhancement of the Earth's outer radiation belt due to substorm electron injections

    DOE PAGES

    Tang, C. L.; Zhang, J. -C.; Reeves, G. D.; ...

    2016-12-17

    Here, we present multipoint simultaneous observations of the near-Earth magnetotail and outer radiation belt during the substorm electron injection event on 16 August 2013. Time History of Events and Macroscale Interactions during Substorms A in the near-Earth magnetotail observed flux-enhanced electrons of 300 keV during the magnetic field dipolarization. Geosynchronous orbit satellites also observed the intensive electron injections. Located in the outer radiation belt, RBSP-A observed enhancements of MeV electrons accompanied by substorm dipolarization. The phase space density (PSD) of MeV electrons at L* ~5.4 increased by 1 order of magnitude in 1 h, resulting in a local PSD peakmore » of MeV electrons, which was caused by the direct effect of substorm injections. We also detected an enhanced MeV electrons in the heart of the outer radiation belt within 2 h, which may be associated with intensive substorm electron injections and subsequent local acceleration by chorus waves. Multipoint observations have shown that substorm electron injections not only can be the external source of MeV electrons at the outer edge of the outer radiation belt (L* ~5.4) but also can provide the intensive seed populations in the outer radiation belt. These initial higher-energy electrons from injection can reach relativistic energy much faster. Furthermore, these observations also provide evidence that enhanced substorm electron injections can explain rapid enhancements of MeV electrons in the outer radiation belt.« less

  4. Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space.

    PubMed

    Lin, Chaney; Hollister, Lincoln S; MacPherson, Glenn J; Bindi, Luca; Ma, Chi; Andronicos, Christopher L; Steinhardt, Paul J

    2017-05-09

    We report on a fragment of the quasicrystal-bearing CV3 carbonaceous chondrite Khatyrka recovered from fine-grained, clay-rich sediments in the Koryak Mountains, Chukotka (Russia). We show higher melting-point silicate glass cross-cutting lower melting-point Al-Cu-Fe alloys, as well as unambiguous evidence of a reduction-oxidation reaction history between Al-Cu-Fe alloys and silicate melt. The redox reactions involve reduction of FeO and SiO 2 to Fe and Fe-Si metal, and oxidation of metallic Al to Al 2 O 3 , occurring where silicate melt was in contact with Al-Cu-Fe alloys. In the reaction zone, there are metallic Fe and Fe-Si beads, aluminous spinel rinds on the Al-Cu-Fe alloys, and Al 2 O 3 enrichment in the silicate melt surrounding the alloys. From this and other evidence, we demonstrate that Khatyrka must have experienced at least two distinct events: first, an event as early as 4.564 Ga in which the first Al-Cu-Fe alloys formed; and, second, a more recent impact-induced shock in space that led to transformations of and reactions between the alloys and the meteorite matrix. The new evidence firmly establishes that the Al-Cu-Fe alloys (including quasicrystals) formed in outer space in a complex, multi-stage process.

  5. Radial diffusion with outer boundary determined by geosynchronous measurements: Storm and post-storm intervals

    NASA Astrophysics Data System (ADS)

    Chu, F.; Haines, P.; Hudson, M.; Kress, B.; Freidel, R.; Kanekal, S.

    2007-12-01

    Work is underway by several groups to quantify diffusive radial transport of radiation belt electrons, including a model for pitch angle scattering losses to the atmosphere. The radial diffusion model conserves the first and second adiabatic invariants and breaks the third invariant. We have developed a radial diffusion code which uses the Crank Nicholson method with a variable outer boundary condition. For the radial diffusion coefficient, DLL, we have several choices, including the Brautigam and Albert (JGR, 2000) diffusion coefficient parameterized by Kp, which provides an ad hoc measure of the power level at ULF wave frequencies in the range of electron drift (mHz), breaking the third invariant. Other diffusion coefficient models are Kp-independent, fixed in time but explicitly dependent on the first invariant, or energy at a fixed L, such as calculated by Elkington et al. (JGR, 2003) and Perry et al. (JGR, 2006) based on ULF wave model fields. We analyzed three periods of electron flux and phase space density (PSD) enhancements inside of geosynchronous orbit: March 31 - May 31, 1991, and July 2004 and Nov 2004 storm intervals. The radial diffusion calculation is initialized with a computed phase space density profile for the 1991 interval using differential flux values from the CRRES High Energy Electron Fluxmeter instrument, covering 0.65 - 7.5 MeV. To calculate the initial phase space density, we convert Roederer L* to McIlwain's L- parameter using the ONERA-DESP program. A time averaged model developed by Vampola1 from the entire 14 month CRRES data set is applied to the July 2004 and Nov 2004 storms. The online CRESS data for specific orbits and the Vampola-model flux are both expressed in McIlwain L-shell, while conversion to L* conserves phase space density in a distorted non-dipolar magnetic field model. A Tsyganenko (T04) magnetic field model is used for conversion between L* and L. The outer boundary PSD is updated using LANL GEO satellite fluxes

  6. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  7. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, Robert J.; /SLAC; Amini, Rashied

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving themmore » unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.« less

  8. Structural basis for maintenance of bacterial outer membrane lipid asymmetry.

    PubMed

    Abellón-Ruiz, Javier; Kaptan, Shreyas S; Baslé, Arnaud; Claudi, Beatrice; Bumann, Dirk; Kleinekathöfer, Ulrich; van den Berg, Bert

    2017-12-01

    The Gram-negative bacterial outer membrane (OM) is a unique bilayer that forms an efficient permeation barrier to protect the cell from noxious compounds 1 , 2 . The defining characteristic of the OM is lipid asymmetry, with phospholipids comprising the inner leaflet and lipopolysaccharides comprising the outer leaflet 1-3 . This asymmetry is maintained by the Mla pathway, a six-component system that is widespread in Gram-negative bacteria and is thought to mediate retrograde transport of misplaced phospholipids from the outer leaflet of the OM to the cytoplasmic membrane 4 . The OM lipoprotein MlaA performs the first step in this process via an unknown mechanism that does not require external energy input. Here we show, using X-ray crystallography, molecular dynamics simulations and in vitro and in vivo functional assays, that MlaA is a monomeric α-helical OM protein that functions as a phospholipid translocation channel, forming a ~20-Å-thick doughnut embedded in the inner leaflet of the OM with a central, amphipathic pore. This architecture prevents access of inner leaflet phospholipids to the pore, but allows outer leaflet phospholipids to bind to a pronounced ridge surrounding the channel, followed by diffusion towards the periplasmic space. Enterobacterial MlaA proteins form stable complexes with OmpF/C 5,6 , but the porins do not appear to play an active role in phospholipid transport. MlaA represents a lipid transport protein that selectively removes outer leaflet phospholipids to help maintain the essential barrier function of the bacterial OM.

  9. Space industrialization. Volume 4: Appendices

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Program development and analysis and recommendations for NASA activities are discussed. The impact of international space law on future use of outer space is examined in the light of applicable international agreements. Recommendations for actions designed to facilitate space industralization are also proposed.

  10. The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Watt, C. E. J.; Mann, I. R.; Jonathan Rae, I.; Sibeck, D. G.; Boyd, A. J.; Forsyth, C. F.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J.

    2018-05-01

    Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

  11. 20th Space Simulation Conference: The Changing Testing Paradigm

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1998-01-01

    The Institute of Environmental Sciences' Twentieth Space Simulation Conference, "The Changing Testing Paradigm" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Changing Testing Paradigm."

  12. Thousands gather to watch a Space Shuttle Main Engine Test

    NASA Image and Video Library

    2001-04-21

    Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  13. Advanced Communication Architectures and Technologies for Missions to the Outer Planets

    NASA Technical Reports Server (NTRS)

    Bhasin, K.; Hayden, J. L.

    2001-01-01

    Missions to the outer planets would be considerably enhanced by the implementation of a future space communication infrastructure that utilizes relay stations placed at strategic locations in the solar system. These relay stations would operate autonomously and handle remote mission command and data traffic on a prioritized demand access basis. Such a system would enhance communications from that of the current direct communications between the planet and Earth. The system would also provide high rate data communications to outer planet missions, clear communications paths during times when the sun occults the mission spacecraft as viewed from Earth, and navigational "lighthouses" for missions utilizing onboard autonomous operations. Additional information is contained in the original extended abstract.

  14. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  15. Space Commercialization and the Development of Space Law

    NASA Astrophysics Data System (ADS)

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  16. 20th Space Simulation Conference: The Changing Testing Paradigm

    NASA Technical Reports Server (NTRS)

    Stecher, Joseph L., III (Compiler)

    1999-01-01

    The Institute of Environmental Sciences and Technology's Twentieth Space Simulation Conference, "The Changing Testing Paradigm" provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme "The Changing Testing Paradigm."

  17. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  18. Analysis of a non-storm time enhancement in outer belt electrons

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Godinez, H. C.; Sarris, T. E.; Tu, W.; Malaspina, D.; Turner, D. L.; Blake, J. B.; Koller, J.

    2014-12-01

    A high-speed solar wind stream impacted Earth's magnetosphere on January 13th, 2013, and is associated with a large enhancement (>2.5 orders) of outer radiation belt electron fluxes despite a small Dst signature (-30 nT). Fortunately, the outer belt was well sampled by a variety of missions during the event, including the Van Allen Probes, THEMIS, and the Colorado Student Space Weather Experiment (CSSWE). In-situ flux and phase space density observations are used from MagEIS (Magnetic Electron Ion Spectrometer) onboard the Van Allen Probes, REPTile (Relativistic Electron and Proton Telescope integrated little experiment) onboard CSSWE, and SST onboard THEMIS. The observations show a rapid increase in 100's keV electron fluxes, followed by a more gradual enhancement of the MeV energies. The 100's keV enhancement is associated with a substorm injection, and the futher energization to MeV energies is associated with wave activity as measured by the Van Allen Probes and THEMIS. Furthermore, the phase space density radial profiles show an acceleration region occurring between 5space density radial profile. The algorithm also estimates electron source rate parameters, which are compared with the radial location of the seed population and to the intensity and radial extent of wave activity.

  19. Turbine airfoil with a compliant outer wall

    DOEpatents

    Campbell, Christian X [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  20. Monoclonal antibodies against LipL32, the major outer membrane protein of pathogenic Leptospira: production, characterization, and testing in diagnostic applications.

    PubMed

    Fernandes, Cláudia P H; Seixas, Fabiana K; Coutinho, Mariana L; Vasconcellos, Flávia A; Seyffert, Núbia; Croda, Julio; McBride, Alan J; Ko, Albert I; Dellagostin, Odir A; Aleixo, José A G

    2007-02-01

    Pathogenic serovars of Leptospira have a wide antigenic diversity attributed mainly to the lipopolysaccharide present in the outer membrane. In contrast, antigens conserved among pathogenic serovars are mainly represented by outer membrane proteins. Surface exposure of a major and highly conserved outer membrane lipoprotein (LipL32) was recently demonstrated on pathogenic Leptospira. LipL32 in its recombinant form (rLipL32) was used to immunize BALB/c mice to develop murine monoclonal antibodies (MAbs). Three MAbs against rLipL32 were produced, isotyped, and evaluated for further use in diagnostic tests of leptospirosis using different approaches. MAbs were conjugated to peroxidase and evaluated in a native protein enzyme-linked immunosorbent assay (ELISA) with intact and heat-treated leptospiral cells, conjugated to fluorescein isothiocyanate (FITC) for indirect immunofluorescence with intact and methanol fixed cells and were used for LipL32 immunoprecipitation from leptospiral cells. rLipL32 MAbs conjugated to peroxidase or used as primary antibody bound to intact and heat-treated cells in ELISA, proving that they could be used in enzyme immunoassays for detection of the native protein. In immunofluorescence assay, MAbs labeled bacterial cells either intact or methanol fixed. Two MAbs were able to immunoprecipitate the native protein from live and motile leptospiral cells and, adsorbed onto magnetic beads, captured intact bacteria from artificially contaminated human sera for detection by polymerase chain reaction (PCR) amplification. Results of this study suggest that the MAbs produced can be useful for the development of diagnostic tests based on detection of LipL32 leptospiral antigen in biological fluids.

  1. Development of electrical test procedures for qualification of spacecraft against EID. Volume 2: Review and specification of test procedures

    NASA Technical Reports Server (NTRS)

    Wilkenfeld, J. M.; Harlacher, B. L.; Mathews, D.

    1982-01-01

    A combined experimental and analytical program to develop system electrical test procedures for the qualification of spacecraft against damage produced by space-electron-induced discharges (EID) occurring on spacecraft dielectric outer surfaces is described. A review and critical evaluation of possible approaches to qualify spacecraft against space electron-induced discharges (EID) is presented. A variety of possible schemes to simulate EID electromagnetic effects produced in spacecraft was studied. These techniques form the principal element of a provisional, recommended set of test procedures for the EID qualification spacecraft. Significant gaps in our knowledge about EID which impact the final specification of an electrical test to qualify spacecraft against EID are also identified.

  2. Accelerated testing of space batteries

    NASA Technical Reports Server (NTRS)

    Mccallum, J.; Thomas, R. E.; Waite, J. H.

    1973-01-01

    An accelerated life test program for space batteries is presented that fully satisfies empirical, statistical, and physical criteria for validity. The program includes thermal and other nonmechanical stress analyses as well as mechanical stress, strain, and rate of strain measurements.

  3. Stennis Holds Last Planned Space Shuttle Engine Test

    NASA Technical Reports Server (NTRS)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  4. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. Leaf seal for inner and outer casings of a turbine

    DOEpatents

    Schroder, Mark Stewart; Leach, David

    2002-01-01

    A plurality of arcuate, circumferentially extending leaf seal segments form an annular seal spanning between annular sealing surfaces of inner and outer casings of a turbine. The ends of the adjoining seal segments have circumferential gaps to enable circumferential expansion and contraction of the segments. The end of a first segment includes a tab projecting into a recess of a second end of a second segment. Edges of the tab seal against the sealing surfaces of the inner and outer casings have a narrow clearance with opposed edges of the recess. An overlying cover plate spans the joint. Leakage flow is maintained at a minimum because of the reduced gap between the radially spaced edges of the tab and recess, while the seal segments retain the capacity to expand and contract circumferentially.

  6. Telerobotics test bed for space structure assembly

    NASA Technical Reports Server (NTRS)

    Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.

    1994-01-01

    A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.

  7. Asteroids as Propulsion Systems of Space Ships

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Currently, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet However, there am only nine planets in the Solar System, all separated by great distances. There are tons of millions of asteroids in outer space. This paper offers a revolutionary method for changing the trajectory of space probes. The method uses the kinetic or rotary energy of asteroids, comet nuclei, meteorites or other space bodies (small planets, natural planetary satellites, space debris, etc.) to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to achieve any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  8. Program documentation for the space environment test division post-test data reduction program (GNFLEX)

    NASA Technical Reports Server (NTRS)

    Jones, L. D.

    1979-01-01

    The Space Environment Test Division Post-Test Data Reduction Program processes data from test history tapes generated on the Flexible Data System in the Space Environment Simulation Laboratory at the National Aeronautics and Space Administration/Lyndon B. Johnson Space Center. The program reads the tape's data base records to retrieve the item directory conversion file, the item capture file and the process link file to determine the active parameters. The desired parameter names are read in by lead cards after which the periodic data records are read to determine parameter data level changes. The data is considered to be compressed rather than full sample rate. Tabulations and/or a tape for generating plots may be output.

  9. Design of Test Support Hardware for Advanced Space Suits

    NASA Technical Reports Server (NTRS)

    Watters, Jeffrey A.; Rhodes, Richard

    2013-01-01

    As a member of the Space Suit Assembly Development Engineering Team, I designed and built test equipment systems to support the development of the next generation of advanced space suits. During space suit testing it is critical to supply the subject with two functions: (1) cooling to remove metabolic heat, and (2) breathing air to pressurize the space suit. The objective of my first project was to design, build, and certify an improved Space Suit Cooling System for manned testing in a 1-G environment. This design had to be portable and supply a minimum cooling rate of 2500 BTU/hr. The Space Suit Cooling System is a robust, portable system that supports very high metabolic rates. It has a highly adjustable cool rate and is equipped with digital instrumentation to monitor the flowrate and critical temperatures. It can supply a variable water temperature down to 34 deg., and it can generate a maximum water flowrate of 2.5 LPM. My next project was to design and build a Breathing Air System that was capable of supply facility air to subjects wearing the Z-2 space suit. The system intakes 150 PSIG breathing air and regulates it to two operating pressures: 4.3 and 8.3 PSIG. It can also provide structural capabilities at 1.5x operating pressure: 6.6 and 13.2 PSIG, respectively. It has instrumentation to monitor flowrate, as well as inlet and outlet pressures. The system has a series of relief valves to fully protect itself in case of regulator failure. Both projects followed a similar design methodology. The first task was to perform research on existing concepts to develop a sufficient background knowledge. Then mathematical models were developed to size components and simulate system performance. Next, mechanical and electrical schematics were generated and presented at Design Reviews. After the systems were approved by the suit team, all the hardware components were specified and procured. The systems were then packaged, fabricated, and thoroughly tested. The next step

  10. The simulation of the outer Oort cloud formation. The first giga-year of the evolution

    NASA Astrophysics Data System (ADS)

    Dybczyński, P. A.; Leto, G.; Jakubík, M.; Paulech, T.; Neslušan, L.

    2008-08-01

    Aims: Considering a model of an initial disk of planetesimals that consists of 10 038 test particles, we simulate the formation of distant-comet reservoirs for the first 1 Gyr. Since only the outer part of the Oort cloud can be formed within this period, we analyse the efficiency of the formation process and describe approximately the structure of the part formed. Methods: The dynamical evolution of the particles is followed by numerical integration of their orbits. We consider the perturbations by four giant planets on their current orbits and with their current masses, in addition to perturbations by the Galactic tide and passing stars. Results: In our simulation, the population size of the outer Oort cloud reaches its maximum value at about 210 Myr. After a subsequent, rapid decrease, it becomes almost stable (with only a moderate decrease) from about 500 Myr. At 1 Gyr, the population size decreases to about 40% of its maximum value. The efficiency of the formation is low. Only about 0.3% of the particles studied still reside in the outer Oort cloud after 1 Gyr. The space density of particles in the comet cloud, beyond the heliocentric distance, r, of 25 000 AU is proportional to r-s, where s = 4.08 ± 0.34. From about 50 Myr to the end of the simulation, the orbits of the Oort cloud comets are not distributed randomly, but high galactic inclinations of the orbital planes are strongly dominant. Among all of the outer perturbers considered, this is most likely caused by the dominant, disk component of the Galactic tide. Movies (cf. caption to Fig. 1) are only available at http://www.aanda.org

  11. Evolution of space food in Nostoc sp. HK-01

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Kimura, Yasuko; Katoh, Hiroshi; Arai, Mayumi

    2012-07-01

    Habitation in outer space is one of our challenges. We have been studying future space agriculture to provide food and oxygen for the habitation area in the space environment, on Mars. A cyanobacteria, Nostoc sp. HK-01, has high several outer space environmental tolerance. We have already confirmed that Nostoc sp.HK-01 had an ability to grow for over several years on the Martian regolith simulant in a laboratory experiment. Nostoc sp HK-01 would have high contribution to change the atmosphere in Mars as a photosynthetic creature. In outer environment, all of materials have to circulate for all of creature living in artificial eco-systems on Mars. This material has several functions as the utilization in space agriculture. Here, we are proposing using them as a food after its growing on Mars. We are trying to determine the best conditions and evolution for space food using Nostoc sp.HK-01 and studying the proposal of utilization of cyanobacteria, Nostoc sp HK-01, for the variation of meal as space agriculture.

  12. Implementation of an Outer Can Welding System for Savannah River Site FB-Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, S.R.

    2003-03-27

    This paper details three phases of testing to confirm use of a Gas Tungsten Arc (GTA) system for closure welding the 3013 outer container used for stabilization/storage of plutonium metals and oxides. The outer container/lid closure joint was originally designed for laser welding, but for this application, the gas tungsten arc (GTA) welding process has been adapted. The testing progressed in three phases: (1) system checkout to evaluate system components for operational readiness, (2) troubleshooting to evaluate high weld failure rates and develop corrective techniques, and (3) pre-installation acceptance testing.

