Science.gov

Sample records for outer surface structures

  1. Wettability on Inner and Outer Surface of Single Carbon Nanotubes.

    PubMed

    Yamada, Yutaka; Takahashi, Koji; Takata, Yasuyuki; Sefiane, Khellil

    2016-07-19

    The surface wettability of a liquid on the inner and outer surface of single carbon nanotubes (CNTs) was experimentally investigated. Although these contact angles on both surfaces were previously studied separately, the available data are of limited help to elucidate the effect of curvature orientation (concave or convex) on wettability due to the difference in surface structure. Here, we report on the three-phase contact region and wettability on the outer surface of CNT during the dipping and withdrawing experiment of CNT into an ionic liquid. Furthermore, the wettability on the inner surface was measured using a liquid within the same CNT. Our results show that the contact angle on the outer surface of the CNT is larger than that on the flat surface and that on the inner surface is smaller than that on the flat one. These findings suggest that the surface curvature orientation has a noticeable effect on the contact angle at the nanoscale because both inner and outer surfaces expose the same graphite wall structure and the contact line tension will be negligible in this situation. The presented results are rationalized using the free energy balance of liquid on curved surfaces. PMID:27351126

  2. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  3. Surface ices in the outer solar system

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Cruikshank, Dale P.

    1994-01-01

    Planetary volatile inventories are products of several factors: (1) condensation-accretion of pre-planetary material which determines the bulk volatile inventory; (2) energy history of a planet, including timing, causes, and mechanisms of degassing; (3) the volatile sinks, including temporary, long term, and permanent; and (4) external processes operating on the volatile inventory. Information regarding the current surface compositions provide insight into both internal and surface-atmosphere evolutionary history. Our discussion focuses upon the surface composition of outer solar system planets and satellites as determined by spacecraft and telescopic spectral observations. We provide a review and an update of the recent work by Cruikshank and Brown that includes more recent observations and interpretations. In the context of formation and evolution of solar system bodies, the interesting ices typically considered are simple molecules formed from elements having high cosmic abundances. These mainly include ices of H2O, NH3, SO2, H2S, CH4, CO, CO2, and N2. In the solid state, these ices have vibrational spectral features, analogous to their gaseous counterparts but rotational transitions are quenched, that lie in the near- and mid-infrared. The overtone and combination modes, occurring in the visible and near-IR region, are of particular importance as standard observational techniques used to identify these ices rely upon reflected solar energy. Table I summarizes the ices found on various bodies in the outer solar system. H2O is most abundant surface material in the inner and middle regions while more volatile species appear to dominate surfaces in the outermost edge of the outer solar system.

  4. Structure of an outer surface lipoprotein BBA64 from the Lyme disease agent Borrelia burgdorferi which is critical to ensure infection after a tick bite.

    PubMed

    Brangulis, Kalvis; Tars, Kaspars; Petrovskis, Ivars; Kazaks, Andris; Ranka, Renate; Baumanis, Viesturs

    2013-06-01

    Lyme disease is a tick-borne infection caused by the transmission of Borrelia burgdorferi from infected Ixodes ticks to a mammalian host during the blood meal. Previous studies have shown that the expression of B. burgdorferi surface-localized lipoproteins, which include BBA64, is up-regulated during the process of tick feeding. Although the exact function of BBA64 is not known, this lipoprotein is critical for the transmission of the spirochete from the tick salivary glands to the mammalian organism after a tick bite. Since the mechanism of development of the disease and the functions of the surface lipoproteins associated with borreliosis are still poorly understood, the crystal structure of the B. burgdorferi outer surface lipoprotein BBA64 was solved at 2.4 Å resolution in order to obtain a better insight into the pathogenesis of B. burgdorferi and to promote the discovery of novel potential preventive drugs against Lyme disease. In this study, the crystal structure of BBA64 was also compared with that of the paralogous protein CspA (also referred to as BbCRASP-1, CRASP-1 or BBA68). CspA is the complement regulator-acquiring surface protein-1 of B. burgdorferi; its structure is known, but its function apparently differs from that of BBA64. It is demonstrated that unlike the homologous CspA, BBA64 does not form a homodimer. Their differences in function could be explained by divergence in their amino-acid sequences, electrostatic surface potentials and overall tertiary structures. The C-terminal part of BBA64 has a different conformation to that of CspA; the conformation of this region is essential for the proper function of CspA. PMID:23695254

  5. Purification of integral outer-membrane protein OmpC, a surface antigen from Salmonella typhi for structure-function studies: a method applicable to enterobacterial major outer-membrane protein.

    PubMed

    Arockiasamy, A; Krishnaswamy, S

    2000-07-15

    Extraction of the outer-membrane porin, OmpC, from Salmonella typhi Ty21a was done by using a modified salt-extraction procedure. It was possible to extract only the major outer-membrane protein (OMP) from the crude membrane using this method. Aberrant lipopolysaccharide (LPS) production in the galE mutant Ty21a has resulted in more isoforms of OmpC and subsequently led to anomalous mobility in SDS-PAGE. The purity of the preparation was confirmed by denaturing urea SDS-PAGE and N-terminal sequencing. The major OMP extracts had LPS of both bound and free forms. The free form of LPS could be removed by gel filtration and the bound form, largely, was removed using ion-exchange chromatography and by passing through ultrafiltration devices. This method has been used to extract the native trimer of OmpC, the major OMP, in a large scale, for structure-function studies. S. typhi Ty21a OmpC preparation yielded reproducible diffraction-quality crystals. Extracts of porin from wild-type Escherichia coli HB101, grown under high osmolarity conditions, showed a single species of OMP on SDS-PAGE. This suggests the possible application of the method to other gram-negative bacterial porins. PMID:10929809

  6. Electron beam seals outer surfaces of porous bodies

    NASA Technical Reports Server (NTRS)

    Herz, W. H.; Kurtz, A. D.; Kurtz, R. A.

    1966-01-01

    Porous tungsten plugs provide even airflow for frictionless bearings used in air bearing supported gyros. The plugs have their outer cylindrical surface sealed by an electron beam process to ensure unidirectional airflow through their exit ends.

  7. Microwave Brightness Of Land Surfaces From Outer Space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1991-01-01

    Mathematical model approximates microwave radiation emitted by land surfaces traveling to microwave radiometer in outer space. Applied to measurements made by Scanning Multichannel Microwave Radiometer (SMMR). Developed for interpretation of microwave imagery of Earth to obtain distributions of various chemical, physical, and biological characteristics across its surface. Intended primarily for use in mapping moisture content of soil and fraction of Earth covered by vegetation. Advanced Very-High-Resolution Radiometer (AVHRR), provides additional information on vegetative cover, thereby making possible retrieval of soil-moisture values from SMMR measurements. Possible to monitor changes of land surface during intervals of 5 to 10 years, providing significant data for mathematical models of evolution of climate.

  8. Vertical Structure in Outer Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Rages, Kathy A.

    1999-01-01

    The period covered by this cooperative agreement included: 1) the analysis of data acquired by both Voyager spacecraft during their encounters with Saturn in 1979 and 1980; 2) work on Uranus' seasonal variability and transient albedo features on both Uranus and Neptune using observations made by the Hubble Space Telescope beginning in 2000; 3) a search for lightning on Jupiter using HST; and 4) the analysis of Pathfinder images of Martian surface features.

  9. Marginally outer trapped surfaces in stationary initial data

    NASA Astrophysics Data System (ADS)

    Carrasco, A.; Mars, M.

    We present two results for bounding marginally outer trapped surfaces (MOTSs) in Killing initial data satisfying the null energy condition and containing an untrapped barrier. The first one applies to the stationary case and states that no bounding MOTS lying in the exterior region where the stationary Killing vector is causal and penetrating into the timelike region can exist. The second result applies to the static case and shows that no bounding MOTS can penetrate into the exterior region where the static Killing vector is timelike. These results extend an interesting theorem by P. Miao (Miao 2005).

  10. Surface evaluation method and stamping simulation for surface deflection of automotive outer panels

    NASA Astrophysics Data System (ADS)

    Ichijo, Naoki; Iwata, Noritoshi; Iwata, Takamichi; Mita, Taichi; Niihara, Masatomo; Tsutamori, Hideo

    2013-12-01

    In designing dies of automotive outer panels, the most difficult process is to modify surface deflection. To fabricate high-quality outer panels without modifying dies, it is important to develop an evaluation method and a numerical analysis method for surface deflection of outer panels. In this study, we have developed a new evaluation method that uses the maximum value of curvature calculated using reflecting curves in the surface. This new evaluation method made the examiner's evaluation to conform with the digital evaluation. The evaluation results with the new method shows better agreement with the sensory value than those with the conventional methods. We have proposed the new analysis method to predict surface deflection correctly. By the proposed simulation method, plastic deformation is calculated in consideration of stress in thickness direction, and restriking conditions have been examined. We have applied our methods to the fabrication of automotive outer panels, and verified that these are useful and practical.

  11. Outer Retinal Structure Following Closed Globe Blunt Ocular Trauma

    PubMed Central

    Flatter, John A.; Cooper, Robert F.; Dubow, Michael J.; Pinhas, Alexander; Singh, Ravi S.; Kapur, Rashmi; Shah, Nishit; Walsh, Ryan D.; Hong, Sang H.; Weinberg, David V.; Stepien, Kimberly E.; Wirostko, William J.; Robison, Scott; Dubra, Alfredo; Rosen, Richard B.; Connor, Thomas B.; Carroll, Joseph

    2014-01-01

    Purpose To evaluate outer retinal structural abnormalities in patients with visual deficits following closed globe blunt ocular trauma (cgBOT). Methods Nine subjects with visual complaints following cgBOT were examined between 1 month post-trauma and 6 years post-trauma. Spectral domain optical coherence tomography (SD-OCT) was used to assess outer retinal architecture, while adaptive optics scanning light ophthalmoscopy (AOSLO) was used to analyze photoreceptor mosaic integrity. Results Visual deficits ranged from central scotomas to decreased visual acuity. SD-OCT defects included focal foveal photoreceptor lesions, variable attenuation of the interdigitation zone, and mottling of the outer segment band, with one subject having normal outer retinal structure. AOSLO revealed disruption of the photoreceptor mosaic in all subjects, variably manifesting as foveal focal discontinuities, perifoveal hyporeflective cones, and paracentral regions of selective cone loss. Conclusions We observe persistent outer retinal disruption in subjects with visual complaints following cgBOT, albeit to a variable degree. AOSLO imaging allows assessment of photoreceptor structure at a level of detail not resolvable using SD-OCT or other current clinical imaging tools. Multimodal imaging appears useful for revealing the cause of visual complaints in patients following cgBOT. Future studies are needed to better understand how photoreceptor structure changes longitudinally in response to various trauma. PMID:24752010

  12. Advanced Metal Foam Structures for Outer Space

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Johnson, William; Peker, Atakan

    2005-01-01

    A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

  13. Fluid flow near the surface of earth's outer core

    NASA Technical Reports Server (NTRS)

    Bloxham, Jeremy; Jackson, Andrew

    1991-01-01

    This review examines the recent attempts at extracting information on the pattern of fluid flow near the surface of the outer core from the geomagnetic secular variation. Maps of the fluid flow at the core surface are important as they may provide some insight into the process of the geodynamo and may place useful constraints on geodynamo models. In contrast to the case of mantle convection, only very small lateral variations in core density are necessary to drive the flow; these density variations are, by several orders of magnitude, too small to be imaged seismically; therefore, the geomagnetic secular variation is utilized to infer the flow. As substantial differences exist between maps developed by different researchers, the possible underlying reasons for these differences are examined with particular attention given to the inherent problems of nonuniqueness.

  14. An Outer Arm in the Second Galactic Quadrant: Structure

    NASA Astrophysics Data System (ADS)

    Du, Xinyu; Xu, Ye; Yang, Ji; Sun, Yan; Li, Facheng; Zhang, Shaobo; Zhou, Xin

    2016-05-01

    The lack of arm tracers, especially remote tracers, is one of the most difficult problems preventing us from studying the structure of the Milky Way. Fortunately, with its high-sensitivity CO survey, the Milky Way Imaging Scroll Painting (MWISP) project offers such an opportunity. Since completing about one-third of its mission, an area of l = [100, 150]°, b = [‑3, 5]° has nearly been covered. The Outer arm of the Milky Way first clearly revealed its shape in the second galactic quadrant in the form of molecular gas—this is the first time that the Outer arm has been reported in such a large-scale mapping of molecular gas. Using the 115 GHz 12CO(1–0) data of MWISP at the LSR velocity ≃[‑100, ‑60] km s‑1 and in the area mentioned above, we have detected 481 molecular clouds in total, and among them 332 (about 69%) are newly detected and 457 probably belong to the Outer arm. The total mass of the detected Outer arm clouds is ˜3.1 × 106 M ⊙. Assuming that the spiral arm is a logarithmic spiral, the pitch angle is fitted as ˜13.°1. Besides combining both the CO data from MWISP and the 21 cm H i data from the Canadian Galactic Plane Survey (CGPS), the gas distribution, warp, and thickness of the Outer arm are also studied.

  15. An Outer Arm in the Second Galactic Quadrant: Structure

    NASA Astrophysics Data System (ADS)

    Du, Xinyu; Xu, Ye; Yang, Ji; Sun, Yan; Li, Facheng; Zhang, Shaobo; Zhou, Xin

    2016-05-01

    The lack of arm tracers, especially remote tracers, is one of the most difficult problems preventing us from studying the structure of the Milky Way. Fortunately, with its high-sensitivity CO survey, the Milky Way Imaging Scroll Painting (MWISP) project offers such an opportunity. Since completing about one-third of its mission, an area of l = [100, 150]°, b = [‑3, 5]° has nearly been covered. The Outer arm of the Milky Way first clearly revealed its shape in the second galactic quadrant in the form of molecular gas—this is the first time that the Outer arm has been reported in such a large-scale mapping of molecular gas. Using the 115 GHz 12CO(1–0) data of MWISP at the LSR velocity ≃[‑100, ‑60] km s‑1 and in the area mentioned above, we have detected 481 molecular clouds in total, and among them 332 (about 69%) are newly detected and 457 probably belong to the Outer arm. The total mass of the detected Outer arm clouds is ∼3.1 × 106 M ⊙. Assuming that the spiral arm is a logarithmic spiral, the pitch angle is fitted as ∼13.°1. Besides combining both the CO data from MWISP and the 21 cm H i data from the Canadian Galactic Plane Survey (CGPS), the gas distribution, warp, and thickness of the Outer arm are also studied.

  16. Structure and dynamics of Saturn's outer magnetosphere and boundary regions

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Lepping, R. P.; Ness, N. F.

    1983-01-01

    In 1979-1981, the three USA spacecraft Pioneer 11 and Voyagers 1 and 2 discovered and explored the magnetosphere of Saturn to the limited extent possible on flyby trajectories. Considerable variation in the locations of the bow shock (BS) and magnetopause (MP) surfaces were observed in association with variable solar wind conditions and, during the Voyager 2 encounter, possible immersion in Jupiter's distant magnetic tail. The limited number of BS and MP crossings were concentrated near the subsolar region and the dawn terminator, and that fact, together with the temporal variability, makes it difficult to assess the three dimensional shape of the sunward magnetospheric boundary. The combined BS and MP crossing positions from the three spacecraft yield an average BS-to-MP stagnation point distance ratio of 1.29 +/- 0.10. This is near the 1.33 value for the Earth's magnetosphere, implying a similar sunward shape at Saturn. Study of the structure and dynamical behavior of the outer magnetosphere, both in the sunward hemisphere and the magnetotail region using combined plasma and magnetic field data, suggest that Saturn's magnetosphere is more similar to that of Earth than that of Jupiter.

  17. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  18. U(VI) Reduction by Diverse Outer Surface c-Type Cytochromes of Geobacter sulfurreducens

    PubMed Central

    Leavitt, Janet J.; Comolli, Luis R.; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A.; Gray, Arianna S.; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R.

    2013-01-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors. PMID:23934497

  19. Outer Retinal Structure in Best Vitelliform Macular Dystrophy

    PubMed Central

    Kay, David B.; Land, Megan E.; Cooper, Robert F.; Dubis, Adam M.; Godara, Pooja; Dubra, Alfredo; Carroll, Joseph; Stepien, Kimberly E.

    2014-01-01

    Objective To characterize outer retinal structure in Best Vitelliform Macular Dystrophy (BVMD), using spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning light ophthalmoscopy (AOSLO). Methods Four symptomatic members of a family with BVMD with known BEST1 gene mutation were recruited. Thickness of two outer retinal layers corresponding to photoreceptor inner and outer segments were measured using SD-OCT. Photoreceptor mosaic AOSLO images within and around visible lesions were obtained, and cone density was assessed in two subjects. Results Each subject was at a different stage of BVMD, with photoreceptor disruption evident by AOSLO at all stages. When comparing SD-OCT and AOSLO images from the same location, AOSLO images allowed for direct assessment of photoreceptor structure. A variable degree of retained photoreceptors was seen within all lesions. The photoreceptor mosaic immediately adjacent to visible lesions appeared contiguous and was of normal density. Fine hyperreflective structures were visualized by AOSLO, and their anatomical orientation and size are consistent with Henle fibers. Conclusions AOSLO findings indicate substantial photoreceptor structure persists within active lesions, accounting for good visual acuity in these patients. Despite previous reports of diffuse photoreceptor outer segment abnormalities in BVMD, our data reveal normal photoreceptor structure in areas adjacent to clinical lesions. Clinical Relevance This study demonstrates the utility of AOSLO for understanding the spectrum of cellular changes that occur in inherited degenerations such as BVMD. Photoreceptors are often significantly affected at various stages of inherited degenerations, and these changes may not be readily apparent with current clinical imaging instrumentation. PMID:23765342

  20. Planning Assembly Of Large Truss Structures In Outer Space

    NASA Technical Reports Server (NTRS)

    De Mello, Luiz S. Homem; Desai, Rajiv S.

    1992-01-01

    Report dicusses developmental algorithm used in systematic planning of sequences of operations in which large truss structures assembled in outer space. Assembly sequence represented by directed graph called "assembly graph", in which each arc represents joining of two parts or subassemblies. Algorithm generates assembly graph, working backward from state of complete assembly to initial state, in which all parts disassembled. Working backward more efficient than working forward because it avoids intermediate dead ends.

  1. Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel.

    PubMed

    Lei, Hsiang-Ting; Chou, Tsung-Han; Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A; Do, Sylvia V; Rajashankar, Kanagalaghatta R; Shafer, William M; Yu, Edward W

    2014-01-01

    Active efflux of antimicrobial agents is one of the most important strategies used by bacteria to defend against antimicrobial factors present in their environment. Mediating many cases of antibiotic resistance are transmembrane efflux pumps, composed of one or more proteins. The Neisseria gonorrhoeae MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND) family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here describe the crystal structure of N. gonorrhoeae MtrE, the outer membrane component of the MtrCDE tripartite multidrug efflux system. This trimeric MtrE channel forms a vertical tunnel extending down contiguously from the outer membrane surface to the periplasmic end, indicating that our structure of MtrE depicts an open conformational state of this channel. PMID:24901251

  2. Sensitivity of quasi-periodic outer rainband activity of tropical cyclones to the surface entropy flux

    NASA Astrophysics Data System (ADS)

    Li, Qingqing; Duan, Yihong

    2013-10-01

    The influence of outer-core surface entropy fluxes (SEFs) on tropical cyclone (TC) outer rainband activity is investigated in this study with a fully compressible, nonhydrostatic model. A control simulation and two sensitivity experiments with the outer-core SEF artificially increased and decreased by 20% respectively were conducted to examine the quasi-periodic outer rainband behavior. Larger negative horizontal advection due to the greater radial wind and the positive contribution by asymmetric eddies leads to a longer period of outerrainband activity in the SEF-enhanced experiment. The well-developed outer rainbands in the control and SEF-reduced simulations significantly limit the TC intensity, whereas such an intensity suppression influence is not pronounced in the SEF-enhanced experiment. As diabatic heating in outer rainbands strengthens the outer-core tangential wind, the quasi-periodic activity of outer rainbands contributes to the quasi-periodic variations of the inner-core size of the TCs.

  3. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    SciTech Connect

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  4. Structural basis for alginate secretion across the bacterial outer membrane

    SciTech Connect

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  5. Surface analysis of stainless steel outer race bearing specimens

    NASA Astrophysics Data System (ADS)

    Schaffer, D. K.; Hand, H. M.

    1991-10-01

    The results of analysis of R-4 stainless steel instrument bearings, subjected to various wear cycles, are reported to describe the fate of a synthetic Schiff base lubricant additive at the bearing wear track surfaces. The surfaces were monitored by x-ray, photoelectron spectroscopy (XPS), and Fourier infrared (FTIR) spectroscopy to characterize all lubricant (and grease) species of interest. The data indicate a general modification or degradation of both the lubricant and ubiquitous fluorinated grease ('Kryto-x') additive during the wear stages. Chemical and structural compositions are described for residual derivatives at the bearing track surfaces. Further studies are recommended that will enable confirmation of both the chemical fate and the molecular mechanism of lubricant additives candidates.

  6. Estimating Relative Positions of Outer-Space Structures

    NASA Technical Reports Server (NTRS)

    Balian, Harry; Breckenridge, William; Brugarolas, Paul

    2009-01-01

    A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.

  7. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab

    SciTech Connect

    Aoki, Scott T.; Settembre, Ethan C.; Trask, Shane D.; Greenberg, Harry B.; Harrison, Stephen C.; Dormitzer, Philip R.

    2009-06-17

    Rotavirus outer-layer protein VP7 is a principal target of protective antibodies. Removal of free calcium ions (Ca{sup 2+}) dissociates VP7 trimers into monomers, releasing VP7 from the virion, and initiates penetration-inducing conformational changes in the other outer-layer protein, VP4. We report the crystal structure at 3.4 angstrom resolution of VP7 bound with the Fab fragment of a neutralizing monoclonal antibody. The Fab binds across the outer surface of the intersubunit contact, which contains two Ca{sup 2+} sites. Mutations that escape neutralization by other antibodies suggest that the same region bears the epitopes of most neutralizing antibodies. The monovalent Fab is sufficient to neutralize infectivity. We propose that neutralizing antibodies against VP7 act by stabilizing the trimer, thereby inhibiting the uncoating trigger for VP4 rearrangement. A disulfide-linked trimer is a potential subunit immunogen.

  8. Crystal structure of a COG4313 outer membrane channel

    PubMed Central

    Berg, Bert van den; Bhamidimarri, Satya Prathyusha; Winterhalter, Mathias

    2015-01-01

    COG4313 proteins form a large and widespread family of outer membrane channels and have been implicated in the uptake of a variety of hydrophobic molecules. Structure-function studies of this protein family have so far been hampered by a lack of structural information. Here we present the X-ray crystal structure of Pput2725 from the biodegrader Pseudomonas putida F1, a COG4313 channel of unknown function, using data to 2.3 Å resolution. The structure shows a 12-stranded barrel with an N-terminal segment preceding the first β-strand occluding the lumen of the barrel. Single channel electrophysiology and liposome swelling experiments suggest that while the narrow channel visible in the crystal structure does allow passage of ions and certain small molecules in vitro, Pput2725 is unlikely to function as a channel for hydrophilic molecules. Instead, the presence of bound detergent molecules inside the barrel suggests that Pput2725 mediates uptake of hydrophobic molecules. Sequence alignments and the locations of highly conserved residues suggest the presence of a dynamic lateral opening through which hydrophobic molecules might gain entry into the cell. Our results provide the basis for structure-function studies of COG4313 family members with known function, such as the SphA sphingosine uptake channel of Pseudomonas aeruginosa. PMID:26149193

  9. Analysis of the ISS Russian Segment Outer Surface Materials Installed on the CKK Detachable Cassette

    NASA Astrophysics Data System (ADS)

    Naumov, S. F.; Borisov, V. A.; Plotnikov, A. D.; Sokolova, S. P.; Kurilenok, A. O.; Skurat, V. E.; Leipunsky, I. O.; Pshechenkov, P. A.; Beryozkina, N. G.; Volkov, I. O.

    2009-01-01

    This report presents an analysis of the effects caused by space environmental factors (SEF) and the International Space Station's (ISS) outer environment on operational parameters of the outer surface materials of the ISS Russian Segment (RS). The tests were performed using detachable container cassettes (CKK) that serve as a part of the ISS RS contamination control system.

  10. Outer Membrane Remodeling: The Structural Dynamics and Electrostatics of Rough Lipopolysaccharide Chemotypes.

    PubMed

    Dias, Roberta P; da Hora, Gabriel C A; Ramstedt, Madeleine; Soares, Thereza A

    2014-06-10

    Lipopolysaccharides (LPS) are the primary constituent of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. Gram-negative bacteria can synthesize modified forms of LPS in response to environmental stimuli or due to genetic mutations, a process known as outer membrane remodeling. Chemical modifications of the LPS modulate the integrity and antibiotic susceptibility of bacterial outer membranes. It also governs microbial adhesion to tissues and artificial material surfaces. We have extended a previous model of the rough LPS to include four novel chemotypes rmlC, galU, LPS Re, and Lipid-A. Atomistic molecular dynamics (MD) simulations were performed for outer membrane models constituted of each LPS chemotypes and 1,2-dipalmitoyl-3-phosphatidylethanolamine. It is shown that the decrease in the LPS polysaccharide chain length leads to a significant increase in the diffusion coefficients for the Ca(2+) counterions, increase in acyl chain packing (decrease in membrane fluidity), and attenuation of the negative potential across the LPS surface as positive counterions becomes more exposed to the solvent. The electrostatic potential on the LPS surfaces reflects heterogeneous charge distributions with increasingly larger patches of positive and negative potentials as the polysaccharide chain length decreases. Such a pattern originates from the spatial arrangement of charged phosphate-Ca(2+) clusters in the LPS inner-core that becomes exposed in the membrane surface as monosaccharide units are lost in the shortest chemotypes LPS Re and Lipid-A. These MD-derived conformational ensembles reproduce experimental trends and provide atom-level structural information on the rough LPS chemotypes that can help to rationalize antibiotic resistance and bacterial adhesion processes. PMID:26580769

  11. Composite load bearing outer skin for an arctic structure and a method for erecting same

    SciTech Connect

    Chen, J.; Birdy, J. N.; Watt, B. J.

    1985-08-27

    The load bearing outer skin contains an inner assembly and an outer assembly. Both the inner and outer assemblies include a skin plate member which is stiffened by stiffeners welded to one side of the skin plate member. The stiffeners are located at spaced intervals from each other and are disposed substantially perpendicular to the skin plate member. The inner and outer assembly are placed substantially parallel to each other to form a composite structure having an internal cavity defined by the inner and outer plates. The stiffeners of the inner assembly and the outer assembly are disposed in the cavity at a spaced relation to each other and extend partly into the cavity. A cementitious material substantially fills the cavity thereby completing the load bearing outer skin structure. The stiffeners may be flat steel plates or may have the profile of structural shapes such as angles or T's among others.

  12. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    PubMed

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane. PMID:26621472

  13. Structure and function of outer dynein arm intermediate and light chain complex

    PubMed Central

    Oda, Toshiyuki; Abe, Tatsuki; Yanagisawa, Haruaki; Kikkawa, Masahide

    2016-01-01

    The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo–electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs. PMID:26864626

  14. Investigations of the surfaces and interiors of outer planet satellites

    NASA Technical Reports Server (NTRS)

    Schubert, Gerald

    1987-01-01

    Studies during 1985/86 include tidal heating and the structure and evolution of Io and Europa, crater relaxation on icy satellites using realistic non-Newtonian ice rheology, and convection through phase transition in the interiors of icy satellites. The abstracts of published papers on these subjects are reproduced.

  15. Charged particle modification of surfaces in the outer solar system

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1987-01-01

    Voyager reflectance spectra data have indicated clear leading/trailing differences in the albedo of the icy Galilean and Saturian satellites. For the Galilean satellites, these have been analyzed by Nelson, et al. and, more recently, by McEwen. They have described the longitudinal dependence of this data and attempted to interpret this in terms of plasma and meteorite modification of the surface. Primary attention has been paid to Europa at which the leading/trailing differences are the largest. This data was reanalyzed extracting the single grain albedo (w) and constructing the Espat-function, W = (1-w)/w from this. Because w is near unity, W is approximately 2(alpha)D where alpha is the absorption coefficient and D is the grain size. In doing so, a direct comparison to the longitudinal plasma bombardment flux was found for the first time. This occurs primarily in the UV and is probably due to an absorption associated with implanted S, as the UV band of Voyager overlaps the IUE data of Lane et al. The relative importance of grain size effects and implant impurity effects can now be studied.

  16. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    PubMed

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-01

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane. PMID:26957546

  17. Computer-aided detection of lung nodules using outer surface features.

    PubMed

    Demir, Önder; Yılmaz Çamurcu, Ali

    2015-01-01

    In this study, a computer-aided detection (CAD) system was developed for the detection of lung nodules in computed tomography images. The CAD system consists of four phases, including two-dimensional and three-dimensional preprocessing phases. In the feature extraction phase, four different groups of features are extracted from volume of interests: morphological features, statistical and histogram features, statistical and histogram features of outer surface, and texture features of outer surface. The support vector machine algorithm is optimized using particle swarm optimization for classification. The CAD system provides 97.37% sensitivity, 86.38% selectivity, 88.97% accuracy and 2.7 false positive per scan using three groups of classification features. After the inclusion of outer surface texture features, classification results of the CAD system reaches 98.03% sensitivity, 87.71% selectivity, 90.12% accuracy and 2.45 false positive per scan. Experimental results demonstrate that outer surface texture features of nodule candidates are useful to increase sensitivity and decrease the number of false positives in the detection of lung nodules in computed tomography images. PMID:26405880

  18. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    PubMed

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry. PMID:26791981

  19. Structural biology of membrane-intrinsic β-barrel enzymes: Sentinels of the bacterial outer membrane

    PubMed Central

    Bishop, Russell E.

    2016-01-01

    The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel β-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three β-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipid::lipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane β-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two β-barrel enzymes of unknown structure; namely, the Salmonella enterica 3′-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O2 to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how β-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger β-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier. PMID:17880914

  20. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina

    USGS Publications Warehouse

    Bargar, John R.; Towle, Steven N.; Brown, Gordon E., Jr.; Parks, George A.

    1996-01-01

    Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.

  1. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles.

    PubMed

    Salverda, Merijn L M; Meinderts, Sanne M; Hamstra, Hendrik-Jan; Wagemakers, Alex; Hovius, Joppe W R; van der Ark, Arno; Stork, Michiel; van der Ley, Peter

    2016-02-17

    Outer Membrane Vesicles (OMVs) are gaining attention as vaccine candidates. The successful expression of heterologous antigens in OMVs, with the OMV functioning both as adjuvant and delivery vehicle, has greatly enhanced their vaccine potential. Since there are indications that surface exposed antigens might induce a superior immune response, targeting of heterologous antigens to the OMV surface is of special interest. Several systems for surface display of heterologous antigens on OMVs have been developed. However, these systems have not been used to display lipidated membrane-associated proteins known as lipoproteins, which are emerging as key targets for protective immunity. We were therefore interested to see whether we could express a foreign lipoprotein on the outer surface of OMVs. When outer surface protein A (OspA), a borrelial surface-exposed lipoprotein, was expressed in meningococci, it was found that although OspA was present in OMVs, it was no longer surface-exposed. Therefore, a set of fusions of OspA to different regions of factor H binding protein (fHbp), a meningococcal surface-exposed lipoprotein, were designed and tested for their surface-exposure. An N-terminal part of fHbp was found to be necessary for the successful surface display of OspA on meningococcal OMVs. When mice were immunized with this set of OMVs, an OspA-specific antibody response was only elicited by OMVs with clearly surface-exposed OspA, strengthening the idea that the exact positioning of an antigen in the OMV affects the immune response. This method for the surface display of heterologous lipoproteins on OMVs is a step forward in the development of OMVs as a vaccine platform. PMID:26801064

  2. Multistep Kinetic Behavior of the Thermal Decomposition of Granular Sodium Percarbonate: Hindrance Effect of the Outer Surface Layer.

    PubMed

    Wada, Takeshi; Nakano, Masayoshi; Koga, Nobuyoshi

    2015-09-24

    The kinetics and mechanism of the thermal decomposition of granular sodium percarbonate (SPC), which is used as a household oxygen bleach, were studied by thermoanalytical measurements under systematically changing conditions and morphological observation of the reactant solids at different reaction stages. A physico-geometrical kinetic behavior of the reaction that occurs in a core-shell structure composed of an outer surface layer and internal aggregates of SPC crystalline particles was illustrated through detailed kinetic analyses using the kinetic deconvolution method. Simultaneously, the hazardous nature of SPC as a combustion improver was evaluated on the basis of the kinetic behavior of the thermal decomposition. It was found that the outer surface layers of the SPC granules hinder the diffusional removal of product gases generated by the thermal decomposition of the internal SPC crystalline particles. The reaction rate decelerates because of an increase in the internal gaseous pressure as the reaction advances. However, the reaction rate accelerates once crack formation occurs in the outer surface layer at the midpoint of the reaction. Therefore, the overall reaction was empirically demonstrated to consist of two overlapping reaction steps owing to the changes in the self-generated reaction conditions in the interior of the SPC granules. PMID:26372469

  3. Detailed structure of the outer disk around HD 169142 with polarized light in H-band

    NASA Astrophysics Data System (ADS)

    Momose, Munetake; Morita, Ayaka; Fukagawa, Misato; Muto, Takayuki; Takeuchi, Taku; Hashimoto, Jun; Honda, Mitsuhiko; Kudo, Tomoyuki; Okamoto, Yoshiko K.; Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Grady, Carol A.; Sitko, Michael L.; Akiyama, Eiji; Currie, Thayne; Follette, Katherine B.; Mayama, Satoshi; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2015-10-01

    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0{^''.}2 ≤ r ≤ 1{^''.}2, or 29 ≤ r ≤ 174 au, is successfully detected. The azimuthally averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r = 29-52 au and r = 81.2-145 au respectively show r-3 dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r = 40-70 au. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at λ = 7 mm. This can be regarded as another sign of a protoplanet in the TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution, an irregular temperature distribution, or with a combination of both. The depletion factor of surface density in the inner power-law region (r < 50 au) is derived to be ≥ 0.16 from a simple model calculation. The obtained PI image also shows small-scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and a shadowing effect by a puffed-up structure in the inner power-law region.

  4. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure

    DOEpatents

    Campbell; Christian X. , Morrison; Jay A.

    2011-12-20

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

  5. Identification Of Volatiles On Outer Solar System Surfaces From Very Low Signal Spectra

    NASA Astrophysics Data System (ADS)

    Trilling, David E.; Gulbis, A. A. S.; Rivkin, A. S.; Bus, S. J.

    2012-10-01

    The icy surfaces of Kuiper Belt Objects (KBOs) represent the best probe of the cosmochemical origin and evolution of the outer Solar System. Spectroscopic investigations of faint KBOs are expensive. Here we present a novel, fast technique to identify the dominant volatile ices on KBO surfaces even with very low signal-to-noise input spectra (intrinsic SNR <10). We obtained spectra of a dozen outer Solar System objects using NASA's Infrared Telescope Facility and SpeX, with the addition of using MORIS in guide camera mode. In post-processing we substantially bin the spectra into six medium band pseudo-filters that are defined to discriminate among methane rich, water ice rich, and neutral surfaces through color-color analysis. Here we present our first results from this survey. We confirm previously published results for several objects and identify a number of neutral objects, and at least one object with a hint of a water signature. While detailed spectroscopic studies are not possible with our data, we broadly characterize the surface volalite ice components of all observed objects. The speed of our technique will allow us to make a large-scale compositional map of the outer Solar System with a reasonable amount of telescope time (perhaps 10 nights per year). This technique will be particularly important when PS1-discovered KBOs are released, as the effective limiting magnitudes are well matched, allowing quick identification of interesting objects and creation of a large database suitable for taxonomy and large-scale compositional studies.

  6. Surface charging and dust-plasma interactions at outer planet moons

    NASA Astrophysics Data System (ADS)

    Jones, G. H.

    2011-12-01

    Most large outer planet moons orbit within the magnetospheres of their parent planets, and are continuously exposed to magnetospheric plasma. Depending on the competing effects on their surfaces of photoemission, which drives them positive, and incident plasma, which tends to impart a negative potential, outer planet satellites possess a range of surface potentials which can vary significantly as a function of local time and geographic location on each body. A review is presented of the theory and simulation of surface charging, as well as the recent direct detection through electron reflectometry of a negatively-charged surface at Saturn's moon, Rhea. The same processes also affect dust particles in planetary rings and other contexts such as the plumes of gas and solid particles originating at Enceladus's south polar region and the numerous volcanic vents on Io. The processes affecting these charged grains are also reviewed, as well as the resultant effects on dust trajectories, and dust populations' sometimes significant effects on the outer planet magnetospheres within which they reside.

  7. Interactions between magainin 2 and Salmonella typhimurium outer membranes: Effect of lipopolysaccharide structure

    SciTech Connect

    Rana, F.R.; Macias, E.A.; Sultany, C.M.; Modzrakowski, M.C.; Blazyk, J. )

    1991-06-18

    The role of the outer membrane and lipopolysaccharide (LPS) in the interaction between the small cationic antimicrobial peptide magainin 2 and the Gram-negative cell envelope was studied by FT-IR spectroscopy. Magainin 2 alters the thermotropic properties of the outer membrane-peptidoglycan complexes from wild-type Salmonella typhimurium and a series of LPS mutants which display differential susceptibility to the bactericidal activity of cationic antibiotics. These results are correlated with the LPS phosphorylation pattern and charge (characterized by high-resolution {sup 31}P NMR) and outer membrane lipid composition, and are compared to the bactericidal susceptibility. LPS mutants show a progressive loss of resistance to killing by magainin 2 as the length of the LPS polysaccharide moiety decreases. Disordering of the outer membrane lipid fatty acyl chains by magainin 2, however, depends primarily upon the magnitude of PLS charge rather than the length of the LPS polysaccharide. While disruption of outer membrane structure most likely is not the primary factor leading to cell death, the susceptibility of Gram-negative cells to magainin 2 is associated with factors that facilitate the transport of the peptide across the outer membrane, such as the magnitude and location of LPS charge, and concentration of LPS in the outer membrane, outer membrane molecular architecture, and the presence or absence of the O-antigen side chain.

  8. Selective Association of Outer Surface Lipoproteins with the Lipid Rafts of Borrelia burgdorferi

    PubMed Central

    Toledo, Alvaro; Crowley, Jameson T.; Coleman, James L.; LaRocca, Timothy J.; Chiantia, Salvatore; London, Erwin; Benach, Jorge L.

    2014-01-01

    ABSTRACT Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ∆ospA, ∆ospB, and ∆ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism’s adaptation to changing environments. PMID:24618252

  9. Structural Parameters for Globular Clusters in the Outer Halo of M31

    NASA Astrophysics Data System (ADS)

    Wang, Song; Ma, Jun

    2012-06-01

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy Eb with mass M mod indicates that the "fundamental plane" does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  10. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN THE OUTER HALO OF M31

    SciTech Connect

    Wang Song; Ma Jun

    2012-06-15

    In this paper, we present internal surface brightness profiles, using images in the F606W and F814W filter bands observed with the Advanced Camera for Surveys on the Hubble Space Telescope, for 10 globular clusters (GCs) in the outer halo of M31. Standard King models are fitted to the profiles to derive their structural and dynamical parameters. The results show that, in general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The outer halo GCs of M31 have larger ellipticities than most of the GCs in M31 and the Milky Way. Their large ellipticities may be due to galaxy tides coming from satellite dwarf galaxies of M31 or may be related to the apparently more vigorous accretion or merger history that M31 has experienced. The tight correlation of cluster binding energy E{sub b} with mass M{sub mod} indicates that the 'fundamental plane' does exist for clusters, regardless of their host environments, which is consistent with previous studies.

  11. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins

    PubMed Central

    Tomson, Farol L.; Conley, Patrick G.; Norgard, Michael V.; Hagman, Kayla E.

    2007-01-01

    Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum. PMID:17890130

  12. Surface Immunolabeling and Consensus Computational Framework To Identify Candidate Rare Outer Membrane Proteins of Treponema pallidum▿ †

    PubMed Central

    Cox, David L.; Luthra, Amit; Dunham-Ems, Star; Desrosiers, Daniel C.; Salazar, Juan C.; Caimano, Melissa J.; Radolf, Justin D.

    2010-01-01

    Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's “stealth pathogenicity,” we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection. PMID:20876295

  13. Patterns of morphological variation in enamel–dentin junction and outer enamel surface of human molars

    PubMed Central

    Morita, Wataru; Yano, Wataru; Nagaoka, Tomohito; Abe, Mikiko; Ohshima, Hayato; Nakatsukasa, Masato

    2014-01-01

    Tooth crown patterning is governed by the growth and folding of the inner enamel epithelium (IEE) and the following enamel deposition forms outer enamel surface (OES). We hypothesized that overall dental crown shape and covariation structure are determined by processes that configurate shape at the enamel–dentine junction (EDJ), the developmental vestige of IEE. This this hypothesis was tested by comparing patterns of morphological variation between EDJ and OES in human permanent maxillary first molar (UM1) and deciduous second molar (um2). Using geometric morphometric methods, we described morphological variation and covariation between EDJ and OES, and evaluated the strength of two components of phenotypic variability, canalization and morphological integration, in addition to the relevant evolutionary flexibility, i.e. the ability to respond to selective pressure. The strength of covariation between EDJ and OES was greater in um2 than in UM1, and the way that multiple traits covary between EDJ and OES was different between these teeth. The variability analyses showed that EDJ had less shape variation and a higher level of morphological integration than OES, which indicated that canalization and morphological integration acted as developmental constraints. These tendencies were greater in UM1 than in um2. On the other hand, EDJ and OES had a comparable level of evolvability in these teeth. Amelogenesis could play a significant role in tooth shape and covariation structure, and its influence was not constant among teeth, which may be responsible for the differences in the rate and/or period of enamel formation. PMID:24689536

  14. Local structural controls on outer-rise faulting, hydration, and seismicity in the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Li, J.; Keranen, K. M.; Abers, G. A.

    2013-12-01

    We present evidence from marine geophysical data that pre-existing structures in the incoming oceanic plate off the Alaska Peninsula control bending faulting and hydration at the outer rise, which in turn correlate to changes in the abundance of interplate and intermediate-depth earthquakes within the subduction zone. Thus, pre-existing heterogeneities in the downgoing plate can result in significant variations in plate hydration over relatively small distances and may in part explain the observed global diversity of seismicity in subduction zones. ALEUT MCS and bathymetry data reveal large changes in the style and amount of bending in the incoming plate. To the west, outboard of the Shumagin Gap, there is significant bending faulting, with fault offsets up to ~250 m at the seafloor and larger offsets at depth. Faults create rugged topography at the seafloor, and sediment cover is thin (~0.5 km). Most faults have strikes within ~25 degrees of the trench. In contrast, the downgoing plate outboard of the Semidi segment to the east exhibits less dramatic bending faulting, with maximum offsets at the seafloor of 30 m, and the sediment cover is thicker (>1 km). These along-strike changes in faulting correlate with changes in the expected orientation of pre-existing structures in the incoming oceanic crust, which is nearly parallel to the trench near the Shumagin Gap, but highly oblique to the trench near the Semidi segment. This implies that more favorably-oriented pre-existing structures may facilitate bending faulting. P-wave velocity models from wide-angle seismic data reveal that along-strike changes in faulting are accompanied by variations in the velocity structure of the incoming plate. Mantle velocities are reduced by ~0.5 km/s at the outer rise off the Shumagin Gap, where significant bending faulting is observed. We interpret decreased velocities to represent serpentinization of the upper mantle. In contrast, the velocity structure is more variable off the

  15. Real-Time Curvature Defect Detection on Outer Surfaces Using Best-Fit Polynomial Interpolation

    PubMed Central

    Golkar, Ehsan; Prabuwono, Anton Satria; Patel, Ahmed

    2012-01-01

    This paper presents a novel, real-time defect detection system, based on a best-fit polynomial interpolation, that inspects the conditions of outer surfaces. The defect detection system is an enhanced feature extraction method that employs this technique to inspect the flatness, waviness, blob, and curvature faults of these surfaces. The proposed method has been performed, tested, and validated on numerous pipes and ceramic tiles. The results illustrate that the physical defects such as abnormal, popped-up blobs are recognized completely, and that flames, waviness, and curvature faults are detected simultaneously. PMID:23202186

  16. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  17. Surface-Localized Spermidine Protects the Pseudomonas aeruginosa Outer Membrane from Antibiotic Treatment and Oxidative Stress

    PubMed Central

    Johnson, Lori; Mulcahy, Heidi; Kanevets, Uliana; Shi, Yan

    2012-01-01

    Extracellular DNA acts as a cation chelator and induces the expression of antibiotic resistance genes regulated by Mg2+ levels. Here we report the characterization of novel DNA-induced genes in Pseudomonas aeruginosa that are annotated as homologs of the spermidine synthesis genes speD (PA4773) and speE (PA4774). The addition of sublethal concentrations of DNA and membrane-damaging antibiotics induced expression of the genes PA4773 to PA4775, as shown using transcriptional lux fusions and quantitative RT-PCR. Exogenous polyamine addition prevented DNA- and peptide-mediated gene induction. Mutation of PA4774 resulted in an increased outer membrane (OM) susceptibility phenotype upon polymyxin B, CP10A, and gentamicin treatment. When the membrane-localized fluorescent probe C11-BODIPY581/591 was used as an indicator of peroxidation of membrane lipids, the PA4774::lux mutant demonstrated an increased susceptibility to oxidative membrane damage from H2O2 treatment. Addition of exogenous polyamines protected the membranes of the PA4774::lux mutant from polymyxin B and H2O2 treatment. Polyamines from the outer surface were isolated and shown to contain putrescine and spermidine by using high-performance liquid chromatography and mass spectrometry. The PA4774::lux mutant did not produce spermidine on the cell surface, but genetic complementation restored surface spermidine production as well as the antibiotic and oxidative stress resistance phenotypes of the membrane. We have identified new functions for spermidine on the cell surface and propose that polyamines are produced under Mg2+-limiting conditions as an organic polycation to bind lipopolysaccharide (LPS) and to stabilize and protect the outer membrane against antibiotic and oxidative damage. PMID:22155771

  18. The Outer Surface Lipoprotein VolA Mediates Utilization of Exogenous Lipids by Vibrio cholerae

    PubMed Central

    Pride, Aaron C.; Herrera, Carmen M.; Guan, Ziqiang; Giles, David K.; Trent, M. Stephen

    2013-01-01

    ABSTRACT Previous work from our laboratory showed that the Gram-negative aquatic pathogen Vibrio cholerae can take up a much wider repertoire of fatty acids than other Gram-negative organisms. The current work elaborated on the ability of V. cholerae to exploit an even more diverse pool of lipid nutrients from its environment. We have demonstrated that the bacterium can use lysophosphatidylcholine as a metabolite for growth. Using a combination of thin-layer chromatography and mass spectrometry, we also showed that lysophosphatidylcholine-derived fatty acid moieties can be used for remodeling the V. cholerae membrane architecture. Furthermore, we have identified a lysophospholipase, VolA (Vibrio outer membrane lysophospholipase A), required for these activities. The enzyme is well conserved in Vibrio species, is coexpressed with the outer membrane fatty acid transporter FadL, is one of very few surface-exposed lipoprotein enzymes to be identified in Gram-negative bacteria and the first instance of a surface lipoprotein phospholipase. We propose a model whereby the bacterium efficiently couples the liberation of fatty acid from lysophosphatidylcholine to its subsequent metabolic uptake. An expanded ability to scavenge diverse environmental lipids at the bacterial surface increases overall bacterial fitness and promotes homeoviscous adaptation through membrane remodeling. PMID:23674613

  19. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes.

    PubMed

    Jacobson, Kurt H; Gunsolus, Ian L; Kuech, Thomas R; Troiano, Julianne M; Melby, Eric S; Lohse, Samuel E; Hu, Dehong; Chrisler, William B; Murphy, Catherine J; Orr, Galya; Geiger, Franz M; Haynes, Christy L; Pedersen, Joel A

    2015-09-01

    Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides. PMID:26207769

  20. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    PubMed Central

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine J.; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-01-01

    Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides. PMID:26207769

  1. The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts.

    PubMed

    Panigrahi, Rashmi; Kubiszewski-Jakubiak, Szymon; Whelan, James; Vrielink, Alice

    2015-10-01

    The eukaryotic cell is defined by compartments that allow specialization of function. This compartmental structure generates a new concept in cell biology compared with the simpler prokaryotic cell structure, namely the specific targeting of proteins to intracellular compartments. Protein targeting is achieved by the action of specialized signals on proteins destined for organelles that are recognized by cognate receptors. An understanding of the specificity of targeting signal recognition leading to import requires an understanding of the receptor structures. Here, we focus on the structures of receptors of different import machineries located on the outer membrane of three organelles: peroxisomes, mitochondria, and chloroplasts. This review provides an overview of the structural features of outer membrane import receptors that recognize targeting signals. Finally, we briefly discuss combinatorial approaches that might aid in understanding the structural factors mediating receptor targeting signal recognition. PMID:26365798

  2. Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation

    PubMed Central

    Yildiz, Özkan; Vinothkumar, Kutti R; Goswami, Panchali; Kühlbrandt, Werner

    2006-01-01

    OmpG, a monomeric pore-forming protein from Escherichia coli outer membranes, was refolded from inclusion bodies and crystallized in two different conformations. The OmpG channel is a 14-stranded β-barrel, with short periplasmic turns and seven extracellular loops. Crystals grown at neutral pH show the channel in the open state at 2.3 Å resolution. In the 2.7 Å structure of crystals grown at pH 5.6, the pore is blocked by loop 6, which folds across the channel. The rearrangement of loop 6 appears to be triggered by a pair of histidine residues, which repel one another at acidic pH, resulting in the breakage of neighbouring H-bonds and a lengthening of loop 6 from 10 to 17 residues. A total of 151 ordered LDAO detergent molecules were found in the 2.3 Å structure, mostly on the hydrophobic outer surface of OmpG, mimicking the outer membrane lipid bilayer, with three LDAO molecules in the open pore. In the 2.7 Å structure, OmpG binds one OG and one glucose molecule as sugar substrates in the closed pore. PMID:16888630

  3. Prediction of structural features and application to outer membrane protein identification

    NASA Astrophysics Data System (ADS)

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-06-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes.

  4. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis.

    PubMed

    Große, Lena; Wurm, Christian A; Brüser, Christian; Neumann, Daniel; Jans, Daniel C; Jakobs, Stefan

    2016-02-15

    The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells. PMID:26783364

  5. A Miniaturized Seismometer for Surface Measurements in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Pike, W. T.

    2001-01-01

    Seismology is a powerful tool for investigating the inner structure and dynamic processes of a planetary body. The interior structure information derived from seismic measurements is complementary to other methods of probing the subsurface (such as gravity and electromagnetics), both in terms of spatial and depth resolution and the relevant types of material properties being sensed. The propagation of seismic waves is sensitive to composition (via density and elastic parameters), temperature (via attenuation) and physical state (solid vs. liquid). In addition, the seismicity (level and distribution in space and time of seismic activity) provides information on the impact flux and tectonic forces currently active within the body. The major satellites of the outer solar system provide obvious targets for seismic investigations. In addition, small bodies, such as asteroids and comets, can also benefit from seismic measurements. We have developed an extremely small, lightweight, low-power seismometer for planetary applications which is ideally suited for use in the outer solar system. This instrument has previously been proposed and selected for use on a comet (on the Rosetta Lander, subsequently deselected for programmatic reasons) and Mars (on the NetLander mission). Additional information is contained in the original extended abstract.

  6. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site

    PubMed Central

    MIYATA, Yoshiki; MINAMI, Masayo; ONBE, Shin; SAKAMOTO, Minoru; MATSUZAKI, Hiroyuki; NAKAMURA, Toshio; IMAMURA, Mineo

    2011-01-01

    AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 14C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis. PMID:21986315

  7. Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site.

    PubMed

    Miyata, Yoshiki; Minami, Masayo; Onbe, Shin; Sakamoto, Minoru; Matsuzaki, Hiroyuki; Nakamura, Toshio; Imamura, Mineo

    2011-01-01

    AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 (14)C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis. PMID:21986315

  8. Turbine airfoil with a compliant outer wall

    DOEpatents

    Campbell, Christian X.; Morrison, Jay A.

    2012-04-03

    A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

  9. Detection of Campylobacter on the outer surface of retail broiler meat packages and from the exudate within

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work has suggested that outer surfaces of retail broiler meat packaging may be contaminated with Campylobacter presenting a potential hazard to the consumer through direct transfer or by cross contamination of other products or surfaces. The objectives of this study were to measure the pre...

  10. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    SciTech Connect

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine J.; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.

  11. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes

    DOE PAGESBeta

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine J.; Orr, Galya; et al

    2015-07-24

    We report that design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) andmore » second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Lastly, our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.« less

  12. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes

    SciTech Connect

    Jacobson, Kurt H.; Gunsolus, Ian L.; Kuech, Thomas R.; Troiano, Julianne M.; Melby, Eric S.; Lohse, Samuel E.; Hu, Dehong; Chrisler, William B.; Murphy, Catherine; Orr, Galya; Geiger, Franz M.; Haynes, Christy L.; Pedersen, Joel A.

    2015-07-24

    Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations, and assessment of the potential implications of nanoparticle release into the environment require understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the lipid-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. Association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.

  13. Structure and Propagation of the Outer Front of the Columbia River Plume

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; Jay, D. A.

    2002-12-01

    As part of a study of juvenile salmon survival, the structure and propagation of the outer Columbia River plume front was examined using vessel observations and Synthetic Aperture Radar (SAR) satellite data. During low-to-moderate riverflow and typical anti-cyclonic summertime winds, two vessels followed successive tidally-pulsed greater-ebb plume fronts as they propagated radially to sea. Shipboard and helicopter-derived front tracking maps showed similar front propagation patterns to those seen in SAR observations. The plume was strongly stratified, with a vertical salinity gradient typically ranging from 2-4 m-1, yet rapidly mixing, with a consistent supercritical internal Froude number. Within and immediately behind the front, ADCP current profiler measurements indicated that velocities were convergent above and within the pycnocline, but divergent in the lower water column. SAR and drifter data also confirmed convergence in surface currents. This convergence likely explains observations of elevated concentrations of certain surface-seeking salmon prey within the front. Although there was convergence in the across-front velocity, the shear in along-front velocity was strong, providing a mechanism for dispersing organisms along the front line. At 8 h past higher-high water (HHW), in 40 m deep water, the front was characterized by a strong surface across-front salinity difference, ~10. Limited ADCP observations of vertical velocities were obtained when the ship cruised within the front line, showing downwelling at up to 0.35 m s-1. Elevated acoustic backscatter and velocities were seen in the bottom boundary layer directly below the front, suggesting that internal bore velocities may have been strong enough to locally resuspend sediment. By 12 h past HHW, front propagation had slowed dramatically, the across-front salinity difference had declined to ~5, and the front location implied a mean frontal velocity of 0.8 m s-1 since frontogenesis. Maximum downwelling

  14. Simulation of the collisional sheath structure near the outer wall of the Hall thruster

    SciTech Connect

    Nejoh, YasuNori; Yamamura, Yuki

    2005-03-01

    In order to study the inner structure of the sheath near the outer wall of the Hall thruster, a simulation associated with the equation of momentum transfer with the ion-neutral collision and Poisson's equation having dust grains and photoelectrons is performed. It is found that the velocity of ions, the potential, the space charge density, and the density distributions of electrons, ions, photoelectrons, and dust grains are different from those of the traditional sheath.

  15. Origin and development of recurrent dipolar vorticity structures in the outer Ría de Vigo (NW Spain)

    NASA Astrophysics Data System (ADS)

    Piedracoba, S.; Rosón, G.; Varela, R. A.,

    2016-04-01

    Two short-range (46 MHz) Coastal Ocean Dynamics Application Radar (CODAR) SeaSonde HF were operating in the Ría de Vigo during one year between September 2012 and August 2013 to permit observations of the surface circulation in the outer region of the Ría de Vigo (NW Spain). An analysis of low-pass current and vorticity conducted over one year revealed two opposite vorticity structures in the HF radar coverage area. Simultaneously, wind stress and its curl, calculated at two meteorological stations (Cíes and Borneira) in the HF radar coverage area, were assessed to establish the main mechanisms promoting the formation of these two opposite vorticity structures. Researchers selected three periods of 58, 41.5, and 77 days within the study year in which radar and wind data were simultaneously recorded at two stations. Examining HF radar vorticity at specific grid points representing both vorticity structures reveals a greater correlation between HF radar vorticity and the y-component of wind stress at the outermost meteorological station (Cíes) for all periods (R=0.52-0.80).Only one period (1 Sep-28 Oct 2012) displayed a correlation between the vorticity and the curl wind stress calculated at these two meteorological stations (R=0.50-0.62). Once wind forcing has been reported as the main factor responsible for generating these dipolar vorticity structures at subtidal frequencies, these structures can be shown to develop in two patterns: (1) counter-clockwise and clockwise relative vorticity in the northern and southern outer ría respectively, mainly developing during the transition from upwelling to downwelling, and with a lifetime normally dependent to the duration of the subsequent downwelling/relaxation conditions; and (2) clockwise and counter-clockwise vorticity in the northern and southern outer ría respectively, mainly generated during moderate or intense upwelling events. The life span of these vorticity structures ranges from 2 to 8 days. The largest

  16. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    DOE PAGESBeta

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutronmore » reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less

  17. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    SciTech Connect

    Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; Ciesielski, Filip; Kuzmenko, Ivan; Holt, Stephen A.; Lakey, Jeremy H.

    2014-12-09

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.

  18. Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models

    PubMed Central

    2014-01-01

    The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959

  19. Outer Surface Protein A Protects Lyme Disease Spirochetes from Acquired Host Immunity in the Tick Vector▿

    PubMed Central

    Battisti, James M.; Bono, James L.; Rosa, Patricia A.; Schrumpf, Merry E.; Schwan, Tom G.; Policastro, Paul F.

    2008-01-01

    The Lyme disease spirochete Borrelia burgdorferi alters the expression of outer surface protein (osp) genes as the bacterium cycles between ticks and mammals. OspA is produced as borreliae enter the tick vector and remains a major surface antigen during midgut colonization. To elucidate the role of OspA in the vector, we created an insertional deletion of ospA in strain B31-A3. The ospA mutant infects mice when it is injected intradermally and is acquired by larval ticks fed on these mice, where it persists through the molt to the nymph stage. Bacterial survival rates in artificially infected tick larvae fed on naïve mice were compared with those in the vector fed on immune mice. The ospA mutant proliferates in larvae if it is exposed to blood from naïve mice, but it declines in density after larval feeding if the blood is from immune mice. When uninfected larvae are fed on B-cell-deficient mice infected with the ospA mutant, larvae show borrelial densities and persistence that are significantly greater than those fed on infected, immunocompetent mice. We conclude that OspA serves a critical antibody-shielding role during vector blood meal uptake from immune hosts and is not required for persistence in the tick vector. PMID:18779341

  20. Tropical cyclone outer surface winds derived from satellite microwave sounder data

    NASA Technical Reports Server (NTRS)

    Kidder, S. Q.; Gray, W. M.; Vonder Haar, T. H.

    1980-01-01

    Upper tropospheric temperature anomalies are detected in brightness temperature data from the Nimbus 6 Scanning Microwave Spectrometer (SCAMS). Brightness temperature anomalies are related to surface pressure anomalies through the radiative transfer and hydrostatic equation. Surface wind speeds at outer radii are then estimated using the gradient wind equation and a shearing parameter. The method is first tested using simulated satellite data constructed from temperature, pressure and height data recorded by aircraft reconnaissance of four hurricanes. Wind speeds in the 80-95 kPa region are estimated with 2-3 m/sec accuracy. Next, 55.45 GHz SCAMS data over eight typhoons during 1975 are used to estimate the radii of 15.4 m/sec (30 kt) and 27.5 m/sec (50 kt) winds. Accuracies of about + or - 80 and + or - 70 km, respectively, are found. It is suggested that the technique be further tested using data from the Microwave Sounding Unit on board the TIROS-N and NOAA 6 satellites.

  1. Syntheses, structures, and surface aromaticity of the new carbaalane [(AlH)(6)(AlNMe(3))(2)(CCH(2)R)(6)] (R = Ph, CH(2)SiMe(3)) and a stepwise functionalization of the inner and outer sphere of the cluster.

    PubMed

    Stasch, Andreas; Ferbinteanu, Marilena; Prust, Jörg; Zheng, Wenjun; Cimpoesu, Fanica; Roesky, Herbert W; Magull, Jörg; Schmidt, Hans-Georg; Noltemeyer, Mathias

    2002-05-15

    The reaction of the acetylene RC triple bond CH (R = Ph, CH(2)SiMe(3)) with an excess of AlH(3).NMe(3) in boiling toluene leads to the carbaalane [(AlH)(6)(AlNMe(3))(2)(CCH(2)R)(6)] (R = Ph 1, CH(2)SiMe(3) 2) in good yield. Treatment of 2 with BCl(3) under varying conditions gives the chlorinated products [(AlCl)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] 3 and [(AlCl)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(2)Cl)(6)] 4, respectively. The latter clearly demonstrates that the cluster can be stepwise functionalized within the inner and outer sphere. The X-ray single-crystal structures of 1, 2, and 4 have been determined. All compounds have in common that the central core consists of a cluster having eight aluminum and six carbon atoms. The bonding properties in this cluster are described as a new manifestation of three-dimensional surface aromaticity. Each Al(4)C fragment of the cube is formed by four bonds with three electron pairs, thus leading to a strong delocalization of the electrons. A phenomenological modeling using a three-dimensional Hückel scheme with fitted parameters to reproduce the energies from ab initio calculations revealed that the orbital scheme localized at one Al(4)C fragment possesses an orbital sextet with a large HOMO-LUMO gap. This is in line with the criteria of aromaticity. The idea of aromaticity was sustained also by qualitative valence bond reasons enumerating the different resonance structures by means of graph theoretical methods. PMID:11996585

  2. Outer Belt Radial Transport Signatures in Drift Phase Structure - Case Studies

    NASA Astrophysics Data System (ADS)

    O'Brien, T. P., III; Kwan, B. P.; Skov, T. M.; Claudepierre, S. G.; Roeder, J. L.; Green, J. C.; Fennell, J. F.

    2015-12-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. Different modes of radial transport have different temporal signatures in the particle phase-space density on timescales shorter than a drift period. We use such drift phase structure in time series particle flux observations to identify transport signatures of impulsive and oscillatory drift resonant transport. We perform multiple case studies of geomagnetic storms using particle flux taken near geostationary orbit. We estimate the radial diffusion coefficients from the drift phase structures. We show how these radial diffusion coefficients derived from particle data compare to transport coefficients deduced from wave observations.

  3. Outer Belt Radial Transport Signatures in Drift Phase Structure - Case Studies

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Green, Janet; Fennell, Joseph; Claudepierre, Seth; Roeder, James; Kwan, Betty; Mulligan Skov, Tamitha

    2016-07-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. Different modes of radial transport have different temporal signatures in the particle phase-space density on timescales shorter than a drift period. We use such drift phase structure in time series particle flux observations to identify transport signatures of impulsive and oscillatory drift resonant transport. We perform multiple case studies of geomagnetic storms using particle flux taken near geostationary orbit. We estimate the radial diffusion coefficients from the drift phase structures. We show how these radial diffusion coefficients derived from particle data compare to transport coefficients deduced from wave observations.

  4. Simultaneous and long-lasting hydrophilization of inner and outer wall surfaces of polytetrafluoroethylene tubes by transferring atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Faze; Song, Jinlong; Huang, Shuai; Xu, Sihao; Xia, Guangqing; Yang, Dezheng; Xu, Wenji; Sun, Jing; Liu, Xin

    2016-09-01

    Plasma hydrophilization is a general method to increase the surface free energy of materials. However, only a few works about plasma modification focus on the hydrophilization of tube inner and outer walls. In this paper, we realize simultaneous and long-lasting plasma hydrophilization on the inner and outer walls of polytetrafluoroethylene (PTFE) tubes by atmospheric pressure plasmas (APPs). Specifically, an Ar atmospheric pressure plasma jet (APPJ) is used to modify the PTFE tube’s outer wall and meanwhile to induce transferred He APP inside the PTFE tube to modify its inner wall surface. The optical emission spectrum (OES) shows that the plasmas contain many chemically active species, which are known as enablers for various applications. Water contact angle (WCA) measurements, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) are used to characterize the plasma hydrophilization. Results demonstrate that the wettability of the tube walls are well improved due to the replacement of the surface fluorine by oxygen and the change of surface roughness. The obtained hydrophilicity decreases slowly during more than 180 d aging, indicating a long-lasting hydrophilization. The results presented here clearly demonstrate the great potential of transferring APPs for surface modification of the tube’s inner and outer walls simultaneously.

  5. Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material

    SciTech Connect

    G. Gordon

    2004-10-13

    Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22

  6. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    PubMed

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents. PMID:25197068

  7. Disk Galaxies in the Outer Local Supercluster: Optical CCD Surface Photometry and Distribution of Galaxy Disk Parameter

    NASA Technical Reports Server (NTRS)

    Lu, N. Y.

    1998-01-01

    We report new B-band CCD surface photometry on a sample of 76 disk galaxies brighter than BT = 14.5 mag in the Uppsala General Catalogue of Galaxies, which are confined within a volume located in the outer part of the Local Supercluster.

  8. THE INFLUENCE OF OUTER SOLAR SYSTEM ARCHITECTURE ON THE STRUCTURE AND EVOLUTION OF THE OORT CLOUD

    SciTech Connect

    Lewis, Alexia R.; Quinn, Thomas; Kaib, Nathan A.

    2013-07-01

    We study the influence of outer solar system architecture on the structural evolution of the Oort Cloud (OC) and the flux of Earth-crossing comets. In particular, we seek to quantify the role of the giant planets as ''planetary protectors''. To do so, we have run simulations in each of four different planetary mass configurations to understand the significance of each of the giant planets. Because the outer planets modify the structure of the OC throughout its formation, we integrate each simulation over the full age of the solar system. Over this time, we follow the evolution of cometary orbits from their starting point in the protoplanetary disk to their injection into the OC to their possible re-entry into the inner planetary region. We find that the overall structure of the OC, including the location of boundaries and the relative number of comets in the inner and outer parts, does not change significantly between configurations; however, as planetary mass decreases, the trapping efficiency (TE) of comets into the OC and the flux of comets into the observable region increases. We determine that those comets that evolve onto Earth-crossing orbits come primarily from the inner OC but show no preference for initial protoplanetary disk location. We also find that systems that have at least a Saturn-mass object are effective at deflecting possible Earth-crossing comets but the difference in flux between systems with and without such a planet is less than an order of magnitude. We conclude by discussing the individual roles of the planets and the implications of incorporating more realistic planetary accretion and migration scenarios into simulations, particularly on existing discrepancies between low TE and the mass of the protoplanetary disk and on determining the structural boundaries of the OC.

  9. Solid organic matter in the atmosphere and on the surface of outer solar system bodies

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Bakes, E. L. O.; Cruikshank, D.; McKay, C. P.

    Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N 2 and less than 10% methane CH 4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magenetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N 2:CH 4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and

  10. Solid organic matter in the atmosphere and on the surface of outer Solar System bodies.

    PubMed

    Khare, B N; Bakes, E L; Cruikshank, D; McKay, C P

    2001-01-01

    Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and

  11. Structural basis of outer membrane protein insertion by the BAM complex.

    PubMed

    Gu, Yinghong; Li, Huanyu; Dong, Haohao; Zeng, Yi; Zhang, Zhengyu; Paterson, Neil G; Stansfeld, Phillip J; Wang, Zhongshan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2016-03-01

    All Gram-negative bacteria, mitochondria and chloroplasts have outer membrane proteins (OMPs) that perform many fundamental biological processes. The OMPs in Gram-negative bacteria are inserted and folded into the outer membrane by the β-barrel assembly machinery (BAM). The mechanism involved is poorly understood, owing to the absence of a structure of the entire BAM complex. Here we report two crystal structures of the Escherichia coli BAM complex in two distinct states: an inward-open state and a lateral-open state. Our structures reveal that the five polypeptide transport-associated domains of BamA form a ring architecture with four associated lipoproteins, BamB-BamE, in the periplasm. Our structural, functional studies and molecular dynamics simulations indicate that these subunits rotate with respect to the integral membrane β-barrel of BamA to induce movement of the β-strands of the barrel and promote insertion of the nascent OMP. PMID:26901871

  12. From Constructs to Crystals - Towards Structure Determination of β-barrel Outer Membrane Proteins.

    PubMed

    Noinaj, Nicholas; Mayclin, Stephen; Stanley, Ann M; Jao, Christine C; Buchanan, Susan K

    2016-01-01

    Membrane proteins serve important functions in cells such as nutrient transport, motility, signaling, survival and virulence, yet constitute only ~1% percent of known structures. There are two types of membrane proteins, α-helical and β-barrel. While α-helical membrane proteins can be found in nearly all cellular membranes, β-barrel membrane proteins can only be found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. One common bottleneck in structural studies of membrane proteins in general is getting enough pure sample for analysis. In hopes of assisting those interested in solving the structure of their favorite β-barrel outer membrane protein (OMP), general protocols are presented for the production of target β-barrel OMPs at levels useful for structure determination by either X-ray crystallography and/or NMR spectroscopy. Here, we outline construct design for both native expression and for expression into inclusion bodies, purification using an affinity tag, and crystallization using detergent screening, bicelle, and lipidic cubic phase techniques. These protocols have been tested and found to work for most OMPs from Gram-negative bacteria; however, there are some targets, particularly for mitochondria and chloroplasts that may require other methods for expression and purification. As such, the methods here should be applicable for most projects that involve OMPs from Gram-negative bacteria, yet the expression levels and amount of purified sample will vary depending on the target OMP. PMID:27404000

  13. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes

    PubMed Central

    Mahalakshmi, Radhakrishnan; Franzin, Carla M.; Choi, Jungyuen; Marassi, Francesca M.

    2008-01-01

    SUMMARY The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins. PMID:17916325

  14. SMALL MAGNETIC LOOPS CONNECTING THE QUIET SURFACE AND THE HOT OUTER ATMOSPHERE OF THE SUN

    SciTech Connect

    Martinez Gonzalez, M. J.; Manso Sainz, R.; Asensio Ramos, A.

    2010-05-01

    Sunspots are the most spectacular manifestation of solar magnetism, yet 99% of the solar surface remains 'quiet' at any time of the solar cycle. The quiet sun is not void of magnetic fields, though; they are organized at smaller spatial scales and evolve relatively fast, which makes them difficult to detect. Thus, although extensive quiet Sun magnetism would be a natural driver to a uniform, steady heating of the outer solar atmosphere, it is not clear what the physical processes involved would be, due to lack of observational evidence. We report on the topology and dynamics of the magnetic field in very quiet regions of the Sun from spectropolarimetric observations of the Hinode satellite, showing a continuous injection of magnetic flux with a well-organized topology of {omega}-loop from below the solar surface into the upper layers. At first stages, when the loop travels across the photosphere, it has a flattened (staple-like) geometry and a mean velocity ascent of {approx}3 km s{sup -1}. When the loop crosses the minimum temperature region, the magnetic fields at the footpoints become almost vertical and the loop topology resembles a potential field. The mean ascent velocity at chromospheric height is {approx}12 km s{sup -1}. The energy input rate of these small-scale loops in the lower boundary of the chromosphere is (at least) of 1.4 x 10{sup 6}-2.2 x 10{sup 7} erg cm{sup -2} s{sup -1}. Our findings provide empirical evidence for solar magnetism as a multi-scale system, in which small-scale low-flux magnetism plays a crucial role, at least as important as active regions, coupling different layers of the solar atmosphere and being an important ingredient for chromospheric and coronal heating models.

  15. Borrelia burgdorferi intercepts host hormonal signals to regulate expression of outer surface protein A

    PubMed Central

    Scheckelhoff, Mark R.; Telford, Sam R.; Wesley, Mary; Hu, Linden T.

    2007-01-01

    The Borrelia burgdorferi infectious cycle requires that the organism adapt to vast differences in environmental conditions found in its tick and mammalian hosts. Previous studies have shown that B. burgdorferi accomplishes this accomodation in part by regulating expression of its surface proteins. Outer surface protein A (OspA) is a borrelial protein important in colonization of the tick midgut. OspA is up-regulated when the organism is in its tick host and down-regulated when it is in a mammalian host. However, little is known about how it is up-regulated again in a mammalian host in preparation for entry into a feeding tick. Here, we report that the host neuroendocrine stress hormones, epinephrine and norepinephrine, are specifically bound by B. burgdorferi and result in increased expression of OspA. This recognition is specific and blocked by competitive inhibitors of human adrenergic receptors. To determine whether recognition of catecholamines, which are likely to be present at the site of a tick bite, may play a role in preparing the organism for reentry into a tick from a mammalian host, we administered a β-adrenergic blocker, propranolol, to infected mice. Propranolol significantly reduced uptake of B. burgdorferi by feeding ticks and decreased expression of OspA in B. burgdorferi recovered from ticks that fed on propranolol-treated mice. Our studies suggest that B. burgdorferi may co-opt host neuroendocrine signals to inform the organism of local changes that predict the presence of its next host and allow it to prepare for transition to a new environment. PMID:17438273

  16. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  17. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  18. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles.

    PubMed

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  19. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    DOE PAGESBeta

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  20. Long-lived particulate or gaseous structure in Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Hasegawa, T.; Bagenal, F.

    1983-01-01

    Voyager 1 and 2 and Pioneer 11 data on the variations in the number density of low-energy plasma ions in the outer Saturn magnetosphere are discussed. Low and high latitude observations are compared in reference to the position of the spacecraft crossing of the field line. Abrupt decreases in the number density interrupted the tendancy for the number density to increase with spacecraft approach to Saturn. All three spacecraft are concluded to have encountered the same magnetospheric structure in the field line, with absorbers being present in the equatorial plane. The absorbers are suggested to be either gas or debris, which may be detectable visibly or with occultation techniques.

  1. In silico local structure approach: a case study on outer membrane proteins.

    PubMed

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. PMID:17932925

  2. Structure of BamA, an essential factor in outer membrane protein biogenesis.

    PubMed

    Albrecht, Reinhard; Schütz, Monika; Oberhettinger, Philipp; Faulstich, Michaela; Bermejo, Ivan; Rudel, Thomas; Diederichs, Kay; Zeth, Kornelius

    2014-06-01

    Outer membrane protein (OMP) biogenesis is an essential process for maintaining the bacterial cell envelope and involves the β-barrel assembly machinery (BAM) for OMP recognition, folding and assembly. In Escherichia coli this function is orchestrated by five proteins: the integral outer membrane protein BamA of the Omp85 superfamily and four associated lipoproteins. To unravel the mechanism underlying OMP folding and insertion, the structure of the E. coli BamA β-barrel and P5 domain was determined at 3 Å resolution. These data add information beyond that provided in the recently published crystal structures of BamA from Haemophilus ducreyi and Neisseria gonorrhoeae and are a valuable basis for the interpretation of pertinent functional studies. In an `open' conformation, E. coli BamA displays a significant degree of flexibility between P5 and the barrel domain, which is indicative of a multi-state function in substrate transfer. E. coli BamA is characterized by a discontinuous β-barrel with impaired β1-β16 strand interactions denoted by only two connecting hydrogen bonds and a disordered C-terminus. The 16-stranded barrel surrounds a large cavity which implies a function in OMP substrate binding and partial folding. These findings strongly support a mechanism of OMP biogenesis in which substrates are partially folded inside the barrel cavity and are subsequently released laterally into the lipid bilayer. PMID:24914988

  3. Structural outer rim of Chesapeake Bay impact crater: Seismic and bore hole evidence

    USGS Publications Warehouse

    Poag, C.W.

    1996-01-01

    Nine seismic-reflection profiles and four continuous core holes define the gross structural and stratigraphic framework of the outer rim of the Chesapeake Bay impact crater. The rim is manifested as a 90 km diameter ring of terraced normal-fault blocks, which forms a ???320 m-1200 m high rim escarpment. The top of the rim escarpment is covered by a 20 m-30 m thick ejecta blanket. The escarpment encircles a flat-floored annular trough, which is partly filled with an ???250 m thick breccia lens (Exmore breccia). The Exmore breccia overlies a 200 m-800 m thick interval of slumped sedimentary megablocks, which, in turn, rests on crystalline basement rocks. All postimpact strata (upper Eocene to Quaternary) sag structurally into the annular trough, and most units also thicken as they cross the rim into the crater. Postimpact compaction and subsidence of the Exmore breccia have created extensive normal faulting in overlying strata.

  4. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie; Raines, Lily

    2009-01-01

    Oort Cloud comets, as well as TNOs Makemake (2045 FYg), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System.

  5. Structural Changes of Inner and Outer Choroid in Central Serous Chorioretinopathy Determined by Optical Coherence Tomography

    PubMed Central

    Sonoda, Shozo; Sakamoto, Taiji; Kuroiwa, Nobuhiro; Arimura, Noboru; Kawano, Hiroki; Yoshihara, Naoya; Yamashita, Takehiro; Uchino, Eisuke; Kinoshita, Takamasa; Mitamura, Yoshinori

    2016-01-01

    Purpose To determine the structural changes of the choroid in eyes with central serous chorioretinopathy (CSC) by enhanced depth imaging optical coherence tomography (EDI-OCT). Methods A retrospective comparative study was performed at two academic institutions. Forty eyes with CSC, their fellow eyes, and 40 eyes of age-matched controls were studied. Subfoveal cross sectional EDI-OCT images were recorded, and the hypo reflective and hyperreflective areas of the inner and outer choroid in the EDI-OCT images were separately measured. The images were analyzed by a binarization method to determine the sizes of the hyporeflective and hyperreflective areas. Results In the inner choroid, the hyperreflective area was significantly larger in the CSC eyes (35,640±10,229 μm2) than the fellow eyes (22,908±8,522 μm2) and the control eyes (20,630±8,128 μm2; P<0.01 vs control for both, Wilcoxon signed-rank test). In the outer choroid, the hyporeflective area was significantly larger in the CSC eyes (446,549±121,214 μm2) than the control eyes (235,680±97,352 μm2, P<0.01). The average ratio of the hyporeflective area to the total choroidal area was smaller in the CSC eyes (67.0%) than the fellow eyes (76.5%) and the control eyes (76.7%) in the inner choroid (P<0.01, both). However, the ratio was larger in the CSC eyes (75.2%) and fellow eyes (71.7%) than in the control eyes (64.7%) in the outer choroid (P<0.01, both). Conclusions The larger hyperreflective area in the inner choroid is related to the inflammation and edema of the stroma of the choroid in the acute stage of CSC. The larger hyporeflective areas in the outer choroid is due to a dilatation of the vascular lumens of the larger blood vessels. These are the essential characteristics of eyes with CSC regardless of the onset. PMID:27305042

  6. Dual structure infrared surface combustion burner

    SciTech Connect

    Morris, J.R.; Burlingame, N.H.

    1989-12-26

    This patent describes an improvement in a surface combustion radiant heat burner comprising an inlet plenum for receiving fuel and oxidant gas mixtures from at least one supply inlet and a burner body secured in communication with the inlet plenum. The burner body having an inlet side facing the plenum and an outlet side defining a radiating surface. It comprises: the burner body comprising a first layer of porous ceramic material adjacent the inlet side and a second layer of porous ceramic material adjacent the outlet side defining the radiating surface, the first layer of porous ceramic material having a thickness of at least about 0.90:01 inch and a fine interconnected porous structure with a mean pore diameter ranging from 0.00004 inch to 0.10 inch, the second layer of porous ceramic material having a thickness of at least about 0.05 inch and a coarse interconnected porous structure with a mean diameter ranging from 0.05 to 0.40 inch, and at least the outer surfaces of the first porous layer and substantially all surfaces of the second porous layer being provided with a fully dense ceramic coating.

  7. From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks—A Modulation Approach

    PubMed Central

    2015-01-01

    Crystallinity and porosity are of central importance for many properties of covalent organic frameworks (COFs), including adsorption, diffusion, and electronic transport. We have developed a new method for strongly enhancing both aspects through the introduction of a modulating agent in the synthesis. This modulator competes with one of the building blocks during the solvothermal COF growth, resulting in highly crystalline frameworks with greatly increased domain sizes reaching several hundreds of nanometers. The obtained materials feature fully accessible pores with an internal surface area of over 2000 m2 g–1. Compositional analysis via NMR spectroscopy revealed that the COF-5 structure can form over a wide range of boronic acid-to-catechol ratios, thus producing frameworks with compositions ranging from highly boronic acid-deficient to networks with catechol voids. Visualization of an −SH-functionalized modulating agent via iridium staining revealed that the COF domains are terminated by the modulator. Using functionalized modulators, this synthetic approach thus also provides a new and facile method for the external surface functionalization of COF domains, providing accessible sites for post-synthetic modification reactions. We demonstrate the feasibility of this concept by covalently attaching fluorescent dyes and hydrophilic polymers to the COF surface. We anticipate that the realization of highly crystalline COFs with the option of additional surface functionality will render the modulation concept beneficial for a range of applications, including gas separations, catalysis, and optoelectronics. PMID:26694214

  8. From Highly Crystalline to Outer Surface-Functionalized Covalent Organic Frameworks--A Modulation Approach.

    PubMed

    Calik, Mona; Sick, Torben; Dogru, Mirjam; Döblinger, Markus; Datz, Stefan; Budde, Harald; Hartschuh, Achim; Auras, Florian; Bein, Thomas

    2016-02-01

    Crystallinity and porosity are of central importance for many properties of covalent organic frameworks (COFs), including adsorption, diffusion, and electronic transport. We have developed a new method for strongly enhancing both aspects through the introduction of a modulating agent in the synthesis. This modulator competes with one of the building blocks during the solvothermal COF growth, resulting in highly crystalline frameworks with greatly increased domain sizes reaching several hundreds of nanometers. The obtained materials feature fully accessible pores with an internal surface area of over 2000 m(2) g(-1). Compositional analysis via NMR spectroscopy revealed that the COF-5 structure can form over a wide range of boronic acid-to-catechol ratios, thus producing frameworks with compositions ranging from highly boronic acid-deficient to networks with catechol voids. Visualization of an -SH-functionalized modulating agent via iridium staining revealed that the COF domains are terminated by the modulator. Using functionalized modulators, this synthetic approach thus also provides a new and facile method for the external surface functionalization of COF domains, providing accessible sites for post-synthetic modification reactions. We demonstrate the feasibility of this concept by covalently attaching fluorescent dyes and hydrophilic polymers to the COF surface. We anticipate that the realization of highly crystalline COFs with the option of additional surface functionality will render the modulation concept beneficial for a range of applications, including gas separations, catalysis, and optoelectronics. PMID:26694214

  9. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    NASA Astrophysics Data System (ADS)

    Moore, Marla H.; Hudson, R. L.; Raines, L.

    2009-09-01

    Oort Cloud comets, as well as TNOs Makemake (2005 FY9), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System. This work was funded by NASA's Planetary Geology and Geophysics, Planetary Atmospheres, and Outer Planets programs. LR was supported by a summer research internship at the NASA Astrobiology Institute's Goddard Center for Astrobiology.

  10. The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater

    USGS Publications Warehouse

    Poag, C.W.; Poppe, L.J.

    1998-01-01

    The Toms Canyon structure [~20-22 km wide] is located on the New Jersey outer continental shelf beneath 80-100 m of water, and is buried by ~1 km of upper Eocene to Holocene sedimentary strata. The structure displays several characteristics typical of terrestrial impact craters (flat floor; upraised faulted rim: brecciated sedimentary fill), but several other characteristics are atypical (an unusually thin ejecta blanket; lack of an inner basin, peak ring, or central peak; bearing nearly completely filled with breccia). Seismostratigraphic and biostratigraphic analyses show that the structure formed during planktonic foraminiferal biochron P15 of the early to middle late Eocene. The fill unit is stratigraphically correlating with impact ejecta cored nearby at Deep Sea Drilling Project (DSDP) Site 612 and at Ocean Drilling Program (ODP) Sites 903 and 904 (22-35 km southeast of the Toms Canyon structure). The Toms Canyon fill unit also correlates with the Exmore breccia, which fills the much larger Chesapeake Bay impact crater (90-km diameter; 335 km to the southwest). On the basis of our analyses, we postulate that the Toms Canyon structure is an impact crater, formed when a cluster of relatively small meteorites approached the target site bearing ~N 50 E, and struck the sea floor obliquely.

  11. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    PubMed

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E; Fridberger, Anders; Zuo, Jian

    2015-09-01

    Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  12. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  13. Bioinspired structured surfaces.

    PubMed

    Bhushan, Bharat

    2012-01-24

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. Various natural objects which provide functionality of commercial interest have been characterized to understand how a natural object provides functionality. We have modeled and fabricated structures in the lab using nature's route and developed optimum structures. Once it is understood how nature does it, optimum structures have been fabricated using smart materials and fabrication techniques. This feature article provides an overview of four topics: Lotus effect, rose petal effect, gecko feet, and shark skin. PMID:22233136

  14. The Growing Outer Epidermal Wall: Design and Physiological Role of a Composite Structure

    PubMed Central

    Kutschera, U.

    2008-01-01

    Background The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a ‘tensile skin’. Novel Facts The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These ‘plywood laminates’ contain crystalline ‘cables’ orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic ‘OEW-like’ herringbone patterns. Conclusions Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design ‘without an intelligent designer’ evolved independently in the protective ‘skin’ of plants, animals and many other organisms. PMID:18258808

  15. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    NASA Astrophysics Data System (ADS)

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-04-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.

  16. Tick receptor for outer surface protein A from Ixodes ricinus - the first intrinsically disordered protein involved in vector-microbe recognition.

    PubMed

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-01-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut. PMID:27112540

  17. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    PubMed Central

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-01-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut. PMID:27112540

  18. Choroidal thickness profile in Retinitis Pigmentosa – Correlation with outer retinal structures

    PubMed Central

    Chhablani, Jay; Jonnadula, Ganesh Babu; Srinivasa Rao, P.; Venkata, Amarnath; Jalali, Subhadra

    2015-01-01

    Purpose To compare the choroidal thickness (CT) of subjects with Retinitis Pigmentosa (RP) with age-matched healthy subjects and to correlate the visual acuity with retinal parameters including central macular thickness (CMT), inner segment/outer segment junction (IS/OS junction) integrity, external limiting membrane (ELM) integrity and choroidal thickness in subjects with RP. Methods Eighty-eight eyes (69 patients) with typical RP and 188 eyes of 104 healthy subjects were enrolled between September 2012 and January 2013. All subjects underwent a comprehensive ocular examination including choroidal imaging using enhanced depth imaging with spectral domain optical coherence tomography. Outcome measures were CT difference between RP and age-matched healthy subjects; and correlation of various factors such CMT, IS/OS junction integrity, ELM integrity, and CT with visual acuity. Results Among RP subjects, mean age was 31.39 ± 13.4 years with a mean BCVA of 0.99 ± 0.94 logMAR. Mean spherical equivalent was −0.6 ± 1.6D. Mean CMT was 148.48 ± 119 μm. Mean subfoveal CT was 296.9 ± 72 μm. Mean IS/OS and ELM integrity was 42.2 ± 46.6% and 43.75 ± 45.7%, respectively. The mean age was 40.0 ± 13.5 years with a mean spherical equivalent of 0.18 ± 0.6D for the normal age-matched healthy group. Mean subfoveal CT was 283.1 ± 47.8 μm. CT at various locations in patients of various ages in the RP group did not show any statistical significant difference (P = ≫0.05) in comparison with age-matched healthy subjects. On multivariate regression, ELM percentage integrity had the strongest association with best corrected visual acuity, followed by IS/OS junction percentage integrity. Subfoveal choroidal thickness had very weak correlation with visual acuity as well other retinal parameters. There was a significant difference in the outer retinal structure integrity (p = 0.002) and CMT (p = 0.02) between the eyes with good (⩾20/200) and

  19. Fine Seismic Velocity Structure of the Lowermost Outer Core (F-layer) Beneath the Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Ohtaki, T.; Kaneshima, S.

    2014-12-01

    Solidification or melting at the inner core boundary, the phenomena that have been suggested to occur reflecting the dynamical processes either of the inner core or of the outer core, might cause a Fe-rich or Fe-poor layer in the lowermost outer core (F-layer). Such a compositional anomaly might be detectable by investigating fine seismic structure of the F-layer. In our previous study we determined the overall Vp structure near the inner core boundary beneath Antarctica using differential traveltimes between PKIKP and PKPbc, waveform modeling of PKIKP and PKiKP, and amplitude ratios between PKIKP and PKPbc. But the fine structure of the F-layer remained poorly constrained.In this presentation, we examined the Vp structure of the F-layer beneath the eastern Pacific using differential traveltimes between PKiKP and PKPbc as well as frequency dependence of differential traveltimes between PKIKP and PKPbc, because these two analyses are particularly sensitive to the F-layer structure. We analyzed broadband seismograms of South American earthquakes observed at HI-NET in Japan. The differential traveltime residuals (observed minus calculated) between PKiKP and PKPbc are sensitive to the Vp excess relative to the reference model that is summed over the F-layer below the turning depth of PKPbc. For between 147 and 150 degrees the observed differential residuals show larger negative values and no noticeable dependence on distance compared to that for AK135. PREM that has larger Vp values in the F-layer than AK135 gives smaller differentials than the observations. On the other hand frequency dependence of differential traveltimes between PKIKP and PKPbc has unique sensitivity to the Vp slope in the F-layer, and low sensitivity to the Vp value on the ICB. We measured differential traveltimes for two different frequency bands for between 150 and 157 degrees, and then calculated the difference of the differentials between the two frequency bands. The observed differences show

  20. Enzyme Design From the Bottom Up: An Active Nickel Electrocatalyst with a Structured Peptide Outer Coordination Sphere

    SciTech Connect

    Reback, Matthew L.; Buchko, Garry W.; Kier, Brandon L.; Ginovska-Pangovska, Bojana; Xiong, Yijia; Lense, Sheri; Hou, Jianbo; Roberts, John A.; Sorensen, Christina M.; Raugei, Simone; Squier, Thomas C.; Shaw, Wendy J.

    2014-02-03

    Functional, peptide-containing metal complexes with a well-defined peptide structure have the potential to enhance molecular catalysts via an enzyme-like outer coordination sphere. Here, we report the synthesis and characterization of an active, peptide-based metal complex built upon the well characterized hydrogen production catalyst, Ni(PPh2NPh)2. The incorporated peptide maintains its B-hairpin structure when appended to the metal core, and the electrocatalytic activity of the peptide-based metal complex (~100,000 s-1) is fully retained. The combination of an active molecular catalyst with a structured peptide outer coordination sphere provides a scaffold that permits the incorporation of features of an enzyme-like outer-coordination sphere necessary to create molecular electrocatalysts with en-hanced functionality.

  1. Type IV Pilus Proteins Form an Integrated Structure Extending from the Cytoplasm to the Outer Membrane

    PubMed Central

    Li, Chengyun; Wallace, Regina A.; Black, Wesley P.; Li, Yue-zhong; Yang, Zhaomin

    2013-01-01

    The bacterial type IV pilus (T4P) is the strongest biological motor known to date as its retraction can generate forces well over 100 pN. Myxococcus xanthus, a δ-proteobacterium, provides a good model for T4P investigations because its social (S) gliding motility is powered by T4P. In this study, the interactions among M. xanthus T4P proteins were investigated using genetics and the yeast two-hybrid (Y2H) system. Our genetic analysis suggests that there is an integrated T4P structure that crosses the inner membrane (IM), periplasm and the outer membrane (OM). Moreover, this structure exists in the absence of the pilus filament. A systematic Y2H survey provided evidence for direct interactions among IM and OM proteins exposed to the periplasm. For example, the IM lipoprotein PilP interacted with its cognate OM protein PilQ. In addition, interactions among T4P proteins from the thermophile Thermus thermophilus were investigated by Y2H. The results indicated similar protein-protein interactions in the T4P system of this non-proteobacterium despite significant sequence divergence between T4P proteins in T. thermophilus and M. xanthus. The observations here support the model of an integrated T4P structure in the absence of a pilus in diverse bacterial species. PMID:23922942

  2. Crystal Structure of the Outer Membrane Protein OpdK from Pseudomonas aeruginosa

    SciTech Connect

    Biswas,S.; Mohammad, M.; Movileanu, L.; van den Berg, B.

    2008-01-01

    In Gram-negative bacteria that do not have porins, most water-soluble and small molecules are taken up by substrate-specific channels belonging to the OprD family. We report here the X-ray crystal structure of OpdK, an OprD family member implicated in the uptake of vanillate and related small aromatic acids. The OpdK structure reveals a monomeric, 18-stranded {beta} barrel with a kidney-shaped central pore. The OpdK pore constriction is relatively wide for a substrate-specific channel ({approx}8 Angstroms diameter), and it is lined by a positively charged patch of arginine residues on one side and an electronegative pocket on the opposite side--features likely to be important for substrate selection. Single-channel electrical recordings of OpdK show binding of vanillate to the channel, and they suggest that OpdK forms labile trimers in the outer membrane. Comparison of the OpdK structure with that of Pseudomonas aeruginosa OprD provides the first qualitative insights into the different substrate specificities of these closely related channels.

  3. Ultra-fine-scale filamentary structures in the Outer Corona and the Solar Magnetic Field

    NASA Technical Reports Server (NTRS)

    Woo, Richard

    2006-01-01

    Filamentary structures following magnetic field lines pervade the Sun's atmosphere and offer us insight into the solar magnetic field. Radio propagation measurements have shown that the smallest filamentary structures in the solar corona are more than 2 orders of magnitude finer than those seen in solar imaging. Here we use radio Doppler measurements to characterize their transverse density gradient and determine their finest scale in the outer corona at 20-30 R(circled dot operator), where open magnetic fields prevail. Filamentary structures overly active regions have the steepest gradient and finest scale, while those overlying coronal holes have the shallowest gradient and least finest scale. Their organization by the underlying corona implies that these subresolution structures extend radially from the entire Sun, confirming that they trace the coronal magnetic field responsible for the radial expansion of the solar wind. That they are rooted all over the Sun elucidates the association between the magnetic field of the photosphere and that of the corona, as revealed by the similarity between the power spectra of the photospheric field and the coronal density fluctuations. This association along with the persistence of filamentary structures far from the Sun demonstrate that subresolution magnetic fields must play an important role not only in magnetic coupling of the photosphere and corona, but also in coronal heating and solar wind acceleration through the process of small-scale magnetic reconnection. They also explain why current widely used theoretical models that extrapolate photospheric magnetic fields into the corona do not predict the correct source of the solar wind.

  4. Multimodal Characterization of Proliferative Diabetic Retinopathy Reveals Alterations in Outer Retinal Function and Structure

    PubMed Central

    Boynton, Grace E.; Stem, Maxwell S.; Kwark, Leon; Jackson, Gregory R.; Farsiu, Sina; Gardner, Thomas W.

    2014-01-01

    diffusely thinned RPE layers (p=0.031) compared to controls. Conclusions Patients with untreated PDR exhibit inner retinal dysfunction, as evidenced by reduced contrast sensitivity and FDP performance, accompanied by alterations in inner and outer retinal structure. PRP-treated patients had more profound changes in outer retinal structure and function. Distinguishing the effects of PDR and PRP may guide the development of restorative vision therapies for patients with advanced diabetic retinopathy. PMID:25601533

  5. Active Hydrogenation Catalyst with a Structured, Peptide-Based Outer-Coordination Sphere

    SciTech Connect

    Jain, Avijita; Buchko, Garry W.; Reback, Matthew L.; O'Hagan, Molly J.; Ginovska-Pangovska, Bojana; Linehan, John C.; Shaw, Wendy J.