  13. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (rear view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  14. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  15. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  16. Kodak Mirror Assembly Tested at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo (a side view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.

  17. Open source IPSEC software in manned and unmanned space missions

    NASA Astrophysics Data System (ADS)

    Edwards, Jacob

    Network security is a major topic of research because cyber attackers pose a threat to national security. Securing ground-space communications for NASA missions is important because attackers could endanger mission success and human lives. This thesis describes how an open source IPsec software package was used to create a secure and reliable channel for ground-space communications. A cost efficient, reproducible hardware testbed was also created to simulate ground-space communications. The testbed enables simulation of low-bandwidth and high latency communications links to experiment how the open source IPsec software reacts to these network constraints. Test cases were built that allowed for validation of the testbed and the open source IPsec software. The test cases also simulate using an IPsec connection from mission control ground routers to points of interest in outer space. Tested open source IPsec software did not meet all the requirements. Software changes were suggested to meet requirements.

  18. An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space

    NASA Astrophysics Data System (ADS)

    Kwan, Trevor Hocksun; Wu, Xiaofeng

    2017-03-01

    Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.

  19. Non-Nuclear Testing of Space Nuclear Systems at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Pearson, Boise J.; Aschenbrenner, Kenneth C.; Bradley, David E.; Dickens, Ricky; Emrich, William J.; Garber, Anne; Godfroy, Thomas J.; Harper, Roger T.; Martin, Jim J.; hide

    2010-01-01

    Highly realistic non-nuclear testing can be used to investigate and resolve potential issues with space nuclear power and propulsion systems. Non-nuclear testing is particularly useful for systems designed with fuels and materials operating within their demonstrated nuclear performance envelope. Non-nuclear testing allows thermal hydraulic, heat transfer, structural, integration, safety, operational, performance, and other potential issues to be investigated and resolved with a greater degree of flexibility and at reduced cost and schedule compared to nuclear testing. The primary limit of non-nuclear testing is that nuclear characteristics and potential nuclear issues cannot be directly investigated. However, non-nuclear testing can be used to augment the potential benefit from any nuclear testing that may be required for space nuclear system design and development. This paper describes previous and ongoing non-nuclear testing related to space nuclear systems at NASA's Marshall Space Flight Center (MSFC).

  20. MISSE 6-Testing Materials in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S; Kinard, William H.

    2008-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment by placing them in space environment for several months. In this paper, a few materials and components from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These include laser and optical elements for photonic devices. The pre-characterized MISSE 6 materials were packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment.

  1. GEMINI-6 - EARTH-SKY - CANARY ISLANDS - OUTER SPACE

    NASA Image and Video Library

    1965-12-16

    S65-63150 (16 Dec. 1965) --- Eddies in stratocumulus clouds over the Canary Islands as seen from the Gemini-6 spacecraft during its 14th revolution of Earth. Photo credit: NASA or National Aeronautics and Space Administration

  2. SpaceX Dragon Parachute Test

    NASA Image and Video Library

    2018-03-04

    SpaceX performed its fourteenth overall parachute test supporting Crew Dragon development. This most recent exercise was the first of several planned parachute system qualification tests ahead of the spacecraft’s first crewed flight and resulted in the successful touchdown of Crew Dragon’s parachute system. During this test, a C-130 aircraft transported the parachute test vehicle, designed to achieve the maximum speeds that Crew Dragon could experience on re-entry, over the Mojave Desert in Southern California and dropped the vehicle from an altitude of 25,000 feet. The test demonstrated an off-nominal situation, deploying only one of the two drogue chutes and intentionally skipping a reefing stage on one of the four main parachutes, proving a safe landing in such a contingency scenario.

  3. 76 FR 2919 - Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ...: Availability of Revised North American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction... that effective with this publication, the following NAD 83-based Outer Continental Shelf (OCS) Official...

  4. Prototype space erectable radiator system ground test article development

    NASA Technical Reports Server (NTRS)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  5. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  6. Deep Space Test Bed for Radiation Studies

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Adcock, Leonard; Apple, Jeffery; Christl, Mark; Cleveand, William; Cox, Mark; Dietz, Kurt; Ferguson, Cynthia; Fountain, Walt; Ghita, Bogdan

    2006-01-01

    The Deep Space Test-Bed (DSTB) Facility is designed to investigate the effects of galactic cosmic rays on crews and systems during missions to the Moon or Mars. To gain access to the interplanetary ionizing radiation environment the DSTB uses high-altitude polar balloon flights. The DSTB provides a platform for measurements to validate the radiation transport codes that are used by NASA to calculate the radiation environment within crewed space systems. It is also designed to support other Exploration related investigations such as measuring the shielding effectiveness of candidate spacecraft and habitat materials, testing new radiation monitoring instrumentation and flight avionics and investigating the biological effects of deep space radiation. We describe the work completed thus far in the development of the DSTB and its current status.

  7. Psychoacoustic Testing of Modulated Blade Spacing for Main Rotors

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    Psychoacoustic testing of simulated helicopter main rotor noise is described, and the subjective results are presented. The objective of these tests was to evaluate the potential acoustic benefits of main rotors with modulated (uneven) blade spacing. Sound simulations were prepared for six main rotor configurations. A baseline 4-blade main rotor with regular blade spacing was based on the Bell Model 427 helicopter. A 5-blade main rotor with regular spacing was designed to approximate the performance of the 427, but at reduced tipspeed. Four modulated rotors - one with "optimum" spacing and three alternate configurations - were derived from the 5 bladed regular spacing rotor. The sounds were played to 2 subjects at a time, with care being taken in the speaker selection and placement to ensure that the sounds were identical for each subject. A total of 40 subjects participated. For each rotor configuration, the listeners were asked to evaluate the sounds in terms of noisiness. The test results indicate little to no "annoyance" benefit for the modulated blade spacing. In general, the subjects preferred the sound of the 5-blade regular spaced rotor over any of the modulated ones. A conclusion is that modulated blade spacing is not a promising design feature to reduce the annoyance for helicopter main rotors.

  8. NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  9. Dust-Corrected Star Formation Rates in Galaxies with Outer Rings

    NASA Astrophysics Data System (ADS)

    Kostiuk, I.; Silchenko, O.

    2018-03-01

    The star formation rates SFR, as well as the SFR surface densities ΣSFR and absolute stellar magnitudes MAB, are determined and corrected for interinsic dust absorption for 34 disk galaxies of early morphological types with an outer ring structure and ultraviolet emission from the ring. These characteristic are determined for the outer ring structures and for the galaxies as a whole. Data from the space telescopes GALEX (in the NUV and FUV ultraviolet ranges) and WISE (in the W4 22 μm infrared band) are used. The average relative deviation in the corrected SFR and ΣSFR derived from the NUV and FUV bands is only 19.0%, so their averaged values are used for statistical consideration. The relations between the dust-corrected SFR characteristics, UV colours, the galaxy morphological type, absolute magnitude are illustrated.

  10. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  11. A simulation facility for testing Space Station assembly procedures

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.

    1994-01-01

    NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.

  12. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  13. Space Launch System Booster Passes Major Ground Test

    NASA Image and Video Library

    2015-03-11

    The largest, most powerful rocket booster ever built successfully fired up Wednesday for a major-milestone ground test in preparation for future missions to help propel NASA’s Space Launch System (SLS) rocket and Orion spacecraft to deep space destinations, including an asteroid and Mars. The booster fired for two minutes, the same amount of time it will fire when it lifts the SLS off the launch pad, and produced about 3.6 million pounds of thrust. The test was conducted at the Promontory, Utah test facility of commercial partner Orbital ATK.

  14. [A study on space mutation of Streptomyces fradiae].

    PubMed

    Fang, Xiao-mei; Zhao, Zhi-jia; Gu, Hai-ke

    2005-04-01

    To study the rule of mutation of Streptomyces fradiae during spaceflight, and to select efficient tylosin producing strains for industrial production. Streptomyces fradiae 9940S(+)-86 were carried on-board spaceship "Shenzhou" I, "Shenzhou" III and "Shenzhou" IV sequentially to achieve spaceflight mutation breeding experiment. After space experiments and the screening tests in the lab, 48 strains were obtained which promoted production by +20% or more at shaker level. And the highest production of a strain was 14950 micrograms/ml, which means an increase of 91.5%. Comparing the results of three tests, it is found that the outer space environment can lead to a cumulative mutation. After the medium scale tests and production experiments, strain T1-156-84-23 was finally selected to be used for sample production. And its output was increased by 18%.

  15. Booster Test for Space Launch System Rocket

    NASA Image and Video Library

    2016-06-26

    The test area where the second and final qualification motor (QM-2) test for the Space Launch System’s booster is seen Sunday, June 26, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. The test is scheduled for Tuesday, June 28 at 10:05 a.m. EDT (8:05 a.m. MDT). Photo Credit: (NASA/Bill Ingalls)

  16. Outer boundary as arrested history in general relativity

    NASA Astrophysics Data System (ADS)

    Lau, Stephen R.

    2002-06-01

    We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement ⊥Tp(B) of the tangent space Tp(B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model.

  17. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  18. Integration Testing of Space Flight Systems

    NASA Technical Reports Server (NTRS)

    Honeycutt, Timothy; Sowards, Stephanie

    2008-01-01

    Based on the previous success' of Multi-Element Integration Testing (MEITs) for the International Space Station Program, these type of integrated tests have also been planned for the Constellation Program: MEIT (1) CEV to ISS (emulated) (2) CEV to Lunar Lander/EDS (emulated) (3) Future: Lunar Surface Systems and Mars Missions Finite Element Integration Test (FEIT) (1) CEV/CLV (2) Lunar Lander/EDS/CaL V Integrated Verification Tests (IVT) (1) Performed as a subset of the FEITs during the flight tests and then performed for every flight after Full Operational Capability (FOC) has been obtained with the flight and ground Systems.

  19. Thermal and Mechanical Testing of Neoprene Gloves Used in a Space Shuttle Microgravity Glove Box Experiment

    NASA Technical Reports Server (NTRS)

    Wingard, Charles Doug; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    Neoprene gloves are used in a Space Shuttle Microgravity Glove Box (MGBX) experiment. In 1999, significant corrosion was observed in the work area and on the outer surface of the left glove ring. Analysis of the corrosion products showed that they contained chlorine. The Neoprene gloves used in this glove box were obtained in 1995, with a recommended shelf life of 3 years. After storage of these gloves in a cabinet drawer until 1999, significant signs of corrosion were also observed in the drawer. Mechanical and thermal properties were determined on samples cut from the finger and sleeve areas of the "good" and "bad" gloves. This data showed significant aging of the left-hand glove, particularly in the sleeve area. Thermal analysis data by DSC and TGA was complimentary to tensile data in showing this aging. However, this test data did not pinpoint the cause of the left-hand glove aging, or of the corrosion products.

  20. New Cosmic Horizons: Space Astronomy from the V2 to the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2001-02-01

    Preface; 1. The sounding rocket era; 2. The start of the space race; 3. Initial exploration of the Solar System; 4. Lunar exploration; 5. Mars and Venus; early results; 6. Mars and Venus; the middle period; 7. Venus, Mars and cometary spacecraft post-1980; 8. Early missions to the outer planets; 9. The Voyager missions to the outer planets; 10. The Sun; 11. Early spacecraft observations of non-solar system sources; 12. A period of rapid growth; 13. The high energy astronomy observatory programme; 14. IUE, IRAS and Exosat - spacecraft for the early 1980s; 15. Hiatus; 16. Business as usual; 17. The Hubble Space Telescope.

  1. EMC Test Challenges for NASAs James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    McCloskey, John

    2016-01-01

    This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  2. EMC Test Challenges for NASA's James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    McCloskey, John

    2016-01-01

    This presentation describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  3. Space Test of Bare-Wire Anode Tethers

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Fujii, H. A.; Sanmartin, J. R.

    2007-01-01

    An international team, lead by Tokyo Metropolitan University, is developing a mission concept for a suborbital test of orbital-motion-limited (OML) bare-wire anode current collection for application to electrodynamic tether propulsion. The tether is a tape with a 50-mm width, 0.05-mm thickness, and 1-km length. This will be the first space test of the OML theory. In addition, by being an engineering demonstration (of space tethers), the mission will demonstrate electric beam generation for "sounding" determination of the neutral density profile in the ionospheric "E-layer." If selected by the Institute of Space and Astronautical Science/Japanese Aerospace Exploration Agency (JAXA), the mission will launch in early 2009 using an $520 Sounding Rocket. During ascent, and above =100 km in attitude, the 1-km tape tether will be deployed at a rate of 8 m/s. Once deployed, the tape tether will serve as an anode, collecting ionospheric electrons. The electrons will be expelled into space by a hollow cathode device, thereby completing the circuit and allowing current to flow.This paper will describe the objectives of the proposed mission, the technologies to be employed, and the application of the results to future space missions using electrodynamic tethers for propulsion or power generation.

  4. Booster Test for Space Launch System Rocket

    NASA Image and Video Library

    2016-06-26

    The test area where the second and final qualification motor (QM-2) test for the Space Launch System’s booster is seen through the window of a camera bunker, Sunday, June 26, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. The test is scheduled for Tuesday, June 28 at 10:05 a.m. EDT (8:05 a.m. MDT). Photo Credit: (NASA/Bill Ingalls)

  5. NASA Discusses Recent Testing of the James Webb Space Telescope

    NASA Image and Video Library

    2018-01-10

    Members of the media were invited to NASA’s Johnson Space Center in Houston on Jan. 10, to hear about the results of recent cryogenic vacuum tests on the James Webb Space Telescope, and the next steps on the observatory’s path to space. Webb was tested as a complete optical system in Chamber A at Johnson, which mimics the space environment the telescope will experience during its mission. Built in 1965 to conduct thermal-vacuum testing on the Apollo command and service modules, Chamber A is the largest structure of its kind in the world and is a listed National Historic Landmark. The James Webb Space Telescope is the world’s premier infrared space observatory of the next decade. Webb will help to solve mysteries of our solar system, look to distant worlds orbiting other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, the ESA (European Space Agency) and the Canadian Space Agency.

  6. World Space Week: Linking Space and Humanity

    NASA Astrophysics Data System (ADS)

    Stone, D.

    2002-01-01

    World Space Week, October 4-10 annually, is an international celebration of the contribution that space science and technology makes to the betterment of the human condition. Since its official declaration in 1999 by the United Nation, World Space Week has rapidly grown to include over 40 nations. The dates of World Space Week commemorate key milestones in space. October 4, 1957 was the launch date of Sputnik I, the first artificial Earth satellite. The Outer Space Treaty took effect on October 10, 1967. During World Space Week, participants such as government agencies, companies, science museums, teachers, and individuals organize public events, school activities, and Web-based programs related to space. So many synchronized events attract media coverage which reaches a global audience about space. In this way, World Space Week truly links space and humanity. The global organization of World Space Week is discussed as well as the results to date. The benefits of participation and opportunities to do so also identified.

  7. 27 CFR 9.207 - Outer Coastal Plain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Outer Coastal Plain. (a) Name. The name of the viticultural area described in this section is “Outer...,000 scale. (c) Boundary. The Outer Coastal Plain viticultural area includes all of Cumberland, Cape... Counties in the State of New Jersey. The boundary of the Outer Coastal Plain viticultural area is as...

  8. Gemini-Titan (GT)-7 of GT-6 Space Photography - Outer Space

    NASA Image and Video Library

    1965-12-04

    S65-64040 (15 Dec. 1965) --- Nose-on view of the Gemini-6 spacecraft against the blackness of space as seen from Gemini-7 spacecraft. The two spacecraft were approximately 38 feet apart. Astronauts Walter M. Schirra and Thomas P. Stafford were onboard the Gemini-6 spacecraft. Astronauts Frank Borman and James A. Lovell Jr. were aboard the Gemini-7 spacecraft. A "Beat Army" sign can be seen in the Gemini-6 window. Photo credit: NASA

  9. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria.

    PubMed

    Majewski, Dorothy D; Worrall, Liam J; Strynadka, Natalie Cj

    2018-03-23

    The acquisition and evolution of customized and often highly complex secretion systems allows Gram-negative bacteria to efficiently passage large macromolecules across both inner and outer membranes and, in some cases, that of the infected host. Essential to the virulence and ultimate survival of the many pathogenic species that encode them, secretion systems export a wide variety of effector proteins and DNA as well as the downstream extracellular filaments of the secretion apparatus themselves. Although these customized secretion systems differ in their cytosolic and inner membrane components, several commonly rely on the secretin family of giant pores to allow these large substrates to traverse the outer membrane. Recently, several near-atomic resolution cryo-EM secretin structures have unveiled the first insights into the unique structural motifs required for outer membrane localization, assembly, hallmark ultrastable nature, spontaneous membrane insertion, and mechanism of action-including the requisite central gating needed to prevent deleterious passage of periplasmic contents to the extracellular space. Copyright © 2018. Published by Elsevier Ltd.

  10. Phagocytosis of photoreceptor outer segments by transplanted human neural stem cells as a neuroprotective mechanism in retinal degeneration.

    PubMed

    Cuenca, Nicolás; Fernández-Sánchez, Laura; McGill, Trevor J; Lu, Bin; Wang, Shaomei; Lund, Raymond; Huhn, Stephen; Capela, Alexandra

    2013-10-15

    Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor-bipolar-horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.

  11. 76 FR 54787 - Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    .... ACTION: Availability of revised North American Datum of 1927 (NAD 27) Outer Continental Shelf Official...: Notice is hereby given that effective with this publication, the following NAD 27-based Outer Continental...

  12. Knitted outer gloves in primary hip and knee arthroplasty.

    PubMed

    Tanner, J; Wraighte, P; Howard, P

    2006-01-01

    A randomised trial was carried out to determine the rate of perforation to inner gloves when comparing latex with knitted gloves during hip and knee arthroplasty. Members of the surgical team were randomised to wear either two pairs of latex gloves (standard double gloving) or a knitted glove on top of a latex glove. In addition, participants completed a visual analogue assessment of their overall satisfaction with the gloves. A total of 406 inner gloves were tested for perforations over a four-month period: 23% of inner gloves were perforated when latex outer gloves were used and 6% of inner gloves were perforated when knitted outer gloves were used. In total, there were 64 perforations to the inner gloves; only one of these perforations was detected by the glove wearer. Wearing knitted outer gloves during hip and knee arthroplasty statistically significantly reduces the risk of perforation to inner latex gloves (p<0.0001).

  13. Essential elements of a framework for future space exploration and use: the role of science

    NASA Astrophysics Data System (ADS)

    Rummel, John; Ehrenfreund, Pascale

    The objective of the COSPAR Panel on Exploration (PEX) is to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. The Outer Space Treaty (OST) of 1967 provides (Article I) for “exploration and use of outer space” as well as an obligation for States to authorize and supervise space activities (Article VI) so “that national activities are carried out in conformity with the provisions set forth in the. . Treaty,” while the provisions of Article IX of the Treaty include pursuing “studies of outer space, including the Moon and other celestial bodies, and conduct[ing] exploration of them so as to avoid their harmful contamination." In short, the Treaty provides for many activities to take place in outer space, but it also leaves to the future the definitions of “harmful contamination,” “adverse changes,” and even “use.” In order to provide for both protection and use in outer space, and therefore to provide for both scientific and economic exploration, an extension of the OST (or its replacement) will be required. Whatever policy choices are made in constructing such a framework, it is clear that scientific understanding of the solar system, and each of its individual planetary bodies, will be required to determine the balance—and it may be a dynamic balance—between protection and use of outer space environments. This paper will consider the role of scientific advice and continuing research and education within such a framework, and as an essential complement to the necessary regulation distinguishing between protection and use of different locations in outer space.