    2012-10-05

    The synthesis, catalytic activity, and structural features of a rhodium-based hydrogenation catalyst containing a phosphine ligand coupled to a 14-residue peptide are reported. Both CD and NMR spectroscopy show that the peptide adopts a helical structure in 1:1:1 TFE/MeCN/H2O that is maintained when the peptide is attached to the ligand and when the ligand is attached to the metal complex. The metal complex hydrogenates aqueous solutions of 3-butenol to 1-butanol at 360 ± 50 turnovers/Rh/h at 294 K. This peptide- based catalyst represents a starting point for developing and characterizing a peptide-based outer-coordination sphere that can be used to introduce enzyme-like features into molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AJ, JCL and WJS), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (GWB, MLR and WJS). Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by U.S. Department of Energy’s Office of Biolog-ical and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  6. Optimal conditions for decorating outer surface of single-walled carbon nanotubes with RecA proteins

    NASA Astrophysics Data System (ADS)

    Oura, Shusuke; Umemura, Kazuo

    2016-03-01

    In this study, we estimated the optimal reaction conditions for decorating the outer surface of single-walled carbon nanotubes (SWNTs) with RecA proteins by comparison with hybrids of RecA and single-stranded DNA (ssDNA). To react SWNTs with RecA proteins, we first prepared ssDNA-SWNT hybrids. The heights of the ssDNA-SWNT hybrids increased as the amount of RecA used in the reaction increased, as determined from atomic force microscopy images. We further confirmed the increasing adsorption of RecA proteins onto ssDNA on SWNT surfaces by agarose gel electrophoresis. These results suggest that the combination of RecA proteins and ssDNA-SWNT hybrids forms RecA-ssDNA-SWNT hybrids. We also successfully controlled the amount of RecA adsorbed on the ssDNA-SWNT hybrids. Our results thus indicate the optimized reaction conditions for decorating the outer surface of SWNTs with RecA proteins, which is the key to the development of novel biosensors and nanomaterial-based bioelectronics.

  7. Light cycle--dependent axial variations in frog rod outer segment structure

    SciTech Connect

    Kaplan, M.W.

    1981-09-01

    Polarized light microscopy reveals that the structural parameters of Rana pipiens rod outer segments (ROS) are not uniform along the cell axis. In addition to a pronounced birefringence (delta n) gradient found in the basal half of most ROS, periodic delta n bands are seen in approximately 10% of intact ROS isolated by agitating retinas in frog Ringer's solution. These small delta n differences appear as very faint light and dark striations that have a period and width that depends on the duration of light and dark exposure. In ROS from frogs kept on a 14 hr light/10 hr dark cycle at 20 degrees to 22.5 degrees C, the band period for a light-dark band pair is 1.0 to 1.6 micron. Portions of ROS produced during total darkness or constant light are free of distinct periodic bands. Quantitative delta n measurements show that the ROS sections generated in the dark have a relatively higher delta n than those produced in light. Band contrast is irreversibly enhanced when ROS are treated with the calcium ionophore A23187 in the presence of calcium-free saline solution. These results indicate that the synthesis of some calcium-sensitive ROS component is different when the frog is in the dark than when exposed to light.

  8. Bacterial Social Networks: Structure and composition of Myxococcus xanthus outer membrane vesicle chains

    PubMed Central

    Remis, Jonathan P.; Wei, Doug; Gorur, Amita; Zemla, Marcin; Haraga, Jessica; Allen, Simon; Witkowska, H. Ewa; Costerton, J. William; Berleman, James E.; Auer, Manfred

    2014-01-01

    Summary The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviors, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of vesicles and vesicle chains that interconnect cells. We observed peritrichous display of vesicles and vesicle chains and increased abundance in biofilms compared to planktonic cultures. By applying a range of imaging techniques, including 3D Focused Ion Beam Scanning Electron Microscopy (FIB/SEM), we determined these structures to range between 30-60 nm in width and up to 5 μm in length. Purified vesicle chains consist of typical M. xanthus lipids, fucose, mannose, N-acetylglucosamine (GlcNAc) and N-acetylgalactoseamine (GalNAc) carbohydrates and a small set of cargo protein. The protein content includes CglB and Tgl membrane proteins transferred in a contact-dependent manner. Most significantly, the 3D organization of cells within biofilms indicates that cells are connected via an extensive network of membrane extensions that may connect cells at the level of the periplasmic space. Such a network would allow the transfer of membrane proteins and other molecules between cells, and likely provides a mechanism for the coordination of social activities. PMID:23848955

  9. Proteins IA and IB exhibit different surface exposures and orientations in the outer membranes of Neisseria gonorrhoeae.

    PubMed Central

    Barrera, O; Swanson, J

    1984-01-01

    Exposure of whole gonococci to proteinase K resulted in cleavage of protein I (P.I) of the organism in situ. P.I subunits in the P.IB group were cleaved into two membrane-associated fragments, whereas P.IA subunits were cleaved by proteinase K to yield a single membrane-associated fragment slightly smaller in apparent size than the intact P.IA subunit. These data suggest that P.IA and P.IB subunits are quite different in their surface exposures and orientations in the gonococcal outer membrane; P.IB subunits likely have both termini buried in the membrane, whereas P.IA subunits have one of their termini exposed on the surface of the organism. Images PMID:6427111

  10. A New Outer Galaxy Molecular Cloud Catalog: Applications to Galactic Structure

    NASA Astrophysics Data System (ADS)

    Kerton, C. R.; Brunt, C. M.; Pomerleau, C.

    2001-12-01

    We have generated a new molecular cloud catalog from a reprocessed version of the Five College Radio Astronomy (FCRAO) Observatory Outer Galaxy Survey (OGS) of 12CO (J=1--0) emission. The catalog has been used to develop a technique that uses the observed angular size-linewidth relation (ASLWR) as a distance indicator to molecular cloud ensembles. The new technique is a promising means to map out the large-scale structure of our Galaxy using the new high spatial dynamic range CO surveys currently available. The catalog was created using a two-stage object-identification algorithm. We first identified contiguous emission structures of a specified minimum number of pixels above a specified temperature threshold. Each structure so defined was then examined and localized emission enhancements within each structure were identified as separate objects. The resulting cloud catalog, contains basic data on 14595 objects. From the OGS we identified twenty-three cloud ensembles. For each, bisector fits to angular size vs. linewidth plots were made. The fits vary in a systematic way that allows a calibration of the fit parameters with distance to be made. Our derived distances to the ensembles are consistent with the distance to the Perseus Arm, and the accurate radial velocity measurements available from the same data are in accord with the known non-circular motions at the location of the Perseus Arm. The ASLWR method was also successfully applied to data from the Boston University/FCRAO Galactic Ring Survey (GRS) of 13CO(J=1--0) emission. Based upon our experience with the GRS and OGS, the ASLWR technique should be usable in any data set with sufficient spatial dynamic range to allow it to be properly calibrated. C.P. participated in this study through the Women in Engineering and Science (WES) program of NRC Canada. The Dominion Radio Astrophysical Observatory is a National Facility operated by the National Research Council. The Canadian Galactic Plane Survey is a Canadian

  11. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  12. Charged-particle induced alterations of surfaces in the outer solar system

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1991-01-01

    Researchers calculated the plasma bombardment profiles of the surfaces of the icy Saturnian satellites in order to interpret reflection spectra and the effect of charged particles on the surfaces (mantles) of Pluto and of comets in the Oort cloud. Pluto's exposure to cosmic rays results in a slow alteration of the reflectance if the methane condensed on its surface. The UV absorbed in the atmosphere can produce precipitates. The researchers showed that, depending on the rates of the competing regolith processes and rates for replenishment of the methane, the surface can appear bright, red, or dark. Using laboratory data, they showed that the amount of darkening occurring in one orbit is small. Therefore, transport, burial, and re-exposure of organic sediments must control the reflectance, and the average reflectance is established by the radiation altered species accumulated over many orbits with the observed spatial, and possible temporal, differences in albedo due to transport. The cosmic rays, although producing changes in reflectance slowly, do so inevitably. Therefore, the fact that the surface is not dark everywhere implies that it is active and the exposure rates vs. depth into the surface of Pluto can be used to constrain turnover rates. Comets in the Oort cloud experience similar rates.

  13. Brucella outer membrane lipoprotein shares antigenic determinants with Escherichia coli Braun lipoprotein and is exposed on the cell surface.

    PubMed Central

    Gómez-Miguel, M J; Moriyón, I; López, J

    1987-01-01

    In an enzyme-linked immunosorbent assay (ELISA), purified Brucella abortus and Escherichia coli peptidoglycan-linked lipoproteins gave a strong cross-reaction with sera from rabbits hyperimmunized with the heterologous lipoprotein. When smooth E. coli cells were used as ELISA antigens, the immunological cross-reaction was not observed unless the cells were treated to remove lipopolysaccharide and other outer membrane components. In contrast, intact cells from smooth strains of B. abortus and Brucella melitensis bound anti-lipoprotein immunoglobulin G, and the controls performed by ELISA showed that this reaction was not due to antibodies to the lipopolysaccharide, group 3 outer membrane proteins, or porins. Electron microscopy of cells labeled with antilipoprotein serum and protein A-colloidal gold showed specific labeling of smooth cells from both B. abortus and B. melitensis, even though unspecific labeling by nonimmune serum was observed with rough B. abortus. These results confirm the close similarity between E. coli and Brucella peptidoglycan-linked lipoproteins and show that, in contrast to E. coli, the lipoprotein of B. abortus and B. melitensis is partially exposed on the surface of smooth cells. Images PMID:2432014

  14. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages.

    PubMed

    Speer, Alexander; Sun, Jim; Danilchanka, Olga; Meikle, Virginia; Rowland, Jennifer L; Walter, Kerstin; Buck, Bradford R; Pavlenok, Mikhail; Hölscher, Christoph; Ehrt, Sabine; Niederweis, Michael

    2015-09-01

    Sphingomyelinases secreted by pathogenic bacteria play important roles in host-pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface-exposed C-terminal sphingomyelinase domain and a putative N-terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sphingomyelinase of Mycobacterium tuberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5- and 100-fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth. PMID:26036301

  15. Computational redesign of the lipid-facing surface of the outer membrane protein OmpA

    PubMed Central

    Stapleton, James A.; Whitehead, Timothy A.; Nanda, Vikas

    2015-01-01

    Advances in computational design methods have made possible extensive engineering of soluble proteins, but designed β-barrel membrane proteins await improvements in our understanding of the sequence determinants of folding and stability. A subset of the amino acid residues of membrane proteins interact with the cell membrane, and the design rules that govern this lipid-facing surface are poorly understood. We applied a residue-level depth potential for β-barrel membrane proteins to the complete redesign of the lipid-facing surface of Escherichia coli OmpA. Initial designs failed to fold correctly, but reversion of a small number of mutations indicated by backcross experiments yielded designs with substitutions to up to 60% of the surface that did support folding and membrane insertion. PMID:26199411

  16. Finish ion beam treatment of the longrange cylindrical products outer surface in automatic mode

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Volkov, N. V.; Valikov, R. A.; Yashin, A. S.; Krivobokov, V. P.; Yanin, S. N.; Asainov, O. Kh; Yurev, Yu N.

    2016-04-01

    The results of using of ion-beam technologies methods for finish treatment of metal products are presented. The experiments were performed at the installation ILUR-03, which allows the operation of cleaning, polishing and surface layers doping of the material of unlimited length cylindrical samples by radial Ar+ ions beam with energy up to 5 keV. The tubes from zirconium alloy E110 up to 500 mm length were used as samples for investigation. It is shown that selected automatic treatment modes reduce the surface roughness over the entire length of the samples and increase uniformity of the surface layer without observable effect on the bulk properties of material. Treatment promotes the formation of oxide films with improved defensive properties.

  17. Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Zhang, Hui; Zhao, Jiang; Gong, Yong-Kuan

    2012-10-01

    Cell membrane mimetic antifouling polymer brush was grown on polysulfone (PSF) membrane by surface-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC). The RAFT agent immobilized PSF substrate was prepared by successive chloromethylation, amination with ethylenediamine (EDA) and amidation of the amine group of grafted EDA with the carboxylic group of 4-cyanopentanoic acid dithiobenzoate (CPAD). The surface RAFT polymerization of MPC was initiated in aqueous solution by 4,4‧-azobis-4-cyanopentanoic acid (ACPA). The formation of PMPC brush coating is evidenced by X-ray photoelectron spectroscopy and water contact angle measurements. The degree of polymerization of PMPC and the polymer grafting density were calculated from the high resolution XPS spectra. The platelet adhesion and protein adsorption results showed that the PMPC-grafted PSF surface has excellent antifouling ability to resist platelet adhesion completely and suppress protein adsorption significantly. This biomimetic and bio-friendly surface RAFT polymerization strategy could be promising for a variety of biomedical applications.

  18. Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage

    SciTech Connect

    Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong; Bowman, Valorie D.; Rao, Venigalla B.; Rossmann, Michael G.

    2011-09-16

    The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. In addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.

  19. Crystal Structure of Escherichia coli CusC the Outer Membrane Component of a Heavy Metal Efflux Pump

    SciTech Connect

    R Kulathila; R Kulathila; M Indic; B van den Berg

    2011-12-31

    While copper has essential functions as an enzymatic co-factor, excess copper ions are toxic for cells, necessitating mechanisms for regulating its levels. The cusCBFA operon of E. coli encodes a four-component efflux pump dedicated to the extrusion of Cu(I) and Ag(I) ions. We have solved the X-ray crystal structure of CusC, the outer membrane component of the Cus heavy metal efflux pump, to 2.3 {angstrom} resolution. The structure has the largest extracellular opening of any outer membrane factor (OMF) protein and suggests, for the first time, the presence of a tri-acylated N-terminal lipid anchor. The CusC protein does not have any obvious features that would make it specific for metal ions, suggesting that the narrow substrate specificity of the pump is provided by other components of the pump, most likely by the inner membrane component CusA.

  20. An extended inner-outer factorisation algorithm based on the structure of a transfer function matrix inverse

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhao, Chunhui; He, Xing; Zhang, Weidong

    2016-05-01

    In this paper, the structure feature of the inverse of a multi-input/multi-output square transfer function matrix is explored. Instead of complicated advanced mathematical tools, we only use basic results of complex analysis in the analysing procedure. By employing the Laurent expression, an elegant structure form of the expansion is obtained for the transfer function matrix inverse. This expansion form is the key of deriving an analytical solution to the inner-outer factorisation for both stable plants and unstable plants. Different from other computation algorithm, the obtained inner-outer factorisation is given in an analytical form. The solution is exact and without approximation. Numerical examples are provided to verify the correctness of the obtained results.

  1. Outer coronal structure and relative intensity distribution observed during the total solar eclipse on March 9, 1997 in Mohe.

    NASA Astrophysics Data System (ADS)

    Li, Qiusha; Zhang, Bairong

    With a simple video-collecting system, the total solar eclipse on March 9, 1997 has been observed by using Panasonic NV-S88OEN video camera in Mohe. After analyzing the yellow (by adding a GG11 filter) and white coronal observation data, the outer coronal structure and relative intensity distribution outside 1.5 Rsun have been found during the solar minima.

  2. Methanotroph outer membrane preparation.

    PubMed

    Karlsen, Odd A; Berven, Frode S; Jensen, Harald B; Fjellbirkeland, Anne

    2011-01-01

    All presently known methanotrophs are gram-negative bacteria suggesting that they are surrounded by a two-layered membrane: an inner or cytoplasmic membrane and an outer membrane. In the methanotroph Methylococcus capsulatus (Bath), separation of the two membranes has allowed studies on protein and lipid composition of the outer membrane. Its outer membrane can be isolated from purified cell envelopes by selective solubilization of the inner membranes with the detergent Triton X-100. The proteins associated with the outer membrane can further be fractionated into integral and tightly associated proteins and peripheral loosely associated proteins. We present here protocols for this fractionation and show how the proteins associated with the outer leaflet of the outer membrane can be isolated and identified by whole-cell biotin surface labeling. PMID:21419921

  3. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  4. Structure, activity and interactions of the cysteine deleted analog of tachyplesin-1 with lipopolysaccharide micelle: Mechanistic insights into outer-membrane permeabilization and endotoxin neutralization.

    PubMed

    Saravanan, Rathi; Mohanram, Harini; Joshi, Mangesh; Domadia, Prerna N; Torres, Jaume; Ruedl, Christiane; Bhattacharjya, Surajit

    2012-07-01

    Tachyplesin-1, a disulfide stabilized beta-hairpin antimicrobial peptide, can be found at the hemocytes of horse shoe crab Tachypleus tridentatus. A cysteine deleted linear analog of tachyplesin-1 or CDT (KWFRVYRGIYRRR-NH2) contains a broad spectrum of bactericidal activity with a reduced hemolytic property. The bactericidal activity of CDT stems from selective interactions with the negatively charged lipids including LPS. In this work, CDT-LPS interactions were investigated using NMR spectroscopy, optical spectroscopy and functional assays. We found that CDT neutralized LPS and disrupted permeability barrier of the outer membrane. Zeta potential and ITC studies demonstrated charge compensation and hydrophobic interactions of CDT with the LPS-outer membrane, respectively. Secondary structure of the peptide was probed by CD and FT-IR experiments indicating beta-strands and/or beta-turn conformations in the LPS micelle. An ensemble of structures, determined in LPS micelle by NMR, revealed a beta-hairpin like topology of the CDT peptide that was typified by an extended cationic surface and a relatively shorter segment of hydrophobic region. Interestingly, at the non-polar face, residue R11 was found to be in a close proximity to the indole ring of W2, suggesting a cation-n type interactions. Further, saturation transfer difference (STD) NMR studies established intimate contacts among the aromatic and cationic residues of CDT with the LPS micelle. Fluorescence and dynamic light scattering experiments demonstrated that CDT imparted structural destabilization to the aggregated states of LPS. Collectively, atomic resolution structure and interactions of CDT with the outer membrane-LPS could be exploited for developing potent broad spectrum antimicrobial and anti-sepsis agents. PMID:22464970

  5. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization.

    PubMed

    Kuipers, Kirsten; Daleke-Schermerhorn, Maria H; Jong, Wouter S P; ten Hagen-Jongman, Corinne M; van Opzeeland, Fred; Simonetti, Elles; Luirink, Joen; de Jonge, Marien I

    2015-04-21

    Bacterial outer membrane vesicles (OMVs) are attractive vaccine formulations because they have intrinsic immunostimulatory properties. In principle, heterologous antigens incorporated into OMVs will elicit specific immune responses, especially if presented at the vesicle surface and thus optimally exposed to the immune system. In this study, we explored the feasibility of our recently developed autotransporter Hbp platform, designed to efficiently and simultaneously display multiple antigens at the surface of bacterial OMVs, for vaccine development. Using two Streptococcus pneumoniae proteins as model antigens, we showed that intranasally administered Salmonella OMVs displaying high levels of antigens at the surface induced strong protection in a murine model of pneumococcal colonization, without the need for a mucosal adjuvant. Importantly, reduction in bacterial recovery from the nasal cavity was correlated with local production of antigen-specific IL-17A. Furthermore, the protective efficacy and the production of antigen-specific IL-17A, and local and systemic IgGs, were all improved at increased concentrations of the displayed antigen. This discovery highlights the importance of an adequate antigen expression system for development of recombinant OMV vaccines. In conclusion, our findings demonstrate the suitability of the Hbp platform for development of a new generation of OMV vaccines, and illustrate the potential of using this approach to develop a broadly protective mucosal pneumococcal vaccine. PMID:25776921

  6. BmpA is a surface-exposed outer membrane protein of Borrelia burgdorferi

    PubMed Central

    Bryksin, Anton V.; Tomova, Alexandra; Godfrey, Henry P.; Cabello, Felipe C.

    2010-01-01

    BmpA is an immunodominant protein of Borrelia burgdorferi as well as an arthritogenic factor. Rabbit anti-recombinant BmpA (rBmpA) antibodies were raised, characterized by assaying their cross reactivity with rBmpB, rBmpC and rBmpD, then rendered monospecific by absorption with rBmpB. This monospecific reagent reacted only with rBmpA in dot immunobinding and detected a single 39-kDa, pI 5.0, spot on two-dimensional immunoblots. It was used to assess BmpA cellular location. BmpA was present in both detergent-soluble and -insoluble fractions of Triton X-114 phase-partitioned borrelial cells, suggesting it was a membrane lipoprotein. Immunoblots of proteinase K-treated intact and Triton X-100 permeabilized cells showed digestion of BmpA in intact cells, consistent with surface exposure. This exposure was confirmed by dual-label immunofluorescence microscopy of intact and permeabilized borrelial cells. Conservation and surface localization of BmpA in all B. burgdorferi sensu lato genospecies could point to its playing a key role in this organism’s biology and pathobiology. PMID:20546313

  7. Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier

    SciTech Connect

    T. Wolery

    2005-02-22

    This report provides supporting analysis of the conditions at which an aqueous solution can exist on the drip shield or waste package surfaces, including theoretical underpinning for the evolution of concentrated brines that could form by deliquescence or evaporation, and evaluation of the effects of acid-gas generation on brine composition. This analysis does not directly feed the total system performance assessment for the license application (TSPA-LA), but supports modeling and abstraction of the in-drift chemical environment (BSC 2004 [DIRS 169863]; BSC 2004 [DIRS 169860]). It also provides analyses that may support screening of features, events, and processes, and input for response to regulatory inquiries. This report emphasizes conditions of low relative humidity (RH) that, depending on temperature and chemical conditions, may be dry or may be associated with an aqueous phase containing concentrated electrolytes. Concentrated solutions at low RH may evolve by evaporative concentration of water that seeps into emplacement drifts, or by deliquescence of dust on the waste package or drip shield surfaces. The minimum RH for occurrence of aqueous conditions is calculated for various chemical systems based on current understanding of site geochemistry and equilibrium thermodynamics. The analysis makes use of known characteristics of Yucca Mountain waters and dust from existing tunnels, laboratory data, and relevant information from the technical literature and handbooks.

  8. Synthetic HI observations of spiral structure in the outer disk in galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey A.; Bertin, Giuseppe

    2015-12-01

    > By means of 3D hydrodynamical simulations, in a separate paper we have discussed the properties of non-axisymmetric density wave trains in the outermost regions of galaxy disks, based on the picture that self-excited global spiral modes in the bright optical stellar disk are accompanied by low-amplitude short trailing wave signals outside corotation; in the gas, such wave trains can penetrate through the outer Lindblad resonance and propagate outwards, forming prominent spiral patterns. In this paper we present the synthetic 21 cm velocity maps expected from simulated models of the outer gaseous disk, focusing on the case when the disk is dominated by a two-armed spiral pattern, but considering also other more complex situations. We discuss some aspects of the spiral pattern in the gaseous periphery of galaxy disks noted in our simulations that might be interesting to compare with specific observed cases.

  9. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  10. The complex structure of stars in the outer galactic disk as revealed by Pan-STARRS1

    SciTech Connect

    Slater, Colin T.; Bell, Eric F.; Schlafly, Edward F.; Martin, Nicolas F.; Rix, Hans-Walter; Morganson, Eric; Peñarrubia, Jorge; Bernard, Edouard J.; Ferguson, Annette M. N.; Martinez-Delgado, David; Wyse, Rosemary F. G.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Magnier, Eugene A.; Tonry, John L.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-08-10

    We present a panoptic view of the stellar structure in the Galactic disk's outer reaches commonly known as the Monoceros Ring, based on data from Pan-STARRS1. These observations clearly show the large extent of the stellar overdensities on both sides of the Galactic disk, extending between b = –25° and b = +35° and covering over 130° in Galactic longitude. The structure exhibits a complex morphology with both stream-like features and a sharp edge to the structure in both the north and the south. We compare this map to mock observations of two published simulations aimed at explaining such structures in the outer stellar disk, one postulating an origin as a tidal stream and the other demonstrating a scenario where the disk is strongly distorted by the accretion of a satellite. These morphological comparisons of simulations can link formation scenarios to observed structures, such as demonstrating that the distorted-disk model can produce thin density features resembling tidal streams. Although neither model produces perfect agreement with the observations—the tidal stream predicts material at larger distances that is not detected while in the distorted disk model, the midplane is warped to an excessive degree—future tuning of the models to accommodate these latest data may yield better agreement.

  11. Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.

    1992-01-01

    Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.

  12. Structural and functional characterization of the rod outer segment membrane guanylate cyclase.

    PubMed Central

    Goraczniak, R M; Duda, T; Sitaramayya, A; Sharma, R K

    1994-01-01

    In the vertebrate photoreceptor cell, rod outer segment (ROS) is the site of visual signal-transduction process, and a pivotal molecule that regulates this process is cyclic GMP. Cyclic GMP controls the cationic conductance into the ROS, and light causes a decrease in the conductance by activating hydrolysis of the cyclic nucleotide. The identity of the granylate cyclase (ROS-GC) that synthesizes this pool of cyclic GMP is unknown. We now report the cloning, expression and functional characterization of a DNA from bovine retina that encodes ROS-GC. Images Figure 2 Figure 5 PMID:7916565

  13. Magnetic structure in cool stars. XVI - Emissions from the outer atmosphere of M-type dwarfs

    NASA Technical Reports Server (NTRS)

    Rutten, R. G. M.; Zwaan, C.; Schrijver, C. J.; Duncan, D. K.; Mewe, R.

    1989-01-01

    Consideration is given to emission from the outer atmospheres of M-type dwarfs in several spectral lines originating from the chromosphere, the transition-region, and the soft X-ray emission from the corona. It is shown that M-type dwarfs systematically deviate from relations between flux densities in soft X-rays and chromospheric and transition-region emission lines. The quantitative relation between the equivalent width of H-alpha and the Ca II, H, and K emission index is determined. It is suggested that the emission in the Balmer spectrum may result from back heating by coronal soft X-rays.

  14. Playing with dye molecules at the inner and outer surface of zeolite L

    NASA Astrophysics Data System (ADS)

    Calzaferri, Gion; Brühwiler, Dominik; Megelski, Silke; Pfenniger, Michel; Pauchard, Marc; Hennessy, Brian; Maas, Huub; Devaux, André; Graf, Urs

    2000-06-01

    Plants are masters of transforming sunlight into chemical energy. In the ingenious antenna system of the leaf, the energy of the sunlight is transported by chlorophyll molecules for the purpose of energy transformation. We have succeeded in reproducing a similar light transport in an artificial system on a nano scale. In this artificial system, zeolite L cylinders adopt the antenna function. The light transport is made possible by specifically organized dye molecules, which mimic the natural function of chlorophyll. Zeolites are crystalline materials with different cavity structures. Some of them occur in nature as a component of the soil. We are using zeolite L crystals of cylindrical morphology which consist of a continuous one-dimensional tube system and we have succeeded in filling each individual tube with chains of joined but noninteracting dye molecules. Light shining on the cylinder is first absorbed and the energy is then transported by the dye molecules inside the tubes to the cylinder ends. We expect that our system can contribute to a better understanding of the important light harvesting process which plants use for the photochemical transformation and storage of solar energy. We have synthesized nanocrystalline zeolite L cylinders ranging in length from 300 to 3000 nm. A cylinder of 800 nm diameter, e.g. consists of about 150 000 parallel tubes. Single red emitting dye molecules (oxonine) were put at each end of the tubes filled with a green emitting dye (pyronine). This arrangement made the experimental proof of efficient light transport possible. Light of appropriate wavelength shining on the cylinder is only absorbed by the pyronine and the energy moves along these molecules until it reaches the oxonine. The oxonine absorbs the energy by a radiationless energy transfer process, but it is not able to send it back to the pyronine. Instead it emits the energy in the form of red light. The artificial light harvesting system makes it possible to

  15. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion

    PubMed Central

    Metruccio, Matteo M. E.; Evans, David J.; Gabriel, Manal M.; Kadurugamuwa, Jagath L.; Fleiszig, Suzanne M. J.

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P < 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections. PMID:27375592

  16. Allergenic compounds on the inner and outer surfaces of natural latex gloves: MALDI mass spectrometry and imaging of proteinous allergens.

    PubMed

    Marchetti-Deschmann, Martina; Allmaier, Günter

    2009-01-01

    Natural latex gloves are the cause of a severe health problem to an increasing number of healthcare workers or patients due to the presence of protein allergens as Hevein or Rubber Elongation Factor (REF). One of the most challenging problems is the in situ localization of theses allergens in, e.g. gloves, to estimate the allergenic potential of the latex material. A sample preparation protocol applying a binary matrix-assisted laser desorption/ionization(MALDI) matrix containing alpha-cyano-4-hydroxy cinnamic acid (CHCA) and 2,5-dihydroxy benzoic acid (DHB) on trifluoro acetic acid (TFA) etched latex glove surfaces allowed the direct determination (exact molecular weight) of Hevein, REF and a truncated form of REF (tREF) within nine different brands of natural latex gloves by means of MALDI-TOF-MS in the linear mode. MALDI mass spectrometry demonstrated that Hevein, tREF and REF were present on the inner surfaces (in direct contact with the skin) of many, but not all, investigated gloves without any prior extraction procedure. Additionally, different isoforms of the allergen Hevein were detected (exhibiting ragged C-termini). tREF and REF could always be detected beside each other, but were not observed on every latex glove sample, which contained Hevein. It was also demonstrated that there is a significant difference in terms of proteins and polymers between inner and outer surfaces of gloves, which helps to explain the different allergenic potential of these.MALDI imaging allowed for the first time the unambiguous localization of all three allergens in parallel and showed that Hevein was present on 36% of the investigated area of a latex glove with a certain localization, whereupon, tREF and REF were only found on 25% of the investigated material. PMID:18720446

  17. Structural modifications of outer membrane vesicles to refine them as vaccine delivery vehicles

    PubMed Central

    Kim, Sang-Hyun; Kim, Keun-Su; Lee, Sang-Rae; Kim, Ekyune; Kim, Myeong-Su; Lee, Eun-Young; Gho, Yong Song; Kim, Jung-Woo; Bishop, Russell E.; Chang, Kyu-Tae

    2016-01-01

    In an effort to devise a safer and more effective vaccine delivery system, outer membrane vesicles (OMVs) were engineered to have properties of intrinsically low endotoxicity sufficient for the delivery of foreign antigens. Our strategy involved mutational inactivation of the MsbB (LpxM) lipid A acyltransferase to generate OMVs of reduced endotoxicity from Escherichia coli (E. coli) O157:H7. The chromosomal tagging of a foreign FLAG epitope within an OmpA-fused protein was exploited to localize the FLAG epitope in the OMVs produced by the E. coli mutant having the defined msbB and the ompA::FLAG mutations. It was confirmed that the desired fusion protein (OmpA::FLAG) was expressed and destined to the outer membrane (OM) of the E. coli mutant from which the OMVs carrying OmpA::FLAG are released during growth. A luminal localization of the FLAG epitope within the OMVs was inferred from its differential immunoprecipitation and resistance to proteolytic degradation. Thus, by using genetic engineering-based approaches, the native OMVs were modified to have both intrinsically low endotoxicity and a foreign epitope tag to establish a platform technology for development of multifunctional vaccine delivery vehicles. PMID:19695218

  18. The "Horns" of FK Comae and the Complex Structure of its Outer Atmosphere

    NASA Astrophysics Data System (ADS)

    Saar, Steven H.; Ayres, T. R.; Kashyap, V.

    2014-01-01

    As part of a large multiwavelength campaign (COCOA-PUFS*) to explore magnetic activity in the unusual, single, rapidly rotating giant FK Comae, we have taken a time series of moderate resolution FUV spectra of the star with the COS spectrograph on HST. We find that the star has unusual, time-variable emission profiles in the chromosphere and transition region which show horn-like features. We use simple spatially inhomogeneous models to explain the variable line shapes. Modeling the lower chromospheric Cl I 1351 Å line, we find evidence for a very extended, spatial inhomogeneous outer atmosphere, likely composed of many huge "sling-shot" prominences of cooler material with embedded in a rotationally distended corona. We compare these results with hotter hotter transition region lines (Si IV) and optical spectra of the chromospheric He I D3 line. We also employ the model Cl I profiles, and data-derived empirical models, to fit the complex spectral region around the coronal Fe XXI 1354.1 Å line. We place limits on the flux of this line, and show these limits are consistent with expectations from the observed X-ray spectrum. *Campaign for Observation of the Corona and Outer Atmosphere of the Fast-rotating Star, FK Comae This work was supported by HST grant GO-12376.01-A.

  19. Structure and properties of water film adsorbed on mica surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Gutian; Tan, Qiyan; Xiang, Li; Cai, Di; Zeng, Hongbo; Yi, Hong; Ni, Zhonghua; Chen, Yunfei

    2015-09-01

    The structure profiles and physical properties of the adsorbed water film on a mica surface under conditions with different degrees of relative humidity are investigated by a surface force apparatus. The first layer of the adsorbed water film shows ice-like properties, including a lattice constant similar with ice crystal, a high bearing capacity that can support normal pressure as high as 4 MPa, a creep behavior under the action of even a small normal load, and a character of hydrogen bond. Adjacent to the first layer of the adsorbed water film, the water molecules in the outer layer are liquid-like that can flow freely under the action of external loads. Experimental results demonstrate that the adsorbed water layer makes the mica surface change from hydrophilic to weak hydrophobic. The weak hydrophobic surface may induce the latter adsorbed water molecules to form water islands on a mica sheet.

  20. Crystal Structures of the Outer Membrane Domain of Intimin and Invasin from Enterohemorrhagic E. coli and Enteropathogenic Y. pseudotuberculosis

    SciTech Connect

    Fairman, James W.; Dautin, Nathalie; Wojtowicz, Damian; Liu, Wei; Noinaj, Nicholas; Barnard, Travis J.; Udho, Eshwar; Przytycka, Teresa M.; Cherezov, Vadim; Buchanan, Susan K.

    2012-12-10

    Intimins and invasins are virulence factors produced by pathogenic Gram-negative bacteria. They contain C-terminal extracellular passenger domains that are involved in adhesion to host cells and N-terminal {beta} domains that are embedded in the outer membrane. Here, we identify the domain boundaries of an E. coli intimin {beta} domain and use this information to solve its structure and the {beta} domain structure of a Y. pseudotuberculosis invasin. Both {beta} domain structures crystallized as monomers and reveal that the previous range of residues assigned to the {beta} domain also includes a protease-resistant domain that is part of the passenger. Additionally, we identify 146 nonredundant representative members of the intimin/invasin family based on the boundaries of the highly conserved intimin and invasin {beta} domains. We then use this set of sequences along with our structural data to find and map the evolutionarily constrained residues within the {beta} domain.

  1. Enteric YaiW Is a Surface-Exposed Outer Membrane Lipoprotein That Affects Sensitivity to an Antimicrobial Peptide

    PubMed Central

    Arnold, Markus F. F.; Caro-Hernandez, Paola; Tan, Karen; Runti, Giulia; Wehmeier, Silvia; Scocchi, Marco; Doerrler, William T.; Ferguson, Gail P.

    2014-01-01

    yaiW is a previously uncharacterized gene found in enteric bacteria that is of particular interest because it is located adjacent to the sbmA gene, whose bacA ortholog is required for Sinorhizobium meliloti symbiosis and Brucella abortus pathogenesis. We show that yaiW is cotranscribed with sbmA in Escherichia coli and Salmonella enterica serovar Typhi and Typhimurium strains. We present evidence that the YaiW is a palmitate-modified surface exposed outer membrane lipoprotein. Since BacA function affects the very-long-chain fatty acid (VLCFA) modification of S. meliloti and B. abortus lipid A, we tested whether SbmA function might affect either the fatty acid modification of the YaiW lipoprotein or the fatty acid modification of enteric lipid A but found that it did not. Interestingly, we did observe that E. coli SbmA suppresses deficiencies in the VLCFA modification of the lipopolysaccharide of an S. meliloti bacA mutant despite the absence of VLCFA in E. coli. Finally, we found that both YaiW and SbmA positively affect the uptake of proline-rich Bac7 peptides, suggesting a possible connection between their cellular functions. PMID:24214946

  2. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in alphabeta T-cell receptor transgenic mice.

    PubMed Central

    Infante-Duarte, C; Kamradt, T

    1997-01-01

    Induction of the appropriate T helper cell (Th) subset is crucial for the resolution of infectious diseases and the prevention of immunopathology. Some pathogens preferentially induce Th1 or Th2 responses. How microorganisms influence Th phenotype development is unknown. We asked if Borrelia burgdorferi, the spirochete which causes Lyme arthritis, can promote a cytokine milieu in which T cells which are not specific for B. burgdorferi are induced to produce proinflammatory cytokines. Using alphabeta T-cell receptor transgenic mice as a source of T cells with a defined specificity other than for B. burgdorferi, we found that B. burgdorferi induced Th1 phenotype development in ovalbumin-specific transgenic T cells. Small synthetic lipopeptides corresponding to the N-terminal sequences of B. burgdorferi outer surface lipoproteins had similar effects. B. burgdorferi and its lipopeptides induced host cells to produce interleukin-12. When the peptides were used in delipidated form, they did not induce Th1 development. These findings may be of pathogenic importance, since it is currently assumed that a Th2-mediated antibody response is protective against B. burgdorferi. Bacteria associated with reactive arthritis, namely, Yersinia enterocolitica, Shigella flexneri, and Salmonella enteritidis, had different effects. The molecular definition of pathogen-host interactions determining cytokine production should facilitate rational therapeutic interventions directing the host response towards the desired cytokine response. Here, we describe small synthetic molecules capable of inducing Th1 phenotype development. PMID:9317013

  3. Complement Receptor 3 Binds the Borrelia burgdorferi Outer Surface Proteins OspA and OspB in an iC3b-Independent Manner

    PubMed Central

    Garcia, Rodolfo C.; Murgia, Rossella; Cinco, Marina

    2005-01-01

    Persistence of borreliae within the vertebrate host depends on the fate of interactions between the spirochetes and target cells. The present work demonstrates the direct binding of the Borrelia burgdorferi outer surface proteins OspA and OspB to CR3 and that this binding is independent of iC3b. PMID:16113335

  4. Time Domain Structures: Generation Mechanisms and Their Role for Electron Acceleration in the Earth's Outer Radiation Belt

    NASA Astrophysics Data System (ADS)

    Mozer, F.; Artemyev, A.; Agapitov, O. V.; Drake, J. F.; Krasnoselskikh, V.; Lejosne, S.; Mournas, D.; Vasko, I.

    2015-12-01

    Time Domain Structures (TDS) is the generic name for short duration (~msec) electric field pulses that occur in streams and that have significant components parallel to the background magnetic field. Examples of TDS are electrostatic or electromagnetic double layers, electron holes, and non-linear whistlers. They are found in copious quantities in the Earth's outer radiation belt and on auroral zone magnetic field lines, in the tail, the plasma sheet, the plasma sheet boundary layer, at shocks, at magnetic field reconnection sites, in the solar wind and at Saturn. Mechanisms for the generation of TDS and their role in accelerating radiation belt electrons will be described.

  5. Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Srivastava, Praveen; Mitra, Gautam

    1994-02-01

    The Kumaon-Garhwal region of the Himalaya lies near the center of the Himalayan fold-and-thrust belt. We have drawn two balanced cross sections, 100 km apart, through the Outer and Lesser Himalaya. The cross sections incorporate all the surface, well log, and earthquake seismic data currently available from the region. Two branch line maps showing trailing and leading branch lines and cutoff lines of the major thrusts in the region are also drawn. The three dimensional deep structure of the Outer and Lesser Himalaya is interpreted based on the balanced cross sections and the branch line maps. Deep structure of the Higher and Tethyan Himalaya is extrapolated based on surface geology and is subject to revision as more surface and seismic data become available from these areas. A sequential evolutionary model for the Kumaon Himalaya along the eastern (Pindari) section is proposed. According to this model, the Kumaon Himalaya evolved by an overall forelandward progression of thrusting, with some reactivation along the Munsiari thrust (MT), the Main Boundary thrust (MBT), and the Main Central thrust (MCT). We use structural, stratigraphic, and radiometric criteria to place time constraints on the motion of these thrusts. Earliest motion along the MBT may have occurred in Early-Middle Paleocene, but the main episode probably started in Late Eocene and may still be continuing. Emplacement of the MT had occurred by Middle-Late Eocene, whereas the MCT shows activity around 20 Ma, thus exhibiting break back thrusting with respect to the MT. Shortening estimates are obtained from the Pindari section. Minimum shortening in the sedimentary thrust sheets of the Outer and Lesser Himalaya is 161 km or 65%. As a first approximation, we have also restored the crystalline sheets in order to obtain shortening estimates for the entire Himalaya. Minimum shortening for the Himalaya after restoring the MCT sheet varies from 354 (76%) to 421 km (79%). These estimates were further combined

  6. Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex.

    PubMed

    Model, Kirstin; Prinz, Thorsten; Ruiz, Teresa; Radermacher, Michael; Krimmer, Thomas; Kühlbrandt, Werner; Pfanner, Nikolaus; Meisinger, Chris

    2002-02-22

    The mitochondrial outer membrane contains a multi-subunit machinery responsible for the specific recognition and translocation of precursor proteins. This translocase of the outer membrane (TOM) consists of three receptor proteins, Tom20, Tom22 and Tom70, the channel protein Tom40, and several small Tom proteins. Single-particle electron microscopy analysis of the Neurospora TOM complex has led to different views with two or three stain-filled centers resembling channels. Based on biochemical and electron microscopy studies of the TOM complex isolated from yeast mitochondria, we have discovered the molecular reason for the different number of channel-like structures. The TOM complex from wild-type yeast contains up to three stain-filled centers, while from a mutant yeast selectively lacking Tom20, the TOM complex particles contain only two channel-like structures. From mutant mitochondria lacking Tom22, native electrophoresis separates an approximately 80 kDa subcomplex that consists of Tom40 only and is functional for accumulation of a precursor protein. We conclude that while Tom40 forms the import channels, the two receptors Tom22 and Tom20 are required for the organization of Tom40 dimers into larger TOM structures. PMID:11866524

  7. Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein.

    PubMed

    Turner, David P J; Wooldridge, Karl G; Ala'Aldeen, Dlawer A A

    2002-08-01

    Several autotransporter proteins have previously been identified in Neisseria meningitidis. Using molecular features common to most members of the autotransporter family of proteins, we have identified an additional novel ca. 112-kDa autotransporter protein in the meningococcal genomic sequence data. This protein, designated autotransported serine protease A (AspA), has significant N-terminal homology to the secreted serine proteases (subtilases) from several organisms and contains a serine protease catalytic triad. The amino acid sequence of AspA is well-conserved in serogroup A, B, and C meningococci. In Neisseria gonorrhoeae, the AspA homologue appears to be a pseudogene. The gene encoding AspA was cloned and expressed from meningococcal strain MC58 (B15:P1.16b). Anti-AspA antibodies were detected in patients' convalescent-phase sera, suggesting that AspA is expressed in vivo during infection and is immunogenic and cross-reactive. Rabbit polyclonal monospecific anti-AspA serum was used to probe whole-cell proteins from a panel of wild-type meningococcal strains and two AspA mutant strains. Expression of the ca. 112-kDa precursor polypeptide was detected in 12 of 20 wild-type meningococcal strains examined, suggesting that AspA expression is phase variable. Immunogold electron microscopy and cellular fractionation studies showed that the AspA precursor is transported to the outer membrane and remains surface exposed. Western blot experiments confirmed that smaller, ca. 68- or 70-kDa components of AspA (AspA68 and AspA70, respectively) are then secreted into the meningococcal culture supernatant. Site-directed mutagenesis of S426 abolished secretion of both rAspA68 and rAspA70 in Escherichia coli, confirming that AspA is an autocleaved autotransporter protein. In conclusion, we characterized a novel, surface-exposed and secreted, immunogenic, meningococcal autotransporter protein. PMID:12117956

  8. Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages.

    PubMed

    Carrasco, Sebastian E; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L; Li, Hongxia; Sandusky, George E; Condon, Keith W; Serezani, C Henrique; Yang, X Frank

    2015-12-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγ(null) mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  9. Outer Surface Protein OspC Is an Antiphagocytic Factor That Protects Borrelia burgdorferi from Phagocytosis by Macrophages

    PubMed Central

    Carrasco, Sebastian E.; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L.; Li, Hongxia; Sandusky, George E.; Condon, Keith W.

    2015-01-01

    Outer surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγnull mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis. PMID:26438793

  10. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    SciTech Connect

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  11. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    SciTech Connect

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  12. Outer membrane of gram-negative bacteria. XVIII. Electron microscopic studies on porin insertion sites and growth of cell surface of Salmonella typhimurium.

    PubMed Central

    Smit, J; Nikaido, H

    1978-01-01

    Salmonella typhimurium contains three "major proteins" or "porins" (34K, 35K, and 36K) in the outer membrane. A mutant strain producing only the 35K porin was first grown in media containing high concentrations of NaCl to "repress" the porin synthesis and then was shifted into a medium without NaCl. The newly made porin molecules were then labeled with the ferritin-coupled antibody at various times after the shift, and the samples were examined by whole-mount, freeze-etching, and thin-section electron microscopy. These experiments showed that newly inserted porins appeared as discrete patches uniformly distributed over the surface of the cell and, furthermore, that the sites of adhesion between the inner and outer membrane were most probably the pathway by which the newly made porin molecules appeared on cell surface. The 34K and 36K porins were also inserted in the same manner, since the appearance of new porins at discrete sites all over the cell surface was also observed when cells with wild-type porin phenotype were treated with unlabeled antibody to block existing antigenic sites, subsequently regrown, and labeled with the ferritin-coupled antibody. Since porins comprise a major portion of the densely packed, relatively immobile, "protein framework" of the outer membrane, these results lead us to conclude that the outer membrane grows predominantly by diffuse intercalation rather than by the zonal growth mechanism. Images PMID:355240

  13. Molecular analysis of an outer membrane protein, MopB, of Methylococcus capsulatus (Bath) and structural comparisons with proteins of the OmpA family.

    PubMed

    Fjellbirkeland, A; Bemanian, V; McDonald, I R; Murrell, J C; Jensen, H B

    2000-01-01

    The gene encoding a major outer membrane protein (MopB) of the methanotroph Methylococcus capsulatus (Bath) was cloned and sequenced. The cloned DNA contained an open reading frame of 1044 bp coding for a 348-amino-acid polypeptide with a 21-amino-acid leader peptide. Comparative sequence analysis of the predicted amino acid sequence revealed that the C-terminal part of MopB possessed sequences that are conserved in the OmpA family of proteins. The N-terminal half of the protein had no significant sequence similarity to other proteins in the databases, but the predicted secondary structure showed stretches of amphipathic beta-strands typical of transmembrane segments of outer membrane proteins. A region with four cysteines similar to the cysteine-encompassing region of the OprF of Pseudomonas aeruginosa was found toward the C-terminal part of MopB. Results from whole-cell labeling with the fluorescent thiol-reacting reagent 5-iodoacetamidofluorescein indicated a surface-exposed location for these cysteines. A probe consisting of the 3'-end of the mopB gene hybridized to the type I methanotroph Methylomonas methanica S in Southern blots containing DNA from nine methanotrophic strains representing six different genera. PMID:10896213

  14. Image-based surface matching algorithm oriented to structural biology.

    PubMed

    Merelli, Ivan; Cozzi, Paolo; D'Agostino, Daniele; Clematis, Andrea; Milanesi, Luciano

    2011-01-01

    Emerging technologies for structure matching based on surface descriptions have demonstrated their effectiveness in many research fields. In particular, they can be successfully applied to in silico studies of structural biology. Protein activities, in fact, are related to the external characteristics of these macromolecules and the ability to match surfaces can be important to infer information about their possible functions and interactions. In this work, we present a surface-matching algorithm, based on encoding the outer morphology of proteins in images of local description, which allows us to establish point-to-point correlations among macromolecular surfaces using image-processing functions. Discarding methods relying on biological analysis of atomic structures and expensive computational approaches based on energetic studies, this algorithm can successfully be used for macromolecular recognition by employing local surface features. Results demonstrate that the proposed algorithm can be employed both to identify surface similarities in context of macromolecular functional analysis and to screen possible protein interactions to predict pairing capability. PMID:21566253

  15. Organization of cGMP sensing structures on the rod photoreceptor outer segment plasma membrane

    PubMed Central

    Nemet, Ina; Tian, Guilian; Imanishi, Yoshikazu

    2014-01-01

    A diffusion barrier segregates the plasma membrane of the rod photoreceptor outer segment into 2 domains; one which is optimized for the conductance of ions in the phototransduction cascade and another for disk membrane synthesis. We propose the former to be named “phototransductive plasma membrane domain," and the latter to be named “disk morphogenic plasma membrane domain." Within the phototransductive plasma membrane, cGMP-gated channels are concentrated in striated membrane features, which are proximally located to the sites of active cGMP production within the disk membranes. For proper localization of cGMP-gated channel to the phototransductive plasma membrane, the glutamic acid-rich protein domain encoded in the β subunit plays a critical role. Quantitative study suggests that the disk morphogenic domain likely plays an important role in enriching rhodopsin prior to its sequestration into closed disk membranes. Thus, this and our previous studies provide new insight into the mechanism that spatially organizes the vertebrate phototransduction cascade. PMID:25616687

  16. Structural Modeling and Physicochemical Characterization Provide Evidence that P66 Forms a β-Barrel in the Borrelia burgdorferi Outer Membrane

    PubMed Central

    Kenedy, Melisha R.; Luthra, Amit; Anand, Arvind; Dunn, Joshua P.; Radolf, Justin D.

    2014-01-01

    The Borrelia burgdorferi outer membrane (OM) contains numerous surface-exposed lipoproteins but a relatively low density of integral OM proteins (OMPs). Few membrane-spanning OMPs of B. burgdorferi have been definitively identified, and none are well characterized structurally. Here, we provide evidence that the borrelial OMP P66, a known adhesin with pore-forming activity, forms a β-barrel in the B. burgdorferi OM. Multiple computer-based algorithms predict that P66 forms a β-barrel with either 22 or 24 transmembrane domains. According to our predicted P66 topology, a lysine residue (K487) known to be sensitive to trypsin cleavage is located within a surface-exposed loop. When we aligned the mature P66 amino acid sequences from B. burgdorferi and B. garinii, we found that K487 was present only in the B. burgdorferi P66 protein sequence. When intact cells from each strain were treated with trypsin, only B. burgdorferi P66 was trypsin sensitive, indicating that K487 is surface exposed, as predicted. Consistent with this observation, when we inserted a c-Myc tag adjacent to K487 and utilized surface localization immunofluorescence, we detected the loop containing K487 on the surface of B. burgdorferi. P66 was examined by both Triton X-114 phase partitioning and circular dichroism, confirming that the protein is amphiphilic and contains extensive (48%) β-sheets, respectively. Moreover, P66 also was able to incorporate into liposomes and form channels in large unilamellar vesicles. Finally, blue native PAGE (BN-PAGE) revealed that under nondenaturing conditions, P66 is found in large complexes of ∼400 kDa and ∼600 kDa. Outer surface lipoprotein A (OspA) and OspB both coimmunoprecipitate with P66, demonstrating that P66 associates with OspA and OspB in B. burgdorferi. The combined computer-based structural analyses and supporting physicochemical properties of P66 provide a working model to further examine the porin and integrin-binding activities of this OMP as

  17. Lunar near-surface structure

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Kovach, R. L.; Watkins, J. S.

    1974-01-01

    Seismic refraction data obtained at the Apollo 14, 16, and 17 landing sites permit a compressional wave velocity profile of the lunar near surface to be derived. Beneath the regolith at the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is material with a seismic velocity of about 300 m/sec, believed to be brecciated material or impact-derived debris. Considerable detail is known about the velocity structure at the Apollo 17 Taurus-Littrow site. Seismic velocities of 100, 327, 495, 960, and 4700 m/sec are observed. The depth to the top of the 4700-m/sec material is 1385 m, compatible with gravity estimates for the thickness of mare basaltic flows, which fill the Taurus-Littrow valley. The observed magnitude of the velocity change with depth and the implied steep velocity-depth gradient of more than 2 km/sec/km are much larger than have been observed on compaction experiments on granular materials and preclude simple cold compaction of a fine-grained rock powder to thicknesses of the order of kilometers.

  18. Pyochelin enantiomers and their outer-membrane siderophore transporters in fluorescent pseudomonads: structural bases for unique enantiospecific recognition.

    PubMed

    Brillet, Karl; Reimmann, Cornelia; Mislin, Gaëtan L A; Noël, Sabrina; Rognan, Didier; Schalk, Isabelle J; Cobessi, David

    2011-10-19

    Pyochelin (Pch) and enantiopyochelin (EPch) are enantiomeric siderophores, with three chiral centers, produced under iron limitation conditions by Pseudomonas aeruginosa and Pseudomonas fluorescens , respectively. After iron chelation in the extracellular medium, Pch-Fe and EPch-Fe are recognized and transported by their specific outer-membrane transporters: FptA in P. aeruginosa and FetA in P. fluorescens . Structural analysis of FetA-EPch-Fe and FptA-Pch-Fe, combined with mutagenesis and docking studies revealed the structural basis of the stereospecific recognition of these enantiomers by their respective transporters. Whereas FetA and FptA have a low sequence identity but high structural homology, the Pch and EPch binding pockets do not share any structural homology, but display similar physicochemical properties. The stereospecific recognition of both enantiomers by their corresponding transporters is imposed by the configuration of the siderophore's C4'' and C2'' chiral centers. This recognition involves specific hydrogen bonds between the Arg91 guanidinium group and EPch-Fe for FetA and between the Leu117-Leu116 main chain and Pch-Fe for FptA. FetA and FptA are the first membrane receptors to be structurally described with opposite binding enantioselectivities for their ligands, giving insights into the structural basis of their enantiospecificity. PMID:21902256

  19. Elongated Structure of the Outer-Membrane Activator of Peptidoglycan Synthesis LpoA: Implications for PBP1A Stimulation

    PubMed Central

    Jean, Nicolas L.; Bougault, Catherine M.; Lodge, Adam; Derouaux, Adeline; Callens, Gilles; Egan, Alexander J.F.; Ayala, Isabel; Lewis, Richard J.; Vollmer, Waldemar; Simorre, Jean-Pierre

    2014-01-01

    Summary The bacterial cell envelope contains the stress-bearing peptidoglycan layer, which is enlarged during cell growth and division by membrane-anchored synthases guided by cytoskeletal elements. In Escherichia coli, the major peptidoglycan synthase PBP1A requires stimulation by the outer-membrane-anchored lipoprotein LpoA. Whereas the C-terminal domain of LpoA interacts with PBP1A to stimulate its peptide crosslinking activity, little is known about the role of the N-terminal domain. Herein we report its NMR structure, which adopts an all-α-helical fold comprising a series of helix-turn-helix tetratricopeptide-repeat (TPR)-like motifs. NMR spectroscopy of full-length LpoA revealed two extended flexible regions in the C-terminal domain and limited, if any, flexibility between the N- and C-terminal domains. Analytical ultracentrifugation and small-angle X-ray scattering results are consistent with LpoA adopting an elongated shape, with dimensions sufficient to span from the outer membrane through the periplasm to interact with the peptidoglycan synthase PBP1A. PMID:24954617

  20. Stress Corrosion Cracking of the Drip Shield, The Waste Package Outer Barrier and the Stainless Steel Structural Material

    SciTech Connect

    C. Stephen

    2000-04-17

    One of the potential failure modes of the drip shield (DS), the waste package (WP) outer barrier, and the stainless structural material is the initiation and propagation of stress corrosion cracking (SCC) induced by the WP environment and various types of stresses that can develop in the DSs or the WPs. For the current design of the DS and WP, however, the DS will be excluded from the SCC evaluation because stresses that are relevant to SCC are insignificant in the DS. The major sources of stresses in the DS are loadings due to backfill and earthquakes. These stresses will not induce SCC because the stress caused by backfill is generally compressive stress and the stress caused by earthquakes is temporary in nature. The 316NG stainless steel inner barrier of the WP will also be excluded from the SCC evaluation because the SCC performance assessment will not take credit from the inner barrier. Therefore, the purpose of this document is to provide a detailed description of the process-level models that can be applied to assess the performance of the material (i.e., Alloy 22) used for the WP outer barrier subjected to the effects of SCC. As already mentioned in the development plan for the WP PMR (CRWMS M and O 1999e), this Analyses and Models Report (AMR) is to serve as a feed to the Waste Package Degradation (WPD) Total System Performance Assessment (TSPA) and Process Model Report (PMR).

  1. Use of T7 RNA polymerase to direct expression of outer Surface Protein A (OspA) from the Lyme disease Spirochete, Borrelia burgdorferi

    NASA Technical Reports Server (NTRS)

    Dunn, John J.; Lade, Barbara N.

    1991-01-01

    The OspA gene from a North American strain of the Lyme disease Spirochete, Borrelia burgdorferi, was cloned under the control of transciption and translation signals from bacteriophage T7. Full-length OspA protein, a 273 amino acid (31kD) lipoprotein, is expressed poorly in Escherichia coli and is associated with the insoluble membrane fraction. In contrast, a truncated form of OspA lacking the amino-terminal signal sequence which normally would direct localization of the protein to the outer membrane is expressed at very high levels (less than or equal to 100 mg/liter) and is soluble. The truncated protein was purified to homogeneity and is being tested to see if it will be useful as an immunogen in a vaccine against Lyme disease. Circular dichroism and fluorescence spectroscopy was used to characterize the secondary structure and study conformational changes in the protein. Studies underway with other surface proteins from B burgdorferi and a related spirochete, B. hermsii, which causes relapsing fever, leads us to conclude that a strategy similar to that used to express the truncated OspA can provide a facile method for producing variations of Borrelia lipoproteins which are highly expressed in E. coli and soluble without exposure to detergents.

  2. Triple assembly of ZnO, large-scale hollow spherical shells with flower-like species consisting of rods grown on the outer surfaces of shells

    SciTech Connect

    Shang Yazhuo; Hu Jun; Liu Honglai; Hu Ying

    2010-03-15

    Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centered at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.

  3. Pore-forming properties of the major 53-kilodalton surface antigen from the outer sheath of Treponema denticola.

    PubMed Central

    Egli, C; Leung, W K; Müller, K H; Hancock, R E; McBride, B C

    1993-01-01

    A 53-kDa protein from the outer sheath of the oral spirochete Treponema denticola was purified to homogeneity and shown to reconstitute channels in black lipid bilayer model membranes. The channel had a single-channel conductance of 1.8 nS in 0.1 M KCl, making this the largest porin channel observed to date (estimated diameter, 3.4 nm). Electron micrographs of 53-kDa-protein-containing outer sheaths of T. denticola showed a regular hexagonal array of darker staining pits. Images PMID:7682993

  4. Cell mimetic lateral stabilization of outer cell mimetic bilayer on polymer surfaces by peptide bonding and their blood compatibility.

    PubMed

    Kaladhar, K; Sharma, Chandra P

    2006-10-01

    The biological lipid bilayer membranes are stabilized laterally with the help of integral proteins. We have simulated this with an optimized ternary phospholipid/glycolipid/cholesterol system, and stabilized laterally on functionalized poly methyl methacrylate (PMMA) surfaces, using albumin, heparin, and polyethylene glycol as anchors. We have earlier demonstrated the differences due to orientation and packing of the ternary phospholipid monolayers in relation to blood compatibility (Kaladhar and Sharma, Langmuir 2004;20:11115-11122). The structure of albumin is changed here to expose its interior hydrophobic core by treating with organic solvent. The interaction between the hydrophobic core of the albumin molecule and the hydrophobic core of the lipid molecules is confirmed by incorporating the molecule into bilayer membranes. The secondary structure of the membrane incorporated albumin is studied by CD spectral analysis. The structure of the altered albumin molecule contains more beta-sheet as compared to the native albumin. This conformation is also retained in membranes. The partitioning of the different anchors based on its polarity and ionic interactions in the monolayer is studied from the pressure-area (pi-A) isotherm of the lipid monolayers at the air/water interface using Langmuir-Blodgett (LB) trough facility. Such two monolayers are deposited onto the functionalized PMMA surface using LB trough and crosslinked by carbodiimide chemistry. The structure of the deposited bilayer is studied by depth analysis using contact mode AFM in dry conditions. The stabilized bilayer shows stability up to 1 month by contact angle studies. Preliminary blood compatibility studies reveal that the calcification, protein adsorption, as well as blood-cell adhesion is significantly reduced after the surface modification. The reduced adsorption of ions, proteins, and cells to the modified surfaces may be due to the fluidity of the microenvironment along with the contribution of

  5. Heme uptake across the outer membrane as revealed by crystal structures of the receptor–hemophore complex

    PubMed Central

    Krieg, Stefanie; Huché, Frédéric; Diederichs, Kay; Izadi-Pruneyre, Nadia; Lecroisey, Anne; Wandersman, Cécile; Delepelaire, Philippe; Welte, Wolfram

    2009-01-01

    Gram-negative bacteria use specific heme uptake systems, relying on outer membrane receptors and excreted heme-binding proteins (hemophores) to scavenge and actively transport heme. To unravel the unknown molecular details involved, we present 3 structures of the Serratia marcescens receptor HasR in complex with its hemophore HasA. The transfer of heme over a distance of 9 Å from its high-affinity site in HasA into a site of lower affinity in HasR is coupled with the exergonic complex formation of the 2 proteins. Upon docking to the receptor, 1 of the 2 axial heme coordinations of the hemophore is initially broken, but the position and orientation of the heme is preserved. Subsequently, steric displacement of heme by a receptor residue ruptures the other axial coordination, leading to heme transfer into the receptor. PMID:19144921

  6. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer membrane protein OmpL32

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer membrane proteins has been shown to modulate the effectiveness of the host immu...

  7. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  8. Conformal coating of highly structured surfaces

    SciTech Connect

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  9. Structural insights into the lipoprotein outer membrane regulator of penicillin-binding protein 1B.

    PubMed

    King, Dustin T; Lameignere, Emilie; Strynadka, Natalie C J

    2014-07-01

    In bacteria, the synthesis of the protective peptidoglycan sacculus is a dynamic process that is tightly regulated at multiple levels. Recently, the lipoprotein co-factor LpoB has been found essential for the in vivo function of the major peptidoglycan synthase PBP1b in Enterobacteriaceae. Here, we reveal the crystal structures of Salmonella enterica and Escherichia coli LpoB. The LpoB protein can be modeled as a ball and tether, consisting of a disordered N-terminal region followed by a compact globular C-terminal domain. Taken together, our structural data allow us to propose new insights into LpoB-mediated regulation of peptidoglycan synthesis. PMID:24808177

  10. Effects of Complex Interplanetary Structures on the Dynamics of the Earth's Outer Radiation Belt During the 16-30 September 2014 Period: II) Corotating Solar Wind Stream

    NASA Astrophysics Data System (ADS)

    Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.

    2015-12-01

    We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.

  11. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1992-01-01

    A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  12. Microporous structure with layered interstitial surface treatment, and method and apparatus for preparation thereof

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1994-01-01

    A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.

  13. Surface pressure profiles, vortex structure and initialization for hurricane prediction. Part I: analysis of observed and synthetic structures

    NASA Astrophysics Data System (ADS)

    Ma, Yimin; Kafatos, Menas; Davidson, Noel E.

    2012-07-01

    Without detailed reconnaissance, consistent representation of hurricane-like vortices in initial conditions for operational prediction and research simulations still remains elusive. It is thus often necessary, particularly for high-resolution intensity forecasting, to use synthetic tropical cyclone circulations to initialize forecast models. Variants on three commonly used surface pressure profiles are evaluated for possible use. Enhancements to the original profiles are proposed that allows definition of both the inner-core and outer circulation. The latter improvement creates a vortex more consistent with the estimated outer structure which sometimes appears to be crucial to the evolving intensity of the storm. It also allows smoother merging of the synthetic vortex with the environment. Comparisons of the profiles against (a) structure estimates, (b) each other, (c) structures obtained via conservation of angular momentum, and (d) observed vorticity structures, suggest that a new enhanced Fujita profile best represents real TC structures. Student- t tests indicate that improved fitting to the observations is statistically significant.

  14. Structure and properties of solid surfaces

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1974-01-01

    Difficulties in experimental studies of crystalline surfaces are related to the fact that surface atoms have an intrinsic tendency to react with their environment. A second problem is connected with the effective thickness of surfaces, which ranges from one to several atom layers. The phenomenology of surface interactions with gases are considered, taking into account physical adsorption, chemisorption, and the oxidation of surfaces. Studies of the surface structure are discussed, giving attention to field emission microscopy, field-ion microscopy, electron diffraction techniques, Auger spectroscopy, scanning electron microscopy, electron probe microanalysis, ion microprobe methods, and low-energy backscattering spectroscopy. Investigations of semiconductor surfaces are also described.

  15. Structure of the Small Outer Capsid Protein, Soc: A Clamp for Stabilizing Capsids of T4-like Phages

    SciTech Connect

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B.; Rossmann, Michael G.

    2010-07-22

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a 'glue' between neighboring hexameric capsomers, forming a 'cage' that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 {angstrom} resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  16. On the influence of outer large-scale structures on near-wall turbulence in channel flow

    NASA Astrophysics Data System (ADS)

    Agostini, L.; Leschziner, M. A.

    2014-07-01

    Direct Numerical Simulation (DNS) data for channel flow at 1025 are used to analyse the interaction between large outer scales in the log-law region - referred to as super-streaks - and the small-scale, streaky, streamwise-velocity fluctuations in the viscosity-affected near-wall layer. The study is inspired by extensive experimental investigations by Mathis, Marusic, and Hutchins, culminating in a predictive model that describes, in a supposedly universal manner, the "footprinting" and "modulating" effects of the outer structures on the small-scale near-wall motions. The approach used herein is based on the examination of joint PDFs for the small-scale fluctuations, conditioned on regions of large-scale footprints. The large and small scales are separated by means of the Huang-Hilbert empirical-mode decomposition, the validity of which is demonstrated by way of pre-multiplied energy spectra, correlation maps, and energy profiles for both scales. Observations derived from the PDFs then form the basis of assessing the validity of the assumptions underlying the model. Although the present observations support some elements of the model, the results imply that modulation by negative and positive large-scale fluctuations differ greatly - an asymmetric response that is not compatible with the model. The study is thus extended to examining the validity of an alternative proposal, which is based on the assumption that a universal description of the small-scale response to the large-scale motions has to rely on the velocity fluctuations being scaled with the large-scales-modified local friction velocity, rather than with the mean value. This proposal is partially supported by the present analysis. Finally, an alternative, new phenomenological model is proposed and examined.

  17. On a Surface Structure Constraint in Hungarian.

    ERIC Educational Resources Information Center

    Szamosi, Michael

    It is possible to apply the concept of surface-structure constraint to a particular area of Hungarian syntax. A surface-structure constraint, according to David Perlmutter, can be seen as a template which serves as a filter at some level after the transformational component. In the case of Hungarian cooccurrence of noun phrases and verbs in a…

  18. Changes in the turbulent boundary layer structure associated with net drag reduction by outer layer manipulators

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Falco, R. E.

    1987-01-01

    A specially designed wind tunnel was used to examine the effects of tandemly arranged parallel plate manipulators (TAPPMs) on a turbulent boundary-layer structure and the associated drag. Momentum balances, as well as measurements of the local shear stress from the velocity gradient near the wall, were used to obtain the net drag and local skin friction changes. Two TAPPMs, identical except for the thickness of their plates, were used in the study. Results with .003 inch plates were a maximum net drag reduction of 10 percent at 58 beta sub o (using a momentum balance). At 20 beta sub o, simultaneous laser sheet flow visualization and hot-wire anemometry data showed that the Reynolds stress in the large eddies was significantly reduced, as were the streamwise and normal velocity components. Using space-time correlations the reductions were again identified. Furthermore, quantitative flow visualization showed that the outward normal velocity of the inner region was also significantly decreased in the region around 20 beta sub o. However, throughout the first 130 beta sub o, the measured sublayer thickness with the TAPPMs in place was 15 to 20 percent greater. The data showed that the skin friction, as well as the structure of the turbulence, was strongly modified in the first 35 beta sub o, but that they both significantly relaxed toward unmanipulated boundary layer values by 50 beta sub o.

  19. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  20. The structure of star clusters in the outer halo of M31

    NASA Astrophysics Data System (ADS)

    Tanvir, N. R.; Mackey, A. D.; Ferguson, A. M. N.; Huxor, A.; Read, J. I.; Lewis, G. F.; Irwin, M. J.; Chapman, S.; Ibata, R.; Wilkinson, M. I.; McConnachie, A. W.; Martin, N. F.; Davies, M. B.; Bridges, T. J.

    2012-05-01

    We present a structural analysis of halo star clusters in M31 based on deep Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) imaging. The clusters in our sample span a range in galactocentric projected distance from 13 to 100 kpc and thus reside in rather remote environments. Ten of the clusters are classical globulars, whilst four are from the Huxor et al. population of extended, old clusters. For most clusters, contamination by M31 halo stars is slight, and so the profiles can be mapped reliably to large radial distances from their centres. We find that the extended clusters are well fit by analytic King profiles with ˜20 parsec core radii and ˜100 parsec photometric tidal radii, or by Sérsic profiles of index ˜1 (i.e. approximately exponential). Most of the classical globulars also have large photometric tidal radii in the range 50-100 parsec; however, the King profile is a less good fit in some cases, particularly at small radii. We find 60 per cent of the classical globular clusters exhibit cuspy cores which are reasonably well described by Sérsic profiles of index ˜2-6. Our analysis also reinforces the finding that luminous classical globulars, with half-light radii <10 parsec, are present out to radii of at least 100 kpc in M31, which is in contrast to the situation in the Milky Way where such clusters (other than the unusual object NGC 2419) are absent beyond 40 kpc.

  1. CENP-T provides a structural platform for outer kinetochore assembly

    PubMed Central

    Nishino, Tatsuya; Rago, Florencia; Hori, Tetsuya; Tomii, Kentaro; Cheeseman, Iain M; Fukagawa, Tatsuo

    2013-01-01

    The kinetochore forms a dynamic interface with microtubules from the mitotic spindle during mitosis. The Ndc80 complex acts as the key microtubule-binding complex at kinetochores. However, it is unclear how the Ndc80 complex associates with the inner kinetochore proteins that assemble upon centromeric chromatin. Here, based on a high-resolution structural analysis, we demonstrate that the N-terminal region of vertebrate CENP-T interacts with the ‘RWD' domain in the Spc24/25 portion of the Ndc80 complex. Phosphorylation of CENP-T strengthens a cryptic hydrophobic interaction between CENP-T and Spc25 resulting in a phospho-regulated interaction that occurs without direct recognition of the phosphorylated residue. The Ndc80 complex interacts with both CENP-T and the Mis12 complex, but we find that these interactions are mutually exclusive, supporting a model in which two distinct pathways target the Ndc80 complex to kinetochores. Our results provide a model for how the multiple protein complexes at kinetochores associate in a phospho-regulated manner. PMID:23334297

  2. Recombinant Treponema pallidum rare outer membrane protein 1 (Tromp1) expressed in Escherichia coli has porin activity and surface antigenic exposure.

    PubMed Central

    Blanco, D R; Champion, C I; Exner, M M; Shang, E S; Skare, J T; Hancock, R E; Miller, J N; Lovett, M A

    1996-01-01

    We recently reported the cloning and sequencing of the gene encoding a 31-kDa Treponema pallidum subsp. pallidum rare outer membrane porin protein, designated Tromp1 (D. R. Blanco, C. I. Champion, M. M. Exner, H. Erdjument-Bromage, R. E. W. Hancock, P. Tempst, J. N. Miller, and M. A. Lovett, J. Bacteriol. 177:3556-3562, 1995). Here, we report the stable expression of recombinant Tromp1 (rTromp1) in Escherichia coli. rTromp1 expressed without its signal peptide and containing a 22-residue N-terminal fusion resulted in high-level accumulation of a nonexported soluble protein that was purified to homogeneity by fast protein liquid chromatography (FPLC). Specific antiserum generated to the FPLC-purified rTromp1 fusion identified on immunoblots of T. pallidum the native 31-kDa Tromp1 protein and two higher-molecular-mass oligomeric forms of Tromp1 at 55 and 80 kDa. rTromp1 was also expressed with its native signal peptide by using an inducible T7 promoter. Under these conditions, rTromp1 fractionated predominantly with the E. coli soluble and outer membrane fractions, but not with the inner membrane fraction. rTromp1 isolated from the E. coli outer membrane and reconstituted into planar lipid bilayers showed porin activity based on average single-channel conductances of 0.4 and 0.8 nS in 1 M KCl. Whole-mount immunoelectron microscopy using infection-derived immune serum against T. pallidum indicated that rTromp1 was surface exposed when expressed in E. coli. These findings demonstrate that rTromp1 can be targeted to the E. coli outer membrane, where it has both porin activity and surface antigenic exposure. PMID:8955283

  3. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Stress Corrosion Cracking in Small Bore Metallic Structures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2007-01-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.

  4. Analysis of Eddy Current Capabilities for the Detection of Outer Diameter Cracking in Small Bore Metallic Structures

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Williams, Phillip; Simpson, John

    2008-02-01

    The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in space shuttle primary reaction control system (PRCS) thrusters. In this case, the detection of deeply buried intergranular cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of intergranular cracking in PRCS thrusters.

  5. Near surface flow structure over a dimpled surface with blowing

    NASA Astrophysics Data System (ADS)

    Borchetta, Colby; Martin, Alexandre; Bailey, Sean

    2015-11-01

    The combined effects of surface roughness with flow injection are of particular interest in understanding the flow over ablative heat-shields, a common form of thermal protection system (TPS) used for atmospheric entry. Stereoscopic, time-resolved particle image velocimetry was used to investigate the near-surface flow over a surface geometry consisting of hexagonal dimples, typical of a TPS. Of particular interest are the modifications made to the flow structures generated by the dimpled elements caused by flow injection through the surface. Without flow injection, inclined flow structures are generated periodically at the upstream edge of the dimples and convected downstream. This behavior is coupled with fluid becoming entrained inside the dimples, recirculating and ejecting away from the surface. When flow injection occurs through the surface, this process occupies a larger region of the flow, extending further from the surface, with a corresponding increase in the size of the convecting structures and increase in turbulent kinetic energy. These features persist over the range of Reynolds numbers investigated, with increasing Reynolds number resulting in increased turbulence and a corresponding broadening of the region of the flow influenced by the surface. This research is supported by NASA Award NNX13AN04A.

  6. The real reason for having a meibomian lipid layer covering the outer surface of the tear film - A review.

    PubMed

    Millar, Thomas J; Schuett, Burkhardt S

    2015-08-01

    This review critically evaluates a broad range of literature in order to show the relationship between meibum, tear lipids and the tear film lipid layer (TFLL). The relationship of meibum composition to dry eye syndrome is briefly discussed. The review also explores the interactions between aqueous and the TFLL by examining the correlations between meibomian lipids and lipids extracted from whole tears, and by considering protein adsorption to the TFLL from the aqueous. Although it is clear to the authors that a normal tear film resists evaporation, an emerging idea from the literature is that the main purpose of the TFLL is to allow the spread of the tear film and to prevent its collapse onto the ocular surface, rather than to be an evaporative blanket. Current models on the possible structure of the TFLL are also examined. PMID:25981748

  7. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  8. Specific Antibodies Reactive with the 22-Kilodalton Major Outer Surface Protein of Borrelia anserina Ni-NL Protect Chicks from Infection

    PubMed Central

    Sambri, Vittorio; Marangoni, Antonella; Olmo, Andrea; Storni, Elisa; Montagnani, Marco; Fabbi, Massimo; Cevenini, Roberto

    1999-01-01

    An outer surface lipoprotein of 22 kDa was identified in the avian pathogen Borrelia anserina Ni-NL by using antibody preparations reactive with bacterial surface-exposed proteins. Amino acid sequence analysis of the 22-kDa protein demonstrated 90% identity with VmpA of B. turicatae, suggesting that the protein belongs to the family of 20-kDa outer surface proteins of the genus Borrelia. All of the 60 chicks intramuscularly treated with antibodies specifically reacting with the 22-kDa protein and infected with strain Ni-NL were completely protected from infection, since no spirochetemia was detected, and from death. Control chicks were treated with immune sera raised against apathogenic strain B. anserina Es, which expresses a prominent 20-kDa polypeptide that is also a member of the Vmp family but does not cross-react immunologically with the 22-kDa protein of the Ni-NL strain. These animals, infected with B. anserina Ni-NL, showed a high degree of spirochetemia 10 days after infection, and all died between 14 and 21 days after infection. The results showed that the 22-kDa surface protein of B. anserina Ni-NL is a determinant of the pathogenic potential of the strain and also confirmed that only strain-specific antibodies are protective against B. anserina infection. PMID:10225933

  9. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  10. Advancing contact angles on large structured surfaces

    NASA Astrophysics Data System (ADS)

    Yoshitake, Yumiko; Itakura, Yoshinori; Gobo, Junichi; Takahashi, Tsutomu

    2014-11-01

    To understand wetting phenomena on complex surfaces, simple modeling experiments in two-dimension system would be one of the most efficient approaches. We develop a new experimental method for wetting dynamics using a large pseudo two- dimensional droplet. This method is useful to examine theoretical studies developed in two dimensional systems. In this study, we examine a pinning and depinning phenomena on millimeter-size structured surface to explain the origin of contact angle hysteresis. Contact lines of the droplet are pinned and deppined at the edge of surface texture. The contact lines can move when the contact angle is equal to the Young's contact angle which are determined by the balance of the surface and interfacial tension immediate vicinity of the contact lines, which is different from the Wenzel's low. Our approach enables to realize a macroscopic modelling experiment of wetting on complex surfaces, which opens a path to design functional surfaces with chemical and physical structure.

  11. Integrated geophysical and geological methods to investigate the inner and outer structures of the Quaternary Mýtina maar (W-Bohemia, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Flechsig, Christina; Heinicke, Jens; Mrlina, Jan; Kämpf, Horst; Nickschick, Tobias; Schmidt, Alina; Bayer, Tomáš; Günther, Thomas; Rücker, Carsten; Seidel, Elisabeth; Seidl, Michal

    2015-11-01

    The Mýtina maar is the first known Quaternary maar in the Bohemian Massif. Based on the results of Mrlina et al. (J Volcanol Geother Res 182:97-112, 2009), a multiparametric geophysical (electrical resistivity tomography, gravimetry, magnetometry, seismics) and geological/petrochemical research study had been carried out. The interpretation of the data has provided new information about the inner structure of the volcanic complex: (1) specification of the depth of post-volcanic sedimentary fill (up to ~100 m) and (2) magnetic and resistivity signs of one (or two) hidden volcanic structures interpreted as intrusions or remains of a scoria cone. The findings at the outer structure of the maar incorporate the (1) evidence of circular fracture zones outside the maar, (2) detection and distribution of volcanic ejecta and tephra-fall deposits at the surface, and (3) indications from electrical resistivity tomography and gravity data in the area between the Mýtina maar and Železná hůrka scoria cone, interpreted as a palaeovalley, filled by volcaniclastic rocks, and aligned along the strike line (NW-SE) of the Tachov fault zone. These findings are valuable contributions to extend the knowledge about structure of maar volcanoes in general. Because of ongoing active magmatic processes in the north-east part of the Cheb Basin (ca. 15-30 km north of the investigation area), the Mýtina maar-diatreme volcano and surroundings is a suitable key area for research directed to reconstruction of the palaeovolcanic evolution and assessment of possible future hazard potential in the Bohemian Massif.

  12. Preservation of Archaeal Surface Layer Structure During Mineralization

    PubMed Central

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-01-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record. PMID:27221593

  13. Preservation of Archaeal Surface Layer Structure During Mineralization.

    PubMed

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-01-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer "ghosts" during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record. PMID:27221593

  14. Correlating simulated surface marks with near-surface tornado structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael I.

    Tornadoes often leave behind patterns of debris deposition, or "surface marks", which provide a direct signature of their near surface winds. The intent of this thesis is to investigate what can be learned about near-surface tornado structure and intensity through the properties of surface marks generated by simulated, debris-laden tornadoes. Earlier work showed through numerical simulations that the tornado's structure and intensity is highly sensitive to properties of the near-surface flow and can change rapidly in time for some conditions. The strongest winds often occur within tens of meters of the surface where the threat to human life and property is highest, and factors such as massive debris loadings and asymmetry of the main vortex have proven to be critical complications in some regimes. However, studying this portion of the flow in the field is problematic; while Doppler radar provides the best tornado wind field measurements, it cannot probe below about 20 m, and interpretation of Doppler data requires assumptions about tornado symmetry, steadiness in time, and correlation between scatterer and air velocities that are more uncertain near the surface. As early as 1967, Fujita proposed estimating tornado wind speeds from analysis of aerial photography and ground documentation of surface marks. A handful of studies followed but were limited by difficulties in interpreting physical origins of the marks, and little scientific attention has been paid to them since. Here, Fujita's original idea is revisited in the context of three-dimensional, large-eddy simulations of tornadoes with fully-coupled debris. In this thesis, the origins of the most prominent simulated marks are determined and compared with historical interpretations of real marks. The earlier hypothesis that cycloidal surface marks were directly correlated with the paths of individual vortices (either the main vortex or its secondary vortices, when present) is unsupported by the simulation results

  15. Composition of the Surface Proteome of Anaplasma marginale and Its Role in Protective Immunity Induced by Outer Membrane Immunization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface proteins of tick-borne, intracellular bacterial pathogens mediate functions essential for invasion and colonization. Consequently, the surface proteome of these organisms is specifically relevant from two biological perspectives, induction of protective immunity in the mammalian host and un...

  16. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  17. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  18. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  19. Effects of Outer Membrane Vesicle Formation, Surface-Layer Production and Nanopod Development on the Metabolism of Phenanthrene by Delftia acidovorans Cs1-4

    PubMed Central

    Shetty, Ameesha; Hickey, William J.

    2014-01-01

    Nanopods are extracellular structures arising from the convergence of two widely distributed bacterial characteristics: production of outer membrane vesicles (OMV) and formation of surface layers (S-layers). Nanopod production is driven by OMV formation, and in Delftia acidovorans Cs1-4 growth on phenanthrene induces OMV/nanopod formation. While OMV production has been associated with many functions, particularly with pathogens, linkage to biodegradation has been limited to a membrane stress response to lipophilic compounds. The objectives of this study were to determine: 1.) Whether induction of nanopod formation was linked to phenanthrene metabolism or a non-specific membrane stress response, and 2.) The relative importance of OMV/nanopod formation vs. formation of the S-layer alone to phenanthrene utilization. Membrane stress response was investigated by quantifying nanopod formation following exposure to compounds that exceeded phenanthrene in membrane stress-inducing potential. Naphthalene did not induce nanopod formation, and toluene was a weak inducer compared to phenanthrene (two- vs. six-fold increase, respectively). Induction of nanopod formation by growth on phenanthrene was therefore linked to phenanthrene metabolism and not a membrane stress response. Impacts on phenanthrene biodegradation of OMV/nanopod production vs. S-layer formation were assessed with D. acidovorans Cs1-4 mutants deficient in S-layer formation or OMV/nanopod production. Both mutants had impaired growth on phenanthrene, but the loss of OMV/nanopod production was more significant than loss of the S-layer. The S-layer of D. acidovorans Cs1-4 did not affect phenanthrene uptake, and its primary role in phenanthrene biodegradation process appeared to be enabling nanopod development. Nanopods appeared to benefit phenanthrene biodegradation by enhancing cellular retention of metabolites. Collectively, these studies established that nanopod/OMV formation was an essential characteristic of

  20. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    SciTech Connect

    Plomp, M; Leighton, T; Wheeler, K; Malkin, A

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

  1. Longitudinal surface structures (flowstripes) on Antarctic glaciers

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Gudmundsson, G. H.

    2012-03-01

    Longitudinal surface structures ("flowstripes") are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems; the Lambert Glacier/Amery Ice Shelf area, the Taylor and Ferrar Glaciers in the Ross Sea sector, Crane and Jorum Glaciers (ice-shelf tributary glaciers) on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area. Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1) as relatively wide flow stripes within glacier flow units and (2) as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.

  2. Evidence for water structuring forces between surfaces

    PubMed Central

    Stanley, Christopher

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement of water as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate common features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water. PMID:22125414

  3. The role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer

    SciTech Connect

    Bouhenni, Rachida; Vora, Gary J.; Biffinger, Justin C.; Shirodkar, Sheetal; Brockman, K. L.; Ray, Ricky; Wu, Peter; Johnson, Brandy J.; Biddle, E. M.; Marshall, Matthew J.; Fitzgerald, Lisa A.; Little, Brenda; Fredrickson, Jim K.; Beliaev, Alex S.; Ringeisen, Bradley R.; Saffarini, Daad

    2010-04-20

    Shewanella oneidensis is a facultative anaerobe that uses more than 14 different terminal electron acceptors for respiration. These include metal oxides and hydroxyoxides, and toxic metals such as uranium and chromium. Mutants deficient in metal reduction were isolated using the mariner transposon derivative, minihimar RB1. These included mutants with transposon insertions in the prepilin peptidase and type II secretion system genes. All mutants were deficient in Fe(III) and Mn(IV) reduction, and exhibited slow growth when DMSO was used as the electron acceptor. The genome sequence of S. oneidensis contains one prepilin peptidase gene, pilD. A similar prepilin peptidase that may function in the processing of type II secretion prepilins was not found. Single and multiple chromosomal deletions of four putative type IV pilin genes did not affect Fe(III) and Mn(IV) reduction. These results indicate that PilD in S. oneidensis is responsible for processing both type IV and type II secretion prepilin proteins. Type IV pili do not appear to be required for Fe(III) and Mn(IV) reduction.

  4. Modification of the cylindrical products outer surface influenced by radial beam of argon ions at automatic mode

    NASA Astrophysics Data System (ADS)

    Valikov, R. A.; Yashin, A. S.; Yakutkina, T. V.; Kalin, B. A.; Volkov, N. V.; Krivobokov, V. P.; Yanin, S. N.; Asainov, O. Kh; Yurev, Yu N.

    2015-11-01

    Obtaining surface with high purity and good roughness is important for increasing the corrosion resistance and wear resistance of products working in corrosion-active environment. Installation ILUR-03 with the coaxial ion beam wide energy spectrum source for cleaning, polishing and surface doping of long cylindrical items has been developed. Upgraded installation ILUR-03 provides effective technological defects cleaning (abrasives after mechanical polishing, acid residues after chemical etching, adsorbed gases), surface polishing, film deposition by using magnetrons and surface doping by ion mixing method in one technological cycle.

  5. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay.

    PubMed Central

    Cloeckaert, A; de Wergifosse, P; Dubray, G; Limet, J N

    1990-01-01

    A panel of monoclonal antibodies (MAbs) to seven Brucella outer membrane proteins were characterized. These antibodies were obtained by immunizing mice with sodium dodecyl sulfate-insoluble (SDS-I) fractions, cell walls, or whole bacterial cells of Brucella abortus or B. melitensis. Enzyme-linked immunosorbent assays were used to screen the hybridoma supernatants and to determine their binding at the surface of rough and smooth B. abortus and B. melitensis cells. The outer membrane proteins (OMPs) recognized by these antibodies were the proteins with molecular masses of 25 to 27 kDa and 36 to 38 kDa (porin) (major proteins) and the proteins with molecular masses of 10, 16.5, 19, 31 to 34, and 89 kDa (minor proteins). Surface exposure of these OMPs was visualized by electron microscopy by using the MAbs and immunogold labeling. Binding of the MAbs on whole rough bacterial cells indicates that the 10-, 16.5-, 19-, 25- to 27-, 31- to 34-, 36- to 38-, and 89-kDa OMPs are exposed at the cell surface. However, enzyme-linked immunosorbent assay results indicate a much better binding of the anti-OMP MAbs on rough strains than on the corresponding smooth strains except for the anti-19-kDa MAb. Immunoelectron microscopy showed that on smooth B. abortus cells only the 89- and 31- to 34-kDa OMPs were not accessible to the MAbs tested. Binding of the anti-31- to 34-kDa MAb at the cell surface was observed for the rough B. abortus cells and for the rough and smooth B. melitensis cells. These results indicate the importance of steric hindrance due to the presence of the long lipopolysaccharide O side chains in the accessibility of OMPs on smooth Brucella strains and should be considered when undertaking vaccine development. Images PMID:1701417

  6. PHOTOSYNTHESIS OF CARBON DIOXIDE FROM CARBON SURFACES COATED WITH OXYGEN: IMPLICATIONS FOR INTERSTELLAR MOLECULAR CLOUDS AND THE OUTER SOLAR SYSTEM

    SciTech Connect

    Fulvio, D.; Raut, U.; Baragiola, R. A. E-mail: ur5n@virginia.edu

    2012-06-20

    We investigate via infrared spectroscopy the synthesis of CO{sub 2} by ultraviolet irradiation (6.41 eV) of amorphous carbon covered with solid O{sub 2} at 21 K. Oxidation occurs at the O{sub 2}-carbon interface promoted by photon excitation or dissociation of O{sub 2} molecules. The CO{sub 2} production is linear with photon fluence with a yield of 3.3 {+-} 0.3 Multiplication-Sign 10{sup -5} CO{sub 2} photon{sup -1}; the yield does not decrease at high fluences (at least up to 2 Multiplication-Sign 10{sup 19} photons cm{sup -2}) since CO{sub 2} is not photodissociated at this photon energy. Replacing oxygen with water ice did not produce CO{sub 2} since H{sub 2}O does not dissociate at this photon energy. The CO{sub 2} synthesis process discussed in this Letter does not require H{sub 2}O or CO and may be important in cold astrophysical environments where O{sub 2} could be locally segregated on carbonaceous grains, such as in molecular clouds and icy objects in the outer solar system.

  7. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria.

    PubMed

    Hooda, Yogesh; Lai, Christine Chieh-Lin; Judd, Andrew; Buckwalter, Carolyn M; Shin, Hyejin Esther; Gray-Owen, Scott D; Moraes, Trevor F

    2016-01-01

    Lipoproteins decorate the surface of many Gram-negative bacterial pathogens, playing essential roles in immune evasion and nutrient acquisition. In Neisseria spp., the causative agents of gonorrhoea and meningococcal meningitis, surface lipoproteins (SLPs) are required for virulence and have been extensively studied as prime candidates for vaccine development. However, the machinery and mechanism that allow for the surface display of SLPs are not known. Here, we describe a transposon (Tn5)-based search for the proteins required to deliver SLPs to the surface of Neisseria meningitidis, revealing a family of proteins that we have named the surface lipoprotein assembly modulator (Slam). N. meningitidis contains two Slam proteins, each exhibiting distinct substrate preferences. The Slam proteins are sufficient to reconstitute SLP transport in laboratory strains of Escherichia coli, which are otherwise unable to efficiently display these lipoproteins on their cell surface. Immunoprecipitation and domain probing experiments suggest that the SLP, TbpB, interacts with Slam during the transit process; furthermore, the membrane domain of Slam is sufficient for selectivity and proper surface display of SLPs. Rather than being a Neisseria-specific factor, our bioinformatic analysis shows that Slam can be found throughout proteobacterial genomes, indicating a conserved but until now unrecognized virulence mechanism. PMID:27572441

  8. 3D Petrography - Serendipitous Discovery of Magmatic Vapor Deposition of Anhydrite at Mount Pinatubo by SEM Imaging of Outer Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Fournelle, J. H.; Jakubowski, R. T.; Welch, S.; Swope, R. J.

    2003-12-01

    A standard petrographic technique focuses upon examination of surfaces or planes cut through rock samples, with one approach studying chemical variations in a core to rim traverse using various microprobes, and more recently, another determining the distribution of crystal sizes to obtain information about nucleation and growth. We show that another mineral domain deserves petrographic attention: the outer surfaces of crystals, which are normally relegated to nearly invisible thin lines in a cut section. In studying anhydrite phenocrysts from the 1991 climactic eruption of Mt. Pinatubo, SEM examination of "raw" pumice fragments showed the existence of a Ca-sulfur-rich phase with hexagonal morphology residing upon plagioclase phenocryst surfaces in vesicles (Fournelle et al,1996, Fig 9). In 1992, Terry Gerlach suggested that the Pinatubo anhydrite phenocrysts should be evaluated with XRD to determine if they were indeed orthorhombic anhydrite (β -CaSO4), and not a lower temperature polymorph (i.e., α or γ ). In 1998, we recommenced this project, mounting several dozen 100-200 micron-size phenocrysts of the proper density fraction on tape (minerals had been separated from the pumices using standard techniques). They were examined by low resolution SEM with EDS to distinguish the anhydrite from apatite, prior to single-crystal XRD. We were surprised to find that many of the anhydrite surfaces were decorated with small mounds, which upon examination by high resolution SEM turned out to be micron and smaller pyramids, with some surfaces bearing hundreds. Single-crystal XRD verified that the phenocrysts were orthorhombic anhydrite, and EBSD verified that the small pyramids were the same. Eventually we found that these surface pyramids are common phenomena in experimental or industrial chemical vapor deposition processes when nucleation overwhelms growth. Textural relations were consistent with these pyramids being deposited in situ, within the Pinatubo magma chamber

  9. Light scattering from cylindrical structures on surfaces.

    PubMed

    Taubenblatt, M A

    1990-03-01

    Light scattering from a dielectric cylindrical structure on a surface by a plane wave with field vector along the cylinder axis is calculated with a modification of the coupled-dipole method. The interaction matrix is calculated with the use of both the direct contribution of a polarization current filament and its reflection from the surface. The reflected cylindrical waves are computed with the use of the Sommerfeld-type integral expression. Light scattering from structures of arbitrary cross section and the size of the order of a wavelength can be quickly determined with this method. PMID:19759774

  10. Surface structure and electronic properties of materials

    NASA Technical Reports Server (NTRS)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  11. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; Mccready, David E.; Lower, Steven

    2007-07-31

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration.  A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface.  Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma assisted molecular beam epitaxy (MBE), and recombinant MtrC or OmcA molecules coupled to gold substrates.  Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface.  The strength of the OmcA-hematite bond was approximately twice as strong as the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC.  Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite.  The force measurements for the hematite-cytochrome pairs were compared to spectra collected between an iron oxide and S. oneidensis under anaerobic conditions.  There is a strong correlation between the whole cell and pure protein force spectra suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals.  Finally, by comparing the magnitude of binding force for the whole cell vs. pure protein data, we were able to estimate that a single bacterium of S. oneidensis (2 x 0.5 μm) expresses ~104 cytochromes on its outer surface

  12. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1.

    PubMed

    Lower, Brian H; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C; McCready, David E; Lower, Steven K

    2007-07-01

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe(2)O(3)) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 microm) expresses approximately 10(4) cytochromes on its outer surface. PMID:17468239

  13. Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1▿

    PubMed Central

    Lower, Brian H.; Shi, Liang; Yongsunthon, Ruchirej; Droubay, Timothy C.; McCready, David E.; Lower, Steven K.

    2007-01-01

    Shewanella oneidensis MR-1 is purported to express outer membrane cytochromes (e.g., MtrC and OmcA) that transfer electrons directly to Fe(III) in a mineral during anaerobic respiration. A prerequisite for this type of reaction would be the formation of a stable bond between a cytochrome and an iron oxide surface. Atomic force microscopy (AFM) was used to detect whether a specific bond forms between a hematite (Fe2O3) thin film, created with oxygen plasma-assisted molecular beam epitaxy, and recombinant MtrC or OmcA molecules coupled to gold substrates. Force spectra displayed a unique force signature indicative of a specific bond between each cytochrome and the hematite surface. The strength of the OmcA-hematite bond was approximately twice that of the MtrC-hematite bond, but direct binding to hematite was twice as favorable for MtrC. Reversible folding/unfolding reactions were observed for mechanically denatured MtrC molecules bound to hematite. The force measurements for the hematite-cytochrome pairs were compared to spectra collected for an iron oxide and S. oneidensis under anaerobic conditions. There is a strong correlation between the whole-cell and pure-protein force spectra, suggesting that the unique binding attributes of each cytochrome complement one another and allow both MtrC and OmcA to play a prominent role in the transfer of electrons to Fe(III) in minerals. Finally, by comparing the magnitudes of binding force for the whole-cell versus pure-protein data, we were able to estimate that a single bacterium of S. oneidensis (2 by 0.5 μm) expresses ∼104 cytochromes on its outer surface. PMID:17468239

  14. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes

    PubMed Central

    Merenda, Andrea; Ligneris, Elise des; Sears, Kallista; Chaffraix, Thomas; Magniez, Kevin; Cornu, David; Schütz, Jürg A.; Dumée, Ludovic F.

    2016-01-01

    Plasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out. Although only few morphological changes across the graphitic planes of the carbon nanotubes were found under the uniform plasma treatment conditions, the time dependence of pertinent work functions, supported by Raman analysis, suggested that the density of polar groups decreased non-linearly over time prior to reaching saturation from 7 days post treatment. This work provides critical considerations on the understanding of the stability of functional groups introduced across high specific surface area nano-materials used for the design of nano-composites, adsorptive or separation systems, or sensing materials and where interfacial interactions are key to the final materials performance. PMID:27507621

  15. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Merenda, Andrea; Ligneris, Elise Des; Sears, Kallista; Chaffraix, Thomas; Magniez, Kevin; Cornu, David; Schütz, Jürg A.; Dumée, Ludovic F.