  14. Remote control circuit breaker evaluation testing. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  15. Booster Test for Space Launch System Rocket

    NASA Image and Video Library

    2016-06-26

    The quench system arm and nozzle are seen at the test area where the second and final qualification motor (QM-2) test for the Space Launch System’s booster will take place, Sunday, June 26, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. The test is scheduled for Tuesday, June 28 at 10:05 a.m. EDT (8:05 a.m. MDT). Photo Credit: (NASA/Bill Ingalls)

  16. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1980-01-01

    This illustration shows the Hubble Space Telescope's (HST's) major configuration elements. The spacecraft has three interacting systems: The Support System Module (SSM), an outer structure that houses the other systems and provides services such as power, communication, and control; The Optical Telescope Assembly (OTA), which collects and concentrates the incoming light in the focal plane for use by the Scientific Instruments (SI); and five SIs. The SI Control and Data Handling (CDH) unit controls the five SI's, four that are housed in an aft section focal plane structure and one that is placed along the circumference of the spacecraft. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company of Sunnyvale, California produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  17. NASA’s Space Launch System Engine Testing Heats Up

    NASA Image and Video Library

    2017-05-23

    NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.

  18. Creating the Deep Space Environment for Testing the James Webb Space Telescope at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft.) in diameter and 36.6 m (120 ft.) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope, which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to minimize dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  19. Creating the Deep Space Environment for Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.

    2012-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960's to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and the modifications were funded, by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink and, the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in the overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive

  20. Webb Telescope Tested for Space, Ready for Science

    NASA Image and Video Library

    2018-01-10

    NASA’s James Webb Space Telescope is a civilization scale mission, set to look back to the first galaxies formed after the Big Bang and help answer the question “are we alone in the universe?” After passing a key test at Johnson Space Center designed to simulate the cold vacuum of space, Webb is ready for the next step ahead of a launch in 2019

  1. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, J. D.; Wright, R. D.

    2016-01-01

    Structural testing was performed to evaluate heritage forward skirts from the Space Shuttle program for use on the NASA Space Launch System (SLS) program. Testing was needed because SLS ascent loads are 35% higher than Space Shuttle loads. Objectives of testing were to determine margins of safety, demonstrate reliability, and validate analytical models. Testing combined with analysis was able to show heritage forward skirts were acceptable to use on the SLS program.

  2. Langley aeronautics and space test highlights, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1984 in Langley test facilities are highlighted. The broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  3. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  4. NASA Tests 2nd RS-25 Flight Engine for Space Launch System

    NASA Image and Video Library

    2018-01-16

    On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).

  5. Engaging space: extraterrestrial architecture and the human psyche

    NASA Astrophysics Data System (ADS)

    Marie Seguin, Angel

    2005-05-01

    The human fascination with exploring and inhabiting the space that lies beyond Earth's atmosphere continues to grow. Nevertheless, 40 years of experience to date have clearly established that humans in outer space routinely suffer significant psychological impairment arising from their stressful extraterrestrial living conditions. This paper explores those extraterrestrial conditions through the interactions between the extraordinarily harsh environment of outer space, the sensations that humans encounter in space, and the qualities of a habitat that physically interposes itself between the two. The objective of this paper is to develop a habitat that expresses the extraterrestrial condition while supporting the mental health of its inhabitants, so as to augment the success of prolonged extraterrestrial residence and interplanetary travel.

  6. Space shuttle propellant constitutive law verification tests

    NASA Technical Reports Server (NTRS)

    Thompson, James R.

    1995-01-01

    As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.

  7. ASTAR Flight Test: Overview and Spacing Results

    NASA Technical Reports Server (NTRS)

    Roper, Roy D.; Koch, Michael R.

    2016-01-01

    The purpose of the NASA Langley Airborne Spacing for Terminal Arrival Routes (ASTAR) research aboard the Boeing ecoDemonstrator aircraft was to demonstrate the use of NASA's ASTAR algorithm using contemporary tools of the Federal Aviation Administration's Next Generation Air Transportation System (NEXTGEN). EcoDemonstrator is a Boeing test program which utilizes advanced experimental equipment to accelerate the science of aerospace and environmentally friendly technologies. The ASTAR Flight Test provided a proof-of-concept flight demonstration that exercised an algorithmic-based application in an actual aircraft. The test aircraft conducted Interval Management operations to provide time-based spacing off a target aircraft in non-simulator wind conditions. Work was conducted as a joint effort between NASA and Boeing to integrate ASTAR in a Boeing supplied B787 test aircraft while using a T-38 aircraft as the target. This demonstration was also used to identify operational risks to future flight trials for the NASA Air Traffic Management Technology Demonstration expected in 2017.

  8. Space Electric Research Test in the Electric Propulsion Laboratory

    NASA Image and Video Library

    1964-06-21

    Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.

  9. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    NASA Technical Reports Server (NTRS)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation

  10. The New Space Age in the making: Emergence of exo-mining, exo-burials and exo-marketing

    NASA Astrophysics Data System (ADS)

    Capova, Klara Anna

    2016-10-01

    At the beginning of the 21st century we witness considerable global developments in space exploration and a new era has begun: the New Space Age. The principal symbols of that age are firstly internationalization of space activities, secondly commercial utilization of space technologies, and lastly emergence of outer space economy. This paper presents selected signposts of the New Space Age. Three cases of recent outer space enterprises: recovery of asteroid resources (exo-mining), post-cremation memorial spaceflight (exo-burials) and first extraterrestrial advert (exo-marketing), are introduced in order to emphasize the monetary and social dimension of commercial application of space technologies. To give an illustration of these trends, this paper provides a brief socioculturally minded account of three outer space undertakings that are interpreted as signposts of the new era.

  11. Simulated Space Vacuum Ultraviolet (VUV) Exposure Testing for Polymer Films

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.

    2002-01-01

    Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the sun in the space environment can cause degradation to polymer films producing changes in optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultra-lightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of sequential simulated space environmental exposures to determine combined damaging effects. This paper will describe the effects of VUV on polymer films and the necessity for ground testing. Testing practices used at Glenn Research Center for VUV exposure testing will be described including characterization of the VUV radiation source used, calibration procedures traceable to the National Institute of Standards and Technology (NIST), and testing techniques for VUV exposure of polymer surfaces.

  12. Qualification Tests of Micro-camera Modules for Space Applications

    NASA Astrophysics Data System (ADS)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  13. 9 CFR 108.10 - Outer premises and stables.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... or on its premises. (b) Stables or other premises for animals used in the production or testing of... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Outer premises and stables. 108.10 Section 108.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  14. 9 CFR 108.10 - Outer premises and stables.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... or on its premises. (b) Stables or other premises for animals used in the production or testing of... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Outer premises and stables. 108.10 Section 108.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  15. 9 CFR 108.10 - Outer premises and stables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or on its premises. (b) Stables or other premises for animals used in the production or testing of... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Outer premises and stables. 108.10 Section 108.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  16. 9 CFR 108.10 - Outer premises and stables.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... or on its premises. (b) Stables or other premises for animals used in the production or testing of... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Outer premises and stables. 108.10 Section 108.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  17. Test evaluation of potential heat shield contamination of an Outer Planet Probe's atmospheric sampling system

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.

    1975-01-01

    An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.

  18. NASA’s Stennis Space Center Conducts RS-25 Engine Test

    NASA Image and Video Library

    2017-03-24

    On March 23, NASA conducted a test of an RS-25 engine at the agency’s Stennis Space Center in Bay St. Louis, Mississippi. Four RS-25’s will help power NASA’s Space Launch System (SLS) rocket to space. During this test, engineers evaluated the engine’s new controller or “brain”, which communicates with the SLS vehicle. Once test data is certified, the engine controller will be removed and installed on one of the four flight engines that will help power the first integrated flight of SLS and the Orion spacecraft.

  19. Aerodynamic Tests of the Space Launch System for Database Development

    NASA Technical Reports Server (NTRS)

    Pritchett, Victor E.; Mayle, Melody N.; Blevins, John A.; Crosby, William A.; Purinton, David C.

    2014-01-01

    The Aerosciences Branch (EV33) at the George C. Marshall Space Flight Center (MSFC) has been responsible for a series of wind tunnel tests on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) vehicles. The primary purpose of these tests was to obtain aerodynamic data during the ascent phase and establish databases that can be used by the Guidance, Navigation, and Mission Analysis Branch (EV42) for trajectory simulations. The paper describes the test particulars regarding models and measurements and the facilities used, as well as database preparations.

  20. NASA Johnson Space Center: White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Kowalski, Robert R.

    2011-01-01

    This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,

  1. Update on IBEX and the outer boundary of the space radiation environment

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; IBEX Science Team

    2012-11-01

    The Interstellar Boundary Explorer (IBEX) mission has been remotely observing the global interaction of our heliosphere with the local interstellar medium for over three years. Initially, IBEX generated the first all-sky maps of Energetic Neutral Atoms (ENAs) emanating in from the boundaries of our heliosphere over the energy range from ˜0.1-6 keV. Using these observations, the IBEX team discovered a smoothly varying, globally distributed ENA flux overlaid by a narrow "ribbon" of significantly enhanced ENA emissions. Since the initial publication of these results in a special issue of Science magazine (November 2009), IBEX has completed five more energy-resolved sets of sky maps and discovered small but important time variations in the interaction, separated the ribbon from globally distributed ENA fluxes, measured the energy spectral shape and inferred ion source temperatures, and carried out many other observational and theoretical studies of the outer heliosphere. In a second major area of observations - direct measurements of Interstellar Neutral (ISN) atoms - just published, IBEX observations of ISN He atoms show that the speed and direction (the motion of the heliosphere with respect to the interstellar medium) is slower and from a somewhat different direction than that thought from prior Ulysses observations. These observations also show evidence for a previously unknown and unanticipated secondary population of Helium. In addition, IBEX is providing the first direct quantitative measurements of the ISN H parameters and the first direct measurements of interstellar Ne and the interstellar Neon/Oxygen abundance ratio; this ratio is significantly different than the solar abundance ratio. Finally, IBEX was recently maneuvered into a unique, long-term stable orbit, which has a very low radiation environment and requires no orbit maintenance. Thus, IBEX will likely continue to provide revolutionary observations of the outer heliosphere and local interstellar

  2. Space station ECLSS simplified integrated test

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.

    1989-01-01

    A discussion of the Space Station Simplified Integrated Test (SIT) was conducted. The first in a series of three integrated Environmental Control and Life Support (ECLS) system tests, the primary objectives of the SIT were to verify proper operation of ECLS subsystems functioning in an integrated fashion as well as to gather preliminary performance data for the partial ECLS system used in the test. A description of the SIT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements and water and gas samples taken during the test are included. The preprototype ECLS hardware used in the test is reported providing an overall process description and theory of operation for each hardware item.

  3. 2. DETAIL, EAST ENTRANCE, SHOWING OUTER BLAST DOOR AND INNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. DETAIL, EAST ENTRANCE, SHOWING OUTER BLAST DOOR AND INNER DOORS. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. Space Shuttle Main Engine Public Test Firing

    NASA Image and Video Library

    2000-07-25

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  5. First-ever evening public engine test of a Space Shuttle Main Engine

    NASA Image and Video Library

    2001-04-21

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  6. Analysis and testing of a space crane articulating joint testbed

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey

    1992-01-01

    The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.

  7. INFLIGHT (CREW ACTIVITY) - STS-2 - OUTER SPACE

    NASA Image and Video Library

    1981-11-16

    S81-39573 (12-14 Nov. 1981) --- This photograph was taken during a two-and a fourth-day stay in Earth orbit by astronauts Joe H. Engle, here shaving, and Richard H. Truly, photographer for this frame. A portion of that time was spent in the living area of middeck portion of the 122-ft-long (37 meters) vehicle as the astronauts ate, slept and took care of hygiene matters here. An onboard fire extinguisher is in upper right corner. Partially out of the frame at right edge is a photograph of George W. S. Abbey, Director of Flight Operations at Johnson Space Center. Engle is attired in an onboard constant wear type garment. Photo credit: NASA

  8. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  9. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  10. Langley aeronautics and space test highlights, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.

  11. Employment of Asteroids for Movement Space Ship and Probes

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2002-01-01

    At present, rockets are used to change the trajectory of space ships and probes. This method is very expensive and requires a lot of fuel, which limits the feasibility of space stations, interplanetary space ships, and probes. Sometimes space probes use the gravity field of a planet. However, there are only 9 planets in our solar system and they are separated by great distances. There are tens of millions of asteroids in outer space. The author offers a revolutionary method for changing the trajectory of space probes. This method uses the kinetic or rotary energy of asteroids, meteorites or other space bodies (small planets, natural planet satellites, etc.). to increase (to decrease) ship (probe) speed up to 1000 m/sec (or more) and to get any new direction in outer space. The flight possibilities of space ships and probes are increased by a factor of millions.

  12. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    NASA Technical Reports Server (NTRS)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  13. Inner Segment Remodeling and Mitochondrial Translocation in Cone Photoreceptors in Age-Related Macular Degeneration With Outer Retinal Tubulation.

    PubMed

    Litts, Katie M; Messinger, Jeffrey D; Freund, K Bailey; Zhang, Yuhua; Curcio, Christine A

    2015-04-01

    To quantify impressions of mitochondrial translocation in degenerating cones and to determine the nature of accumulated material in the subretinal space with apparent inner segment (IS)-like features by examining cone IS ultrastructure. Human donor eyes with advanced age-related macular degeneration (AMD) were screened for outer retinal tubulation (ORT) in macula-wide, high-resolution digital sections. Degenerating cones inside ORT (ORT cones) and outside ORT (non-ORT cones) from AMD eyes and unaffected cones in age-matched control eyes were imaged using transmission electron microscopy. The distances of mitochondria to the external limiting membrane (ELM), cone IS length, and cone IS width at the ELM were measured. Outer retinal tubulation and non-ORT cones lose outer segments (OS), followed by shortening of IS and mitochondria. In non-ORT cones, IS broaden. Outer retinal tubulation and non-ORT cone IS myoids become undetectable due to mitochondria redistribution toward the nucleus. Some ORT cones were found lacking IS and containing mitochondria in the outer fiber (between soma and ELM). Unlike long, thin IS mitochondria in control cones, ORT and non-ORT IS mitochondria are ovoid or reniform. Shed IS, some containing mitochondria, were found in the subretinal space. In AMD, macula cones exhibit loss of detectable myoid due to IS shortening in addition to OS loss, as described. Mitochondria shrink and translocate toward the nucleus. As reflectivity sources, translocating mitochondria may be detectable using in vivo imaging to monitor photoreceptor degeneration in retinal disorders. These results improve the knowledge basis for interpreting high-resolution clinical retinal imaging.

  14. Low Cost Propulsion Technology Testing at the Stennis Space Center: Propulsion Test Article and the Horizontal Test Facility

    NASA Technical Reports Server (NTRS)

    Fisher, Mark F.; King, Richard F.; Chenevert, Donald J.

    1998-01-01

    The need for low cost access to space has initiated the development of low cost liquid rocket engine and propulsion system hardware at the Marshall Space Flight Center. This hardware will be tested at the Stennis Space Center's B-2 test stand. This stand has been reactivated for the testing of the Marshall designed Fastrac engine and the Propulsion Test Article. The RP-1 and LOX engine is a turbopump fed gas generator rocket with an ablative nozzle which has a thrust of 60,000 lbf. The Propulsion Test Article (PTA) is a test bed for low cost propulsion system hardware including a composite RP-I tank, flight feedlines and pressurization system, stacked in a booster configuration. The PTA is located near the center line of the B-2 test stand, firing vertically into the water cooled flame deflector. A new second position on the B-2 test stand has been designed and built for the horizontal testing of the Fastrac engine in direct support of the X-34 launch vehicle. The design and integration of these test facilities as well as the coordination which was required between the two Centers is described and lessons learned are provided. The construction of the horizontal test position is discussed in detail. The activation of these facilities is examined and the major test milestones are described.

  15. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria*

    PubMed Central

    Wang, Yan; Wang, Rui; Jin, Feng; Liu, Yang; Yu, Jiayu; Fu, Xinmiao; Chang, Zengyi

    2016-01-01

    β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis. PMID:27298319

  16. James Webb Space Telescope Sunshield Test Unfolds Seamlessly

    NASA Image and Video Library

    2017-12-08

    A major test of the sunshield for NASA’s James Webb Space Telescope was conducted recently by Northrop Grumman in Redondo Beach, California. For the first time, the five sunshield test layers were unfolded and separated; unveiling important insights for the engineers and technicians as to how the deployment will take place when the telescope launches into space. “These tests are critical and allow us to see how our modeling works and learn about any modifications we may need to make in our design as we move into sunshield flight production,” said Jim Flynn, Webb sunshield manager. The three-day test took place in July, taking seven engineers and six technicians about 20 hours to complete. On orbit, the sunshield will take several days to unfold. Read more here: 1.usa.gov/1vykZbk Credit: Northrop Grumman/Alex Evers NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Radiolysis of Amino Acids in Outer Solar-System Ice Analogs

    NASA Technical Reports Server (NTRS)

    Gerakines, Perry A.; Hudson, Reggie L.

    2011-01-01

    Amino acids have been found in cometary dust particles and in the organic component of meteorites. These molecules, important for pre-biotic chemistry and for active biological systems, might be formed in cold planetary or interstellar environments and then delivered to H20-rich surfaces in the outer solar system. Many models for the availability of organic species on Earth and elsewhere depend on the ability of these molecules to survive in radiation-rich space environments. This poster presents results of O.8-MeV proton radiolysis of ice films at lS-140K. using infrared spectroscopy, the destruction rates of glycine, alanine, and phenylalanine have been determined for both pure films and those containing amino acids diluted in H2o. our results are discussed in terms of the survivability of these molecules in the icy surfaces present in the outer solar system and the possibility of their detection by instruments on board the New Horizons spacecraft

  18. The transition of ground-based space environmental effects testing to the space environment

    NASA Technical Reports Server (NTRS)

    Zaat, Stephen V.; Schaefer, Glen A.; Wallace, John F.

    1991-01-01

    The goal of the space flight program at the Center for Commercial Development of Space (CCDS)--Materials for Space Structures is to provide environmentally stable structural materials to support the continued humanization and commercialization of the space frontier. Information on environmental stability will be obtained through space exposure, evaluation, documentation, and subsequent return to the supplier of the candidate material for internal investigation. This program provides engineering and scientific service to space systems development firms and also exposes CCDS development candidate materials to space environments representative of in-flight conditions. The maintenance of a technological edge in space for NASA suggests the immediate search for space materials that maintain their structural integrity and remain environmentally stable. The materials being considered for long-lived space structures are complex, high strength/weight ratio composites. In order for these new candidate materials to qualify for use in space structures, they must undergo strenuous testing to determine their reliability and stability when subjected to the space environment. Ultraviolet radiation, atomic oxygen, debris/micrometeoroids, charged particles radiation, and thermal fatigue all influence the design of space structural materials. The investigation of these environmental interactions is the key purpose of this center. Some of the topics discussed with respect to the above information include: the Space Transportation System, mission planning, spaceborne experiments, and space flight payloads.

  19. Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie

    2006-01-01

    Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.

  20. The National Space Transportation Policy : Issues for Congress

    DOT National Transportation Integrated Search

    1995-05-01

    In responding to the political and military challenges of the Cold War, and the urge to explore and exploit outer space, the United States developed a capable fleet of space transportation systems for carrying cargo and people into space. Increasing ...