    2016-08-01

    Plasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out. Although only few morphological changes across the graphitic planes of the carbon nanotubes were found under the uniform plasma treatment conditions, the time dependence of pertinent work functions, supported by Raman analysis, suggested that the density of polar groups decreased non-linearly over time prior to reaching saturation from 7 days post treatment. This work provides critical considerations on the understanding of the stability of functional groups introduced across high specific surface area nano-materials used for the design of nano-composites, adsorptive or separation systems, or sensing materials and where interfacial interactions are key to the final materials performance.

  16. Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes.

    PubMed

    Merenda, Andrea; Ligneris, Elise des; Sears, Kallista; Chaffraix, Thomas; Magniez, Kevin; Cornu, David; Schütz, Jürg A; Dumée, Ludovic F

    2016-01-01

    Plasma treatments are emerging as superior efficiency treatment for high surface to volume ratio materials to tune functional group densities and alter crystallinity due to their ability to interact with matter at the nanoscale. The purpose of this study is to assess for the first time the long term stability of surface functional groups introduced across the surface of carbon nanotube materials for a series of oxidative, reductive and neutral plasma treatment conditions. Both plasma duration dose matrix based exposures and time decay experiments, whereby the surface energy of the materials was evaluated periodically over a one-month period, were carried out. Although only few morphological changes across the graphitic planes of the carbon nanotubes were found under the uniform plasma treatment conditions, the time dependence of pertinent work functions, supported by Raman analysis, suggested that the density of polar groups decreased non-linearly over time prior to reaching saturation from 7 days post treatment. This work provides critical considerations on the understanding of the stability of functional groups introduced across high specific surface area nano-materials used for the design of nano-composites, adsorptive or separation systems, or sensing materials and where interfacial interactions are key to the final materials performance. PMID:27507621

  17. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  18. Structure of a bacterial cell surface decaheme electron conduit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits...

  19. Disk resolved studies of the optical properties and physical nature of the surfaces of the outer planet satellites

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.; Mosher, J. A.; Johnson, T. V.

    1991-01-01

    The spatially resolved albedo, color, compaction state, roughness, and constituent particle sizes of the surfaces of the satellites of Saturn, Uranus, and Jupiter provide important constraints in understanding the geologic evolution and relevant exogenic processes operating in these satellite systems. Some details of observations are given.

  20. Biochemical and biophysical characterization of the major outer surface protein, OSP-A from North American and European isolates of Borrelia burgdorferi

    SciTech Connect

    McGrath, B.C.; Dunn, J.J.; France, L.L.; Jaing, W.; Polin, D.; Gorgone, G.; Luft, B.; Dykhuizen, D.

    1995-12-31

    Lyme borreliosis, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in North America and Western Europe. As the major delayed immune response in humans, a better understanding of the major outer surface lipoproteins OspA and OspB are of much interest. These proteins have been shown to exhibit three distinct phylogenetic genotypes based on their DNA sequences. This paper describes the cloning of genomic DNA for each variant and amplification of PCR. DNA sequence data was used to derive computer driven phylogenetic analysis and deduced amino acid sequences. Overproduction of variant OspAs was carried out in E. coli using a T7-based expression system. Circular dichroism and fluorescence studies was carried out on the recombinant B31 PspA yielding evidence supporting a B31 protein containing 11% alpha-helix, 34% antiparallel beta-sheet, 12% parallel beta sheet.

  1. Relevance of Hydrodynamic Effects for the Calculation of Outer Surface Potential of Biological Membrane Using Electrophoretic Data.

    PubMed

    Silva, Izan M; Castro, Maria Clícia S; Silva, Dilson; Cortez, Célia M

    2016-06-01

    In this paper, we present the results of a study on the influence of hydrodynamic effects on the surface potentials of the erythrocyte membrane, comparing two different models formulated to simulate the electrophoretic movement of a biological cell: the classical Helmholtz-Smoluchowski model and a model presented by Hsu et al. (1996). This model considers hydrodynamic effects to describe the distribution of the fluid velocity. The electric potential equation was obtained from the non-linear Poisson-Boltzmann equation, considering the spatial distribution of electrical charges fixed in glycocalyx and cytoplasmic proteins, as well as electrolyte charges and ones fixed on the surfaces of lipidic bilayer. Our results show that the Helmholtz-Smoluchowski model is not able to reflect the real forces responsible to the electrophoretic behavior of cell, because it does not take account the hydrodynamic effects of glycocalyx. This charged network that covers cellular surface constitutes a complex physical system whose electromechanical characteristics cannot be neglected. Then, supporting the hypothesis of other authors, we suggest that, in electrophoretic motion analyses of cells, the classical model represents a limiting case of models that take into account hydrodynamic effects to describe the velocity distribution of fluid. PMID:27276378

  2. Outer Dregs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    15 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the very edge of the south polar residual cap of Mars. The bright areas, which appear somewhat like pieces of sliced Swiss cheese, are composed mainly of frozen carbon dioxide. The scarps around the edges of the carbon dioxide mesas have been retreating at a rate of roughly 3 meters (3 yards) per martian year; in this case, exposing a darker surface that lies below.

    Location near: 85.4oS, 88.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  3. Structurally tuned iridescent surfaces inspired by nature

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Rassart, Marie; Vandenbem, Cédric; Welch, Victoria; Pol Vigneron, Jean; Lucas, Stéphane

    2008-01-01

    Iridescent surfaces exhibit vivid colours which change with the angle of incidence or viewing due to optical wave interference in the multilayer structure present at the wavelength scale underneath the surface. In nature, one can find examples of iridescent Coleoptera for which the hue changes either greatly or slightly with the angle. Because these species typically make these structures from a single biological material (usually chitin) and air or water as the low refractive index component, they have evolved by adjusting the layer thicknesses in order to display quite different iridescent aspects. Taking inspiration from this proven strategy, we have designed and fabricated periodic TiO2/SiO2 multilayer films in order to demonstrate the concept of structurally tuned iridescent surfaces. Titanium or silicon oxide layers were deposited on a glass substrate using dc reactive or RF magnetron sputtering techniques, respectively. Two structures were designed for which the period and the TiO2/SiO2 layer thickness ratio were varied in such a way that the films displayed radically different iridescent aspects: a reddish-to-greenish changing hue and a stable bluish hue. The fabricated samples were characterized through specular reflectance/transmittance measurements. Modelling of transmittance spectra using standard multilayer film theory confirmed the high quality of the twelve-period Bragg reflectors. The chromaticity coordinates, which were calculated from measured reflectance spectra taken at different angles, were in accordance with theoretical predictions.

  4. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: THE COMPOSITIONAL CLASSES OF THE KUIPER BELT

    SciTech Connect

    Fraser, Wesley C.; Brown, Michael E.

    2012-04-10

    We present the first results of the Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System. The purpose of this survey was to measure the surface properties of a large number of Kuiper Belt objects and attempt to infer compositional and dynamical correlations. We find that the Centaurs and the low-perihelion scattered disk and resonant objects exhibit virtually identical bifurcated optical color distributions and make up two well-defined groups of objects. Both groups have highly correlated optical and NIR colors that are well described by a pair of two-component mixture models that have different red components but share a common neutral component. The small, H{sub 606} {approx}> 5.6 high-perihelion excited objects are entirely consistent with being drawn from the two branches of the mixing model, suggesting that the color bifurcation of the Centaurs is apparent in all small excited objects. On the other hand, objects larger than H{sub 606} {approx} 5.6 are not consistent with the mixing model, suggesting some evolutionary process avoided by the smaller objects. The existence of a bifurcation amongst all excited populations argues that the two separate classes of object existed in the primordial disk before the excited Kuiper Belt was populated. The cold classical objects exhibit a different type of surface that has colors that are consistent with being drawn from the red branch of the mixing model, but with much higher albedos.

  5. Surface finish quality of the outer AXAF mirror pair based on X-ray measurements of the VETA-I

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Schwartz, Daniel; Szentgyorgyi, Andrew; Van Speybroeck, Leon; Zhao, Ping

    1993-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are 1D scans of the core of the point response function (PRF) (FWHM scans), the encircled energy as a function of radius, and 1D scans of the wings of the PRF. We discuss briefly our raytrace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1/mm. Constraints on the average amplitude of circumferential slope errors are derived as well.

  6. Surface finish quality of the outer AXAF mirror pair based on x ray measurements of the VETA-I

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Schwartz, Daniel A.; Szentgyorgyi, Andrew; Vanspeybroeck, Leon; Zhao, Ping

    1992-01-01

    We employ the X-ray measurements of the VETA-I taken at the X-Ray Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) to extract information about the surface finish quality of the outermost pair of AXAF mirrors. The particular measurements we consider are one dimensional scans of the core of the point response function (PRF) (full width half maximum (FWHM) scans), the encircled energy as a function of radius, and one dimensional scans of the wings of the PRF. We discuss briefly our ray trace model which incorporates the numerous effects present in the VETA-I test, such as the finite source distance, the size and shape of the X-ray source, the residual gravitational distortions of the optic, the despace of the VETA-I, and particulate contamination. We show how the data constrain the amplitude of mirror surface deviations for spatial frequencies greater than about 0.1 mm(exp -1). Constraints on the average amplitude of circumferential slope errors are derived as well.

  7. Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa.

    PubMed

    Yonehara, Ryo; Yamashita, Eiki; Nakagawa, Atsushi

    2016-06-01

    The genome of Pseudomonas aeruginosa encodes tripartite efflux pumps that extrude functionally and structurally dissimilar antibiotics from the bacterial cell. MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM are the main tripartite efflux pumps responsible for multidrug resistance in P. aeruginosa. The outer membrane factors OprN, OprJ, and OprM are essential components of functional tripartite efflux pumps. To elucidate the structural basis of multidrug resistance, we determined the crystal structures of OprN and OprJ. These structures revealed several features, including tri-acylation of the N-terminal cysteine, a small pore in the β-barrel domain, and a tightly sealed gate in the α-barrel domain. Despite the overall similarity of OprN, OprJ, and OprM, a comparison of their structures and electrostatic distributions revealed subtle differences at the periplasmic end of the α-barrel domain. These results suggested that the overall structures of these outer membrane factors are specifically optimized for particular tripartite efflux pumps. Proteins 2016; 84:759-769. © 2016 Wiley Periodicals, Inc. PMID:26914226

  8. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  9. Surface composition and dynamical evolution of two retrograde objects in the outer solar system: 2008 YB3 and 2005 VD

    NASA Astrophysics Data System (ADS)

    Pinilla-Alonso, N.; Alvarez-Candal, A.; Melita, M. D.; Lorenzi, V.; Licandro, J.; Carvano, J.; Lazzaro, D.; Carraro, G.; Alí-Lagoa, V.; Costa, E.; Hasselmann, P. H.

    2013-02-01

    Most of the objects in the trans-Neptunian belt (TNb) and related populations move in prograde orbits with low eccentricity and inclination. However, the list of icy minor bodies moving in orbits with an inclination above 40° has increased in recent years. The origin of these bodies, and in particular of those objects in retrograde orbits, is not well determined, and different scenarios are considered, depending on their inclination and perihelion. In this paper, we present new observational and dynamical data of two objects in retrograde orbits, 2008 YB3 and 2005 VD. We find that the surface of these extreme objects is depleted of ices and does not contain the "ultra-red" matter typical of some Centaurs. Despite small differences, these objects share common colors and spectral characteristics with the Trojans, comet nuclei, and the group of grey Centaurs. All of these populations are supposed to be covered by a mantle of dust responsible for their reddish-to-neutral color. To investigate if the surface properties and dynamical evolution of these bodies are related, we integrate their orbits for 108 years to the past. We find a remarkable difference in their dynamical evolutions: 2005 VD's evolution is dominated by a Kozai resonance with planet Jupiter while that of 2008 YB3 is dominated by close encounters with planets Jupiter and Saturn. Our models suggest that the immediate site of provenance of 2005 VD is the in the Oort Cloud, whereas for 2008 YB3 it is in the trans-Neptunian region. Additionally, the study of their residence time shows that 2005 VD has spent a larger lapse of time moving in orbits in the region of the giant planets than 2008 YB3. Together with the small differences in color between these two objects, with 2005 VD being more neutral than 2008 YB3, this fact suggests that the surface of 2005 VD has suffered a higher degree of processing, which is probably related to cometary activity episodes. Partially based on observations made with ESO

  10. The 3-Dimensional Inner and Outer Structure of Ejecta Around Eta Carinae as Detected by the STIS

    NASA Technical Reports Server (NTRS)

    Ishibashi, Kazunori; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The HST/STIS instrument was used successfully to perform a complete mapping of the Homunculus nebula at two wavelength ranges including H-alpha and H-beta with a spectral resolving power of about 5000 and a spatial resolution of 0.1". The individual spectra were merged to synthesize three-dimensional data cubes that contain a set of images of Eta Car with spatial resolution of 0.10 to 0.251, sliced at velocity increment of 10 -- 30 km/s. For the first time this unique method allows us to diagnose the origin of intrinsic narrow emission structure of the nebula with high spatial and velocity resolution. Our initial analysis revealed the inner emission structure appeared to trace an elongated bipolar shell (possibly other shells as well) with a scale size of an arcsecond (i.e., "little homunculus in the Homunculus"). Furthermore, the mapping data cube revealed that the "fan" or "paddle" -- often referred as the source of peculiar blue-shifted intrinsic emissions including the Strontium cloud -- is not the source of intrinsic emissions. The fan is not even a part of the equatorial disk, but is spatially separated from the peculiar emission structure. Indeed we suggest that the fan is a surface of the Northwest lobe, possibly revealed by a blowout of the equatorial disk. We will use a number of visualization techniques (tomographic animations and simple 3-D models) to show these structures. These new results have strong impact upon future numerical modelings of the Homunculus nebula and of understanding of the evolution of the ejecta powered by the central source(s).

  11. A Surface-Exposed Region of a Novel Outer Membrane Protein (P66) of Borrelia spp. Is Variable in Size and Sequence

    PubMed Central

    Bunikis, Jonas; Luke, Catherine J.; Bunikiene, Elena; Bergström, Sven; Barbour, Alan G.

    1998-01-01

    A model of the 66-kDa outer membrane protein (P66) of Lyme disease Borrelia spp. predicts a surface-exposed loop near the C terminus. This region contains an antigen commonly recognized by sera from Lyme disease patients. In the present study, this region of P66 and homologous proteins of other Borrelia spp. were further investigated by using monoclonal antibodies, epitope mapping of P66 of Borrelia burgdorferi, and DNA sequencing. A monoclonal antibody specific for B. burgdorferi bound to the portion of P66 that was accessible to proteolysis in situ. The linear epitope for the antibody was mapped within a variable segment of the surface-exposed region. To further study this protein, the complete gene of Borrelia hermsii for a protein homologous to P66 was cloned. The deduced protein was 589 amino acids in length and 58% identical to P66 of B. burgdorferi. The B. hermsii P66 protein was predicted to have a surface-exposed region in the same location as that of B. burgdorferi’s P66 protein. With primers designed on the basis of conserved sequences and PCR, we identified and cloned the same regions of P66 proteins of Borrelia turicatae, Borrelia parkeri, Borrelia coriaceae, and Borrelia anserina. The deduced protein sequences from all species demonstrated two conserved hydrophobic regions flanking a surface-exposed loop. The loop sequences were highly variable between different Borrelia spp. in both sequence and size, varying between 35 and 45 amino acids. Although the actual function of P66 of Borrelia spp. is unknown, the results suggest that its surface-exposed region is subject to selective pressure. PMID:9537355

  12. Surface chemistry and structure of beryllium oxide

    SciTech Connect

    Fuller, E.L. Jr.; Eager, M.H.; Smithwick, R.W. III; Smyrl, N.R.

    1982-02-01

    Detailed examination of nitrogen sorption isotherms related to the surface chemistry and structure of high-purity beryllium oxide and the products of alkali treatment aid in a better understanding of the topochemical problems encountered in the production of ceramic items. Details are corroborated by additional techniques: diffuse reflectance infrared Fourier transform (DRIFT); mercury intrusion porosimetry (MIP); and scanning electron microscopy (SEM). The results correlate well with studies on other oxides when the unique thermophysical properties of this material are considered.

  13. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Outer Solar System" included the following reports:New Data About Seasonal Variations of the North-South Asymmetry of Polarized Light of Jupiter; Appearance of Second Harmonic in the Jupiter Spectrum; Dynamics of Confined Liquid Mass, Spreading on Planet Surface; "Cassini" will Discover 116 New Satellites of Saturn!; Jupiter's Light Reflection Law;and Internal Structure Modelling of Europa.

  14. Lipid-modified azurin of Neisseria meningitidis is a copper protein localized on the outer membrane surface and not regulated by FNR.

    PubMed

    Deeudom, Manu; Huston, Wilhemina; Moir, James W B

    2015-04-01

    The laz gene of Neisseria meningitidis is predicted to encode a lipid-modified azurin (Laz). Laz is very similar to azurin, a periplasmic protein, which belongs to the copper-containing proteins in the cupredoxin superfamily. In other bacteria, azurin is an electron donor to nitrite reductase, an important enzyme in the denitrifying process. It is not known whether Laz could function as an electron transfer protein in this important pathogen. Laz protein was heterologously expressed in Escherichia coli and purified. Electrospray mass spectrometry indicated that the Laz protein contains one copper ion. Laz was shown to be redox-active in the presence of its redox center copper ion. When oxidized, Laz exhibits an intense blue colour and absorbs visible light around 626 nm. The absorption is lost when exposed to diethyldithiocarbamate, a copper chelating agent. Polyclonal antibodies were raised against purified Laz for detecting expression of Laz under different growth conditions and to determine the orientation of Laz on the outer membrane. The expression of Laz under microaerobic and microaerobic denitrifying conditions was slightly higher than that under aerobic conditions. However, the expression of Laz was similar between the wild type strain and an fnr mutant, suggesting that Fumarate/Nitrate reduction regulator (FNR) does not regulate the expression of Laz despite the presence of a partial FNR box upstream of the laz gene. We propose that some Laz protein is exposed on the outer membrane surface of N. meningitidis as the αLaz antibodies can increase killing by complement in a capsule deficient N. meningitidis strain, in a dose-dependent fashion. PMID:25666376

  15. Measurement of surface scratches on aircraft structures

    NASA Astrophysics Data System (ADS)

    Sarr, Dennis P.

    1996-01-01

    In assuring the quality of aircraft, the skin quality must be free of surface imperfections. Surface imperfections such as scratches are unacceptable for cosmetic and structural reasons. Scratches beyond a certain depth are not repairable, resulting in costly replacement of an aircraft's part. Measurements of aircraft exterior surfaces require a ladder or cherry picker for positioning the inspector. Commercially-available computer vision systems are not portable, easy to use, or ergonomic. The machine vision system must be designed with these criteria in mind. The scratch measurement system (SMS) uses computer vision, digital signal processing, and automated inspection methods. The system is portable and battery powered. It is certified for measuring the depth and width of the anomaly. The SMS provides a comprehensive, analytical, and accurate reading. A hardcopy output provides a permanent record of the analysis. The graphical data shows the surface profile and provides substantial information of the surface anomaly. The factory and flight line use the SMS at different stages of aircraft production. Six systems have been built for use within Boeing. A patent was issued for the SMS in February 1994.

  16. Surface Enhance Infrared Absorption in nanogap structures

    NASA Astrophysics Data System (ADS)

    Li, Yajing; Zolotavin, Pavlo; Natelson, Douglas

    Understanding the energy dissipation at the interface of molecules and metal nanostructures is of interest. We fabricate self-aligned gold nanostructures with nanometer-scale interelectrode spacing. Those gold nanostructures support highly hybridized plasmon modes with great enhanced local electric field. Previous studies have proven those structures to be suitable substrates for surface-enhanced Raman spectroscopy with single-molecule sensitivity, which enables the study of molecular vibrational and electronic physics. We propose those structures as possible probes of the energy dissipation at the nanometer gap. By measuring the absorption spectrum of molecules assembled in the junction, we can estimate the local filed intensity at the gap and discuss the plasmonic responses of these self-aligned structures under infrared excitation.

  17. Disulfide-Mediated Oligomer Formation in Borrelia burgdorferi Outer Surface Protein C, a Critical Virulence Factor and Potential Lyme Disease Vaccine Candidate▿

    PubMed Central

    Earnhart, Christopher G.; Rhodes, DeLacy V. L.; Marconi, Richard T.

    2011-01-01

    Borrelia burgdorferi OspC is an outer membrane lipoprotein required for the establishment of infection in mammals. Due to its universal distribution among B. burgdorferi sensu lato strains and high antigenicity, it is being explored for the development of a next-generation Lyme disease vaccine. An understanding of the surface presentation of OspC will facilitate efforts to maximize its potential as a vaccine candidate. OspC forms homodimers at the cell surface, and it has been hypothesized that it may also form oligomeric arrays. Here, we employ site-directed mutagenesis to test the hypothesis that interdimeric disulfide bonds at cysteine 130 (C130) mediate oligomerization. B. burgdorferi B31 ospC was replaced with a C130A substitution mutant to yield strain B31::ospC(C130A). Recombinant protein was also generated. Disulfide-bond-dependent oligomer formation was demonstrated and determined to be dependent on C130. Oligomerization was not required for in vivo function, as B31::ospC(C130A) retained infectivity and disseminated normally. The total IgG response and the induced isotype pattern were similar between mice infected with untransformed B31 and those infected with the B31::ospC(C130A) strain. These data indicate that the immune response to OspC is not significantly altered by formation of OspC oligomers, a finding that has significant implications in Lyme disease vaccine design. PMID:21525304

  18. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.

    PubMed

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-01-01

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen. PMID:26563565

  19. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism

    PubMed Central

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-01-01

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOTTM). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen. PMID:26563565

  20. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  1. Isomorphic surface acoustic waves on multilayer structures

    NASA Astrophysics Data System (ADS)

    Hunt, William D.

    2001-03-01

    There has been growing interest in recent years over the investigation of bulk acoustic waves (BAWs) which propagate along certain directions in anisotropic crystals with a minimum of diffraction. One application of these BAWs is for multichannel acousto-optic devices. The fact that the beams propagate with the minimum diffraction implies that the channels in such a device can be closely packed. Since surface acoustic waves (SAWs) are constrained to be within roughly one acoustic wavelength from the surface, the possibility exists to deposit thin films of isotropic or anisotropic material on the substrate and embue the aggregate multilayer structure with properties not present in the beginning substrate material. The characteristic investigated in this article is the velocity anisotropy which, as is known, predominates SAW diffraction. Specifically, we present a method whereby self-collimating SAWs can be generated on surfaces even though the substrate material itself does not exhibit this behavior. We discuss the particular case of a ZnO layer on (001)-cut <110>-propagating GaAs for which a fair amount of slowness surface data exists. Finally, using angular spectrum of plane waves diffraction theory, we present data which substantiate the claim that self-collimating can more accurately be viewed as isomorphic because the SAW beam profile can propagate without changing its shape.

  2. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Larocque, Jennifer

    1999-01-01

    Silicon and germanium are materials often used for infrared (IR) windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 micron to 1000 micron and a wide range of angle of incidence. We.have identified several high aspect ratio MEMS process techniques to create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  3. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Larocque, Jennifer

    1999-01-01

    Silicon and germanium are materials often used for IR windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 to 1000 micrometers and a wide range of angle of incidence. We have identified several high aspect ratio MEMS process techniques to Create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  4. Broadband Infrared Antireflection Structured Silicon Surfaces

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth; Fettig, Rainer; Allen, Christine; Fettig, Rainer; Larocque, Jennifer

    1998-01-01

    Silicon and germanium are materials often used for IR windows and optical elements. However they have a very high index of refraction, in the order of three to four, which causes large reflection losses on each surface. These losses are especially high under large angles of incidence which are often desirable if signals are faint and fast optics are to be used. Solid antireflection coatings are either not available because materials with appropriate index of refraction do not exist, or their use is limited to a small wavelength range and small angles of incidence. We will present the status of our work to calculate, create, and test the performance of graded structures in Si to reduce its surface reflection. The structures are expected to work over the very broad wavelength range of 10 microns to 1000 microns and a wide range of angle of incidence. We have identified several high aspect ratio MEMS process techniques to create the structures and have done 3D electromagnetic modeling, which predicts significant effects. Measurements on different samples have validated our modeling.

  5. Structure and thermodynamics of surface recognition

    SciTech Connect

    Gupta, G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Interactions of the surface glycoprotein, gp120, with the receptors of host cells define the pathogenesis of HIV-1, the virus that causes AIDS. gp120 is made of several disulfide-bridged loops--the amino acid sequences of some of these loops are fairly conserved whereas the rest are variable. The third variable (V3) loop has been the target of vaccine design for quite some time since this loop is involved in various steps of viral pathogenesis. However, this loop also happens to be the most variable one. The authors have carried out structural and immunological studies to determine the sequence-structure-antigenicity correlations of the HIV-1 V3 loops. This resulted in the identification of a secondary structure at the tip of the V3 loop that remains invariant in spite of the sequence variation. The authors designed a multi-valent V3-based antigen that presents multiple copies of the same tip element several times in the same structure. During the course of this project, they realized that the protective epitopes of gp120 should be judged in the context of the native structure. Therefore, the authors developed a method to obtain a model of gp120 that is consistent with all the immunology and virology data. This model is useful in choosing or designing gp120 subdomains for vaccine development.

  6. The Hepatitis B Virus Core Variants that Expose Foreign C-Terminal Insertions on the Outer Surface of Virus-Like Particles.

    PubMed

    Dishlers, Andris; Skrastina, Dace; Renhofa, Regina; Petrovskis, Ivars; Ose, Velta; Lieknina, Ilva; Jansons, Juris; Pumpens, Paul; Sominskaya, Irina

    2015-12-01

    The major immunodominant region (MIR) and N-terminus of the hepatitis B virus (HBV) core (HBc) protein were used to expose foreign insertions on the outer surface of HBc virus-like particles (VLPs). The additions to the HBc positively charged arginine-rich C-terminal (CT) domain are usually not exposed on the VLP surface. Here, we constructed a set of recombinant HBcG vectors in which CT arginine stretches were substituted by glycine residues. In contrast to natural HBc VLPs and recombinant HBc VLP variants carrying native CT domain, the HBcG VLPs demonstrated a lowered capability to pack bacterial RNA during expression in Escherichia coli cells. The C-terminal addition of a model foreign epitope from the HBV preS1 sequence to the HBcG vectors resulted in the exposure of the inserted epitope on the VLP surface, whereas the same preS1 sequences added to the native CT of the natural HBc protein remained buried within the HBc VLPs. Based on the immunisation of mice, the preS1 epitope added to the HBcG vectors as a part of preS1(20-47) and preS1phil sequences demonstrated remarkable immunogenicity. The same epitope added to the original C-terminus of the HBc protein did not induce a notable level of anti-preS1 antibodies. HBcG vectors may contribute to the further development of versatile HBc VLP-based vaccine and gene therapy applications. PMID:26446016

  7. Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria

    PubMed Central

    Dong, Haohao; Zhang, Zhengyu; Tang, Xiaodi; Huang, Shihai; Li, Huanyu; Peng, Bo; Dong, Changjiang

    2016-01-01

    The outer membrane (OM) of Gram-negative bacteria is a unique asymmetric lipid bilayer in which the outer leaflet is composed of lipopolysaccharide (LPS) and the inner leaflet is formed by glycerophospholipid (GPL). The OM plays a fundamental role in protecting Gram-negative bacteria from harsh environments and toxic compounds. The transport and assembly pathways for phospholipids of bacterial OM are unknown. Cardiolipin (CL) plays an important role in OM biogenesis and pathogenesis, and the inner membrane (IM) protein PbgA, containing five transmembrane domains and a globular domain in periplasm has been recently identified as a CL transporter from the IM to the OM with an unknown mechanism. Here we present the first two crystal structures of soluble periplasmic globular domain of PbgA from S. typhimurium and E. coli, which revealed that the globular domains of PbgA resemble the structures of the arylsulfatase protein family and contains a novel core hydrophobic pocket that may be responsible for binding and transporting CLs. Our structural and functional studies shed an important light on the mechanism of CL transport in Gram-negative bacteria from the IM to the OM, which offers great potential for the development of novel antibiotics against multi-drug resistant bacterial infections. PMID:27487745

  8. Structural insights into cardiolipin transfer from the Inner membrane to the outer membrane by PbgA in Gram-negative bacteria.

    PubMed

    Dong, Haohao; Zhang, Zhengyu; Tang, Xiaodi; Huang, Shihai; Li, Huanyu; Peng, Bo; Dong, Changjiang

    2016-01-01

    The outer membrane (OM) of Gram-negative bacteria is a unique asymmetric lipid bilayer in which the outer leaflet is composed of lipopolysaccharide (LPS) and the inner leaflet is formed by glycerophospholipid (GPL). The OM plays a fundamental role in protecting Gram-negative bacteria from harsh environments and toxic compounds. The transport and assembly pathways for phospholipids of bacterial OM are unknown. Cardiolipin (CL) plays an important role in OM biogenesis and pathogenesis, and the inner membrane (IM) protein PbgA, containing five transmembrane domains and a globular domain in periplasm has been recently identified as a CL transporter from the IM to the OM with an unknown mechanism. Here we present the first two crystal structures of soluble periplasmic globular domain of PbgA from S. typhimurium and E. coli, which revealed that the globular domains of PbgA resemble the structures of the arylsulfatase protein family and contains a novel core hydrophobic pocket that may be responsible for binding and transporting CLs. Our structural and functional studies shed an important light on the mechanism of CL transport in Gram-negative bacteria from the IM to the OM, which offers great potential for the development of novel antibiotics against multi-drug resistant bacterial infections. PMID:27487745

  9. Surface Energy Reduction In Fibrous Monotectic Structures

    NASA Astrophysics Data System (ADS)

    Sandlin, A. C.; Schaefer, R. J.

    1991-08-01

    A study has been made of the morphology of directionally solidified CuAl-Pb monotectic alloys. The structure consisted of a hexagonal array of Pb rods in a Cu-based matrix. In addition, highly curved grain boundaries in the Cu-based matrix with lens-shaped Pb fibers on the boundary and a “denuded zone” depleted of Pb rods were observed. Existence of these boundaries is shown to reduce the overall surface energy of the system leading to the formation of the highly curved grain boundaries.

  10. Electronic structure of bacterial surface protein layers

    SciTech Connect

    Maslyuk, Volodymyr V.; Mertig, Ingrid; Bredow, Thomas; Mertig, Michael; Vyalikh, Denis V.; Molodtsov, Serguei L.

    2008-01-15

    We report an approach for the calculation of the electronic density of states of the dried two-dimensional crystalline surface protein layer (S layer) of the bacterium Bacillus sphaericus NCTC 9602. The proposed model is based on the consideration of individual amino acids in the corresponding conformation of the peptide chain which additively contribute to the electronic structure of the entire protein complex. The derived results agree well with the experimental data obtained by means of photoemission (PE), resonant PE, and near-edge x-ray absorption spectroscopy.

  11. Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment

    NASA Astrophysics Data System (ADS)

    Park, Hong-Gyu; Jeong, Hae-Chang; Jung, Yoon Ho; Seo, Dae-Shik

    2015-07-01

    We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the inner layer. In addition, we controlled the amplitude and period of the wrinkle structures by adjusting the PDMS annealing temperature. As the PDMS annealing temperature was increased, the amplitude and period of the wrinkles formed by IB irradiation changed from 604.35 to 69.01 nm and from 3.07 to 0.80 μm, respectively.

  12. Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment

    PubMed Central

    Park, Hong-Gyu; Jeong, Hae-Chang; Jung, Yoon Ho; Seo, Dae-Shik

    2015-01-01

    We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the inner layer. In addition, we controlled the amplitude and period of the wrinkle structures by adjusting the PDMS annealing temperature. As the PDMS annealing temperature was increased, the amplitude and period of the wrinkles formed by IB irradiation changed from 604.35 to 69.01 nm and from 3.07 to 0.80 μm, respectively. PMID:26196760

  13. Ionospheric structures correlated with Anatolian surface features

    NASA Astrophysics Data System (ADS)

    Garner, T. W.; Slack, C. M.; Mehta, K.; Scholze, A.; Mahrous, A. M.

    2011-12-01

    A UHF/VHF beacon receiver located in Helwan, Egypt, frequently observes structures in ΔTEC/Δt measurements (where TEC is total electron count), where the F region (300 km) intercept of the radio rays crosses the steep topographic gradients associated with the Anatolian Plateau. There are three classes of structures: bumps, ripples and waves. A bump is defines as a single spatial ΔTEC/Δt peak with a peak-to-trough amplitude of at least 0.01 TECU/s (1 TEC unit (TECU) = 1016 electrons/m2) that is at least 1° wide in F region latitude. A ripple is a bump with smaller structures on either side of the central bump. Finally, waves have amplitudes ≥0.01 TECU/s with several roughly equal peaks. These features were observed repeatedly in a number passes from 31 August to 30 November 2008. Over half of passes had either a bump (34.6%), a ripple (18.2%) or a wave (6.3%). Most of these structures occur near areas with large orographic gradients. The prevailing surface wind blows across the mountains when bumps and ripples are observed. These correlations suggest that the local ionosphere is affected by the ground topography, most likely through the orographic lifting and the associated gravity waves.

  14. The Leptospiral Outer Membrane

    PubMed Central

    Haake, David A; Zückert, Wolfram R

    2015-01-01

    The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H. On the other hand, the OM must enable leptospires to evade detection by the host’s immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane OMPs in many cases are better understood thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis. Readers are referred to earlier, excellent summaries related to this subject (Adler and de la Peña Moctezuma

  15. Photoelectron holography applied to surface structural determination

    SciTech Connect

    Petersen, B.L.

    1995-05-01

    Photoemitted electron waves are used as coherent source waves for angstrom-scale holographic imaging of local atomic geometry at surfaces. Electron angular distribution patterns are collected above a sample surface and serve as a record of the interference between source wave and waves scattered from surrounding ion cores. Using a mathematical imaging integral transformation, the three-dimensional structural information is obtained directly from these collected patterns. Patterns measured with different electron kinetic energies are phase-summed for image improvement. Pt (111) surface is used as a model system. A pattern 9.6{angstrom}{sup {minus}1} (351 eV) is used to generate a full 3-D image of atom locations around an emitter with nearest neighbors within 0.l{angstrom} of the expected bulk positions. Atoms several layers beyond the nearest neighbors are also apparent. Twin-image reduction and artifact suppression is obtained by phase-summing eight patterns measured from 8.8 to 10.2{angstrom}{sup {minus}1} (295 to 396 eV). 32 were measured in 0.2{angstrom}{sup {minus}1} steps from 6.0 to 12.2{angstrom}{sup {minus}1} (137 to 567 eV) are presented here. Simple models of two-slit interference are compared with electron scattering to illuminate understanding of holographic recording of the structural information. This also shows why it sometimes fails due to destructive interferences. Simple theoretical models of electron scattering are compared to experiment to show the origin of the structural information and the differences that result from atomic scattering and from the source wave. Experimental parameters and their relation to imaging is discussed. Comparison is made to the Pt pattern measured at 351 eV using the simple theoretical model. The remaining data set is also modeled, and the eight appropriate theoretical patterns are used to regenerate the multiple-wavenumber experimental result. A clean Cu (001) surface is also measured and imaged.

  16. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  17. Magnetoelastic surface waves in auxetic structure

    NASA Astrophysics Data System (ADS)

    Maruszewski, B.; Drzewiecki, A.; Starosta, R.

    2010-06-01

    In modern technologies searching materials of peculiar features is of a fundamental interest for many researchers and engineers. Negative Poisson's ratio materials and structures expand transversely when stretching axially. Nowadays, there is an increasing interest in the development of these novel materials called auxetics. We are interested not only in their mechanical properties, but also in their interaction with external physical fields, e.g. electromagnetic field. It is expected that magnetoelastic surface waves propagation has essential meaning in many other physical and biomechanical applications. The paper aims at investigating propagation of magnetoelastic surface waves along an auxetic elastic halfspace in the presence of an external magnetic field of various orientations related to the limiting plane. Dispersion and existence conditions of those waves have been calculated and analyzed in order to present new features of described interactions. It has occurred that the dispersion properties in the case of the Rayleigh-like magnetoelastic surface waves are significantly different for the auxetic material compared to materials of positive Poisson's ratio.

  18. Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings.

    PubMed

    Kopittke, Peter M; Blamey, F Pax C; Wang, Peng; Menzies, Neal W

    2011-07-01

    Manganese (Mn) is an essential micronutrient for plant growth but is often toxic in acid or waterlogged soils. Using cowpea (Vigna unguiculata L. Walp.) grown with 0.05-1500 μM Mn in solution, two short-term (48 h) solution culture experiments examined if the effects of cations (Ca, Mg, Na, Al, or H) on Mn nutrition are related to the root cells' plasma membrane (PM) surface potential, ψ(0)(0). When grown in solutions containing levels of Mn that were toxic, both relative root elongation rate (RRER) and root tissue Mn concentration were more closely related to the activity of Mn(2+) at the outer surface of the PM, {Mn(2+)}(0)(0) (R(2)=0.812 and 0.871) than to its activity in the bulk solution, {Mn(2+)}(b) (R(2)=0.673 and 0.769). This was also evident at lower levels of Mn (0.05-10 μM) relevant to studies investigating Mn as an essential micronutrient (R(2)=0.791 versus 0.590). In addition, changes in the electrical driving force for ion transport across the PM influenced both RRER and the Mn concentration in roots. The {Mn(2+)}(b) causing a 50% reduction in root growth was found to be c. 500 to >1000 μM (depending upon solution composition), whilst the corresponding value was 3300 μM when related to {Mn(2+)}(0)(0). Although specific effects such as competition are not precluded, the data emphasize the importance of non-specific electrostatic effects in the Mn nutrition of cowpea seedlings over a 1×10(5)-fold range of Mn concentration in solution. PMID:21511910

  19. Design of a lunar surface structure

    NASA Astrophysics Data System (ADS)

    Mottaghi, Sohrob

    The next step for manned exploration and settlement is a return to the Moon. In such a return, the most challenging task is the construction of structures for habitation, considering the Moon's hostile environment. Therefore the question is: What is the best way to erect habitable structures on the lunar surface? Given the cost associated with bringing material to the Moon, In-Situ Resource Utilization (ISRU) is viewed by most as the basis for a successful manned exploration and settlement of the Solar system. Along these lines, we propose an advanced concept where the use of freeform fabrication technologies by autonomous mini-robots can form the basis for habitable lunar structures. Also, locally-available magnesium is proposed as the structural material. While it is one of the most pervasive metals in the regolith, magnesium has been only suggested only briefly as a viable option in the past. Therefore, a study has been conducted on magnesium and its alloys, taking into account the availability of the alloying elements on the Moon. An igloo-shaped magnesium structure, covered by sandbags of regolith shielding and supported on a sintered regolith foundation, is considered as a potential design of a lunar base, as well as the test bed for the proposed vision. Three studies are carried out: First a static analysis is conducted which proves the feasibility of the proposed material and method. Second, a thermal analysis is carried out to study the effect of the regolith shielding as well as the sensitivity of such designs to measurement uncertainties of regolith and sintered thermal properties. The lunar thermal environment is modeled for a potential site at 88º latitude in the lunar South Pole Region. Our analysis shows that the uncertainties are in an acceptable range where a three-meter thick shield is considered. Also, the required capacity of a thermal rejection system is estimated, choosing the thermal loads to be those of the Space Station modules. In the

  20. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  1. η Carinae - The outer ejecta

    NASA Astrophysics Data System (ADS)

    Weis, K.

    2009-03-01

    η Carinae is a unique object among the most massive evolved stars in the LBV phase. The central object(s) is(are) surrounded by a complex circumstellar nebula ejected during more than one eruption in the 19th century. Beyond the well-defined edges of its famous bipolar nebula, the Homunculus, are additional nebulous features referred to as the outer ejecta. The outer ejecta contains a large variety of structures of very different sizes and morphologies distributed in a region 0.67 pc in diameter. Individual features in the outer ejecta are moving extremely fast, up to 3200 km/s, in general the expansion velocities are between 400-900 km/s. A consequence of these high velocities is that structures in the outer ejecta interact with the surrounding medium and with each other. The strong shocks that arise from these interactions give rise to soft X-ray emission. The global expansion pattern of the outer ejecta reveals an overall bipolar distribution, giving a symmetric structure to its morphologically more irregular appearance. The long, highly collimated filaments, called strings, are particularly unusual. The material in the strings follows a Hubble-flow and appears to originate at the central object.

  2. Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins.

    PubMed Central

    Straley, S C; Bowmer, W S

    1986-01-01

    Yersinia pestis, the causative agent of plague, has a virulence determinant called the low-Ca2+ response (Lcr+ phenotype) that confers on the bacterium Ca2+ dependence for growth at 37 degrees C and expression of V antigen. This virulence determinant is common to the three species of Yersinia and is mediated by Lcr plasmids (called pCD in Y. pestis). In this study, we generated insertions of Mu dI1(Ap lac) in pCD1 of Y. pestis KIM, screened for cells showing transcriptional regulation by Ca2+, and obtained inserts that define at least four pCD1 genes. Their patterns of transcription under different growth conditions closely paralleled the pattern of expression of the V antigen. We tested for expression of Lcr-specific yersinial outer membrane proteins (Yops) by the pCD1::Mu dI1(Ap lac) plasmids. Four of the inserts each eliminated expression of a different Yop; one of these Yops was unique to Y. pestis. Two of the insertions affecting Yops caused avirulence, and one caused strongly decreased virulence of Y. pestis in mice. These data indicate that Yops, like the V antigen, are virulence attributes regulated in the low-Ca2+ response. Images PMID:3002984

  3. Molecular cloning and characterization of the structural gene for protein I, the major outer membrane protein of Neisseria gonorrhoeae.

    PubMed Central

    Carbonetti, N H; Sparling, P F

    1987-01-01

    Protein I (P.I) is the major outer membrane protein of Neisseria gonorrhoeae and serves as a porin. By using oligonucleotide probes derived from the known amino-terminal sequence of the mature protein, we have cloned the gene encoding the P.I of gonococcal strain FA19 in three overlapping fragments and determined the DNA sequence. The gene sequence predicts a protein with characteristics typical of the porins of other Gram-negative bacteria. A clone expressing P.I in Escherichia coli was obtained by removing a portion of the P.I gene promoter and reconstructing the entire P.I gene in a position just downstream from a phage T7 promoter. Expression of P.I was then achieved by introducing this recombinant plasmid into an E. coli strain containing an inducible T7 polymerase gene. The clone produced a protein that was identical in size to native P.I and reacted with anti-P.I monoclonal antibodies. Prolonged expression of the protein apparently was lethal for E. coli, possibly explaining failures to clone an intact P.I gene with its own promoter. Images PMID:3122212

  4. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2013-12-01

    It is known that good wettability of enamel and dentin surfaces is a key factor in enhancing adhesion of restorative materials in dentistry. Here, we report on a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this new approach produces engineered surface structures. The surface structure engineered and tested here is an array of femtosecond laser-produced parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  5. Inner and outer beauty.

    PubMed

    Raymond, Kenneth N; Brown, Casey J

    2012-01-01

    Symmetry and pattern are precious forms of beauty that can be appreciated on both the macroscopic and molecular scales. Crystallographers have long appreciated the intimate connections between symmetry and molecular structure, reflected in their appreciation for the artwork of Escher. This admiration has been applied in the design of highly symmetrical coordination compounds. Two classes of materials are discussed: extended coordination arrays and discrete supramolecular assemblies. Extended coordination polymers have been implemented in gas separation and storage due to the remarkably porosity of these materials, aided by the ability to design ever-larger inner spaces within these frameworks. In the case of discrete symmetrical structures, defined inner and outer space present a unique aesthetic and chemical environment. The consequent host-guest chemistry and applications in catalysis are discussed. PMID:22076081

  6. The Heterogeneity and Spatial Patterning of Structure and Physiology across the Leaf Surface in Giant Leaves of Alocasia macrorrhiza

    PubMed Central

    Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang

    2013-01-01

    Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in

  7. Chemical Structure of Trichomonas vaginalis Surface Lipoglycan

    PubMed Central

    Ryan, Christopher M.; Mehlert, Angela; Richardson, Julia M.; Ferguson, Michael A. J.; Johnson, Patricia J.

    2011-01-01

    The extracellular parasite Trichomonas vaginalis contains a surface glycoconjugate that appears to mediate parasite-host cell interaction via binding to human galectin-1. This glycoconjugate also elicits cytokine production from human vaginal epithelial cells, implicating its role in modulation of host immune responses. We have analyzed the structure of this glycoconjugate, previously described to contain the sugars rhamnose (Rha), N-acetylglucosamine (GlcNAc), galactose (Gal), xylose (Xyl), N-acetylgalactosamine (GalNAc), and glucose (Glc), using gas chromatograph mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF), electrospray MS/MS, and nuclear magnetic resonance (NMR), combined with chemical and enzymatic digestions. Our data reveal a complex structure, named T. vaginalis lipoglycan (TvLG), that differs markedly from Leishmania lipophosphoglycan and Entamoeba lipopeptidophosphoglycan and is devoid of phosphosaccharide repeats. TvLG is composed of an α1–3 linked polyrhamnose core, where Rha residues are substituted at the 2-position with either β-Xyl or chains of, on average, five N-acetyllactosamine (-3Galβ1–4GlcNAcβ1-) (LacNAc) units and occasionally lacto-N-biose (-3Galβ1-3GlcNAcβ1-) (LNB). These chains are themselves periodically substituted at the Gal residues with Xyl-Rha. These structural analyses led us to test the role of the poly-LacNAc/LNB chains in parasite binding to host cells. We found that reduction of poly-LacNAc/LNB chains decreased the ability of TvLG to compete parasite binding to host cells. In summary, our data provide a new model for the structure of TvLG, composed of a polyrhamnose backbone with branches of Xyl and poly-LacNAc/LNB. Furthermore, the poly-LacNAc side chains are shown to be involved in parasite-host cell interaction. PMID:21900246

  8. Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench

    NASA Astrophysics Data System (ADS)

    Fujie, Gou; Kodaira, Shuichi; Sato, Takeshi; Takahashi, Tsutomu

    2016-01-01

    To investigate along-trench variations in the seismic structure of the incoming oceanic plate and their effect on water transportation by the oceanic plate, we conducted a wide-angle seismic survey of a trench-parallel transect 270 km long on the outer rise of the northern Japan Trench. The resulting seismic structure models show that the central part of the transect is characterized by rough topography, thick oceanic crust, low seismic velocities, and high Vp/Vs ratios, suggesting pervasive fracturing and high water content (hydration) there. These observations are consistent with the presence of an ancient fracture zone associated with ridge propagation. The trenchward extension of this fracture zone corresponds to an area of low interplate seismicity, low seismic velocities, and high Vp/Vs ratio around the depth of the subduction interface. Our results suggest that this ancient scar on the oceanic plate influences along-trench variations in interplate seismic coupling through its effect on water transportation.

  9. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  10. Lunar surface structural concepts and construction studies

    NASA Astrophysics Data System (ADS)

    Mikulas, Martin

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  11. Interiors and atmospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1991-01-01

    This theoretical/observational project constrains structure of outer planet atmospheres and interiors through observational data. The primary observation tool is through observations of occultations of stars by outer solar system objects, which yield information about atmospheric temperatures and dynamics, and planetary dimensions and oblateness. The theoretical work relates the data to interior structures in a variety of ways.

  12. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  13. The Crystal Structure of OprG from Pseudomonas aeruginosa a Potential Channel for Transport of Hydrophobic Molecules across the Outer Membrane

    SciTech Connect

    D Touw; D Patel; b van den Berg

    2011-12-31

    The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The outer membrane (OM) of Gram-negative bacteria provides a barrier to the passage of hydrophobic and hydrophilic compounds into the cell. The OM has embedded proteins that serve important functions in signal transduction and in the transport of molecules into the periplasm. The OmpW family of OM proteins, of which P. aeruginosa OprG is a member, is widespread in Gram-negative bacteria. The biological functions of OprG and other OmpW family members are still unclear. The crystal structure, together with recent biochemical data, suggests that OprG and other OmpW family members form channels that mediate the diffusion of small hydrophobic molecules across the OM by a lateral diffusion mechanism similar to that of E. coli FadL.

  14. Assessment of antibodies against surface and outer membrane proteins of Anaplasma phagocytophilum in Lyme borreliosis and tick-borne encephalitis paediatric patients.

    PubMed

    Krbková, L; Homola, L; Hlaváčová, A; Mikolášek, P; Bednářová, J; Čermáková, Z

    2016-09-01

    To examine evidence of positive antibodies against immunogenic proteins of Anaplasma phagocytophilum in patients with other tick-borne infections and to diagnose possible co-infections, 412 serum specimens were tested by immunoblotting using three specific Anaplasma antigens: surface proteins p44 and Asp62 and outer membrane protein A (OmpA). In total, 284 serum samples from children with Lyme borreliosis and 12 serum samples from children with tick-borne encephalitis were tested. Sera from patients with viral aseptic meningitis (n = 47) and from blood donors (n = 69) were used as controls. Among all serum specimens from patients with tick-borne infections submitted for this study, six samples (2·0%) showed positive IgM reactions and seven samples (2·4%) were IgG positive for A. phagocytophilum by immunoblot. Borderline reactivity was found in 30 samples (10·14%) for IgM and 36 samples (12·2%) for IgG. The difference between patients and blood donors was statistically significant for IgM (P = 0·006) and for IgG (P = 0·0007) antibodies. A statistically significant result was obtained for IgG (P = 0·02) but not for IgM between patients and children with aseptic meningitis. Immunoblot using three specific antigens provides novel information about the positivity of antibodies to A. phagocytophilum in children with other tick-borne infections. Taking into account clinical and laboratory findings of children despite antibody positivity, no case of human granulocytic anaplasmosis was demonstrated. PMID:27180603

  15. Structure and properties of polymeric composite materials during 1501 days outer space exposure at Salyut-7 orbital station

    NASA Technical Reports Server (NTRS)

    Startsev, Oleg V.; Nikishin, Eugene F.

    1995-01-01

    Specimens of polymeric composite materials for aviation and space applications such as glass fiber reinforced plastics (GFRP), carbon fiber reinforced plastics (CFRP), organic fiber reinforced plastics (OFRP), and hybrid plastics (HP) based on epoxy compounds were exposed to the space environment on the surface of Salyut-7 orbital station. The space exposure lasted 1501 days as a maximum. The data relating to the change in mechanical properties, mass losses, glass transition temperature, linear thermal expansion coefficient, and microstructure after various periods of exposure are given. It has been found that the change in properties is caused by the processes of binder postcuring and microerosion of the exposed surface of plastics. The phenomenon of strengthening of the surface layer of hybrid composites, due to which the nature of destruction changes at bending loads, has been revealed.

  16. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface structures, fireproofing. 75.1708... structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any mine opening shall be of fireproof construction. Unless structures existing on or prior to such...

  17. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface structures, fireproofing. 75.1708... structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any mine opening shall be of fireproof construction. Unless structures existing on or prior to such...

  18. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures, fireproofing. 75.1708... structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any mine opening shall be of fireproof construction. Unless structures existing on or prior to such...

  19. Outer membrane proteins of pathogenic spirochetes

    PubMed Central

    Cullen, Paul A.; Haake, David A.; Adler, Ben

    2009-01-01

    Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis. PMID:15449605

  20. Composite isogrid structures for parabolic surfaces

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)

    2000-01-01

    The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.

  1. Enceladus Jet Orientations: Effects of Surface Structure

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Porco, C.; DiNino, D.

    2013-12-01

    Jetting activity across the South Polar Terrain (SPT) of Enceladus is now known to erupt directly from tiger-stripe rifts and associated fracture systems. However, details of the vent conduit geometry are hidden below the icy surface. The three-dimensional orientations of the erupting jets may provide important clues. Porco et al. (2013, Lunar Planet. Sci. Conf. 44th, p.1775) surveyed jet locations and orientations as imaged at high resolution (< 1.3 km/pixel) by Cassini ISS from 2005 through May 2012. Ninety-eight (98) jets were identified either on the main trunks or branches of the 4 tiger-stripes. The azimuth angles of the jets are seen to vary across the SPT. Here, we use histogram analysis of the survey data to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Azimuths are measured positive counterclockwise with zero pointing along the fracture in the direction of the sub-Saturn hemisphere, and rosette histograms were binned in 30° increments. Overall, the jet azimuths are not random and only about 11% of them are co-aligned with the tiger stripe valley. There are preferred diagonal orientations between 105°-165° and again between 255°-345°. These trends are dominant along the Damascus and Baghdad tiger-stripes where more than half of the jets are found. Histograms for Cairo and Alexandria show less-distinct trends, fewer jets being measured there, but combining data from both suggests a different pattern of preferred orientations; from 45°-75° and 265°-280°. Many possible factors could affect the orientations of jets, for example, the conduit shape, the presence of obstacles like narrow medial ridges called 'shark-fins' along tiger-stripe valleys, the possibility that jets may breach the surface at some point other than the center of a tiger-stripe, and the presence of structural fabrics or mechanical weaknesses, such as patterns of cross-cutting fractures. The dominance of diagonally

  2. Structural-phase states and wear resistance of surface formed on steel by surfacing

    SciTech Connect

    Kapralov, Evgenie V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A. Gromov, Victor E.; Ivanov, Yuri F.

    2014-11-14

    Investigations of elementary and phase structure, state of defect structure and tribological characteristics of a surfacing, formed on a low carbon low-alloy steel by a welding method were carried out. It was revealed that a surfacing, formed on a steel surface is accompanied by the multilayer formation, and increases the wear resistance of the layer surfacing as determined.

  3. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  4. Temporal Changes in Outer Surface Proteins A and C of the Lyme Disease-Associated Spirochete, Borrelia burgdorferi, during the Chain of Infection in Ticks and Mice

    PubMed Central

    Schwan, Tom G.; Piesman, Joseph

    2000-01-01

    The Lyme disease-associated spirochete, Borrelia burgdorferi, is maintained in enzootic cycles involving Ixodes ticks and small mammals. Previous studies demonstrated that B. burgdorferi expresses outer surface protein A (OspA) but not OspC when residing in the midgut of unfed ticks. However, after ticks feed on blood, some spirochetes stop making OspA and express OspC. Our current work examined the timing and frequency of OspA and OspC expression by B. burgdorferi in infected Ixodes scapularis nymphs as they fed on uninfected mice and in uninfected I. scapularis larvae and nymphs as they first acquired spirochetes from infected mice. Smears of midguts from previously infected ticks were prepared at 12- or 24-h intervals following attachment through repletion at 96 h, and spirochetes were stained for immunofluorescence for detection of antibodies to OspA and OspC. As shown previously, prior to feeding spirochetes in nymphs expressed OspA but not OspC. During nymphal feeding, however, the proportion of spirochetes expressing OspA decreased, while spirochetes expressing OspC became detectable. In fact, spirochetes rapidly began to express OspC, with the greatest proportion of spirochetes having this protein at 48 h of attachment and then with the proportion decreasing significantly by the time that the ticks had completed feeding. In vitro cultivation of the spirochete at different temperatures showed OspC to be most abundant when the spirochetes were grown at 37°C. Yet, the synthesis of this protein waned with continuous passage at this temperature. Immunofluorescence staining of spirochetes in smears of midguts from larvae and nymphs still attached or having completed feeding on infected mice demonstrated that OspA but not OspC was produced by these spirochetes recently acquired from mice. Therefore, the temporal synthesis of OspC by spirochetes only in feeding ticks that were infected prior to the blood meal suggests that this surface protein is involved in

  5. Ceres’ impact craters: probes of near-surface internal structure and composition

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Raymond, Carol; Park, Ryan; Schenk, Paul; McCord, Tom; Reddy, Vishnu; King, Scott; Sykes, Mark; Russell, Chris

    2015-11-01

    Dawn Framing Camera images of Ceres have revealed the existence of a heavily cratered surface. Shape models derived from these images indicate that most (though not all) large craters are quite deep: up to 6 km for craters larger than 100 km in diameter. The retention of deep craters is not consistent with a simple differentiated internal structure consisting of an outer layer composed solely of pure water ice (covered with a rocky lag) overlying a rocky core. Here we use finite element simulations to show that, for Ceres’ relatively warm surface temperatures, the timescale required to completely flatten a crater 60-km in diameter (or greater) is less than 100 Myr, assuming a relatively pure outer ice layer (for ice grain sizes ≤ 1 cm). Preserving substantial topography requires that the viscosity of Ceres’ outer-most layer (25-50 km thick) is substantially greater than that of pure water ice. A factor of ten increase in viscosity can be achieved by assuming the layer is a 50/50 ice-rock mixture by volume; however, our simulations show that such an increase is insufficient to prevent substantial relaxation over timescales of 1 Gyr. Only particulate volume fractions greater than 50% provide an increase in viscosity sufficient to prevent large-scale, rapid relaxation. Such volume fractions suggest an outer layer composed of frozen soil/regolith (i.e., more rock than ice by volume), a very salt-rich layer, or both. Notably, while most basins appear quite deep, a few relatively shallow basins have been observed (e.g., Coniraya), suggesting that relaxation may be occurring over very long timescales (e.g., 4 Ga), that Ceres’ interior is compositionally and spatial heterogeneous, and/or that temporal evolution of the interior structure and composition has occurred. If these shallow basins are in fact the result of relaxation, it places an upper limit on the viscosity of Ceres’ outer-most interior layer, implying at least some low-viscosity material is present

  6. The outer layers of cool, non-Mira carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1991-01-01

    The outer layers and near circumstellar envelope (CSE) of a typical carbon star have been studied using available data from theoretical and empirical models. An attempt is made to match the density-velocity structure of the photosphere-chromosphere region to values from the radio CO observations, which arise from the outer CSE. It is concluded that the stellar atmosphere includes a relatively thin high-temperature region close to hydrostatic equilibrium and a much more extended cooler region of outflowing gas and dust. To extend the outer photosphere and chromosphere to match the mass loss density appears to require an injection of energy and momentum by some mechanism rather close to the stellar surface.

  7. Protective efficacy afforded by live Pasteurella multocida vaccines in chickens is independent of lipopolysaccharide outer core structure.

    PubMed

    Harper, Marina; John, Marietta; Edmunds, Mark; Wright, Amy; Ford, Mark; Turni, Conny; Blackall, P J; Cox, Andrew; Adler, Ben; Boyce, John D

    2016-03-29

    Pasteurella multocida is a major animal pathogen that causes a range of diseases including fowl cholera. P. multocida infections result in considerable losses to layer and breeder flocks in poultry industries worldwide. Both killed whole-cell and live-attenuated vaccines are available; these vaccines vary in their protective efficacy, particularly against heterologous strains. Moreover, until recently there was no knowledge of P. multocida LPS genetics and structure to determine precisely how LPS structure affects the protective capacity of these vaccines. In this study we show that defined lipopolysaccharide (LPS) mutants presented as killed whole-cell vaccines elicited solid protective immunity only against P. multocida challenge strains expressing highly similar or identical LPS structures. This finding indicates that vaccination of commercial flocks with P. multocida killed cell formulations will not protect against strains producing an LPS structure different to that produced by strains included in the vaccine formulation. Conversely, protective immunity conferred by vaccination with live P. multocida strains was found to be largely independent of LPS structure. Birds vaccinated with a range of live mutants belonging to the L1 and L3 LPS genotypes, each expressing a specific truncated LPS structure, were protected against challenge with the parent strain. Moreover, birds vaccinated with any of the five LPS mutants belonging to the L1 LPS genotype were also protected against challenge with an unrelated strain and two of the five groups vaccinated with live LPS mutants belonging to the L3 genotype were protected against challenge with an unrelated strain. In summary, vaccination with live P. multocida aroA mutants producing full-length L1 or L3 LPS or vaccination with live strains producing shortened L1 LPS elicited strong protective immunity against both homologous and heterologous challenge. PMID:26892738

  8. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  9. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    SciTech Connect

    Chang, C.F.

    1983-07-01

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A/sup 2/ in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure.

  10. Chemical bonding in the outer core: high-pressure electronic structures of oxygen and sulfur in metallic iron

    USGS Publications Warehouse

    Sherman, David M.

    1991-01-01

    The electronic structures of oxygen and sulfur impurities in metallic iron are investigated to determine if pressure, temperature, and composition-induced changes in bonding might affect phase equilibria along the Fe-FeS and Fe-FeO binaries. -from Authors

  11. Molecular Organization of the Nanoscale Surface Structures of the Dragonfly Hemianax papuensis Wing Epicuticle

    PubMed Central

    Ivanova, Elena P.; Nguyen, Song Ha; Webb, Hayden K.; Hasan, Jafar; Truong, Vi Khanh; Lamb, Robert N.; Duan, Xiaofei; Tobin, Mark J.; Mahon, Peter J.; Crawford, Russell J.

    2013-01-01

    The molecular organization of the epicuticle (the outermost layer) of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS) depth profiling and gas chromatography-mass spectrometry (GCMS), we have identified the chemical components that constitute the nanoscale structures on the surface of the wings of the dragonfly, Hemianax papuensis. The major components were identified to be fatty acids, predominantly hexadecanoic acid and octadecanoic acid, and n-alkanes with even numbered carbon chains ranging from C14 to C30. The data obtained from XPS depth profiling, in conjunction with that obtained from GCMS analyses, enabled the location of particular classes of compounds to different regions within the epicuticle. Hexadecanoic acid was found to be a major component of the outer region of the epicuticle, which forms the surface nanostructures, and was also detected in deeper layers along with octadecanoic acid. Aliphatic compounds were detected throughout the epicuticle, and these appeared to form a third discrete layer that was separate from both the inner and outer epicuticles, which has never previously been reported. PMID:23874463

  12. Femtosecond laser-induced periodic surface structure formation on tungsten

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-09-15

    In this paper, we demonstrate the generation of periodic surface structures on a technologically important material, tungsten, at both 400 and 800 nm, despite that the table values of dielectric constants for tungsten at these two wavelengths suggest the absence of surface plasmons, a wave necessary for forming periodic structures on metals. Furthermore, we find that the structure periods formed on tungsten are significantly less than the laser wavelengths. We believe that the dielectric constants of tungsten change significantly due to intense laser pulse heating and surface structuring and roughening at nanometer scales, permitting surface plasmon excitation and periodic structure formation.

  13. Physics of the outer heliosphere

    SciTech Connect

    Gazis, P.R. )

    1991-01-01

    Major advances in the physics of the outer heliosphere are reviewed for the 1987-1990 time frame. Emphasis is placed on five broad topics: the detailed structure of the solar wind at large heliocentric distances, the global structure of the interplanetary field, latidudinal variations and meridional flows, radial and temporal variations, and the interaction of the solar wind with the local interstellar medium. 122 refs.

  14. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    NASA Astrophysics Data System (ADS)

    Roik, N. V.; Belyakova, L. A.

    2014-07-01

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water-ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N‧-(N‧-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N‧-(N‧-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels.

  15. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    SciTech Connect

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  16. Meso- and microscale structures related to post-magmatic deformation of the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    NASA Astrophysics Data System (ADS)

    Micheuz, P.; Kurz, W.; Ferre, E. C.

    2015-12-01

    IODP Expedition 352 aimed to drill through the entire volcanic sequence of the Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Analysis of structures within drill cores, combined with borehole and site survey seismic data, indicates that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic, associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement, deformation was accommodated by shear along cataclastic fault zones, and the formation of tension fractures, hybrid (tension and shear) fractures, and shear fractures. Veins commonly form by mineral filling of tension or hybrid fractures and, generally, show no or limited observable macroscale displacement along the fracture plane. The vein filling generally consists of (Low Mg-) calcite and/or various types of zeolite as well as clay. Vein frequency varies with depth but does not seem to correlate with the proximity of faults. This may indicate that these veins are genetically related to hydrothermal activity taking place shortly after magma cooling. Host-rock fragments are commonly embedded within precipitated vein material pointing to a high fluid pressure. Vein thickness varies from < 1 mm up to 15 mm. The wider veins appear to have formed in incremental steps of extension. Calcite veins tend to be purely dilational at shallow depths, but gradually evolve towards oblique tensional veins at depth, as shown by the growth of stretched calcite and/or zeolites (idiomorphic and/or stretched) with respect to vein margins. With increasing depth, the calcite grains exhibit deformation microstructures more frequently than at shallower core intervals. These microstructures include thin twinning (type I twins), increasing in width with depth (type I and type II twins), curved twins, and subgrain boundaries indicative of incipient plastic deformation.

  17. Structure of the Neisserial Outer Membrane Protein Opa60: Loop Flexibility Essential to Receptor Recognition and Bacterial Engulfment

    PubMed Central

    2015-01-01

    The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen–host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors. PMID:24813921

  18. Structure of the Neisserial outer membrane protein Opa₆₀: loop flexibility essential to receptor recognition and bacterial engulfment.

    PubMed

    Fox, Daniel A; Larsson, Per; Lo, Ryan H; Kroncke, Brett M; Kasson, Peter M; Columbus, Linda

    2014-07-16

    The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen-host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors. PMID:24813921

  19. Multilayer relaxation and surface structure of ordered alloys

    NASA Technical Reports Server (NTRS)

    Kobistek, Robert J.; Bozzolo, Guillermo; Ferrante, John; Schlosser, Herbert

    1993-01-01

    Using BFS, a new semiempirical method for alloys, we study the surface structure of fcc ordered binary alloys in the Ll(sub 2) structure (Ni3Al and Cu3Au). We show that the surface energy is lowest for the mixed composition truncation of the low-index faces of such systems. Also, we present results for the interlayer relaxations for planes close to the surface, revealing different relaxations for atoms of different species producing a rippled surface layer.

  20. Design of highly oleophobic cellulose surfaces from structured silicon templates.

    PubMed

    Aulin, Christian; Yun, Sang Ho; Wågberg, Lars; Lindström, Tom

    2009-11-01

    Structured silicon surfaces, possessing hierarchical porous characteristics consisting of micrometer-sized cavities superimposed upon a network of nanometer-sized pillars or wires, have been fabricated by a plasma-etching process. These surfaces have superoleophobic properties, after being coated with fluorinated organic trichlorosilanes, on intrinsically oleophilic surfaces. By comparison with flat silicon surfaces, which are oleophilic, it has been demonstrated that a combination of low surface energy and the structured features of the plasma-etched surface is essential to prevent oil from penetrating the surface cavities and thus induce the observed macroscopic superoleophobic phenomena with very low contact-angle hysteresis and low roll-off angles. The structured silicon surfaces were coated with cellulose nanocrystals using the polyelectrolyte multilayer technique. The cellulose surfaces prepared in this way were then coated with a monolayer of fluorinated trichlorosilanes. These porous cellulose films displayed highly nonwetting properties against a number of liquids with low surface tension, including alkanes such as hexadecane and decane. The wettability and chemical composition of the cellulose/silicon surfaces were characterized with contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The nano/microtexture features of the cellulose/silicon surfaces were also studied with field-emission scanning electron microscopy. The highly oleophobic structured cellulose surfaces are very interesting model surfaces for the development of biomimetic self-cleaning surfaces in a vast array of products, including green constructions, packaging materials, protection against environmental fouling, sports, and outdoor clothing, and microfluidic systems. PMID:20356113

  1. Surface structure of cleaved (001) USb2 single crystal surface

    SciTech Connect

    Chen, Shao-ping

    2008-01-01

    We have achieved what we believe to be the first atomic resolution scanning tunneling microscopy (STM) images for a uranium compound USb2 taken at room temperature. The a, b, and c lattice parameters in the images confirm that the tetragonal USb2 crystals cleave on the (001) basal plane as expected. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the density of states measured by STM. Since the spacing between Sb atoms and between U atoms is the same, STM topography alone cannot unambiguously identify the surface atom species.

  2. The Outer Limits: English.

    ERIC Educational Resources Information Center

    Tyler, Barbara R.; Biesekerski, Joan

    The Quinmester course "The Outer Limits" involves an exploration of unknown worlds, mental and physical, through fiction and nonfiction. Its purpose is to focus attention on the ongoing conquest of the frontiers of the mind, the physical world, and outer space. The subject matter includes identification and investigation of unknown worlds in the…

  3. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; Zelenyi, L.

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines, the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF Bz component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF BZ is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION- 4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF By component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere.

  4. The structure of surface texture knowledge

    NASA Astrophysics Data System (ADS)

    Yan, Wang; Scott, Paul J.; Jiang, Xiangqian

    2005-01-01

    This research aims to create an intelligent knowledge-based system for engineering and bio-medical engineering surface texture, which will provide expert knowledge of surface texture to link surface function, specification of micro- and nano-geometry through manufacture, and verification. The intelligent knowledge base should be capable of incorporating knowledge from multiple sources (standards, books, experts, etc), adding new knowledge from these sources and still remain a coherent reliable system. A new data model based on category theory will be adopted to construct this system.

  5. Structure of the Outer Cusp and Sources of the Cusp Precipitation during Intervals of a Horizontal IMF

    NASA Technical Reports Server (NTRS)

    Berchem, Jean; Nemecek, Z.; Safrankova, J.; Prech, L.; Simunek, J.; Sauvaud, J.-A.; Fedorov, A.; Stenuit, H.; Fuselier, S. A.; Savin, S.; Zelenyi, L.

    2003-01-01

    The cusp represents a place where the magnetosheath plasma can directly penetrate into the magnetosphere. Since the main transport processes are connected with merging of the interplanetary and magnetospheric field lines: the interplanetary magnetic field (IMF) Orientation plays a decisive role in the formation of the high-altitude cusp. The importance of the sign of the IMF B(sub Z) component for this process was suggested about 40 years ago and later it was documented by many experimental investigations. However, situations when IMF Bz is the major IMF component are rather rare. The structure of the cusp during periods of a small IMF B(sub Z) is generally unknown, probably due to the fully 3-D nature of the interaction. The present case study reveals the importance of horizontal IMF components on the global magnetospheric configuration as well as on small-scale processes at the cusp-magnetosheath interface. We have used simultaneous measurements of several spacecraft (ISTP program) operating in different regions of interplanetary space and two closely spaced satellites (INTERBALL-1/MAGION-4) crossing the cusp-magnetosheath boundary to show the connection between the short- and large-scale phenomena. In the northern hemisphere, observations suggest a presence of two spots of cusp-like precipitation supplied by reconnection occurring simultaneously in both hemispheres. A source of this bifurcation is the positive IMF B(sub y) component further enhanced by the field draping in the magnetosheath. This magnetic field component shifts the entry point far away from the local noon but in opposite sense in either hemisphere. The cusp represents a place where the magnetosheath plasma can directly

  6. The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein-protein interaction.

    PubMed

    Vanini, Marina Marques Teixeira; Spisni, Alberto; Sforça, Maurício Luis; Pertinhez, Thelma Aguiar; Benedetti, Celso Eduardo

    2008-06-01

    The outer membrane lipoprotein A (OmlA) belongs to a family of bacterial small lipoproteins widely distributed across the beta and gamma proteobacteria. Although the role of numerous bacterial lipoproteins is known, the biological function of OmlA remains elusive. We found that in the citrus canker pathogen, Xanthomonas axonopodis pv. citri (X. citri), OmlA is coregulated with the ferric uptake regulator (Fur) and their expression is enhanced when X. citri is grown on citrus leaves, suggesting that these proteins are involved in plant-pathogen interaction. To gain insights into the function of OmlA, its conformational and dynamic features were determined by nuclear magnetic resonance. The protein has highly flexible N- and C- termini and a structurally well defined core composed of three beta-strands and two small alpha-helices, which pack against each other forming a two-layer alpha/beta scaffold. This protein fold resembles the domains of the beta-lactamase inhibitory protein BLIP, involved in protein-protein binding. In conclusion, the structure of OmlA does suggest that this protein may be implicated in protein-protein interactions required during X. citri infection. PMID:18186471

  7. A well-structured metastable ceria surface

    SciTech Connect

    Olbrich, R.; Pieper, H. H.; Oelke, R.; Wilkens, H.; Wollschläger, J.; Reichling, M.; Zoellner, M. H.; Schroeder, T.

    2014-02-24

    By the growth of a 180 nm thick film on Si(111), we produce a metastable ceria surface with a morphology dominated by terraced pyramids with an oriented triangular base. Changes in the nanoscale surface morphology and local surface potential due to annealing at temperatures ranging from 300 K to 1150 K in the ultra-high vacuum are studied with non-contact atomic force microscopy and Kelvin probe force microscopy. As the surface is stable in the temperature range of 300 K to 850 K, it is most interesting for applications requiring regular steps with a height of one O-Ce-O triple layer.

  8. Coal surface structure and thermodynamics. Final report

    SciTech Connect

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  9. Chemical design of pH-sensitive nanovalves on the outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid

    SciTech Connect

    Roik, N.V. Belyakova, L.A.

    2014-07-01

    Mesoporous silicas with hexagonally arranged pore channels were synthesized in water–ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequent delivery at pH=6.86 and pH=1.00. It was found that N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels. - Graphical abstract: Blocking of pores with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups at pH=6.86 for storage of ABA and opening of pore entrances at pH=1.00 for unhindered ABA liberation. - Highlights: • Modification of MCM-41 with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups. • Study of release ability of synthesized silica carriers in relation to amino acid. • Controlled blocking and opening of pores by amino groups at pH change were performed. • Retention of amino acid at pH=6.86 and its liberation at pH=1.00 was proved.

  10. Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Sharma, Monica

    2015-10-01

    Tropical cyclone (TC) wind field monitoring and forecast are important for mariners, ships on sea and modelling group for creation of synthetic vortex, and storm surge and coastal inundation forecasting. Among others, a multi-platform satellite surface wind analysis developed by Co-operative Institute for Research in the Atmosphere (CIRA), USA for the TCs are referred by India Meteorological Department for surface wind field monitoring of TC. Hence, a study has been undertaken to analyze the characteristics of surface wind distribution and hence the structure of TC based on the real time data available from CIRA during 2007-2013. The study includes 19 TCs over the Bay of Bengal (BOB) and six over Arabian Sea (AS). The maximum radial extent of winds reaching threshold values of 34(17), 50(26) and 64(33) knot (ms-1) in each of the four geographical quadrants has been segregated with respect to season of formation, basin of formation and intensity of TC for analysis. The objective is to develop a reference surface wind structure of TC and examine its validity with respect to physical processes. The size of outer core (34(17) knot (ms-1) wind radial extension) as well as inner core (50(26) and 64(33) knot (ms-1) wind radial extension) increases significantly with increase in intensification of TC over BOB during both pre-monsoon and post-monsoon seasons and over AS during pre-monsoon season. The outer core of winds in TCs over the BOB is asymmetric in both pre-monsoon and post-monsoon seasons and for all categories of intensity of TCs. On the other hand, the asymmetry in inner core winds is significantly less. There is also no asymmetry in radial wind extension over the AS during both the seasons, except in case of outer core wind radial extension of VSCS during pre-monsoon season. The low level environment like enhanced cross equatorial flow, lower/middle level relative humidity, vertical wind shear and proximity of TC to the land surface are the determining factors

  11. Laser-induced periodic annular surface structures on fused silica surface

    SciTech Connect

    Liu, Yi; Brelet, Yohann; Forestier, Benjamin; Houard, Aurelien; Yu, Linwei; Deng, Yongkai; Jiang, Hongbing

    2013-06-24

    We report on the formation of laser-induced periodic annular surface structures on fused silica irradiated with multiple femtosecond laser pulses. This surface morphology emerges after the disappearance of the conventional laser induced periodic surface structures, under successive laser pulse irradiation. It is independent of the laser polarization and universally observed for different focusing geometries. We interpret its formation in terms of the interference between the reflected laser field on the surface of the damage crater and the incident laser pulse.

  12. The X-37 Hot Structure Control Surface Testing

    NASA Technical Reports Server (NTRS)

    Hudson, Larry D.; Stephens, Craig A.

    2006-01-01

    Thermal-structural testing of three hot structure control surface subcomponent test articles (STA) designed for the X-37 (Boeing Phantom Works, Huntington Beach, California) Orbital Vehicle (OV) has been completed. The test articles were subcomponents of the X-37 OV bodyflap and flaperon control surfaces.

  13. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface structures, fireproofing. 75.1708 Section 75.1708 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1708 Surface structures, fireproofing. After March 30, 1970,...

  14. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface structures, fireproofing. 75.1708 Section 75.1708 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1708 Surface structures, fireproofing. After March 30, 1970,...

  15. Secondary electron emission from surfaces with small structure

    NASA Astrophysics Data System (ADS)

    Dzhanoev, A. R.; Spahn, F.; Yaroshenko, V.; Lühr, H.; Schmidt, J.

    2015-09-01

    It is found that for objects possessing small surface structures with differing radii of curvature the secondary electron emission (SEE) yield may be significantly higher than for objects with smooth surfaces of the same material. The effect is highly pronounced for surface structures of nanometer scale, often providing a more than 100 % increase of the SEE yield. The results also show that the SEE yield from surfaces with structure does not show a universal dependence on the energy of the primary, incident electrons as it is found for flat surfaces in experiments. We derive conditions for the applicability of the conventional formulation of SEE using the simplifying assumption of universal dependence. Our analysis provides a basis for studying low-energy electron emission from nanometer structured surfaces under a penetrating electron beam important in many technological applications.

  16. Magnetospheres of the outer planets

    SciTech Connect

    Cheng, A.F.

    1986-12-01

    The magnetospheres of the outer planets have been shown by Voyager explorations to strongly interact with the surfaces and atmospheres of their planetary satellites and rings. In the cases of Jupiter, Saturn and Uranus, the processes of charged particle sputtering, neutral gas cloud formation, and rapid plasma injection from the ionization of the neutral clouds, have important implications both for the magnetospheres as a whole and for the surfaces and atmospheres of their satellites. The general methodology employed in these researches has involved comparisons of the planetary magnetospheres in order to identify common physical processes. 16 references.

  17. Non-LTE modeling of the structure and spectra of hot accretion spots on the surface of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, A. V.

    2015-05-01

    The results of modeling the structure and spectra of hot accretion spots on the surface of young stars with allowance made for the departures from LTE for hydrogen and helium are presented. The existence of ram pressure of the infalling gas at the outer boundary of the hot spot has been found to lead to Stark broadening of the hydrogen line profiles to ˜1000 km s-1 at the accretion parameters considered. It is shown that allowance for the departures from LTE for carbon and oxygen atoms and ions does not lead to noticeable changes in the structure of the hot spot.

  18. Aft outer rim seal arrangement

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J; Campbell, Christian X

    2015-04-28

    An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.

  19. Why Surface Syntactic Structure Reflects Logical Structure as Much as It Does, But Only That Much.

    ERIC Educational Resources Information Center

    McCawley, James D.

    1999-01-01

    Examines parallelisms between surface structure and logical structure and why those parallelisms do not extend farther than they do. If syntactic deep structures are identified with logical structures, an appropriate cyclic principle guarantees that cyclic rules will apply so that large-scale parallelisms exist between surface syntactic structures…

  20. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  1. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  2. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  3. Carbon Nanomaterials: Surface Structure and Morphology

    NASA Astrophysics Data System (ADS)

    Mansurov, Z. A.; Shabanova, T. A.; Mofa, N. N.; Glagolev, V. A.

    2014-09-01

    We propose a classification of individual nanoparticles on the basis of the form of the surface and the internal architectural packing for investigations carried out with the help of transmission electron microscopy. The investigated samples contain individual nanoparticles of seven kinds in different ratios: rounded, tubular, fibrous, fi lm, "veil," "active" particles and "particles with regular geometric contours." The classification was made on the basis of an analysis of the results of investigations of the surfaces and internal architectural packing of carbon particles obtained in different physiochemical processes (carbonization, carburizing, arc discharge, mechanochemical treatment, plasma chemistry, and in carbon-containing fl ames). For the source materials, we used waste of farming products and widely distributed mineral raw materials.

  4. Theory for Surface Structure of Electrolyte Solutions.

    NASA Astrophysics Data System (ADS)

    Nichols, Albert Loyd, III

    A theory is developed for the salt concentration profile and ion-ion correlations near surfaces of electrolyte solutions. We use the random phase approximation to study the primitive surface model employed by Onsager and Samaras, and others. In this model the chief technical complication is the correct treatment of image forces. We invent an exact rearrangement of the mathematical formulation of the problem which makes especially transparent the special case solutions (infinite dielectric constant mismatch) previously found. This reformulation guides an analytical solution for arbitrary dielectric constant mismatch between the two phases, subject to other assumptions adopted by previous workers. Similarly general results are derived for mixtures of ionic and dipolar solutes. These general results form the basis for extending our theoretical studies in several new directions. First, higher concentration corrections are investigated. It is shown that over an experimentally significant range of low concentrations for aqueous solutions the initial concentration correction to the Onsager-Samaras absorption has a negative definite sign. The theory, including concentration corrections, is compared to available computer simulation data, and close agreement is found for aqueous solutions below a few tenths molar. Second, the theory is developed to treat asymmetric electrolytes, and applied to ionic surfactants spread on water-hydrocarbon interfaces. Again, the theory accurately describes available experimental data. Third, the theory is broadened to acknowledge the solubility of the salt in both phases. It is found that this generalization changes the qualitative nature of the low concentration limiting law for the excess surface tension: the limiting behavior is changed from the (rho)ln(rho) dependence predicted by Onsager and Samaras to a more generally correct (rho)(' 1/2) dependence. Experimental data which might test this (rho)(' 1/2) behavior are not presently

  5. Broadband antireflective surface-relief structure for THz optics.

    PubMed

    Brückner, Claudia; Pradarutti, Boris; Stenzel, Olaf; Steinkopf, Ralf; Riehemann, Stefan; Notni, Gunther; Tünnermann, Andreas

    2007-02-01

    The requirements for a broadband antireflective structure in the THz spectral region are derived. Optimized structural parameters for a surface-relief grating adapted to the spectrum of an intended THz pulse are deduced. The effect of a structure fabricated into Topas((R)) by a single-point diamond-turning process is demonstrated. PMID:19532301

  6. Surfaces of Microparticles in Colloids: Structure and Molecular Adsorption Kinetics

    NASA Astrophysics Data System (ADS)

    Dai, Hai-Lung

    2002-03-01

    Surfaces of micron and sub-micron size particles in liquid solution are probed by second harmonic generation (SHG) facilitated with femtosecond laser pulses. The particles probed include inorganic objects such as carbon black and color pigments, polymeric species like polystyrene beads, and biological systems such as blood cells and ecoli. In the experiments, dye molecules are first adsorbed onto the particle surface to allow generation of second harmonics upon light irradiation. Competition for adsorption between these surface dye molecules and the molecules of interest in the solution is then monitored by the SHG signal to reveal the molecular adsorption kinetics and surface structure. Specifically, surfactant adsorption on polymer surfaces, the structure of carbon black surface, and protein adsorption on biological surfaces, monitored by this technique, will be discussed.

  7. Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon

    This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were

  8. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGESBeta

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  9. Thermodynamics and surface structure of coals

    SciTech Connect

    Larsen, J.W.; Quay, D.M.; Roberts, J.E.; Wernett, P.C.

    1990-01-01

    We measured the surface areas of the Argonne coals using standard multipoint volumetric BET techniques, a series of aliphatic alkanes, N{sub 2}, and CO{sub 2}. All samples were dried by evacuation at 10{sup {minus}6} torr overnight on a Micromeritics Digisorb 2500 stainless steel adsorption rig. Twenty four hours equilibration for the first adsorption point and six hours equilibration for each subsequent point was allowed for the cyclic hydrocarbon gases, except where otherwise noted. Six hours equilibration between adsorption points was used for all the other gases except N{sub 2}{center dot}{sup 10}. The data and measurement conditions for Argonne: Pocahontas No. 3, Upper Freeport, and Pittsburgh No. 8 coals are presented in figures 1--3 respectively. The coal surface areas obtained using CO{sub 2}, ethane and cyclopropane, all of similar cross sectional area, cannot be rationalized using a constricted pore model. Ethane (cylindrical) and cyclopropane (planar) have different shapes and slit like or cylindrical pores would discriminate between them.

  10. Thermodynamics and surface structure of coals

    SciTech Connect

    Glass, A.S.; Larsen, J.W.; Quay, D.M.; Roberts, J.E.; Wernett, P.C.

    1991-01-01

    Our work this month has been determining the effect of added surface dysprosium(III) ions on the NMR spectra of coal. We have also been examining the effect of this relaxation agent on our model system, an aryl sulfonate silica gel. To the best of our knowledge, NMR has not previously been. applied to surface studies of coal. It is a powerful technique because line positions and intensities are indicative of geometry, bonding hybridization and population of distinct functionalities as well as local environment effects. The NMR spectrum can be influenced by many factors including dipolar through-space coupling between an unpaired electron spin and the spin of the carbon atom. The unpaired electron can act as a relaxation sink, significantly shortening the spin-lattice relaxation time (T{sub 1}) of the coupled carbon-13 atom. This shortening of the T{sub 1} can broaden the signal to the point where it disappears into the baseline noise. The effective range of interaction is proportional to the inverse sixth power of the separation of the two spins (r{sup {minus}6}). In this system, the effective range is a relatively short distance on the order of 1 nanometer.

  11. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  12. TprC/D (Tp0117/131), a Trimeric, Pore-Forming Rare Outer Membrane Protein of Treponema pallidum, Has a Bipartite Domain Structure

    PubMed Central

    Anand, Arvind; Luthra, Amit; Dunham-Ems, Star; Caimano, Melissa J.; Karanian, Carson; LeDoyt, Morgan; Cruz, Adriana R.; Salazar, Juan C.

    2012-01-01

    Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178–5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprCFl) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprCFl increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprCN), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprCC). Syphilitic rabbits generate antibodies exclusively against TprCC, while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host. PMID:22389487

  13. Identification of outer membrane proteins of Mycobacterium tuberculosis.

    PubMed

    Song, Houhui; Sandie, Reatha; Wang, Ying; Andrade-Navarro, Miguel A; Niederweis, Michael

    2008-11-01

    The cell wall of mycobacteria includes an unusual outer membrane of extremely low permeability. While Escherichia coli uses more than 60 proteins to functionalize its outer membrane, only two mycobacterial outer membrane proteins (OMPs) are known. The porin MspA of Mycobacterium smegmatis provided the proof of principle that integral mycobacterial OMPs share the beta-barrel structure, the absence of hydrophobic alpha-helices and the presence of a signal peptide with OMPs of gram-negative bacteria. These properties were exploited in a multi-step bioinformatic approach to predict OMPs of M. tuberculosis. A secondary structure analysis was performed for 587 proteins of M. tuberculosis predicted to be exported. Scores were calculated for the beta-strand content and the amphiphilicity of the beta-strands. Reference OMPs of gram-negative bacteria defined threshold values for these parameters that were met by 144 proteins of unknown function of M. tuberculosis. Two of them were verified as OMPs by a novel two-step experimental approach. Rv1698 and Rv1973 were detected only in the total membrane fraction of M. bovis BCG in Western blot experiments, while proteinase K digestion of whole cells showed the surface accessibility of these proteins. These findings established that Rv1698 and Rv1973 are indeed localized in the outer membrane and tripled the number of known OMPs of M. tuberculosis. Significantly, these results provide evidence for the usefulness of the bioinformatic approach to predict mycobacterial OMPs and indicate that M. tuberculosis likely has many OMPs with beta-barrel structure. Our findings pave the way to identify the set of proteins which functionalize the outer membrane of M. tuberculosis. PMID:18439872

  14. Surface structure determination of black phosphorus using photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    de Lima, Luis Henrique; Barreto, Lucas; Landers, Richard; de Siervo, Abner

    2016-01-01

    The atomic structure of single-crystalline black phosphorus is studied using high-resolution synchrotron-based photoelectron diffraction (XPD). The results show that the topmost phosphorene layer in the black phosphorus is slightly displaced compared to the bulk structure and presents a small contraction in the direction perpendicular to the surface. Furthermore, the XPD results show the presence of a small buckling among the surface atoms, in agreement with previously reported scanning tunneling microscopy results. The contraction of the surface layer added to the presence of the buckling indicates a uniformity in the size of the s p3 bonds between P atoms at the surface.

  15. Beyond the surface atlas: A roadmap and gazetteer for surface symmetry and structure

    NASA Astrophysics Data System (ADS)

    Jenkins, Stephen J.; Pratt, Stephanie J.

    2007-10-01

    Throughout the development of single-crystal surface science, interest has predominantly focussed on the high-symmetry planes of crystalline materials, which typically present simple stable structures with small primitive unit cells. This concentration of effort has rapidly and substantially advanced our understanding of fundamental surface phenomena, and provides a sound basis for detailed study of more complex planes. The intense current interest in these is partly motivated by their regular arrays of steps, kinks or other low-coordination structural features, whose properties are little understood and may mimic specific highly-reactive sites on dispersed nanoparticles. Furthermore, the lower symmetry of these planes may give rise to other equally interesting properties such as intrinsic chirality, with exciting potential applications in enantioselective heterogeneous catalysis, biosensors and surface magnetism. To aid exploration of this new territory for surface science requires a depth of understanding that goes beyond the character of individual surfaces to encompass the global relationships between all possible surfaces of a given material, both in their structure and in their symmetry. In this report we present a rigorous conceptual framework for ideal crystalline surfaces within which the symmetry and structure of all possible surface orientations are described. We illustrate the versatility of our generally-applicable approach by comparing fcc, bcc and hcp materials. The entire scheme naturally derives from the very simple basis that the fundamental distinction between symmetry and structure is paramount. Where symmetry is concerned, our approach recognises that the surface is not a two-dimensional (2D) object but actually a truncated three-dimensional (3D) one. We therefore derive a symmetry scheme specifically formulated for surfaces and naturally encompassing their chirality where necessary. Our treatment of surface structure, on the other hand

  16. Theoretical estimation of surface Debye temperature of nano structured material

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar; Sarkar, A.

    2016-05-01

    The estimation of Debye temperature (TD) exploiting phonon is very important. In this work an attempt has been made to estimate TD for solids in a simple phenomenological approach. The ultimate goal is to estimate TD for nano structured material. The objective of this present work is to extend Debye model for nano-structured material and hence to extract the contribution to surface specific heat and surface Debye temperature. An empirical relation between TD and surface Debye temperature (TDS) is proposed. Lindemann melting criterion is also extended towards nano structure. The overall results obtained are compared and found to be in good agreement.

  17. Outer-membrane cytochrome-c, OmcF from Geobacter sulfurreducens: high structural similarity to an algal cytochrome c6.

    SciTech Connect

    Pokkuluri, P. R.; Londer, Y. Y.; Wood, S. J.; Duke, N. E. C.; Morgado, L.; Salgueiro, C. A.; Schiffer, M.; Biosciences Division; Univ. Nova de Lisboa

    2009-01-01

    Putative outer membrane c-type cytochromes have been implicated in metal ion reducing properties of Geobacter sulfurreducens. OmcF (GSU2432), OmcB (GSU2731), and OmcC (GSU2737) are three such proteins that have predicted lipid anchors. OmcF is a monoheme cytochrome, whereas OmcB and OmcC are multiheme cytochromes. Deletion of OmcF was reported to affect the expression of OmcB and OmcC in G. sulfurreducens. The OmcF deficient strain was impaired in its ability to both reduce and grow on Fe(III) citrate probably because the expression of OmcB, which is crucial for iron reduction, is low in this strain. U(VI) reduction activity of this bacterium is also lower on deletion of OmcB or OmcF. The U(VI) reduction activity is affected more by the deletion of OmcF than by the deletion of OmcB. The soluble part of OmcF (residues 20-104, referred to as OmcF{sub S} hereafter) has sequence similarity to soluble cytochromes c{sub 6} of photosynthetic algae and cyanobacteria. The cytochrome c{sub 6} proteins in algae and cyanobacteria are electron transport proteins that mediate the transfer of electrons from cytochrome b{sub 6}f to photosystem I and have high reduction potentials of about +350 mV and low pI. The structures of seven cytochromes c{sub 6} have been previously determined. Further, a c{sub 6}-like cytochrome (PetJ2) of unknown function was recently identified in Synechoccus sp. PCC 7002 with a reduction potential of +148 mV and high pI. Here, we report the structure of OmcF{sub S} and its remarkable structural similarity to that of cytochrome c{sub 6} from the green alga, Monoraphidium braunii. To our knowledge, OmcF{sub S} is the first example of a cytochrome c{sub 6}-like structure from a nonphotosynthetic organism.

  18. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  19. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  20. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  1. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  2. Influence of surface structure and chemistry on water droplet splashing.

    PubMed

    Koch, Kerstin; Grichnik, Roland

    2016-08-01

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354737

  3. Surface structures of polar and non-polar metal oxides

    NASA Astrophysics Data System (ADS)

    Chamberlin, Sara E.

    Metal oxides have long been a challenge to surface science since many traditional surface techniques are often affected by their insulating nature. In particular, high current electron beams can cause charging effects in addition to potentially desorbing surface species and damaging the surface. The development of a low current, low energy electron diffraction (LEED) system has allowed us to investigate metal oxide surfaces while significantly limiting the above mentioned complications. This low current LEED system has been used to perform a structural LEED-IV study of the reconstructed TiO2(011)-(2x1) surface. This surface is known to experience significant oxygen desorption when exposed to high current electron beams. The low current LEED system was crucial to maintain confidence in the structure found, which generally agreed with recently published models, but did not confirm one key feature. The oxygen atoms at the surface were not found to be asymmetrically bonded, which has been thought to be the cause of this surface's enhanced photocatalytic activity. We have also used the low current LEED system to investigate the polar oxide surfaces of ZnO(000 1¯) and MgO(111)-(✓3x✓3)R30°. For Zn0(000 1¯) LEED-IV structural study was combined with Density Functional Theory (DFT) calculations to investigate the impact of hydrogen on the surface. Our results support a disordered, fractional coverage of hydrogen terminating the surface. MgO(111)-(✓3x✓3)R30° has proven to be a challenging reconstructed surface. Both LEED-IV and surface x-ray diffraction (SXRD) find that previously proposed models for the surface are not a good fit to the data, so other models have been explored. The SXRD data in particular suggest that the reconstruction is more than one atomic layer deep.

  4. Imprinted and injection-molded nano-structured optical surfaces

    NASA Astrophysics Data System (ADS)

    Christiansen, Alexander B.; Højlund-Nielsen, Emil; Clausen, Jeppe; Caringal, Gideon P.; Mortensen, N. Asger; Kristensen, Anders

    2013-09-01

    Inspired by nature, nano-textured surfaces have attracted much attention as a method to realize optical surface functionality. The moth-eye antireflective structure and the structural colors of Morpho butterflies are well- known examples used for inspiration for such biomimetic research. In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication of Black Silicon (BSi) random nanostructure surfaces. The optical transmission at normal incidence is measured for wavelengths from 400 nm to 900 nm. For samples with optimized nanostructures, the reflectance is reduced by 50 % compared to samples with planar surfaces. The specular and diffusive reflection of light from polymer surfaces and their implication for creating structural colors is discussed. In the case of injection-moulding compatible designs, the maximum reflection of nano-scale textured surfaces cannot exceed the Fresnel reflection of a corresponding flat polymer surface, which is approx. 4 % for normal incidence. Diffraction gratings provide strong color reflection defined by the diffraction orders. However, the apperance varies strongly with viewing angles. Three different methods to address the strong angular-dependence of diffraction grating based structural color are discussed.

  5. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek R.

    2006-06-01

    In the first 8 months of this grant we initiated investigations on several of the new hypothesis in the proposal. Hypothesis 1-4 deal with the mechanisms of conductivity along the length of the pili of Geobacter sulfurreducens. The initial approach to evaluating these mechanisms was to attempt to measure end-to-end conductivity of the pili with lithographically-patterned electrodes in which conductive strips of graphite are placed on an insulating silicon dioxide surface. To our knowledge this is the first time that such conductivity measurements have been attempted with natural protein structures. Conductivity along the pili was measured with two methods. In the first method, the conductivity of the pili was measured by applying a voltage between the lithographic electrodes. In the second method, the voltage was applied between one lithographic electrode and the AFM tip. To date, we have not been able to consistently measure current of pili because of an inability to readily observe pili on the nanoelectrode system. Although we were able to make conductivity measurements in this manner on one attempt, we have not been able to consistently obtain appropriate preparations to consistently make such measurements. Therefore, we are evaluating strategies to modify this approach to make it more consistent.