  1. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  2. Genotoxicity testing on the international space station: Preparatory work on the SOS-LUX test as part of the space experiment TRIPLE-LUX

    NASA Astrophysics Data System (ADS)

    Stojicic, Nevena; Walrafen, David; Baumstark-Khan, Christa; Rabbow, Elke; Rettberg, Petra; Weisshaar, Maria-Paz; Horneck, Gerda

    Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Radiation Biology Unit at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such a bioassay is the SOS-LUX test, which represents the radiobiological part of the German space experiment "Gene, immune and cellular responses to single and combined space flight conditions (TRIPLE-LUX)" which has been selected by the IDI/USRA Peer Review Panel for NASA/ESA to be performed on the International Space Station (ISS). It will supply basic information on the genotoxic response to radiation applied in microgravity. The biological end-point under investigation will depend on the bacterial SOS response brought about by genetically modified bacteria that are transformed with the pSWITCH plasmid (constructed from the plasmids pPLS-1 and pGFPuv). The luminescent/fluorescent bioassay SWITCH (SWITCH: Salmonella Weighting of Induced Toxicity Cyto/GenoTox for Human Health) as successor of the SOS-LUX test for rapid toxicity (genotoxicity and cytotoxicity) testing, makes use of two sensing and reporting systems for the two biological endpoints under investigation: the SOS-LUX test and the LAC- Fluoro test. The SWITCH plasmid carries the promoterless lux operon of Photobacterium leiognathi as reporter element under the control of the DNA-damage-dependent SOS promoter of ColD as sensor element (for genotoxicity testing) and the sequences for a hybrid protein consisting of β-galactosidase and GFPuv of Aequorea victoria as reporter element under the control of the (in Salmonella constitutively active) LAC promoter of Escherichia coli as sensor element (for cytotoxicity testing). The system has worked properly for terrestrial applications during the first experiments. Experiments using X-rays and UV radiation

  3. Deep Space Test Bed for Radiation Studies

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark; Watts, John; Kuznetsov, Eugene; Lin, Zi-Wei

    2006-01-01

    A key factor affecting the technical feasibility and cost of missions to Mars or the Moon is the need to protect the crew from ionizing radiation in space. Some analyses indicate that large amounts of spacecraft shielding may be necessary for crew safety. The shielding requirements are driven by the need to protect the crew from Galactic cosmic rays (GCR). Recent research activities aimed at enabling manned exploration have included shielding materials studies. A major goal of this research is to develop accurate radiation transport codes to calculate the shielding effectiveness of materials and to develop effective shielding strategies for spacecraft design. Validation of these models and calculations must be addressed in a relevant radiation environment to assure their technical readiness and accuracy. Test data obtained in the deep space radiation environment can provide definitive benchmarks and yield uncertainty estimates of the radiation transport codes. The two approaches presently used for code validation are ground based testing at particle accelerators and flight tests in high-inclination low-earth orbits provided by the shuttle, free-flyer platforms, or polar-orbiting satellites. These approaches have limitations in addressing all the radiation-shielding issues of deep space missions in both technical and practical areas. An approach based on long duration high altitude polar balloon flights provides exposure to the galactic cosmic ray composition and spectra encountered in deep space at a lower cost and with easier and more frequent access than afforded with spaceflight opportunities. This approach also results in shorter development times than spaceflight experiments, which is important for addressing changing program goals and requirements.

  4. Definition of ground test for verification of large space structure control

    NASA Technical Reports Server (NTRS)

    Doane, G. B., III; Glaese, J. R.; Tollison, D. K.; Howsman, T. G.; Curtis, S. (Editor); Banks, B.

    1984-01-01

    Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed.

  5. Immune response during space flight.

    PubMed

    Criswell-Hudak, B S

    1991-01-01

    The health status of an astronaut prior to and following space flight has been a prime concern of NASA throughout the Apollo series of lunar landings, Skylab, Apollo-Soyuz Test Projects (ASTP), and the new Spacelab-Shuttle missions. Both humoral and cellular immunity has been studied using classical clinical procedures. Serum proteins show fluctuations that can be explained with adaptation to flight. Conversely, cellular immune responses of lymphocytes appear to be depressed in both in vivo as well as in vitro. If this depression in vivo and in vitro is a result of the same cause, then man's adaptation to outer space living will present interesting challenges in the future. Since the cause may be due to reduced gravity, perhaps the designs of the experiments for space flight will offer insights at the cellular levels that will facilitate development of mechanisms for adaptation. Further, if the aging process is viewed as an adaptational concept or model and not as a disease process then perhaps space flight could very easily interact to supply some information on our biological time clocks.

  6. Extravehicular Mobility Unit Penetration Probability from Micrometeoroids and Orbital Debris: Revised Analytical Model and Potential Space Suit Improvements

    NASA Technical Reports Server (NTRS)

    Chase, Thomas D.; Splawn, Keith; Christiansen, Eric L.

    2007-01-01

    The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of >0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits.

  7. Space station prototype Sabatier reactor design verification testing

    NASA Technical Reports Server (NTRS)

    Cusick, R. J.

    1974-01-01

    A six-man, flight prototype carbon dioxide reduction subsystem for the SSP ETC/LSS (Space Station Prototype Environmental/Thermal Control and Life Support System) was developed and fabricated for the NASA-Johnson Space Center between February 1971 and October 1973. Component design verification testing was conducted on the Sabatier reactor covering design and off-design conditions as part of this development program. The reactor was designed to convert a minimum of 98 per cent hydrogen to water and methane for both six-man and two-man reactant flow conditions. Important design features of the reactor and test conditions are described. Reactor test results are presented that show design goals were achieved and off-design performance was stable.

  8. Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Irving, J. C. E.; Cottaar, S.; Lekic, V.

    2016-12-01

    The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk

  9. EVA - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE

    NASA Image and Video Library

    1965-06-03

    S65-30271 (3 June 1965) --- Astronaut Edward H. White II, pilot on the Gemini-Titan IV (GT-4) spaceflight, floats in the zero gravity of space outside the Gemini IV spacecraft. His face is covered by a shaded visor to protect him from the unfiltered rays of the sun. White became the first American astronaut to walk in space. He remained outside the spacecraft for 21 minutes during the third revolution of the Gemini IV mission. He wears a specially designed spacesuit for the EVA. His right hand (out of frame) is holding the Hand-Held Self-Maneuvering Unit (HHSMU), with which he controlled his movements while in space, and a camera is attached to the HHSMU. He was attached to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped together with gold tape to form one cord. He wears an emergency oxygen supply check pack. Astronaut James A. McDivitt is command pilot for the GT-4 mission. The mission was a four-day, 62-revolution flight, during which McDivitt and White performed a series of scientific and engineering experiments. (This image is black and white) Photo credit: NASA EDITOR?S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy, Florida, on Jan. 27, 1967.

  10. EVA - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE

    NASA Image and Video Library

    1965-06-03

    S65-30272 (3 June 1965) --- Astronaut Edward H. White II, pilot on the Gemini-Titan IV (GT-4) spaceflight, floats in the zero gravity of space outside the Gemini IV spacecraft. His face is covered by a shaded visor to protect him from the unfiltered rays of the sun. White became the first American astronaut to walk in space. He remained outside the spacecraft for 21 minutes during the third revolution of the Gemini IV mission. He wears a specially designed spacesuit for the EVA. His right hand is holding the Hand-Held Self-Maneuvering Unit (HHSMU), with which he controlled his movements while in space, and a camera is attached to the HHSMU. He was attached to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped together with gold tape to form one cord. He wears an emergency oxygen supply check pack. Astronaut James A. McDivitt is command pilot for the GT-4 mission. The mission was a four-day, 62-revolution flight, during which McDivitt and White performed a series of scientific and engineering experiments. (This image is black and white) Photo credit: NASA EDITOR?S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy, Florida, on Jan. 27, 1967.

  11. EVA - ASTRONAUT EDWARD H. WHITE II - MISC. - OUTER SPACE

    NASA Image and Video Library

    1965-06-03

    S65-30273 (3 June 1965) --- Astronaut Edward H. White II, pilot on the Gemini-Titan IV (GT-4) spaceflight, floats in the zero gravity of space outside the Gemini IV spacecraft. His face is covered by a shaded visor to protect him from the unfiltered rays of the sun. White became the first American astronaut to walk in space. He remained outside the spacecraft for 21 minutes during the third revolution of the Gemini IV mission. He wears a specially designed spacesuit for the EVA. His right hand is holding the Hand-Held Self-Maneuvering Unit (HHSMU), with which he controlled his movements while in space, and a camera is attached to the HHSMU. He was attached to the spacecraft by a 25-feet umbilical line and a 23-feet tether line, both wrapped together with gold tape to form one cord. He wears an emergency oxygen supply check pack. Astronaut James A. McDivitt is command pilot for the GT-4 mission. The mission was a four-day, 62-revolution flight, during which McDivitt and White performed a series of scientific and engineering experiments. (This image is black and white) Photo credit: NASA EDITOR?S NOTE: Astronaut Edward H. White II died in the Apollo/Saturn 204 fire at Cape Kennedy, Florida, on Jan. 27, 1967.

  12. Engaging space: extraterrestrial architecture and the human psyche.

    PubMed

    Sequin, Angel Marie

    2005-01-01

    The human fascination with exploring and inhabiting the space that lies beyond Earth's atmosphere continues to grow. Nevertheless, 40 years of experience to date have clearly established that humans in outer space routinely suffer significant psychological impairment arising from their stressful extraterrestrial living conditions. This paper explores those extraterrestrial conditions through the interactions between the extraordinarily harsh environment of outer space, the sensations that humans encounter in space, and the qualities of a habitat that physically interposes itself between the two. The objective of this paper is to develop a habitat that expresses the extraterrestrial condition while supporting the mental health of its inhabitants, so as to augment the success of prolonged extraterrestrial residence and interplanetary travel. c2005 Elsevier Ltd. All rights reserved.

  13. Space and Missile Systems Center Standard: Test Requirements for Launch, Upper-Stage and Space Vehicles

    DTIC Science & Technology

    2014-09-05

    adiabatic expansion of a perfect gas ; b. Contains a gas or liquid that would endanger personnel or equipment or create a mis- hap if released; or c...Guidelines for Liquid Rocket Engines 31. TOR-2013(3213)-6 Acoustic Testing on Production Space Vehicle (The Value of the Test and Deletion...materials used in space vehicles, interstages, payload adapters, payload fairings, motor cases, nozzles , propellant tanks, and over-wrapped pressure vessels

  14. Creating the Deep Space Environment for Testing the James Webb Space Telescope (JWST) at NASA Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Cerimele, Mary P.; Montz, Michael E.; Bachtel, Russell; Speed, John; O'Rear, Patrick

    2013-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. It was originally designed and built in the mid 1960 s to test the Apollo Command and Service Module and several manned tests were conducted on that spacecraft, contributing to the success of the program. The chamber has been used since that time to test spacecraft active thermal control systems, Shuttle DTO, DOD, and ESA hardware in simulated Low Earth Orbit (LEO) conditions. NASA is now moving from LEO towards exploration of locations with environments approaching those of deep space. Therefore, Chamber A has undergone major modifications to enable it to simulate these deeper space environments. Environmental requirements were driven, and modifications were funded by the James Webb Space Telescope program, and this telescope which will orbit Solar/Earth L2, will be the first test article to benefit from the chamber s new capabilities. To accommodate JWST, the Chamber A high vacuum system has been modernized, additional LN2 shrouds have been installed, the liquid nitrogen system has been modified to remove dependency on electrical power and increase its reliability, a new helium shroud/refrigeration system has been installed to create a colder more stable and uniform heat sink, and the controls have been updated to increase the level of automation and improve operator interfaces. Testing of these major modifications was conducted in August of 2012 and this initial test was very successful, with all major systems exceeding their performance requirements. This paper will outline the changes in overall environmental requirements, discuss the technical design data that was used in the decisions leading to the extensive modifications

  15. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  16. Space nuclear power: Key to outer solar system exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, G.L.; Allen, D.M.

    1998-07-01

    In 1995, in response to threatened budget cuts, the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper supporting the maintenance of the technology base for space nuclear power. The position paper contained four recomemndations: (1) DOE, NASA, and DoD should develop and support an integrated program that maintains the nuclear option and develops the needed high-payoff technologies; (2) Congress should provide strong, continuing financial and political support for the agencies' program; (3) Government and industry leaders should voice their advocacy for a strong space nuclear power program to support future system requirements; and (4) The US shouldmore » continue to maintain its cooperation and technical interchanges with other countries to advance nuclear power source technology and to promote nuclear safety.« less

  17. Space Plasma Shown to Make Satellite Solar Arrays Fail

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1999-01-01

    In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.

  18. Interaction between bacterial outer membrane proteins and periplasmic quality control factors: a kinetic partitioning mechanism.

    PubMed

    Wu, Si; Ge, Xi; Lv, Zhixin; Zhi, Zeyong; Chang, Zengyi; Zhao, Xin Sheng

    2011-09-15

    The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.

  19. Forward Skirt Structural Testing on the Space Launch System (SLS) Program

    NASA Technical Reports Server (NTRS)

    Lohrer, Joe; Wright, R. D.

    2016-01-01

    Introduction: (a) Structural testing was performed to evaluate Space Shuttle heritage forward skirts for use on the Space Launch System (SLS) program, (b) Testing was required because SLS loads are approximately 35% greater than shuttle loads; and (c) Two forwards skirts were tested to failure.

  20. Outer retinal corrugations in age-related macular degeneration.

    PubMed

    Ooto, Sotaro; Vongkulsiri, Sritatath; Sato, Taku; Suzuki, Mihoko; Curcio, Christine A; Spaide, Richard F

    2014-07-01

    Optical coherence tomography (OCT) abnormalities of age-related macular degeneration (AMD) have not been fully characterized because of the complex morphology and a lack of correlative histologic studies. Expansion of our ability to interpret increasing attributes brings us closer to the goal of in vivo histologic analysis of the eye by OCT. To describe a new outer retinal finding of AMD using spectral-domain (SD) OCT and suggest histopathologic correlates. Twenty-five eyes of 16 patients with AMD with severe atrophy due to either choroidal neovascularization (CNV) or geographic atrophy (GA) and 53 donor eyes of 53 patients with late AMD were included. Imaging studies were conducted at a referral retinal practice and histopathology was done at a university research laboratory. Findings in the outer retina were evaluated in SD-OCT images in eyes with atrophy of the retinal pigment epithelium (RPE) and compared with histopathologic findings in eyes with GA or CNV that also showed loss of the RPE. Spectral-domain OCT and histologic characteristics of the outer retina. The mean (SD) age of the 16 patients was 82.7 (7.9) years. Twenty eyes had CNV and 5 eyes had GA. The mean best-corrected visual acuity was 0.800 logMAR (interquartile range, 0.350-1.000 logMAR), a Snellen equivalent of 20/126. A curvilinear hyperreflective density was identified above the Bruch membrane line within the atrophic area in the SD-OCT images. At the internal border, the material was contiguous with the outer portion of the RPE band. Below the material was a relatively hyporeflective space. The material was thrown into folds in cases with atrophy following CNV or was seen as a sheet with numerous bumps in eyes with GA. Review of histopathologic findings of eyes with advanced GA and CNV revealed a rippled layer of basal laminar deposits in an area of RPE atrophy that was located in the same level as the curvilinear line seen in the OCT images. We have described a new entity, termed outer

  1. International Space Station Carbon Dioxide Removal Assembly Testing

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2000-01-01

    Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.

  2. Micrometeorite Impact Test of Flex Solar Array Coupon

    NASA Technical Reports Server (NTRS)

    Wright, K. H.; Schneider, T. A.; Vaughn, J. A.; Hoang, B.; Wong, F.; Gardiner, G.

    2016-01-01

    Spacecraft with solar arrays operate throughout the near earth environment and are planned for outer planet missions. An often overlooked test condition for solar arrays that is applicable to these missions is micrometeoroid impacts and possibly electrostatic discharge (ESD) events resulting from these impacts. NASA Marshall Space Flight Center (MSFC) is partnering with Space Systems/Loral, LLC (SSL) to examine the results of simulated micrometeoroid impacts on the electrical performance of an advanced, lightweight flexible solar array design. The test is performed at MSFC's Micro Light Gas Gun Facility with SSL-provided coupons. Multiple impacts were induced at various locations on a powered test coupon under different string voltage (0V-150V) and string current (1.1A - 1.65A) conditions. The setup, checkout, and results from the impact testing are discussed.

  3. Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space.

    PubMed

    Glynn, Jonathan M; Froehlich, John E; Osteryoung, Katherine W

    2008-09-01

    Chloroplasts arose from a free-living cyanobacterial endosymbiont and divide by binary fission. Division involves the assembly and constriction of the endosymbiont-derived, tubulin-like FtsZ ring on the stromal surface of the inner envelope membrane and the host-derived, dynamin-like ARC5 ring on the cytosolic surface of the outer envelope membrane. Despite the identification of many proteins required for plastid division, the factors coordinating the internal and external division machineries are unknown. Here, we provide evidence that this coordination is mediated in Arabidopsis thaliana by an interaction between ARC6, an FtsZ assembly factor spanning the inner envelope membrane, and PDV2, an ARC5 recruitment factor spanning the outer envelope membrane. ARC6 and PDV2 interact via their C-terminal domains in the intermembrane space, consistent with their in vivo topologies. ARC6 acts upstream of PDV2 to localize PDV2 (and hence ARC5) to the division site. We present a model whereby ARC6 relays information on stromal FtsZ ring positioning through PDV2 to the chloroplast surface to specify the site of ARC5 recruitment. Because orthologs of ARC6 occur in land plants, green algae, and cyanobacteria but PDV2 occurs only in land plants, the connection between ARC6 and PDV2 represents the evolution of a plant-specific adaptation to coordinate the assembly and activity of the endosymbiont- and host-derived plastid division components.

  4. Acoustic vibration analysis for utilization of woody plant in space environment

    NASA Astrophysics Data System (ADS)

    Chida, Yukari; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Motohashi, Kyohei; Sakurai, Naoki; Nakagawa-izumi, Akiko

    2012-07-01

    We are proposing to raise woody plants for space agriculture in Mars. Space agriculture has the utilization of wood in their ecosystem. Nobody knows the real tree shape grown under space environment under the low or micro gravitational conditions such as outer environment. Angiosperm tree forms tension wood for keeping their shape. Tension wood formation is deeply related to gravity, but the details of the mechanism of its formation has not yet been clarified. For clarifying the mechanism, the space experiment in international space station, ISS is the best way to investigate about them as the first step. It is necessary to establish the easy method for crews who examine the experiments at ISS. Here, we are proposing to investigate the possibility of the acoustic vibration analysis for the experiment at ISS. Two types of Japanese cherry tree, weeping and upright types in Prunus sp., were analyzed by the acoustic vibration method. Coefficient-of-variation (CV) of sound speed was calculated by the acoustic vibration analysis. The amount of lignin and decomposed lignin were estimated by both Klason and Py-GC/MS method, respectively. The relationships of the results of acoustic vibration analysis and the inner components in tested woody materials were investigated. After the experiments, we confirm the correlation about them. Our results indicated that the acoustic vibration analysis would be useful for determining the inside composition as a nondestructive method in outer space environment.

  5. Research on the Legislation of Chinese Space Laws

    NASA Astrophysics Data System (ADS)

    Yang, Dongwen

    2002-01-01

    1 Need and necessity for the legislation of Chinese space activities --Complying with UN treaties and principles on outer space --Adapting to the requirements of market economy --Promoting the further development of Chinese space activities --Developing international space cooperation 2 Research method for legislation of Chinese space activities The research method is ROCCIPI. This method was introduced into China with the project "Legislation Supports Economy Reform" supported by the UN Office of Development Planning - By analyzing the correlations among the seven factors: Rule, Opportunity, Capacity, Communication, Interest, Process and Ideology, the optimal legal measures can be found . Such analysis and research works on the master law of Chinese space activities have been made in the paper. 3 Research of international treaties &principles on outer space, and of national space laws of other countries. Studies have been made in this paper on many aspects of international outer space laws, such as framework, development stage, current characteristics, new problems will be faced with in new century, and development tendency in the future, etc. Based on the investigation and study of national space laws of other countries, analyses and researches on national space law have been made in the paper from some aspects, such as legislative purpose, legislative aim, legislative form, legislative content and etc, and some enlightenments, which can be used for reference in the legislation of Chinese Space Laws, are found. 4 Framework of Chinese Space Laws The jurisdiction of Chinese Space Laws lies in three areas: space technology - space applications and space science. Chinese Space Laws are divided into 3 levels: Master law, Administration Regulations of the State Council of the P.R.C, Rules of governmental sectors. 5 Conclusions and Suggestions --The legislation of Chinese Space Activities should be strengthened --More attentions should be paid to the research work in

  6. Tests of gravity with future space-based experiments

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy

    2018-03-01

    Future space-based tests of relativistic gravitation—laser ranging to Phobos, accelerometers in orbit, and optical networks surrounding Earth—will constrain the theory of gravity with unprecedented precision by testing the inverse-square law, the strong and weak equivalence principles, and the deflection and time delay of light by massive bodies. In this paper, we estimate the bounds that could be obtained on alternative gravity theories that use screening mechanisms to suppress deviations from general relativity in the Solar System: chameleon, symmetron, and Galileon models. We find that space-based tests of the parametrized post-Newtonian parameter γ will constrain chameleon and symmetron theories to new levels, and that tests of the inverse-square law using laser ranging to Phobos will provide the most stringent constraints on Galileon theories to date. We end by discussing the potential for constraining these theories using upcoming tests of the weak equivalence principle, and conclude that further theoretical modeling is required in order to fully utilize the data.

  7. Spacing, Testing, and Feedback: Helping Students Overcome Forgetting

    ERIC Educational Resources Information Center

    Kapler, Irina V.; Cepeda, Nicholas J.; Weston, Tina

    2012-01-01

    How can students' forgetting be reduced? The spacing effect--a promising strategy from the field of cognitive psychology--might hold some of the answers. Research has demonstrated that information is remembered two to three times better if study sessions are spaced in time rather than massed together. The testing effect is another research-based…

  8. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  9. GEMINI-6 - EARTH-SKY VIEW - AUSTRALIA - OUTER SPACE

    NASA Image and Video Library

    1965-12-16

    S65-63136 (16 Dec. 1965) --- Shark Bay area on the western coast of Western Australia as seen from the Gemini-6 spacecraft during its 16th revolution of Earth. City of Carnarven, where NASA has a tracking station, is located near the bottom of picture in lower left corner, near mouth of stream. Indian Ocean is body of water at upper right. South is toward top of picture. Photo credit: NASA or National Aeronautics and Space Administration

  10. Evaluation tests of industrial vacuum bearings for space use

    NASA Astrophysics Data System (ADS)

    Obara, S.; Sasaki, A.; Haraguchi, M.; Imagawa, K.; Nishimura, M.; Kawashima, N.

    2001-09-01

    Tribological performance of industrial vacuum bearings was experimentally evaluated for space use. The bearings selected for investigation were an 8 mm bore-sized deep-groove ball bearing lubricated with a sputtered MoS2 film and that lubricated with an ion-plated Ag film, commercially delivered from three Japanese domestic bearing-manufacturers. Based on survey results of tribological requirements for the existing satellite mechanisms, four types of bearing tests were defined and conducted: a vacuum test at room temperature, an atmosphere-resistant test, a thermal vacuum test and a vibration test. In addition to these tests, variation in tribological performance of the industrial bearings was also investigated. The results of more than eighty tests demonstrated that the industrial vacuum bearings had sufficient lubrication lives with low frictional torque and their data were reasonably repeatable, indicating very good potentiality for space use.

  11. Molecular markers for X-ray-insensitive differentiated cells in the Inner and outer regions of the mesenchymal space in planarian Dugesia japonica.

    PubMed

    Teramoto, Machiko; Kudome-Takamatsu, Tomomi; Nishimura, Osamu; An, Yang; Kashima, Makoto; Shibata, Norito; Agata, Kiyokazu

    2016-09-01

    Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X-ray-sensitive and proliferative stem cells. In addition to neoblasts, another type of X-ray-sensitive cells was newly identified by recent research. Thus, planarian's X-ray-sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined "neoblasts". Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X-ray-sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments. © 2016 Japanese Society of Developmental Biologists.

  12. Hartmann test for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Knight, J. Scott; Feinberg, Lee; Howard, Joseph; Acton, D. Scott; Whitman, Tony L.; Smith, Koby

    2016-07-01

    The James Webb Space Telescope's (JWST) end-to-end optical system will be tested in a cryogenic vacuum environment before launch at NASA Johnson Space Center's (JSC) Apollo-era, historic Chamber A thermal vacuum facility. During recent pre-test runs with a prototype "Pathfinder" telescope, the vibration in this environment was found to be challenging for the baseline test approach, which uses phase retrieval of images created by three sub-apertures of the telescope. To address the vibration, an alternate strategy implemented using classic Hartmann test principles combined with precise mirror mechanisms to provide a testing approach that is insensitive to the dynamics environment of the chamber. The measurements and sensitivities of the Hartmann approach are similar to those using phase retrieval over the original sparse aperture test. The Hartmann test concepts have been implemented on the JWST Test Bed Telescope, which provided the rationale and empirical evidence indicating that this Hartmann style approach would be valuable in supplementing the baseline test approach. This paper presents a Hartmann approach implemented during the recent Pathfinder test along with the test approach that is currently being considered for the full optical system test of JWST. Comparisons are made between the baseline phase retrieval approach and the Hartmann approach in addition to demonstrating how the two test methodologies support each other to reduce risk during the JWST full optical system test.

  13. JT90 Ceramic Outer Air Seal System Refinement Program, Phase 2

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1982-01-01

    The sprayed ceramic gas turbine outer air seal system was tested in two JT9D engines to substantiate the abradability and durability of the seals. Of particular significance was that one of the tests, a 150 hour 1000 cycle endurance program at nominal JT9D operating conditions, was completed with minimal effect on the seals and received Federal Aviation Administration cognizance with respect to potential field service use by the airlines. The other engine test completed 1825 endurance cycles at severe operating conditions and no burn through or other serious defects in the structural integrity of a seal segment was observed. These test results combined with other Pratt and Whitney Aircraft engine tests substantiate the potential of the ceramic outer air seal system to attain the durability goal of 50000 hour engine operating capability. Both engine tests subjected the seals to intentional blade rubs and demonstrated good abradability with volume wear ratios greater than 100, far exceeding the design goal of 10. The improved volume wear ratio will allow the turbine tip clearance to be reduced, thereby resulting in an estimated thrust specific fuel consumption improvement of 0.3 percent.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1985-01-01

    In this photograph, engineers and technicians prepare the Hubble Space Telescope's (HST's) Wide Field and Planetary Camera (WF/PC) for installation at the Lockheed Missile and Space Company. The WF/PC is designed to investigate the age of the universe and to search for new planetary systems around young stars. It takes pictures of large numbers of galaxies and close-ups of planets in our solar system. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  15. Space Launch System Integrated Structural Test b-roll

    NASA Image and Video Library

    2017-04-19

    Integrated Structural Test at test stand 4699 at Marshall Space Flight Center: 1. Launch Vehicle Stage Adapter (LVSA) install to 4699 - 00:05 2. Interim Cryogenic Propulsion stage (ICPS) install to 4699 00:20 3. Orion Stage Adapter (OSA) install to 4699 00:56 4. Integrated Structural Test control room 01:10 5. Animation of stacking LVSA, ICPS & OSA in test stand 02:46

  16. Multi-axis transient vibration testing of space objects: Test philosophy, test facility, and control strategy

    NASA Technical Reports Server (NTRS)

    Lachenmayr, Georg

    1992-01-01

    IABG has been using various servohydraulic test facilities for many years for the reproduction of service loads and environmental loads on all kinds of test objects. For more than 15 years, a multi-axis vibration test facility has been under service, originally designed for earthquake simulation but being upgraded to the demands of space testing. First tests with the DFS/STM showed good reproduction accuracy and demonstrated the feasibility of transient vibration testing of space objects on a multi-axis hydraulic shaker. An approach to structural qualification is possible by using this test philosophy. It will be outlined and its obvious advantages over the state-of-the-art single-axis test will be demonstrated by example results. The new test technique has some special requirements to the test facility exceeding those of earthquake testing. Most important is the high reproduction accuracy demanded for a sophisticated control system. The state-of-the-art approach of analog closed-loop control circuits for each actuator combined with a static decoupling network and an off-line iterative waveform control is not able to meet all the demands. Therefore, the future over-all control system is implemented as hierarchical full digital closed-loop system on a highly parallel transputer network. The innermost layer is the digital actuator controller, the second one is the MDOF-control of the table movement. The outermost layer would be the off-line iterative waveform control, which is dedicated only to deal with the interaction of test table and test object or non-linear effects. The outline of the system will be presented.

  17. Embrittlement of MISSE 5 Polymers After 13 Months of Space Exposure

    NASA Technical Reports Server (NTRS)

    Guo, Aobo; Yi, Grace T.; Ashmead, Claire C.; Mitchell, Gianna G.; deGroh, Kim K.

    2012-01-01

    Understanding space environment induced degradation of spacecraft materials is essential when designing durable and stable spacecraft components. As a result of space radiation, debris impacts, atomic oxygen interaction, and thermal cycling, the outer surfaces of space materials degrade when exposed to low Earth orbit (LEO). The objective of this study was to measure the embrittlement of 37 thin film polymers after LEO space exposure. The polymers were flown aboard the International Space Station and exposed to the LEO space environment as part of the Materials International Space Station Experiment 5 (MISSE 5). The samples were flown in a nadir-facing position for 13 months and were exposed to thermal cycling along with low doses of atomic oxygen, direct solar radiation and omnidirectional charged particle radiation. The samples were analyzed for space-induced embrittlement using a bend-test procedure in which the strain necessary to induce surface cracking was determined. Bend-testing was conducted using successively smaller mandrels to apply a surface strain to samples placed on a semi-suspended pliable platform. A pristine sample was also tested for each flight sample. Eighteen of the 37 flight samples experienced some degree of surface cracking during bend-testing, while none of the pristine samples experienced any degree of cracking. The results indicate that 49 percent of the MISSE 5 thin film polymers became embrittled in the space environment even though they were exposed to low doses (approx.2.75 krad (Si) dose through 127 mm Kapton) of ionizing radiation.

  18. Optical effect of the contamination of infrared windows by the outgassing of materials in outer space

    NASA Technical Reports Server (NTRS)

    Silberman, E.

    1975-01-01

    The composition and evaporation rate of the outgassing of a space vehicle thermal control paint as a function of temperature were studied. A contamination chamber was designed, constructed, and tested. Samples of thermal control paint were tested to determine if heating to moderate temperatures causes them to release outgassing products which can be collected on a cooled cesium iodide window for identification by IR analysis. Results showed that outgassing of surfaces other than the sample was a problem. Spectral bands of the deposits collected were compared.

  19. Swift Observatory Space Simulation Testing

    NASA Technical Reports Server (NTRS)

    Espiritu, Mellina; Choi, Michael K.; Scocik, Christopher S.

    2004-01-01

    The Swift Observatory is a Middle-Class Explorer (MIDEX) mission that is a rapidly re-pointing spacecraft with immediate data distribution capability to the astronomical community. Its primary objectives are to characterize and determine the origin of Gamma Ray Bursts (GRBs) and to use the collected data on GRB phenomena in order to probe the universe and gain insight into the physics of black hole formation and early universe. The main components of the spacecraft are the Burst Alert Telescope (BAT), Ultraviolet and Optical Telescope (UVOT), X-Ray Telescope (XRT), and Optical Bench (OB) instruments coupled with the Swift spacecraft (S/C) bus. The Swift Observatory will be tested at the Space Environment Simulation (SES) chamber at the Goddard Space Flight Center from May to June 2004 in order to characterize its thermal behavior in a vacuum environment. In order to simulate the independent thermal zones required by the BAT, XRT, UVOT, and OB instruments, the spacecraft is mounted on a chariot structure capable of maintaining adiabatic interfaces and enclosed in a modified, four section MSX fixture in order to accommodate the strategic placement of seven cryopanels (on four circuits), four heater panels, and a radiation source burst simulator mechanism. There are additionally 55 heater circuits on the spacecraft. To mitigate possible migration of silicone contaminants from BAT to the XRT and UVOT instruments, a contamination enclosure is to be fabricated around the BAT at the uppermost section of the MSX fixture. This paper discuses the test requirements and implemented thermal vacuum test configuration for the Swift Observatory.

  20. Space Science Projects. LC Science Tracer Bullet. TB 06-3

    ERIC Educational Resources Information Center

    Shaw, Loretta, Comp.

    2006-01-01

    Space science, or the space sciences, are fields of science that are concerned with the study or utilization of outer space. There are several major fields of space science including astronomy, exobiology, space transport, and space exploration and colonization. In addition, space sciences impact or are related to many other fields, from the…

  1. Extra-mitochondrial aerobic metabolism in retinal rod outer segments: new perspectives in retinopathies.

    PubMed

    Panfoli, I; Calzia, D; Ravera, S; Morelli, A M; Traverso, C E

    2012-04-01

    Vertebrate retinal rods are photoreceptors for dim-light vision. They display extreme sensitivity to light thanks to a specialized subcellular organelle, the rod outer segment. This is filled with a stack of membranous disks, expressing the proteins involved in visual transduction, a very energy demanding process. Our previous proteomic and biochemical studies have shed new light on the chemical energy processes that supply ATP to the outer segment, suggesting the presence of an extra-mitochondrial aerobic metabolism in rod outer segment, devoid of mitochondria, which would account for a quantitatively adequate ATP supply for phototransduction. Here the functional presence of an oxidative phosphorylation in the rod outer limb is examined for its relationship to many physiological and pathological data on the rod outer segment. We hypothesize that the rod outer limb is at risk of oxidative stress, in any case of impairment in the respiratory chain functioning, or of blood supply. In fact, the electron transfer chain is a major source of reactive O(2) species, known to produce severe alteration to the membrane lipids, especially those of the outer segment that are rich in polyunsaturated fatty acids. We propose that the disk membrane may become the target of reactive oxygen species that may be released by the electron transport chain under pathologic conditions. For example, during aging reactive oxygen species production increases, while cellular antioxidant capacity decreases. Also the apoptosis of the rod observed after exposure to bright or continuous illumination can be explained considering that an overfunctioning of phototransduction may damage the disk membrane to a point at which cytochrome c escapes from the intradiskal space, where it is presently supposed to be, activating a putative caspase 9 and the apoptosome. A pathogenic mechanism for many inherited and acquired retinal degenerations, representing a major problem in clinical ophthalmology, is

  2. Performance Testing of Lidar Components Subjected to Space Exposure in Space via MISSE 7 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2012-01-01

    .The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Several laser and lidar components were sent by NASA Langley Research Center (LaRC) as a part of the MISSE 7 mission. The MISSE 7 module was transported to the international space station (ISS) via STS 129 mission that was launched on Nov 16, 2009. Later, the MISSE 7 module was brought back to the earth via the STS 134 that landed on June 1, 2011. The MISSE 7 module that was subjected to exposure in space environment for more than one and a half year included fiber laser, solid-state laser gain materials, detectors, and semiconductor laser diode. Performance testing of these components is now progressing. In this paper, the current progress on post-flight performance testing of a high-speed photodetector and a balanced receiver is discussed. Preliminary findings show that detector characteristics did not undergo any significant degradation.

  3. CORNER OF SUBPILE ROOM: NORTH AND EAST SIDES. STEEL OUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CORNER OF SUBPILE ROOM: NORTH AND EAST SIDES. STEEL OUTER SHELL HAS BEEN AFFIXED. SIGN SAYS "HERRICK IRON WORKS STEEL, OAKLAND, CALIFORNIA." NOTE CONDUIT FOR FUTURE INSTRUMENTATION. TOP OF STEEL CASE WILL BE LEVEL WITH BASEMENT CEILING. CAMERA FACES SOUTHEAST. INL NEGATIVE NO. 734. Unknown Photographer, 10/6/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  4. A non-storm time enhancement of outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Schiller, Q.; Li, X.; Blum, L. W.; Jaynes, A. N.; Malaspina, D.; Tu, W.; Turner, D. L.; Blake, J. B.

    2013-12-01

    On January 13th, 2013, a high-speed solar wind stream impacted Earth's magnetosphere, resulting in low geomagnetic activity (Real-Time Dst minimum of -30 nT). However, the relativistic electron population was enhanced by over two orders of magnitude in the outer radiation belt. Fortunately, during the event, the outer belt was well sampled by a variety of missions, including the Van Allen Probes, THEMIS, GOES, and the Colorado Student Space Weather Experiment (CSSWE). The energetic electrons are measured in-situ using flux and phase space density observations from the Magnetic Electron Ion Spectrometer (MagEIS) onboard the Van Allen Probes, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard CSSWE, and SST onboard THEMIS. These measured electron populations are the net result of the balance between concurrent loss and acceleration processes. Precipitation loss is quantified using REPTile measurements at low altitudes, while the energization mechanisms, namely interactions with whistler-mode chorus and Pc5 ULF waves, are investigated using Van Allen Probes' MagEIS and Electric Fields and Waves Suite (EFW), THEMIS' EFI and SCM instrument suites, and GOES magnetometers. The quantity and quality of measurements during this event provide a rare opportunity to address outstanding science questions; such as, whether the energetic electrons originate from inward injections associated with substorms or are accelerated via local heating, as well as what the energy dependence of the enhancement is during a period of such low geomagnetic activity.

  5. Physics of Colloids in Space--Plus (PCS+) Experiment Completed Flight Acceptance Testing

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2004-01-01

    The Physics of Colloids in Space--Plus (PCS+) experiment successfully completed system-level flight acceptance testing in the fall of 2003. This testing included electromagnetic interference (EMI) testing, vibration testing, and thermal testing. PCS+, an Expedite the Process of Experiments to Space Station (EXPRESS) Rack payload will deploy a second set of colloid samples within the PCS flight hardware system that flew on the International Space Station (ISS) from April 2001 to June 2002. PCS+ is slated to return to the ISS in late 2004 or early 2005.

  6. The CELSS Test Facility - A foundation for crop research in space

    NASA Technical Reports Server (NTRS)

    Straight, C. L.; Macelroy, R. D.

    1990-01-01

    Under the NASA Space Biology Initiative, a CELSS Test Facility (CTF) is being planned for installation on Space Station Freedom. The CTF will be used to study the productivity of typical CELSS higher plant crops under the microgravity conditions of the Space Station Freedom (SSF). Such science studies will be supported under the CELSS Space Research Project. The CTF will be used to evaluate fundamental issues of crop productivity, such as the production rates of O2, food and transpired water, and CO2 uptake. A series of precursor tests that are essential to the development of the CTF will be flown on Space Shuttle flights. The tests will be used to validate and qualify technology concepts and to answer specific questions regarding seed germination, root/shoot orientation, water condensation and recycling, nutrient delivery, and liquid/gas phase interactions.

  7. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  8. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  9. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  10. A Supercomplex Spanning the Inner and Outer Membranes Mediates the Biogenesis of β-Barrel Outer Membrane Proteins in Bacteria.

    PubMed

    Wang, Yan; Wang, Rui; Jin, Feng; Liu, Yang; Yu, Jiayu; Fu, Xinmiao; Chang, Zengyi

    2016-08-05

    β-barrel outer membrane proteins (OMPs) are ubiquitously present in Gram-negative bacteria, mitochondria and chloroplasts, and function in a variety of biological processes. The mechanism by which the hydrophobic nascent β-barrel OMPs are transported through the hydrophilic periplasmic space in bacterial cells remains elusive. Here, mainly via unnatural amino acid-mediated in vivo photo-crosslinking studies, we revealed that the primary periplasmic chaperone SurA interacts with nascent β-barrel OMPs largely via its N-domain but with β-barrel assembly machine protein BamA mainly via its satellite P2 domain, and that the nascent β-barrel OMPs interact with SurA via their N- and C-terminal regions. Additionally, via dual in vivo photo-crosslinking, we demonstrated the formation of a ternary complex involving β-barrel OMP, SurA, and BamA in cells. More importantly, we found that a supercomplex spanning the inner and outer membranes and involving the BamA, BamB, SurA, PpiD, SecY, SecE, and SecA proteins appears to exist in living cells, as revealed by a combined analyses of sucrose-gradient ultra-centrifugation, Blue native PAGE and mass spectrometry. We propose that this supercomplex integrates the translocation, transportation, and membrane insertion events for β-barrel OMP biogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  12. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Evans, Steve; Finchum, Andy; Hubbs, Whitney

    2008-01-01

    Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed

  13. Fact Sheet: National Space Policy. Appendix F-2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    For over three decades, the United States has led the world in the exploration and use of outer space. Our achievements in space have inspired a generation of Americans and people throughout the world. We will maintain this leadership role by supporting a strong, stable, and balanced national space program that serves our goals in national security, foreign policy, economic growth, environmental stewardship, and scientific and technical excellence. Access to and use of space are central for preserving peace and protecting US national security as well as civil and commercial interests. The United States will pursue greater levels of partnership and cooperation in national and international space activities and work with other nations to ensure the continued exploration and use of outer space for peaceful purposes. The goals of the US space program are to: (a) Enhance knowledge of the Earth, the solar system, and the universe through human and robotic exploration; (b) Strengthen and maintain the national security of the United States; (c) Enhance the economic competitiveness and scientific and technical capabilities of the United States; (d) Encourage State, local, and private sector investment in, and use of, space technologies; (e) Promote international cooperation to further US domestic, national security, and foreign policies. The United States is committed to the exploration and use of outer space by all nations for peaceful purposes and for the benefit of all humanity. "Peaceful purposes" allow defense and intelligence-related activities in pursuit of national security and other goals. The United States rejects any claims to sovereignty by any nation over outer space or celestial bodies, or any portion thereof, and rejects any limitations on the fundamental right of sovereign nations to acquire data from space. The United States considers the space systems of any nation to be national property with the right of passage through and operations in space without

  14. ESA SSA Space Weather Services Supporting Space Surveillance and Tracking

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Hilgers, Alain; Fletcher, Emmet

    2012-07-01

    ESA Space Situational Awareness (SSA) Preparatory Programme was started in 2009. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The Space Weather (SWE) Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010. This presentation provides an overview of the ESA SSA SWE services focused on supporting the Space Surveillance and Tracking users. This services include estimates of the atmospheric drag and archive and forecasts of the geomagnetic and solar indices. In addition, the SSA SWE system will provide nowcasts of the ionospheric group delay to support mitigation of the ionospheric impact on radar signals. The paper will discuss the user requirements for the services, the data

  15. Results of transonic wind tunnel tests on an 0.010-scale space shuttle mated vehicle model 72-OTS in the LaRC 8-foot TPT (IA43)

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in NASA/Langley 8-Foot transonic pressure tunnel on a sting mounted 0.010-scale outer mold line model of 104A/B configuration of the Rockwell International space shuttle vehicle. Component aerodynamic force and moment data and base and balance cavity pressures were recorded over an angle of attack range of -10 deg to +10 deg at Mach numbers of 0.6, 0.8, 0.9, 0.98, 1.13, and 1.2. Selected configurations were tested at sideslip angles from -10 deg to +10 deg. For all configurations involving the orbit, wing bending and torsion were measured on the right wing. Inboard elevon setting of 0 deg, +4 deg and +8 deg and outboard settings of 0 deg, +4 deg and +8 deg were tested.