  6. May Auger electron spectroscopy provide surface structural information?

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Soria, F.

    1986-12-01

    Quantitative analysis of Auger electron spectroscopy peak energies, lineshapes and heights allows to determine the chemical composition of the surface layer, and in binary (111) semiconductors even the composition of the outermost surface bilayer, if the composition of a standard surface is known. Surface structural information can also be obtained by the interaction of these surfaces with some gases used as markers, when the gas absorption proceeds by an over/underlayer mechanism, as it happens in the initial stages of the interaction of oxygen with differently prepared GaAs(111) surfaces. Thus, we have been able to confirm the structure of the (111) 2 × 2 Ga surface, and to determine the oxygen absorption sites and occupation sequence, by comparison of the experimental intensities with calculations which model the surface structure and absorption sites. This formalism has also been applied to ( overline1overline1overline1) 1 × 1 facetted surfaces, where very different absorption behaviour is seen for surfaces prepared at different ion energies, but annealed at the same temperature.

  7. Replication of Leaf Surface Structures for Light Harvesting

    PubMed Central

    Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei

    2015-01-01

    As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems. PMID:26381702

  8. Replication of Leaf Surface Structures for Light Harvesting.

    PubMed

    Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei

    2015-01-01

    As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems. PMID:26381702

  9. Comparative analysis of the structures of the outer membrane protein P1 genes from major clones of Haemophilus influenzae type b.

    PubMed Central

    Munson, R; Grass, S; Einhorn, M; Bailey, C; Newell, C

    1989-01-01

    P1 outer membrane proteins from Haemophilus influenzae type b are heterogeneous antigenically and with respect to apparent molecular weight in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For determination of the molecular basis for the differences in the P1 proteins, the genes for the P1 proteins from strain 1613, representative of outer membrane protein subtype 3L, and strain 8358, representative of outer membrane protein subtype 6U, were cloned, sequenced, and compared with the previously reported gene for the P1 protein from strain MinnA, a strain with the outer membrane protein subtype 1H. These prototype strains are representatives of the three major clonal families of H. influenzae type b responsible for invasive disease in diverse areas of the world. The nucleotide sequences of the P1 genes from strains 1613 and 8358 were 94 and 90% identical to the MinnA sequence, respectively. The derived amino acid sequences were 91 and 86% identical, respectively. Heterogeneity between the MinnA and 1613 proteins was largely localized to two short variable regions; the protein from strain 8538 contained a third variable region not observed in the other P1 proteins. Thus, the outer membrane protein P1 genes are highly conserved; the variable regions may code for the previously demonstrated strain-specific antigenic determinants. Images PMID:2572549

  10. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  11. Domain structures in nematic liquid crystals on a polycarbonate surface.

    PubMed

    Parshin, Alexander M; Gunyakov, Vladimir A; Zyryanov, Victor Y; Shabanov, Vasily F

    2013-01-01

    Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

  12. Surface structures and surface-atom vibrations determined using photoelectron diffraction

    SciTech Connect

    Wang, L.Q. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    Surface structures of {radical}3 {times} {radical}3 R30{degrees} Cl/Ni(111) and c(2 {times} 2)Cl/Cu(001) were determined using low- temperature angle-resolved photoemission extended fine structure (ARPEFS), which yields both more accurate surface and near-surface structural information for deeper substrate layers. A study of surface-atom vibrations for {radical}3 {times} {radical}3 R30{degrees} Cl/Ni(111) and c(2 {times} 2)Cl/Cu(001) was made using temperature-dependent ARPEFS. A model for predicting the adsorbate vibrational anisotropy from surface structures was proposed and also successfully applied to several adsorbate systems. This model offered a simple and straightforward physical picture for understanding different types of vibrational anisotropy.

  13. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    SciTech Connect

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; Cohen, Bruce E.; Urban, Jeffrey J.; Ogletree, D. Frank; Milliron, Delia J.; Prendergast, David; Helms, Brett A.

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons is readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.

  14. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE PAGESBeta

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; et al

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  15. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  16. ULTRASTRUCTURE OF VEILLONELLA AND MORPHOLOGICAL CORRELATION OF AN OUTER MEMBRANE WITH PARTICLES ASSOCIATED WITH ENDOTOXIC ACTIVITY

    PubMed Central

    Bladen, Howard A.; Mergenhagen, Stephan E.

    1964-01-01

    Bladen, Howard A. (National Institute of Dental Research, Bethesda, Md.), and Stephan E. Mergenhagen. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J. Bacteriol. 88:1482–1492. 1964.—Normal, phenol-water extracted, and lysozyme-treated Veillonella cells were embedded in Vestopal W, sectioned, and examined by electron microscopy. Normal cells as well as the phenol-water extract (endotoxin) were examined by negative and positive contrast techniques. In thin sections of normal cells, three separate structural entities were observed surrounding the protoplasm, and were referred to as the outer membrane, the solid membrane, and the plasma membrane. The outer membrane was a membrane composed of two dense layers (30 A) separated by a less-dense layer (20 A), and followed a convoluted and continuous path around the cell. The solid membrane appeared as a taut, dense structure 100 to 500 A wide, and was separated from the outer membrane by up to several hundred Ångstroms. The plasma membrane was a unit-type membrane. After cells were treated with phenol-water, the outer membrane was absent, but the cells remained intact owing to the solid membrane. Observation of the phenol-water extract (endotoxin) revealed predominantly circular particles or discs which had approximately the same dimensions in height as the outer membrane had in width. Negatively stained whole cells showed similar structures on their surface. Lysozyme treatment of the cells did not affect the outer membrane; however, the solid membrane became diffuse and often disappeared, suggesting that the outer membrane and the solid membrane were separate structures. Images PMID:14234809

  17. Outer Planet Flagship Mission

    NASA Astrophysics Data System (ADS)

    Cutts, James; Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  18. Outer Planet Flagship Missions

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.; Cutts, J. A.

    2008-05-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEM and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn and Europa/Jupiter Missions. We provide the background, organization and schedule that are presently envisaged for these two mission studies.

  19. Outer Planets Flagship Mission

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J. P.; Cutts, J. A.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  20. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  1. Outer membrane protein purification.

    PubMed

    Arigita, C; Jiskoot, W; Graaf, M R; Kersten, G F

    2001-01-01

    The major outer membrane proteins (OMPs) from Neisseria meningitidis, which are expressed at high levels, are subdivided in five classes based on molecular weight (1,2) (see Table 1). Table 1 Major Meningococcal Outer-Membrane Proteins Outer-membrane proteins Name Molecular maass Function/characteristics Class 1 PorA 44-47 kDa Porin Class 2/3 PorB 37-42 kDa Porin Class 4 Rmp Reductionmodifiableprotein, unknown Class 5 Opa 26-30 kDa Adhesion,opacity protein Opc 25 kDa Invasion, opacity protein Iron-regulated proteins Mirp 37 kDa Iron acquisition (?);majoriron-regulatedprotein FrpB 70 kDa Ferric enterobactin receptor (also FetA) Adapted from ref. (1). PMID:21336748

  2. Accuracy of functional surfaces on comparatively modeled protein structures

    PubMed Central

    Zhao, Jieling; Dundas, Joe; Kachalo, Sema; Ouyang, Zheng; Liang, Jie

    2012-01-01

    Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the tempalte protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured. PMID:21541664

  3. Iridescent flowers? Contribution of surface structures to optical signaling.

    PubMed

    van der Kooi, Casper J; Wilts, Bodo D; Leertouwer, Hein L; Staal, Marten; Elzenga, J Theo M; Stavenga, Doekele G

    2014-07-01

    The color of natural objects depends on how they are structured and pigmented. In flowers, both the surface structure of the petals and the pigments they contain determine coloration. The aim of the present study was to assess the contribution of structural coloration, including iridescence, to overall floral coloration. We studied the reflection characteristics of flower petals of various plant species with an imaging scatterometer, which allows direct visualization of the angle dependence of the reflected light in the hemisphere above the petal. To separate the light reflected by the flower surface from the light backscattered by the components inside (e.g. the vacuoles), we also investigated surface casts. A survey among angiosperms revealed three different types of floral surface structure, each with distinct reflections. Petals with a smooth and very flat surface had mirror-like reflections and petal surfaces with cones yielded diffuse reflections. Petals with striations yielded diffraction patterns when single cells were illuminated. The iridescent signal, however, vanished when illumination similar to that found in natural conditions was applied. Pigmentary rather than structural coloration determines the optical appearance of flowers. Therefore, the hypothesized signaling by flowers with striated surfaces to attract potential pollinators presently seems untenable. PMID:24713039

  4. Effects of Structural versus Surface Similarity on Transfer of Motivation.

    ERIC Educational Resources Information Center

    Bong, Mimi

    The relative contribution of students' capability to perceive structural versus surface similarity on their motivation transfer was studied. It was hypothesized that surface similarity would lead to greater transfer of self-efficacy among tasks due to its readily perceptible nature. More specifically, it was hypothesized that the perception of…

  5. The outer solar system - Perspectives for exobiology

    NASA Technical Reports Server (NTRS)

    Owen, T.

    1974-01-01

    An attempt is made to summarize the current knowledge about the composition and structures of outer planet atmospheres with special emphasis on Jupiter, Saturn, and Titan. The nature of the substances which are responsible for the yellow coloration observed on both Jupiter and Saturn is discussed. The analysis of planetary conditions conducted shows that the outer solar system offers a variety of environments in which natural experiments in prebiotic organic synthesis must be taking place at the present time.

  6. Surface-induced structures in nematic liquid crystal colloids.

    PubMed

    Chernyshuk, S B; Tovkach, O M; Lev, B I

    2014-08-01

    We predict theoretically the existence of a class of colloidal structures in nematic liquid crystal (NLC) cells, which are induced by surface patterns on the plates of the cell (like cells with UV-irradiated polyamide surfaces using micron sized masks in front of the cell). These bulk structures arise from nonuniform boundary conditions for the director distortions at the confining surfaces. In particular, we demonstrate that quadrupole spherical particles (like spheres with boojums or Saturn-ring director configurations) form a square lattice inside a planar NLC cell, which has checkerboard patterns on both its plates. PMID:25215675

  7. Adsorption structure of water molecules on the Be(0001) surface

    SciTech Connect

    Yang, Yu; Li, Yanfang; Wang, Shuangxi; Zhang, Ping

    2014-06-07

    By using density functional theory calculations, we systematically investigate the adsorption of water molecules at different coverages on the Be(0001) surface. The coverage dependence of the prototype water structures and energetics for water adlayer growth are systematically studied. The structures, energetics, and electronic properties are calculated and compared with other available studies. Through our systematic investigations, we find that water molecules form clusters or chains on the Be(0001) surface at low coverages. When increasing the water coverage, water molecules tend to form a 2 × 2 hexagonal network on the Be(0001) surface.

  8. Self-consistent internal structure of a rotating gaseous planet and its comparison with an approximation by oblate spheroidal equidensity surfaces

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2015-12-01

    In an important paper, Roberts (1963b) studied the hydrostatic equilibrium of an isolated, self-gravitating, rapidly rotating polytropic gaseous body based on a controversial assumption/approximation that all (outer and internal) equidensity surfaces are in the shape of oblate spheroids whose eccentricities are a function of the equatorial radius and whose axes of symmetry are parallel to the rotation axis. We compute the three-dimensional, finite-element, fully self-consistent, continuous solution for a rapidly rotating polytropic gaseous body with Jupiter-like parameters without making any prior assumptions about its outer shape and internal structure. Upon partially relaxing the Roberts' approximation by assuming that only the outer equidensity surface is in the shape of an oblate spheroid, we also compute a finite-element solution with the same parameters without making any prior assumptions about its internal structure. It is found that all equidensity surfaces of the fully self-consistent solution differ only slightly from the oblate spheroidal shape. It is also found that the characteristic difference between the fully self-consistent solution and the outer-spheroidal-shape solution is insignificantly small. Our results suggest that the Roberts' assumption of spheroidal equidensity surfaces represents a reasonably accurate approximation for rotating polytropic gaseous bodies with Jupiter-like parameters. The numerical accuracy of our finite-element solution is checked by an exact analytic solution based on the Green's function using the spheroidal wave function. The three different solutions in non-spherical geometries - the fully self-consistent numerical solution, the numerical solution with the outer spheroidal shape and the exact analytical solution - can also serve as a useful benchmark for other solutions based on different numerical methods.

  9. Electronic and magnetic structure of the Cr(001) surface.

    PubMed

    Habibi, P; Barreteau, C; Smogunov, A

    2013-04-10

    Density functional theory (DFT) calculations are carried out to study the electronic and magnetic structure of the (001) surface of chromium. Our aim is to identify and characterize the most prominent electronic surface states and make the connection with the main experimental results. We show that a low dispersive minority spin surface state at the center of the surface Brillouin zone plays a crucial role. This surface state of Δ1 symmetry at 0.58 eV above the Fermi level exhibits a predominantly dz(2) as well as pz orbital character. Local density of states (LDOS) analysis in the vacuum above the surface shows that the sharp feature originating from this surface state persists far away above the surface because of the slow decay rate of the pz wavefunction. Finally, by artificially lowering the surface magnetic moment [Formula: see text] on the outermost surface layer we find excellent agreement with experiments for [Formula: see text]. In addition, we propose that some extra spin polarized scanning tunneling spectroscopy (SP-STS) experiments should be made at smaller tip-surface distances to reveal additional features originating from the majority spin dz(2) surface state. PMID:23478357

  10. Seeing Deep Structure from the Interactions of Surface Features

    ERIC Educational Resources Information Center

    Chi, Michelene T. H.; VanLehn, Kurt A.

    2012-01-01

    Transfer is typically thought of as requiring individuals to "see" what is the same in the deep structure between a new target problem and a previously encountered source problem, even though the surface features may be dissimilar. We propose that experts can "see" the deep structure by considering the first-order interactions of the explicit…

  11. Predefined planar structures in semiconductor surfaces patterned by NSOM lithography

    NASA Astrophysics Data System (ADS)

    Lettrichova, Ivana; Pudis, Dusan; Laurencikova, Agata; Hasenohrl, Stanislav; Novak, Jozef; Skriniarova, Jaroslava; Kovac, Jaroslav

    2013-09-01

    Near-field scanning optical microscope (NSOM) lithography is one of optical technologies for planar structure fabrication, where exposure process is performed by optical near field produced at tip of fiber probe. Maskless exposure of defined regions is performed so that different periodic and predefined arrangement can be achieved. In this contribution, NSOM lithography is presented as effective tool for semiconductor device surface patterning. Non-contact mode of NSOM lithography was used to pattern planar predefined structures in GaAs, AlGaAs and GaP surfaces. In this way, GaAs/AlGaAs-based LED with patterned structure in the emitting surface was prepared, where patterned air holes show enhancement of radiation in comparison with the surrounding surface. Furthermore, NSOM in combination with lift-off technique was used to prepare metal-catalyst particles on GaP substrate for subsequent growth of GaP nanowires which can be used in photovoltaic applications.

  12. Law in Outer Space.

    ERIC Educational Resources Information Center

    Schmidt, William G.

    1997-01-01

    Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…

  13. Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.

    PubMed

    Brabury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-01-01

    Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer. PMID:26409782

  14. Insertion derivatives containing segments of up to 16 amino acids identify surface- and periplasm-exposed regions of the FhuA outer membrane receptor of Escherichia coli K-12.

    PubMed Central

    Koebnik, R; Braun, V

    1993-01-01

    The FhuA receptor in the outer membrane of Escherichia coli K-12 is involved in the uptake of ferrichrome, colicin M, and the antibiotic albomycin and in infection by phages T1, T5, and phi 80. Fragments of up to 16 amino acid residues were inserted into FhuA and used to determine FhuA active sites and FhuA topology in the outer membrane. For this purpose antibiotic resistance boxes flanked by symmetric polylinkers were inserted into fhuA and subsequently partially deleted. Additional in-frame insertions were generated by mutagenesis with transposon Tn1725. The 68 FhuA protein derivatives examined contained segments of 4, 8, 12, 16, and 22 additional amino acid residues at 34 different locations from residues 5 to 646 of the mature protein. Most of the FhuA derivatives were found in normal amounts in the outer membrane fraction. Half of these were fully active toward all ligands, demonstrating proper insertion into the outer membrane. Seven of the 12- and 16-amino-acid-insertion derivatives (at residues 378, 402, 405, 415, 417, 456, and 646) were active toward all of the ligands and could be cleaved by subtilisin in whole cells, suggesting a surface location of the extra loops at sites which did not affect FhuA function. Two mutants were sensitive to subtilisin (insertions at residues 511 and 321) but displayed a strongly reduced sensitivity to colicin M and to phages phi 80 and T1. Four of the insertion derivatives (at residues 162, 223, 369, and 531) were cleaved only in spheroplasts and probably form loops at the periplasmic side of the outer membrane. The number and size of the proteolytic fragments indicate cleavage at or close to the sites of insertion, which has been proved for five insertions by amino acid sequencing. Most mutants with functional defects were affected in their sensitivity to all ligands, yet frequently to different degrees. Some mutants showed a specifically altered sensitivity to a few ligands; for example, mutant 511-04 was partially

  15. A genetic algorithm approach in interface and surface structure optimization

    SciTech Connect

    Zhang, Jian

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  16. Micro-structured surfaces for algal biofilm growth

    NASA Astrophysics Data System (ADS)

    Sathananthan, Suthamathy; Genin, Scott N.; Aitchison, J. Stewart; Allen, D. Grant

    2013-12-01

    It is well known that cells respond to structured surface cues that are on the micro/nanometer scale. Tissue engineering and bio-fouling fields have utilized the semiconductor device fabrication processes to make micro- and nanometer patterned surfaces to study animal cell tissue formation and to prevent algae attachment on marine surfaces respectively. In this paper we describe the use of micro-structured surfaces to study the attachment and growth of algal films. This paper gives an overview of how micro-structured surfaces are made for this purpose, how they are incorporated into a photo bioreactor and how this patterning influences the growth of an algal biofilm. Our results suggest that surface patterning with deeper V-groove patterns that are of the same size scale as the algal species has resulted in higher biomass productivity giving them a chance to embed and attach on the slope and flat surfaces whereas shallower size grooves and completely flat surfaces did not show this trend.

  17. Numerical simulations of drop impact on superhydrophobic structured surfaces

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Larentis, Stefano; Pugno, Nicola

    2011-11-01

    During the last decade drop impact dynamics on superhydrophobic surfaces has been intensively investigated because of the incredible properties of water repellency exhibited by this kind of surfaces, mostly inspired by biological examples such as Lotus leave. Thanks to the recent progress in micro-fabrication technology is possible to tailor surfaces wettability defining specific pillar-like structured surfaces. In this work, the behavior of impinging drops on these pillar-like surfaces is simulated, characterizing temporal evolution of droplets contact radius and drop maximal deformation dependence on Weber number. Numerical simulations results are compared with theoretical and experimental results guaranteeing simulation reliability. Fingering patterns obtained from drop impact has been studied obtaining a correlation between number of fingers and Weber number. Drop fragmentation pattern obtained from simulations supports the proposed correlation. Different drop impact outcomes (e.g. rebound, fragmentation) on structured superhydrophobic surfaces are simulated, focusing on the influence of micro-structured surface geometrical pattern. This investigation is relevant in order to define design rules for possible reliable non wettable surfaces. Financial support by Alta Scuola Politecnica.

  18. The surface electronic structure of silicon terminated (100) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Tadich, A.; Sear, M. J.; Qi, D.; Wee, A. T. S.; Stacey, A.; Pakes, C. I.

    2016-07-01

    A combination of synchrotron-based x-ray spectroscopy and contact potential difference measurements have been used to examine the electronic structure of the (3 × 1) silicon terminated (100) diamond surface under ultra high vacuum conditions. An occupied surface state which sits 1.75 eV below the valence band maximum has been identified, and indications of mid-gap unoccupied surface states have been found. Additionally, the pristine silicon terminated surface is shown to possess a negative electron affinity of ‑0.86 ± 0.1 eV.

  19. Surface Electronic Structure of Palladium Alloyed on Copper

    NASA Astrophysics Data System (ADS)

    Marroum, Renata Maria

    The work in this dissertation comprises the development of a stable non linear convergence accelerator technique for self-consistent surface electronic structure calculations within the Surface Embedded Green Function (SEGF) formalism. Our results for the Cu < 001> c(2 x 2) Pd surface alloy were compared with normal emission photoemission spectra and were found to be in good quantitative agreement. Our studies have demonstrated that rapid self-consistency can be achieved in pure and alloyed surfaces by a modification of the Anderson mixing scheme wherein a weight function is introduced into integrals determining the relative proportions of the present and prior iterations.

  20. The surface electronic structure of silicon terminated (100) diamond.

    PubMed

    Schenk, A K; Tadich, A; Sear, M J; Qi, D; Wee, A T S; Stacey, A; Pakes, C I

    2016-07-01

    A combination of synchrotron-based x-ray spectroscopy and contact potential difference measurements have been used to examine the electronic structure of the (3 × 1) silicon terminated (100) diamond surface under ultra high vacuum conditions. An occupied surface state which sits 1.75 eV below the valence band maximum has been identified, and indications of mid-gap unoccupied surface states have been found. Additionally, the pristine silicon terminated surface is shown to possess a negative electron affinity of -0.86 ± 0.1 eV. PMID:27211214

  1. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel

    NASA Astrophysics Data System (ADS)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-02-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  2. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer. PMID:26831689

  3. Using the RosettaSurface Algorithm to Predict Protein Structure at Mineral Surfaces

    PubMed Central

    Pacella, Michael S.; Koo, Da Chen Emily; Thottungal, Robin A.; Gray, Jeffrey J.

    2014-01-01

    Determination of protein structure on mineral surfaces is necessary to understand biomineralization processes toward better treatment of biomineralization diseases and design of novel protein-synthesized materials. To date, limited atomic-resolution data have hindered experimental structure determination for proteins on mineral surfaces. Molecular simulation represents a complementary approach. In this chapter, we review RosettaSurface, a computational structure prediction-based algorithm designed to broadly sample conformational space to identify low-energy structures. We summarize the computational approaches, the published applications, and the new releases of the code in the Rosetta 3 framework. In addition, we provide a protocol capture to demonstrate the practical steps to employ RosettaSurface. As an example, we provide input files and output data analysis for a previously unstudied mineralization protein, osteocalcin. Finally, we summarize ongoing challenges in energy function optimization and conformational searching and suggest that the fusion between experiment and calculation is the best route forward. PMID:24188775

  4. Depth distribution of magnetofossils in near-surface sediments from the Blake/Bahama Outer Ridge, western North Atlantic Ocean, determined by low-temperature magnetism

    NASA Astrophysics Data System (ADS)

    Housen, Bernard A.; Moskowitz, Bruce M.

    2006-02-01

    Fe-oxide and Fe-sulfide trace minerals in sediments and sedimentary rocks provide proxy records of biogeochemical processes, record past variations in the geomagnetic field, and can serve as proxies for climatic variations. An important class of these Fe-oxides is produced by bacteria. Magnetic particles produced by magnetotactic bacteria have been proposed as a primary recorder of the geomagnetic field in many terrestrial marine sediments, and have also been suggested to represent fossil evidence of life on the planet Mars. To better understand their distribution and preservation in the sediment column, and their relationship to other biochemical processes, we present rock-magnetic data that document the occurrence and abundance of fossil biogenic magnetite (magnetofossils) in marine sediments from the Blake/Bahama Outer Ridge. Magnetic hysteresis and low-temperature magnetism both indicate that the occurrence of magnetofossils is closely linked to the depth of the modern Fe-redox boundary within the sediment column, and that a fraction of the magnetic minerals in the sediment column above the Fe-redox boundary are in the form of intact and relatively unaltered chains of nanophase magnetite crystals. Below the Fe-redox boundary the abundance of these magnetofossils is markedly decreased. The important conclusions of this work are to demonstrate that nondestructive rock-magnetic methods can be used to successfully document the occurrence and relative abundance of magnetofossils in geologic materials.

  5. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOEpatents

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  6. Scale-adaptive surface modeling of vascular structures

    PubMed Central

    2010-01-01

    Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D) point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery. PMID:21087525

  7. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    NASA Astrophysics Data System (ADS)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  8. Long-Lived Glass Mirrors For Outer Space

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.; Heggen, Philip M.

    1988-01-01

    Paper summarizes available knowledge about glass mirrors for use in outer space. Strengths and weaknesses of various types of first and second reflective surfaces identified. Second-surface glass mirrors used in outer space designed to different criteria more stringent for terrestrial mirrors. Protons, electrons, cosmic rays, meteorites, and orbiting space debris affect longevities of components. Contamination also factor in space.

  9. Modeling the Effects of Crustal Structure on Surface-Wave Phase Delays

    NASA Astrophysics Data System (ADS)

    Liu, K.; Zhou, Y.

    2010-12-01

    In tomographic studies, crustal structure has significant impact on the observed data but it is usually too thin to be resolved using traditional tomographic methods and "crustal corrections" - assuming known crustal structure - are often required in mantle tomographic inversions. Seismic surface waves propagate in the outer shell of the earth and are highly sensitive to crustal structure, therefore they can be potentially used to constrain crustal structure at a global scale. We investigate the limitations of linear perturbation theory in global seismic tomography of crustal structure. We calculate surface-wave phase velocity perturbations caused by Moho boundary variations in spherically symmetrical reference earth models using linear perturbation theory. Our calculations show that linear perturbation theory works well for Love waves over a range of periods from 40 to 200 seconds for perturbations up to 30 km; while for Rayleigh waves, linear perturbation theory breaks down for large perturbations in crustal thickness (~15km). To quantify finite-frequency effects in global crustal models, we simulate global wave propagation in crustal models using the spectral element method (SEM) and make phase delay measurements caused by lateral variations in crustal thickness. The measured delay times are compared with predictions made based upon three different methods associated with crustal tomography: path integrations of local phase delays, ray perturbation theory and finite-frequency theory. We show that finite-frequency effects are dependent upon the length scale of lateral variations in crustal thickness. In addition to forward simulations, we discuss limitations of each method in the inversion of global and regional crustal structure using the synthetic SEM measurements and tradesoffs between velocity and Moho boundary discontinuity perturbations.

  10. Laser-induced nanoscale superhydrophobic structures on metal surfaces.

    PubMed

    Jagdheesh, R; Pathiraj, B; Karatay, E; Römer, G R B E; Huis in't Veld, A J

    2011-07-01

    The combination of a dual-scale (nano and micro) roughness with an inherent low-surface energy coating material is an essential factor for the development of superhydrophobic surfaces. Ultrashort pulse laser (USPL) machining/structuring is a promising technique for obtaining the dual-scale roughness. Sheets of stainless steel (AISI 304 L SS) and Ti-6Al-4V alloys were laser-machined with ultraviolet laser pulses of 6.7 ps, with different numbers of pulses per irradiated area. The surface energy of the laser-machined samples was reduced via application of a layer of perfluorinated octyltrichlorosilane (FOTS). The influence of the number of pulses per irradiated area on the geometry of the nanostructure and the wetting properties of the laser-machined structures has been studied. The results show that with an increasing number of pulses per irradiated area, the nanoscale structures tend to become predominantly microscale. The top surface of the microscale structures is seen covered with nanoscale protrusions that are most pronounced in Ti-6Al-4V. The laser-machined Ti-6Al-4V surface attained superhydrophobicity, and the improvement in the contact angle was >27% when compared to that of a nontextured surface. PMID:21627133

  11. Truss structure design

    NASA Technical Reports Server (NTRS)

    Daily, Carl S. (Inventor); Lees, Daniel A. (Inventor); McKitterick, Dennis Donald (Inventor)

    2000-01-01

    An integrally formed three-dimensional truss structure, including molds and methods for production of same, containing outer top and bottom plane surfaces thereof comprising interconnected rod segments integrally formed at their points of intersection on the outer top and bottom surfaces, the top and bottom surfaces also integrally joined together through additional interconnected rod segments passing through an integrally formed intersection, wherein the additional interconnected rod segments passing through the integrally formed intersection form a three-dimensional continuous array of triangles.

  12. Assessing the hierarchical structure of titanium implant surfaces.

    PubMed

    Matteson, Jesse L; Greenspan, David C; Tighe, Timothy B; Gilfoy, Nathan; Stapleton, Joshua J

    2016-08-01

    The physical texture of implant surfaces are known to be one important factor in creating a stable bone-implant interface. Simple roughness parameters (for e.g., Sa or Sz) are not entirely adequate when characterizing surfaces possessing hierarchical structure (macro, micro, and nano scales). The aim of this study was to develop an analytical approach to quantify hierarchical surface structure of implant surfaces possessing nearly identical simple roughness. Titanium alloys with macro/micro texture (MM) and macro/micro/nano texture (MMN) were chosen as model surfaces to be evaluated. There was no statistical difference (p > 0.05) in either Sa (13.56 vs. 13.43 µm) or Sz (91.74 vs. 92.39 µm) for the MM and MMN surfaces, respectively. However, when advanced filtering algorithms were applied to these datasets, a statistical difference in roughness was found between MM (Sa = 0.54 µm) and MMN (Sa = 1.06 µm; p < 0.05). Additionally, a method was developed to specifically quantify the density of surface features appearing similar in geometry to natural osteoclastic pits. This analysis revealed a significantly greater numbers of these features (i.e., valleys) on the MMN surface as compared to the MM surface. Finally, atomic force microscopy showed a rougher nano-texture on the MMN surface compared with the MM surface (p < 0.05). The results support recent published studies that show a combination of appropriate micron and nano surface results in a more robust cellular response and increased osteoblast differentiation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1083-1090, 2016. PMID:26034005

  13. Heating of the outer solar atmosphere. I. II

    NASA Astrophysics Data System (ADS)

    Parker, E. N.

    The magnetic field coming up through the surface of the sun is responsible for the solar activity that heats the outer solar atmosphere. The field behaves in ways that are unexpected and little understood. Beckers and Schroeter (1969) found that the field of the sun has a fibril structure made up of separate, compressed flux tubes having fields of 1000-2000 G and 100-500 km diameters. Immediately above the solar surface, the field expands to fill the available volume. Nothing is known about the state beneath the surface of the sun. Attention is presently given to the state of knowledge on the heating of the corona as well as to a model for magnetic merging. In the second part of this presentation, the mutual wrapping and shuffling of the lines of force of a bipolar magnetic field above the photosphere and the structure of the cross section through a flux tube bundle are discussed.

  14. Topographic and electronic structure of cleaved SrTiO{sub 3}(001) surfaces

    SciTech Connect

    Sitaputra, Wattaka Skowronski, Marek; Feenstra, Randall M.

    2015-05-15

    The topographic and electronic structure of cleaved SrTiO{sub 3}(001) surfaces were studied, employing samples that either had or had not been coated with Ti on their outer surfaces prior to fracture. In both cases, SrO- and TiO{sub 2}-terminated terraces were present on the cleavage surface, enabling in situ studies on either termination. However, the samples coated with Ti prior to fracture were found to yield a rougher morphology on TiO{sub 2}-terminated terraces as well as a higher density of oxygen vacancies during an annealing (outgassing) step following the coating. The higher density of oxygen vacancies in the bulk of the Ti-coated samples also provides higher conductivity, which, in turn, improves a sensitivity of the spectroscopy and reduces the effect of tip-induced band bending. Nonetheless, similar spectral features, unique to each termination, were observed for samples both with and without the Ti coating. Notably, with moderate-temperature annealing following fracture, a strong discrete peak in the conductance spectra, arising from oxygen vacancies, was observed on the SrO-terminated terraces. This peak appears at slightly different voltages for coated and uncoated samples, signifying a possible effect of tip-induced band bending.

  15. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  16. Nano-PIV for flows near nano-structured surfaces

    NASA Astrophysics Data System (ADS)

    Parikesit, Gea; Lindken, Ralph; Westerweel, Jerry

    2008-11-01

    Previous studies have shown that nano-structured surfaces can exhibit different wetting characteristics and higher slip-length values compared to smooth (i.e. non-structured) surfaces. In order to quantitatively measure the flows near such nano-structured surfaces, a Nano-PIV method with high spatial and temporal resolution is required. The TIRF-based PIV is a good candidate because it has been successfully applied for 3D nano-velocimetry near smooth surfaces, but it cannot be applied in a simple and direct manner since the nano-structures optically complicates the measurements: (i) they spatially influence and modulate the TIRF illumination, and (ii) they increase the probability of obtaining errors caused by the tracers' own emitted evanescent-waves. For fabricated periodic nano-structures with known dimensions and geometry, however, the spatially modulated TIRF illumination can be very useful for (i) a simple estimation of the illumination depth directly inside the microfluidic channels, and (ii) detection and measurement of the thin layer of air bubbles trapped at the nano-structures in the `Cassie-Baxter' wetting mode.

  17. Probing the water on chemically heterogeneous surface: interfacial-structural analysis for surface charge distribution

    NASA Astrophysics Data System (ADS)

    Shin, Sucheol; Willard, Adam

    We introduce the novel method for predicting the charge distribution of chemically heterogeneous surface, but reconstructed from the perspective of the interfacial water molecules. Our approach is to analyze the response of water to a disordered surface and infer from that response the heterogeneous distribution of surface charge. We accomplish this using a framework that is based on a probabilistic description of water's interfacial molecular structure and maximum likelihood estimation. This framework allows to deduce the apparent charge that is most congruently represented by the set of water configurations over the particular region of a surface. We demonstrate that the estimated charge distribution is consistent to the actual distribution for a static model substrate and hence that our method can be applied to investigate a dynamic fluctuating substrate such as the surface of a hydrated protein. This novel technique provides the useful information that can reflect the influence of fluctuations in the structure of biomolecule.

  18. Assembly Platform For Use In Outer Space

    NASA Technical Reports Server (NTRS)

    Rao, Niranjan S.; Buddington, Patricia A.

    1995-01-01

    Report describes conceptual platform or framework for use in assembling other structures and spacecraft in outer space. Consists of three fixed structural beams comprising central beam and two cross beams. Robotic manipulators spaced apart on platform to provide telerobotic operation of platform by either space-station or ground crews. Platform and attached vehicles function synergistically to achieve maximum performance for intended purposes.

  19. Exploration Planetary Surface Structural Systems: Design Requirements and Compliance

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    2011-01-01

    The Lunar Surface Systems Project developed system concepts that would be necessary to establish and maintain a permanent human presence on the Lunar surface. A variety of specific system implementations were generated as a part of the scenarios, some level of system definition was completed, and masses estimated for each system. Because the architecture studies generally spawned a large number of system concepts and the studies were executed in a short amount of time, the resulting system definitions had very low design fidelity. This paper describes the development sequence required to field a particular structural system: 1) Define Requirements, 2) Develop the Design and 3) Demonstrate Compliance of the Design to all Requirements. This paper also outlines and describes in detail the information and data that are required to establish structural design requirements and outlines the information that would comprise a planetary surface system Structures Requirements document.

  20. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    PubMed

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys. PMID:25545550

  1. Generalized model for photoinduced surface structure in amorphous thin films.

    PubMed

    Lu, Chao; Recht, Daniel; Arnold, Craig

    2013-09-01

    We present a generalized model to explain the spatial and temporal evolution of photoinduced surface structure in photosensitive amorphous thin films. The model describes these films as an incompressible viscous fluid driven by a photoinduced pressure originating from dipole rearrangement. This derivation requires only the polarizability, viscosity and surface tension of the system. Using values of these physical parameters, we check the validity of the model by fitting to experimental data of As2S3 and demonstrating good agreement. PMID:25166680

  2. Fractal analysis of the hierarchic structure of fossil coal surface

    SciTech Connect

    Alekseev, A.D.; Vasilenko, T.A.; Kirillov, A.K.

    2008-05-15

    The fractal analysis is described as method of studying images of surface of fossil coal, one of the natural sorbent, with the aim of determining its structural surface heterogeneity. The deformation effect as a reduction in the dimensions of heterogeneity boundaries is considered. It is shown that the theory of nonequilibrium dynamic systems permits to assess a formation level of heterogeneities involved into a sorbent composition by means of the Hurst factor.

  3. Characterization of the B/Si surface electronic structures

    SciTech Connect

    Cao, R.; Yang, X.; Pianetta, P.

    1992-11-01

    High resolution angle resolved core level and valence band photoelectron spectroscopy have been used to characterize the electronic structures of the B/Si(111)-({radical}3 x {radical}3) surfaces. The results have been compared with theoretic calculations and other group III metals and Si terminated Si(111) surfaces that share the same type of surface reconstruction. We have observed a structure evolution from B-T{sub 4} to B-S{sub 5} and finally to Si- T{sub 4} as deposited boron atoms diffuse into the substrate with increasing annealing temperature. The chemically shifted component appearing in the Si 2p core level spectrum is attributed to charge transfer from the top layer Si and Si adatoms to the sublayer B-S{sub 5} atoms. For the Si/Si(111)-({radical}3 {times} {radical}3) surface, a newly discovered chemically shifted component is associated with back bond formation between the Si adatoms and the underneath Si atoms. A new emission feature has been observed in the valence band spectra unique to the B/Si(111)-({radical}3 {times} {radical}3) surface with B-S{sub 5} configuration. Thin Ge layer growth on this structure has also been performed, and we found that no epitaxial growth could be achieved and the underneath structure was little disturbed.

  4. Investigation of Structural Phase Transitions on Wurtzite Gallium Nitride Surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Tianjiao; Chinchore, Abhijit; Liu, Yinghao; Wang, Kangkang; Lin, Wenzhi; Smith, Arthur

    2009-03-01

    Surface structures of wurtzite gallium nitride (w-GaN) have been investigated previously,[1][2] and it is well known that above 300K there exist order-disorder phase transitions. For N-polar w-GaN (000-1) at 300K, a family of surface reconstructions occurs, including 1x1, 3x3, 6x6, and c(6x12). Not much is known, however, about what happens to these structures as they are cooled below 300K. We have recently developed a new epitaxy/analysis system, including a sample stage which can be both heated and cooled. The N-polar w-GaN surfaces are prepared using rf N-plasma-assisted molecular beam epitaxy, and monitored in-situ using reflection high energy electron diffraction (RHEED). The approach is to monitor the [11-20] and [10-10] RHEED diffractions during cryogenic cooling, starting with the 1x1 or 3x3 structures. A critical issue to explore is the interrelationship between surface gallium concentration and structural deformation. This study may provide the missing link to new reconstructions of w-GaN recently observed using LT scanning tunneling microscopy.[3] This work is supported by NSF (Grant No. 0730257). [1] A. R. Smith et al., Phys. Rev. Lett. 79, 3934 (1997). [2] A. R. Smith et al., Surface Science 423, 70 (1999). [3] D. Acharya, S.-W. Hla et al., unpublished.

  5. Osteogenic activity of titanium surfaces with nanonetwork structures

    PubMed Central

    Xing, Helin; Komasa, Satoshi; Taguchi, Yoichiro; Sekino, Tohru; Okazaki, Joji

    2014-01-01

    Background Titanium surfaces play an important role in affecting osseointegration of dental implants. Previous studies have shown that the titania nanotube promotes osseointegration by enhancing osteogenic differentiation. Only relatively recently have the effects of titanium surfaces with other nanostructures on osteogenic differentiation been investigated. Methods In this study, we used NaOH solutions with concentrations of 2.5, 5.0, 7.5, 10.0, and 12.5 M to develop a simple and useful titanium surface modification that introduces the nanonetwork structures with titania nanosheet (TNS) nanofeatures to the surface of titanium disks. The effects of such a modified nanonetwork structure, with different alkaline concentrations on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMMSCs), were evaluated. Results The nanonetwork structures with TNS nanofeatures induced by alkali etching markedly enhanced BMMSC functions of cell adhesion and osteogenesis-related gene expression, and other cell behaviors such as proliferation, alkaline phosphatase activity, extracellular matrix deposition, and mineralization were also significantly increased. These effects were most pronounced when the concentration of NaOH was 10.0 M. Conclusion The results suggest that nanonetwork structures with TNS nanofeatures improved BMMSC proliferation and induced BMMSC osteogenic differentiation. In addition, the surfaces formed with 10.0 M NaOH suggest the potential to improve the clinical performance of dental implants. PMID:24741311

  6. Segmentation of branching vascular structures using adaptive subdivision surface fitting

    NASA Astrophysics Data System (ADS)

    Kitslaar, Pieter H.; van't Klooster, Ronald; Staring, Marius; Lelieveldt, Boudewijn P. F.; van der Geest, Rob J.

    2015-03-01

    This paper describes a novel method for segmentation and modeling of branching vessel structures in medical images using adaptive subdivision surfaces fitting. The method starts with a rough initial skeleton model of the vessel structure. A coarse triangular control mesh consisting of hexagonal rings and dedicated bifurcation elements is constructed from this skeleton. Special attention is paid to ensure a topological sound control mesh is created around the bifurcation areas. Then, a smooth tubular surface is obtained from this coarse mesh using a standard subdivision scheme. This subdivision surface is iteratively fitted to the image. During the fitting, the target update locations of the subdivision surface are obtained using a scanline search along the surface normals, finding the maximum gradient magnitude (of the imaging data). In addition to this surface fitting framework, we propose an adaptive mesh refinement scheme. In this step the coarse control mesh topology is updated based on the current segmentation result, enabling adaptation to varying vessel lumen diameters. This enhances the robustness and flexibility of the method and reduces the amount of prior knowledge needed to create the initial skeletal model. The method was applied to publicly available CTA data from the Carotid Bifurcation Algorithm Evaluation Framework resulting in an average dice index of 89.2% with the ground truth. Application of the method to the complex vascular structure of a coronary artery tree in CTA and to MRI images were performed to show the versatility and flexibility of the proposed framework.

  7. Structural contribution to the roughness of supersmooth crystal surface

    SciTech Connect

    Butashin, A. V.; Muslimov, A. E. Kanevsky, V. M.; Deryabin, A. N.; Pavlov, V. A.; Asadchikov, V. E.

    2013-05-15

    Technological advances in processing crystals (Si, sapphire {alpha}-Al{sub 2}O{sub 3}, SiC, GaN, LiNbO{sub 3}, SrTiO{sub 3}, etc.) of substrate materials and X-ray optics elements make it possible to obtain supersmooth surfaces with a periodicity characteristic of the crystal structure. These periodic structures are formed by atomically smooth terraces and steps of nano- and subnanometer sizes, respectively. A model surface with such nanostructures is proposed, and the relations between its roughness parameters and the height of atomic steps are determined. The roughness parameters calculated from these relations almost coincide with the experimental atomic force microscopy (AFM) data obtained from 1 Multiplication-Sign 1 and 10 Multiplication-Sign 10 {mu}m areas on the surface of sapphire plates with steps. The minimum roughness parameters for vicinal crystal surfaces, which are due to the structural contribution, are calculated based on the approach proposed. A comparative analysis of the relief and roughness parameters of sapphire plate surfaces with different degrees of polishing is performed. A size effect is established: the relief height distribution changes from stochastic to regular with a decrease in the surface roughness.

  8. 3D velocity structure of the outer forearc of the Colombia-Ecuador subduction zone; implications for the 1958 megathrust earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    Galve, A.; Charvis, P.; Garcia Cano, L.; Marcaillou, B.

    2013-12-01

    In 2005, we conducted an onshore-offshore 3D refraction and wide-angle reflection seismic experiment over the rupture zone of the 1958 subduction earthquake that occurred near the border between Colombia and Ecuador. This earthquake was part of a sequence of 3 large ruptures (1942, Mw=7.8; 1958, Mw=7.7; 1979, Mw=8.2), which successively broke from south to north the segments of the megathrust that had been ruptured in 1906 by a single, very large magnitude (8.8) earthquake. Using first arrival traveltime inversion, we constructed a well-defined Vp velocity model of the plate boundary and of the upper and lower plates, down to 25 km depth. The model reveals a 5-km thick, low velocity zone in the upper plate, located immediately above the interplate contact. Because similar low-velocity zones are commonly observed along margins made of oceanic or island-arc accreted terranes, we suggest that the low-velocity zone might result from the alteration and hydration of mafic and ultramafic rocks in the upper plate basement, rather than from hydrofracturing alone. Sediments underplated beneath the inner wedge might contribute to the low-velocity zone but it is unlikely that they are several kilometers thick. Nevertheless, fluids expelled by the compaction and dehydration of those underplated sediments possibly favor the alteration of the overlying rocks. The low-velocity zone is spatially coincident with the 1958 rupture area. Near the toe of the margin, the model shows a low velocity gradient in the outer wedge that we interpret as a zone of highly faulted and fractured rocks or of poorly consolidated sediments. This low velocity/low gradient region forms the oceanward limit of the rupture zones of both the 1958 and the 1979 earthquakes. We suggest that the two earthquake ruptures were arrested by the low velocity zone because its low rigidity contributed to dissipate most of the seismic energy and of the coseismic strain/stress. This might be the reason why the 1958

  9. Model of evolution of surface grain structure under ion bombardment

    SciTech Connect

    Knyazeva, Anna G.; Kryukova, Olga N.

    2014-11-14

    Diffusion and chemical reactions in multicomponent systems play an important role in numerous technology applications. For example, surface treatment of materials and coatings by particle beam leads to chemical composition and grain structure change. To investigate the thermal-diffusion and chemical processes affecting the evolution of surface structure, the mathematical modeling is efficient addition to experiment. In this paper two-dimensional model is discussed to describe the evolution of titanium nitride coating on the iron substrate under implantation of boron and carbon. The equation for diffusion fluxes and reaction rate are obtained using Gibbs energy expansion into series with respect to concentration and their gradients.

  10. Structural and surface changes of copper modified manganese oxides

    NASA Astrophysics Data System (ADS)

    Gac, Wojciech; Słowik, Grzegorz; Zawadzki, Witold

    2016-05-01

    The structural and surface properties of manganese and copper-manganese oxides were investigated. The oxides were prepared by the redox-precipitation method. X-ray diffraction and electron microscopy studies evidenced transformation of cryptomelane-type nanoparticles with 1-D channel structure into the large MnO crystallites with regular rippled-like surface patterns under reduction conditions. The development of Cu/CuO nanorods from strongly dispersed species was evidenced. Coper-modified manganese oxides showed good catalytic performance in methanol steam reforming reaction for hydrogen production. Low selectivity to CO was observed in the wide range of temperatures.

  11. Protein import channel of the outer mitochondrial membrane: a highly stable Tom40-Tom22 core structure differentially interacts with preproteins, small tom proteins, and import receptors.

    PubMed

    Meisinger, C; Ryan, M T; Hill, K; Model, K; Lim, J H; Sickmann, A; Müller, H; Meyer, H E; Wagner, R; Pfanner, N

    2001-04-01

    The preprotein translocase of the yeast mitochondrial outer membrane (TOM) consists of the initial import receptors Tom70 and Tom20 and a approximately 400-kDa (400 K) general import pore (GIP) complex that includes the central receptor Tom22, the channel Tom40, and the three small Tom proteins Tom7, Tom6, and Tom5. We report that the GIP complex is a highly stable complex with an unusual resistance to urea and alkaline pH. Under mild conditions for mitochondrial lysis, the receptor Tom20, but not Tom70, is quantitatively associated with the GIP complex, forming a 500K to 600K TOM complex. A preprotein, stably arrested in the GIP complex, is released by urea but not high salt, indicating that ionic interactions are not essential for keeping the preprotein in the GIP complex. Under more stringent detergent conditions, however, Tom20 and all three small Tom proteins are released, while the preprotein remains in the GIP complex. Moreover, purified outer membrane vesicles devoid of translocase components of the intermembrane space and inner membrane efficiently accumulate the preprotein in the GIP complex. Together, Tom40 and Tom22 thus represent the functional core unit that stably holds accumulated preproteins. The GIP complex isolated from outer membranes exhibits characteristic TOM channel activity with two coupled conductance states, each corresponding to the activity of purified Tom40, suggesting that the complex contains two simultaneously active and coupled channel pores. PMID:11259583

  12. 3D precision surface measurement by dynamic structured light

    NASA Astrophysics Data System (ADS)

    Franke, Ernest A.; Magee, Michael J.; Mitchell, Joseph N.; Rigney, Michael P.