  16. Elbow and knee joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    An elbow or knee joint for a hard space suit or similar usage is formed of three serially connected rigid sections which have truncated spherical configurations. The ends of each section form solid geometric angles, and the sections are interconnected by hermetically sealed ball bearings. The outer two sections are fixed together for rotation in a direction opposite to rotation of the center section. A preferred means to make the outer sections track each other in rotation comprises a rotatable continuous bead chain which engages sockets circumferentially spaced on the facing sides of the outer races of the bearings. The joint has a single pivot point and the bearing axes are always contained in a single plane for any articulation of the joint. Thus flexure of the joint simulates the coplanar flexure of the knee or elbow and is not susceptible to lockup.

  17. Simulated space environment tests on cadmium sulfide solar cells

    NASA Technical Reports Server (NTRS)

    Clarke, D. R.; Oman, H.

    1971-01-01

    Cadmium sulfide (Cu2s - CdS) solar cells were tested under simulated space environmental conditions. Some cells were thermally cycled with illumination from a Xenon-arc solar simulator. A cycle was one hour of illumination followed immediately with one-half hour of darkness. In the light, the cells reached an equilibrium temperature of 60 C (333 K) and in the dark the cell temperature dropped to -120 C (153 K). Other cells were constantly illuminated with a Xenon-arc solar simulator. The equilibrium temperature of these cells was 55 C (328 K). The black vacuum chamber walls were cooled with liquid nitrogen to simulate a space heat sink. Chamber pressure was maintained at 0.000001 torr or less. Almost all of the solar cells tested degraded in power when exposed to a simulated space environment of either thermal cycling or constant illumination. The cells tested the longest were exposed to 10.050 thermal cycles.

  18. Creating the Thermal Environment for Safely Testing the James Webb Space Telescope at the Johnson Space Center's Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, Jonathan L.; Lauterbach, John; Garcia, Sam

    2016-01-01

    Chamber A is the largest thermal vacuum chamber at the Johnson Space Center and is one of the largest space environment chambers in the world. The chamber is 19.8 m (65 ft) in diameter and 36.6 m (120 ft) tall and is equipped with cryogenic liquid nitrogen panels (shrouds) and gaseous helium shrouds to create a simulated space environment. The chamber was originally built to support testing of the Apollo Service and Command Module for lunar missions, but underwent major modifications to be able to test the James Webb Space Telescope in a simulated deep space environment. To date seven tests have been performed in preparation of testing the flight optics for the James Webb Space Telescope (JWST). Each test has had a uniquie thermal profile and set of thermal requirements for cooling down and warming up, controlling contamination, and releasing condensed air. These range from temperatures from 335K to 15K, with tight uniformity and controllability for maintining thermal stability and pressure control. One unique requirement for two test was structurally proof loading hardware by creating thermal gradients at specific temperatures. This paper will discuss the thermal requirements and goals of the tests, the original requirements of the chamber thermal systems for planned operation, and how the new requirements were met by the team using the hardware, system flexiblilty, and engineering creativity. It will also discuss the mistakes and successes to meet the unique goals, especially when meeting the thermal proof load.

  19. Suitport Feasibility - Development and Test of a Suitport and Space Suit for Human Pressurized Space Suit Donning Tests

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Mitchell, Kathryn; Allton, Charles; Ju, Hsing

    2011-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a spacesuit while the spacesuit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. To date, the first generation suitport has been tested with mockup suits on the rover cabins and pressurized on a bench top engineering unit. The work on the rover cabin has helped define the operational concepts and timelines, and has demonstrated the potential of suitport to save significant amounts of crew time before and after EVAs. The work with the engineering unit has successfully demonstrated the pressurizable seal concept including the ability to seal after the introduction and removal of contamination to the sealing surfaces. Using this experience, a second generation suitport was designed. This second generation suitport has been tested with a spacesuit prototype using the pressure differentials of the spacecraft. This test will be performed using the JSC B32 Chamber B, a human rated vacuum chamber. This test will include human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test will bring these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents design of a human rated second generation suitport, modifications to

  20. Capabilities of the Impact Testing Facility at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Nehls, Mary; Young, Whitney; Gray, Perry; Suggs, Bart; Lowrey, Nikki M.

    2011-01-01

    The test and analysis capabilities of the Impact Testing Facility at NASA's Marshall Space Flight Center are described. Nine different gun systems accommodate a wide range of projectile and target sizes and shapes at velocities from subsonic through hypersonic, to accomplish a broad range of ballistic and hypervelocity impact tests. These gun systems include ballistic and microballistic gas and powder guns, a two-stage light gas gun, and specialty guns for weather encounter studies. The ITF "rain gun" is the only hydrometeor impact gun known to be in existence in the United States that can provide single impact performance data with known raindrop sizes. Simulation of high velocity impact is available using the Smooth Particle Hydrodynamic Code. The Impact Testing Facility provides testing, custom test configuration design and fabrication, and analytical services for NASA, the Department of Defense, academic institutions, international space agencies, and private industry in a secure facility located at Marshall Space Flight Center, on the US Army's Redstone Arsenal in Huntsville, Alabama. This facility performs tests that are subject to International Traffic in Arms Regulations (ITAR) and DoD secret classified restrictions as well as proprietary and unrestricted tests for civil space agencies, academic institutions, and commercial aerospace and defense companies and their suppliers.

  1. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12.

    PubMed

    Murphy, C K; Klebba, P E

    1989-11-01

    A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.

  2. Hybrid rocket propulsion systems for outer planet exploration missions

    NASA Astrophysics Data System (ADS)

    Jens, Elizabeth T.; Cantwell, Brian J.; Hubbard, G. Scott

    2016-11-01

    Outer planet exploration missions require significant propulsive capability, particularly to achieve orbit insertion. Missions to explore the moons of outer planets place even more demanding requirements on propulsion systems, since they involve multiple large ΔV maneuvers. Hybrid rockets present a favorable alternative to conventional propulsion systems for many of these missions. They typically enjoy higher specific impulse than solids, can be throttled, stopped/restarted, and have more flexibility in their packaging configuration. Hybrids are more compact and easier to throttle than liquids and have similar performance levels. In order to investigate the suitability of these propulsion systems for exploration missions, this paper presents novel hybrid motor designs for two interplanetary missions. Hybrid propulsion systems for missions to Europa and Uranus are presented and compared to conventional in-space propulsion systems. The hybrid motor design for each of these missions is optimized across a range of parameters, including propellant selection, O/F ratio, nozzle area ratio, and chamber pressure. Details of the design process are described in order to provide guidance for researchers wishing to evaluate hybrid rocket motor designs for other missions and applications.

  3. Ecology of Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Nikoghosyan, E. H.

    2017-12-01

    The technical achievements of our civilization are accompanied by certain negative consequences affect the near-Earth space. The problem of clogging of near-Earth space by "space debris" as purely theoretical arose essentially as soon as the first artificial satellite in 1957 was launched. Since then, the rate of exploitation of outer space has increased very rapidly. As a result, the problem of clogging of near-Earth space ceased to be only theoretical and transformed into practical. Presently, anthropogenic factors of the development of near-Earth space are divided into several categories: mechanical, chemical, radioactive and electromagnetic pollution.

  4. SSME testing technology at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Dill, Glenn

    1991-01-01

    An effective capability for testing the Space Shuttle Main Engine is described. The test complex utilizes a number of sophisticated test stands, test support facilities, and control centers to conduct development testing and flight acceptance testing at both nominal and off-nominal conditions.

  5. Hubble Space Telescope solar cell module thermal cycle test

    NASA Technical Reports Server (NTRS)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  6. Performance of 75 millimeter-bore arched outer-race ball bearings

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Hamrock, B. J.

    1976-01-01

    An investigation was performed to determine the operating characteristics of 75-mm bore, arched outer-race bearings, and to compare the data with those for a similar, but conventional, deep groove ball bearing. Further, results of an analytical study, made using a computer program developed previously, were compared with the experimental data. Bearings were tested up to 28,000 rpm shaft speed with a load of 2200 N (500 lb). The amount of arching was 0.13, 0.25, and 0.51 mm (.005, .010, and .020 in.). All bearings operated satisfactorily. The outer-race temperatures and the torques, however, were consistently higher for the arched bearings than for the conventional bearing.

  7. Performance of 75-millimeter bore arched outer-race ball bearings

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Hamrock, B. J.

    1976-01-01

    An investigation was performed to determine the operating characteristics of 75-mm bore, arched outer-race bearings, and to compare the data with those for a similar, but conventional, deep groove ball bearing. Further, results of an analytical study, made using a computer program developed previously, were compared with the experimental data. Bearings were tested up to 28,000 rpm shaft speed with a load of 2,200 N (500 lb). The amount of arching was 0.13, 0.25, and 0.51 mm (0.005, 0.010, and 0.020 in). All bearings operated satisfactorily. The outer-race temperatures and the torques, however, were consistently higher for the arched bearings than for the conventional bearings

  8. Hubble Space Telescope nickel-hydrogen battery testing: An update

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Brewer, Jeffrey C.

    1995-01-01

    The Marshall Space Flight Center (MSFC) began testing the HST Ni-H2 Six Battery Test and the 'Flight Spare Battery' Tests approximately one year before the launch of the HST. These tests are operated and reported on by the MSFC, but are managed and funded by Goddard Space Flight Center in direct support of the HST program. The HST Ni-H2 batteries are built from Eagle Picher RNH-90-3 cells. The HST EPS (electrical power system) is a direct energy transfer power system. The HST Ni-H2 Six Battery Test is a breadboard of the HST EPS. The batteries in the test are composed of test module cells and packaged into three battery modules identical to the flight modules. This test is the HST EPS testbed. The 'Flight Spare Battery' Test is a simulation of one of the six battery channels on the HST. The cells in the test are from the flight spare lot of cells, which are the same lot of cells that three of the six HST flight batteries are made from. This test is the battery life test for the HST program.

  9. The space station and human productivity: An agenda for research

    NASA Technical Reports Server (NTRS)

    Schoonhoven, C. B.

    1985-01-01

    Organizational problems in permanent organizations in outer space were analyzed. The environment of space provides substantial opportunities for organizational research. Questions about how to organize professional workers in a technologically complex setting with novel dangers and uncertainties present in the immediate environment are examined. It is suggested that knowledge from organization theory/behavior is an underutilized resource in the U.S. space program. A U.S. space station will be operable by the mid-1990's. Organizational issues will take on increasing importance, because a space station requires the long term organization of human and robotic work in the isolated and confined environment of outer space. When an organizational analysis of the space station is undertaken, there are research implications at multiple levels of analysis: for the individual, small group, organizational, and environmental levels of analysis. The research relevant to organization theory and behavior is reviewed.

  10. The politics of space - Who owns what? Earth law for space

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    Topics of concern in developing space law, i.e., international disagreements, the present status of space law, and requirements for future space activities, are discussed. Factors inhibiting agreements include governments that wish to control specific regions of GEO, the refusal of several countries to permit international DBS television broadcasts over their boundaries, the possibility that weapons may be placed in space, and the lack of international laws governing humans and industries in space. It is noted that any state entering an international agreement has relinquished some of its sovereignty. The Outer Space Treaty has removed celestial bodies from claims of national appropriation. States retain sovereignty over their citizens who travel in space, a problematical concept once internationally-manned settlements in space or on the moon are established. It is recommended that space law develop mainly in reaction to the implementation of new space capabilities in order to avoid hindering space activities.

  11. Consequences of transmission of solar energy from outer space

    NASA Astrophysics Data System (ADS)

    Cocca, A. A.

    The possible physical effects of MW, laser, or mirror-type SPS transmissions and their legal implications are considered. The bioeffects of the transmitted radiation and the atmospheric effects of transmission and of launcher-effluent injection (heating and ionospheric depletion) are examined, and the political aspects of receiver siting (near the equator for GEO solar systems) are indicated. The occupation of large portions of the MW band for SPS transmission and more generalized detrimental effects of SPS on space and terrestrial communications systems are explored, and the provisions of the Space Treaty, the Liability Convention, and (proposed) WARC Radio Regulations are discussed. Since no specific regulations on the use of solar energy have been adopted, a set of twelve basic tenets is proposed. The definition of solar energy and the GEO as nonappropriable parts of the 'common heritage of mankind' and the establishment of international organs (including a compulsory tribunal) to enforce the liability of SPS operators for ensuing damages and the fair sharing of soar resources are urged.

  12. International Space Station alpha remote manipulator system workstation controls test report

    NASA Technical Reports Server (NTRS)

    Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick

    1994-01-01

    Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.

  13. International Space Station alpha remote manipulator system workstation controls test report

    NASA Astrophysics Data System (ADS)

    Ehrenstrom, William A.; Swaney, Colin; Forrester, Patrick

    1994-05-01

    Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design.

  14. Space simulation test for thermal control materials

    NASA Technical Reports Server (NTRS)

    Hardgrove, W. R.

    1990-01-01

    Tests were run in TRW's Combined Environment Facility to examine the degradation of thermal control materials in a simulated space environment. Thermal control materials selected for the test were those presently being used on spacecraft or predicted to be used within the next few years. The geosynchronous orbit environment was selected as the most interesting. One of the goals was to match degradation of those materials with available flight data. Another aim was to determine if degradation can adequately be determined with accelerated or short term ground tests.

  15. Sen. John C. Stennis celebrates a successful Space Shuttle Main Engine test

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Sen. John C. Stennis dances a jig on top of the Test Control Center at Stennis Space Center following the successful test of a Space Shuttle Main Engine in 1978. A staunch supporter of the National Aeronautics and Space Administration (NASA), the senior senator from DeKalb, Miss., supported the establishment of the space center in Hancock County and spoke personally with local residents who would relocate their homes to accommodate Mississippi's entry into the space age. Stennis Space Center was named for Sen. Stennis by Executive Order of President Ronald Reagan on May 20, 1988.

  16. LGM-30B, Stage II Dissected Motors Test Report,

    DTIC Science & Technology

    1980-07-01

    Relaxation Test Data (Outer Propellant) 29 Table 9, Stress Relaxation Test Data (Inner Propellant) 31 Table 10 , Cohesive Tear Energy Test Data (Outer...Outer) 45 7 Maximum Stress (Inner) 46 8Strain at Rupture (Inner) 47 9 Modulus (Inner) 48 Regression Plot, Low Rate Tensile 10 Maximum Stress (Outer...outer propellants are almost the same. H. TEAR ENERGY TEST: Data from this test period are contained in Tables 10 and 11. Sufficient valid data became

  17. Space Simulation, 7th. [facilities and testing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Space simulation facilities and techniques are outlined that encompass thermal scale modeling, computerized simulations, reentry materials, spacecraft contamination, solar simulation, vacuum tests, and heat transfer studies.

  18. Neutral Buoyancy Test - Large Space Structure

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  19. Models of anxiety: responses of rats to novelty in an open space and an enclosed space.

    PubMed

    Ennaceur, A; Michalikova, S; Chazot, P L

    2006-07-15

    Exposure to novelty has been shown to induce anxiety responses in a variety of behavioural paradigms. The purpose of the present study was to investigate whether exposition of naïve rats to novelty would result in a comparable or a different pattern of responses in an open space versus enclosed space with or without the presence of an object in the centre of the field. Lewis and Wistar rats of both genders were used to illustrate and discuss the value and validity of these anxiety paradigms. We examined a wide range of measures, which cover several aspects of animals' responses. The results of this study revealed significant differences between the behaviour of animals in an open space and in the enclosed space. It also revealed significant differences in animal's responses to the presence and absence of an object in the open space and in the enclosed space. In the enclosed space, rats spent most of their time in the outer area with lower number of exits and avoided the object area except when there was an object, while in the open space rats displayed frequent short duration re-entries in the outer area and spent longer time in the object area in presence of an object. The time spent in the inner area (away from the outer area and the object area) was significantly longer and the number of faecal boli was significantly higher in the open space than in the enclosed space. In the present report, we will discuss the fundamental differences between enclosed space and open space models, and we will examine some methodological issues related to the current animal models of human behaviour in anxiety. In the enclosed space, animals can avoid the potential threat associated with the centre area of a box and chose the safety of walls and corners, whereas, in the open space animals have to avoid every parts of the field from which there was no safe escape. The response of animals to novelty in an open space model appears more relevant to anxiety than in an enclosed space

  20. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely

  1. In Space Nuclear Power as an Enabling Technology for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Houts, Michael

    2000-01-01

    Deep Space Exploration missions, both for scientific and Human Exploration and Development (HEDS), appear to be as weight limited today as they would have been 35 years ago. Right behind the weight constraints is the nearly equally important mission limitation of cost. Launch vehicles, upper stages and in-space propulsion systems also cost about the same today with the same efficiency as they have had for many years (excluding impact of inflation). Both these dual mission constraints combine to force either very expensive, mega systems missions or very light weight, but high risk/low margin planetary spacecraft designs, such as the recent unsuccessful attempts for an extremely low cost mission to Mars during the 1998-99 opportunity (i.e., Mars Climate Orbiter and the Mars Polar Lander). When one considers spacecraft missions to the outer heliopause or even the outer planets, the enormous weight and cost constraints will impose even more daunting concerns for mission cost, risk and the ability to establish adequate mission margins for success. This paper will discuss the benefits of using a safe in-space nuclear reactor as the basis for providing both sufficient electric power and high performance space propulsion that will greatly reduce mission risk and significantly increase weight (IMLEO) and cost margins. Weight and cost margins are increased by enabling much higher payload fractions and redundant design features for a given launch vehicle (higher payload fraction of IMLEO). The paper will also discuss and summarize the recent advances in nuclear reactor technology and safety of modern reactor designs and operating practice and experience, as well as advances in reactor coupled power generation and high performance nuclear thermal and electric propulsion technologies. It will be shown that these nuclear power and propulsion technologies are major enabling capabilities for higher reliability, higher margin and lower cost deep space missions design to reliably

  2. Depletion of the Outer Asteroid Belt

    PubMed

    Liou; Malhotra

    1997-01-17

    During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.

  3. Depletion of the Outer Asteroid Belt

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Malhotra, Renu

    1997-01-01

    During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.

  4. Space Power Facility Readiness for Space Station Power System Testing

    NASA Technical Reports Server (NTRS)

    Smith, Roger L.

    1995-01-01

    This document provides information which shows that the NASA Lewis Research Center's Space Power Facility (SPF) will be ready to execute the Space Station electric power system thermal vacuum chamber testing. The SPF is located at LeRC West (formerly the Plum Brook Station), Sandusky, Ohio. The SPF is the largest space environmental chamber in the world, having an inside horizontal diameter of 100 ft. and an inside height at the top of the hemisphere of 122 ft. The vacuum system can achieve a pressure lower than 1 x 10(exp -5) Torr. The cryoshroud, cooled by gaseous nitrogen, can reach a temperature of -250 F, and is 80 ft. long x 40 ft. wide x 22 ft. high. There is access to the chamber through two 50 ft. x 50 ft. doors. Each door opens into an assembly area about 150 ft. long x 70 ft. wide x 80 ft. high. Other available facilities are offices, shop area, data acquisition system with 930 pairs of hard lines, 7 megawatts of power to chamber, 245K gal. liquid nitrogen storage, cooling tower, natural gas, service air, and cranes up to 25 tons.

  5. Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance.

    PubMed

    Ciganović, Nikola; Wolde-Kidan, Amanuel; Reichenbach, Tobias

    2017-06-15

    The mammalian sense of hearing relies on two types of sensory cells: inner hair cells transmit the auditory stimulus to the brain, while outer hair cells mechanically modulate the stimulus through active feedback. Stimulation of a hair cell is mediated by displacements of its mechanosensitive hair bundle which protrudes from the apical surface of the cell into a narrow fluid-filled space between reticular lamina and tectorial membrane. While hair bundles of inner hair cells are of linear shape, those of outer hair cells exhibit a distinctive V-shape. The biophysical rationale behind this morphology, however, remains unknown. Here we use analytical and computational methods to study the fluid flow across rows of differently shaped hair bundles. We find that rows of V-shaped hair bundles have a considerably reduced resistance to crossflow, and that the biologically observed shapes of hair bundles of outer hair cells are near-optimal in this regard. This observation accords with the function of outer hair cells and lends support to the recent hypothesis that inner hair cells are stimulated by a net flow, in addition to the well-established shear flow that arises from shearing between the reticular lamina and the tectorial membrane.

  6. Review of the outer scale of the atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ziad, Aziz

    2016-07-01

    Outer scale is a relevant parameter for the experimental performance evaluation of large telescopes. Different techniques have been used for the outer scale estimation. In situ measurements with radiosounding balloons have given very small values of outer scale. This latter has also been estimated directly at the ground level from the wavefront analysis with High Angular Resolution (HAR) techniques using interferometric or Shack-Hartmann or more generally AO systems data. Dedicated instruments have been also developed for the outer scale monitoring such as the Generalized Seeing Monitor (GSM) and the Monitor of Outer Scale Profile (MOSP). The measured values of outer scale from HAR techniques, GSM and MOSP are somewhat coherent and are larger than the in situ results. The main explanation of this difference comes from the definition of the outer scale itself. This paper aims to give a review in a non-exhaustive way of different techniques and instruments for the measurement of the outer scale. Comparisons of outer scale measurements will be discussed in the light of the different definitions of this parameter, the associated observable quantities and the atmospheric turbulence model as well.

  7. Ground-Based Testing of Replacement Thermal Control Materials for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; McClendon, Mark W.; deGroh, Kim K.; Banks, Bruce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon FEP thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. A Failure Review Board was established to investigate the damage to the MLI and identify a replacement material. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain mechanical integrity for at least ten years. Ten candidate materials were selected and exposed to ten-year HST-equivalent doses of simulated orbital environments. Samples of the candidates were exposed sequentially to low and high energy electrons and protons, atomic oxygen, x-ray radiation, ultraviolet radiation and thermal cycling. Following the exposures, the mechanical integrity and optical properties of the candidates were investigated using Optical Microscopy, Scanning Electron Microscopy (SEM), a Laboratory Portable Spectroreflectometer (LPSR) and a Lambda 9 Spectroreflectometer. Based on the results of these simulations and analyses, the Failure Review Board selected a replacement material and two alternates that showed the highest likelihood of providing the requisite thermal properties and surviving for ten years in orbit.

  8. An oilspill risk analysis for the North Atlantic outer continental shelf lease area

    USGS Publications Warehouse

    Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.

    1976-01-01

    The Federal Government has proposed to lease 1,172,795 acres of Outer Continental Shelf (OCS) lands on Georges Bank off the New England Coast for oil and gas development. Estimated recoverable petroleum resources for the proposed 206 tract sale area range from 180 to 650 million barrels. Contingent upon actual discovery of this quantity of oil, production is expected to span a period of about 20 years. An oilspill risk analysis was conducted to determine relative environmental hazards of developing oil in the North Atlantic Outer Continental Shelf lease area. The study analyzed probability of spill occurrence, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)

  9. Saturn's outer satellite, Phoebe

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Voyager 2 took this photo of Saturn's outer satellite, Phoebe, on Sept. 4, 1981, from 2.2 million kilometers (1.36 million miles) away. The photo shows that Phoebe is about 200 kilometers (120 miles) in diameter, about twice the size of Earth-based measurements; and dark, with five percent reflectivity -- much darker than any other Saturnian satellite. That, and information from Earth-based observations, indicates Phoebe is almost certainly a captured asteroid, and did not form in the original Saturn nebula as Saturn's other satellites did. Phoebe is the only Saturnian satellite that does not always show the same face to Saturn: Its orbital period is 550 days. Its rotation period (length of day), determined from Voyager 2 observations, is nine to ten hours. Other ground-based observations that indicate that Phoebe is a captured asteroid: It orbits Saturn in the ecliptic plane (the plane in which Earth and most other planets orbit the Sun), rather than in Saturn's equatorial plane as the other Saturn satellites do. And Phoebe's orbit is retrograde -- in the direction opposite to that of the other satellites. Voyager is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  10. Outer Retinal Tubulation in Degenerative Retinal Disorders

    PubMed Central

    Goldberg, Naomi R.; Greenberg, Jonathan P.; Laud, Ketan; Tsang, Stephen; Freund, K. Bailey

    2013-01-01

    Objective To demonstrate outer retinal tubulation (ORT) in various degenerative retinal disorders. Methods This was a retrospective review of the multimodal imaging of 29 eyes of 15 patients with various retinal dystrophies and inflammatory maculopathies manifesting ORT. The morphologic features of ORT and its evolution over time were analyzed using spectral-domain optical coherence tomography (SD-OCT) data. Results Outer retinal tubulation was identified as round or ovoid structures with hyper-reflective borders in pattern dystrophy (6 eyes), acute zonal occult outer retinopathy (5 eyes), retinitis pigmentosa (4 eyes), Stargardt disease (4 eyes), gyrate atrophy (2 eyes), choroideremia (2 eyes), and various other degenerative conditions. These structures appeared to develop from the invagination of photoreceptors at the junction of intact and atrophic outer retina. During follow-up, the number and distribution of ORT largely remained stable. As zones of atrophy enlarged, the frequency of ORT appeared to increase. The ORT structures were found in fewer than 10% of patients with retinitis pigmentosa, Stargardt, or pattern dystrophy. Conclusion Outer retinal tubulation is found in various degenerative retinal disorders that share in common damage to the outer retina and/or retinal pigment epithelium. The presence of ORT may be in an indicator of underlying disease stage and severity. PMID:23676993

  11. Achievable space elevators for space transportation and starship acceleration

    NASA Technical Reports Server (NTRS)

    Pearson, Jerome

    1990-01-01

    Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.

  12. Plasmas in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Richardson, J. D.; Lazarus, A. J.; Gazis, P. R.; Barnes, A.

    1995-01-01

    We review the observed properties of the solar wind in the outer heliosphere, including observations from Voyager and the Pioneers, as well as from inner heliospheric probes as appropriate. These observations are crucial to modeling of the heliosphere and its interactions with the interstellar medium, since the wind ram pressure and its temporal variations are important in understanding the distance to the termination shock and heliopause and how those boundaries might vary in time. We focus on results since Solar Wind 7. Among the issues we will discuss are: (1) the time scales for and statistical properties of variations in the ram pressure in the outer heliosphere, and how those variations might affect the morphology of the heliospheric/interstellar medium interface; (2) the question of possible solar wind slowing in the outer heliosphere due to the pick-up of interstellar ions; (3) the issue of whether there is bulk heating of the solar wind associated either with interstellar ion pick-up or with continued heating due to stream-stream interactions; (4) evidence for latitudinal variations in solar wind properties; and (5) the 1.3 year periodicities apparent in the outer heliosphere, and the close correspondence with similar variations seen with inner heliospheric probes.

  13. Test Facilities Capability Handbook: Volume 1 - Stennis Space Center (SSC); Volume 2 - Marshall Space Flight Center (MSFC)

    NASA Technical Reports Server (NTRS)

    Hensarling, Paula L.

    2007-01-01

    The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.

  14. The Space Station Module Power Management and Distribution automation test bed

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1991-01-01

    The Space Station Module Power Management And Distribution (SSM/PMAD) automation test bed project was begun at NASA/Marshall Space Flight Center (MSFC) in the mid-1980s to develop an autonomous, user-supportive power management and distribution test bed simulating the Space Station Freedom Hab/Lab modules. As the test bed has matured, many new technologies and projects have been added. The author focuses on three primary areas. The first area is the overall accomplishments of the test bed itself. These include a much-improved user interface, a more efficient expert system scheduler, improved communication among the three expert systems, and initial work on adding intermediate levels of autonomy. The second area is the addition of a more realistic power source to the SSM/PMAD test bed; this project is called the Large Autonomous Spacecraft Electrical Power System (LASEPS). The third area is the completion of a virtual link between the SSM/PMAD test bed at MSFC and the Autonomous Power Expert at Lewis Research Center.

  15. Environmental control and life support testing at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schunk, Richard G.; Humphries, William R.

    1987-01-01

    The Space Station Environmental Control and Life Support System (ECLSS) test program at the Marshall Space Flight Center (MSFC) is addressed. The immediate goals and current activities of the test program are discussed. Also described are the Core Module Integration Facility (CMIF) and the initial ECLSS test configuration. Future plans for the ECLSS test program and the CMIF are summarized.

  16. Space Qualification Test of a-Silicon Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.

    2004-01-01

    The basic requirements of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore, this qualifications test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs. Parameters that were evaluated included performance dependence on: illuminating angles, terrestrial temperatures, lifetime, as well as impact landing conditions. Our qualification efforts were limited to these most critical areas of concern. Most of the tested solar cell modules have met the requirements of the program except the impact tests. Surprisingly, one of the two single PIN 2 x 1 amorphous solar cell modules continued to function even after the 80000G impact tests. The output power parameters, Pout, FF, Isc and Voc, of the single PIN amorphous solar cell module were found to be 3.14 mW, 0.40, 9.98 mA and 0.78 V, respectively. These parameters are good enough to consider the solar module as a possible power source for the microprobe seismometer. Some recommendations were made to improve the usefulness of the amorphous silicon solar cell modules in space terrestrial applications, based on the results obtained from the intensive short term lab test effort.

  17. The United Nations programme on space applications: priority thematic areas

    NASA Astrophysics Data System (ADS)

    Haubold, H.

    The Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) was held in 1999 with efforts to identify world wide benefits of developing space science and technology, particularly in the developing nations. One of the main vehicles to implement recommendations of UNISPACE III is the United Nations Programme on Space Applications of the Office for Outer Space Affairs at UN Headquarters in Vienna. Following a process of prioritization by Member States, the Programme focus its activities on (i) knowledge-based themes as space law and basic space science, (ii) application-based themes as disaster management, natural resources management, environmental monitoring, tele-health, and (iii) enabling technologies such as remote sensing satellites, communications satellites, global navigation satellite systems, and small satellites. Current activities of the Programme will be reviewed. Further information available at http://www.oosa.unvienna.org/sapidx.html

  18. Origin of Outer Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Lindstrom, David (Technical Monitor)

    2005-01-01

    Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; ( 2 ) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; ( 5 ) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.

  19. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema

    PubMed Central

    Gupta, Aditi; Raman, Rajiv; Mohana, KP; Kulothungan, Vaitheeswaran; Sharma, Tarun

    2013-01-01

    Background: The pathogenesis of development and progression of neurosensory retinal detachment (NSD) in diabetic macular edema (DME) is not yet fully understood. The purpose of this study is to describe the spectral domain optical coherence tomography (SD-OCT) morphological characteristics of NSD associated with DME in the form of outer retinal communications and to assess the correlation between the size of communications and various factors. Materials and Methods: This was an observational retrospective nonconsecutive case series in a tertiary care eye institute. We imaged NSD and outer retinal communications in 17 eyes of 16 patients having NSD associated with DME using SD-OCT. We measured manually the size of the outer openings of these communications and studied its correlation with various factors. Statistical analysis (correlation test) was performed using the Statistical Package for Social Sciences (SPSS) software (version 14.0). The main outcome measures were correlation of the size of communications with dimensions of NSD, presence of subretinal hyper-reflective dots, and best-corrected visual acuity (BCVA). Results: The communications were seen as focal defects of the outer layers of elevated retina. With increasing size of communication, there was increase in height of NSD (r = 0.701, P = 0.002), horizontal diameter of NSD (r = 0.695, P = 0.002), and the number of hyper-reflective dots in the subretinal space (r = 0.729, P = 0.002). The minimum angle of resolution (logMAR) BCVA increased with the increasing size of communications (r = 0.827, P < 0.0001). Conclusions: Outer retinal communications between intra and subretinal space were noted in eyes having NSD associated with DME. The size of communications correlated positively with the size of NSD and subretinal detachment space hyper-reflective dots, and inversely with BCVA. PMID:24379554

  20. Communications between intraretinal and subretinal space on optical coherence tomography of neurosensory retinal detachment in diabetic macular edema.

    PubMed

    Gupta, Aditi; Raman, Rajiv; Mohana, Kp; Kulothungan, Vaitheeswaran; Sharma, Tarun

    2013-09-01

    The pathogenesis of development and progression of neurosensory retinal detachment (NSD) in diabetic macular edema (DME) is not yet fully understood. The purpose of this study is to describe the spectral domain optical coherence tomography (SD-OCT) morphological characteristics of NSD associated with DME in the form of outer retinal communications and to assess the correlation between the size of communications and various factors. This was an observational retrospective nonconsecutive case series in a tertiary care eye institute. We imaged NSD and outer retinal communications in 17 eyes of 16 patients having NSD associated with DME using SD-OCT. We measured manually the size of the outer openings of these communications and studied its correlation with various factors. Statistical analysis (correlation test) was performed using the Statistical Package for Social Sciences (SPSS) software (version 14.0). The main outcome measures were correlation of the size of communications with dimensions of NSD, presence of subretinal hyper-reflective dots, and best-corrected visual acuity (BCVA). The communications were seen as focal defects of the outer layers of elevated retina. With increasing size of communication, there was increase in height of NSD (r = 0.701, P = 0.002), horizontal diameter of NSD (r = 0.695, P = 0.002), and the number of hyper-reflective dots in the subretinal space (r = 0.729, P = 0.002). The minimum angle of resolution (logMAR) BCVA increased with the increasing size of communications (r = 0.827, P < 0.0001). Outer retinal communications between intra and subretinal space were noted in eyes having NSD associated with DME. The size of communications correlated positively with the size of NSD and subretinal detachment space hyper-reflective dots, and inversely with BCVA.

  1. Cluster Development Test 2: An Assessment of a Failed Test

    NASA Technical Reports Server (NTRS)

    Machin, Ricardo A.; Evans, Carol T.

    2009-01-01

    On 31 July 2008 the National Aeronautics and Space Administration Crew Exploration Vehicle Parachute Assembly System team conducted the final planned cluster test of the first generation parachute recovery system design. The two primary test objectives were to demonstrate the operation of the complete parachute system deployed from a full scale capsule simulator and to demonstrate the test technique of separating the capsule simulator from the Low Velocity Air Drop pallet used to extract the test article from a United States Air Force C-17 aircraft. The capsule simulator was the Parachute Test Vehicle with an accurate heat shield outer mold line and forward bay compartment of the Crew Exploration Vehicle Command Module. The Parachute Test Vehicle separated cleanly from the pallet following extraction, but failed to reach test conditions resulting in the failure of the test and the loss of the test assets. No personnel were injured. This paper will discuss the design of the test and the findings of the team that investigated the test, including a discussion of what were determined to be the root causes of the failure.

  2. Hubble Space Telescope On-orbit Transfer Function Test

    NASA Technical Reports Server (NTRS)

    Vadlamudi, N.; Blair, M. A.; Clapp, B. R.

    1992-01-01

    The paper describes the On-orbit Transfer Function Test (TFT) designed for on-orbit vibration testing of the Hubble Space Telescope (HST). The TFT provides means for extracting accurate on-orbit characteristics of HST flexible body dynamics, making it possible to check periodically the state of the vehicle on-orbit and to assess changes in modal parameters.

  3. Space telescope observatory management system preliminary test and verification plan

    NASA Technical Reports Server (NTRS)

    Fritz, J. S.; Kaldenbach, C. F.; Williams, W. B.

    1982-01-01

    The preliminary plan for the Space Telescope Observatory Management System Test and Verification (TAV) is provided. Methodology, test scenarios, test plans and procedure formats, schedules, and the TAV organization are included. Supporting information is provided.

  4. Space technology test facilities at the NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Rodrigues, Annette T.

    1990-01-01

    The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.

  5. Escherichia coli pleiotropic mutant that reduces amounts of several periplasmic and outer membrane proteins.

    PubMed

    Wanner, B L; Sarthy, A; Beckwith, J

    1979-10-01

    We have isolated a mutant of Escherichia coli K-12 that is reduced from 6- to 10-fold in the amount of alkaline phosphatase found in the periplasmic space. The reduced synthesis is not due to effects at the level of transcription regulation of the phoA gene, the structural gene for the enzyme. In addition, the mutation (termed perA) responsible for this phenotype results in reduced amounts of possibly six or more other periplasmic proteins and at least three outer membrane proteins. One of the outer membrane proteins affected is protein IA (D. L. Diedrich, A. O. Summers, and C. A. Schnaitman, J. Bacteriol. 131:598-607, 1977). Although other possibilities exist, one explanation for the phenotype of the perA mutation is that it affects the cell's secretory apparatus.

  6. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  7. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  8. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  9. Summary of Results from Space Shuttle Main Engine Off-Nominal Testing

    NASA Technical Reports Server (NTRS)

    Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.

    2011-01-01

    This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.

  10. NASA Stennis Space Center Test Technology Branch Activities

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.

    2000-01-01

    This paper provides a short history of NASA Stennis Space Center's Test Technology Laboratory and briefly describes the variety of engine test technology activities and developmental project initiatives. Theoretical rocket exhaust plume modeling, acoustic monitoring and analysis, hand held fire imaging, heat flux radiometry, thermal imaging and exhaust plume spectroscopy are all examples of current and past test activities that are briefly described. In addition, recent efforts and visions focused on accomodating second, third, and fourth generation flight vehicle engine test requirements are discussed.

  11. 0.4 Percent Scale Space Launch System Wind Tunnel Test

    NASA Image and Video Library

    2011-11-15

    0.4 Percent Scale Space Launch System Wind Tunnel Test 0.4 Percent Scale SLS model installed in the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 1 for aerodynamic force and movement testing.

  12. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    ERIC Educational Resources Information Center

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  13. Corrugated outer sheath gas-insulated transmission line

    DOEpatents

    Kemeny, George A.; Cookson, Alan H.

    1981-01-01

    A gas-insulated transmission line includes two transmission line sections each of which are formed of a corrugated outer housing enclosing an inner high-voltage conductor disposed therein, with insulating support means supporting the inner conductor within the outer housing and an insulating gas providing electrical insulation therebetween. The outer housings in each section have smooth end sections at the longitudinal ends thereof which are joined together by joining means which provide for a sealing fixed joint.

  14. Analyses of Hubble Space Telescope Aluminized-Teflon Insulation Retrieved After 19 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Waters, Deborah L.; Mohammed, Jelila S.; Perry, Bruce A.; Banks, Bruce A.

    2012-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become successively more embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation pieces and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket contained a range of unique regions based on environmental exposure and/or physical appearance. The retrieved MLI blanket s aluminized-Teflon (DuPont) fluorinated ethylene propylene (Al-FEP) outer layers have been analyzed for changes in optical, physical, and mechanical properties, along with space induced chemical and morphological changes. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. This paper reviews tensile properties, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) data and atomic oxygen erosion values of the retrieved HST blankets after 19 years of space exposure.

  15. Development and Testing of a Laser-Powered Cryobot for Outer Planet Icy Moon Exploration

    NASA Astrophysics Data System (ADS)

    Siegel, V.; Stone, W.; Hogan, B.; Lelievre, S.; Flesher, C.

    2013-12-01

    Project VALKYRIE (Very-deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer) is a NASA-funded effort to develop the first laser powered cryobot - a self-contained intelligent ice penetrator capable of delivering science payloads through ice caps of the outer planet icy moons. The long range objective is to enable a full-scale Europa lander mission in which an autonomous life-searching underwater vehicle is transported by the cryobot and launched into the sub-surface Europan ocean. Mission readiness testing will involve an Antarctic sub-glacial lake cryobot sample return through kilometers of ice cap thickness. A key element of VALKYRIE's design is the use of a high energy laser as the primary power source. 1070 nm laser light is transmitted at a power level of 5 kW from a surface-based laser and injected into a custom-designed optical waveguide that is spooled out from the descending cryobot. Light exits the downstream end of the fiber, travels through diverging optics, and strikes a beam dump, which channels thermal power to hot water jets that melt the descent hole. Some beam energy is converted, via photovoltaic cells, to electricity for running onboard electronics and jet pumps. Since the vehicle can be sterilized prior to deployment and the melt path freezes behind it, preventing forward contamination, expansions on VALKYRIE concepts may enable cleaner and faster access to sub-glacial Antarctic lakes. Testing at Stone Aerospace between 2010 and 2013 has already demonstrated high power optical energy transfer over relevant (kilometer scale) distances as well as the feasibility of a vehicle-deployed optical waveguide (through which the power is transferred). The test vehicle is equipped with a forward-looking synthetic aperture radar (SAR) that can detect obstacles out to 1 kilometer from the vehicle. The initial ASTEP test vehicle will carry a science payload consisting of a DUV flow cytometer and a water sampling sub-system that will be

  16. Purification and Bicelle Crystallization for Structure Determination of the E. coli Outer Membrane Protein TamA.

    PubMed

    Gruss, Fabian; Hiller, Sebastian; Maier, Timm

    2015-01-01

    TamA is an Omp85 protein involved in autotransporter assembly in the outer membrane of Escherichia coli. It comprises a C-terminal 16-stranded transmembrane β-barrel as well as three periplasmic POTRA domains, and is a challenging target for structure determination. Here, we present a method for crystal structure determination of TamA, including recombinant expression in E. coli, detergent extraction, chromatographic purification, and bicelle crystallization in combination with seeding. As a result, crystals in space group P21212 are obtained, which diffract to 2.3 Å resolution. This protocol also serves as a template for structure determination of other outer membrane proteins, in particular of the Omp85 family.

  17. Modeling Natural Space Ionizing Radiation Effects on External Materials

    NASA Technical Reports Server (NTRS)

    Alstatt, Richard L.; Edwards, David L.; Parker, Nelson C. (Technical Monitor)

    2000-01-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  18. Modeling natural space ionizing radiation effects on external materials

    NASA Astrophysics Data System (ADS)

    Altstatt, Richard L.; Edwards, David L.

    2000-10-01

    Predicting the effective life of materials for space applications has become increasingly critical with the drive to reduce mission cost. Programs have considered many solutions to reduce launch costs including novel, low mass materials and thin thermal blankets to reduce spacecraft mass. Determining the long-term survivability of these materials before launch is critical for mission success. This presentation will describe an analysis performed on the outer layer of the passive thermal control blanket of the Hubble Space Telescope. This layer had degraded for unknown reasons during the mission, however ionizing radiation (IR) induced embrittlement was suspected. A methodology was developed which allowed direct comparison between the energy deposition of the natural environment and that of the laboratory generated environment. Commercial codes were used to predict the natural space IR environment, model energy deposition in the material from both natural and laboratory IR sources, and design the most efficient test. Results were optimized for total and local energy deposition with an iterative spreadsheet. This method has been used successfully for several laboratory tests at the Marshall Space Flight Center. The study showed that the natural space IR environment, by itself, did not cause the premature degradation observed in the thermal blanket.

  19. The advisability of prototypic testing for space nuclear systems

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.

    2005-07-01

    From October 1987 until 1993, the US Department of Defense conducted the Space Nuclear Thermal Propulsion program. This program's objective was to design and develop a high specific impulse, high thrust-to-weight nuclear thermal rocket engine for upper stage applications. The author was the program manager for this program until 1992. Numerous analytical, programmatic and experimental results were generated during this period of time. This paper reviews the accomplishments of the program and highlights the importance of prototypic testing for all aspects of a space nuclear program so that a reliable and safe system compliant with all regulatory requirements can be effectively engineered. Specifically, the paper will recount how many non-prototypic tests we performed only to have more representative tests consistently generate different results. This was particularly true in area of direct nuclear heat generation. As nuclear tests are generally much more expensive than non-nuclear tests, programs attempt to avoid such tests in favor of less expensive non-nuclear tests. Each time this approach was followed, the SNTP program found these tests to not be verified by nuclear heated testing. Hence the author recommends that wherever possible, a spiral development approach that includes exploratory and confirmatory experimental testing be employed to ensure a viable design.

  20. An oilspill risk analysis for the Mid-Atlantic Outer Continental Shelf lease area

    USGS Publications Warehouse

    Smith, Richard Allmon; Slack, James Richard; Davis, Robert K.

    1976-01-01

    An oilspill risk analysis was conducted to determine relative environmental impacts of developing oil in different regions of the Mid-Atlantic Outer Continental Shelf lease area. The study analyzed probability of spills, likely path of pollutants from spills, and locations in space and time of recreational and biological resources likely to be vulnerable. These results are combined to yield estimates of the overall oilspill risk associated with development of the lease area. (Woodard-USGS)

  1. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    NASA Astrophysics Data System (ADS)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  2. Critical issues related to registration of space objects and transparency of space activities

    NASA Astrophysics Data System (ADS)

    Jakhu, Ram S.; Jasani, Bhupendra; McDowell, Jonathan C.

    2018-02-01

    The main purpose of the 1975 Registration Convention is to achieve transparency in space activities and this objective is motivated by the belief that a mandatory registration system would assist in the identification of space objects launched into outer space. This would also consequently contribute to the application and development of international law governing the exploration and use of outer space. States Parties to the Convention furnish the required information to the United Nations' Register of Space Objects. However, the furnished information is often so general that it may not be as helpful in creating transparency as had been hoped by the drafters of the Convention. While registration of civil satellites has been furnished with some general details, till today, none of the Parties have described the objects as having military functions despite the fact that a large number of such objects do perform military functions as well. In some cases, the best they have done is to indicate that the space objects are for their defense establishments. Moreover, the number of registrations of space objects is declining. This paper addresses the challenges posed by the non-registration of space objects. Particularly, the paper provides some data about the registration and non-registration of satellites and the States that have and have not complied with their legal obligations. It also analyses the specific requirements of the Convention, the reasons for non-registration, new challenges posed by the registration of small satellites and the on-orbit transfer of satellites. Finally, the paper provides some recommendations on how to enhance the registration of space objects, on the monitoring of the implementation of the Registration Convention and consequently how to achieve maximum transparency in space activities.

  3. Development and Testing of Space Fission Technology at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt; Pearson, J. Boise; Houts, Michael

    2008-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA-Marshall Space Flight Center (MSFC) provides a capability to perform hardware-directed activities to support multiple inspace nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations allowing for realistic thermal-hydraulic evaluations of systems. The EFF-TF is currently performing non-nuclear testing of hardware to support a technology development effort related to an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled reactor design, which builds on US and Russian space reactor technology as well as extensive US and international terrestrial liquid metal reactor experience. An important aspect of the current hardware development effort is the information and insight that can be gained from experiments performed in a relevant environment using realistic materials. This testing can often deliver valuable data and insights with a confidence that is not otherwise available or attainable. While the project is currently focused on potential fission surface power for the lunar surface, many of the present advances, testing capabilities, and lessons learned can be applied to the future development of a low-cost in-space fission power system. The potential development of such systems would be useful in fulfilling the power requirements for certain electric propulsion systems (magnetoplasmadynamic thruster, high-power Hall and ion thrusters). In addition, inspace fission power could be applied towards meeting spacecraft and propulsion needs on missions further from the Sun, where the usefulness of solar power is diminished. The affordable nature of the fission surface power system that NASA may decide to develop in the future might make derived systems generally attractive for powering

  4. Distribution of flexural deflection in the worldwide outer rise area

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jun; Lin, Jing-Yi; Lin, Yi-Chin; Chin, Shao-Jinn; Chen, Yen-Fu

    2015-04-01

    The outer rise on the fringe of a subduction system is caused by an accreted load on the flexed oceanic lithosphere. The magnitude of the deflection is usually linked to the stress state beard by the oceanic plate. In a coupled subduction zone, the stress is abundantly accumulated across the plate boundary which should affect the flexural properties of the subducted plate. Thus, the variation of the outer rise in shape may reflect the seismogenic characteristics of the subduction system. In this study, we intent to find the correlation between the flexure deflection (Wb) of the outer rise and the subduction zone properties by comparing several slab parameters and the Wb distribution. The estimation of Wb is performed based on the available bathymetry data and the statistic analysis of earthquakes is from the global ISC earthquake catalog for the period of 1900-2015. Our result shows a progressive change of Wb in space, suggesting a robust calculation. The average Wb of worldwise subduction system spreads from 348 to 682 m. No visible distinction in the ranging of Wb was observed for different subduction zones. However, in a weak coupling subduction system, the standard variation of Wb has generally larger value. Relatively large Wb generally occurs in the center of the trench system, whereas small Wb for the two ends of trench. The comparison of Wb and several slab parameters shows that the Wb may be correlated with the maximal magnitude and the number of earthquakes. Otherwise, no clear relationship with other parameters can be obtained.

  5. Infrared Free Space Communication - The Autonomous Testing of Free Space Infrared Communication

    NASA Technical Reports Server (NTRS)

    Heldman, Christopher

    2017-01-01

    Fiber optics has been a winning player in the game of high-speed communication and data transfer in cable connections. Yet, in free space RF has been the repeated choice of communication medium of the space industry. Investigating the benefits of free space optical communication over radio frequency is worthwhile. An increase in science data rate return capabilities could occur if optical communication is implemented. Optical communication systems also provide efficiencies in power, mass, and volume over RF systems1. Optical communication systems have been demonstrated from a satellite in orbit with the moon to earth, and resulted in the highest data rates ever seen through space (622Mbps)2. Because of these benefits, optical communication is far superior to RF. The HiDRA (High Data Rate Architecture) project is researching Passive Misalignment Mitigation of Dynamic Free Apace Optical Communication Links. The goal of this effort is to enable gigabit per second transmission of data in short range dynamic links (less than 100 meters). In practice this would enhance data rates between sites on the International Space Station with minimal size, weight, and power requirements. This paper will focus on an autonomous code and a hardware setup that will be used to fulfill the next step in the research being conducted. The free space optical communications pointing downfalls will be investigated. This was achieved by creating 5 python programs and a top-level code to automate this test.

  6. The 88-Inch Cyclotron: A One-Stop Facility for Electronics Radiation and Detector Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kireeff Covo, M.; Albright, R. A.; Ninemire, B. F.

    In outer space down to the altitudes routinely flown by larger aircrafts, radiation can pose serious issues for microelectronics circuits. The 88-Inch Cyclotron at Lawrence Berkeley National Laboratory is a sector-focused cyclotron and home of the Berkeley Accelerator Space Effects Facility, where the effects of energetic particles on sensitive microelectronics are studied with the goal of designing electronic systems for the space community. This paper describes the flexibility of the facility and its capabilities for testing the bombardment of electronics by heavy ions, light ions, and neutrons. Experimental capabilities for the generation of neutron beams from deuteron breakups and radiationmore » testing of carbon nanotube field effect transistor will be discussed.« less

  7. OUTER RADIATION BELT AND AURORAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorchakov, E.V.

    1961-01-01

    Data obtained from Sputnik IH were used to determine the high-latitude boundary of the outer radiation belt and to interpret the nature of auroras. At the heights at which the auroras were observed, the outer boundary of the belt (69 deg north geomagnetic latitude) practically coincides with the auroral zone maximum (70 deg north geomagnetic latitude), while the maximum intensity of the outer belt near the earth lies at about 55 deg north geomagnetic latitude, i.e., at latitudes 15 deg below the auroral maximum. Consequently, auroras near the zone of maximum cannot be caused by the penetration into the atmospheremore » of electrons from the outer belt with energies on the order of 0.1 Mev (the mean energy of electrons in the outer belt). Other investigators have reported the detection of lowenergy streams at 55,000 to 75,000 km from the center of the earth in the equatorial plane. Moving toward the surface of the earth along the force lines of the magnetic field, electron streams of this type will reach the earth precisely in the region of the auroral zone maximum. It is considered possible that the electron streams are trapped at these distances from the earth and are at least partially responsible for auroras in the region of maximum. The existence of two maxima in the latitudinal distribution of auroral frequency, which attests to differert mechanisms of aurora formation, favors this hypothesis. In the region of the basic auroral maximum (70 deg north geomagnetic latitude) the auroras are the result of the invasion of belt particles, while in the region of the additional maximum (about 80 deg north geomagnetic latitude) they are caused by the direct penetration of corpuscular streams into the atmosphere. (OTS)« less

  8. Outer Planet Exploration with Advanced Radioisotope Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul

    2002-01-01

    In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.

  9. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170...

  10. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170...

  11. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of the... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170...

  12. Measuring In Vivo Free Radical Production by the Outer Retina

    PubMed Central

    Berkowitz, Bruce A.; Bredell, Bryce X.; Davis, Christopher; Samardzija, Marijana; Grimm, Christian; Roberts, Robin

    2015-01-01

    Purpose Excessive and continuously produced free radicals in the outer retina are implicated in retinal aging and the pathogenesis of sight-threatening retinopathies, yet measuring outer retinal oxidative stress in vivo remains a challenge. Here, we test the hypothesis that continuously produced paramagnetic free radicals from the outer retina can be measured in vivo using high-resolution (22-μm axial resolution) 1/T1magnetic resonance imaging (MRI) without and with a confirmatory quench (quench-assisted MRI). Methods Low-dose sodium iodate–treated and diabetic C57Bl6/J mice (and their controls), and rod-dominated (129S6) or cone-only R91W;Nrl−/− mice were studied. In dark-adapted groups, 1/T1 was mapped transretinally in vivo without or with (1) the antioxidant combination of methylene blue (MB) and α-lipoic acid (LPA), or (2) light exposure; in subgroups, retinal superoxide production was measured ex vivo (lucigenin). Results In the sodium iodate model, retinal superoxide production and outer retina-specific 1/T1 values were both significantly greater than normal and corrected to baseline with MB+LPA therapy. Nondiabetic mice at two ages and 1.2-month diabetic mice (before the appearance of oxidative stress) had similar transretinal 1/T1 profiles. By 2.3 months of diabetes, only outer retinal 1/T1 values were significantly greater than normal and were corrected to baseline with MB+LPA therapy. In mice with healthy photoreceptors, a light quench caused 1/T1 of rods, but not cones, to significantly decrease from their values in the dark. Conclusions Quench-assisted MRI is a feasible method for noninvasively measuring normal and pathologic production of free radicals in photoreceptors/RPE in vivo. PMID:26670830

  13. Space Fission Propulsion Testing and Development Progress. Phase 1

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Pedersen, Kevin; Godfroy, Tom; Dickens, Ricky; Poston, David; Reid, Bob; Salvail, Pat; Ring, Peter; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Successful development of space fission systems will require an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. Testing can be divided into two categories, non-nuclear tests and nuclear tests. Full power nuclear tests of space fission systems we expensive, time consuming, and of limited use, even in the best of programmatic environments. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through a series of non-nuclear tests. Non-nuclear tests are affordable and timely, and the cause of component and system failures can be quickly and accurately identified. MSFC is leading a Safe Affordable Fission Engine (SAFE) test series whose ultimate goal is the demonstration of a 300 kW flight configuration system using non-nuclear testing. This test series is carried out in collaboration with other NASA centers, other government agencies, industry, and universities. If SAFE-related nuclear tests are desired they will have a high probability of success and can be performed at existing nuclear facilities. The paper describes the SAFE non-nuclear test series, which includes test article descriptions, test results and conclusions, and future test plans.

  14. Heat shield characterization: Outer planet atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Mezines, S. A.; Rusert, E. L.; Disser, E. F.

    1976-01-01

    A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.

  15. Degradation of Hubble Space Telescope Metallized Teflon(trademark) FEP Thermal Control Materials

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.; Townsend, Jacqueline A.; Yoshikawa, Yukio; Castro, J. David; Triolo, Jack J.; Peters, Wanda C.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon Fluorinated Ethylene Propylene (FEP) thermal control materials on the Hubble Space Telescope (HST) have degraded over the seven years the telescope has been in orbit. Astronaut observations and photographic documentation from the Second Servicing Mission revealed severe cracks of the multi-layer insulation (MLI) blanket outer layer in many locations around the telescope, particularly on solar facing surfaces. Two samples, the outer Teflon FEP MLI layer and radiator surfaces, were characterized post- mission through exhaustive mechanical, thermal, chemical, and optical testing. The observed damage to the thermal control materials, the sample retrieval and handling, and the significant changes to the radiator surfaces of HST will be discussed. Each of these issues is addressed with respect to current and future mission requirements.

  16. Electric Propulsion Test & Evaluation Methodologies for Plasma in the Environments of Space and Testing (EP TEMPEST) (Briefing Charts)

    DTIC Science & Technology

    2015-04-01

    in the Environments of Space and Testing (EP TEMPEST ) - Program Review (Briefing Charts) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c...of Space and Testing (EP TEMPEST ) AFOSR T&E Program Review 13-17 April 2015 Dr. Daniel L. Brown In-Space Propulsion Branch (RQRS) Aerospace Systems...Statement A: Approved for public release; distribution is unlimited. EP TEMPEST (Lab Task, FY14-FY16) Program Goals and Objectives Title: Electric

  17. Capabilities of NASA/Marshall Space Flight Center's Impact Testing Facility

    NASA Technical Reports Server (NTRS)

    Hovater, Mary; Hubbs, Whitney; Finchum, Andy; Evans, Steve; Nehls, Mary

    2006-01-01

    The Impact Testing Facility (ITF) serves as an important installation for materials science at Marshall Space Flight Center (MSFC). With an array of air, powder, and two-stage light gas guns, a variety of projectile and target types and sizes can be accommodated. The ITF allows for simulation of impactors from rain to micrometeoroids and orbital debris on materials being investigated for space, atmospheric, and ground use. Expendable, relatively simple launch assemblies are used to obtain well-documented results for impact conditions comparable to those from ballistic and rocket sled ranges at considerably lower cost. In addition, for applications requiring study of impacts at speeds in excess of those attainable by gun launches, hydrocode simulations, validated by test data, can be used to extend the velocity range. In addition to serving various NASA directorates, the ITF has performed testing on behalf of the European and Russian space agencies, as well as the Department of Defense, and academic institutions. The m s contributions not only enable safer space flight for NASA s astronauts, but can help design materials and structures to protect soldiers and civilians on Earth, through advances in body armor, aircraft survivability, and a variety of other applications.

  18. Thermal vacuum test of space equipment: tests of SIR-2 instrument Chandrayaan-1 mission

    NASA Astrophysics Data System (ADS)

    Sitek, P.

    2008-11-01

    We describe the reasons of proceeding Thermal-Vacuum tests for space electronic. We will answer on following questions: why teams are doing TV tests, what kind of phases should be simulated, which situations are the most critical during TV tests, what kind of results should be expected, which errors can be detect. As an example, will be shown TV-test of SIR-2 instrument for Chandrayaan-1 moon mission.

  19. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  20. A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Becker, D.; Cain, S.

    Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.