    2004-02-01

    This paper describes a 3-D imaging technique developed as an internal research project at Southwest Research Institute. The technique is based on an extension of structured light methods in which a projected pattern of parallel lines is rotated over the surface to be measured. A sequence of images is captured and the surface elevation at any location can then be determined from measurements of the temporal pattern, at any point, without considering any other points on the surface. The paper describes techniques for system calibration and surface measurement based on the method of projected quadric shells. Algorithms were developed for image and signal analysis and computer programs were written to calibrate the system and to calculate 3-D coordinates of points on a measured surface. A prototype of the Dynamic Structured Light (DSL) 3-D imaging system was assembled and typical parts were measured. The design procedure was verified and used to implement several different configurations with different measurement volumes and measurement accuracy. A small-parts measurement accuracy of 32 micrometers (.0012") RMS was verified by measuring the surface of a precision-machined plane. Large aircraft control surfaces were measured with a prototype setup that provided .02" depth resolution over a 4" by 8" field of view. Measurement times are typically less than three minutes for 300,000 points. A patent application has been filed.

  13. The NIST surface structure database - SSD version 4

    SciTech Connect

    Van Hove, M.A.; Hermann, K.; Watson, P.R.

    2001-11-25

    SSD-4, the fourth version of the NIST Surface Structure Database is to appear in early 2002 as a significant upgrade to both the database and graphics software; it now also includes nearly 1300 structures published through the end of 2000. SSD is an interactive PC-based database of critically-selected surface structures determined with a variety of experimental techniques. The data include not only atomic coordinates, bond lengths and bond angles, but also information about experimental preparation, measurement and analysis methods. The software provides advanced search and display facilities, as well as interactive three-dimensional color visualization and analysis tools of great flexibility. In addition, the program can generate publication-quality color or gray-scale prints of any structure, with a host of user-selectable options (such as view angle, perspective, colors, ball and bond styles, and labels).

  14. Structural and dynamical properties of water on chemically modified surfaces: The role of the instantaneous surface

    NASA Astrophysics Data System (ADS)

    Bekele, Selemon; Tsige, Mesfin

    Surfaces of polymers such as atactic polystyrene (aPS) represent very good model systems for amorphous material surfaces. Such polymer surfaces are usually modified either chemically or physically for a wide range of applications that include friction, lubrication and adhesion. It is thus quite important to understand the structural and dynamical properties of liquids that come in contact with them to achieve the desired functional properties. Using molecular dynamics (MD) simulations, we investigate the structural and dynamical properties of water molecules in a slab of water in contact with atactic polystyrene surfaces of varying polarity. We find that the density of water molecules and the number distribution of hydrogen bonds as a function of distance relative to an instantaneous surface exhibit a structure indicative of a layering of water molecules near the water/PS interface. For the dynamics, we use time correlation functions of hydrogen bonds and the incoherent structure function for the water molecules. Our results indicate that the polarity of the surface dramatically affects the dynamics of the interfacial water molecules with the dynamics slowing down with increasing polarity. This work was supported by NSF Grant DMR1410290.

  15. Magnetism and surface structure of atomically controlled ultrathin metal films.

    SciTech Connect

    Shiratsuchi, Yu.; Yamamoto, M.; Bader, S. D.; Materials Science Division; Osaka Univ.

    2007-01-01

    We review the correlation of magnetism and surface structure in ultrathin metal films, including the tailoring of novel magnetic properties using atomic scale control of the nanostructure. We provide an overview of modern fabrication and characterization techniques used to create and explore these fascinating materials, and highlight important phenomena of interest. We also discuss techniques that control and characterize both the magnetic and structural properties on an atomic scale. Recent advances in the development and applications of these techniques allow nanomagnetism to be investigated in an unprecedented manner. A system cannot necessarily retain a two-dimensional structure as it enters the ultrathin region, but it can transform into a three-dimensional, discontinuous structure due to the Volmer-Weber growth mechanism. This structural transformation can give rise to superparamagnetism. During this evolution, competing factors such as interparticle interactions and the effective magnetic anisotropy govern the magnetic state. These magnetic parameters are influenced by the nanostructure of the film. In particular, controlling the magnetic anisotropy is critical for determining the magnetic properties. Surface effects play especially important roles in influencing both the magnitude and direction of the magnetic anisotropy in ultrathin films. By properly altering the surface structure, the strength and direction of the magnetic anisotropy are controlled via spin-orbit and/or dipole interactions.

  16. Relation Between Excreted Lipopolysaccharide Complexes and Surface Structures of a Lysine-Limited Culture of Escherichia coli

    PubMed Central

    Knox, K. W.; Vesk, Maret; Work, Elizabeth

    1966-01-01

    Knox, K. W. (Twyford Laboratories, London, England), Maret Vesk, and Elizabeth Work. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. J. Bacteriol. 92:1206–1217. 1966.—The lysine-requiring mutant Escherichia coli 12408, when grown in 15 liters of defined medium containing a suboptimal amount of lysine, showed a biphasic type of growth. During a long stationary phase of 15 hr, there was a steady accumulation of diaminopimelic acid (DAP) and an antigenic complex of lipopolysaccharide (LPS) and lipoprotein; the accumulation continued unchanged until the end of the second growth phase. The rapid rate of DAP excretion suggested that it was the result of a derepressed state of a biosynthetic pathway. LPS excretion was such that the amount in the culture fluid was doubled during a period corresponding to the normal generation time for the organism; this suggested that the LPS-lipoprotein complex was a product of unbalanced growth. Surface defects were suggested by the action of lysozyme, which, in low concentrations (10 μg/ml), lysed the lysine-limited cells even in the absence of ethylenediaminetetraacetic acid, but had no effect at 10 μg/ml on cells grown with adequate lysine. Electron microscopy of cells excreting the LPS complex showed them to be surrounded by a mass of stacked leaflets and globules, some of which were bounded by triple membranes. Sections showed no lysis but changes in cell surfaces; outer layers of the walls had numerous blebs whose outer membranes were sometimes continuous with the outer triple membrane of the wall. LPS-lipoprotein probably originates from these blebs. Images PMID:4959044

  17. Phase-Modulated Hierarchical Surface Structures by Interfering Laser Beams

    SciTech Connect

    Daniel, Claus; Dahotre, Narendra B

    2006-01-01

    A high-energy laser interference direct modulation technique is proposed to develop surfaces for energy-efficient performance based on microstructure and physical parameter control. By producing the surface features or particles at the nano to micron scale in an orderly and/or parallel manner with a lateral long-range order, the surfaces can be configured for highly improved surface response for a host of properties, including wear and friction. Laser interference direct modulation can lead to an optimized composite of metallurgical (localized alloyed or composite regions) and topographic textures. The technique is rapid prototyping, low cost and one-step method that can be well-integrated into existing production lines without the need for any special atmosphere. It is usable for complex geometries of the components and the surface can be modulated for nano-micro scale features on large areas. The present paper describes the principle behind the laser interference technique configured for surface modulation and provides the definitions of surface structures (features) evolved. Some examples of laser-based surface modulation of materials systems are presented.

  18. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  19. The Red and Featureless Outer Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2016-07-01

    We present results from deep, wide-field surface photometry of three nearby (D = 4–7 Mpc) spiral galaxies: M94 (NGC 4736), M64 (NGC 4826), and M106 (NGC 4258). Our imaging reaches a limiting surface brightness of {μ }B ∼ 28–30 mag arcsec‑2 and probes colors down to {μ }B ∼ 27.5 mag arcsec‑2. We compare our broadband optical data to available ultraviolet and high column density H i data to better constrain the star-forming history and stellar populations of the outermost parts of each galaxy’s disk. Each galaxy has a well-defined radius beyond which little star formation occurs and the disk light appears both azimuthally smooth and red in color, suggestive of old, well-mixed stellar populations. Given the lack of ongoing star formation or blue stellar populations in these galaxies’ outer disks, the most likely mechanisms for their formation are dynamical processes such as disk heating or radial migration, rather than inside-out growth of the disks. This is also implied by the similarity in outer disk properties despite each galaxy showing distinct levels of environmental influence, from a purely isolated galaxy (M94) to one experiencing weak tidal perturbations from its satellite galaxies (M106) to a galaxy recovering from a recent merger (M64), suggesting that a variety of evolutionary histories can yield similar outer disk structure. While this suggests a common secular mechanism for outer disk formation, the large extent of these smooth, red stellar populations—which reach several disk scale lengths beyond the galaxies’ spiral structure—may challenge models of radial migration given the lack of any nonaxisymmetric forcing at such large radii.

  20. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface structures; fireproof construction. 75.1708-1 Section 75.1708-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous §...

  1. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Surface structures; fireproof construction. 75.1708-1 Section 75.1708-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous §...

  2. Surface plasmon resonance for detecting clenbuterol: Influence of monolayer structure

    NASA Astrophysics Data System (ADS)

    Suherman; Morita, Kinichi; Kawaguchi, Toshikazu

    2015-03-01

    Surface plasmon resonance sensor equipped with a fabricated immunosensor chip is used for detecting clenbuterol in this study. Since clenbuterol is a small analyte, indirect competitive inhibition immunoassay is employed. For fabricating the immunosurface, the Au-chip was functionalized by succinimidyl-terminated alkanethiol, and the terminal N-hydroxysuccinimide group of the self-assembled monolayer was either replaced with clenbuterol or blocked with ethanolamine. Scanning tunneling microscope experiments and electrochemical measurements depicted the domain structures of the succinimide group of succinimidyl-terminated propanethiol monolayer. The surface concentration and the orientation of succinimide group was significantly dependent on the concentration of dithiobis(succinimidyl) propionate (DSP) used in fabricating the monolayer. Furthermore, the structure of monolayer significantly influenced both the surface concentration and the orientation of clenbuterol on the sensor surface. Consequently, high coverage and standing-up configuration of clenbuterol showed high affinity for clenbuterol antibody. However, high affinity constant exhibited by the sensor surface was coupled with a low sensitivity. By contrast, lowest concentration of DSP solution (0.1 mM) used in fabricating the immunosurface showed a detection sensitivity of 3 ppt - the highest reported sensitivity for clenbuterol. For regeneration the immunosurface, 0.1 M NaOH was used and the same sensor surface could be reused for performing >100 rapid immunoreaction.

  3. Protein-Induced Surface Structuring in Myelin Membrane Monolayers

    PubMed Central

    Rosetti, Carla M.; Maggio, Bruno

    2007-01-01

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes. PMID:17905850

  4. Chemical and structural characterization of carbon nanotube surfaces.

    PubMed

    Wepasnick, Kevin A; Smith, Billy A; Bitter, Julie L; Howard Fairbrother, D

    2010-02-01

    To utilize carbon nanotubes (CNTs) in various commercial and scientific applications, the graphene sheets that comprise CNT surfaces are often modified to tailor properties, such as dispersion. In this article, we provide a critical review of the techniques used to explore the chemical and structural characteristics of CNTs modified by covalent surface modification strategies that involve the direct incorporation of specific elements and inorganic or organic functional groups into the graphene sidewalls. Using examples from the literature, we discuss not only the popular techniques such as TEM, XPS, IR, and Raman spectroscopy but also more specialized techniques such as chemical derivatization, Boehm titrations, EELS, NEXAFS, TPD, and TGA. The chemical or structural information provided by each technique discussed, as well as their strengths and limitations. Particular emphasis is placed on XPS and the application of chemical derivatization in conjunction with XPS to quantify functional groups on CNT surfaces in situations where spectral deconvolution of XPS lineshapes is ambiguous. PMID:20052581

  5. Surface crystallography and electronic structure of potassium yttrium tungstate

    SciTech Connect

    Atuchin, V. V.; Pokrovsky, L. D.; Khyzhun, O. Yu.; Sinelnichenko, A. K.; Ramana, C. V.

    2008-08-01

    Structural and electronic characteristics of KY(WO{sub 4}){sub 2} (KYW) (010) crystal surfaces have been studied using reflection high-energy electron diffraction (RHEED) and x-ray photoelectron spectroscopy (XPS). The results indicate that the crystal structure and chemical composition of the mechanically polished pristine surface is stoichiometrically well maintained as expected for KYW crystals. Combined measurements of RHEED and XPS as a function of 1.5 keV Ar{sup +} ion irradiation of the KYW (010) surfaces indicate amorphization, partial loss of potassium atoms, and partial transformation of chemical valence state of tungsten from W{sup 6+} to a lower valence state, W{sup 0} state predominantly, which induces electronic states at the top of valence band.

  6. Non-dimensional response surfaces for structural optimization with uncertainty

    NASA Astrophysics Data System (ADS)

    Venter, Gerhardus

    Approximation concepts are an effective approach for alleviating some of the problems associated with the direct use of modern computerized analysis techniques in an optimization environment. Recently, response surface approximations have gained popularity as polynomial approximations that are global in nature. Response surface approximations shift the computational burden from the optimization problem to the problem of constructing the approximations, and accommodate the use of detailed analysis techniques without the need of derivative information. Additionally, response surface approximations filter out numerical noise inherent to most numerical analysis procedures, by providing a smooth approximate response function, and simplify the integration of the analysis and the optimization codes. The present dissertation investigates the use of response surface approximations in expensive structural optimization problems and aims to suggest techniques for improving both the accuracy of response surface approximations as well as the efficiency with which they are constructed. A stepped plate design problem is considered and response surface approximations are constructed for different failure mechanisms using numerical experiments conducted with a finite element analysis. Both an isotropic and a composite laminated plate, where the change in thickness is a result of internal ply drop off, are considered. The proposed methodology uses a combination of dimensional analysis, higher order response surface approximations, stepwise regression, a detailed error analysis and statistical design of experiments to improve both accuracy and efficiency. Dimensional analysis identifies variables intrinsic to the problem, and thus reduces the number of variables in the resulting response surface approximation. Stepwise regression is used to eliminate insignificant parameters from a response surface approximation and statistical design of experiments is used to identify a small set of

  7. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.

    1998-01-01

    The Principal Investigator's responsibilities on this grant fell into two categories according to his participation. In the nomenclature work of the International Astronomical Union (IAU). Owen is chair of the Task Group for the Outer Solar System. He is also a member of the IAU's Working Group on Planetary and Satellite Nomenclature (WGPSN) which is composed of the chairs of the several Task Groups plus the presidents of two IAU Commissions and several outside consultants. The WGPSN is presided over by its President, Professor Kaare Aksnes from the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway.

  8. Jupiter's outer atmosphere.

    NASA Technical Reports Server (NTRS)

    Brice, N. M.

    1973-01-01

    The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.

  9. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  10. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  11. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    SciTech Connect

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  12. Surface Stoichiometry, Structure, and Kinetics of GaAs MOCVD

    SciTech Connect

    Baucom, K.C.; Creighton, J.R.; Moffat, H.K.

    1999-01-29

    We have used reflectance-difference spectroscopy (RDS) to examine the surface phases of GaAs(100) during metalorganic chemical vapor deposition (MOCVD). Since the identities of two important surface phases were unknown, we determined their structure and stoichiometry using a variety of surface science techniques. The Type III phase is a newly characterized As-rich (1 X 2)-CH{sub 3} reconstruction. The Type II phase is a metastable derivative of the Type I phase. RDS also indicates that the surface during MOCVD has a considerable degree of heterogeneity. Deposition rates were measured over a similar range of conditions and the kinetically-limited regime was found to correlate with the Type III phase. A simple kinetic model was found to quantitatively describe the deposition rates.

  13. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    NASA Astrophysics Data System (ADS)

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-01

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  14. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    SciTech Connect

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-15

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  15. On surface structure and friction regulation in reptilian limbless locomotion.

    PubMed

    Abdel-Aal, Hisham A

    2013-06-01

    One way of controlling friction and associated energy losses is to engineer a deterministic structural pattern on the surface of the rubbing parts (i.e., texture engineering). Custom texturing enhances the quality of lubrication, reduces friction, and allows the use of lubricants of lower viscosity. To date, a standardized procedure to generate deterministic texture constructs is virtually non-existent. Many engineers, therefore, study natural species to explore surface construction and to probe the role that surface topography assumes in friction control. Snakes offer rich examples of surfaces where topological features allow the optimization and control of frictional behavior. In this paper, we investigate the frictional behavior of a constrictor type reptile, Python regius. The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakeskin. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the converse direction. Detailed analysis of the surface metrological feature reveals that tuning frictional response in snakes originates from the hierarchical nature of surface topology combined to the profile asymmetry of the surface micro-features, and the variation of the curvature of the contacting scales at different body regions. Such a combination affords the reptile the ability to optimize the frictional response. PMID:23582565

  16. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  17. Structure of ultrathin Ag films on the Al(100) surface

    SciTech Connect

    Choi, D. S.; Kopczyk, M.; Kayani, A.; Smith, R. J.; Bozzolo, Guillermo

    2006-09-15

    The structure for submonolayer amounts of Ag deposited on the Al(100) surface at room temperature has been studied using low-energy electron diffraction (LEED) and low-energy ion-scattering spectroscopy (LEIS/ISS). The Ag coverage was determined using Rutherford backscattering spectroscopy. We conclude that the Ag atoms form two domains of a buckled, quasihexagonal coincident lattice structure on the Al(100) surface, having a repeat distance of 5 Al interatomic spacings in the [110] direction. The LEED pattern shows a double-domain (5x1) structure with additional intensity in those spots corresponding to a (111) close-packed hexagonal layer. The analysis of the ISS results suggests that the heights of the adsorbed Ag atoms above the Al surface are not all the same, leading to the proposed buckling model that is in agreement with recent scanning tunneling microscopy measurements. In addition, some Al atoms move from the substrate up into the Ag adlayer to form a surface alloy. Model calculations using the quantum approximate Bozzolo-Ferrante-Smith (BFS) method indicate that the hexagonal layer is energetically preferred as a result of increased nearest-neighbor coordination within the Ag layer.

  18. Sulfur-induced structural motifs on copper and gold surfaces

    NASA Astrophysics Data System (ADS)

    Walen, Holly

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. We choose very specific conditions: very low temperature (5 K), and very low sulfur coverage (≤ 0.1 monolayer). In this region of temperature-coverage space, which has not been examined previously for these adsorbate-metal systems, the effects of individual interactions between metals and sulfur are most apparent and can be assessed extensively with the aid of theory and modeling. Furthermore, at this temperature diffusion is minimal and relatively-mobile species can be isolated, and at low coverage the structures observed are not consumed by an extended reconstruction. The primary experimental technique is scanning tunneling microscopy (STM). The experimental observations presented here---made under identical conditions---together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  19. Vortex organization in wall turbulence: inner or outer scaling?

    NASA Astrophysics Data System (ADS)

    Guala, Michele; Lehew, Jeff; Metzger, Meredith; McKeon, Beverley

    2009-11-01

    Simultaneous hotwire measurements in the near-neutral atmospheric surface layer at Reτ= δuτ/ν˜10^6 are compared with time-resolved PIV measurements in a flat plate turbulent boundary layer at Reτ= 5 .10^2. We observe in both flows a similar strong signature in the two point correlation function of the streamwise velocity fluctuation near the wall, confirming the key statistical role of ramp-like vortex organization. However, at the lower Reynolds number, the organized structures were observed to extend up to the boundary layer thickness δ, implying that in the atmospheric surface layer we should observe similar patterns up to heights of the order of 50 m, providing outer scaling holds. The effect of the Reynolds number on the scaling of ramp-like structures, hairpins and hairpin packets (Adrian, 2007) is investigated.

  20. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek R.

    2005-06-01

    In the past year studies have primarily focused on elucidating the role of pili in electron transport to Fe(III) oxide in Geobacter sulfurreducens. As summarized in last year's report, it was previously found that pili are specifically expressed during growth on Fe(III) oxide and that Fe(III) oxide reduction is inhibited if the gene for the structural pilin protein is deleted. However, it was also found that a pilin-deficient mutant of G. sulfurreducens could attached to Fe(III) oxide as well as wild type.

  1. Language learners privilege structured meaning over surface frequency.

    PubMed

    Culbertson, Jennifer; Adger, David

    2014-04-22

    Although it is widely agreed that learning the syntax of natural languages involves acquiring structure-dependent rules, recent work on acquisition has nevertheless attempted to characterize the outcome of learning primarily in terms of statistical generalizations about surface distributional information. In this paper we investigate whether surface statistical knowledge or structural knowledge of English is used to infer properties of a novel language under conditions of impoverished input. We expose learners to artificial-language patterns that are equally consistent with two possible underlying grammars--one more similar to English in terms of the linear ordering of words, the other more similar on abstract structural grounds. We show that learners' grammatical inferences overwhelmingly favor structural similarity over preservation of superficial order. Importantly, the relevant shared structure can be characterized in terms of a universal preference for isomorphism in the mapping from meanings to utterances. Whereas previous empirical support for this universal has been based entirely on data from cross-linguistic language samples, our results suggest it may reflect a deep property of the human cognitive system--a property that, together with other structure-sensitive principles, constrains the acquisition of linguistic knowledge. PMID:24706789

  2. Surface Structure of Thin Films of Multifunctional Ionizable Copolymers

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Anuradhi; Perahia, Dvora

    Phase segregation results in a rich variety of structures in co-polymers where interfacial forces often dominate the structure of thin films. Introduction of ionizable segments often drives the formation of compounded structures with multiple blocks residing at the interfaces. Here we probe thin films, 40-50nm, of an A-B-C-B-A co-polymer where C is a randomly sulfonated polystyrene with sulfonation fractions of 0, 26 and 52 mole %, B is poly (ethylene-r-propylene), and A is poly (t-butyl styrene) as the sulfonation level and temperature are varied using Neutron Reflectivity AFM, and surface tension measurements. As cast films form layers with both hydrophobic blocks dominating the solid and air interfaces and the ionizable block segregating to the center. Following annealing at 1700C, above Tg of styrene sulfonate, the films coarsen, with surface aggregation dominating the structure, though interfacial regions remain dominated by the hydrophobic segments. We show that in contrast to non-ionic co-polymers, formation of micelles dominated the structure of these ionic structured films. Supported in part by DOE Grant No. DE-SC007908.

  3. The Surface Structure of Liquid Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Pershan, Peter

    2004-03-01

    X-ray scattering of the surface structure of liquid metals and liquid metal alloys will be discussed. We will report observations of the theoretically predicted surface induced atomic layering; however, quantitative interpretation of the local surface structure factor requires that the Debye-Waller effect associated with thermal capillary waves be accounted for. We will explain how that is done. Results that will be described for surfaces that exhibit simple layering , such as Ga, In and K, will be contrasted with anomalous layering that is observed for Sn. In addition data on the surfaces of alloys such as GaBi, InBi, AuGe and AuSi will be presented This work is supported by DE-FG02-88-ER45379 and DMR-0124936. Experiments at BNL and CMC-Cat at the APS are supported by DE-AC02-98CH10886. Experiments at ChemMatCars at the APS are supported by NSF/DOE grant CHE0087817.

  4. Three-dimensional velocity structure of the outer fore arc of the Colombia-Ecuador subduction zone and implications for the 1958 megathrust earthquake rupture zone

    NASA Astrophysics Data System (ADS)

    García Cano, Lina Constanza; Galve, Audrey; Charvis, Philippe; Marcaillou, Boris

    2014-02-01

    In 2005, an onshore, offshore 3-D refraction and wide-angle reflection seismic experiment was conducted along the convergent margin at the border between Colombia and Ecuador, over the rupture zone of the 1958, Mw 7.6 subduction earthquake. A well-defined Vp velocity model of the plate boundary and upper and lower plates was constructed, down to 25 km depth, using first arrival traveltimes inversion. The model reveals a several kilometers thick, low-velocity zone in the upper plate, located immediately above the interplate contact. This low-velocity zone might be related to alteration and fracturing of the mafic and ultramafic rocks, which composed the upper plate in this area by fluids released by the lower plate with possible contributions from sediment underplating. Near the toe of the margin, the model shows a low-velocity gradient in the outer wedge, which is interpreted as highly faulted and fractured rocks. This low-velocity/low-gradient region appears to limit the oceanward extension of the rupture zones of the 1958 and 1979 earthquakes, possibly because coseismic deformation and uplift of the outer margin wedge dissipates most of the seismic energy.

  5. Surface structuring of particle laden drops using electric fields

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Fossum, J. O.

    2016-07-01

    Emulsion drops readily adsorb particles at their surfaces, which may lead to a fluid or solid layer encapsulating the drop, known as an armored drop. In this review, we discuss how electric fields can be used to manipulate colloidal surface structures, by dielectrophoretic or electro-hydrodynamic mechanisms and we also compare this to related phenomena in lipid bilayer vesicles. The phenomena discussed are important for a wide range of uses of particle laden drops, including emulsion stabilization, Janus or patchy mesocapsule-, scaffold- or other materials-production.

  6. Structural and surface features of multiwall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hembram, K. P. S. S.; Rao, G. Mohan

    2011-04-01

    We present the direct evidence of defective and disorder places on the surface of multiwall carbon nanotube (MWCNT), visualizing the presence of amorphous carbon at those sites. These defective surfaces being higher in energy are the key features of functionalization with different materials. The interaction of the π orbital electrons of different carbon atoms of adjacent layers is more at the bent portion, than that of regular portion of the CNT. Hence the tubular structure of the bent portion of nanotubes is spaced more than that of regular portion of the nanotubes, minimizing the stress.

  7. Surface-plasmons lasing in double-graphene-layer structures

    SciTech Connect

    Dubinov, A. A.; Aleshkin, V. Ya.; Ryzhii, V.; Shur, M. S.; Otsuji, T.

    2014-01-28

    We consider the concept of injection terahertz lasers based on double-graphene-layer (double-GL) structures with metal surface-plasmon waveguide and study the conditions of their operation. The laser under consideration exploits the resonant radiative transitions between GLs. This enables the double-GL laser room temperature operation and the possibility of voltage tuning of the emission spectrum. We compare the characteristics of the double-GL lasers with the metal surface-plasmon waveguides with those of such laser with the metal-metal waveguides.

  8. The Structure of Galaxies I: Surface Photometry Techniques

    NASA Astrophysics Data System (ADS)

    Schombert, J.; Smith, A. K.

    2012-04-01

    This project uses the 2MASS all-sky image database to study the structure of galaxies over a range of luminosities, sizes and morphological types. This first paper in this series will outline the techniques, reliability and data products to our surface photometry program. Our program will analyze all acceptable galaxies (meeting our criteria for isolation from companions and bright stars) from the Revised Shapley-Ames and Uppsala galaxy catalogs. Resulting photometry and surface brightness profiles are released using a transparent scheme of data storage which includes not only all the processed data but knowledge of the processing steps and calibrating parameters.

  9. Optical excitation of surface plasma waves without grating structures

    NASA Astrophysics Data System (ADS)

    Deng, Hai-Yao; Liu, Feng; Wakabayashi, Katsunori

    2016-05-01

    Surface plasma waves (SPWs) are usually discussed in the context of a metal in contact with a dielectric. However, they can also exist between two metals. In this work we study these bimetallic waves. We find that their dispersion curve always cuts the light line, which allows direct optical coupling without surface grating structures. We propose practical schemes to excite them and the excitation efficiency is estimated. We also show that these waves can be much less lossy than conventional SPWs and their losses can be systematically controlled, a highly desirable attribute in applications. Conducting metal oxides seem fit for experimental studies.

  10. Surface Structure Dependence of SO2 Interaction with Ceria Nanocrystals with Well-defined Surface Facets

    DOE PAGESBeta

    Tumuluri, Uma; Li, Meijun; Cook, Brandon G.; Sumpter, Bobby G.; Dai, Sheng; Wu, Zili

    2015-12-02

    The effects of the surface structure of ceria (CeO2) on the nature, strength, and amount of species resulting from SO2 adsorption were studied using in situ IR and Raman spectroscopies coupled with mass spectrometry, along with first-principles calculations based on density functional theory (DFT). CeO2 nanocrystals with different morphologies, namely, rods (representing a defective structure), cubes (100 facet), and octahedra (111 facet), were used to represent different CeO2 surface structures. IR and Raman spectroscopic studies showed that the structure and binding strength of adsorbed species from SO2 depend on the shape of the CeO2 nanocrystals. SO2 adsorbs mainly as surfacemore » sulfites and sulfates at room temperature on CeO2 rods, cubes, and octahedra that were either oxidatively or reductively pretreated. The formation of sulfites is more evident on CeO2 octahedra, whereas surface sulfates are more prominent on CeO2 rods and cubes. This is explained by the increasing reducibility of the surface oxygen in the order octahedra < cubes < rods. Bulk sulfites are also formed during SO2 adsorption on reduced CeO2 rods. The formation of surface sulfites and sulfates on CeO2 cubes is in good agreement with our DFT results of SO2 interactions with the CeO2(100) surface. CeO2 rods desorb SO2 at higher temperatures than cubes and octahedra nanocrystals, but bulk sulfates are formed on CeO2 rods and cubes after high-temperature desorption whereas only some surface sulfates/sulfites are left on octahedra. This difference is rationalized by the fact that CeO2 rods have the highest surface basicity and largest amount of defects among the three nanocrystals, so they bind and react with SO2 strongly and are the most degraded after SO2 adsorption cycles. The fundamental understanding obtained in this work on the effects of the surface structure and defects on the interaction of SO2 with CeO2 provides insights for the design of more sulfur-resistant CeO2-based catalysts.« less

  11. Structural determinants of the outer shell of β-carboxysomes in Synechococcus elongatus PCC 7942: roles for CcmK2, K3-K4, CcmO, and CcmL.

    PubMed

    Rae, Benjamin D; Long, Benedict M; Badger, Murray R; Price, G Dean

    2012-01-01

    Cyanobacterial CO(2)-fixation is supported by a CO(2)-concentrating mechanism which improves photosynthesis by saturating the primary carboxylating enzyme, ribulose 1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), with its preferred substrate CO(2). The site of CO(2)-concentration is a protein bound micro-compartment called the carboxysome which contains most, if not all, of the cellular RuBisCO. The shell of β-type carboxysomes is thought to be composed of two functional layers, with the inner layer involved in RuBisCO scaffolding and bicarbonate dehydration, and the outer layer in selective permeability to dissolved solutes. Here, four genes (ccmK2-4, ccmO), whose products were predicted to function in the outer shell layer of β-carboxysomes from Synechococcus elongatus PCC 7942, were investigated by analysis of defined genetic mutants. Deletion of the ccmK2 and ccmO genes resulted in severe high-CO(2)-requiring mutants with aberrant carboxysomes, whilst deletion of ccmK3 or ccmK4 resulted in cells with wild-type physiology and normal ultrastructure. However, a tandem deletion of ccmK3-4 resulted in cells with wild-type carboxysome structure, but physiologically deficient at low CO(2) conditions. These results revealed the minimum structural determinants of the outer shell of β-carboxysomes from this strain: CcmK2, CcmO and CcmL. An accessory set of proteins was required to refine the function of the pre-existing shell: CcmK3 and CcmK4. These data suggested a model for the facet structure of β-carboxysomes with CcmL forming the vertices, CcmK2 forming the bulk facet, and CcmO, a "zipper protein," interfacing the edges of carboxysome facets. PMID:22928045

  12. The magnetospheres of the outer planets

    SciTech Connect

    Mcnutt, R.L., Jr. )

    1991-01-01

    Research on the magnetospheres of all of the outer planets including Jupiter, Uranus, Neptune, and Pluto is reviewed for the 1987-1990 time period. Particular attention is given to magnetospheric structure, plasma transport, Jovian aurora, Io and the plasma torus, Titan and its magnetospheric interactions, rings and dusty plasmas, magnetospheric convection, and satellite interactions.

  13. The processing of materials in outer space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Colling, E. W.

    1977-01-01

    Zero-gravity environment may lead to fabrication of new and improved materials. According to comprehensive study of application of this promising technology to superconducting and electrical contact materials, outer space processing could improve microstructure and homogeneity of many single and multicomponent systems formed from solidification of fluid phases. New structures that are impossible to form terrestrially may also be accessible in space environment.

  14. Characteristics of turbulent structures in the unstable atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Schols, J. L. J.; Jansen, A. E.; Krom, J. G.

    1985-10-01

    An atmospheric surface-layer (ASL) experiment conducted at a meteorological site in the Oostelijk-Flevoland polder of the Netherlands is described. Turbulent fluctuations of wind velocity, air temperature and static pressure were measured, using three 10 m towers. Simultaneous turbulent signals at several heights on the towers were used to investigate the properties of the turbulent structures which contribute most significantly to the turbulent vertical transports in the unstable ASL. These turbulent structures produce between 30 and 50% of the mean turbulent vertical transport of horizontal alongwind momentum and they contribute to between 40 and 50% of the mean turbulent vertical heat transport; in both cases this occurs during 15 to 20% of the total observation time. The translation speed of the turbulent structures equals the wind speed averaged over the depth of the ASL, which scales on the surface friction velocity. The inclination angle of the temperature interface at the upstream edge of the turbulent structures to the surface is significantly smaller than that of the internal shear layer, which is associated with the temperature interface. The turbulent structures in the unstable ASL are determined by a large-scale temperature field: Convective motions, which encompass the whole depth of the planetary boundary layer (PBL), penetrate into the ASL. The curvature of the vertical profile of mean horizontal alongwind velocity forces the alignment of the convective cells in the flow direction (Kuettner, 1971), which have an average length of several hundreds of metres and an average width of a few tens of metres. This mechanism leads to the formation of turbulent structures, which extend throughout the depth of the ASL.

  15. Outer Hair Cell Electromotility and Otoacoustic Emissions*

    PubMed Central

    Brownell, William E.

    2009-01-01

    Outer hair cell electromotility is a rapid, force generating, length change in response to electrical stimulation. DC electrical pulses either elongate or shorten the cell and sinusoidal electrical stimulation results in mechanical oscillations at acoustic frequencies. The mechanism underlying outer hair cell electromotility is thought to be the origin of spontaneous otoacoustic emissions. The ability of the cell to change its length requires that it be mechanically flexible. At the same time the structural integrity of the organ of Corti requires that the cell possess considerable compressive rigidity along its major axis. Evolution appears to have arrived at novel solutions to the mechanical requirements imposed on the outer hair cell. Segregation of cytoskeletal elements in specific intracellular domains facilitates the rapid movements. Compressive strength is provided by a unique hydraulic skeleton in which a positive hydrostatic pressure in the cytoplasm stabilizes a flexible elastic cortex with circumferential tensile strength. Cell turgor is required in order that the pressure gradients associated with the electromotile response can be communicated to the ends of the cell. A loss in turgor leads to loss of outer hair cell electromotility. Concentrations of salicylate equivalent to those that abolish spontaneous otoacoustic emissions in patients weaken the outer hair cell’s hydraulic skeleton. There is a significant diminution in the electromotile response associated with the loss in cell turgor. Aspirin’s effect on outer hair cell electromotility attests to the role of the outer hair cell in generating otoacoustic emissions and demonstrates how their physiology can influence the propagation of otoacoustic emissions. PMID:2187727

  16. Hierarchical electrohydrodynamic structures for surface-enhanced Raman scattering.

    PubMed

    Goldberg-Oppenheimer, Pola; Mahajan, Sumeet; Steiner, Ullrich

    2012-06-19

    Surface enhanced Raman scattering (SERS) is a well-established spectroscopic technique that requires nanoscale metal structures to achieve high signal sensitivity. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. PMID:22488810

  17. Atomic and electronic structure of the corundum (0001) surface: comparison with surface spectroscopies

    NASA Astrophysics Data System (ADS)

    Puchin, V. E.; Gale, J. D.; Shluger, A. L.; Kotomin, E. A.; Günster, J.; Brause, M.; Kempter, V.

    1997-01-01

    The electronic structure and geometry of the Al-terminated corundum (0001) surface were studied using a slab model within the ab-initio Hartree-Fock technique. The distance between the top Al plane and the next O basal plane is found to be considerably reduced on relaxation (by 0.57 Å, i.e. by 68% of the corresponding interlayer distance in the bulk). An interpretation of experimental photoelectron spectra (UPS He I) and metastable impact electron spectra (MIES) is given using the calculated total density of states of the slab and the projections to the atoms, atomic orbitals, and He 1s floating atomic orbital at different positions above the surface. Calculated projected densities of states exhibit a strong dependence on the relaxation of surface atoms. The good agreement of simulated and experimental UPS and MIES spectra supports the correctness of calculated surface relaxation.

  18. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  19. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  20. Wireless structural sensor made with frequency selective surface antenna

    NASA Astrophysics Data System (ADS)

    Jang, Sang-Dong; Kim, Jaehwan

    2012-04-01

    Nondestructive Structural health monitoring (SHM) system using wireless sensor network is the one of important issue for aerospace and civil engineering. Chipless passive wireless sensor system is one of novel methods for SHM which uses the electromagnetic wave characteristic change by geometrical change of electromagnetic resonators or impedance change of functional material sensing part without RFID chip. In this paper, the chipless passive wireless SHM sensor using frequency selective surface (FSS) is investigated. Electromagnetic characteristic change of FSS by mechanical strain or structural damage is investigated by simulation and experiment.

  1. Outer atmospheric research

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1988-01-01

    The region above the earth from about 90 km to 150 km is a major part of the upper or outer atmosphere. It is relatively unexplored, being too high for balloons or aircraft and too low for persistent orbiting spacecraft. However, the concept of a tethered subsatellite, deployed downward from an orbiting, more massive craft such as the Space Shuttle, opens the possibility of a research capability that could provide global mapping of this region. The need for research in this thick spherical shell above the earth falls into two major categories: (1) scientific data for understanding and modeling the global atmosphere and thereby determining its role in the earth system, and (2) engineering data for the design of future aerospace vehicles that will operate there. This paper presents an overview and synthesis of the currently perceived research needs and the state-of-the-art of the proposed tethered research capability.

  2. Development of laminar flow control wing surface porous structure

    NASA Technical Reports Server (NTRS)

    Klotzsche, M.; Pearce, W.; Anderson, C.; Thelander, J.; Boronow, W.; Gallimore, F.; Brown, W.; Matsuo, T.; Christensen, J.; Primavera, G.

    1984-01-01

    It was concluded that the chordwise air collection method, which actually combines chordwise and spanwise air collection, is the best of the designs conceived up to this time for full chord laminar flow control (LFC). Its shallower ducting improved structural efficiency of the main wing box resulting in a reduction in wing weight, and it provided continuous support of the chordwise panel joints, better matching of suction and clearing airflow requirements, and simplified duct to suction source minifolding. Laminar flow control on both the upper and lower surfaces was previously reduced to LFC suction on the upper surface only, back to 85 percent chord. The study concludes that, in addition to reduced wing area and other practical advantages, this system would be lighter because of the increase in effective structural wing thickness.

  3. Laser-induced periodic surface structuring of biopolymers

    NASA Astrophysics Data System (ADS)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  4. Femtosecond laser-induced surface structures on carbon fibers.

    PubMed

    Sajzew, Roman; Schröder, Jan; Kunz, Clemens; Engel, Sebastian; Müller, Frank A; Gräf, Stephan

    2015-12-15

    The influence of different polarization states during the generation of periodic nanostructures on the surface of carbon fibers was investigated using a femtosecond laser with a pulse duration τ=300  fs, a wavelength λ=1025  nm, and a peak fluence F=4  J/cm². It was shown that linear polarization results in a well-aligned periodic pattern with different orders of magnitude concerning their period and an alignment parallel and perpendicular to fiber direction, respectively. For circular polarization, both types of uniform laser-induced periodic surface structures (LIPSS) patterns appear simultaneously with different dominance in dependence on the position at the fiber surface. Their orientation was explained by the polarization-dependent absorptivity and the geometrical anisotropy of the carbon fibers. PMID:26670499

  5. Surface-micromachined chain for use in microelectromechanical structures

    DOEpatents

    Vernon, Sr., George E.

    2001-01-01

    A surface-micromachined chain and a microelectromechanical (MEM) structure incorporating such a chain are disclosed. The surface-micromachined chain can be fabricated in place on a substrate (e.g. a silicon substrate) by depositing and patterning a plurality of alternating layers of a chain-forming material (e.g. polycrystalline silicon) and a sacrificial material (e.g. silicon dioxide or a silicate glass). The sacrificial material is then removed by etching to release the chain for movement. The chain has applications for forming various types of MEM devices which include a microengine (e.g. an electrostatic motor) connected to rotate a drive sprocket, with the surface-micromachined chain being connected between the drive sprocket and one or more driven sprockets.

  6. Examining surface and bulk structures using combined nonlinear vibrational spectroscopies.

    PubMed

    Zhang, Chi; Wang, Jie; Khmaladze, Alexander; Liu, Yuwei; Ding, Bei; Jasensky, Joshua; Chen, Zhan

    2011-06-15

    We combined sum-frequency generation (SFG) vibrational spectroscopy with coherent anti-Stokes Raman scattering (CARS) spectroscopy in one system to examine both surface and bulk structures of materials with the same geometry and without the need to move the sample. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) thin films were tested before and after plasma treatment. The sensitivities of SFG and CARS were tested by varying polymer film thickness and using a lipid monolayer. PMID:21685990

  7. Local and near surface structure from diffraction (Preface)

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E

    2010-01-01

    This special topic of Materials Science and Engineering A highlights novel applications of X-ray and neutron diffraction for the analysis of a range of materials, including conventional and nanostructured materials, thin films, bio-inspired materials, and superalloys. The development of ultra-brilliant synchrotron X-ray sources and recent advances in neutron diffraction provide important new opportunities for the analysis of local and near surface material structures at multiple length scales.

  8. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    SciTech Connect

    McCrea, Keith R.

    2001-09-07

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-{sigma} bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as {pi}-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  9. Mapping cardiac surface mechanics with structured light imaging

    PubMed Central

    Laughner, Jacob I.; Zhang, Song; Li, Hao; Shao, Connie C.

    2012-01-01

    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation. PMID:22796539

  10. Preliminary crystallographic analysis of the antibiotic discharge outer membrane lipoprotein OprM of Pseudomonas aeruginosa with an exceptionally long unit cell and complex lattice structure.

    PubMed

    Akama, Hiroyuki; Kanemaki, Misa; Tsukihara, Tomitake; Nakagawa, Atsushi; Nakae, Taiji

    2005-01-01

    Crystals of the drug-discharge outer membrane protein OprM (MW = 50.9 kDa) of the MexAB-OprM multidrug transporter of Pseudomonas aeruginosa have been grown at 293 K in the presence of 2-methyl-2,4-propanediol and a combination of surfactants. The crystal belonged to space group R32, with unit-cell parameters a = b = 85.43, c = 1044.3 A. Diffraction data for OprM were obtained using the undulator synchrotron-radiation beamline at SPring-8 (BL44XU, Osaka University), which allowed an extra-long specimen-to-detector distance with a wide detector area. The crystal diffracted to 2.56 A resolution using 0.9 A X-rays from the synchrotron-radiation source. A heavy-atom derivative for isomorphous replacement phasing was obtained using iridium chloride. PMID:16508113

  11. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    SciTech Connect

    Zheng, Y. |; Shirley, D.A.

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  12. Computer simulation of the structure of ionic surfaces and interfaces

    SciTech Connect

    Wolf, D.

    1994-09-01

    The classic Madelung problem, i.e., the divergence associated with the r{sup {minus}1} term in the Coulomb potential of condensed ionic systems, was recently cast into an absolutely convergent form that is readily evaluated by direct lattice summation, revealing a net r{sup {minus}5} range of this potential. This realization that Coulomb interactions in condensed systems can actually be rather short ranged (if the system is overall neutral) permits novel physical insights into their structure and energetics to be gained. As an example, the authors demonstrate that an understanding of the range and the nature of the convergence of the Coulomb potential leads naturally to the prediction, verified here by computer simulations for rocksalt-structured surfaces, that all surfaces in predominantly ionic materials should be fundamentally reconstructed. The work also provides a conceptual framework for the theoretical treatment of polar surfaces and interfaces, as demonstrated here for the case of the (111) stacking fault and of the (111) twin boundary in the rocksalt structure.

  13. Development of laminar flow control wing surface composite structures

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. This report documents the Lockheed-Georgia Company accomplishments under NAS1-16235 LFC Laminar-Flow-Control Wing Panel Structural Design And Development (WSSD); Design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joints were demonstrated by fabricating and testing complex, concept selection specimens. Cost of the baseline LFC aircraft was estimated and compared to the turbulent aircraft. The mission fuel weight was 21.7 percent lower for the LFC aircraft. The calculation shows that the lower fuel costs for LFC offset the higher incremental costs of LFC in less than six months.

  14. Chasing shadows in the outer solar system

    NASA Astrophysics Data System (ADS)

    Bianco, Federica

    The characteristics of the populations of objects that inhabit the outer solar system carry the fingerprint of the processes that governed the formation and evolution of the solar system. Occultation surveys push the limit of observation into the very small and distant outer solar system objects, allowing us to set constraints on the structure of the Kuiper belt, Scattered disk and Sedna populations. I collected, reduced, and analyzed vast datasets looking for occultations of stars by outer solar system objects, both working with the Taiwanese American Occultation Survey (TAOS) collaboration and leading the MMT/Megacam occultation effort. Having found no such events in my data, I was able to place upper limits on the Kuiper belt, scattered disk and Sedna population. These limits and their derivation are described here.

  15. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-01

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements. PMID:24356124

  16. Surface structure and the optical properties of black chrome

    NASA Astrophysics Data System (ADS)

    Smith, G. B.; McPhedran, R. C.; Derrick, G. H.

    1985-04-01

    A new optical model is presented for solar-selective black chrome. Surface texture is shown to be the primary factor which gives thin films of black chrome a uniformly high absorptance in the visible and near-infrared regions. Internal composition of the films is a secondary influence on their optical properties. We present results consistent with experimental data obtained from films having widely varying structures and compositions, both before and after heat treatment. Our optical model does not rely on the quasistatic approximation, hitherto universally employed in theoretical studies of solar-selective black chrome. Instead, we use a rigorous diffraction formulation for doubly-periodic surfaces (bigratings). The key parameters of the surface morphology are determined from stereo-pair electronmicrographs, and are used in the bigrating model. We present the predicted variation of spectral absorptance with wavelength, as well as integrated absorptance and thermal emittance, for roughened chromium. We give results both for bare metal, and for the metal conformally overcoated either with a thin layer of Cr2O3 or with a Cr/Cr2O3 cermet. Various shapes of surface features are examined, and surface profile is shown not to be crucial in determining optical properties.

  17. Surface and interface structure of diblock copolymer brushes

    NASA Astrophysics Data System (ADS)

    Akgun, Bulent

    The main objective of the work presented in this thesis is to understand the surface and interface structure and dynamics of diblock copolymer brushes (DCBs). DCBs are stimuli-responsive materials and the surface properties of a DCB can be changed from those characteristic of one polymer block to those characteristic of the other one by treating the DCB with a solvent selective for one of its blocks. For this purpose, polystyrene- block-polyacrylate or polyacrylate-block-polystyrene brushes were synthesized using the "grafting from" technique in combination with atom transfer radical polymerization (ATRP). In the first part of this project the internal structure of DCBs after the synthesis and surface rearrangement were investigated using neutron reflectivity (NR) and grazing incidence small angle X-ray scattering (GISAXS). It was found that the internal brush structure depends strongly on the synthesis sequence of polymer blocks and the value of chiN. For small values of chiN (chiN ≤ 11), a model of two layers with an interfacial region of finite width provides a good description of the data. The interface width is found to be larger for DCBs which have the polymer block with the lower surface energy synthesized next to the substrate. A three layer model must be used to describe the structure of DCBs of larger chiN values (chiN ≤ 23) and of sufficiently asymmetric composition. The necessity of including a third layer is consistent with the presence of a lateral ordering of some type in the center of the brush, as evidenced by correlation peaks in the GISAXS data. The spacing of the in-plane ordering varies with the thickness of the poly(methyl acrylate) (PMA) block. After a DCB is treated with a selective solvent, Bragg rods appear in the GISAXS pattern. The appearance of Bragg rods indicates the formation of a new 2D structure which has a lateral spacing on the order of the total thickness of the brush. The Bragg rods disappear upon heating to 80

  18. Omnidirectional optical attractor in structured gap-surface plasmon waveguide.

    PubMed

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A

    2016-01-01

    An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges. PMID:27001451

  19. Omnidirectional optical attractor in structured gap-surface plasmon waveguide

    PubMed Central

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2016-01-01

    An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges. PMID:27001451

  20. Omnidirectional optical attractor in structured gap-surface plasmon waveguide

    NASA Astrophysics Data System (ADS)

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2016-03-01

    An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges.