Sample records for ovarian small cell

  1. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer

    PubMed Central

    Virant-Klun, Irma; Stimpfel, Martin

    2016-01-01

    Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207

  2. Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer, Ovarian Cancer, or Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-08

    Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx

  3. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary.

    PubMed

    Bhartiya, Deepa

    2015-11-05

    Existing dogma that a female is born with fixed number of eggs was challenged by the detection of stem cells in adult mammalian ovary. Data has accumulated in support of ovarian stem cells (OSCs) proliferation, maintenance in culture, formation of germ cell nests and differentiation into oocytes and primordial follicle assembly using different strategies. Flow cytometry analysis identified >8 μm OSCs which are DDX1 positive and are considered equivalent to spermatogonial stem cells (SSCs) in testis. Analysis of both ovarian and testicular smears obtained after enzymatic digestion has led to the identification of an additional stem cell population termed very small embryonic-like stem cells (VSELs). VSELs and OSCs/SSCs differ from each other in their size and OCT-4 expression. VSELs express pluripotent markers including nuclear OCT-4 whereas OSCs/SSCs express cytoplasmic OCT-4 suggesting a differentiated state. VSELs can be studied by flow cytometry as small sized cells which are LIN-/CD45-/Sca-1+. We have reported 0.02 ± 0.008, 0.03 ± 0.017 and 0.08 ± 0.03 % of total cells as VSELs in normal, chemoablated and after FSH treatment to chemoablated mouse ovary. VSELs have remained poorly studied till now because of their very small size and rare occurrence. Spinning cells obtained after enzymatic digestion of ovarian tissue at a speed of 1000G (rather than 1200 rpm) throughout processing allows reliable detection of the VSELs by flow cytometry. VSELs exist in aged, chemoablated and non-functional ovary and providing a healthy niche to support their function offers an interesting strategy to manage infertility.

  4. Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics.

    PubMed

    Gamwell, Lisa F; Gambaro, Karen; Merziotis, Maria; Crane, Colleen; Arcand, Suzanna L; Bourada, Valerie; Davis, Christopher; Squire, Jeremy A; Huntsman, David G; Tonin, Patricia N; Vanderhyden, Barbara C

    2013-02-21

    The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing. Spectral karyotyping revealed a largely normal diploid karyotype (in greater than 95% of cells) with a visibly shorter chromosome 20 contig. High density SNP array analysis also revealed few genomic anomalies in BIN-67 cells, which included loss of heterozygosity of an estimated 16.7 Mb interval on chromosome 20. SNP array analyses of four SCCOHT samples also indicated a low frequency of genomic anomalies in the majority of cases. Although resistant to platinum chemotherapeutic drugs, BIN-67 cell viability in vitro was reduced by > 75% after infection with oncolytic viruses. These results show that SCCOHT differs from high-grade serous carcinomas by exhibiting few chromosomal anomalies and lacking TP53 mutations. Although BIN-67 cells are

  5. Cyclophosphamide or Denileukin Diftitox Followed By Expanding a Patient's Own T Cells in the Laboratory in Treating Patients With HER-2/Neu Overexpressing Metastatic Breast Cancer, Ovarian Cancer, or Non-Small Cell Lung Cancer Previously Treated With HER-2/Neu Vaccine

    ClinicalTrials.gov

    2014-11-07

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  6. Ovarian Stem Cell Nests in Reproduction and Ovarian Aging.

    PubMed

    Ye, Haifeng; Zheng, Tuochen; Li, Wei; Li, Xiaoyan; Fu, Xinxin; Huang, Yaoqi; Hu, Chuan; Li, Jia; Huang, Jian; Liu, Zhengyv; Zheng, Liping; Zheng, Yuehui

    2017-01-01

    The fixed primordial follicles pool theory, which monopolized reproductive medicine for more than one hundred years, has been broken by the discovery, successful isolation and establishment of ovarian stem cells. It has brought more hope than ever of increasing the size of primordial follicle pool, improving ovarian function and delaying ovarian consenescence. Traditional view holds that stem cell aging contributes to the senility of body and organs. However, in the process of ovarian aging, the main factor leading to the decline of the reproductive function is the aging and degradation of ovarian stem cell nests, rather than the senescence of ovarian germ cells themselves. Recent studies have found that the immune system and circulatory system are involved in the formation of ovarian germline stem cell niches, as well as regulating the proliferation and differentiation of ovarian germline stem cells through cellular and hormonal signals. Therefore, we can improve ovarian function and delay ovarian aging by improving the immune system and circulatory system, which will provide an updated program for the treatment of premature ovarian failure (POF) and infertility. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Isolation of Small SSEA-4-Positive Putative Stem Cells from the Ovarian Surface Epithelium of Adult Human Ovaries by Two Different Methods

    PubMed Central

    Virant-Klun, Irma; Skutella, Thomas; Hren, Matjaz; Gruden, Kristina; Cvjeticanin, Branko; Vogler, Andrej; Sinkovec, Jasna

    2013-01-01

    The adult ovarian surface epithelium has already been proposed as a source of stem cells and germinal cells in the literature, therefore it has been termed the “germinal epithelium”. At present more studies have confirmed the presence of stem cells expressing markers of pluripotency in adult mammalian ovaries, including humans. The aim of this study was to isolate a population of stem cells, based on the expression of pluripotency-related stage-specific embryonic antigen-4 (SSEA-4) from adult human ovarian surface epithelium by two different methods: magnetic-activated cell sorting and fluorescence-activated cell sorting. Both methods made it possible to isolate a similar, relatively homogenous population of small, SSEA-4-positive cells with diameters of up to 4 μm from the suspension of cells retrieved by brushing of the ovarian cortex biopsies in reproductive-age and postmenopausal women and in women with premature ovarian failure. The immunocytochemistry and genetic analyses revealed that these small cells—putative stem cells—expressed some primordial germ cell and pluripotency-related markers and might be related to the in vitro development of oocyte-like cells expressing some oocyte-specific transcription factors in the presence of donated follicular fluid with substances important for oocyte growth and development. The stemness of these cells needs to be further researched. PMID:23509763

  8. Silencing expression of UO-44 (CUZD1) using small interfering RNA sensitizes human ovarian cancer cells to cisplatin in vitro.

    PubMed

    Leong, C T C; Ong, C K; Tay, S K; Huynh, H

    2007-02-08

    Ovarian cancer is currently the second leading cause of gynecological malignancy and cisplatin or cisplatin-based regimens have been the standard of care for the treatment of advance epithelial ovarian cancers. However, the efficacy of cisplatin treatment is often limited by the development of drug resistance either through the inhibition of apoptotic genes or activation of antiapoptotic genes. We have previously reported the overexpression of human UO-44 (HuUO-44) in ovarian cancers and the HuUO-44 antisera markedly inhibited NIH-OVCAR3 ovarian cancer cell attachment and proliferation (Oncogene 23: 5707-5718, 2004). In the present study, we observed through the cancer cell line profiling array that the expression of HuUO-44 was suppressed in the ovarian cancer cell line (SKOV-3) after treatment with several chemotherapeutic drugs. Similarly, this suppression in HuUO-44 expression was also correlated to the cisplatin sensitivity in two other ovarian cancer cell lines NIH-OVCAR3 and OV-90 in a dose-dependent manner. To elucidate the function of HuUO-44 in cisplatin chemoresistance in ovarian cancer cell, small interfering RNAs (siRNAs) were employed to mediate HuUO-44 silencing in ovarian cancer cell line, NIH-OVCAR3. HuUO-44 RNA interference (RNAi) resulted in the inhibition of cell growth and proliferation. Importantly, HuUO-44 RNAi significantly increased sensitivity of NIH-OVCAR3 to cytotoxic stress induced by cisplatin (P<0.01). Strikingly, we have also demonstrated that overexpression of HuUO-44 significantly conferred cisplatin resistance in NIH-OVCAR3 cells (P<0.05). Taken together, UO-44 is involved in conferring cisplatin resistance; the described HuUO-44-specific siRNA oligonucleotides that can potently silence HuUO-44 gene expression may prove to be valuable pretreatment targets for antitumor therapy or other pathological conditions that involves aberrant HuUO-44 expression.

  9. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays.

    PubMed

    Raghavan, Shreya; Ward, Maria R; Rowley, Katelyn R; Wold, Rachel M; Takayama, Shuichi; Buckanovich, Ronald J; Mehta, Geeta

    2015-07-01

    Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant 3D in vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Spheroids had uniform geometry, with projected areas (42.60×10(3)μm-475.22×10(3)μm(2) for A2780 spheroids and 37.24×10(3)μm(2)-281.01×10(3)μm(2) for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell-cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70-80% viability) to cisplatin chemotherapy compared to 2D cultures (30-50% viability). Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Formation of stable small cell number three-dimensional ovarian cancer spheroids using hanging drop arrays for preclinical drug sensitivity assays

    PubMed Central

    Raghavan, Shreya; Ward, Maria R.; Rowley, Katelyn R.; Wold, Rachel M.; Takayama, Shuichi; Buckanovich, Ronald J.; Mehta, Geeta

    2015-01-01

    Background Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant3Din vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. Methods We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Results Spheroids had uniform geometry, with projected areas (42.60 × 103 μm–475.22 × 103 μm2 for A2780 spheroids and 37.24 × 103 μm2–281.01 × 103 μm2 for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell–cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70–80% viability) to cisplatin chemotherapy compared to 2D cultures (30–50% viability). Conclusions Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. PMID:25913133

  11. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  12. Ovarian cancer stem cells.

    PubMed

    Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J

    2012-01-01

    the primary ovarian cancer cells B-57.In summary our investigations indicate that even in multi-passaged cancer cell lines hierarchic government of growth and differentiation is conserved and that the key cancer stem cell population may be composed of small overlapping cell fractions defined by various arbitrary markers.

  13. ETV5 transcription factor is overexpressed in ovarian cancer and regulates cell adhesion in ovarian cancer cells.

    PubMed

    Llauradó, Marta; Abal, Miguel; Castellví, Josep; Cabrera, Sílvia; Gil-Moreno, Antonio; Pérez-Benavente, Asumpció; Colás, Eva; Doll, Andreas; Dolcet, Xavier; Matias-Guiu, Xavier; Vazquez-Levin, Mónica; Reventós, Jaume; Ruiz, Anna

    2012-04-01

    Epithelial ovarian cancer is the most lethal gynecological malignancy and the fifth leading cause of cancer deaths in women in the Western world. ETS transcription factors are known to act as positive or negative regulators of the expression of genes that are involved in various biological processes, including those that control cellular proliferation, differentiation, apoptosis, tissue remodeling, angiogenesis and transformation. ETV5 belongs to the PEA3 subfamily. PEA3 subfamily members are able to activate the transcription of proteases, matrix metalloproteinases and tissue inhibitor of metalloproteases, which is central to both tumor invasion and angiogenesis. Here, we examined the role of the ETV5 transcription factor in epithelial ovarian cancer and we found ETV5 was upregulated in ovarian tumor samples compared to ovarian tissue controls. The in vitro inhibition of ETV5 decreased cell proliferation in serum-deprived conditions, induced EMT and cell migration and decreased cell adhesion to extracellular matrix components. ETV5 inhibition also decreased cell-cell adhesion and induced apoptosis in anchorage-independent conditions. Accordingly, upregulation of ETV5 induced the expression of cell adhesion molecules and enhanced cell survival in a spheroid model. Our findings suggest that the overexpression of ETV5 detected in ovarian cancer cells may contribute to ovarian tumor progression through the ability of ETV5 to enhance proliferation of ovarian cancer cells. In addition, upregulation of ETV5 would play a role in ovarian cancer cell dissemination and metastasis into the peritoneal cavity by protecting ovarian cancer cells from apoptosis and by increasing the adhesion of ovarian cancer cells to the peritoneal wall through the regulation of cell adhesion molecules. Copyright © 2011 UICC.

  14. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    PubMed

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  15. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  16. IQGAP1 Is Involved in Enhanced Aggressive Behavior of Epithelial Ovarian Cancer Stem Cell-Like Cells During Differentiation.

    PubMed

    Huang, Lu; Xu, Shanshan; Hu, Dongxiao; Lu, Weiguo; Xie, Xing; Cheng, Xiaodong

    2015-05-01

    Wide metastasis is one of characteristics of ovarian cancer. Cancer stem cells, as a source in cancer invasion and metastasis, possess powerful potential of differentiation. Scaffolding IQ domain GTPase-activating protein 1 (IQGAP1) plays a key role in the invasion and metastasis of cancer cells, but IQGAP1's role in cancer stem cells including ovarian cancer was unclear. Spheroid culture with serum-free medium was used for enriching ovarian cancer stem cell-like cells (CSC-LCs) from 3AO cell line, and a medium with 10% fetal bovine serum was used to induce the differentiation of CSC-LCs. Immunofluorescence was for detecting the stem markers OCT4 and SOX2. The quantitative real-time-polymerase chain reaction and Western blotting were performed to determine the messenger RNA and protein expression of IQGAP1, respectively. The capacity of cell invasion was evaluated by transwell chamber assay. Ovarian CSC-LCs obtained through spheroid culture showed irregularly elongated appearance, CD24 negative, and OCT4 and SOX2 positive. IQGAP1 expression was decreased in ovarian CSC-LCs compared with parental 3AO cells, but increased de novo during the differentiation of CSC-LCs. Knockdown of IQGAP1 by specific small interfering RNA remarkably weakened invasion capacity of 2-day differentiated ovarian CSC-LCs. Increased IQGAP1 expression during the differentiation of CSC-LCs is involved in an aggressive cell behavior, which may contribute to metastasis of ovarian cancer.

  17. MALAT1 affects ovarian cancer cell behavior and patient survival

    PubMed Central

    Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong

    2018-01-01

    Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187

  18. Metastatic ovarian papillary cystadenocarcinoma to the small intestine serous surface: report of a case of high-grade histopathologic malignancy

    PubMed Central

    2014-01-01

    Ovarian cystadenocarcinoma is characterized by marked heterogeneity and may be composed of an admixture of histologic growth patterns, including acinar, papillary and solid. In the present study, a case of isolated small intestine metastasis of ovarian papillary cystadenocarcinoma was reported. A 7-year-old female mixed-breed dog presented with a mass in the left upper quadrant with progressive enlargement of the abdomen, periodic bloody discharge from the vulva and incontinence. The tumor was histologically characterized by the presence of cysts and proliferation of papillae, both lined by single- or multi-layered pleomorphic epithelial cells. Furthermore, the mass was composed by intense cellular and nuclear pleomorphism and numerous mitotic figures. These findings indicate a tumor of high-grade malignancy with infiterative tumor cells resembling the papillary ovarian tumor in the serosal surface of the small intestine along with an intact serosa. Immunohistochemically, tumor was positive for CK7 and negative immunoreactivity for CK20. The histopathologic features coupled with the CK7 immunoreactivity led to a diagnosis of high grade ovarian papillary cystadenocarcinoma. To the best of our knowledge, this is the first case of small intestine serousal surface metastasis from ovarian papillary cystadenocarcinoma. PMID:24636424

  19. Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells

    PubMed Central

    Kwon, Mi Jeong; Shin, Young Kee

    2013-01-01

    Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. PMID:23528891

  20. Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer.

    PubMed

    Peluso, John J

    2011-08-01

    Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, progesterone receptor membrane component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1's action from cell lines derived from healthy ovaries as well as ovarian tumors. Studies using PGRMC1siRNA demonstrated that P4's ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  2. Sonographic features of incidentally detected, small, nonpalpable ovarian dermoids.

    PubMed

    Serafini, G; Quadri, P G; Gandolfo, N G; Gandolfo, N; Martinoli, C; Derchi, L E

    1999-09-01

    We describe the transvaginal sonographic features of incidentally detected, small, nonpalpable ovarian dermoid cysts. A total of 38 small (less than 3 cm in diameter), nonpalpable, incidentally discovered ovarian dermoids in 35 women were retrospectively reviewed; 3 patients had small bilateral lesions, and 7 had a small ovarian dermoid detected during preoperative evaluation of a symptomatic, large, contralateral lesion. Transvaginal sonography permitted identification of all 38 dermoids, whereas abdominal sonography detected only 22 of the lesions. Three main structural patterns were observed with transvaginal sonography: (1) 20 of 38 lesions had a solid, hyperechoic appearance, either homogeneous (11) or heterogeneous (9); (2) a fluid-filled area with a hyperechoic focus in its wall was seen in 10 cases; and (3) a mixed pattern, with solid and liquid areas, was seen in 8 cases. Calcifications were appreciated in 7 lesions. Acoustic shadowing was noted in 30 cases, either as a shadow posterior to the hyperechoic portion of the mass or as an edge shadow lateral to the lesion. Doppler studies were obtained for 20 lesions but proved inconclusive: 4 mixed-pattern dermoids had a few internal signals with a low resistance pattern; in the remaining cases, there were signals at the periphery of the cysts, but it could not be determined whether these were from vessels within the lesions or from vessels in the surrounding ovarian parenchyma. Surgery confirmed benign cystic dermoids in all 38 cases. Sonographically, small ovarian dermoids have a variety of textural patterns quite similar to those encountered in large, symptomatic lesions. The increased resolution capabilities provided by transvaginal sonography allow incidental detection of previously unsuspected dermoids and permit identification of their nature. Copyright 1999 John Wiley & Sons, Inc.

  3. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth.

    PubMed

    Jiao, Yang; Ge, Chun-min; Meng, Qing-hui; Cao, Jian-ping; Tong, Jian; Fan, Sai-jun

    2007-07-01

    To investigate the anticancer activity of dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cytotoxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  4. Thalidomide distinctly affected TNF-α, IL-6 and MMP secretion by an ovarian cancer cell line (SKOV-3) and primary ovarian cancer cells.

    PubMed

    Piura, Benjamin; Medina, Liat; Rabinovich, Alex; Dyomin, Victor; Huleihel, Mahmoud

    2013-01-01

    Thalidomide inhibits TNF-α production in lipopolysaccharide-stimulated monocytes. The aim of this study was to evaluate the effect of thalidomide on TNF-α, IL-6 and MMP secretion in epithelial ovarian carcinoma cells. SKOV-3 cells and primary epithelial ovarian carcinoma cells were cultured in the presence of various concentrations of thalidomide. Cell proliferation was examined by MTT proliferation assay. TNF-α and IL-6 levels were determined in the supernatants of the cell cultures by ELISA, and MMP activity was examined by gelatin zymography. Thalidomide did not significantly affect the proliferation and growth of SKOV-3 cells. However, it decreased significantly the capacity of SKOV-3 cells and primary epithelial ovarian carcinoma cells to secrete TNF-α. Thalidomide also significantly decreased the capacity of SKOV-3 cells, but not primary epithelial ovarian carcinoma cells, to secrete MMP-9 and MMP-2. However, thalidomide did not affect IL-6 secretion in SKOV-3 cells or primary epithelial ovarian carcinoma cells. Our study suggests that thalidomide distinctly affected TNF-α, IL-6 and MMPs secretion by an ovarian carcinoma cell line (SKOV-3) and primary ovarian cancer cells. This might suggest a different susceptibility of these two types of cells to thalidomide, and/or that the mechanisms of secretion of the factors examined are differently regulated in these cells. Our results may deepen our understanding the mechanism/s of action of thalidomide in ovarian carcinoma cells. The results might have important implications in future therapeutic strategies that will incorporate thalidomide and other cytokine inhibitors in the treatment of epithelial ovarian carcinoma.

  5. Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis

    PubMed Central

    Schwede, Matthew; Spentzos, Dimitrios; Bentink, Stefan; Hofmann, Oliver; Haibe-Kains, Benjamin; Harrington, David; Quackenbush, John; Culhane, Aedín C.

    2013-01-01

    Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable

  6. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells.

    PubMed

    Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K

    2011-04-26

    Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be

  7. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells

    PubMed Central

    2011-01-01

    Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through

  8. [The value of immunohistochemistry using SMARCA4/BRG1 in the diagnosis of small cell ovarian carcinoma hypercalcemic type. A report of two cases].

    PubMed

    Ruiz-García, Gema; Torroba-Carón, M Amparo; Ferri-Ñíguez, Belén; Lencina-Guardiola, Miriam; García-Molina, Francisco; Martínez-Barba, Enrique

    Small cell carcinoma of ovary-hypercalcemic type is an undifferentiated carcinoma. We describe two cases in women aged 32 and 29. Both presented with large masses and complete surgical extirpation was impossible. Histologically, the images were similar, with diffuse cell proliferation, accompanied by the presence of follicle-like spaces. In both cases it was necessary to make a differential diagnosis with entities such as adult or juvenile granulosa cell tumour, small cell carcinoma of pulmonary type, dysgerminoma and even peripheral neuroectodermal tumour. The absence of SMARCA4/BRG1 immunostaining proved very useful in the diagnosis of hypercalcemic small cell ovarian carcinoma. Copyright © 2017 Sociedad Española de Anatomía Patológica. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Treatment Option Overview (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  10. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells

    PubMed Central

    Bauckman, K A; Haller, E; Flores, I; Nanjundan, M

    2013-01-01

    Ovarian cancer is a leading cause of cancer death in women in the United States. While the majority of ovarian cancers are serous, some rarer subtypes (i.e. clear cell) are often associated with endometriosis, a benign gynecological disease. Iron is rich in the cyst fluid of endometriosis-associated ovarian cancers and induces persistent oxidative stress. The role of iron, an essential nutrient involved in multiple cellular functions, in normal ovarian cell survival and ovarian cancer remains unclear. Iron, presented as ferric ammonium citrate (FAC), dramatically inhibits cell survival in ovarian cancer cell types associated with Ras mutations, while it is without effect in immortalized normal ovarian surface epithelial (T80) and endometriotic epithelial cells (lacking Ras mutations). Interestingly, FAC induced changes in cytoplasmic vacuolation concurrently with increases in LC3-II levels (an autophagy marker); these changes occurred in an ATG5/ATG7-dependent, beclin-1/hVps34-independent, and Ras-independent manner. Knockdown of autophagy mediators in HEY ovarian cancer cells reversed FAC-induced LC3-II levels, but there was little effect on reversing the cell death response. Intriguingly, transmission electron microscopy of FAC-treated T80 cells demonstrated abundant lysosomes (confirmed using Lysotracker) rich in iron particles, which occurred in a Ras-independent manner. Although the mitogen-activated protein kinase (MAPK) inhibitor, U0126, reversed FAC-induced LC3-II/autophagic punctae and lysosomes in a Ras-independent manner, it was remarkable that U0126 reversed cell death in malignant ovarian cells associated with Ras mutations. Moreover, FAC increased heme oxygenase-1 expression in H-Ras-overexpressing T80 cells, which was associated with increased cell death when overexpressed in T80 cells. Disruption of intracellular iron levels, via chelation of intracellular iron (deferoxamine), was also detrimental to malignant ovarian cell survival; thus

  11. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, Wenwei; Mezencev, Roman; Kim, Byungkyu; Wang, Lijuan; McDonald, John; Sulchek, Todd; Sulchek Team; McDonald Team

    2013-03-01

    The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed study of highly invasive ovarian cancer cells (HEY A8) and their less invasive parental cells (HEY), demonstrates that deformability can serve as an accurate biomarker of metastatic potential. Comparative gene expression profiling indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling, microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness not only distinguishes ovarian cancer cells from non-malignant cells, but may also be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.

  12. Conditionally immortal ovarian cell lines for investigating the influence of ovarian stroma on the estrogen sensitivity and tumorigenicity of ovarian surface epithelial cells.

    PubMed

    Jiang, Feng; Saunders, Beatriz O; Haller, Edward; Livingston, Sandra; Nicosia, Santo V; Bai, Wenlong

    2003-01-01

    The tendency of the ovarian surface epithelium (OSE) to undergo metaplastic and morphogenetic changes during the life cycle, at variance with the adjacent peritoneal mesothelial cells, suggests that its biology may be regulated by underlying ovarian stromal cues. However, little is known about the role that the ovarian stroma plays in the pathobiology of the OSE, largely because of the lack of a suitable in vitro model. Here, we describe the establishment and characterization of conditionally immortalized ovarian stromal and surface epithelial cell lines from H-2K(b)-tsA58 transgenic mice that carry the thermolabile mutant of SV-40 large T antigen under the control of an interferon-gamma (IFN-gamma)-inducible promoter. These cells express functional T antigens, grow continuously under permissive conditions at 33 degrees C in the presence of IFN-gamma, and stop dividing when the activity and expression of the tumor antigen is suppressed by restrictive conditions without IFN-gamma at 39 degrees C. Morphological, immunohistochemical, and ultrastructural analyses show that conditionally immortal OSE cells form cobblestone-like monolayers, express cytokeratin and vimentin, contain several microvilli, and develop tight junctions, whereas stromal cells are spindle-like, express vimentin but not cytokeratin, and contain rare microvilli, thus exhibiting epithelial and stromal phenotypes, respectively. At variance with the reported behavior of rat epithelial cells, conditionally immortal mouse epithelial cells are not spontaneously transformed after continuous culture in vitro. More importantly, conditioned media from stromal cells cultured under permissive conditions increase the specific activity of the endogenous estrogen receptor in BG-1 human ovarian epithelial cancer cells and promote these cells' anchorage-independent growth, suggesting the paracrine influence of a stromal factor. In addition, stromal cells cultured under restrictive conditions retain this growth

  13. Ovarian tumor-initiating cells display a flexible metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells,more » TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.« less

  14. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro

    PubMed Central

    2014-01-01

    Background Recent studies suggest that ovarian germ line stem cells replenish oocyte-pool in adult stage, and challenge the central doctrine of ‘fixed germ cell pool’ in mammalian reproductive biology. Two distinct populations of spherical stem cells with high nucleo-cytoplasmic ratio have been recently identified in the adult mammalian ovary surface epithelium (OSE) including nuclear OCT-4A positive very small embryonic-like (VSELs) and cytoplasmic OCT-4 expressing ovarian germ stem cells (OGSCs). Three weeks culture of scraped OSE cells results in spontaneous differentiation of the stem cells into oocyte-like, parthenote-like, embryoid body-like structures and also embryonic stem cell-like colonies whereas epithelial cells attach and transform into a bed of mesenchymal cells. Present study was undertaken, to further characterize ovarian stem cells and to comprehend better the process of spontaneous differentiation of ovarian stem cells into oocyte-like structures in vitro. Methods Ovarian stem cells were enriched by immunomagnetic sorting using SSEA-4 as a cell surface marker and were further characterized. Stem cells and clusters of OGSCs (reminiscent of germ cell nests in fetal ovaries), were characterized by immuno-localization for stem and germ cell specific markers and spontaneous differentiation in OSE cultures was studied by live cell imaging. Results Differential expression of markers specific for pluripotent VSELs (nuclear OCT-4A, SSEA-4, CD133), OGSCs (cytoplasmic OCT-4) primordial germ cells (FRAGILIS, STELLA, VASA) and germ cells (DAZL, GDF-9, SCP-3) were studied. Within one week of culture, stem cells became bigger in size, developed abundant cytoplasm, differentiated into germ cells, revealed presence of Balbiani body-like structure (mitochondrial cloud) and exhibited characteristic cytoplasmic streaming. Conclusions Presence of germ cell nests, Balbiani body-like structures and cytoplasmic streaming extensively described during fetal ovary

  15. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    PubMed Central

    Rhode, Jennifer; Fogoros, Sarah; Zick, Suzanna; Wahl, Heather; Griffith, Kent A; Huang, Jennifer; Liu, J Rebecca

    2007-01-01

    Background Ginger (Zingiber officinale Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer. PMID:18096028

  16. MV-NIS Infected Mesenchymal Stem Cells in Treating Patients With Recurrent Ovarian Cancer

    ClinicalTrials.gov

    2018-01-31

    Malignant Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Ovarian Carcinoma

  17. Treatment Options By Stage (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  18. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer.

    PubMed

    Bhartiya, Deepa; Singh, Jarnail

    2015-01-01

    Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers. © 2015 Society for Reproduction and Fertility.

  19. Molecular pathogenesis of ovarian clear cell carcinoma.

    PubMed

    Gounaris, Ioannis; Brenton, James D

    2015-01-01

    Ovarian clear cell carcinoma is a distinct subtype of epithelial ovarian cancer, characterized by an association with endometriosis, glycogen accumulation and resistance to chemotherapy. Key driver events, including ARID1A mutations and HNF1B overexpression, have been recently identified and their functional characterization is ongoing. Additionally, the role of glycogen in promoting the malignant phenotype is coming under scrutiny. Appreciation of the notion that ovarian clear cell carcinoma is essentially an ectopic uterine cancer will hopefully lead to improved animal models of the disease, in turn paving the way for effective treatments.

  20. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    PubMed

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  1. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy.

    PubMed

    Sharrow, Allison C; Perkins, Brandy; Collector, Michael I; Yu, Wayne; Simons, Brian W; Jones, Richard J

    2016-08-01

    The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. DNA methylation profiles of ovarian epithelial carcinoma tumors and cell lines.

    PubMed

    Houshdaran, Sahar; Hawley, Sarah; Palmer, Chana; Campan, Mihaela; Olsen, Mari N; Ventura, Aviva P; Knudsen, Beatrice S; Drescher, Charles W; Urban, Nicole D; Brown, Patrick O; Laird, Peter W

    2010-02-22

    Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies. We obtained DNA methylation profiles of 1,505 CpG sites (808 genes) in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes) that exhibited 'subtype-specific' DNA methylation patterns (FDR<1%) among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene. The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data provide a useful resource for future studies, including those of potential

  3. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells.

    PubMed

    Wang, Jiandong; Ma, Xiaoli; Jones, Hannah M; Chan, Leo Li-Ying; Song, Fang; Zhang, Weiyuan; Bae-Jump, Victoria L; Zhou, Chunxiao

    2014-08-21

    Epithelial ovarian carcinoma is the most lethal gynecological cancer due to its silent onset and recurrence with resistance to chemotherapy. Overexpression of oncogene c-Myc is one of the most frequently encountered events present in ovarian carcinoma. Disrupting the function of c-Myc and its downstream target genes is a promising strategy for cancer therapy. Our objective was to evaluate the potential effects of small-molecule c-Myc inhibitor, 10058-F4, on ovarian carcinoma cells and the underlying mechanisms by which 10058-F4 exerts its actions. Using MTT assay, colony formation, flow cytometry and Annexin V FITC assays, we found that 10058-F4 significantly inhibited cell proliferation of both SKOV3 and Hey ovarian cancer cells in a dose dependent manner through induction of apoptosis and cell cycle G1 arrest. Treatment with 10058-F4 reduced cellular ATP production and ROS levels in SKOV3 and Hey cells. Consistently, primary cultures of ovarian cancer treated with 10058-F4 showed induction of caspase-3 activity and inhibition of cell proliferation in 15 of 18 cases. The response to 10058-F4 was independent the level of c-Myc protein over-expression in primary cultures of ovarian carcinoma. These novel findings suggest that the growth of ovarian cancer cells is dependent upon c-MYC activity and that targeting c-Myc-Max heterodimerization could be a potential therapeutic strategy for ovarian cancer.

  4. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer.

    PubMed

    Bradaric, Michael J; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L; Yu, Yi; Abramowicz, Jacques S; Bahr, Janice M; Luborsky, Judith L

    2013-01-01

    Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.

  5. Immune Cells in the Normal Ovary and Spontaneous Ovarian Tumors in the Laying Hen (Gallus domesticus) Model of Human Ovarian Cancer

    PubMed Central

    Bradaric, Michael J.; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L.; Yu, Yi; Abramowicz, Jacques S.; Bahr, Janice M.; Luborsky, Judith L.

    2013-01-01

    Background Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Methods Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. Results T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. Conclusions The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials. PMID:24040191

  6. Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells.

    PubMed

    Lv, Lei; Zhang, Tianwei; Yi, Qiyi; Huang, Yun; Wang, Zheng; Hou, Heli; Zhang, Huan; Zheng, Wei; Hao, Qiaomei; Guo, Zongyou; Cooke, Howard J; Shi, Qinghua

    2012-08-01

    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells.

  7. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy.

    PubMed

    Chen, Tao; Li, Mian; Zhang, Ruiwen; Wang, Hui

    2009-07-01

    The present study was designed to determine the effects of artemisinin (ARS) and its derivatives on human ovarian cancer cells, to evaluate their potential as novel chemotherapeutic agents used alone or in combination with a conventional cancer chemotherapeutic agent, and to investigate their underlying mechanisms of action. Human ovarian cancer cells (A2780 and OVCAR-3), and immortalized non-tumourigenic human ovarian surface epithelial cells (IOSE144), were exposed to four ARS compounds for cytotoxicity testing. The in vitro and in vivo antitumour effects and possible underlying mechanisms of action of dihydroartemisinin (DHA), the most effective compound, were further determined in ovarian cancer cells. ARS compounds exerted potent cytotoxicity to human ovarian carcinoma cells, with minimal effects on non-tumourigenic ovarian surface epithelial (OSE) cells. DHA inhibited ovarian cancer cell growth when administered alone or in combination with carboplatin, presumably through the death receptor- and, mitochondrion-mediated caspase-dependent apoptotic pathway. These effects were also observed in in vivo ovarian A2780 and OVCAR-3 xenograft tumour models. In conclusion, ARS derivatives, particularly DHA, exhibit significant anticancer activity against ovarian cancer cells in vitro and in vivo, with minimal toxicity to non-tumourigenic human OSE cells, indicating that they may be promising therapeutic agents for ovarian cancer, either used alone or in combination with conventional chemotherapy.

  8. Dihydroartemisinin induces apoptosis and sensitizes human ovarian cancer cells to carboplatin therapy

    PubMed Central

    Chen, Tao; Li, Mian; Zhang, Ruiwen; Wang, Hui

    2009-01-01

    The present study was designed to determine the effects of artemisinin (ARS) and its derivatives on human ovarian cancer cells, to evaluate their potential as novel chemotherapeutic agents used alone or in combination with a conventional cancer chemotherapeutic agent, and to investigate their underlying mechanisms of action. Human ovarian cancer cells (A2780 and OVCAR-3), and immortalized non-tumourigenic human ovarian surface epithelial cells (IOSE144), were exposed to four ARS compounds for cytotoxicity testing. The in vitro and in vivo antitumour effects and possible underlying mechanisms of action of dihydroartemisinin (DHA), the most effective compound, were further determined in ovarian cancer cells. ARS compounds exerted potent cytotoxicity to human ovarian carcinoma cells, with minimal effects on non-tumourigenic ovarian surface epithelial (OSE) cells. DHA inhibited ovarian cancer cell growth when administered alone or in combination with carboplatin, presumably through the death receptor- and, mitochondrion-mediated caspase-dependent apoptotic pathway. These effects were also observed in in vivo ovarian A2780 and OVCAR-3 xenograft tumour models. In conclusion, ARS derivatives, particularly DHA, exhibit significant anticancer activity against ovarian cancer cells in vitro and in vivo, with minimal toxicity to non-tumourigenic human OSE cells, indicating that they may be promising therapeutic agents for ovarian cancer, either used alone or in combination with conventional chemotherapy. PMID:18466355

  9. Distinct metabolic responses of an ovarian cancer stem cell line.

    PubMed

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  10. Cells of origin of ovarian cancer: ovarian surface epithelium or fallopian tube?

    PubMed

    Klotz, Daniel Martin; Wimberger, Pauline

    2017-12-01

    Ovarian cancer is the fifth most common cancer in women and one of the leading causes of death from gynecological malignancies. Despite of its clinical importance, ovarian tumorigenesis is poorly understood and prognosis remains poor. This is particularly true for the most common type of ovarian cancer, high-grade serous ovarian cancer. Two models are considered, whether it arises from the ovarian surface epithelium or from the fallopian tube. The first model is based on (1) the pro-inflammatory environment caused by ovulation events, (2) the expression pattern of ovarian inclusion cysts, and (3) biomarkers that are shared by the ovarian surface epithelium and malignant growth. The model suggesting a non-ovarian origin is based on (1) tubal precursor lesions, (2) genetic evidence of BRCA1/2 mutation carriers, and (3) recent animal studies. Neither model has clearly demonstrated superiority over the other. Therefore, one can speculate that high-grade serous ovarian cancer may arise from two different sites that undergo similar changes. Both tissues are derived from the same embryologic origin, which may explain how progenitor cells from different sites can respond similar to stimuli within the ovaries. However, distinct molecular drivers, such as BRCA deficiency, may still preferentially arise from one site of origin as precancerous mutations are frequently seen in the fallopian tube. Confirming the origin of ovarian cancer has important clinical implications when deciding on cancer risk-reducing prophylactic surgery. It will be important to identify key biomarker to uncover the sequence of ovarian tumorigenesis.

  11. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs.

    PubMed

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M; Modjtahedi, Helmout

    2016-11-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer stem cell (CSC) markers (CD24, CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family members and response to treatment with these agents. The sensitivity of 10 ovarian tumour cell lines to the treatment with various forms of HER TKIs (gefitinib, erlotinib, lapatinib, sapitinib, afatinib, canertinib, neratinib), as well as other TKIs (dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic agents (paclitaxel, cisplatin and doxorubicin), as single agents or in combination, was determined by SRB assay. The effect on these agents on the cell cycle distribution, and downstream signaling molecules and tumour migration were determined using flow cytometry, western blotting, and the IncuCyte Clear View cell migration assay respectively. Of the HER inhibitors, the irreversible pan-TKIs (canertinib, neratinib and afatinib) were the most effective TKIs for inhibiting the growth of all ovarian cancer cells, and for blocking the phosphorylation of EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, while the majority of cancer cells were highly sensitive to treatment with dasatinib, they were relatively resistant to treatment with imatinib (i.e., IC50 >10 µM). Of the cytotoxic agents, paclitaxel was the most effective for inhibiting the growth of OCCLs, and of various combinations of these drugs, only treatment with a combination of NVP-AEW541 and paclitaxel produced a synergistic or additive anti-proliferative effect in all three cell lines examined (i.e., SKOV3, Caov3, ES2

  12. Ovarian-Cell-Like Cells from Skin Stem Cells Restored Estradiol Production and Estrus Cycling in Ovariectomized Mice

    PubMed Central

    Park, Bong-Wook; Pan, Bo; Toms, Derek; Huynh, Evanna; Byun, June-Ho; Lee, Yeon-Mi; Shen, Wei

    2014-01-01

    Reduction of estradiol production and high serum concentrations of follicular stimulating hormone (FSH) are endocrine disorders associated with premature ovarian failure. Here, we report that transplantation of ovarian-like cells differentiated from stem cells restored endogenous serum estradiol levels. Stem cells were isolated from postnatal mouse skin and differentiated into ovarian-cell-like cells that are consistent with female germ, and ovarian follicle somatic cells. The ovarian-cell-like cells were transplanted into ovariectomized mice (Cell Trans), whereas control mice were subjected to bilateral ovariectomies without cell transplantation (OVX). Using vaginal cytology analysis, it was revealed that in 13 out of 19 Cell Trans mice, estrus cycles were restored around 8 weeks after cell transplantation and were maintained until 16 weeks post-transplantation, whereas in the OVX group, all mice were arrested at metestrus/diestrus of the estrus cycle. The uterine weight in the Cell Trans group was similar to sham operation mice (Sham OP), while severe uterine atrophy and a decreased uterine weight were observed in the OVX group. Histologically, ectopic follicle-like structures and blood vessels were found within and around the transplants. At 12–14 weeks after cell transplantation, mean serum estradiol level in Cell Trans mice (178.0±35 pg/mL) was comparable to that of the Sham OP group (188.9±29 pg/mL), whereas it was lower in the OVX group (59.0±4 pg/mL). Serum FSH concentration increased in the OVX group (1.62±0.32 ng/mL) compared with the Sham OP group (0.39±0.34 ng/mL). Cell Trans mice had a similar FSH level (0.94±0.23 ng/mL; P<0.05) to Sham OP mice. Our results suggest that ovarian somatic cells differentiated from stem cells are functional in vivo. In addition to providing insights into the function of ovarian somatic cells derived from stem cells, our study may offer potential therapeutic means for patients with hypo-estradiol levels

  13. Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis.

    PubMed

    Zhang, Wei; Peng, Peng; Kuang, Yun; Yang, Jiaxin; Cao, Dongyan; You, Yan; Shen, Keng

    2016-03-01

    Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.

  14. Gene expression profiling of bovine ovarian follicular and luteal cells provides insight into cellular identities and functions

    USDA-ARS?s Scientific Manuscript database

    After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and steroidogenic enzymes, little is known about the differences in the gene expression profiles of these fou...

  15. Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation

    PubMed Central

    Castells, M; Milhas, D; Gandy, C; Thibault, B; Rafii, A; Delord, J-P; Couderc, B

    2013-01-01

    Epithelial ovarian carcinoma is characterized by high frequency of recurrence (70% of patients) and carboplatin resistance acquisition. Carcinoma-associated mesenchymal stem cells (CA-MSC) have been shown to induce ovarian cancer chemoresistance through trogocytosis. Here we examined CA-MSC properties to protect ovarian cancer cells from carboplatin-induced apoptosis. Apoptosis was determined by Propidium Iodide and Annexin-V-FITC labelling and poly-ADP-ribose polymerase cleavage analysis. We showed a significant increase of inhibitory concentration 50 and a 30% decrease of carboplatin-induced apoptosis in ovarian cancer cells incubated in the presence of CA-MSC-conditioned medium (CM). A molecular analysis of apoptosis signalling pathway in response to carboplatin revealed that the presence of CA-MSC CM induced a 30% decrease of effector caspases-3 and -7 activation and proteolysis activity. CA-MSC secretions promoted Akt and X-linked inhibitor of apoptosis protein (XIAP; caspase inhibitor from inhibitor of apoptosis protein (IAP) family) phosphorylation. XIAP depletion by siRNA strategy permitted to restore apoptosis in ovarian cancer cells stimulated by CA-MSC CM. The factors secreted by CA-MSC are able to confer chemoresistance to carboplatin in ovarian cancer cells through the inhibition of effector caspases activation and apoptosis blockade. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and the phosphorylation of its downstream target XIAP underlined the implication of this signalling pathway in ovarian cancer chemoresistance. This study reveals the potentialities of targeting XIAP in ovarian cancer therapy. PMID:24176845

  16. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells.

    PubMed

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-10-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. © 2016 The Author(s).

  17. APELA promotes tumour growth and cell migration in ovarian cancer in a p53-dependent manner.

    PubMed

    Yi, Yuyin; Tsai, Shu-Huei; Cheng, Jung-Chien; Wang, Evan Y; Anglesio, Michael S; Cochrane, Dawn R; Fuller, Megan; Gibb, Ewan A; Wei, Wei; Huntsman, David G; Karsan, Aly; Hoodless, Pamela A

    2017-12-01

    APELA is a small, secreted peptide that can function as a ligand for the G-protein coupled receptor, Apelin Receptor (APLNR, APJ). APELA plays an essential role in endoderm differentiation and cardiac development during embryogenesis. We investigated whether APELA exerts any functions in cancer progression. The Cancer Genome Atlas (TCGA) RNA sequencing datasets, microarray from an OCCC mouse model, and RNA isolated from fresh frozen and FFPE patient tissue were used to assess APELA expression. APELA knockout ovarian clear cell carcinoma (OCCC) cell lines were generated using CRISPR/Cas9. APELA was expressed in various ovarian cancer histotypes and was especially elevated in OCCC. Disruption of APELA expression in OCCC cell lines suppressed cell growth and migration, and altered cell-cycle progression. Moreover, addition of human recombinant APELA peptide to the OCCC cell line OVISE promoted cell growth and migration. Interestingly, OVISE cells do not express APLNR, suggesting that APELA can function through an APLNR-independent pathway. Furthermore, APELA affected cell growth and cell cycle progression in a p53-dependent manner. In addition, APELA knockdown induced p53 expression in cancer cell lines. Our findings uncover a potential oncogenic role for APELA in promoting ovarian tumour progression and provide a possible therapeutic strategy in ovarian cancer by targeting APELA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Right-sided lateralisation of ovarian cancer and right bias asymmetry for involved pelvic lymph nodes by ovarian cancer cells.

    PubMed

    Dane, Senol; Borekci, Bunyamin; Kadanali, Sedat

    2008-09-01

    The aim of the present study was to investigate if there is a possible lateralisation for ovarian cancers, to re-examine left-right asymmetry in pelvic lymph nodes distribution in patients with ovarian cancer, and to investigate if pelvic lymph node involvement by metastatic invasion of ovarian cancer cells is ipsilateral or contralateral. There was right-sided lateralisation for ovarian cancer. The numbers of external iliac and hypogastric+obturator lymph nodes were higher on the right side in patients with ovarian cancer on the right side; but they were about equal for right and left sides in patients with ovarian cancer in their left side. The numbers of external iliac and hypogastric+obturator lymph nodes involved by metastatic cancer cells were higher on the right side in patients with ovarian cancer on the both right and left sides. This case may result from the stronger cell-mediated immune activity in the left sides of humans.

  19. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    PubMed

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American

  20. TOFA suppresses ovarian cancer cell growth in vitro and in vivo.

    PubMed

    Li, Shu; Qiu, Lihua; Wu, Buchu; Shen, Haoran; Zhu, Jing; Zhou, Liang; Gu, Liying; Di, Wen

    2013-08-01

    A characteristic feature of cancer cells is the activation of de novo fatty acid synthesis. Acetyl‑CoA carboxylase (ACC) is a key enzyme in fatty acid synthesis, accelerating the reaction that carboxylates cytosolic acetyl‑CoA to form malonyl‑CoA. ACC is highly expressed in several types of human cancer and is important in breast and prostate cancer cell growth. The aim of the present study was to investigate the effects of 5‑tetradecyloxy‑2‑furoic acid (TOFA), an allosteric inhibitor of ACC, on the proliferation and cell cycle progression of the ovarian cancer cell lines COC1 and COC1/DDP. TOFA was found to be cytotoxic to COC1 and COC1/DDP cells with a 50% inhibitory concentration (IC50) of ~26.1 and 11.6 µg/ml, respectively. TOFA inhibited the proliferation of the cancer cells examined in a time‑ and dose‑dependent manner, arrested the cells in the G0/G1 cell cycle phase and induced apoptosis. The expression of the cell cycle regulating proteins cyclin D1 and cyclin-dependent kinase (CDK) 4, as well as the expression of the apoptosis‑related proteins caspase‑3 and Bcl‑2, were detected by western blot analysis. Cyclin D1, CDK4 and Bcl‑2 protein expression was inhibited by TOFA, while caspase‑3 was cleaved and activated. To the best of our knowledge, the present study demonstrated for the first time that TOFA inhibits COC1/DDP cell growth in ovarian tumor mouse xenografts. By inhibiting ACC, TOFA may be a promising small molecule agent for ovarian cancer therapy.

  1. Reliable in vitro studies require appropriate ovarian cancer cell lines

    PubMed Central

    2014-01-01

    Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

  2. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Yijing; Tang, Huijuan; Guo, Yan

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOCmore » cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.« less

  3. Pycnogenol reduces talc-induced neoplastic transformation in human ovarian cell cultures.

    PubMed

    Buz'Zard, Amber R; Lau, Benjamin H S

    2007-06-01

    Talc and poor diet have been suggested to increase the risk of developing ovarian cancer; which can be reduced by a diet rich in fruit and vegetables. Talc is ubiquitous despite concern about its safety, role as a possible carcinogen and known ability to cause irritation and inflammation. It was recently shown that Pycnogenol (Pyc; a proprietary mixture of water-soluble bioflavonoids extracted from French maritime pine bark) was selectively toxic to established malignant ovarian germ cells. This study investigated talc-induced carcinogenesis and Pyc-induced chemoprevention. Normal human epithelial and granulosa ovarian cell lines and polymorphonuclear neutrophils (PMN) were treated with talc, or pretreated with Pyc then talc. Cell viability, reactive oxygen species (ROS) generation and neoplastic transformation by soft agar assay were measured. Talc increased proliferation, induced neoplastic transformation and increased ROS generation time-dependently in the ovarian cells and dose-dependently in the PMN. Pretreatment with Pyc inhibited the talc-induced increase in proliferation, decreased the number of transformed colonies and decreased the ROS generation in the ovarian cells. The data suggest that talc may contribute to ovarian neoplastic transformation and Pyc reduced the talc-induced transformation. Taken together, Pyc may prove to be a potent chemopreventative agent against ovarian carcinogenesis. (c) 2007 John Wiley & Sons, Ltd.

  4. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells

    PubMed Central

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3’UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5. PMID:27186275

  5. miR-132 targeting E2F5 suppresses cell proliferation, invasion, migration in ovarian cancer cells.

    PubMed

    Tian, Hang; Hou, Lei; Xiong, Yu-Mei; Huang, Jun-Xiang; Zhang, Wen-Hua; Pan, Yong-Ying; Song, Xing-Rong

    2016-01-01

    Accumulating evidence showed that microRNA-132 (miR-132) are involved in development and progression of several types of cancers, however, the function and underlying molecular mechanism of miR-132 in ovarian cancer remains unclear. In this study we investigated the biological roles and molecular mechanism of miR-132 in ovarian cancer. Here, we found that that the expression levels of miR-132 were dramatically decreased in ovarian cancer cell lines and clinical ovarian cancer tissue samples. Then, we found that introduction of miR-132 significantly suppressed the proliferation, colony formation, migration and invasion of ovarian cancer cells. Mechanism investigation revealed that miR-132 inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3'UTR. Moreover, the expression level of E2F5 was significantly increased in ovarian cancer tissues than in the adjacent normal tissues, and its expression was inversely correlated with miR-132 expression in clinical ovarian cancer tissues. Additionally, silencing E2F5 was able to inhibit the proliferation, colony formation, migration and invasion of ovarian cancer cells, parallel to the effect of miR-132 overexpression on the ovarian cancer cells. Meanwhile, overexpression of E2F5 reversed the inhibition effect mediated by miR-132 overexpression. These results indicate that miR-132 suppresses the cell proliferation, invasion, migration in ovarian cancer cells by targeting E2F5.

  6. Anti-tumor effects of osthole on ovarian cancer cells in vitro.

    PubMed

    Jiang, Guoqiang; Liu, Jia; Ren, Baoyin; Tang, Yawei; Owusu, Lawrence; Li, Man; Zhang, Jing; Liu, Likun; Li, Weiling

    2016-12-04

    Cnidium monnieri (L.) Cusson is a commonly used traditional Chinese medicine to treat gynecological disease in some countries. Osthole, an active O-methylated coumadin isolated from Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-seizure and anti-inflammatory effects. However, the anti-tumor mechanism of osthole is not well known. Here, we show that osthole inhibited the proliferation and migration of two widely used ovarian cancer cell lines, A2780 and OV2008 cells, in a dose-dependent manner. The study investigated the molecular mechanisms underlying ovarian cancer cells proliferation, apoptosis, cell cycle arrest and migration triggered by osthole. Ovarian cancer cell lines A2780, OV2008 and normal ovarian cell line IOSE80 were used as experimental model. MTT assay was employed to evaluate cell viability. Flow cytometry assays were performed to confirm apoptosis and cell cycle. We employed wound healing and transwell assays to delineate invasive and migratory potential triggered by osthole. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with osthole without effect on normal ovarian cells. Flow cytometric analysis revealed that osthole suppressed cells proliferation by promoting G2/M arrest and inducing apoptosis. The underlying mechanisms involved were regulation of the relative apoptotic protein Bcl-2, Bax and Caspase 3/9. In addition, wound healing and transwell assays revealed that the migratory potential and activity of matrix metalloproteinase MMP-2 and MMP-9 were markedly inhibited when cells were exposed to osthole. Our findings suggested that osthole has the potential to be used in novel anti-cancer therapeutic formulations for ovarian cancer treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Functional Significance of VEGFR-2 on Ovarian Cancer Cells

    PubMed Central

    Spannuth, Whitney A.; Nick, Alpa M.; Jennings, Nicholas B.; Armaiz-Pena, Guillermo N.; Mangala, Lingegowda S.; Danes, Christopher G.; Lin, Yvonne G.; Merritt, William M.; Thaker, Premal H.; Kamat, Aparna A.; Han, Liz Y.; Tonra, James R.; Coleman, Robert L.; Ellis, Lee M.; Sood, Anil K.

    2009-01-01

    Vascular endothelial growth factor receptor (VEGFR) has recently been discovered on ovarian cancer cells, but its functional significance is unknown and is the focus of the current study. By protein analysis, A2780-par and HeyA8 ovarian cancer cell lines expressed VEGFR-1 and HeyA8 and SKOV3ip1 expressed VEGFR-2. By in situ hybridization (ISH), 85% of human ovarian cancer specimens showed moderate to high VEGFR-2 expression while only 15% showed moderate to high VEGFR-1 expression. By immunofluorescence, little or no VEGFR-2 was detected in normal ovarian surface epithelial cells, whereas expression was detected in 75% of invasive ovarian cancer specimens. To differentiate between the effects of tumor versus host expression of VEGFR, nude mice were injected with SKOV3ip1 cells and treated with either human VEGFR-2 specific antibody (1121B), murine VEGFR-2 specific antibody (DC101), or the combination. Treatment with 1121B reduced SKOV3ip1 cell migration by 68% (p < 0.01) and invasion by 72% (p < 0.01), but exposure to VEGFR-1 antibody had no effect. Treatment with 1121B effectively blocked VEGF-induced phosphorylation of p130Cas. In vivo, treatment with either DC101 or 1121B significantly reduced tumor growth alone and in combination in the SKOV3ip1 and A2774 models. Decreased tumor burden after treatment with DC101 or 1121B correlated with increased tumor cell apoptosis, decreased proliferative index, and decreased microvessel density. These effects were significantly greater in the combination group (p<0.001). We show functionally active VEGFR-2 is present on most ovarian cancer cells. The observed anti-tumor activity of VEGF-targeted therapies may be mediated by both anti-angiogenic and direct anti-tumor effects. PMID:19058181

  8. The effect of celecoxib on tumor growth in ovarian cancer cells and a genetically engineered mouse model of serous ovarian cancer.

    PubMed

    Suri, Anuj; Sheng, Xiugui; Schuler, Kevin M; Zhong, Yan; Han, Xiaoyun; Jones, Hannah M; Gehrig, Paola A; Zhou, Chunxiao; Bae-Jump, Victoria L

    2016-06-28

    Our objective was to evaluate the effect of the COX-2 inhibitor, celecoxib, on (1) proliferation and apoptosis in human ovarian cancer cell lines and primary cultures of ovarian cancer cells, and (2) inhibition of tumor growth in a genetically engineered mouse model of serous ovarian cancer under obese and non-obese conditions. Celecoxib inhibited cell proliferation in three ovarian cancer cell lines and five primary cultures of human ovarian cancer after 72 hours of exposure. Treatment with celecoxib resulted in G1 cell cycle arrest, induction of apoptosis, inhibition of cellular adhesion and invasion and reduction of expression of hTERT mRNA and COX-2 protein in all of the ovarian cancer cell lines. In the KpB mice fed a high fat diet (obese) and treated with celecoxib, tumor weight decreased by 66% when compared with control animals. Among KpB mice fed a low fat diet (non-obese), tumor weight decreased by 46% after treatment with celecoxib. In the ovarian tumors from obese and non-obese KpB mice, treatment with celecoxib as compared to control resulted in decreased proliferation, increased apoptosis and reduced COX-2 and MMP9 protein expression, as assessed by immunohistochemistry. Celecoxib strongly decreased the serum level of VEGF and blood vessel density in the tumors from the KpB ovarian cancer mouse model under obese and non-obese conditions. This work suggests that celecoxib may be a novel chemotherapeutic agent for ovarian cancer prevention and treatment and be potentially beneficial in both obese and non-obese women.

  9. The effect of celecoxib on tumor growth in ovarian cancer cells and a genetically engineered mouse model of serous ovarian cancer

    PubMed Central

    Suri, Anuj; Sheng, Xiugui; Schuler, Kevin M.; Zhong, Yan; Han, Xiaoyun; Jones, Hannah M.; Gehrig, Paola A.; Zhou, Chunxiao; Bae-Jump, Victoria L.

    2016-01-01

    Our objective was to evaluate the effect of the COX-2 inhibitor, celecoxib, on (1) proliferation and apoptosis in human ovarian cancer cell lines and primary cultures of ovarian cancer cells, and (2) inhibition of tumor growth in a genetically engineered mouse model of serous ovarian cancer under obese and non-obese conditions. Celecoxib inhibited cell proliferation in three ovarian cancer cell lines and five primary cultures of human ovarian cancer after 72 hours of exposure. Treatment with celecoxib resulted in G1 cell cycle arrest, induction of apoptosis, inhibition of cellular adhesion and invasion and reduction of expression of hTERT mRNA and COX-2 protein in all of the ovarian cancer cell lines. In the KpB mice fed a high fat diet (obese) and treated with celecoxib, tumor weight decreased by 66% when compared with control animals. Among KpB mice fed a low fat diet (non-obese), tumor weight decreased by 46% after treatment with celecoxib. In the ovarian tumors from obese and non-obese KpB mice, treatment with celecoxib as compared to control resulted in decreased proliferation, increased apoptosis and reduced COX-2 and MMP9 protein expression, as assessed by immunohistochemistry. Celecoxib strongly decreased the serum level of VEGF and blood vessel density in the tumors from the KpB ovarian cancer mouse model under obese and non-obese conditions. This work suggests that celecoxib may be a novel chemotherapeutic agent for ovarian cancer prevention and treatment and be potentially beneficial in both obese and non-obese women. PMID:27074576

  10. Ovarian cancer stem cells more questions than answers.

    PubMed

    Ottevanger, Petronella Beatrix

    2017-06-01

    Epithelial ovarian cancer is a highly lethal disease, which is usually diagnosed at a late stage with extensive metastases in the abdominal cavity. Ovarian cancer either develops from the ovarian surface epithelium (OSE) or from serous intra-epithelial carcinoma (STIC). Primary therapy consists of debulking surgery and platinum based chemotherapy. The success of debulking surgery depends on surgical skills but also on the gene signature of the tumour. Debulking surgery combined with first line platinum based chemotherapy, frequently leads to complete remission. However, most ovarian cancers relapse. Once the disease has relapsed, the interval between subsequent therapies decreases steadily due to rapid progression and therapy resistance. Research on therapy resistance of ovarian cancer is frequently devoted to genetic alterations in cancer cells, leading to drug inactivation, enhanced DNA repair mechanisms and intracellular pathway derangements. However the knowledge of ovarian cancer stem cells (OCSC) and the role they play in the development of cancer and therapy resistance is sparse. In this review current knowledge on the characteristics of OCSCs and the micro environmental mechanisms leading to the development or activation of OCSCs resulting in ovarian cancer is reviewed. Moreover the role of OCSC in both surgical and systemic therapy resistance and the relation with epithelial mesenchymal transformation (EMT) is discussed, as are micro-environmental signals leading to OCSC or EMT activation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  11. Experimental characterization of recurrent ovarian immature teratoma cells after optimal surgery.

    PubMed

    Tanaka, Tetsuji; Toujima, Saori; Utsunomiya, Tomoko; Yukawa, Kazunori; Umesaki, Naohiko

    2008-07-01

    Minimal optimal surgery without chemotherapy is often performed for patients with ovarian immature teratoma, which frequently occurs in young women who hope for future pregnancies. If tumors recur after the operation, anticancer drug chemotherapy is often administered, although few studies have highlighted differences between the recurrent and the primary tumor cells. Therefore, we have established experimental animal models of recurrent ovarian immature teratoma cells after optimal surgery and characterized the anticancer drug sensitivity and antigenicity of the recurrent tumors. Surgically-excised tumor cells of a grade II ovarian immature teratoma were cultured in vitro and transplanted into nude mice to establish stable cell lines. Differential drug sensitivity and antigenicity of the tumor cells were compared between the primary and the nude mouse tumors. Nude mouse tumor cells showed a normal 46XX karyotype. Cultured primary cells showed a remarkably high sensitivity to paclitaxel, docetaxel, adriamycin and pirarubicin, compared to peritoneal cancer cells obtained from a patient with ovarian adenocarcinomatous peritonitis. The drug sensitivity of teratoma cells to 5-fluorouracil, bleomycin or peplomycin was also significantly higher. However, there was no significant difference in sensitivity to platinum drugs between the primary teratoma and the peritoneal adenocarcinoma cells. As for nude mouse tumor cells, sensitivity to 12 anticancer drugs was significantly lower than that of the primary tumor cells, while there was little difference in sensitivity to carboplatin or peplomycin between the primary and nude mouse tumor cells. Flow cytometry showed that the expression of smooth muscle actin (SMA) significantly decreased in nude mouse tumor cells when compared to cultured primary cells. In conclusion, ovarian immature teratomas with normal karyotypes have a malignant potential to recur after minimal surgery. During nude mouse transplantation, SMA

  12. ABT-510 induces tumor cell apoptosis and inhibits ovarian tumor growth in an orthotopic, syngeneic model of epithelial ovarian cancer.

    PubMed

    Greenaway, James; Henkin, Jack; Lawler, Jack; Moorehead, Roger; Petrik, Jim

    2009-01-01

    Epithelial ovarian cancer (EOC) is the fifth most common cancer in women and is characterized by a low 5-year survival rate. One strategy that can potentially improve the overall survival rate in ovarian cancer is the use of antitumor agents such as ABT-510. ABT-510 is a small mimetic peptide of the naturally occurring antiangiogenic compound thrombospondin-1 and has been shown to significantly reduce tumor growth and burden in preclinical mouse models and in naturally occurring tumors in dogs. This is the first evaluation of ABT-510 in a preclinical model of human EOC. Tumorigenic mouse surface epithelial cells were injected into the bursa of C57BL/6 mice that were treated with either 100 mg/kg ABT-510 or an equivalent amount of PBS. ABT-510 caused a significant reduction in tumor size, ascites fluid volume, and secondary lesion dissemination when compared with PBS controls. Analysis of the vasculature of ABT-510-treated mice revealed vascular remodeling with smaller diameter vessels and lower overall area, increased number of mature vessels, and decreased tissue hypoxia. Tumors of ABT-510-treated mice had a significantly higher proportion of apoptotic tumor cells compared with the PBS-treated controls. Immunoblot analysis of cell lysates revealed a reduction in vascular endothelial growth factor, vascular endothelial growth factor receptor-2, and proliferating cell nuclear antigen protein expression as well as expression of members of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase survival pathways. In vitro, ABT-510 induced tumor cell apoptosis in mouse and human ovarian cancer cells. This study shows ABT-510 as a promising candidate for inhibiting tumor growth and ascites formation in human EOC.

  13. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less

  14. Activated ovarian endothelial cells promote early follicular development and survival.

    PubMed

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  15. Ovarian Germ Cell Tumors Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version

    Cancer.gov

    Ovarian germ cell tumors form in germ (egg) cells in the ovary. Ovarian germ cell tumors usually occur in teenage girls or young women and most often affect just one ovary. They are usually cured if found and treated early. Learn about signs and symptoms, tests to diagnose, and stages of ovarian germ cell tumors.

  16. LED-activated pheophorbide a in ovarian cancer cells: Cytotoxicity and apoptosis induction

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, C. S.; Xia, X. S.; Leung, A. W. N.

    2011-02-01

    Pheophorbide a (Pa) from Chinese herbal medicine Scutellaria Barbata and Silkworm excreta has been proved to be potential photosensitizer. The present study investigated the cytotoxicity of ovarian cancer cells induced by LED-activated Pa using light microscopy with the SRB staining. We further investigated the apoptosis of the cells 6 h after LED-activated Pa using of the flow cytometer with PI staining and nuclear staining. The results showed that LED-activated Pa remarkably caused cell death of ovarian cancer cells. The condensation of chromatin, nuclear fragmentations, and 12.3% of cells containing subdiploid levels of DNA were found in the ovarian cancer cells after the treatment of LED-activated Pa. These data demonstrated that LED-activated Pa could cause significant cytotoxicity and apoptosis of ovarian cancer cells.

  17. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells.

    PubMed

    Yokota, N; Koizume, S; Miyagi, E; Hirahara, F; Nakamura, Y; Kikuchi, K; Ruf, W; Sakuma, Y; Tsuchiya, E; Miyagi, Y

    2009-12-15

    Thromboembolic events are a major complication in ovarian cancer patients. Tissue factor (TF) is frequently overexpressed in ovarian cancer tissue and correlates with intravascular thrombosis. TF binds to coagulation factor VII (fVII), changing it to its active form, fVIIa. This leads to activation of the extrinsic coagulation cascade. fVII is produced by the liver and believed to be supplied from blood plasma at the site of coagulation. However, we recently showed that ovarian cancer cells express fVII transcripts under normoxia and that this transcription is inducible under hypoxia. These findings led us to hypothesise that ovarian cancer cells are intrinsically associated with TF-fVIIa coagulation activity, which could result in thrombosis. In this study, we examined whether ectopically expressed fVII could cause thrombosis by means of immunohistochemistry, RT-PCR, western blotting and flow cytometry. Ectopic fVII expression occurs frequently in ovarian cancers, particularly in clear cell carcinoma. We further showed that ovarian cancer cells express TF-fVIIa on the cell surface under normoxia and that this procoagulant activity is enhanced by hypoxic stimuli. Moreover, we showed that ovarian cancer cells secrete microparticles (MPs) with TF-fVIIa activity. Production of this procoagulant secretion is enhanced under hypoxia. These results raise the possibility that cancer cell-derived TF-fVIIa could cause thrombotic events in ovarian cancer patients.

  18. Treatment of Ovarian Germ Cell Tumors (PDQ®)—Patient Version

    Cancer.gov

    Surgery is the most common treatment of ovarian germ cell tumor. Types of surgery include hysterectomy and removal of one or both ovaries and fallopian tubes (bilateral salpingo-oophorectomy). Treatment may also include chemotherapy or radiation therapy. Learn about treatment options for ovarian germ cell tumors.

  19. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    PubMed Central

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  20. Blood cell mitochondrial DNA content and premature ovarian aging.

    PubMed

    Bonomi, Marco; Somigliana, Edgardo; Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  1. Betacellulin induces Slug-mediated down-regulation of E-cadherin and cell migration in ovarian cancer cells

    PubMed Central

    Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.

    2016-01-01

    Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169

  2. Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells.

    PubMed

    Ioannides, C G; Freedman, R S; Platsoucas, C D; Rashed, S; Kim, Y P

    1991-03-01

    CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.

  3. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture.

    PubMed

    Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita

    2013-04-01

    Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being

  4. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer.

    PubMed

    Kakar, Sham S; Worth, Christopher A; Wang, Zhenglong; Carter, Kelsey; Ratajczak, Mariusz; Gunjal, Pranesh

    Ovarian cancer is a highly aggressive and deadly disease. Currently, the treatment for ovarian cancer entails cytoreductive surgery followed by chemotherapy, mainly cisplatin or carboplatin combined with paclitaxel. Although this regimen is initially effective in a high percentage of cases, unfortunately, after few months of initial treatment, tumor relapse occurs due to platinum-resistance. DOXIL (liposomal preparation of doxorubicin) is a choice of drug for recurrent ovarian cancer. However, its response rate is very low and is accompanied by myocardial toxicity. Resistance to chemotherapy and recurrence of cancer is primarily attributed to the presence of cancer stem cells (CSCs), a small population of cells present in cancer. Effect of DOXIL and withaferin A (WFA), both alone and in combination, was investigated on cell proliferation of ovarian cancer cell line A2780 and tumor growth in SCID mice bearing i.p. ovarian tumors. ALDH1 cells were isolated from A2780 using cell sorter, and effect of DOXIL and WFA both alone and in combination on tumorigenic function of ALDH1 was studied using spheroids formation assays in vitro. Western blots were performed to examine the expression of ALDH1 and Notch 1 genes. In our studies, we showed, for the first time, that DOXIL when combined with withaferin A (WFA) elicits synergistic effect on inhibition of cell proliferation of ovarian cancer cells and inhibits the expression of ALDH1 protein, a marker for ALDH1 positive cancer stem cells (CSCs), and Notch1, a signaling pathway gene required for self-renewal of CSCs. Inhibition of expression of both ALDH1 and Notch1 genes by WFA was found to be dose dependent, whereas DOXIL (200 nM) was found to be ineffective. SCID mice, bearing i.p. ovarian tumors, were treated with a small dose of DOXIL (2 mg/kg) in combination with a sub-optimal dose of WFA (2 mg/kg) which resulted in a highly significant (60% to 70%) reduction in tumor growth, and complete inhibition of metastasis

  5. ABT-510 induces tumor cell apoptosis and inhibits ovarian tumor growth in an orthotopic, syngeneic model of epithelial ovarian cancer

    PubMed Central

    Greenaway, James; Henkin, Jack; Lawler, Jack; Moorehead, Roger; Petrik, Jim

    2012-01-01

    Epithelial ovarian cancer (EOC) is the fifth most common cancer in women and is characterized by a low 5-year survival rate. One strategy that can potentially improve the overall survival rate in ovarian cancer is the use of antitumor agents such as ABT-510. ABT-510 is a small mimetic peptide of the naturally occurring antiangiogenic compound thrombospondin-1 and has been shown to significantly reduce tumor growth and burden in preclinical mouse models and in naturally occurring tumors in dogs. This is the first evaluation of ABT-510 in a preclinical model of human EOC. Tumorigenic mouse surface epithelial cells were injected into the bursa of C57BL/6 mice that were treated with either 100 mg/kg ABT-510 or an equivalent amount of PBS. ABT-510 caused a significant reduction in tumor size, ascites fluid volume, and secondary lesion dissemination when compared with PBS controls. Analysis of the vasculature of ABT-510-treated mice revealed vascular remodeling with smaller diameter vessels and lower overall area, increased number of mature vessels, and decreased tissue hypoxia. Tumors of ABT-510-treated mice had a significantly higher proportion of apoptotic tumor cells compared with the PBS-treated controls. Immunoblot analysis of cell lysates revealed a reduction in vascular endothelial growth factor, vascular endothelial growth factor receptor-2, and proliferating cell nuclear antigen protein expression as well as expression of members of the phosphatidylinositol 3-kinase and mitogen-activated protein kinase survival pathways. In vitro, ABT-510 induced tumor cell apoptosis in mouse and human ovarian cancer cells. This study shows ABT-510 as a promising candidate for inhibiting tumor growth and ascites formation in human EOC. PMID:19139114

  6. IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer

    PubMed Central

    Felices, M.; Chu, S.; Kodal, B.; Bendzick, L.; Ryan, C.; Lenvik, A.J.; Boylan, K.L.M.; Wong, H.C.; Skubitz, A.P.N.; Miller, J.S.; Geller, M.A.

    2017-01-01

    Objective Natural killer (NK) cells represent a powerful immunotherapeutic target as they lyse tumors directly, do not require differentiation, and can elicit potent inflammatory responses. The objective of these studies was to use an IL-15 super-agonist complex, ALT-803 (Altor BioScience Corporation), to enhance the function of both normal and ovarian cancer patient derived NK cells by increasing cytotoxicity and cytokine production. Methods NK cell function from normal donor peripheral blood mononuclear cells (PBMCs) and ovarian cancer patient ascites was assessed using flow cytometry and chromium release assays +/− ALT-803 stimulation. To evaluate the ability of ALT-803 to enhance NK cell function in vivo against ovarian cancer, we used a MA148-luc ovarian cancer NOD scid gamma (NSG) xenogeneic mouse model with transferred human NK cells. Results ALT-803 potently enhanced functionality of NK cells against all ovarian cancer cell lines with significant increases seen in CD107a, IFNγ and TNFα expression depending on target cell line. Function was also rescued in NK cells derived from ovarian cancer patient ascites. Finally, only animals treated with intraperitoneal ALT-803 displayed an NK dependent significant decrease in tumor. Conclusions ALT-803 enhances NK cell cytotoxicity against ovarian cancer in vitro and in vivo and is able to rescue functionality of NK cells derived from ovarian cancer patient ascites. These findings suggest that ALT-803 has the potential to enhance NK-cell-based immunotherapeutic approaches for the treatment of ovarian cancer. PMID:28236454

  7. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Sachiko; Tanaka, Hiromasa; Kondo, Hiroki

    2012-03-12

    Two independent ovarian cancer cell lines and fibroblast controls were treated with nonequilibrium atmospheric pressure plasma (NEAPP). Most ovarian cancer cells were detached from the culture dish by continuous plasma treatment to a single spot on the dish. Next, the plasma source was applied over the whole dish using a robot arm. In vitro cell proliferation assays showed that plasma treatments significantly decreased proliferation rates of ovarian cancer cells compared to fibroblast cells. Flow cytometry and western blot analysis showed that plasma treatment of ovarian cancer cells induced apoptosis. NEAPP could be a promising tool for therapy for ovarian cancers.

  8. Combination Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Stage III Ovarian Cancer

    ClinicalTrials.gov

    2017-08-08

    Malignant Ovarian Mixed Epithelial Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  9. Sulforaphane reduces molecular response to hypoxia in ovarian tumor cells independently of their resistance to chemotherapy.

    PubMed

    Pastorek, Michal; Simko, Veronika; Takacova, Martina; Barathova, Monika; Bartosova, Maria; Hunakova, Luba; Sedlakova, Olga; Hudecova, Sona; Krizanova, Olga; Dequiedt, Franck; Pastorekova, Silvia; Sedlak, Jan

    2015-07-01

    One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.

  10. Ubiquitous Release Of Exosomal Tumor Suppressor miR-6126 from Ovarian Cancer Cells

    PubMed Central

    Kanlikilicer, Pinar; Rashed, Mohammed H.; Bayraktar, Recep; Mitra, Rahul; Ivan, Cristina; Aslan, Burcu; Zhang, Xinna; Filant, Justyna; Silva, Andreia M.; Rodriguez-Aguayo, Cristian; Bayraktar, Emine; Pichler, Martin; Ozpolat, Bulent; Calin, George A.; Sood, Anil K.; Lopez-Berestein, Gabriel

    2017-01-01

    Cancer cells actively promote their tumorigenic behavior by reprogramming gene expression. Loading intraluminal vesicles with specific miRNAs and releasing them into the tumor microenvironment as exosomes is one mechanism of reprogramming whose regulation remains to be elucidated. Here, we report that miR-6126 is ubiquitously released in high abundance from both chemosensitive and chemoresistant ovarian cancer cells via exosomes. Overexpression of miR-6126 was confirmed in healthy ovarian tissue compared to ovarian cancer patient samples and correlated with better overall survival in high-grade serous ovarian cancer patients. miR-6126 acted as a tumor suppressor by directly targeting integrin β1, a key regulator of cancer cell metastasis. miR-6126 mimic treatment of cancer cells resulted in increased miR-6126 and decreased integrin β1 mRNA levels in the exosome. Functional analysis showed that treatment of endothelial cells with miR-6126 mimic significantly reduced tube formation as well as invasion and migration capacities of ovarian cancer cells in vitro. Administration of miR-6126 mimic in an orthotopic mouse model of ovarian cancer elicited a relative reduction in tumor growth, proliferating cells and microvessel density. miR-6126 inhibition promoted oncogenic behavior by leading ovarian cancer cells to release more exosomes. Our findings provide new insights into the role of exosomal miRNA-mediated tumor progression and suggest a new therapeutic approach to disrupt oncogenic phenotypes in tumors. PMID:27742688

  11. Ovulation and extra-ovarian origin of ovarian cancer

    PubMed Central

    Yang-Hartwich, Yang; Gurrea-Soteras, Marta; Sumi, Natalia; Joo, Won Duk; Holmberg, Jennie C.; Craveiro, Vinicius; Alvero, Ayesha B.; Mor, Gil

    2014-01-01

    The mortality rate of ovarian cancer remains high due to late diagnosis and recurrence. A fundamental step toward improving detection and treatment of this lethal disease is to understand its origin. A growing number of studies have revealed that ovarian cancer can develop from multiple extra-ovarian origins, including fallopian tube, gastrointestinal tract, cervix and endometriosis. However, the mechanism leading to their ovarian localization is not understood. We utilized in vitro, ex vivo, and in vivo models to recapitulate the process of extra-ovarian malignant cells migrating to the ovaries and forming tumors. We provided experimental evidence to support that ovulation, by disrupting the ovarian surface epithelium and releasing chemokines/cytokines, promotes the migration and adhesion of malignant cells to the ovary. We identified the granulosa cell-secreted SDF-1 as a main chemoattractant that recruits malignant cells towards the ovary. Our findings revealed a potential molecular mechanism of how the extra-ovarian cells can be attracted by the ovary, migrate to and form tumors in the ovary. Our data also supports the association between increased ovulation and the risk of ovarian cancer. Understanding this association will lead us to the development of more specific markers for early detection and better prevention strategies. PMID:25135607

  12. Cytokeratin 5 positive cells represent a therapy resistant subpopulation in epithelial ovarian cancer

    PubMed Central

    Corr, Bradley R.; Finlay-Schultz, Jessica; Rosen, Rachel B.; Qamar, Lubna; Post, Miriam D.; Behbakht, Kian; Spillman, Monique A.; Sartorius, Carol A.

    2015-01-01

    Objective Cytokeratin 5 (CK5) is an epithelial cell marker implicated in stem and progenitor cell activity in glandular reproductive tissues and endocrine and chemotherapy resistance in estrogen receptor (ER)+ breast cancer. The goal of this study was to determine the prevalence of CK5 expression in ovarian cancer and the response of CK5+ cell populations to cisplatin therapy. Materials and Methods CK5 expression was evaluated in two ovarian tissue microarrays, representing 137 neoplasms, and six ovarian cancer cell lines. Cell lines were treated with IC50 cisplatin and the prevalence of CK5+ cells pre- and post-treatment determined. Proliferation of CK5+ vs. CK5− cell populations was determined using bromodeoxyuridine (BrdU) incorporation. Chemotherapy induced apoptosis in CK5+ vs. CK5− cells was measured using immunohistochemical staining for cleaved caspase-3. Results CK5 was expressed in 39.3% (42/107) of epithelial ovarian cancers with a range of 1-80% positive cells. Serous and endometrioid histologic subtypes had the highest percentage of CK5+ specimens. CK5 expression correlated with ER positivity (38/42 CK5+ tumors were also ER+). CK5 was expressed in 5/6 overall and 4/4 ER+ epithelial ovarian cancer cell lines ranging from 2.4-52.7% positive cells. CK5+ compared to CK5− cells were slower proliferating. The prevalence of CK5+ cells increased following 48 hour cisplatin treatment in 4/5 cell lines tested. CK5+ compared to CK5− ovarian cancer cells were more resistant to cisplatin induced apoptosis. Conclusions CK5 is expressed in a significant proportion of epithelial ovarian cancers and represents a slower proliferating, chemoresistant subpopulation that may warrant co-targeting in combination therapy. PMID:26495758

  13. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Hyung; Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan; Kang, Yun-Jeong

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondarymore » structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.« less

  14. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion.

    PubMed

    Herraiz, Sonia; Buigues, Anna; Díaz-García, César; Romeu, Mónica; Martínez, Susana; Gómez-Seguí, Inés; Simón, Carlos; Hsueh, Aaron J; Pellicer, Antonio

    2018-05-01

    To assess if infusion of human bone marrow-derived stem cells (BMDSCs) could promote follicle development in patients with impaired ovarian functions. Experimental design. University research laboratories. Immunodeficient NOD/SCID female mice. Human BMDSCs were injected into mice with chemotherapy-induced ovarian damage and into immunodeficient mice xenografted with human cortex from poor-responder patients (PRs). Follicle development, ovulation, and offspring. Apoptosis, proliferation, and vascularization were evaluated in mouse and human ovarian stroma. Fertility rescue and spontaneous pregnancies were achieved in mice ovaries mimicking PRs and ovarian insufficiency, induced by chemotherapy, after BMDSC infusion. Furthermore, BMDSC treatment resulted in production of higher numbers of preovulatory follicles, metaphase II oocytes, 2-cell embryos, and healthy pups. Stem cells promoted ovarian vascularization and cell proliferation, along with reduced apoptosis. In xenografted human ovarian tissues from PRs, infusion of BMDSCs and their CD133+ fraction led to their engraftment close to follicles, resulting in promotion of follicular growth, increases in E 2 secretion, and enhanced local vascularization. Our results raised the possibility that promoting ovarian angiogenesis by BMDSC infusion could be an alternative approach to improve follicular development in women with impaired ovarian function. NCT02240342. Copyright © 2018 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells.

    PubMed Central

    Colotta, F.; Rambaldi, A.; Colombo, N.; Tabacchi, L.; Introna, M.; Mantovani, A.

    1983-01-01

    The streptococcal preparation OK432 was studied for its effects on natural killer (NK) activity of peripheral blood lymphocytes (PBL) from normal donors and from ovarian cancer patients, and of tumour-associated lymphocytes (TAL) from peritoneal effusions. OK432 augmented NK activity against the susceptible K562 line and induced killing of the relatively resistant Raji line. Freshly isolated ovarian carcinoma cells were relatively resistant to killing by unstimulated PBL and TAL. OK432 induced significant, though low, levels of cytotoxicity against 51Cr-labelled ovarian carcinoma cells. Augmentation of killing of fresh tumour cells by OK432 was best observed in a 20 h assay and both autologous and allogeneic targets were lysed. PBL were separated on discontinuous Percoll gradients. Unstimulated and OK432-boosted activity were enriched in the lower density fractions where large granular lymphocytes (LGL) and activity against K562 were found. Thus, OK432 augments NK activity of PBL and TAL in human ovarian carcinomas and induces low, but significant, levels of killing of fresh tumour cells. Effector cells involved in killing of fresh ovarian tumours copurify with LGL on discontinuous gradients of Percoll. PMID:6626452

  16. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism

    PubMed Central

    Ai, Zhihong; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2016-01-01

    Cisplatin is currently one of the most effective chemotherapeutic drugs used for treating ovarian cancer; however, resistance to cisplatin is common. In this study, we explored an experimental strategy for overcoming cisplatin resistance of human ovarian cancer from the new perspective of cancer cell metabolism. By using two pairs of genetically matched cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines, we tested the hypothesis that downregulating hypoxia-inducible factor-1 (HIF-1), which regulates metabolic enzymes involved in glycolysis, is a promising strategy for overcoming cisplatin resistance of human ovarian cancer cells. We found that cisplatin downregulated the level of the regulatable α subunit of HIF-1, HIF-1α, in cisplatin-sensitive ovarian cancer cells through enhancing HIF-1α degradation but did not downregulate HIF-1α in their cisplatin-resistant counterparts. Overexpression of a degradation-resistant HIF-1α (HIF-1α ΔODD) reduced cisplatin-induced apoptosis in cisplatin-sensitive cells, whereas genetic knockdown of HIF-1α or pharmacological promotion of HIF-1α degradation enhanced response to cisplatin in both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. We further demonstrated that knockdown of HIF-1α improved the response of cisplatin-resistant ovarian cancer cells to cisplatin by redirecting the aerobic glycolysis in the resistant cancer cells towards mitochondrial oxidative phosphorylation, leading to cell death through overproduction of reactive oxygen species. Our findings suggest that the HIF-1α-regulated cancer metabolism pathway could be a novel target for overcoming cisplatin resistance in ovarian cancer. PMID:26801746

  17. An Embryonic and Induced Pluripotent Stem Cell Model for Ovarian Granulosa Cell Development and Steroidogenesis.

    PubMed

    Lipskind, Shane; Lindsey, Jennifer S; Gerami-Naini, Behzad; Eaton, Jennifer L; O'Connell, Daniel; Kiezun, Adam; Ho, Joshua W K; Ng, Nicholas; Parasar, Parveen; Ng, Michelle; Nickerson, Michael; Demirci, Utkan; Maas, Richard; Anchan, Raymond M

    2018-05-01

    Embryoid bodies (EBs) can serve as a system for evaluating pluripotency, cellular differentiation, and tissue morphogenesis. In this study, we use EBs derived from mouse embryonic stem cells (mESCs) and human amniocyte-derived induced pluripotent stem cells (hAdiPSCs) as a model for ovarian granulosa cell (GC) development and steroidogenic cell commitment. We demonstrated that spontaneously differentiated murine EBs (mEBs) and human EBs (hEBs) displayed ovarian GC markers, such as aromatase (CYP19A1), FOXL2, AMHR2, FSHR, and GJA1. Comparative microarray analysis identified both shared and unique gene expression between mEBs and the maturing mouse ovary. Gene sets related to gonadogenesis, lipid metabolism, and ovarian development were significantly overrepresented in EBs. Of the 29 genes, 15 that were differentially regulated in steroidogenic mEBs displayed temporal expression changes between embryonic, postnatal, and mature ovarian tissues by polymerase chain reaction. Importantly, both mEBs and hEBs were capable of gonadotropin-responsive estradiol (E2) synthesis in vitro (217-759 pg/mL). Live fluorescence-activated cell sorting-sorted AMHR2 + granulosa-like cells from mEBs continued to produce E2 after purification (15.3 pg/mL) and secreted significantly more E2 than AMHR2 - cells (8.6 pg/mL, P < .05). We conclude that spontaneously differentiated EBs of both mESC and hAdiPSC origin can serve as a biologically relevant model for ovarian GC differentiation and steroidogenic cell commitment. These cells should be further investigated for therapeutic uses, such as stem cell-based hormone replacement therapy and in vitro maturation of oocytes.

  18. Parabens Accelerate Ovarian Dysfunction in a 4-Vinylcyclohexene Diepoxide-Induced Ovarian Failure Model

    PubMed Central

    Lee, Jae-Hwan; Lee, Myeongho; Ahn, Changhwan; Kang, Hee Young; Tran, Dinh Nam; Jeung, Eui-Bae

    2017-01-01

    Parabens are widely used preservatives in basic necessities such as cosmetic and pharmaceutical products. In previous studies, xenoestrogenic actions of parabens were reported in an immature rat model and a rat pituitary cell line (GH3 cells). The relationship between parabens and ovarian failure has not been described. In the present study, the influence of parabens on ovarian folliculogenesis and steroidogenesis was investigated. A disruptor of ovarian small pre-antral follicles, 4-vinylcyclohexene diepoxide (VCD, 40 mg/kg), was used to induce premature ovarian failure (POF). Methylparaben (MP, 100 mg/kg), propylparaben (PP, 100 mg/kg), and butylparaben (BP, 100 mg/kg) dissolved in corn oil were treated in female 8-week-old Sprague-Dawley rat for 5 weeks. Estrus cycle status was checked daily by vaginal smear test. Ovarian follicle development and steroid synthesis were investigated through real-time PCR and histological analyses. Diestrus phases in the VCD, PP, and BP groups were longer than that in the vehicle group. VCD significantly decreased mRNA level of folliculogenesis-related genes (Foxl2, Kitl and Amh). All parabens significantly increased the Amh mRNA level but unchanged Foxl2 and Kitlg acting in primordial follicles. VCD and MP slightly increased Star and Cyp11a1 levels, which are related to an initial step in steroidogenesis. VCD and parabens induced an increase in FSH levels in serum and significantly decreased the total number of follicles. Increased FSH implies impairment in ovarian function due to VCD or parabens. These results suggest that VCD may suppress both formation and development of follicles. In particular, combined administration of VCD and parabens accelerated inhibition of the follicle-developmental process through elevated AMH level in small antral follicles. PMID:28208728

  19. [Importance of the tumor stem cell hypothesis for understanding ovarian cancer].

    PubMed

    Vochem, R; Einenkel, J; Horn, L-C; Ruschpler, P

    2014-07-01

    Despite complex surgical and systemic therapies epithelial ovarian cancer has a poor prognosis. A small quantity of tumorigenic cells termed cancer stem cells (CSC) are responsible for the development of chemoresistance and high rates of recurrence. This review presents the CSC hypothesis and describes methods of identification and enrichment of CSCs as well as approaches for the therapeutic use of these findings. A systematic literature review based on PubMed and Web of Science was carried out. The CSC model is based on a hierarchical structure of tumors with few CSCs and variably differentiated tumor cells constituting the tumor bulk. Only the CSCs possess tumorigenic potential. Other essential functional characteristics of CSCs are their potential for self-renewal and their ability to differentiate into further cell types. The CSCs are structurally characterized by different surface markers and changes in certain signaling pathways. Currently there are phase I and II studies in progress investigating specific influences on CSCs. Various clinical characteristics of the course of disease in ovarian cancer are aptly represented by the tumor stem cell model. In spite of precisely defined functional characteristics of CSCs, surface markers and signaling pathways show individual differences and vary between tumor entities. This complicates identification and enrichment. Current experimental findings in various approaches and even first clinical studies raise hopes for a personalized cancer therapy targeting CSCs.

  20. Antioxidative cellular response of lepidopteran ovarian cells to photoactivated alpha-terthienyl.

    PubMed

    Huang, Qingchun; Yun, Xinming; Rao, Wenbing; Xiao, Ciying

    2017-04-01

    Photodynamic sensitizers as useful alternative agents have been used for population control against insect pests, and the response of insect ovarian cells towards the photosensitizers is gaining attention because of the next reproduction. In this paper, antioxidative responses of lepidopteran ovarian Tn5B1-4 and Sf-21 cells to photoactivated alpha-terthienyl (PAT) are investigated. PAT shows positive inhibitory cytotoxicity on the two ovarian cells, and its inhibition on cell viability is enhanced as the concentrations are increased and the irradiation time is extended. Median inhibitory concentrations (IC 50 ) are 3.36μg/ml to Tn5B1-4 cells, and 3.15μg/ml to Sf-21 cells at 15min-UV-A irradiation 2h-dark incubation. Under 10.0μg/ml PAT exposure, 15min-UV-A irradiation excites higher ROS production than 5min-UV-A irradiation does in the ovarian cells, the maximum ROS content is about 7.1 times in Tn5B1-4 cells and 4.3 times in Sf-21 cells, and the maximum malondialdehyde levels in Tn5B1-4 and Sf-21 cells are about 1.47- and 1.36-fold higher than the control groups, respectively. Oxidative stress generated by PAT strongly decreases the activities of POD, SOD and CAT, and induces an accumulation of Tn5B1-4 cells in S phase and Sf-21 cells in G2/M phase in a concentration-dependent fashion. Apoptosis accumulation of Tn5B1-4 cells and the persistent post-irradiation cytotoxicity are further observed, indicating different antioxidative tolerance and arrest pattern of the two ovarian cells towards the cytotoxicity of PAT. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Primary Ovarian Large B-Cell Lymphoma

    PubMed Central

    Islimye Taskın, Mine; Gokgozoglu, Levent; Kandemır, Bedrı

    2013-01-01

    The involvement of the ovary by malignant lymphoma is a well-known late manifestation of disseminated nodal disease. Primary ovarian lymphoma is rare. We herein describe a case of primary ovarian diffuse large B-cell lymphoma involving unilateral ovary in a 38-year-old woman which was detected incidentally. Preoperative ultrasonic imaging showed a 46∗42 mm heterogeneous cystic mass. Laparotomy revealed that left adnexal mass and left salpingo-oophorectomy was performed. The current diagnosis was determined after immunostaining. The patient was treated with R-CHOP regimen after the operation. She remains cancer-free 24 months after chemotherapy. PMID:24222873

  2. Ovarian mixed germ cell tumor with yolk sac and teratomatous components in a dog.

    PubMed

    Robinson, Nicholas A; Manivel, J Carlos; Olson, Erik J

    2013-05-01

    Mixed germ cell tumors of the ovary have rarely been reported in veterinary species. A 3-year-old intact female Labrador Retriever dog was presented for lethargy, abdominal distention, and a midabdominal mass. An exploratory laparotomy revealed a large (23 cm in diameter) left ovarian tumor and multiple small (2-3 cm in diameter) pale tan masses on the peritoneum and abdominal surface of the diaphragm. Histological examination of the left ovary revealed a mixed germ cell tumor with a yolk sac component with rare Schiller-Duval bodies and a teratomatous component comprised primarily of neural differentiation. The abdominal metastases were solely comprised of the yolk sac component. The yolk sac component was diffusely immunopositive for cytokeratin with scattered cells reactive for α-fetoprotein and placental alkaline phosphatase. Within the teratomatous component, the neuropil was diffusely immunopositive for S100, neuron-specific enolase, and neurofilaments with a few glial fibrillary acidic protein immunopositive cells. Ovarian germ cell tumors may be pure and consist of only 1 germ cell element or may be mixed and include more than 1 germ cell element, such as teratoma and yolk sac tumor.

  3. Are ovarian cancer stem cells the target for innovative immunotherapy?

    PubMed Central

    Wang, Liang; Xu, Tianmin; Cui, Manhua

    2018-01-01

    Cancer stem cells (CSCs), a subpopulation of cancer cells with the ability of self-renewal and differentiation, are believed to be responsible for tumor generation, progression, metastasis, and relapse. Ovarian cancer, the most malignant gynecological cancer, has consistent pathology behavior with CSC model, which suggests that therapies based on ovarian cancer stem cells (OCSCs) can gain a more successful prognosis. Much evidence has proved that epigenetic mechanism played an important role in tumor formation and sustainment. Since CSCs are generally resistant to conventional therapies (chemotherapy and radiotherapy), immunotherapy is a more effective method that has been implemented in the clinic. Chimeric antigen receptor (CAR)-T cell, an adoptive cellular immunotherapy, which results in apparent elimination of tumor in both hematologic and solid cancers, could be used for ovarian cancer. This review covers the basic conception of CSCs and OCSCs, the implication of epigenetic mechanism underlying cancer evolution considering CSC model, the immunotherapies reported for ovarian cancer targeting OCSCs currently, and the relationship between immune system and hierarchy cancer organized by CSCs. Particularly, the promising prospects and potential pitfalls of targeting OCSC surface markers to design CAR-T cellular immunotherapy are discussed here. PMID:29780254

  4. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  5. Formononetin, an isoflavone from Astragalus membranaceus inhibits proliferation and metastasis of ovarian cancer cells.

    PubMed

    Zhang, Jing; Liu, Likun; Wang, Jing; Ren, Baoyin; Zhang, Lin; Li, Weiling

    2018-07-15

    Astragalus membranaceus which was originally described in the Shennong's Classic of Materia Medica, the earliest complete Pharmacopoeia of China written from the Warring States Period to Han Dynasty, has been widely used in Chinese medicine for > 2000 years, especially in the prescription of curing cancer. A. membranaceus has various bioactivities, such as anti-tumor, anti-viral, anti-oxidant, anti-diabetes, anti-inflammation, anti-atherosclerosis, immunomodulation, hepatoprotection, hematopoiesis, neuroprotection and so on. As an important component of A. membranaceus, whether formononetin has a close relationship with its tumor-inhibiting effect on ovarian cancer cell has been investigated. The present study aimed to demonstrate the anti-proliferation, anti- migration and invasion effects of formononetin on ovarian cancer cells and further explore the underlying molecular mechanisms associated with apoptosis, migration and invasion. MTT assay was performed to detect the viability of ovarian cancer cells. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential detected the apoptosis of ovarian cancer cells treated by formononetin. The migration and invasion of ovarian cancer cells which exposed to formononetin were detected by scratch assay and transwell assay. Meanwhile, the protein-level changes of in ovarian cancer cells treated by formononetin were assessed by western blot analysis. MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with formononetin. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential suggested that formononetin suppressed cells proliferation by inducing apoptosis. We detected the expression of apoptosis-related proteins in ovarian cancer cells after treatment with formononetin and found the expression of caspase 3/9 proteins and the ratio of Bax/Bcl-2 were increased in a dose-dependent manner. In addition, wound healing and transwell chamber

  6. Impedance Analysis of Ovarian Cancer Cells upon Challenge with C-terminal Clostridium Perfringens Enterotoxin

    NASA Astrophysics Data System (ADS)

    Gordon, Geoffrey; Lo, Chun-Min

    2007-03-01

    Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.

  7. Novel smac mimetic APG-1387 elicits ovarian cancer cell killing through TNF-alpha, Ripoptosome and autophagy mediated cell death pathway.

    PubMed

    Li, Bao-Xia; Wang, Heng-Bang; Qiu, Miao-Zhen; Luo, Qiu-Yun; Yi, Han-Jie; Yan, Xiang-Lei; Pan, Wen-Tao; Yuan, Lu-Ping; Zhang, Yu-Xin; Xu, Jian-Hua; Zhang, Lin; Yang, Da-Jun

    2018-03-12

    Ovarian cancer is a deadly disease. Inhibitors of apoptosis proteins (IAPs) are key regulators of apoptosis and are frequently dysregulated in ovarian cancer. Overexpression of IAPs proteins has been correlated with tumorigenesis, treatment resistance and poor prognosis. Reinstalling functional cell death machinery by pharmacological inhibition of IAPs proteins may represent an attractive therapeutic strategy for treatment of ovarian cancer. CCK-8 and colony formation assay was performed to examine cytotoxic activity. Apoptosis was analyzed by fluorescence microscopy, flow cytometry and TUNEL assay. Elisa assay was used to determine TNFα protein. Caspase activity assay was used for caspase activation evaluation. Immunoprecipitation and siRNA interference were carried out for functional analysis. Western blotting analysis were carried out to test protein expression. Ovarian cancer cell xenograft nude mice model was used for in vivo efficacy evaluation. APG-1387 demonstrated potent inhibitory effect on ovarian cancer cell growth and clonogenic cell survival. APG-1387 induced RIP1- and TNFα-dependent apoptotic cell death in ovarian cancer through downregulation of IAPs proteins and induction of caspase-8/FADD/RIP1 complex, which drives caspase-8 activation. NF-κB signaling pathway was activated upon APG-1387 treatment and RIP1 contributed to NF-κB activation. APG-1387 induced cytoprotective autophagy while triggering apoptosis in ovarian cancer cells and inhibition of autophagy enhanced APG-1387-induced apoptotic cell death. APG-1387 exhibited potent antitumor activity against established human ovarian cancer xenografts. Our results demonstrate that APG-1387 targets IAPs proteins to potently elicit apoptotic cell death in vitro and in vivo, and provide mechanistic and applicable rationale for future clinical evaluation of APG-1387 in ovarian cancer.

  8. Ganoderma lucidum inhibits proliferation of human ovarian cancer cells by suppressing VEGF expression and up-regulating the expression of connexin 43.

    PubMed

    Dai, Shuyan; Liu, Jingjing; Sun, Xiaofei; Wang, Ning

    2014-11-05

    Ganoderma lucidum (G. lucidum, Reishimax) is an herbal mushroom known to have inhibitory effect on tumor cell growth. However, the molecular mechanisms responsible for its anti-proliferative effects on the ovarian cancer have not been fully elucidated. Human ovarian cancer cells HO 8910 (HOCC) and human primary ovarian cells (HPOC) were treated with G. lucidum. Effects of G. lucidum treatment on cell proliferation were studied by MTT assay. The expression of vascular endothelial growth factor (VEGF) and connexin 43 (Cx43) were measured by immunohistochemistry and real time polymerase chain reaction. To study the molecular mechanism of CX43 mediated anti-tumor activity, small interference RNA (siRNA) was used to knockdown Cx43 expression in HOCC. G. lucidum treatment resulted in reduced proliferation of HOCC. Inhibition of proliferation was accompanied by a decrease in VEGF expression and increase in Cx43 expression in the cancer cells. The extent of immune-reactivity of Cx43 or VEGF in cancer cells were correlated with the concentrations of G. lucidum used for treatment. Furthermore, knockdown of Cx43 expression in HOCC abrogated the effect of G. lucidum on cell proliferation without alteration of G. lucidum-induced attenuation of VEGF expression. G. lucidum inhibits ovarian cancer by down-regulating the expression of VEGF and up-regulating the downstream Cx43 expression. G. lucidum may be a promising therapeutic agent for the treatment of ovarian cancer.

  9. L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution.

    PubMed

    Nguyen, Thu H M; Carreira, Patricia E; Sanchez-Luque, Francisco J; Schauer, Stephanie N; Fagg, Allister C; Richardson, Sandra R; Davies, Claire M; Jesuadian, J Samuel; Kempen, Marie-Jeanne H C; Troskie, Robin-Lee; James, Cini; Beaven, Elizabeth A; Wallis, Tristan P; Coward, Jermaine I G; Chetty, Naven P; Crandon, Alexander J; Venter, Deon J; Armes, Jane E; Perrin, Lewis C; Hooper, John D; Ewing, Adam D; Upton, Kyle R; Faulkner, Geoffrey J

    2018-06-26

    LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner

    PubMed Central

    Rattan, R; Giri, S; Hartmann, LC; Shridhar, V

    2011-01-01

    Abstract Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)-activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express -α1, -β1, -γ1 and -γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo-responsive and -resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co-carboxylase (ACC) and enhanced β-oxidation of fatty acid and (4) attenuated mTOR-S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin-mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK-ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down-regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild-type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti-proliferative therapeutic that can act through both AMPK-dependent as well as AMPK-independent pathways. PMID:19874425

  11. Same Chemotherapy Regimen Leads to Different Myelotoxicity in Different Malignancies: A Comparison of Chemotherapy-Associated Myelotoxicity in Patients With Advanced Ovarian and Non-Small-Cell Lung Cancer.

    PubMed

    Tas, Faruk; Yildiz, Ibrahim; Kilic, Leyla; Ciftci, Rumeysa; Keskin, Serkan; Sen, Fatma

    2016-01-01

    Carboplatin-paclitaxel chemotherapy combination is the standard first-line treatment of advanced ovarian cancer and is the most commonly used treatment combination shown to be effective in advanced non-small-cell lung cancer (NSCLC). The most important dose-limiting side effect is hematologic toxicity. In this study, the severity of treatment-related myelotoxicity is compared in patients with advanced ovarian and lung cancers who received same schedule of carboplatin-paclitaxel. The study was prospectively performed from February 2009 to July 2011 and involved 103 patients with stages Ic-IV ovarian (n = 51) and advanced NSCLC (n = 52) who were administered a maximum of 6 cycles of carboplatin-paclitaxel as a first-line treatment. Full blood counts were measured before treatment, before each chemotherapy cycle during therapy, and at the first and sixth month after therapy. The median ages were 59 years (range, 35-77 years) for patients with NSCLC and 56 years (range, 38-75 years) for patients with ovarian cancer. The frequencies of anemia were 17% and 28.6% before the initiation of chemotherapy, 39.2% and 68.0% at the third cycle of treatment, and 44.2% and 45.2% at the sixth cycle of treatment in patients with NSCLC and ovarian cancer, respectively. Initial leukopenia rates were 3.4% and 0%; at the third cycle 46.0% and 41.2%; and at the sixth cycle 41.9% and 48.8% in patients with NSCLC and ovarian cancer, respectively. At the third cycle, 2.5% of the patients with NSCLC and 10.4% of the patients with ovarian cancer had thrombocytopenia, and at the sixth cycle, 23.3% of the patients with NSCLC and 25% of the patients with ovarian cancer had thrombocytopenia. Hemoglobin, leukocyte, and platelet values at the third cycle were significantly lower than those at admission in both cancer groups. Declines in hemoglobin levels in patients with NSCLC and in platelets in patients with ovarian cancer at the sixth cycle were statistically significant compared with the third

  12. Sub-Thz Vibrational Spectroscopy for Analysis of Ovarian Cancer Cells

    NASA Astrophysics Data System (ADS)

    Ferrance, Jerome P.; Sizov, Igor; Jazaeri, Amir; Moyer, Aaron; Gelmont, Boris; Globus, Tatiana

    2016-06-01

    Sub-THz vibrational spectroscopy utilizes wavelengths in the submillimeter-wave range ( 1.5-30 wn), beyond those traditionally used for chemical and biomolecular analysis. This low energy radiation excites low-frequency internal molecular motions (vibrations) involving hydrogen bonds and other weak connections within these molecules. The ability of sub-THz spectroscopy to identify and quantify biological molecules is based on detection of signature resonance absorbance at specific frequencies between 0.05 and 1 THz, for each molecule. The long wavelengths of this radiation, mean that it can even pass through entire cells, detecting the combinations of proteins and nucleic acids that exist within the cell. This research introduces a novel sub-THz resonance spectroscopy instrument with spectral resolution sufficient to identify individual resonance absorption peaks, for the analysis of ovarian cancer cells. In vitro cell cultures of SK-OV-3 and ES-2 cells, two human ovarian cancer subtypes, were characterized and compared with a normal non-transformed human fallopian tube epithelial cell line (FT131). A dramatic difference was observed between the THz absorption spectra of the cancer and normal cell sample materials with much higher absorption intensity and a very strong absorption peak at a frequency of 13 wn dominating the cancer sample spectra. Comparison of experimental spectra with molecular dynamic simulated spectroscopic signatures suggests that the high intensity spectral peak could originate from overexpressed mi-RNA molecules specific for ovarian cancer. Ovarian cancer cells are utilized as a proof of concept, but the sub-THz spectroscopy method is very general and could also be applied to other types of cancer.

  13. Direct effect of curcumin on porcine ovarian cell functions.

    PubMed

    Kádasi, Attila; Maruniaková, Nora; Štochmaľová, Aneta; Bauer, Miroslav; Grossmann, Roland; Harrath, Abdel Halim; Kolesárová, Adriana; Sirotkin, Alexander V

    2017-07-01

    Curcuma longa Linn (L.) is a plant widely used in cooking (in curry powder a.o.) and in folk medicine, but its action on reproductive processes and its possible mechanisms of action remain to be investigated. The objective of this study was to examine the direct effects of curcumin, the major Curcuma longa L. molecule, on basic ovarian cell functions such as proliferation, apoptosis, viability and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without curcumin (at doses of 0, 1, 10 and 100μg/ml of medium). Markers of proliferation (accumulation of PCNA) and apoptosis (accumulation of bax) were analyzed by immunocytochemistry. The expression of mRNA for PCNA and bax was detected by RT-PCR. Cell viability was detected by trypan blue exclusion test. Release of steroid hormones (progesterone and testosterone) was measured by enzyme immunoassay (EIA). It was observed that addition of curcumin reduced ovarian cell proliferation (expression of both PCNA and its mRNA), promoted apoptosis (accumulation of both bax and its mRNA), reduced cell viability, and stimulated both progesterone and testosterone release. These observations demonstrate the direct suppressive effect of Curcuma longa L./curcumin on female gonads via multiple mechanisms of action - suppression of ovarian cell proliferation and viability, promotion of their apoptosis (at the level of mRNA transcription and subsequent accumulation of promoters of genes regulating these activities) and release of anti-proliferative and pro-apoptotic progesterone and androgen. The potential anti-gonadal action of curcumin should be taken into account by consumers of Curcuma longa L.-containing products. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Extracellular Vesicles Present in Human Ovarian Tumor Microenvironments Induce a Phosphatidylserine Dependent Arrest in the T Cell Signaling Cascade

    PubMed Central

    Kelleher, Raymond J.; Balu-Iyer, Sathy; Loyall, Jenni; Sacca, Anthony J.; Shenoy, Gautam N.; Peng, Peng; Iyer, Vandana; Fathallah, Anas M.; Berenson, Charles S.; Wallace, Paul K.; Tario, Joseph; Odunsi, Kunle; Bankert, Richard B.

    2015-01-01

    The identification of immunosuppressive factors within human tumor microenvironments, and the ability to block these factors, would be expected to enhance patients’ anti-tumor immune responses. We previously established that an unidentified factor, or factors, present in ovarian tumor ascites fluids reversibly inhibited the activation of T cells by arresting the T cell signaling cascade. Ultracentrifugation of the tumor ascites fluid has now revealed a pellet that contains small extracellular vesicles (EV) with an average diameter of 80nm. The T cell arrest was determined to be causally linked to phosphatidylserine (PS) that is present on the outer leaflet of the vesicle bilayer, as a depletion of PS expressing EV or a blockade of PS with anti-PS antibody significantly inhibits the vesicle induced signaling arrest. The inhibitory EV were also isolated from solid tumor tissues. The presence of immune suppressive vesicles in the microenvironments of ovarian tumors and our ability to block their inhibition of T cell function represent a potential therapeutic target for patients with ovarian cancer. PMID:26112921

  15. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells

    PubMed Central

    Bauckman, Kyle; Haller, Edward; Taran, Nicholas; Rockfield, Stephanie; Ruiz-Rivera, Abigail; Nanjundan, Meera

    2015-01-01

    The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells. PMID:25697096

  16. Silencing of p130Cas in Ovarian Carcinoma: A Novel Mechanism for Tumor Cell Death

    PubMed Central

    Nick, Alpa M.; Stone, Rebecca L.; Armaiz-Pena, Guillermo; Ozpolat, Bulent; Tekedereli, Ibrahim; Graybill, Whitney S.; Landen, Charles N.; Villares, Gabriel; Vivas-Mejia, Pablo; Bottsford-Miller, Justin; Kim, Hye Sun; Lee, Ju-Seog; Kim, Soo Mi; Baggerly, Keith A.; Ram, Prahlad T.; Deavers, Michael T.; Coleman, Robert L.; Lopez-Berestein, Gabriel

    2011-01-01

    Background We investigated the clinical and biological significance of p130cas, an important cell signaling molecule, in ovarian carcinoma. Methods Expression of p130cas in ovarian tumors, as assessed by immunohistochemistry, was associated with tumor characteristics and patient survival. The effects of p130cas gene silencing with small interfering RNAs incorporated into neutral nanoliposomes (siRNA-DOPC), alone and in combination with docetaxel, on in vivo tumor growth and on tumor cell proliferation (proliferating cell nuclear antigen) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling) were examined in mice bearing orthotopic taxane-sensitive (HeyA8 and SKOV3ip1) or taxane-resistant (HeyA8-MDR) ovarian tumors (n = 10 per group). To determine the specific mechanisms by which p130cas gene silencing abrogates tumor growth, we measured cell viability (MTT assay), apoptosis (fluorescence-activated cell sorting), autophagy (immunoblotting, fluorescence, and transmission electron microscopy), and cell signaling (immunoblotting) in vitro. All statistical tests were two-sided. Results Of 91 ovarian cancer specimens, 70 (76%) had high p130cas expression; and 21 (24%) had low p130cas expression. High p130cas expression was associated with advanced tumor stage (P < .001) and higher residual disease (>1 cm) following primary cytoreduction surgery (P = .007) and inversely associated with overall survival and progression-free survival (median overall survival: high p130cas expression vs low expression, 2.14 vs 9.1 years, difference = 6.96 years, 95% confidence interval = 1.69 to 9.48 years, P < .001; median progression-free survival: high p130cas expression vs low expression, 1.04 vs 2.13 years, difference = 1.09 years, 95% confidence interval = 0.47 to 2.60 years, P = .01). In mice bearing orthotopically implanted HeyA8 or SKOV3ip1 ovarian tumors, treatment with p130cas siRNA-DOPC in combination with docetaxel chemotherapy resulted in the greatest

  17. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway

    PubMed Central

    Yuan, Lingqin; Sheng, Xiugui; Willson, Adam K; Roque, Dario R; Stine, Jessica E; Guo, Hui; Jones, Hannah M; Zhou, Chunxiao; Bae-Jump, Victoria L

    2015-01-01

    Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore, targeted inhibition of glutamine metabolism may have anti-tumorigenic implications. In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress, and glucose/glutamine metabolism. Our results revealed that administration of glutamine increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner. Depletion of glutamine induced reactive oxygen species and expression of endoplasmic reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS) and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways. Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation. These studies suggest that targeting glutamine metabolism may be a promising therapeutic strategy in the treatment of ovarian cancer. PMID:26045471

  18. [Establishment and characterization of a cell line derived from human ovarian mucinous cystadenocarcinoma].

    PubMed

    Wan, Q; Xu, D; Li, Z

    2001-07-01

    To establish a cell line of human ovarian cancer, and study its characterization. The cell line was established by the cultivation of subsides walls, and kept by freezing. The morphology was observed by microscope and electromicroscope. The authors studied its growth and propagation, the agglutination test of phytohemagglutinin (PHA), the chromosome analysis, heterotransplanting, immuno-histochemistry staining, the analysis of hormone, the pollution examination and the test of sensitivity to virus etc. A new human ovarian carcinoma cell line, designated ovarian mucinous cystadenocarcinoma 685 (OMC685), was established from mucinous cystadenocarcinoma. This cell line had subcultured to 91 generations, and some had been frozen for 8 years and revived, still grew well. This cell line possessed the feature of glandular epithelium cancer cell. The cells grew exuberantly, and the agglutinating test of PHA was positive. Karyotype was subtriploid with distortion. Heterotransplantations, alcian blue periobic acid-schiff (AbPAS), mucicarmine, alcian blue stainings, estradiol (E2) and progesterone were all positive. Without being polluted, it was sensitive to polivirus-I, adenovirus 7 and measles virus. OMC685 is a distinct human ovarian tumous cell line.

  19. R-ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis

    PubMed Central

    Guo, Yuna; Kenney, Shelby Ray; Muller, Carolyn Y.; Adams, Sarah; Rutledge, Teresa; Romero, Elsa; Murray-Krezan, Cristina; Prekeris, Rytis; Sklar, Larry A.; Hudson, Laurie G.; Wandinger-Ness, Angela

    2015-01-01

    Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high throughput screening and computational shape homology approaches we identified R-ketorolac as a Cdc42 and Rac1 inhibitor; distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip), and primary, patient-derived ovarian cancer cells show R-ketorolac is a robust inhibitor of growth factor or serum dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration and invasion. In sum, we provide evidence for R-ketorolac as direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiological responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA approved drug-racemic ketorolac that can be used in humans. PMID:26206334

  20. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis.

    PubMed

    Guo, Yuna; Kenney, S Ray; Muller, Carolyn Y; Adams, Sarah; Rutledge, Teresa; Romero, Elsa; Murray-Krezan, Cristina; Prekeris, Rytis; Sklar, Larry A; Hudson, Laurie G; Wandinger-Ness, Angela

    2015-10-01

    Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion, and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high-throughput screening and computational shape homology approaches, we identified R-ketorolac as a Cdc42 and Rac1 inhibitor, distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip) and primary patient-derived ovarian cancer cells show that R-ketorolac is a robust inhibitor of growth factor or serum-dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small-molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration, and invasion. In summary, we provide evidence for R-ketorolac as a direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiologic responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA-approved drug, racemic ketorolac, that can be used in humans. ©2015 American Association for Cancer Research.

  1. Survival of ovarian somatic cells during sex change in the protogynous wrasse, Halichoeres trimaculatus.

    PubMed

    Nozu, Ryo; Horiguchi, Ryo; Murata, Ryosuke; Kobayashi, Yasuhisa; Nakamura, Masaru

    2013-02-01

    The three-spot wrasse (Halichoeres trimaculatus), which inhabits the coral reefs of Okinawa, changes sex from female to male. Sex change in this species is controlled by a social system. Oocytes disappear completely from the ovary, and male germ cells and somatic cells comprising testicular tissue arise a new during the sex change process. However, little is known of the fate and origin of the gonadal tissue-forming cells during sex change. In particular, the fate of ovarian somatic cells has not been determined, although the ovarian tissue regresses histologically. To approach this question, we analyzed apoptosis and cell proliferation in the sex-changing gonads. Unexpectedly, we found that few apoptotic somatic cells were present during sex change, suggesting that ovarian somatic cells might survive during the regression of the ovarian tissue. On the other hand, cell proliferation was detected in many granulosa cells surrounding the degenerating oocytes, a few epithelial cells covering ovigerous lamella and a few somatic cells associated with gonial germ cells at an early stage of sex change. Then, we found that proliferative ovarian somatic cells remained in the gonads late in the sex change process. Based on these results, we concluded that some functional somatic cells of the ovary are reused as testicular somatic cells during the gonadal sex change in the three-spot wrasse.

  2. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells.

    PubMed

    Orellana, Renan; Kato, Sumie; Erices, Rafaela; Bravo, María Loreto; Gonzalez, Pamela; Oliva, Bárbara; Cubillos, Sofía; Valdivia, Andrés; Ibañez, Carolina; Brañes, Jorge; Barriga, María Isabel; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Castellon, Enrique; Hidalgo, Patricia; Trigo, Cesar; Panes, Olga; Pereira, Jaime; Mezzano, Diego; Cuello, Mauricio A; Owen, Gareth I

    2015-04-15

    An increase in circulating platelets, or thrombocytosis, is recognized as an independent risk factor of bad prognosis and metastasis in patients with ovarian cancer; however the complex role of platelets in tumor progression has not been fully elucidated. Platelet activation has been associated with an epithelial to mesenchymal transition (EMT), while Tissue Factor (TF) protein expression by cancer cells has been shown to correlate with hypercoagulable state and metastasis. The aim of this work was to determine the effect of platelet-cancer cell interaction on TF and "Metastasis Initiating Cell (MIC)" marker levels and migration in ovarian cancer cell lines and cancer cells isolated from the ascetic fluid of ovarian cancer patients. With informed patient consent, ascitic fluid isolated ovarian cancer cells, cell lines and ovarian cancer spheres were co-cultivated with human platelets. TF, EMT and stem cell marker levels were determined by Western blotting, flow cytometry and RT-PCR. Cancer cell migration was determined by Boyden chambers and the scratch assay. The co-culture of patient-derived ovarian cancer cells with platelets causes: 1) a phenotypic change in cancer cells, 2) chemoattraction and cancer cell migration, 3) induced MIC markers (EMT/stemness), 3) increased sphere formation and 4) increased TF protein levels and activity. We present the first evidence that platelets act as chemoattractants to cancer cells. Furthermore, platelets promote the formation of ovarian cancer spheres that express MIC markers and the metastatic protein TF. Our results suggest that platelet-cancer cell interaction plays a role in the formation of metastatic foci.

  3. Molecular alterations in endometrial and ovarian clear cell carcinomas: clinical impacts of telomerase reverse transcriptase promoter mutation.

    PubMed

    Huang, Hsien-Neng; Chiang, Ying-Cheng; Cheng, Wen-Fang; Chen, Chi-An; Lin, Ming-Chieh; Kuo, Kuan-Ting

    2015-02-01

    Recently, mutations of telomerase reverse transcriptase (TERT) promoter were found in several types of cancer. A few reports demonstrate TERT promoter mutations in ovarian clear cell carcinomas but endometrial clear cell carcinoma has not been studied. The aims of this study were to compare differences of molecular alterations and clinical factors, and identify their prognostic impact in endometrial and ovarian clear cell carcinomas. We evaluated mutations of the TERT promoter and PIK3CA, expression of ARID1A, and other clinicopathological factors in 56 ovarian and 14 endometrial clear cell carcinomas. We found that TERT promoter mutations were present in 21% (3/14) of endometrial clear cell carcinomas and 16% (9/56) of ovarian clear cell carcinomas. Compared with ovarian clear cell carcinomas, endometrial clear cell carcinomas showed older mean patient age (P<0.001), preserved ARID1A immunoreactivity (P=0.017) and infrequent PIK3CA mutation (P=0.025). In ovarian clear cell carcinomas, TERT promoter mutations were correlated with patient age >45 (P=0.045) and preserved ARID1A expression (P=0.003). In cases of endometrial clear cell carcinoma, TERT promoter mutations were not statistically associated with any other clinicopathological factors. In ovarian clear cell carcinoma patients with early FIGO stage (stages I and II), TERT promoter mutation was an independent prognostic factor and correlated with a shorter disease-free survival and overall survival (P=0.015 and 0.009, respectively). In recurrent ovarian clear cell carcinoma patients with early FIGO stage, TERT promoter mutations were associated with early relapse within 6 months (P=0.018). We concluded that TERT promoter mutations were present in endometrial and ovarian clear cell carcinomas. Distinct molecular alteration patterns in endometrial and ovarian clear cell carcinomas implied different processes of tumorigenesis in these morphologically similar tumors. In ovarian clear cell carcinoma of early FIGO

  4. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    PubMed

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. NF-κB Participates in the Stem Cell Phenotype of Ovarian Cancer Cells.

    PubMed

    Gonzalez-Torres, Carolina; Gaytan-Cervantes, Javier; Vazquez-Santillan, Karla; Mandujano-Tinoco, Edna Ayerim; Ceballos-Cancino, Gisela; Garcia-Venzor, Alfredo; Zampedri, Cecilia; Sanchez-Maldonado, Paulina; Mojica-Espinosa, Raul; Jimenez-Hernandez, Luis Enrique; Maldonado, Vilma

    2017-05-01

    NF-κB is a transcription factor involved in cancer stem cells maintenance of many tumors. Little is known about the specific stem-associated upstream regulators of this pathway in ovarian cancer. The Aim of the study was to analyze the role of the canonical and non-canonical NF-κB pathways in stem cells of ovarian cancer cell lines. Stem cells were isolated using sorting cytometry. Western blot and RT-PCR were used to quantify protein and messenger RNA levels. Loss and gain of function assays were performed using siRNAs and dominant-negative proteins, respectively. NF-κB binding activity was measured with a reporter gene assay. The stem phenotype was estimated with clonogenic assays using soft agar, colony formation, ovospheres formation and in vivo tumorigenicity assays. The CD44+ subpopulation of SKOV3 ovarian cancer cell line presented higher mRNA levels of key stemness genes, an increased tumorigenic capacity and higher expression of the RelA, RelB and IKKα. When the canonical pathway was inhibited by means of a dominant-negative version of IkBα, the stem cell population was reduced, as shown by a reduced CD44+ subpopulation, a decrease in the expression of the stemness genes and a reduction of the stem phenotype. In addition, IKKα, the main upstream non-canonical kinase, was highly expressed in the CSC population. Accordingly, when IKKα was inhibited using shRNAs, the expression of the stemness genes was reduced. This report is the first to show the importance of several elements of both NF-κB pathway in maintaining the ovarian cancer stem cell population. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  6. RhoA/ROCK pathway mediates leptin-induced uPA expression to promote cell invasion in ovarian cancer cells.

    PubMed

    Ghasemi, Ahmad; Hashemy, Seyed Isaac; Aghaei, Mahmoud; Panjehpour, Mojtaba

    2017-04-01

    Previous studies have shown that leptin, an adipocyte-secreted hormone, stimulates ovarian cancer invasion. Here, we investigated the contribution of uPA in leptin-induced ovarian cancer cell invasion. The cell invasion and migration experiments were carried out using matrigel invasion and wound healing assays in ovarian cancer cell lines (OVCAR3, SKOV3and CaoV-3). The mechanism underlying the invasive effect of leptin was examined using cell transfection with Ob-Rb siRNA, pre-treatment with a specific inhibitor of RhoA and ROCK, RhoA activation assay, OB-Rb, Rock and upA protein expression. Our results show that leptin induced ovarian cancer cell invasion via up-regulating upA in a time and dose-dependent manner, which was attenuated using knockdown of OB-Rb by siRNA. Moreover, pre-incubation with C3 (inhibitor of RhoA) and Y-27632 (inhibitor of ROCK) effectively attenuated leptin-induced upA expression and inhibited invasive ability of ovarian cancer cells. We also found that pretreatment with inhibitors of PI3K/AKT (LY294002), JAK/STAT (AG490) and NF-kB (BAY 11-7082) significantly reduced leptin-induced upA expression. Collectively, our findings demonstrate that OB-Rb, RhoA/ROCK, PI3K/AKT, JAK/STAT pathways and NF-kB activation are involved in leptin-induced upA expression. These results may provide a new mechanism that facilitates leptin-induced ovarian cancer invasion. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Synergistic Lethality of Mifepristone and LY294002 in Ovarian Cancer Cells

    PubMed Central

    Wempe, Stacy L.; Gamarra-Luques, Carlos D.; Telleria, Carlos M.

    2013-01-01

    We have previously shown that the antiprogestin and antiglucocorticoid mifepristone inhibits the growth of ovarian cancer cells. In this work, we hypothesized that cellular stress caused by mifepristone is limited to cytostasis and that cell killing is avoided as a consequence of the persistent activity of the PI3K/Akt survival pathway. To investigate the role of this pathway in mifepristone-induced growth inhibition, human ovarian cancer cells of various histological subtypes and genetic backgrounds were exposed to cytostatic doses of mifepristone in the presence or absence of the PI3K inhibitor, LY294002. The activation of Akt in ovarian cancer cells, as marked by its phosphorylation on Ser473, was not modified by cytostatic concentrations of mifepristone, but it was blocked upon treatment with LY294002. The combination mifepristone/LY294002, but not the individual drugs, killed ovarian cancer cells via apoptosis, as attested by genomic DNA fragmentation and cleavage of caspase-3, and the concomitant downregulation of antiapoptotic proteins Bcl-2 and XIAP. From a pharmacological standpoint, when assessing cell growth inhibition using a median-dose analysis algorithm, the interaction between mifepristone and LY294002 was synergistic. The lethality caused by the combination mifepristone/LY294004 in 2-dimensional cell cultures was recapitulated in organized, 3-dimensional spheroids. This study demonstrates that mifepristone and LY294002 when used individually cause cell growth arrest; yet, when combined, they cause lethality. PMID:23420486

  8. Temsirolimus and Bevacizumab in Treating Patients With Advanced Endometrial, Ovarian, Liver, Carcinoid, or Islet Cell Cancer

    ClinicalTrials.gov

    2017-07-10

    Adult Hepatocellular Carcinoma; Advanced Adult Hepatocellular Carcinoma; Endometrial Serous Adenocarcinoma; Localized Non-Resectable Adult Liver Carcinoma; Lung Carcinoid Tumor; Malignant Pancreatic Gastrinoma; Malignant Pancreatic Glucagonoma; Malignant Pancreatic Insulinoma; Malignant Pancreatic Somatostatinoma; Metastatic Digestive System Neuroendocrine Tumor G1; Ovarian Carcinosarcoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Surface Papillary Adenocarcinoma; Pancreatic Alpha Cell Adenoma; Pancreatic Beta Cell Adenoma; Pancreatic Delta Cell Adenoma; Pancreatic G-Cell Adenoma; Pancreatic Polypeptide Tumor; Recurrent Adult Liver Carcinoma; Recurrent Digestive System Neuroendocrine Tumor G1; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Pancreatic Neuroendocrine Carcinoma; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Regional Digestive System Neuroendocrine Tumor G1; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIA Uterine Corpus Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIB Uterine Corpus Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IIIC Uterine Corpus Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer; Stage IVA Uterine Corpus Cancer; Stage IVB Uterine Corpus Cancer; Uterine Carcinosarcoma

  9. Menstrual pain and risk of epithelial ovarian cancer: Results from the Ovarian Cancer Association Consortium.

    PubMed

    Babic, Ana; Harris, Holly R; Vitonis, Allison F; Titus, Linda J; Jordan, Susan J; Webb, Penelope M; Risch, Harvey A; Rossing, Mary Anne; Doherty, Jennifer A; Wicklund, Kristine; Goodman, Marc T; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Kjaer, Susanne K; Schildkraut, Joellen; Berchuck, Andrew; Pearce, Celeste L; Wu, Anna H; Cramer, Daniel W; Terry, Kathryn L

    2018-02-01

    Menstrual pain, a common gynecological condition, has been associated with increased risk of ovarian cancer in some, but not all studies. Furthermore, potential variations in the association between menstrual pain and ovarian cancer by histologic subtype have not been adequately evaluated due to lack of power. We assessed menstrual pain using either direct questions about having experienced menstrual pain, or indirect questions about menstrual pain as indication for use of hormones or medications. We used multivariate logistic regression to calculate the odds ratio (OR) for the association between severe menstrual pain and ovarian cancer, adjusting for potential confounders and multinomial logistic regression to calculate ORs for specific histologic subtypes. We observed no association between ovarian cancer and menstrual pain assessed by indirect questions. Among studies using direct question, severe pain was associated with a small but significant increase in overall risk of ovarian cancer (OR = 1.07, 95% CI: 1.01-1.13), after adjusting for endometriosis and other potential confounders. The association appeared to be more relevant for clear cell (OR = 1.48, 95% CI: 1.10-1.99) and serous borderline (OR = 1.31, 95% CI: 1.05-1.63) subtypes. In this large international pooled analysis of case-control studies, we observed a small increase in risk of ovarian cancer for women reporting severe menstrual pain. While we observed an increased ovarian cancer risk with severe menstrual pain, the possibility of recall bias and undiagnosed endometriosis cannot be excluded. Future validation in prospective studies with detailed information on endometriosis is needed. © 2017 UICC.

  10. Peptidoglycan inhibits progesterone and androstenedione production in bovine ovarian theca cells.

    PubMed

    Magata, F; Horiuchi, M; Miyamoto, A; Shimizu, T

    2014-08-01

    Uterine bacterial infection perturbs uterine and ovarian functions in postpartum dairy cows. Peptidoglycan (PGN) produced by gram-positive bacteria has been shown to disrupt the ovarian function in ewes. The aim of this study was to determine the effect of PGN on steroid production in bovine theca cells at different stages of follicular development. Bovine theca cells isolated from pre- and post-selection ovarian follicles (<8.5mm and >8.5mm in diameter, respectively) were cultured in vitro and challenged with PGN. Steroid production was evaluated by measuring progesterone (P4) and androstenedione (A4) concentration in culture media after 48 h or 96 h of culture. Bovine theca cells expressed PGN receptors including Toll-like receptor 2 and nucleotide-binding oligomerization domain 1 and 2. Treatment with PGN (1, 10, or 50 μg/ml) led to a decrease in P4 and A4 production by theca cells in both pre- and post-selection follicles. The mRNA expression of steroidogenic enzymes were decreased by PGN treatment. Moreover, A4 production was further suppressed when theca cells of post-selection follicles were simultaneously treated by PGN and lipopolysaccharide (0.1, 1, or 10 μg/ml). These findings indicate that bacterial toxins may act locally on ovarian steroidogenic cells and compromise follicular development in postpartum dairy cows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Inactivation of EGFR/AKT signaling enhances TSA-induced ovarian cancer cell differentiation.

    PubMed

    Shao, Genbao; Lai, Wensheng; Wan, Xiaolei; Xue, Jing; Wei, Ye; Jin, Jie; Zhang, Liuping; Lin, Qiong; Shao, Qixiang; Zou, Shengqiang

    2017-05-01

    Ovarian tumor is one of the most lethal gynecologic cancers, but differentiation therapy for this cancer is poorly characterized. Here, we show that thrichostatin A (TSA), the well known inhibitor of histone deacetylases (HDACs), can induce cell differentiation in HO8910 ovarian cancer cells. TSA-induced cell differentiation is characterized by typical morphological change, increased expression of the differentiation marker FOXA2, decreased expression of the pluripotency markers SOX2 and OCT4, suppressing cell proliferation, and cell cycle arrest in the G1 phase. TSA also induces an elevated expression of cell cycle inhibitory protein p21Cip1 along with a decrease in cell cycle regulatory protein cyclin D1. Significantly, blockage of epidermal growth factor receptor (EGFR) signaling pathway with specific inhibitors of this signaling cascade promotes the TSA-induced differentiation of HO8910 cells. These results imply that the EGFR cascade inhibitors in combination with TSA may represent a promising differentiation therapy strategy for ovarian cancer.

  12. Fertility-sparing surgery in advanced stage malignant ovarian germ cell tumor: a case report.

    PubMed

    Ghalleb, Montassar; Bouzaiene, Hatem; Slim, Skander; Hadiji, Achraf; Hechiche, Monia; Ben Hassouna, Jamel; Rahal, Khaled

    2017-12-17

    Malignant ovarian germ cell tumor is a rare type of disease, which generally has a good prognosis due to the high chemosensitivity of this type of tumor. Fertility preservation is an important issue because malignant ovarian germ cell tumor commonly affects young women. Although conservation is the standard for early stage, it becomes more debatable as the disease progresses to more advanced stages. Report the case of a patient with an International Federation of Gynecology and Obstetrics Stage IIIc malignant ovarian germ cell tumor, who had conservative surgery and chemotherapy with a good fertility outcome. A 23-year-old North African woman with a left malignant ovarian germ cell tumor stage IIIc was treated by left adnexectomy and omentectomy followed by chemotherapy. A 15-year follow-up showed no signs of relapse, and she completed three full-term natural pregnancies. Malignant ovarian germ cell tumor is a rare ovarian tumor with a good prognosis. It is usually associated with a good fertility outcome in early stages. However, due to the rarity of the disease in advanced stages, the fertility outcome for this group of patients is not clear. This lack of data surrounding advanced stages points to the need for a meta-analysis of all published cases.

  13. Evaluating the progenitor cells of ovarian cancer: analysis of current animal models.

    PubMed

    King, Shelby M; Burdette, Joanna E

    2011-07-01

    Serous ovarian cancer is one of the most lethal gynecological malignancies. Progress on effective diagnostics and therapeutics for this disease are hampered by ambiguity as to the cellular origins of this histotype of ovarian cancer, as well as limited suitable animal models to analyze early stages of disease. In this report, we will review current animal models with respect to the two proposed progenitor cells for serous ovarian cancer, the ovarian surface epithelium and the fallopian tube epithelium.

  14. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia.

    PubMed

    Jiang, Jin-Yi; Cheung, Carmen K M; Wang, Yifang; Tsang, Benjamin K

    2003-01-01

    Mammalian ovarian follicular development and atresia is closely regulated by the cross talk of cell death and cell survival signals, which include endocrine hormones (gonadotropins) and intra-ovarian regulators (gonadal steroids, cytokines and growth factors). The fate of the follicle is dependent on a delicate balance in the expression and actions of factors promoting follicular cell proliferation, growth and differentiation and of those inducing programmed cell death (apoptosis). As an important endocrine hormone, FSH binds to its granulosa cell receptors and promotes ovarian follicle survival and growth not only by stimulating proliferation and estradiol secretion of these cells, but also inhibiting the apoptosis by up-regulating the expression of intracellular anti-apoptotic proteins, such as XIAP and FLIP. In addition, intra-ovarian regulators, such as TGF-alpha and TNF-alpha, also play an important role in the control of follicular development and atresia. In response to FSH, Estradiol-17 beta synthesized from the granulosa cells stimulates thecal expression of TGF-alpha, which in turn increases granulosa cell XIAP expression and proliferation. The death receptor and ligand, Fas and Fas ligand, are expressed in granulosa cells following gonadotropin withdrawal, culminating in caspase-mediated apoptosis and follicular atresia. In contrast, TNF-alpha has both survival and pro-apoptotic function in the follicle, depending on the receptor subtype activated, but has been shown to promote granulosa cell survival by increasing XIAP and FLIP expression via the IkappaB-NFkappaB pathway. The pro-apoptotic action of TNF-alpha is mediated through the activation of caspases, via its receptor- (i.e. Caspases-8 and -3) and mitochrondria- (i.e. Caspase-9 and -3) death pathways. In the present manuscript, we have reviewed the actions and interactions of gonadotropins and intra-ovarian regulators in the control of granulosa cell fate and ultimately follicular destiny. We have

  15. Regulation of Injury-Induced Ovarian Regeneration by Activation of Oogonial Stem Cells.

    PubMed

    Erler, Piril; Sweeney, Alexandra; Monaghan, James R

    2017-01-01

    Some animals have the ability to generate large numbers of oocytes throughout life. This raises the question whether persistent adult germline stem cell populations drive continuous oogenesis and whether they are capable of mounting a regenerative response after injury. Here we demonstrate the presence of adult oogonial stem cells (OSCs) in the adult axolotl salamander ovary and show that ovarian injury induces OSC activation and functional regeneration of the ovaries to reproductive capability. Cells that have morphological similarities to germ cells were identified in the developing and adult ovaries via histological analysis. Genes involved in germ cell maintenance including Vasa, Oct4, Sox2, Nanog, Bmp15, Piwil1, Piwil2, Dazl, and Lhx8 were expressed in the presumptive OSCs. Colocalization of Vasa protein with H3 mitotic marker showed that both oogonial and spermatogonial adult stem cells were mitotically active. Providing evidence of stemness and viability of adult OSCs, enhanced green fluorescent protein (EGFP) adult OSCs grafted into white juvenile host gonads gave rise to EGFP OSCs, and oocytes. Last, the axolotl ovaries completely regenerated after partial ovariectomy injury. During regeneration, OSC activation resulted in rapid differentiation into new oocytes, which was demonstrated by Vasa + /BrdU + coexpression. Furthermore, follicle cell proliferation promoted follicle maturation during ovarian regeneration. Overall, these results show that adult oogenesis occurs via proliferation of endogenous OSCs in a tetrapod and mediates ovarian regeneration. This study lays the foundations to elucidate mechanisms of ovarian regeneration that will assist regenerative medicine in treating premature ovarian failure and reduced fertility. Stem Cells 2017;35:236-247. © 2016 AlphaMed Press.

  16. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance

    PubMed Central

    Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I.; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H.; MacLaughlin, David T.; Donahoe, Patricia K.; Wei, Xiaolong

    2012-01-01

    Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad−) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad− cells. Similarly, proliferation of the 3+Ecad− cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3−Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad− subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad− cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics. PMID:22308459

  17. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance.

    PubMed

    Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H; MacLaughlin, David T; Donahoe, Patricia K; Wei, Xiaolong

    2012-02-14

    Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad-) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad- cells. Similarly, proliferation of the 3+Ecad- cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3-Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad- subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad- cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics.

  18. Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling.

    PubMed

    Xia, Rong; Chen, Sun-Xiao; Qin, Qin; Chen, Yan; Zhang, Wei-Wei; Zhu, Rong-Rong; Deng, An-Mei

    2016-01-01

    Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway.

  19. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers.

    PubMed

    Burleson, Kathryn M; Casey, Rachael C; Skubitz, Keith M; Pambuccian, Stephan E; Oegema, Theodore R; Skubitz, Amy P N

    2004-04-01

    Ovarian carcinoma cells form multicellular aggregates, or spheroids, in the peritoneal cavity of patients with advanced disease. The current paradigm that ascites spheroids are non-adhesive leaves their contribution to ovarian carcinoma dissemination undefined. Here, spheroids obtained from ovarian carcinoma patients' ascites were characterized for their ability to adhere to molecules encountered in the peritoneal cavity, with the goal of establishing their potential to contribute to ovarian cancer spread. Spheroids were recovered from the ascites fluid of 11 patients with stage III or stage IV ovarian carcinoma. Adhesion assays to extracellular matrix (ECM) proteins and human mesothelial cell monolayers were performed for each of the ascites spheroid samples. Subsequently, inhibition assays were performed to identify the cell receptors involved. Most ascites samples adhered moderately to fibronectin and type I collagen, with reduced adhesion to type IV collagen and laminin. Monoclonal antibodies against the beta1 integrin subunit partially inhibited this adhesion. Ascites spheroids also adhered to hyaluronan. Additionally, spheroids adhered to live, but not fixed, human mesothelial cell monolayers, and this adhesion was partially mediated by beta1 integrins. The cellular content of the ascites fluid has often been considered non-adhesive, but our findings are the first to suggest that patient-derived ascites spheroids can adhere to mesothelial extracellular matrix via beta1 integrins, indicating that spheroids should not be ignored in the dissemination of ovarian cancer.

  20. Quantitative analysis of cell-free DNA in ovarian cancer.

    PubMed

    Shao, Xuefeng; He, Yan; Ji, Min; Chen, Xiaofang; Qi, Jing; Shi, Wei; Hao, Tianbo; Ju, Shaoqing

    2015-12-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ovarian tumor cases, and 19 healthy, non-cancerous ovaries. bDNA techniques were used to detect serum cf-DNA concentrations. All data were analyzed using SPSS version 18.0. The cf-DNA levels were significantly increased in the ovarian cancer group compared with those of the benign ovarian tumor group and healthy ovarian group (P<0.01). Furthermore, cf-DNA levels were significantly increased in stage III and IV ovarian cancer compared with those of stages I and II (P<0.01). In addition, cf-DNA levels were significantly increased on the first day post-surgery (P<0.01), and subsequently demonstrated a gradual decrease. In the ovarian cancer group, the area under the receiver operating characteristic curve of cf-DNA and the sensitivity were 0.917 and 88.9%, respectively, which was higher than those of cancer antigen 125 (0.724, 75%) and human epididymis protein 4 (0.743, 80.6%). There was a correlation between the levels of serum cf-DNA and the occurrence and development of ovarian cancer in the patients evaluated. bDNA techniques possessed higher sensitivity and specificity than other methods for the detection of serum cf-DNA in patients exhibiting ovarian cancer, and bDNA techniques are more useful for detecting cf-DNA than other factors. Thus, the present study demonstrated the potential value for the use of bDNA as an adjuvant diagnostic method for ovarian cancer.

  1. Ovarian endometriosis-associated stromal cells reveal persistently high affinity for iron.

    PubMed

    Mori, Masahiko; Ito, Fumiya; Shi, Lei; Wang, Yue; Ishida, Chiharu; Hattori, Yuka; Niwa, Masato; Hirayama, Tasuku; Nagasawa, Hideko; Iwase, Akira; Kikkawa, Fumitaka; Toyokuni, Shinya

    2015-12-01

    Ovarian endometriosis is a recognized risk for infertility and epithelial ovarian cancer, presumably due to iron overload resulting from repeated hemorrhage. To find a clue for early detection and prevention of ovarian endometriosis-associated cancer, it is mandatory to evaluate catalytic (labile) ferrous iron (catalytic Fe(II)) and to study iron manipulation in ovarian endometriotic lesions. By the use of tissues from women of ovarian endometriosis as well as endometrial tissue from women with and without endometriosis, we for the first time performed histological analysis and cellular detection of catalytic Fe(II) with a specific fluorescent probe (HMRhoNox-M), and further evaluated iron transport proteins in the human specimens and in co-culture experiments using immortalized human eutopic/ectopic endometrial stromal cells (ESCs) in the presence or absence of epithelial cells (EpCs). The amounts of catalytic Fe(II) were higher in ectopic endometrial stromal cells (ecESCs) than in normal eutopic endometrial stromal cells (n-euESCs) both in the tissues and in the corresponding immortalized ESCs. ecESCs exhibited higher transferrin receptor 1 expression both in vivo and in vitro and lower ferroportin expression in vivo than n-euESCs, leading to sustained iron uptake. In co-culture experiments of ESCs with iron-loaded EpCs, ecESCs received catalytic ferrous iron from EpCs, but n-euESCs did not. These data suggest that ecESC play a protective role for cancer-target epithelial cells by collecting excess iron, and that these characteristics are retained in the immortalized ecESCs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. MARCH5 RNA promotes autophagy, migration, and invasion of ovarian cancer cells.

    PubMed

    Hu, Jianguo; Meng, Ying; Zhang, Zhanqin; Yan, Qiuting; Jiang, Xingwei; Lv, Zilan; Hu, Lina

    2017-02-01

    MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.

  3. Long non-coding RNA NNT-AS1 contributes to cell proliferation, metastasis and apoptosis in human ovarian cancer.

    PubMed

    Huang, Yaqing; Shi, Junyu; Xu, Yun

    2018-06-01

    Ovarian cancer is a markedly heterogeneous malignancy characterized by various histological subtypes. Molecular biomarkers have been indicated to serve significant functions in the early diagnosis and treatment of early-stage ovarian cancer. However, the detailed mechanism underlying the tumorigenesis of ovarian cancer remains unclear. The present study aimed to identify a novel long non-coding RNA in patients with ovarian cancer. Nicotinamide nucleotide transhydrogenase-antisense 1 (NNT-AS1) was markedly downregulated in patients with ovarian cancer and in cultured human ovarian cancer cells. Knockdown of NNT-AS1 in the human ovarian cancer cell lines HO-8910 and SK-OV-3 promoted colony formation and arrested the cell cycle at G 0 /G 1 phase. Furthermore, Transwell demonstrated that the downregulation of NNT-AS1 increased cell migration and invasion by ~60 and 70%, respectively, in HO-8910 and SK-OV-3 cells. Furthermore, cell apoptosis was inhibited by the transfection of siNNT-AS1 in the two cell lines, whereas the relative activities of caspase-3 and caspase-9 were decreased. These results indicated a protective function of NNT-AS1 in human ovarian cancer, providing novel insights into the diagnosis and treatment of ovarian cancer in clinical settings.

  4. Epigenetic determinants of ovarian clear cell carcinoma biology

    PubMed Central

    Yamaguchi, Ken; Huang, Zhiqing; Matsumura, Noriomi; Mandai, Masaki; Okamoto, Takako; Baba, Tsukasa; Konishi, Ikuo; Berchuck, Andrew; Murphy, Susan K.

    2015-01-01

    Targeted approaches have revealed frequent epigenetic alterations in ovarian cancer, but the scope and relation of these changes to histologic subtype of disease is unclear. Genome-wide methylation and expression data for 14 clear cell carcinoma (CCC), 32 non-CCC, and 4 corresponding normal cell lines were generated to determine how methylation profiles differ between cells of different histological derivations of ovarian cancer. Consensus clustering showed that CCC is epigenetically distinct. Inverse relationships between expression and methylation in CCC were identified, suggesting functional regulation by methylation, and included 22 hypomethylated (UM) genes and 276 hypermethylated (HM) genes. Categorical and pathway analyses indicated that the CCC-specific UM genes were involved in response to stress and many contain hepatocyte nuclear factor (HNF) 1 binding sites, while the CCC-specific HM genes included members of the estrogen receptor alpha (ERalpha) network and genes involved in tumor development. We independently validated the methylation status of 17 of these pathway-specific genes, and confirmed increased expression of HNF1 network genes and repression of ERalpha pathway genes in CCC cell lines and primary cancer tissues relative to non-CCC specimens. Treatment of three CCC cell lines with the demethylating agent Decitabine significantly induced expression for all five genes analyzed. Coordinate changes in pathway expression were confirmed using two primary ovarian cancer datasets (p<0.0001 for both). Our results suggest that methylation regulates specific pathways and biological functions in CCC, with hypomethylation influencing the characteristic biology of the disease while hypermethylation contributes to the carcinogenic process. PMID:24382740

  5. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    PubMed

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum.

    PubMed

    Nakamura, Michihiko; Ono, Yoshihiro J; Kanemura, Masanori; Tanaka, Tomohito; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2015-11-01

    A current working model for the metastatic process of ovarian carcinoma suggests that cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the layer of mesothelial cells that line the inner surface of the peritoneum, and several studies suggest that hepatocyte growth factor (HGF) plays an important role in the dissemination of ovarian cancer. Our objectives were to evaluate the HGF expression of ovarian cancer using clinical data and assess the effect of HGF secreted from human ovarian cancer cells to human mesothelial cells. HGF expression was immunohistochemically evaluated in 165 epithelial ovarian cancer patients arranged as tissue microarrays. HGF expression in four ovarian cancer cell lines was evaluated by using semi-quantitative polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay. The effect of ovarian cancer cell derived HGF to the human mesothelial cells was assessed by using morphologic analysis, Western blotting and cell invasion assay. The effect of HGF on ovarian cancer metastasis was assessed by using in vivo experimental model. The clinical data showed a significantly high correlation between the HGF expression and the cancer stage. The in vivo and in vitro experimental models revealed that HGF secreted by ovarian cancer cells induces the mesothelial-to-mesenchymal transition and stimulates the invasion of mesothelial cells. Furthermore, manipulating the HGF activity affected the degree of dissemination and ascite formation. We demonstrated that HGF secreted by ovarian cancer cells plays an important role in cancer peritoneal implantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Glutamate Cysteine Ligase Modifier Subunit (Gclm) Null Mice Have Increased Ovarian Oxidative Stress and Accelerated Age-Related Ovarian Failure

    PubMed Central

    Lim, Jinhwan; Nakamura, Brooke N.; Mohar, Isaac; Kavanagh, Terrance J.

    2015-01-01

    Glutathione (GSH) is the one of the most abundant intracellular antioxidants. Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in GSH synthesis, have decreased GSH. Our prior work showed that GSH plays antiapoptotic roles in ovarian follicles. We hypothesized that Gclm−/− mice have accelerated ovarian aging due to ovarian oxidative stress. We found significantly decreased ovarian GSH concentrations and oxidized GSH/oxidized glutathione redox potential in Gclm−/− vs Gclm+/+ ovaries. Prepubertal Gclm−/− and Gclm+/+ mice had similar numbers of ovarian follicles, and as expected, the total number of ovarian follicles declined with age in both genotypes. However, the rate of decline in follicles was significantly more rapid in Gclm−/− mice, and this was driven by accelerated declines in primordial follicles, which constitute the ovarian reserve. We found significantly increased 4-hydroxynonenal immunostaining (oxidative lipid damage marker) and significantly increased nitrotyrosine immunostaining (oxidative protein damage marker) in prepubertal and adult Gclm−/− ovaries compared with controls. The percentage of small ovarian follicles with increased granulosa cell proliferation was significantly higher in prepubertal and 2-month-old Gclm−/− vs Gclm+/+ ovaries, indicating accelerated recruitment of primordial follicles into the growing pool. The percentages of growing follicles with apoptotic granulosa cells were increased in young adult ovaries. Our results demonstrate increased ovarian oxidative stress and oxidative damage in young Gclm−/− mice, associated with an accelerated decline in ovarian follicles that appears to be mediated by increased recruitment of follicles into the growing pool, followed by apoptosis at later stages of follicular development. PMID:26083875

  8. A novel estrogen receptor GPER mediates proliferation induced by 17β-estradiol and selective GPER agonist G-1 in estrogen receptor α (ERα)-negative ovarian cancer cells.

    PubMed

    Liu, Huidi; Yan, Yan; Wen, Haixia; Jiang, Xueli; Cao, Xuefeng; Zhang, Guangmei; Liu, Guoyi

    2014-05-01

    G protein-coupled estrogen receptor (GPER) is recently identified as a membrane-associated estrogen receptor that mediates non-genomic effects of estrogen. Our previous immunohistochemistry study found an association between GPER and the proliferation of epithelial ovarian cancer. However, the contributions and mechanisms of GPER in the proliferation of ovarian cancers are not clear. We have examined the role of GPER in estrogen receptor α (ERα)-negative/GPER positive OVCAR5 ovarian cancer cell line. MTT assay was used to detect cell proliferation. BrdU incorporation assay was used to measure the cells in S-phase. Protein expression of marker genes of proliferation, cell cycle and apoptosis were examined by Western blot. The results showed that 17β-estradiol and selective GPER agonist G-1 stimulated the proliferation of OVCAR5 cells and increased the cells in S-phase. Both ligands upregulated the protein levels of c-fos and cyclin D1. Small interfering RNA targeting GPER or G protein inhibitor pertussin toxin (PTX) inhibited basal cell proliferation and attenuated 17β-estradiol- or G-1-induced cell proliferation. GPER mediated cell growth was also associated with the apoptosis of OVCAR5 cells. These findings suggest that GPER has an important function in the proliferation of ovarian cancer cells lacking ERα. GPER might be a promising therapeutic target in ovarian cancer. © 2014 International Federation for Cell Biology.

  9. Induction of a menopausal state alters the growth and histology of ovarian tumors in a mouse model of ovarian cancer.

    PubMed

    Laviolette, Laura A; Ethier, Jean-François; Senterman, Mary K; Devine, Patrick J; Vanderhyden, Barbara C

    2011-05-01

    Ovarian cancer is often diagnosed in women after menopause when the levels of the serum gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are increased because of the depletion of growing follicles within the ovary. The ability of FSH and LH to modulate the disease has not been well studied owing to a lack of physiologically relevant models of ovarian cancer. In this study, 4-vinylcyclohexene diepoxide (VCD) was used to deplete ovarian follicles and increase the levels of circulating FSH and LH in the tgCAG-LS-TAg mouse model of ovarian cancer. VCD-induced follicle depletion was performed either before or after induction of the oncogene SV40 large and small T-antigens in the ovarian surface epithelial cells of tgCAG-LS-TAg mice, which was mediated by the intrabursal delivery of an adenovirus expressing Cre recombinase (AdCre). tgCAG-LS-TAg mice injected with AdCre developed undifferentiated ovarian tumors with mixed epithelial and stromal components and some features of sex cord stromal tumors. Treatment with VCD before or after AdCre injection yielded tumors of similar histology, but with the unique appearance of Sertoli cell nests. In mice treated with VCD before the induction of tumorigenesis, the ovarian tumors tended to grow more slowly. The human ovarian cancer cell lines SKOV3 and OVCAR3 responded similarly to increased levels of gonadotropins in a second model of menopause, growing more slowly in ovariectomized mice compared with cycling controls. These results suggest that follicle depletion and increased gonadotropin levels can alter the histology and the rate of growth of ovarian tumors.

  10. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance.

    PubMed

    Martirosyan, Anna; Clendening, James W; Goard, Carolyn A; Penn, Linda Z

    2010-03-18

    Ovarian carcinoma is a rarely curable disease, for which new treatment options are required. As agents that block HMG-CoA reductase and the mevalonate pathway, the statin family of drugs are used in the treatment of hypercholesterolemia and have been shown to trigger apoptosis in a tumor-specific manner. Recent clinical trials show that the addition of statins to traditional chemotherapeutic strategies can increase efficacy of targeting statin-sensitive tumors. Our goal was to assess statin-induced apoptosis of ovarian cancer cells, either alone or in combination with chemotherapeutics, and then determine these mechanisms of action. The effect of lovastatin on ovarian cancer cell lines was evaluated alone and in combination with cisplatin and doxorubicin using several assays (MTT, TUNEL, fixed PI, PARP cleavage) and synergy determined by evaluating the combination index. The mechanisms of action were evaluated using functional, molecular, and pharmacologic approaches. We demonstrate that lovastatin induces apoptosis of ovarian cancer cells in a p53-independent manner and synergizes with doxorubicin, a chemotherapeutic agent used to treat recurrent cases of ovarian cancer. Lovastatin drives ovarian tumor cell death by two mechanisms: first, by blocking HMG-CoA reductase activity, and second, by sensitizing multi-drug resistant cells to doxorubicin by a novel mevalonate-independent mechanism. This inhibition of drug transport, likely through inhibition of P-glycoprotein, potentiates both DNA damage and tumor cell apoptosis. The results of this research provide pre-clinical data to warrant further evaluation of statins as potential anti-cancer agents to treat ovarian carcinoma. Many statins are inexpensive, off-patent generic drugs that are immediately available for use as anti-cancer agents. We provide evidence that lovastatin triggers apoptosis of ovarian cancer cells as a single agent by a mevalonate-dependent mechanism. Moreover, we also show lovastatin synergizes

  11. Systemic mesenchymal stem cells reduce growth rate of cisplatin-resistant ovarian cancer.

    PubMed

    Zhu, Pengfei; Chen, Mo; Wang, Li; Ning, Yanxia; Liang, Jie; Zhang, Hao; Xu, Congjian; Chen, Sifeng; Yao, Liangqing

    2013-01-01

    Epithelial ovarian cancer is one of the most malignant cancers in women and resistant to chemotherapy is the major obstacle for the five-year survival rate. Cisplatin is one of the effective anticancer drug used in the ovarian cancer. To find a good strategy to cure the tumors which is resistant to cisplatin, the cisplatin-resistant 3SKOV3 cells were selected from SKOV-3 ovarian cancer cells. Furthermore, the isolated mesenchymal stem cells were infused systemically to try to cure the transplanted tumor induced by 3SKOV3 cells in nude mice. The morphology and cell membrane CD44 expression were investigated by microscope and flow cytometry. The biological behaviors of resistant 3SKOV3 and its parental SKOV3 cells, including proliferation, adhesion, and cell cycle were determined by CCK8, absorbance assay and FCM methods. The transplanted tumors were set up in nude mice with 3SKOV3 cells injection. The growth rate of transplanted tumors was detected following with MSCs injection. The 3SKOV3 cells have different morphologic manifestation and expressed high level of CD44 molecule. At the same time, 3SKOV3 cells have less adhesion ability and less S-phase ratio. The isolated MSCs from bone marrow could inhibit the growth of transplanted tumor via systemic injection. The cisplatin-resistant 3SKOV3 cells have the different biological behaviors as its parental SKOV3 cells. The present study indicated that systemic MSCs have the therapeutic role on ovarian cancer. However, further investigations are in progress to elucidate the underlying mechanism.

  12. CDDO-Me reveals USP7 as a novel target in ovarian cancer cells.

    PubMed

    Qin, Dongjun; Wang, Weiwei; Lei, Hu; Luo, Hao; Cai, Haiyan; Tang, Caixia; Wu, Yunzhao; Wang, Yingying; Jin, Jin; Xiao, Weilie; Wang, Tongdan; Ma, Chunmin; Xu, Hanzhang; Zhang, Jinfu; Gao, Fenghou; Wu, Ying-Li

    2016-11-22

    Deubiquitinating enzyme USP7 has been involved in the pathogenesis and progression of several cancers. Targeting USP7 is becoming an attractive strategy for cancer therapy. In this study, we identified synthetic triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) as a novel inhibitor of USP7 but not of other cysteine proteases such as cathepsin B and cathepsin D. CDDO-Me inhibits USP7 activity via a mechanism that is independent of the presence of α, β-unsaturated ketones. Molecular docking studies showed that CDDO-Me fits well in the ubiquitin carboxyl terminus-binding pocket on USP7. Given that CDDO-Me is known to be effective against ovarian cancer cells, we speculated that CDDO-Me may target USP7 in ovarian cancer cells. We demonstrated that ovarian cancer cells have higher USP7 expression than their normal counterparts. Knockdown of USP7 inhibits the proliferation of ovarian cancer cells both in vitro and in vivo. Using the cellular thermal shift assay and the drug affinity responsive target stability assay, we further demonstrated that CDDO-Me directly binds to USP7 in cells, which leads to the decrease of its substrates such as MDM2, MDMX and UHRF1. CDDO-Me suppresses ovarian cancer tumor growth in an xenograft model. In conclusion, we demonstrate that USP7 is a novel target of ovarian cancer cells; targeting USP7 may contribute to the anti-cancer effect of CDDO-Me. The development of novel USP7 selective compounds based on the CDDO-Me-scaffold warrants further investigation.

  13. CDDO-Me reveals USP7 as a novel target in ovarian cancer cells

    PubMed Central

    Cai, Haiyan; Tang, Caixia; Wu, Yunzhao; Wang, Yingying; Jin, Jin; Xiao, Weilie; Wang, Tongdan; Ma, Chunmin; Xu, Hanzhang; Zhang, Jinfu; Gao, Fenghou; Wu, Ying-Li

    2016-01-01

    Deubiquitinating enzyme USP7 has been involved in the pathogenesis and progression of several cancers. Targeting USP7 is becoming an attractive strategy for cancer therapy. In this study, we identified synthetic triterpenoid C-28 methyl ester of 2-cyano-3, 12-dioxoolen-1, 9-dien-28-oic acid (CDDO-Me) as a novel inhibitor of USP7 but not of other cysteine proteases such as cathepsin B and cathepsin D. CDDO-Me inhibits USP7 activity via a mechanism that is independent of the presence of α, β-unsaturated ketones. Molecular docking studies showed that CDDO-Me fits well in the ubiquitin carboxyl terminus-binding pocket on USP7. Given that CDDO-Me is known to be effective against ovarian cancer cells, we speculated that CDDO-Me may target USP7 in ovarian cancer cells. We demonstrated that ovarian cancer cells have higher USP7 expression than their normal counterparts. Knockdown of USP7 inhibits the proliferation of ovarian cancer cells both in vitro and in vivo. Using the cellular thermal shift assay and the drug affinity responsive target stability assay, we further demonstrated that CDDO-Me directly binds to USP7 in cells, which leads to the decrease of its substrates such as MDM2, MDMX and UHRF1. CDDO-Me suppresses ovarian cancer tumor growth in an xenograft model. In conclusion, we demonstrate that USP7 is a novel target of ovarian cancer cells; targeting USP7 may contribute to the anti-cancer effect of CDDO-Me. The development of novel USP7 selective compounds based on the CDDO-Me-scaffold warrants further investigation. PMID:27780924

  14. Ovarian Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Ovarian germ cell tumors treatment options include surgery, chemotherapy, and radiation therapy. Get detailed treatment information for newly diagnosed or recurrent germ cell tumors in this summary for clinicians.

  15. Synergistic effects of the sesquiterpene lactone, EPD, with cisplatin and paclitaxel in ovarian cancer cells.

    PubMed

    van Haaften, Caroline; Boot, Arnoud; Corver, Willem E; van Eendenburg, Jaap D H; Trimbos, Baptist J M Z; van Wezel, Tom

    2015-04-25

    Ovarian cancer remains still the leading cause of death of gynecological malignancy, in spite of first-line chemotherapy with cisplatin and paclitaxel. Although initial response is favorably, relapses are common and prognosis for women with advanced disease stays poor. Therefore efficacious approaches are needed. Previously, an anti-cancer agent, EPD exhibited potent cytotoxic effects towards ovarian cancer and not towards normal cells. Cell viability and cell cycle analysis studies were performed with EPD, in combination with cisplatin and/or paclitaxel, using the ovarian carcinoma cell lines: SK-OV-3, OVCAR-3, JC, JC-pl and normal fibroblasts. Cell viability was measured using Presto Blue and cell cycle analysis using a flow cytometer. Apoptosis was measured in JC and JC-pl , using the caspase 3 assay kit. In JC-pl, SK-OV-3 and JC, synergistic interactions between either EPD and cisplatin or EPD and paclitaxel were observed. For the first time the effects of EPD on the cell cycle of ovarian cancer cells and normal cells was studied. EPD and combinations of EPD with cisplatin and/ or paclitaxel showed cell cycle arrest in the G2/M phase. The combination of EPD and cisplatin showed a significant synergistic effect in cell line JC-pl, while EPD with paclitaxel showed synergistic interaction in JC. Additionally, synergistic drug combinations showed increased apoptosis. Our results showed a synergistic effect of EPD and cisplatin in an ovarian drug resistant cell line as well as a synergistic effect of EPD and paclitaxel in two other ovarian cell lines. These results might enhance clinical efficacy, compared to the existing regimen of paclitaxel and cisplatin.

  16. Single cell sequencing reveals heterogeneity within ovarian cancer epithelium and cancer associated stromal cells.

    PubMed

    Winterhoff, Boris J; Maile, Makayla; Mitra, Amit Kumar; Sebe, Attila; Bazzaro, Martina; Geller, Melissa A; Abrahante, Juan E; Klein, Molly; Hellweg, Raffaele; Mullany, Sally A; Beckman, Kenneth; Daniel, Jerry; Starr, Timothy K

    2017-03-01

    The purpose of this study was to determine the level of heterogeneity in high grade serous ovarian cancer (HGSOC) by analyzing RNA expression in single epithelial and cancer associated stromal cells. In addition, we explored the possibility of identifying subgroups based on pathway activation and pre-defined signatures from cancer stem cells and chemo-resistant cells. A fresh, HGSOC tumor specimen derived from ovary was enzymatically digested and depleted of immune infiltrating cells. RNA sequencing was performed on 92 single cells and 66 of these single cell datasets passed quality control checks. Sequences were analyzed using multiple bioinformatics tools, including clustering, principle components analysis, and geneset enrichment analysis to identify subgroups and activated pathways. Immunohistochemistry for ovarian cancer, stem cell and stromal markers was performed on adjacent tumor sections. Analysis of the gene expression patterns identified two major subsets of cells characterized by epithelial and stromal gene expression patterns. The epithelial group was characterized by proliferative genes including genes associated with oxidative phosphorylation and MYC activity, while the stromal group was characterized by increased expression of extracellular matrix (ECM) genes and genes associated with epithelial-to-mesenchymal transition (EMT). Neither group expressed a signature correlating with published chemo-resistant gene signatures, but many cells, predominantly in the stromal subgroup, expressed markers associated with cancer stem cells. Single cell sequencing provides a means of identifying subpopulations of cancer cells within a single patient. Single cell sequence analysis may prove to be critical for understanding the etiology, progression and drug resistance in ovarian cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. MUS81 is associated with cell proliferation and cisplatin sensitivity in serous ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Suhong; Zheng, Hui; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai

    The dysfunction of DNA damage repair (DDR) pathway contributes to tumorigenesis and drug-resistance in cancer. MUS81 is a member of the conserved xeroderma pigmentosum group F (XPF) family protein of endonucleases, which is important to the DDR pathway. However, the role of MUS81 in the development of ovarian cancer remains uncertain. To explore the expression of MUS81 and its association to serous ovarian cancer (SOC), 43 biopsies of SOC patients were detected by qRT-PCR, and 29 specimens were further performed by immunohistochemistry analysis. Here, we observed that MUS81 was over-expressed in SOC tissues at both transcript and protein levels, andmore » the expression level of MUS81 protein in ovarian cancer cell lines was also higher than that in human normal ovarian surface epithelial cell line (HOSEpiC). We also found that down-regulation of MUS81 expression in ovarian cancer cells inhibited cell proliferation and colony formation ability, and influenced cell cycle progression. Moreover, inhibition of MUS81 expression induced cellular senescence and enhanced the antitumor effect of cisplatin. Down-regulation of MUS81 expression could suppress the growth and development of SOC. These results indicate that MUS81 might play important roles in the progression of SOC and influence the antitumor effect of cisplatin. - Highlights: • MUS81 was overexpression in serous ovarian cancer (SOC). • Meanwhile down-regulation of inhibited cell proliferation and influenced cell cycle progression. • Inhibition of MUS81 induced cell cellular senescence and enhanced the antitumor effect of cisplatin. • Down-regulation of MUS81 expression could suppress the growth and development of SOC.« less

  18. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals.

    PubMed

    Decotto, Eva; Spradling, Allan C

    2005-10-01

    The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.

  19. MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF.

    PubMed

    Wei, Li-Qiang; Liang, Hui-Tao; Qin, Dong-Chun; Jin, Hui-Fang; Zhao, Yong; She, Ming-Cong

    2014-12-01

    MicroRNAs (miRNAs) play critical roles in the development and progression of ovarian cancer. We found that miR-212 was significantly downregulated in serum and tissues from epithelial ovarian cancer (EOC) patients. Overexpression of miR-212 in ovarian cancer cells inhibited cell proliferation, migration, and invasion. Luciferase reporter assay confirmed HBEGF as a direct target of miR-212. Overexpression of miR-212 decreased HBEGF expression at both the protein and messenger RNA (mRNA) levels. Knockdown of HBEGF expression in SKOV3 cell line significantly inhibited cell growth, migration, and invasion. HBEGF mRNA level was upregulated in EOC tissues and inversely correlated with miR-212 expression in tissues. Upregulation of HBEGF could attenuate the effect induced by miR-212. These findings indicate that miR-212 displays a tumor-suppressive effect in human ovarian cancer. And miR-212 suppresses cell proliferation, migration, and invasion by targeting the HBEGF transcript, highlighting the therapeutic potential of miR-212 and HBEGF in epithelial ovarian cancer treatment.

  20. Nitric oxide donors reduce the invasion ability of ovarian cancer cells in vitro.

    PubMed

    Kielbik, Michal; Szulc, Izabela; Brzezinska, Marta; Bednarska, Katarzyna; Przygodzka, Patrycja; Sulowska, Zofia; Nowak, Marek; Klink, Magdalena

    2014-11-01

    The most important factors involved in tumor metastasis and angiogenesis are metalloproteinases (MMPs), vascular endothelial growth factor, and multifunctional transforming growth factor β1. These factors are responsible for extracellular matrix degradation, induction of vascular permeability, and enhancement of tumor cells' invasion and metastasis. Elevated expression and secretion of the above-mentioned factors are correlated with the higher aggressiveness of tumors and low patient survival for example, patients with ovarian cancer. Therefore, regulation of the expression, secretion, and activity of these factors is still considered a potent target for therapeutic intervention in cancer patients. Nitric oxide (NO) donors belong to the class of agents with multivalent targeted activities in cancer cells and are considered potential anticancer therapeutics. Our studies have shown that NO donors such as spermine/NO and diethylenetriamine/NO decrease the secretion of vascular endothelial growth factor-A from the OVCAR-3 ovarian cancer cell line, but not from the SK-OV-3 ovarian cancer cell line. The release of MMP-2 from both cell lines was reduced in a soluble guanylate cyclase-dependent manner by spermine/NO and diethylenetriamine/NO. Nevertheless, MMP-2 activity was only affected in SK-OV-3 cells. Both NO donors reduced the transmigration of the ovarian cancer cell lines. We did not observe any significant effect of spermine/NO and diethylenetriamine/NO on mRNA expression of the tested aggressiveness factors. In conclusion, our data indicated that NO donors reduced the metastatic potential of ovarian cancer cells, but its impact is rather low and requires high concentrations of donors. Moreover, both the tested cell lines differed in the susceptibility to NO donors.

  1. Low-molecular weight forms of cyclin E differentiate ovarian carcinoma from cells of mesothelial origin and are associated with poor survival in ovarian carcinoma.

    PubMed

    Davidson, Ben; Skrede, Martina; Silins, Ilvars; Shih, Ie-Ming; Trope, Claes G; Flørenes, Vivi Ann

    2007-09-15

    The authors recently reported on the role of cyclin E in differentiating ovarian/primary peritoneal carcinoma from malignant peritoneal mesothelioma using gene expression arrays. In the current study, they analyzed the expression of low-molecular weight (LMW) forms of cyclin E in ovarian carcinoma, malignant mesothelioma, and benign reactive effusions. Cyclin E protein expression was analyzed in 98 effusions (72 ovarian carcinomas, 14 malignant mesotheliomas, and 12 reactive specimens) using immunoblotting. Sixty-two ovarian carcinoma effusions were studied further for cyclin E expression using immunohistochemistry. The correlations between cyclin E expression in ovarian carcinoma and clinical parameters, including chemotherapy response, were analyzed. LMW forms of cyclin E were identified in 54 of 72 ovarian carcinoma effusions (75%) compared with 1 of 14 malignant mesothelioma effusions (7%) and 1 of 12 reactive effusions (8%) (P < .001). Their presence in ovarian carcinoma was associated with a higher percentage of cyclin E-positive cells (P = .001) and increased staining intensity (P < .001) using immunohistochemistry. The presence of LMW forms of cyclin E was correlated with shorter overall survival (P = .021) and progression-free survival (P = .020). The presence of a higher percentage of cyclin E-positive cells using immunohistochemistry was correlated with shorter progression-free survival (P = .026). No association with chemotherapy response was observed. LMW forms of cyclin E differentiated ovarian carcinoma from benign and malignant mesothelial cells and were associated with increased protein expression using immunohistochemistry. The expression of LMW cyclin E forms was not associated with chemotherapy response, although it may be a marker of aggressive disease in patients with metastatic ovarian carcinoma. (c) 2007 American Cancer Society.

  2. Eliminating malignant cells from cryopreserved ovarian tissue is possible in leukaemia patients.

    PubMed

    Soares, Michelle; Saussoy, Pascale; Maskens, Mathilde; Reul, Hélène; Amorim, Christiani A; Donnez, Jacques; Dolmans, Marie-Madeleine

    2017-07-01

    Reimplantation of cryopreserved ovarian tissue (OT) can successfully restore ovarian function in young cancer patients after gonadotoxic treatment. However, for patients with leukaemia, there is a risk of malignant cell transmission. Our objective was to evaluate minimal disseminated disease in OT from leukaemia patients and test a follicle isolation technique to obtain disease-free follicle suspensions. Cryopreserved OT from 12 leukaemia patients was thawed and analysed by histology and long-term xenografting in immunosuppressed mice. In 10 patients, follicles were isolated from OT, and polymerase chain reaction (PCR) was performed on tissue, digested ovarian suspensions and isolated follicle suspensions to investigate leukaemic cell presence. Mean patient age was 17·1 years. An average of 3·2 follicles were isolated per mm² of cortex. Xenografting of OT induced leukaemic masses in 2/12 mice. PCR identified leukaemic cell presence in 66% of OT. Malignant cells were also detected in digested ovarian suspensions. However, none of the follicle samples (>2300 follicles tested) showed any malignant cell presence after washing. This study demonstrates that it is possible to recover large numbers of viable follicles from cryopreserved OT of leukaemia patients. All isolated and washed follicle suspensions tested negative for leukaemic cells, giving leukaemia patients genuine hope of fertility restoration. © 2017 John Wiley & Sons Ltd.

  3. Akt2/ZEB2 may be a biomarker for exfoliant cells in ascitic fluid in advanced grades of serous ovarian carcinoma.

    PubMed

    Liu, Changmei; Yang, Fangmei

    2015-09-01

    Ovarian cancers present a mild clinical course when diagnosed early but an aggressive pathway when diagnosed in the peri- and postmenopausal periods. However, the predictability of tumor progression is stochastic and is difficult to predict. In the present study, we hypothesized to examine the key pathways that are dysregulated to promote epithelial-mesenchymal transition in serous ovarian carcinoma. Examination of these steps would help to identify ascitic fluid with cells poised for metastasis or otherwise. We focused on examining the Akt2 expression, mainly because of its report as being overamplified in the aggressive variants of ovarian cancer, as well as TGFbeta-sensitivity of Akt2 that forms the key basis for metastasis initiation of most kinds of carcinoma. We obtained primary ovarian carcinoma samples as well as ascitic fluid and distantly metastatic ovarian carcinoma to examine the expression of Akt2. The results of the study demonstrated that in malignant exfoliated ovarian cancer cells, Smad4 expression was tremendously increased in the nuclei, suggesting nuclear translocation of Smad, which thereafter may have activated ZEB2, and thereafter genomically affected the expression of E-cadherin, myosin II, and vimentin, key components for initiating and sustaining metastasis. All of these may have been stimulated by increased cellular expression of Akt2 in metastatic variants of the serous ovarian carcinoma. The reliance on Akt2 and TGF beta signaling may also potentiate the case for Akt inhibitors or small molecule inhibitors of TGFbeta signaling like doxycycline as adjunct chemotherapy in serous ovarian carcinoma, especially the metastatic variants.

  4. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells.

    PubMed

    Testa, Ugo; Petrucci, Eleonora; Pasquini, Luca; Castelli, Germana; Pelosi, Elvira

    2018-02-01

    Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A , PIK3CA , PTEN , CTNNB1 and RAS . Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.

  5. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells

    PubMed Central

    Castelli, Germana; Pelosi, Elvira

    2018-01-01

    Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments. PMID:29389895

  6. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats.

    PubMed

    Gabr, Hala; Rateb, Moshira Abdelhakiim; El Sissy, Maha Hamdi; Ahmed Seddiek, Hanan; Ali Abdelhameed Gouda, Sarah

    2016-10-01

    Chemotherapy targets rapidly dividing tissues in the body. It destroys the progenitor cells in gonads resulting in premature ovarian failure. Studies have suggested that bone marrow-derived stem cells can generate oocytes in chemotherapy treated female rats after transplantation. The present study aimed to assess mechanism of homing, the action of injected BM-MSCs on ovarian function after ovarian damage. Seventy two female albino rats were randomly allocated into Control and CTX group, The Experimental protocol was lasted for 12 weeks during which serum FSH and E2 were monitored twice at the end of the 2nd week (12 rats) and 8th week (6 rats). Stem cells identification and homing were evaluated by Flowcytometry and tagging of stem cells with iron oxide particles respectively. Also, histopathological examination was done to evaluate both degeneration (6 rats at 4th week) and regeneration (6 rats at 12th week) of ovarian tissue together with assessment of the levels of TNF-α in ovarian homogenate and IGF-I as a growth factor in ovarian tissue. Partial improvement of E2 and FSH levels as well as ovarian architecture. Elevation of ovarian TNF- α levels and of IGF-I immunohistochemical expressions in ovarian tissues of BM-MSCs injected rats were noticed following homing of BM- MSCs in the ovarian stroma in both control and chemotherapy groups. Injected BM- MSCs can home in the stroma of the injured ovaries. IGF-I and TNF- α may have a role in the attraction of stem cells in vivo. © 2016 Wiley Periodicals, Inc.

  7. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway

    PubMed Central

    Alvero, Ayesha B; Visintin, Irene

    2011-01-01

    Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determine the effect of Aurora-A inhibition in EOC stem cells. EOC stem cells were treated with the Aurora-A inhibitor, MK-5108. Cell growth was monitored by Incucyte real-time imaging system, cell viability was measured using the Celltiter 96 assay and cytokine levels were quantified using xMAP technology. The intracellular changes associated with MK-5108 treatment are: (1) polyploidy and cell cycle arrest; (2) inhibition of NFκB activity; (3) decreased cytokine production; and (4) nuclear accumulation of IκBα. Thus, inhibition of Aurora-A decreases cell proliferation in the EOC stem cells by inducing cell cycle arrest and affecting the NFκB pathway. As EOC stem cells represent a source of recurrence and chemoresistance, these results suggest that Aurora-A inhibition may effectively target the cancer stem cell population in ovarian cancer. PMID:21623171

  8. Metabolic state defines the response of rabbit ovarian cells to leptin.

    PubMed

    Harrath, Abdel Halim; Østrup, Olga; Rafay, Jan; Koničková Florkovičová, Iveta; Laurincik, Jozef; Sirotkin, Alexander V

    2017-03-01

    Leptin is a hormone that mediates the effect of the metabolic state on several biological functions, including reproduction. Leptin affects reproductive functions via alterations in the release of hormonal regulators. However, the extent to which caloric restriction (CR) can affect the complex processes of reproduction by other mechanisms, such as altering ovarian functions via direct binding/response to leptin, is unknown. Therefore, the aim of the present study was to show basic ovarian cell functions and CR on the response of ovarian cells to leptin. Female rabbits were subjected to 50% CR restriction for 10days before ovulation. On the day of ovulation, both control and CR animals were sacrificed. Isolated granulosa cells were cultured for 2days with and without leptin (100ng/ml), and the accumulation of various markers was evaluated using immunocytochemistry; i.e., cell proliferation (PCNA and cyclin B1), apoptosis (bax), MAP/ERK1,2 kinase (MAPK), protein kinase A (PKA), and IGF-I. In addition, the release of IGF-I and estradiol (E 2 ) by cells cultured with and without leptin (1, 10, 100, 1000, or 10,000ng/ml) was assessed by radioimmunoassay (RIA). In the granulosa cells of control animals, leptin promoted cyclin B1, MAPK, and PKA accumulation, but not that of PCNA, and reduced bax and IGF-I accumulation. These cells responded to leptin by increased IGF-I, but not E 2 release. In cells of CR animals, leptin increased cyclin B1 accumulation, but decreased PCNA, MAPK, and IGF-I expression. Bax and PKA were not affected. Leptin resulted in a decrease in IGF-I release. CR modulated the influence of leptin on E 2 release dose dependently, i.e., E 2 increased at 10 and decreased at 10,000ng/ml. Therefore, CR modified the influence of leptin on PCNA, E 2 , bax, PKA, MAPK, and IGF-I release, but it did not change the effect of leptin on cyclin B1 and IGF-I accumulation within the cells. Our data showed that leptin directly affected proliferation, apoptosis, and

  9. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Qizhi; Fu, Aili; The People's Liberation Army 107 Hospital, Affiliated Hospital of Bin Zhou Medical University, Yantai

    Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 andmore » the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer. - Highlights: • LAIR-1 is expressed in epithelial ovarian cancer cells. • LAIR-1 expression correlates significantly with tumor grade. • Down-regulation of LAIR-1 expression increased cell proliferation and invasion. • LAIR-1 may be a novel candidate for cancer diagnosis and therapy.« less

  10. Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer

    PubMed Central

    Wen, Yunfei; Graybill, Whitney S.; Previs, Rebecca A.; Hu, Wei; Ivan, Cristina; Mangala, Lingegowda S.; Zand, Behrouz; Nick, Alpa M.; Jennings, Nicholas B.; Dalton, Heather J.; Sehgal, Vasudha; Ram, Prahlad; Lee, Ju-Seog; Vivas-Mejia, Pablo E.; Coleman, Robert L.; Sood, Anil K.

    2014-01-01

    Purpose Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized monoclonal antibody against FRα, in ovarian cancer models. Experimental Design We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003–induced cell death. Results MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. In add, alteration of FOLR1 gene copy number significantly correlated with shorter disease-free survival in patients with ovarian serous cystadenocarcinoma. Conclusions MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation. PMID:25416196

  11. MicroRNA-873 mediates multidrug resistance in ovarian cancer cells by targeting ABCB1.

    PubMed

    Wu, Di-di; Li, Xue-Song; Meng, Xiao-Na; Yan, Jing; Zong, Zhi-Hong

    2016-08-01

    Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P < 0.05). After predicting the miR-873 binding region in the 3'-untranslated region of ABCB1, dual-luciferase reporter assay confirmed this prediction. RT-PCR and Western blotting revealed that MDR1 expression was significantly downregulated after transfection with miR-873 and upregulated after transfection with anti-miR-873 at both mRNA and protein levels compared to negative controls (P < 0.05). Experiments in a mouse xenograft model confirmed that intratumoral administration of miR-873 could enhance the efficacy of cisplatin in inhibiting tumor growth in ovarian cancer in vivo (P < 0.05). ABCB1 overexpression reduced sensitivities of ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P < 0.05). In summary, we demonstrated that overexpression of miR-873 increased the sensitivity of ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.

  12. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells.

    PubMed

    Kakar, Sham S; Parte, Seema; Carter, Kelsey; Joshua, Irving G; Worth, Christopher; Rameshwar, Pranela; Ratajczak, Mariusz Z

    2017-09-26

    Ovarian cancer is the fifth leading cause of deaths due to cancer among women in the United States. In 2017, 22,440 women are expected to be diagnosed with ovarian cancer and 14,080 women will die with it. Currently used chemotherapies (Cisplatin or platinum/taxane combination) targets cancer cells, but spares cancer stem cells (CSCs), which are responsible for tumor relapse leading to recurrence of cancer. Aldehyde dehydrogenase I (ALDH1) positive cancer stem cells are one of the major populations in ovarian tumor and have been related to tumor progression and metastasis. In our studies, we observed expression of ALDH1 in both ovarian surface epithelium (OSE) and cortex with high levels of expression in OSE in normal ovary and benign (BN) tumor, compared to borderline (BL) and high grade (HG) ovarian tumors. In contrast, high levels of expression of ALDH1 were observed in cortex in BL and HG tumors compared to normal ovary and BN tumor. Withaferin A (WFA) alone or in combination with cisplatin (CIS) significantly inhibited the spheroid formation (tumorigenic potential) of isolated ALDH1 CSCs in vitro and significantly reduced its expression in tumors collected from mice bearing orthotopic ovarian tumor compared to control. Treatment of animals with CIS alone significantly increased the ALDH1 CSC population in tumors, suggesting that CIS targets cancer cells but spares cancer stem cells, which undergo amplification. WFA and CIS combination suppresses the expression of securin an "oncogene", suggesting that securin may serve as a downstream signaling gene to mediate the antitumor effects of WFA.

  13. OVARIAN HILUS CELLS AND ENDOMETRIAL CARCINOMA WITH REFERENCE TO RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, S.; Janovski, N.A.

    1963-07-01

    A survey of the relation of hilus cell genesis and frequency of detection in ovaries to adenocarcinoma of the endometrium is presented. Results were based on the examination of 281 ovaries obtained from patients with endometrial carcinoma. The results showed that there was no statistical difference between the occurrence of hilus cells in the endometrial carcinoma group and a control group (33 and 25% respectively). However, if mode of treatment was taken into consideration, and patients undergoing irradiation for endometrial adenocarcinoma prior to operation separated into an individual group, there was a significant difference in the distribution of hilus cellsmore » in those patients as compared with the nonirradiated carcinoma group, at the level of 5%. The radiotherapy in these cases consisisted mainly of 50100 mg intracavitary Ra for approximates 72 hr. A surprisingly high incidence (60%) of ovarian hilus cells was found in patients who underwent radioinduced menopause for benign gynecologic conditions prior to developing adenocarcinoma of the endometrium. The incidence in all postmenopausal patients was only 37%. Ovarian hilus cells were more prevalent in postmenopausal women irrespective of endometrial carcinoma. Premenopausal women with endometrial carcinoma who received no irradiation prior to definitive operation are, therefore, the ideal subjects for further investigation of the relation between endometrial adenocarcinoma and ovarian hilus cells. (BBB)« less

  14. c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling.

    PubMed

    Chau, W K; Ip, C K; Mak, A S C; Lai, H-C; Wong, A S T

    2013-05-30

    Cisplatin and paclitaxel are standard chemotherapy for metastatic ovarian cancer, but with limited efficacy. Cancer stem/progenitor cells (or tumor-initiating cells, TICs) are hypothesized to be chemoresistant, and the existence of TICs in ovarian cancer has been previously demonstrated. However, the key signals and molecular events regulating the formation and expansion of ovarian tumor-initiating cells (OTICs) remain elusive. Here, we show that c-Kit is not just a marker of OTICs, but also a critical mediator of the phenotype that can be a viable target for the treatment of ovarian cancer. In contrast to non-OICs, c-Kit was overexpressed in OTICs. Moreover, the use of small interfering RNA to inhibit c-Kit expression markedly attenuated the number and size of OTIC subpopulations, inhibited the expression of stem cell markers and decreased the tumorigenic capabilities of OTICs. Imatinib (Gleevec), a clinical drug that blocks c-Kit kinase activity, also demonstrated its inhibition potency on OTICs. In addition, cisplatin/paclitaxel, which killed non-OTICs, with c-Kit knockdown or imatinib revealed that this was critically required for intervening ovarian cancer progression and recurrence in vitro and in xenograft tumors in vivo. Similar results were obtained with OTICs derived from ovarian carcinoma patients. Studies into the mechanisms suggest an important role for the activation of Wnt/β-catenin and ATP-binding cassette G2 downstream of c-Kit. The tumor-promoting microenvironment, such as hypoxia, could promote OTICs via upregulation of c-Kit expression. These results unravel an integral role for c-Kit in ovarian neoplastic processes and shed light on its mechanisms of action.

  15. Ovarian mast cells migrate toward ovary-fimbria connection in neonatal MRL/MpJ mice.

    PubMed

    Nakamura, Teppei; Chihara, Masataka; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nagasaki, Ken-Ichi; Elewa, Yaser Hosny Ali; Tatsumi, Osamu; Kon, Yasuhiro

    2018-01-01

    MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin+/Foxl2-/Gata4+) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit- immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit- oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal

  16. Ovarian mast cells migrate toward ovary-fimbria connection in neonatal MRL/MpJ mice

    PubMed Central

    Chihara, Masataka; Ichii, Osamu; Otsuka-Kanazawa, Saori; Nagasaki, Ken-ichi; Elewa, Yaser Hosny Ali; Tatsumi, Osamu; Kon, Yasuhiro

    2018-01-01

    MRL/MpJ mice have abundant ovarian mast cells (MCs) as compared with other strains at postnatal day 0 (P0); however, they sharply decrease after birth. These ovarian MCs, particularly beneath the ovarian surface epithelium (SE), which express mucosal MC (MMC) marker, might participate in early follicular development. This study investigated the changes in spatiotemporal distribution of MCs in the perinatal MRL/MpJ mouse ovaries. At P0 to P7, the MCs were densely localized to the ovary, especially their caudomedial region around the ovary-fimbria connection. The neonatal ovarian MCs showed intermediate characteristics of MMC and connective tissue MC (CTMC), and the latter phenotype became evident with aging. However, the expression ratio of the MMC to CTMC marker increased from P0 to P4 in the MRL/MpJ mouse ovary. Similarly, the ratio of MCs facing SE to total MC number increased with aging, although the number of ovarian MCs decreased, indicating the relative increase in MMC phenotypes in the early neonatal ovary. Neither proliferating nor apoptotic MCs were found in the MRL/MpJ mouse ovaries. The parenchymal cells surrounding MCs at ovary-fimbria connection showed similar molecular expression patterns (E-cadherin+/Foxl2-/Gata4+) as that of the ovarian surface epithelial cells. At P2, around the ovary-fimbria connection, c-kit- immature oocytes formed clusters called nests, and some MCs localized adjacent to c-kit- oocytes within the nests. These results indicated that in postnatal MRL/MpJ mice, ovarian MCs changed their distribution by migrating toward the parenchymal cells composing ovary-fimbria connection, which possessed similar characteristics to the ovarian surface epithelium. Thus, we elucidated the spatiotemporal alterations of the ovarian MCs in MRL/MpJ mice, and suggested their importance during the early follicular development by migrating toward the ovary-fimbria connection. MRL/MpJ mice would be useful to elucidate the relationship between neonatal

  17. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  18. [Association between obesity and ovarian cancer].

    PubMed

    Valladares, Macarena; Corsini, Gino; Romero, Carmen

    2014-05-01

    Obesity is a risk factor for cancer. Epidemiological evidences associate ovarian cancer with obesity. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer and accounts for a high rate of mortality. The association between ovarian cancer and obesity could be explained by molecular factors secreted by adipose tissue such as leptin. In EOC, leptin increases cell proliferation and inhibits apoptosis. Additionally, adipose tissue synthesizes endogenous estrogens, which increase cell proliferation of epithelial ovarian cells. Also, obesity associated hyperinsulinism could increase ovarian estrogen secretion.

  19. Role of A-Kinase anchor protein (AKAP4) in growth and survival of ovarian cancer cells.

    PubMed

    Kumar, Vikash; Jagadish, Nirmala; Suri, Anil

    2017-08-08

    Ovarian cancer represents one of the most common malignancies among women with very high mortality rate worldwide. A-kinase anchor protein 4 (AKAP4), a unique cancer testis (CT) antigen has been shown to be associated with various malignant properties of cancer cells. However, its involvement in various molecular pathways in ovarian cancer remains unknown. In present investigation, employing gene silencing approach, we examined the role of AKAP4 in cell cycle, apoptosis and epithelial-mesenchymal transition (EMT). Further, we also investigated the effect of ablation of AKAP4 on tumor growth in SCID mice ovarian cancer xenograft mouse model. Our results showed that ablation of AKAP4 resulted in increased reactive oxygen species (ROS) generation, DNA damage, cell cycle arrest and apoptosis in ovarian cancer cells. AKAP4 knockdown lead to degradation of protien kinase A (PKA) which was rescued by proteosome inhibitor MG-132. ROS quencher N-acetyl cysteine (NAC) treatment rescued cell cycle arrest and resumed cell division. Subsequently, increased expression of pro-apoptotic molecules and decreased expression of pro-survival/anti-apoptotic factors was observed. As a result of AKAP4 depletion, DNA damage response proteins p-γH2AX, p-ATM and p21 were upregulated. Also, knockdown of CREB resulted in similar findings. Further, PKA inhibitor (H89) and oxidative stress resulted in similar phenotype of ovarian cancer cells as observed in AKAP4 ablated cells. Collectively, for the first time our data showed the involvement of AKAP4 in PKA degradation and perturbed signaling through PKA-CREB axis in AKAP4 ablated ovarian cancer cells.

  20. UCHL1 Is a Putative Tumor Suppressor in Ovarian Cancer Cells and Contributes to Cisplatin Resistance

    PubMed Central

    Jin, Chengmeng; Yu, Wei; Lou, Xiaoyan; Zhou, Fan; Han, Xu; Zhao, Na; Lin, Biaoyang

    2013-01-01

    Ubiquitin carboxyl terminal hydrolase 1 (UCHL1) catalyzes the hydrolysis of COOH-terminal ubiquityl esters and amides. It has been reported as either an oncogene or a tumor suppressor in cancers. However, UCHL1's role in ovarian cancer is still unclear. Therefore, we conducted an analysis to understand the role of UCHL1 in ovarian cancer. Firstly, we detected UCHL1 promoter methylation status in 7 ovarian cancer cell lines. 4 of them with UCHL1 silencing showed heavy promoter methylation while the other 3 with relative high UCHL1 expression showed little promoter methylation. Then we reduced UCHL1 expression in ovarian cancer cell line A2780 and IGROV1 and found that inhibition of UCHL1 promoted cell proliferation by increasing cells in S phases of cell cycle. Knockdown of UCHL1 also reduced cell apoptosis and contributed to cisplatin resistance. Furthermore, the expression level of UCHL1 in several ovarian cancer cell lines correlated negatively with their cisplatin resistance levels. Microarray data revealed that UCHL1 related genes are enriched in apoptosis and cell death gene ontology (GO) terms. Several apoptosis related genes were increased after UCHL1 knockdown, including apoptosis regulator BCL2, BCL11A, AEN and XIAP. Furthermore, we identified up-regulation of Bcl-2 and pAKT as well as down-regulation of Bax in UCHL1 knockdown cells, while no significant alteration of p53 and AKT1 was found. This study provides a new and promising strategy to overcome cisplatin resistance in ovarian cancer via UCHL1 mediated pathways. PMID:24155778

  1. Hyperandrogenism from an ovarian interstitial-cell tumor in an alpaca.

    PubMed

    Gilbert, Rosanne; Kutzler, Michelle; Valentine, Beth A; Semevolos, Stacy

    2006-11-01

    An 8-year-old intact female Huacaya alpaca (Lama pacos) was presented for recent development of male behavior. Serum testosterone concentration was determined to be 969.1 pg/ml by using radioimmunoassay, while the range in 33 healthy female adult intact alpacas was 11.7-62.1 pg/ml. An ovarian mass was suspected, and an exploratory laparotomy was performed. A tan mass was present on the left ovary. Histologically, the mass was composed of closely packed, plump, polygonal cells with central round nuclei with granular chromatin and abundant eosinophilic finely granular to vesiculate cytoplasm. An ovarian benign interstitial (Leydig) cell tumor was diagnosed.

  2. Shikonin induces apoptosis and inhibits migration of ovarian carcinoma cells by inhibiting the phosphorylation of Src and FAK

    PubMed Central

    HAO, ZHENFENG; QIAN, JING; YANG, JISHI

    2015-01-01

    The present study identified that shikonin, a naphthoquinone extracted from the roots of Lithospermum erythrorhizon, inhibits the migration of ovarian cancer cells and induces their apoptosis by impairing the phosphorylation of two kinases, proto-oncogene tyrosine protein kinase Src (Src) and focal adhesion kinase (FAK). Ovarian carcinoma SKOV-3 cells were treated with various concentrations of shikonin and analyzed for the effects on cell migration, invasion and apoptosis via Transwell assays and flow cytometry. In addition, the effects of shikonin administration on the expression and phosphorylation of Src and FAK in the SKOV-3 cells were analyzed by western blotting. Shikonin appeared to induce apoptosis and decrease cell migration in the SKOV-3 ovarian cells. Furthermore, the present study provides evidence that shikonin may exert these effects on human ovarian carcinoma cells via the inhibition of the protein tyrosine kinases, Src and FAK. Thus, shikonin should be considered for additional investigation as a candidate agent for the prevention and treatment of human ovarian cancer. PMID:25621031

  3. Smad4 deletion in blood vessel endothelial cells promotes ovarian cancer metastasis.

    PubMed

    Yang, Jie; Wang, Ya; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    2017-05-01

    SMAD4 is a critical co-smad in signal transduction pathways activated in response to transforming growth factor-β (TGF-β)-related ligands, regulating cell growth and differentiation. The roles played by SMAD4 inactivation in tumors highlighted it as a tumor-suppressor gene. Herein, we report that loss of SMAD4 expression in vascular endothelial cells promotes ovarian cancer invasion. SiRNA transfer of this gene in the HUVEC reduced SMAD4 protein expression and function. Although it reduced the vessel endothelial cell tubule formation in vitro and in vivo, it did not affect the tumor growth significantly in vivo. However, it weakened the barrier integrity in endothelial cells and increased vessel permeability and the ovarian cancer liver metastasis. We documented reduced angiogenesis and increased invasion histologically and by intravital microscopy, and gained mechanistic insight at the messenger and gene level. Finally, we found a negative reciprocal regulation between SMAD4 and FYN. FYN is one of the Src family kinases (SFK), activation of which can cause dissociation of cell-cell junctions and adhesion, resulting in paracellular hypermeability. Upon SMAD4 deletion, we detected high expression levels of FYN in vessel endothelial cells, suggesting the mechanism of the ovarian tumor cells cross the endothelial barrier and transform to an invasive phenotype.

  4. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2013-10-01

    curative.23 In contrast, long term survivorship of patients following allogeneic TCRαβ-depleted hematopoietic stem -cell transplantation (HSCT) was...receptors and steroid receptors. Stem cells 1996; 14(6): 632-41. 40. Lai D, Wang F, Chen Y, Wang C, Liu S, Lu B et al. Human ovarian cancer stem ...leukemia stem cells and eliminate AML. Manuscript in preparation. 46. Zhang M, Maiti S, Bernatchez C, Huls H, Rabinovich B, Champlin RE, Vence LM, Hwu P

  5. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    PubMed

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  6. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells

    PubMed Central

    Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S.; Song, Jia-Sheng; Zheng, Jing

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. PMID:23851185

  7. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    PubMed

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  8. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  9. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis

    PubMed Central

    Yeung, Tsz-Lun; Leung, Cecilia S.; Yip, Kay-Pong; Au Yeung, Chi Lam; Wong, Stephen T. C.

    2015-01-01

    Ovarian cancer is the most lethal gynecological malignancy. It is usually diagnosed at a late stage, with a 5-yr survival rate of <30%. The majority of ovarian cancer cases are diagnosed after tumors have widely spread within the peritoneal cavity, limiting the effectiveness of debulking surgery and chemotherapy. Owing to a substantially lower survival rate at late stages of disease than at earlier stages, the major cause of ovarian cancer deaths is believed to be therapy-resistant metastasis. Although metastasis plays a crucial role in promoting ovarian tumor progression and decreasing patient survival rates, the underlying mechanisms of ovarian cancer spread have yet to be thoroughly explored. For many years, researchers have believed that ovarian cancer metastasizes via a passive mechanism by which ovarian cancer cells are shed from the primary tumor and carried by the physiological movement of peritoneal fluid to the peritoneum and omentum. However, the recent discovery of hematogenous metastasis of ovarian cancer to the omentum via circulating tumor cells instigated rethinking of the mode of ovarian cancer metastasis and the importance of the “seed-and-soil” hypothesis for ovarian cancer metastasis. In this review we discuss the possible mechanisms by which ovarian cancer cells metastasize from the primary tumor to the omentum, the cross-talk signaling events between ovarian cancer cells and various stromal cells that play crucial roles in ovarian cancer metastasis, and the possible clinical implications of these findings in the management of this deadly, highly metastatic disease. PMID:26224579

  10. Phase Ib study of the mitochondrial inhibitor ME-344 plus topotecan in patients with previously treated, locally advanced or metastatic small cell lung, ovarian and cervical cancers.

    PubMed

    Diamond, Jennifer R; Goff, Barbara; Forster, Martin D; Bendell, Johanna C; Britten, Carolyn D; Gordon, Michael S; Gabra, Hani; Waterhouse, David M; Poole, Mark; Ross Camidge, D; Hamilton, Erika; Moore, Kathleen M

    2017-10-01

    Background This multicenter, open-label, phase Ib study was designed to assess the safety, pharmacokinetics and preliminary efficacy of ME-344, a mitochondrial inhibitor, administered in combination with the topoisomerase I inhibitor, topotecan, in patients with previously treated, locally advanced or metastatic small cell lung (SCLC), ovarian and cervical cancers. Patients and methods In Part 1, patients received ME-344 10 mg/kg intravenously weekly on days 1, 8, 15 and 22 in combination with topotecan 4 mg/m 2 on days 1, 8, and 15 of a 28 day cycle. Cycles were repeated until disease progression or unacceptable toxicity. Patients were evaluated for dose-limiting toxicity (DLT) in cycle 1 and ME-344 pharmacokinetic samples were obtained. In Part 2, patients with locally advanced or metastatic SCLC and ovarian cancer were enrolled in expansion cohorts treated at the recommended phase II dose (RP2D) determined in Part 1. Results Fourteen patients were enrolled in Part 1 and no DLTs were observed. The RP2D of ME-344 in combination with topotecan was established as 10 mg/kg. In Part 2, 32 patients were enrolled. The most common treatment-emergent all-grade and grade 3/4 toxicities included fatigue (65.2%, 6.5%), neutropenia (56.5%, 43.5%) and thrombocytopenia (50%, 23.9%). One patient with recurrent ovarian cancer experienced a partial response by RECIST 1.1 and 21 patients achieved stable disease as best response. Conclusions The combination of ME-344 10 mg/kg weekly and topotecan 4 mg/m 2 was tolerable, however, the degree of anti-cancer activity does not support further investigation of the combination in unselected patients with SCLC, ovarian and cervical cancers.

  11. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues.more » Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.« less

  12. Peritoneal and hematogenous metastases of ovarian cancer cells are both controlled by the p90RSK through a self-reinforcing cell autonomous mechanism.

    PubMed

    Torchiaro, Erica; Lorenzato, Annalisa; Olivero, Martina; Valdembri, Donatella; Gagliardi, Paolo Armando; Gai, Marta; Erriquez, Jessica; Serini, Guido; Di Renzo, Maria Flavia

    2016-01-05

    The molecular mechanisms orchestrating peritoneal and hematogenous metastases of ovarian cancer cells are assumed to be distinct. We studied the p90RSK family of serine/threonine kinases that lie downstream the RAS-ERK/MAPK pathway and modulate a variety of cellular processes including cell proliferation, survival, motility and invasiveness. We found the RSK1 and RSK2 isoforms expressed in a number of human ovarian cancer cell lines, where they played redundant roles in sustaining in vitro motility and invasiveness. In vivo, silencing of both RSK1 and RSK2 almost abrogated short-term and long-term metastatic engraftment of ovarian cancer cells in the peritoneum. In addition, RSK1/RSK2 silenced cells failed to colonize the lungs after intravenous injection and to form hematogenous metastasis from subcutaneous xenografts. RSK1/RSK2 suppression resulted in lessened ovarian cancer cell spreading on endogenous fibronectin (FN). Mechanistically, RSK1/RSK2 knockdown diminished FN transcription, α5β1 integrin activation and TGF-β1 translation. Reduced endogenous FN deposition and TGF-β1 secretion depended on the lack of activating phosphorylation of the transcription/translation factor YB-1 by p90RSK. Altogether data show how p90RSK activates a self-reinforcing cell autonomous pro-adhesive circuit necessary for metastatic seeding of ovarian cancer cells. Thus, p90RSK inhibitors might hinder both the hematogenous and the peritoneal metastatic spread of human ovarian cancer.

  13. Biological Function of Ribosomal Protein L10 on Cell Behavior in Human Epithelial Ovarian Cancer

    PubMed Central

    Shi, Jimin; Zhang, Lingyun; Zhou, Daibing; Zhang, Jinguo; Lin, Qunbo; Guan, Wencai; Zhang, Jihong; Ren, Weimin; Xu, Guoxiong

    2018-01-01

    Ribosomal protein L10 (RPL10) is one of large ribosomal proteins and plays a role in Wilms' tumor and premature ovarian failure. However, the function of RPL10 in human epithelial ovarian cancer (EOC) remains unknown. The purpose of this study was to examine the expression level and function of RPL10 in EOC. RPL10 protein expression was detected by immunohistochemistry and Western blot. The association RPL10 expression with clinical features was analyzed. Loss-of-function and gain-of-function approaches were applied in cellular assays, including cell viability, migration, invasion, and apoptosis. Our study demonstrated for the first time that RPL10 was upregulated in human EOC compared with normal ovarian tissues. Knockdown of RPL10 inhibited cell viability, migration, and invasion, and increased cell apoptosis. On the contrary, upregulation of RPL10 increased cell viability, migration, invasion, and decreased cell apoptosis. Furthermore, miR-143-3p regulated RPL10 expression. Our data indicate that RPL10 is a potential tissue biomarker of patients with EOC and may be a therapeutic target of ovarian cancer. PMID:29556332

  14. ATR inhibition broadly sensitizes ovarian cancer cells to chemotherapy independent of BRCA status

    PubMed Central

    Huntoon, Catherine J.; Flatten, Karen S.; Wahner Hendrickson, Andrea E.; Huehls, Amelia M.; Sutor, Shari L.; Kaufmann, Scott H.; Karnitz, Larry M.

    2013-01-01

    Replication stress and DNA damage activate the ATR-CHK1 checkpoint signaling pathway that licenses repair and cell survival processes. In this study, we examined the respective roles of the ATR and CHK1 kinases in ovarian cancer cells using genetic and pharmacological inhibitors of in combination with cisplatin, topotecan, gemcitabine and the poly(ADP-ribose)-polymerase (PARP) inhibitor veliparib (ABT-888), four agents with clinical activity in ovarian cancer. RNAi-mediated depletion or inhibition of ATR sensitized ovarian cancer cells to all four agents. In contrast, while cisplatin, topotecan and gemcitabine each activated CHK1, RNAi-mediated depletion or inhibition of this kinase in cells sensitized them only to gemcitabine. Unexpectedly, we found that neither the ATR kinase inhibitor VE-821 or the CHK1 inhibitor MK-8776 blocked ATR-mediated CHK1 phosphorylation or autophosphorylation, two commonly used readouts for inhibition of the ATR-CHK1 pathway. Instead, their ability to sensitize cells correlated with enhanced CDC25A levels. Additionally, we also found that VE-821 could further sensitize BRCA1-depleted cells to cisplatin, topotecan and veliparib beyond the potent sensitization already caused by their deficiency in homologous recombination. Taken together, our results established that ATR and CHK1 inhibitors differentially sensitize ovarian cancer cells to commonly used chemotherapy agents, and that CHK1 phosphorylation status may not offer a reliable marker for inhibition of the ATR-CHK1 pathway. A key implication of our work is the clinical rationale it provides to evaluate ATR inhibitors in combination with PARP inhibitors in BRCA1/2-deficient cells. PMID:23548269

  15. Experimental induction of ovarian Sertoli cell tumors in rats by N-nitrosoureas.

    PubMed Central

    Maekawa, A; Onodera, H; Tanigawa, H; Furuta, K; Kanno, J; Ogiu, T; Hayashi, Y

    1987-01-01

    Spontaneous ovarian tumors are very rare in ACI, Wistar, F344 and Donryu rats; the few neoplasms found are of the granulosa/theca cell type. Ovarian tumors were also rare in these strains of rats when given high doses of N-alkyl-N-nitrosoureas continuously in the drinking water for their life-span; however, relatively high incidences of Sertoli cell tumors or Sertoli cell tumors mixed with granulosa cell tumors were induced in Donryu rats after administration of either a 400 ppm N-ethyl-N-nitrosourea solution in the drinking water for 4 weeks or as a single dose of 200 mg N-propyl-N-nitrosourea per kg body weight by stomach tube. Typical Sertoli cell tumors consisted of solid areas showing tubular formation. The tubules were lined by tall, columnar cells, with abundant, faintly eosinophilic, often vacuolated cytoplasm, and basally oriented, round nuclei, resembling seminiferous tubules in the testes. In some cases, Sertoli cell tumor elements were found mixed with areas of granulosa cells. The induction of ovarian Sertoli cell tumors in Donryu rats by low doses of nitrosoureas may provide a useful model for these tumors in man. Images PLATE 1. PLATE 2. PLATE 3. PLATE 4. PLATE 5. PLATE 6. PLATE 7. PLATE 8. PLATE 9. PLATE 10. PLATE 11. PLATE 12. PLATE 13. PLATE 14. PLATE 15. PLATE 16. PMID:3665856

  16. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines.

    PubMed

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-09-09

    Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT-PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients.

  17. Leptin siRNA promotes ovarian granulosa cell apoptosis and affects steroidogenesis by increasing NPY2 receptor expression.

    PubMed

    Ding, Xiaomeng; Kou, Xinxin; Zhang, Ye; Zhang, Xiaoli; Cheng, Guomei; Jia, Tianming

    2017-10-30

    Leptin has been found to be involved in the ovarian granulosa cell apoptosis and steroidogenesis. Loss of neuropeptide Y (NPY) can correct the obesity syndrome of mutant mice lacking of leptin (ob/ob). However, the association of NPY and leptin in ovarian granulosa cells and ovarian steroidogenesis has not been investigated. Here, C57BL/6J ob/ob mice and C57BL/6J (control) mice were intraperitoneally injected with PBS, leptin (0.4μg/g bodyweight) or BIIE0246 (NPY2 receptor [NPY2R] antagonist, 30μg/kg bodyweight) every day for 15days. We found that NPY2R mRNA expression in mouse ovary was suppressed by leptin treatment, but increased by leptin deficiency. Leptin or BIIE0246 treatment significantly increased E2, but notably decreased progesterone in both mice. A lower level of E2 and a higher level of progesterone was observed in ob/ob mice than in control mice. Further, we then knocked down leptin expression in human ovarian granulosa cells by siRNA transfection and treated the cells with DMSO or BIIE0246. In vitro experiments confirmed the findings in mice. siLeptin treatment decreased the secretion of E2, anti-Mullerian hormone (AMH), insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β, and the cell proliferation, but increased the secretion of progesterone and cell apoptosis. Western blotting analysis of PCNA, Bcl-2 and Bax confirmed the results of cell proliferation and apoptosis. Activation of JAK2 and STAT3 was also suppressed by knocking down leptin. All the effects of siLeptin on ovarian granulosa cells were partially reversed by BIIE0246. In conclusion, knockdown of leptin significantly affected ovarian steroidogenesis and ovarian function through NPY. siLeptin transfection impaired the activation of JAK2/STAT3 and contributed to ovarian granulosa cell apoptosis partially through up-regulating NPY2R expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Miran; Park, Mi Hee; Kollipara, Pushpa Saranya

    We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1–5 μg/ml) and melittin (0.5–2 μg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, andmore » Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway. -- Highlights: ► Some studies have showed that bee venom and/or melittin have anti-cancer effects. ► We found that bee venom and melittin inhibited cell growth in ovarian cancer cells. ► Bee venom and melittin induce apoptosis in SKOV3 and PA-1.« less

  19. Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines

    PubMed Central

    Terasawa, K; Toyota, M; Sagae, S; Ogi, K; Suzuki, H; Sonoda, T; Akino, K; Maruyama, R; Nishikawa, N; Imai, K; Shinomura, Y; Saito, T; Tokino, T

    2006-01-01

    Transcription factor 2 gene (TCF2) encodes hepatocyte nuclear factor 1β (HNF1β), a transcription factor associated with development and metabolism. Mutation of TCF2 has been observed in renal cell cancer, and by screening aberrantly methylated genes, we have now identified TCF2 as a target for epigenetic inactivation in ovarian cancer. TCF2 was methylated in 53% of ovarian cancer cell lines and 26% of primary ovarian cancers, resulting in loss of the gene's expression. TCF2 expression was restored by treating cells with a methyltransferase inhibitor, 5-aza-2′deoxycitidine (5-aza-dC). In addition, chromatin immunoprecipitation showed deacetylation of histone H3 in methylated cells and, when combined with 5-aza-dC, the histone deacetylase inhibitor trichostatin A synergistically induced TCF2 expression. Epigenetic inactivation of TCF2 was also seen in colorectal, gastric and pancreatic cell lines, suggesting general involvement of epigenetic inactivation of TCF2 in tumorigenesis. Restoration of TCF2 expression induced expression of HNF4α, a transcriptional target of HNF1β, indicating that epigenetic silencing of TCF2 leads to alteration of the hepatocyte nuclear factor network in tumours. These results suggest that TCF2 is involved in the development of ovarian cancers and may represent a useful target for their detection and treatment. PMID:16479257

  20. microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP

    PubMed Central

    Li, Xiaodi; Chen, Wei; Zeng, Wenshu; Wan, Chunling; Duan, Shiwei; Jiang, Songshan

    2017-01-01

    Background: microRNAs (miRNAs) have regulatory roles in various cellular processes, including apoptosis. Recently, X-linked inhibitor of apoptosis protein (XIAP) has been reported to be dysregulated in epithelial ovarian cancer (EOC). However, the mechanism underlying this dysregulation is largely unknown. Methods: Using bioinformatics and a literature analysis, a panel of miRNAs dysregulated in EOC was chosen for further experimental confirmation from hundreds of miRNAs that were predicted to interact with the XIAP 3′UTR. A dual-luciferase reporter assay was employed to detect the interaction by cellular co-transfection of an miRNA expression vector and a reporter vector with the XIAP 3′UTR fused to a Renilla luciferase reporter. DAPI and TUNEL approaches were used to further determine the effects of an miR-137 mimic and inhibitor on cisplatin-induced apoptosis in ovarian cancer cells. Results: We identified eight miRNAs by screening a panel of dysregulated miRNAs that may target the XIAP 3′UTR. The strongest inhibitory miRNA, miR-137, suppressed the activity of a luciferase reporter gene fused with the XIAP 3′UTR and decreased the levels of XIAP protein in SKOV3 ovarian cancer cells. Furthermore, forced expression of miR-137 increased cisplatin-induced apoptosis, and the depressed expression of miR-137 decreased cisplatin-induced apoptosis in SKOV3 and primary EOC cells. Consistently, the disruption of miR-137 via CRISPR/Cas9 inhibited apoptosis and upregulated XIAP in A2780 cells. Furthermore, the effect of miR-137 on apoptosis could be rescued by XIAP in SKOV3 cells. In addition, miR-137 expression is inversely correlated with the level of XIAP protein in both ovarian cancer tissues and cell lines. Conclusions: Our data suggest that multiple miRNAs can regulate XIAP via its 3′UTR. miR-137 can sensitise ovarian cancer cells to cisplatin-induced apoptosis, providing new insight into overcoming drug resistance in ovarian cancer. PMID:27875524

  1. Innovative T Cell-Targeted Therapy for Ovarian Cancer

    DTIC Science & Technology

    2012-10-01

    from co-culture with EL4 -ROR1neg and EL4 -ROR1+ tumor targets. Ovarian cancer cell lines (A2780, EFO21, EFO27, IGROV1, OC314, and UPN251) were...profiled for ROR1 expression in normoxia (20% O2) and hypoxia (1% O2). Four-hour CRA was used to evaluate cytotoxicity against the OvCa and EL4 tumor...loaded aAPC for negative controls. EL4 is a murine T cell lymphoma cell line used to test specificity of CAR+ T cells with limited allo-reactivity

  2. Co-expression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    DTIC Science & Technology

    2012-09-01

    ovarian cancer stem cell markers to consider it as a new experimental target for novel nanotechnology approaches capable of destroying ovarian cancer stem...FSHR mRNA after several generations in an amount consistent with stem cell characteristics. Nude mouse experiments to confirm co-expression in vivoare

  3. Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species.

    PubMed

    Mizuno, T; Suzuki, N; Makino, H; Furui, T; Morii, E; Aoki, H; Kunisada, T; Yano, M; Kuji, S; Hirashima, Y; Arakawa, A; Nishio, S; Ushijima, K; Ito, K; Itani, Y; Morishige, K

    2015-05-01

    In ovarian cancer cases, recurrence after chemotherapy is frequently observed, suggesting the involvement of ovarian cancer stem-like cells (CSCs). The chemoresistance of ovarian clear cell carcinomas is particularly strong in comparison to other epithelial ovarian cancer subtypes. We investigated the relationship between a CSC marker, aldehyde dehydrogenase 1 (ALDH1), and clinical prognosis using ovarian clear cell carcinoma tissue samples. Furthermore, we investigated the antioxidant mechanism by which CSCs maintain a lower reactive oxygen species (ROS) level, which provides protection from chemotherapeutic agents. Immunohistochemical staining was performed to examine the CSC markers (CD133, CD44, ALDH1) using ovarian clear cell carcinoma tissue samples (n=81). Clear cell carcinoma cell lines (KOC-7C, OVTOKO) are separated into the ALDH-high and ALDH-low populations by ALDEFLUOR assay and fluorescence-activated cell sorting (FACS). We compared the intracellular ROS level, mRNA level of the antioxidant enzymes and Nrf2 expression of the two populations. High ALDH1 expression levels are related to advanced stage in clear cell carcinoma cases. ALDH1 expression significantly reduced progression free survival. Other markers are not related to clinical stage and prognosis. ALDH-high cells contained a lower ROS level than ALDH-low cells. Antioxidant enzymes were upregulated in ALDH-high cells. ALDH-high cells showed increased expression of Nrf2, a key transcriptional factor of the antioxidant system. ALDH-positive CSCs might have increased Nrf2-induced antioxidant scavengers, which lower ROS level relevant to chemoresistance in ovarian clear cell carcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A.

    PubMed

    Zhang, Xuan; Samadi, Abbas K; Roby, Katherine F; Timmermann, Barbara; Cohen, Mark S

    2012-03-01

    Withaferin A, a natural withanolide, has shown anti-cancer properties in various cancers including breast cancer, but its effects in ovarian cancer remain unexplored. Notch 1 and Notch3 are critically involved in ovarian cancer progression. We decided to examine the effects of Withaferin A in ovarian carcinoma cell lines and its molecular mechanism of action including its regulation of Notch. The effects of Withaferin A were examined in CaOV3 and SKOV3 ovarian carcinoma cell lines using MTS assay, clonogenic assay, annexin V/propidium iodide flow cytometry, and cell cycle analysis. Western analysis was conducted to examine the molecular mechanisms of action. Withaferin A inhibited the growth and colony formation of CaOV3 and SKOV3 cells by inducing apoptosis and cell cycle arrest. These changes correlated with down-regulation of Notch1, Notch3, cdc25C, total and phosphorylated Akt, and bcl-2 proteins. Withaferin A inhibits CaOV3 and SKOV3 ovarian carcinoma cell growth, at least in part by targeting Notch1 and Notch3. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Relationship of ovarian stimulation response with vascular endothelial growth factor and degree of granulosa cell apoptosis.

    PubMed

    Quintana, R; Kopcow, L; Marconi, G; Sueldo, C; Speranza, G; Barañao, R I

    2001-09-01

    The aim of this study was to evaluate the concentration of vascular endothelial growth factor (VEGF) in follicular fluid and in granulosa cell cultures in relation to the degree of apoptosis in granulosa cells from patients with different types of ovarian response to controlled ovarian hyperstimulation. We studied 30 women who underwent controlled ovarian hyperstimulation and oocyte retrieval. Group A comprised patients with 1-4 follicles (n = 10), group B patients with 5-14 follicles (n = 10) and group C patients with >15 follicles (n = 10). Mean (+/-SD) VEGF concentrations in follicular fluid were 1232 +/- 209, 813 +/- 198 and 396 +/- 103 pg/ml for groups A, B and C respectively (P > 0.01). Concentrations of VEGF in granulosa cell supernatant were 684 +/- 316, 1101 +/- 295 and 1596 +/- 227 pg/ml respectively (P < 0.05). Percentages of apoptotic cells in granulosa cells culture was 55.02 +/- 7.5, 23.98 +/- 4.4 and 14.2 +/- 2.3% respectively (A versus B, P < 0.01, A versus C, P < 0.006, B versus C, NS). Our findings showed that in patients with decreased ovarian response to controlled ovarian hyperstimulation, follicular fluid VEGF concentration is elevated, the concentration from granulosa cells culture supernatant is decreased and the percentage of apoptotic granulosa cells is increased, while opposite findings occurred in patients with normal or hyper-responses.

  6. HtrA3 Is Downregulated in Cancer Cell Lines and Significantly Reduced in Primary Serous and Granulosa Cell Ovarian Tumors.

    PubMed

    Singh, Harmeet; Li, Ying; Fuller, Peter J; Harrison, Craig; Rao, Jyothsna; Stephens, Andrew N; Nie, Guiying

    2013-01-01

    Objective. The high temperature requirement factor A3 (HtrA3) is a serine protease homologous to bacterial HtrA. Four human HtrAs have been identified. HtrA1 and HtrA3 share a high degree of domain organization and are downregulated in a number of cancers, suggesting a widespread loss of these proteases in cancer. This study examined how extensively the HtrA (HtrA1-3) proteins are downregulated in commonly used cancer cell lines and primary ovarian tumors.Methods. RT-PCR was applied to various cancer cell lines (n=17) derived from the ovary, endometrium, testes, breast, prostate, and colon, and different subtypes of primary ovarian tumors [granulosa cell tumors (n=19), mucinous cystadenocarcinomas (n=6), serous cystadenocarcinomas (n=8)] and normal ovary (n = 9). HtrA3 protein was localized by immunohistochemistry.Results. HtrA3 was extensively downregulated in the cancer cell lines examined including the granulosa cell tumor-derived cell lines. In primary ovarian tumors, the HtrA3 was significantly lower in serous cystadenocarcinoma and granulosa cell tumors. In contrast, HtrA1 and HtrA2 were expressed in all samples with no significant differences between the control and tumors. In normal postmenopausal ovary, HtrA3 protein was localized to lutenizing stromal cells and corpus albicans. In serous cystadenocarcinoma, HtrA3 protein was absent in the papillae but detected in the mesenchymal cyst wall.Conclusion. HtrA3 is more extensively downregulated than HtrA1-2 in cancer cell lines. HtrA3, but not HtrA1 or HtrA2, was decreased in primary ovarian serous cystadenocarcinoma and granulosa cell tumors. This study provides evidence that HtrA3 may be the most relevant HtrA associated with ovarian malignancy.

  7. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    PubMed

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Ovarian cancer stem-like cells with induced translineage-differentiation capacity and are suppressed by alkaline phosphatase inhibitor

    PubMed Central

    Liu, Kuei-Chun; Yo, Yi-Te; Huang, Rui-Lan; Wang, Yu-Chi; Liao, Yu-Ping; Huang, Tien-Shuo; Chao, Tai-Kuang; Lin, Chi-Kang; Weng, Shao-Ju; Ma, Kuo-Hsing; Chang, Cheng-Chang; Yu, Mu-Hsien; Lai, Hung-Cheng

    2013-01-01

    Spheroid formation is one property of stem cells—such as embryo-derived or neural stem cells—that has been used for the enrichment of cancer stem-like cells (CSLCs). However, it is unclear whether CSLC-derived spheroids are heterogeneous or whether they share common embryonic stemness properties. Understanding these features might lead to novel therapeutic approaches. Ovarian carcinoma is a deadly disease of women. We identified two types of spheroids (SR1 and SR2) from ovarian cancer cell lines and patients' specimens according to their morphology. Both types expressed stemness markers and could self-renew and initiate tumors when a low number of cells were used. Only SR1 could differentiate into multiple-lineage cell types under specific induction conditions. SR1 spheroids could differentiate to SR2 spheroids through epithelial–mesenchymal transition. Alkaline phosphatase (ALP) was highly expressed in SR1 spheroids, decreased in SR2 spheroids, and was absent in differentiated progenies in accordance with the loss of stemness properties. We verified that ALP can be a marker for ovarian CSLCs, and patients with greater ALP expression is related to advanced clinical stages and have a higher risk of recurrence and lower survival rate. The ALP inhibitor, levamisole, disrupted the self-renewal of ovarian CSLCs in vitro and tumor growth in vivo. In summary, this research provides a plastic ovarian cancer stem cell model and a new understanding of the cross-link between stem cells and cancers. This results show that ovarian CSLCs can be suppressed by levamisole. Our findings demonstrated that some ovarian CSLCs may restore ALP activity, and this suggests that inhibition of ALP activity may present a new opportunity for treatment of ovarian cancer. PMID:24280306

  9. Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy

    PubMed Central

    WANG, DONGDONG; SAGA, YASUSHI; MIZUKAMI, HIROAKI; SATO, NAOTO; NONAKA, HIROAKI; FUJIWARA, HIROYUKI; TAKEI, YUJI; MACHIDA, SHIZUO; TAKIKAWA, OSAMU; OZAWA, KEIYA; SUZUKI, MITSUAKI

    2012-01-01

    This study examined the role of the immunosuppressive enzyme indoleamine-2,3-dioxygenase (IDO) in ovarian cancer progression, and the possible application of this enzyme as a target for ovarian cancer therapy. We transfected a short hairpin RNA vector targeting IDO into the human ovarian cancer cell line SKOV-3, that constitutively expresses IDO and established an IDO downregulated cell line (SKOV-3/shIDO) to determine whether inhibition of IDO mediates the progression of ovarian cancer. IDO downregulation suppressed tumor growth and peritoneal dissemination in vivo, without influencing cancer cell growth. Moreover, IDO downregulation enhanced the sensitivity of cancer cells to natural killer (NK) cells in vitro, and promoted NK cell accumulation in the tumor stroma in vivo. These findings indicate that downregulation of IDO controls ovarian cancer progression by activating NK cells, suggesting IDO targeting as a potential therapy for ovarian cancer. PMID:22179492

  10. The Hippo Signaling Pathway Regulates Ovarian Function via the Proliferation of Ovarian Germline Stem Cells.

    PubMed

    Ye, Haifeng; Li, Xiaoyan; Zheng, Tuochen; Hu, Chuan; Pan, Zezheng; Huang, Jian; Li, Jia; Li, Wei; Zheng, Yuehui

    2017-01-01

    To improve the separation, identification and cultivation of ovarian germline stem cells (OGSCs), to clarify the relationship between the Hippo signaling pathway effector YAP1 and the proliferation and differentiation of OGSCs in vitro and to identify the major contribution of Hippo signaling to ovarian function. Two-step enzymatic separation processes and magnetic separation were used to isolate and identify OGSCs by determining the expression of Mvh, Oct4, Nanog, Fragilis and Stella markers. Then, YAP1, as the main effector molecule in the Hippo signaling pathway, was chosen as the target gene of the study. Lentivirus containing overexpressed YAP1 or a YAP1-targeted shRNA was transduced into OGSCs. The effects of modulating the Hippo signaling pathway on the proliferation, differentiation, reproduction and endocrine function of ovaries were observed by microinjecting the lentiviral vectors with overexpressed YAP1 or YAP1 shRNA into infertile mouse models or natural mice of reproductive age. (1) The specific expression of Mvh, Oct4, Nanog, Fragilis and Stella markers was observed in isolated stem cells. Thus, the isolated cells were preliminarily identified as OGSCs. (2) The co-expression of LATS2, MST1, YAP1 and MVH was observed in isolated OGSCs. Mvh and Oct4 expression levels were significantly increased in OGSCs overexpressing YAP1 compared to GFP controls. Consistently, Mvh and Oct4 levels were significantly decreased in cells expressing YAP1-targeted shRNA. (3) After 14-75 days of YAP1 overexpression in infertile mouse models, we detected follicle regeneration in ovaries, the activation of primordial follicles and increased birth rate, accompanied by increasing levels of E2 and FSH. (4) However, we detected decreasing follicles in ovaries, lower birth rate, and decreasing E2 and FSH in serum from healthy mice of reproductive age following YAP1 shRNA expression. Methods for the isolation, identification and culture of OGSCs were successfully established

  11. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

    PubMed

    Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.

  12. Tetramethoxychalcone, a Chalcone Derivative, Suppresses Proliferation, Blocks Cell Cycle Progression, and Induces Apoptosis of Human Ovarian Cancer Cells

    PubMed Central

    Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer. PMID:25180593

  13. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines

    PubMed Central

    Sawers, L; Ferguson, M J; Ihrig, B R; Young, H C; Chakravarty, P; Wolf, C R; Smith, G

    2014-01-01

    Background: Chemotherapy response in ovarian cancer patients is frequently compromised by drug resistance, possibly due to altered drug metabolism. Platinum drugs are metabolised by glutathione S-transferase P1 (GSTP1), which is abundantly, but variably expressed in ovarian tumours. We have created novel ovarian tumour cell line models to investigate the extent to which differential GSTP1 expression influences chemosensitivity. Methods: Glutathione S-transferase P1 was stably deleted in A2780 and expression significantly reduced in cisplatin-resistant A2780DPP cells using Mission shRNA constructs, and MTT assays used to compare chemosensitivity to chemotherapy drugs used to treat ovarian cancer. Differentially expressed genes in GSTP1 knockdown cells were identified by Illumina HT-12 expression arrays and qRT–PCR analysis, and altered pathways predicted by MetaCore (GeneGo) analysis. Cell cycle changes were assessed by FACS analysis of PI-labelled cells and invasion and migration compared in quantitative Boyden chamber-based assays. Results: Glutathione S-transferase P1 knockdown selectively influenced cisplatin and carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively). Cell cycle progression was unaffected, but cell invasion and migration was significantly reduced. We identified several novel GSTP1 target genes and candidate platinum chemotherapy response biomarkers. Conclusions: Glutathione S-transferase P1 has an important role in cisplatin and carboplatin metabolism in ovarian cancer cells. Inter-tumour differences in GSTP1 expression may therefore influence response to platinum-based chemotherapy in ovarian cancer patients. PMID:25010864

  14. Fisetin and polymeric micelles encapsulating fisetin exhibit potent cytotoxic effects towards ovarian cancer cells.

    PubMed

    Xiao, Xue; Zou, Juan; Fang, Yin; Meng, Yibo; Xiao, Chao; Fu, Jiaxin; Liu, Shiyu; Bai, Peng; Yao, Yuan

    2018-03-15

    The anti-tumor activities of Natural compounds and their derivatives are of great interest to pharmaceutical industries. Fisetin is one of prospective natural compounds in this regard but unfortunately with poor hydrophilicity. The effects of unmodified and modified fisetin in cultured ovarian cancer cells were compared by transmission electronmicroscopy to determine apoptotic bodies, MTT assay to quantitate cell numbers, and fluorescence activated cell sorting analyse of various markers to determine the apoptotic state. In addition, the efficacy of fisetin and fisetin-micelles in vivo was determined by using immunocompromised mice. Apoptosis was measured by established markers using both western blot analysis and immunochemistry. Angiogenesis in a xenograft mouse model carring SKOV3 cells was evaluated by color Doppler ultrasound and immunohistochemistry. Multiple lines of evidence indicated that fisetin and fisetin micelles induce apoptosis in ovarian cancer cells in a dose-dependent manner. Histological analysis, terminal deoxynucleotidyltransferase-mediated nick-end labeling assay, western blot, immunohistochemical detection and microvessel density detection demonstrated that fisetin and fisetin micelles induced increased tumor apoptosis, proliferation suppression and antiangiogenesis activities. As far as we know, the present study is the first time to demonstrate the potency of both fisetin and fisetin micelles inducing apoptosis in ovarian cancer cells. Further studies will be needed to validate the therapeutic potential of fisetin and fisetin micelles in ovarian cancer treatment.

  15. VEGF expression and the effect of NSAIDs on ascites cell proliferation in the hen model of ovarian cancer.

    PubMed

    Urick, M E; Giles, J R; Johnson, P A

    2008-09-01

    We aimed to determine the expression of vascular endothelial growth factor (VEGF) and the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the proliferation of cells isolated from ascites in the hen model of ovarian cancer. Ovarian tumor and normal ovary were collected from hens and ascites cells were isolated from hens with ovarian cancer. Quantitative real-time PCR was used to quantify mRNA expression. Immunohistochemical and/or Western blot analyses were used to localize protein expression in ovarian tumors, normal ovaries, and ascites cells. Cells were treated with a nonspecific, COX-1-specific, or COX-2-specific NSAID and proliferation was determined. VEGF mRNA was increased in ascites cells and there was a trend for a correlation between VEGF mRNA in ascites cells and ascites volume. VEGF protein was localized to theca cells of normal ovaries, in glandular areas of tumors, and to the cytoplasm of ascites cells. Aspirin and a COX-1-specific inhibitor decreased the proliferation of ascites cells, whereas a COX-2-specific inhibitor did not. VEGF may play a role in ovarian cancer progression in the hen and the proliferation of ascites cells can be decreased by targeting the COX-1 but not COX-2 pathway.

  16. The Association of Peripheral Blood Regulatory T-Cell Concentrations With Epithelial Ovarian Cancer: A Brief Report.

    PubMed

    Cannioto, Rikki A; Sucheston-Campbell, Lara E; Hampras, Shalaka; Goode, Ellen L; Knutson, Keith; Ness, Roberta; Modugno, Francesmary; Wallace, Paul; Szender, J Brian; Mayor, Paul; Hong, Chi-Chen; Joseph, Janine M; Friel, Grace; Davis, Warren; Nesline, Mary; Eng, Kevin H; Edwards, Robert P; Kruszka, Bridget; Schmitt, Kristina; Odunsi, Kunle; Moysich, Kirsten B

    2017-01-01

    There is a mounting body of evidence demonstrating higher percentages of regulatory T (Treg) cells in the peripheral blood of patients with cancer in comparison to healthy controls, but there is a paucity of epidemiological literature characterizing circulating Treg cells among patients with epithelial ovarian cancer (EOC). To investigate the role of peripheral Treg cells in ovarian neoplasms, we conducted a case-control study to characterize circulating concentrations of Treg cells among patients with EOC, women with benign ovarian conditions, and healthy controls without a history of cancer. Participants were identified for inclusion due to their participation in the Data Bank and BioRepository program at Roswell Park Cancer Institute in Buffalo, NY. Patients included 71 women with a primary diagnosis of EOC and 195 women with a diagnosis of benign ovarian conditions. Controls included 101 age- and race-matched women without a history of cancer. Nonfasting, pretreatment peripheral blood levels of CD3+CD4+CD25+FOXP3+ Treg cells were measured using flow cytometric analyses and expressed as a percentage of total CD3+ cells and as a percentage of total CD3+CD4+ cells. Compared to healthy controls and women with benign ovarian conditions, patients with EOC had significantly higher frequency of Treg cells (P < 0.04). In multivariable logistic regression analyses using Treg frequency expressed as a percentage of CD+3 cells, we observed a significant positive association between Treg cell percentage and EOC risk, with each 1% increase associated with a 37% increased risk of EOC (odds ratio, 1.37; 95% confidence interval, 1.04-1.80). We observed a similar trend when Treg frequency was expressed as a percentage of CD3+CD+4 cells (odds ratio, 1.22; 95% confidence interval, 0.99-1.49). The current study provides support that peripheral Treg cell frequency is elevated in patients with EOC in comparison to women with benign ovarian conditions and healthy controls.

  17. The association of peripheral blood regulatory T-cell concentrations with epithelial ovarian cancer: A brief report

    PubMed Central

    Hampras, Shalaka; Goode, Ellen L.; Knutson, Keith; Ness, Roberta; Modugno, Francesmary; Wallace, Paul; Szender, J. Brian; Mayor, Paul; Hong, Chi-Chen; Joseph, Janine M.; Friel, Grace; Davis, Warren; Nesline, Mary; Eng, Kevin H.; Edwards, Robert P.; Kruszka, Bridget; Schmitt, Kristina; Odunsi, Kunle; Moysich, Kirsten B.

    2016-01-01

    Objective There is a mounting body of evidence demonstrating higher percentages of regulatory T (Treg) cells in the peripheral blood of cancer patients in comparison to healthy controls, but there is a paucity of epidemiological literature characterizing circulating Treg cells among epithelial ovarian cancer (EOC) patients. To investigate the role of peripheral Treg cells in ovarian neoplasms, we conducted a case-control study to characterize circulating concentrations of Treg cells among EOC patients, women with benign ovarian conditions, and healthy controls without a history of cancer. Materials and Methods Participants were identified for inclusion due to their participation in the Data Bank and BioRepository program at Roswell Park Cancer Institute in Buffalo, NY. Patients included 71 women with a primary diagnosis of EOC and 195 women with a diagnosis of benign ovarian conditions. Controls included 101 age- and race-matched women without a history of cancer. Non-fasting, pre-treatment peripheral blood levels of CD3+CD4+CD25+FOXP3+ Treg cells were measured using flow cytometric analyses and expressed as a percentage of total CD3+ cells and as a percentage of total CD3+CD4+ cells. Results Compared to healthy controls and women with benign ovarian conditions, EOC patients had significantly higher frequency of Treg cells (p<0.04). In multivariable logistic regression analyses utilizing Treg frequency expressed as a percentage of CD+3 cells, we observed a significant positive association between Treg cell percentage and EOC risk, with each one percent increase associated with a 37% increased risk of EOC (OR=1.37, 95% CI: 1.04-1.80). We observed a similar trend when Treg frequency was expressed as a percentage of CD3+CD+4 cells (OR=1.22, 95% CI: 0.99-1.49). Conclusions The current study provides support that peripheral Treg cell frequency is elevated in EOC patients in comparison to women with benign ovarian conditions and healthy controls. PMID:27759594

  18. Anti-Muellerian hormone concentration in bitches with histopathologically diagnosed ovarian tumours and cysts.

    PubMed

    Walter, B; Coelfen, A; Jäger, K; Reese, S; Meyer-Lindenberg, A; Aupperle-Lellbach, H

    2018-06-01

    Increased concentrations of Anti-Muellerian hormone (AMH) can indicate a granulosa cell tumour as shown in women, mares and cows. To investigate AMH to differentiate canine granulosa cell tumour from other ovarian pathologies, we evaluated the ovaries of 63 bitches. Blood serum samples were collected before surgery for AMH analysis. Ovaries were submitted for histopathological examination. Fourteen bitches showed normal ovaries. These bitches had AMH values between 0.12 and 0.99 ng/ml. In 20 bitches ovarian cysts i.e., follicular cysts (n = 8), corpora lutea cysts (n = 7), subsurface cysts (n = 5) were diagnosed. These dogs had AMH values of 0.11-2.09 ng/ml. Bitches with small luteinized follicular cysts had slightly higher AMH values than those without ovarian alteration. In 29 cases ovarian neoplasms i.e., granulosa cell tumour (n = 9), epithelial tumours (n = 16), dysgerminomas (n = 3) and one sarcoma were identified. Anti-Muellerian hormone values of bitches with an ovarian neoplasm except granulosa cell tumour ranged from 0.18 to 1.18 ng/ml. The AMH values of bitches with granulosa cell tumour ranged from 1.12 to ≤23 ng/ml and were significantly higher (p < .05) than in all of the other bitches. The cut-off of 0.99 ng/ml gave a sensitivity of 100% and a specificity of 94.44% to diagnose granulosa cell tumour. In conclusion, markedly elevated AMH concentrations in bitches are indicative for a granulosa cell tumour. However, negative testing does not rule out the existence of small one. Differentiation of GCT from luteinized follicular cysts may especially be difficult. © 2018 Blackwell Verlag GmbH.

  19. 17β-Estradiol Reverses Leptin-Inducing Ovarian Cancer Cell Migration by the PI3K/Akt Signaling Pathway.

    PubMed

    Hoffmann, Marta; Fiedor, Elżbieta; Ptak, Anna

    2016-11-01

    Accumulating evidence suggests that leptin is expressed at higher levels in obese women and stimulates cell migration in epithelial cancers. However, the biology of ovarian cancer is different from others, mainly due to the production of estrogens because of the involvement of ovarian tissue, which is the main source of estrogens; as a result, the levels are at least 100- to 1000-fold higher than normal circulating levels. Thus, ovarian cancer tissues are exposed to 17β-estradiol, which promotes ovarian cancer cell migration and may modulate the effect of other hormones. Therefore, this study investigated the effects of 17β-estradiol (1 nmol/L) with leptin (1-40 ng/mL) at physiological levels, on the migration of OVCAR-3 and SKOV-3 ovarian cancer cells, and the expression levels and activity of metalloproteinases (MMPs) 2 and 9. Here, we found that leptin stimulated ovarian cancer cell line migration, which is mediated via the expression and activity of MMP-9 in the OVCAR-3 but not in the SKOV-3 cells. After the administration of 17β-estradiol and leptin, we observed antagonistic effects of 17β-estradiol on leptin-induced OVCAR-3 cell migration and MMP-9 expression and activity. Moreover, the antagonistic effect of 17β-estradiol on leptin-induced cancer cell migration was reversed by pretreatment of the cells with the phosphatidylinositol 3-kinase (PI3K) pathway inhibitor. Taken together, our results, for the first time, show that in ovarian cancer cells ObR + /ER + , 17β-estradiol has an antagonistic effect on leptin-induced cell migration as well as MMP-9 expression and activity, which is mediated by the PI3K pathway. © The Author(s) 2016.

  20. RAD6 promotes DNA repair and stem cell signaling in ovarian cancer and is a promising therapeutic target to prevent and treat acquired chemoresistance.

    PubMed

    Somasagara, R R; Spencer, S M; Tripathi, K; Clark, D W; Mani, C; Madeira da Silva, L; Scalici, J; Kothayer, H; Westwell, A D; Rocconi, R P; Palle, K

    2017-11-30

    Ovarian cancer (OC) is the most deadly gynecological cancer and unlike most other neoplasms, survival rates for OC have not significantly improved in recent decades. We show that RAD6, an ubiquitin-conjugating enzyme, is significantly overexpressed in ovarian tumors and its expression increases in response to carboplatin chemotherapy. RAD6 expression correlated strongly with acquired chemoresistance and malignant behavior of OC cells, expression of stem cell genes and poor prognosis of OC patients, suggesting an important role for RAD6 in ovarian tumor progression. Upregulated RAD6 enhances DNA damage tolerance and repair efficiency of OC cells and promotes their survival. Increased RAD6 levels cause histone 2B ubiquitination-mediated epigenetic changes that stimulate transcription of stem cell genes, including ALDH1A1 and SOX2, leading to a cancer stem cell phenotype, which is implicated in disease recurrence and metastasis. Downregulation of RAD6 or its inhibition using a small molecule inhibitor attenuated DNA repair signaling and expression of cancer stem cells markers and sensitized chemoresistant OC cells to carboplatin. Together, these results suggest that RAD6 could be a therapeutic target to prevent and treat acquired chemoresistance and disease recurrence in OC and enhance the efficacy of standard chemotherapy.

  1. Pterostilbene induces apoptosis through caspase activation in ovarian cancer cells.

    PubMed

    Dong, J; Guo, H; Chen, Y

    2016-01-01

    Pterostilbene, an analog of resveratrol increasing bioavailability has shown to offer antioxidant and anticancer properties in vitro and in vivo. Dietary compounds with anti-oxidant properties have been shown to gain importance due to therapeutic applications. In addition, compounds with higher bioavailability levels show great interest in present scenario. Thus, the present study aimed at investigating the cytotoxic role of pterostilbene and its mechanism of cell death in ovarian cancer cells line. The effect of pterostilbene was determined on SKOV-3 cells, by cytotoxicity assays, oxidative stress levels, [Ca2+]i levels, mitochondrial depolarization, cell cycle analysis and caspase 3, 8, and 9 activities. The study revealed that pterostilbene offered cytotoxic effect at a concentration of IC50-55 uM. Further, pterostilbene induced reactive oxygen species (ROS) mediated intrinsic pathway of apoptosis through enhancing oxidative stress, [Ca2+]i levels, mitochondrial depolarization, Sub G1 accumulation, and activation of caspase 3 and 9. The study demonstrates for the first time the cytotoxic potential of pterostilbene against ovarian cancer cells.

  2. Epigenetic regulation of RGS2 (Regulator of G-protein signaling 2) in chemoresistant ovarian cancer cells.

    PubMed

    Cacan, Ercan

    2017-06-01

    Regulator of G-protein signaling 2 (RGS2) is a GTPase-activating protein functioning as an inhibitor of G-protein coupled receptors (GPCRs). RGS2 dysregulation was implicated in solid tumour development and RGS2 downregulation has been reported in prostate and ovarian cancer progression. However, the molecular mechanism by which RGS2 expression is suppressed in ovarian cancer remains unknown. The expression and epigenetic regulation of RGS2 in chemosensitive and chemoresistant ovarian cancer cells were determined by qRT-PCR and chromatin immunoprecipitation assays, respectively. In the present study, the molecular mechanisms contributing to the loss of RGS2 expression were determined in ovarian cancer. The data indicated that suppression of RGS2 gene in chemoresistant ovarian cancer cells, in part, due to accumulation of histone deacetylases (HDACs) and DNA methyltransferase I (DNMT1) at the promoter region of RGS2. Inhibition of HDACs or DNMTs significantly increases RGS2 expression. These results suggest that epigenetic changes in histone modifications and DNA methylation may contribute to the loss of RGS2 expression in chemoresistant ovarian cancer cells. The results further suggest that class I HDACs and DNMT1 contribute to the suppression of RGS2 during acquired chemoresistance and support growing evidence that inhibition of HDACs/DNMTs represents novel therapeutic approaches to overcome ovarian cancer chemoresistance.

  3. EDD enhances cell survival and cisplatin resistance and is a therapeutic target for epithelial ovarian cancer

    PubMed Central

    Bradley, Amber; Zheng, Hui; Eblen, Scott T.

    2014-01-01

    The E3 ubiquitin ligase EDD is overexpressed in recurrent, platinum-resistant ovarian cancers, suggesting a role in tumor survival and/or platinum resistance. EDD knockdown by small interfering RNA (siRNA) induced apoptosis in A2780ip2, OVCAR5 and ES-2 ovarian cancer cells, correlating with loss of the prosurvival protein myeloid cell leukemia sequence 1 (Mcl-1) through a glycogen synthase kinase 3 beta-independent mechanism. SiRNA to EDD or Mcl-1 induced comparable levels of apoptosis in A2780ip2 and ES-2 cells. Stable overexpression of Mcl-1 protected cells from apoptosis following EDD knockdown, accompanied by a loss of endogenous, but not exogenous, Mcl-1 protein, suggesting that EDD regulated Mcl-1 synthesis. Indeed, EDD knockdown induced a 1.87-fold decrease in Mcl-1 messenger RNA and EDD transfection enhanced murine Mcl-1 promoter-driven luciferase expression 5-fold. To separate EDD survival and potential cisplatin resistance functions, we generated EDD shRNA stable cell lines that could survive initial EDD knockdown and showed that these cells were 4- to 21-fold more sensitive to cisplatin. Moreover, transient EDD overexpression in COS-7 cells was sufficient to promote cisplatin resistance 2.4-fold, dependent upon its E3 ligase activity. In vivo, mouse intraperitoneal ES-2 and A2780ip2 xenograft experiments showed that mice treated with EDD siRNA by nanoliposomal delivery [1,2-dioleoyl-sn-glycero-3-phophatidylcholine (DOPC)] and cisplatin had significantly less tumor burden than those treated with control siRNA/DOPC alone (ES-2, 77.9% reduction, P = 0.004; A2780ip2, 75.9% reduction, P = 0.042) or control siRNA/DOPC with cisplatin in ES-2 (64.4% reduction, P = 0.035), with a trend in A2780ip2 (60.3% reduction, P = 0.168). These results identify EDD as a dual regulator of cell survival and cisplatin resistance and suggest that EDD is a therapeutic target for ovarian cancer. PMID:24379240

  4. Deoxyschizandrin, Isolated from Schisandra Berries, Induces Cell Cycle Arrest in Ovarian Cancer Cells and Inhibits the Protumoural Activation of Tumour-Associated Macrophages.

    PubMed

    Lee, Kijun; Ahn, Ji-Hye; Lee, Kyung-Tae; Jang, Dae Sik; Choi, Jung-Hye

    2018-01-15

    Deoxyschizandrin, a major lignan of Schisandra berries, has been demonstrated to have various biological activities such as antioxidant, hepatoprotective, and antidiabetic effects. However, the anti-cancer effects of deoxyschizandrin are poorly characterized. In the present study, we investigated the anti-cancer effect of deoxyschizandrin on human ovarian cancer cell lines and tumour-associated macrophages (TAMs). Deoxyschizandrin induced G₀/G₁ phase cell cycle arrest and inhibited cyclin E expression in human ovarian cancer cells. Overexpression of cyclin E significantly reversed the deoxyschizandrin-induced cell growth inhibition. Interestingly, increased production of reactive oxygen species and decreased activation of Akt were observed in A2780 cells treated with deoxyschizandrin, and the antioxidant compromised the deoxyschizandrin-induced cell growth inhibition and Akt inactivation. Moreover, deoxyschizandrin-induced cell growth inhibition was markedly suppressed by Akt overexpression. In addition, deoxyschizandrin was found to inhibit the expression of the M2 phenotype markers CD163 and CD209 in TAMs, macrophages stimulated by the ovarian cancer cells. Moreover, expression and production of the tumour-promoting factors MMP-9, RANTES, and VEGF, which are highly enhanced in TAMs, was significantly suppressed by deoxyschizandrin treatment. Taken together, these data suggest that deoxyschizandrin exerts anti-cancer effects by inducing G₀/G₁ cell cycle arrest in ovarian cancer cells and reducing the protumoural phenotype of TAMs.

  5. T-LAK Cell-Originated Protein Kinase (TOPK) as a Prognostic Factor and a Potential Therapeutic Target in Ovarian Cancer.

    PubMed

    Ikeda, Yuji; Park, Jae-Hyun; Miyamoto, Takashi; Takamatsu, Naofumi; Kato, Taigo; Iwasa, Akiko; Okabe, Shuhei; Imai, Yuichi; Fujiwara, Keiichi; Nakamura, Yusuke; Hasegawa, Kosei

    2016-12-15

    We aimed to clarify the clinical significance of TOPK (T-lymphokine-activated killer cell-originated protein kinase) expression in ovarian cancer and evaluate the possible effect of TOPK inhibitors, OTS514 and OTS964, on ovarian cancer cells. TOPK expression was examined by immunohistochemistry using 163 samples with epithelial ovarian cancer (EOC). TOPK protein level and FOXM1 transcriptional level in ovarian cancer cell lines were examined by Western blot and RT-PCR, respectively. Half-maximum inhibitory concentration (IC 50 ) values against TOPK inhibitors were examined by the MTT assay. Using the peritoneal dissemination model of ES-2 ovarian cancer cells, we examined the in vivo efficacy of OTS514. In addition, the cytotoxic effect of OTS514 and OTS964 on 31 patient-derived primary ovarian cancer cells was examined. TOPK was expressed very highly in 84 (52%) of 163 EOC tissues, and high TOPK expression was significantly associated with poor progression-free survival and overall survival in early-stage cases of EOC (P = 0.008 and 0.006, respectively). Both OTS514 and OTS964 showed significant growth-inhibitory effect on ovarian cancer cell lines with IC 50 values of 3.0 to 46 nmol/L and 14 to 110 nmol/L, respectively. TOPK protein and transcriptional levels of FOXM1 were reduced by TOPK inhibitor treatment. Oral administration of OTS514 significantly elongated overall survival in the ES-2 abdominal dissemination xenograft model, compared with vehicle control (P < 0.001). Two drugs showed strong growth-inhibitory effect on primary ovarian cancer cells regardless of tumor sites or histological subtypes. Our results demonstrated the clinical significance of high TOPK expression and potential of TOPK inhibitors to treat ovarian cancer. Clin Cancer Res; 22(24); 6110-7. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. MEK1-independent activation of MAPK and MEK1-dependent activation of p70 S6 kinase by stem cell factor (SCF) in ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lian, E-mail: tounao@126.com; Institute of Immunology, School of Medicine, Shandong University, Jinan 250012; Zhang, Xin

    We discovered a stem cell factor (SCF)-triggered, MEK1-independent, and PI3K-dependent MAPK activation pathway in the Kit-expressing ovarian cancer cell line HEY. When we knocked down MEK1 with RNA interference (RNAi) to study the function of MEK1 on the proliferation and survival of ovarian cancer cells, we found that impaired cell growth still occurred after MEK1 expression had been suppressed, although MAPK activation remained intact. This suggests that there is MEK1-independent activation of MAPK in the SCF-induced ovarian cancer cell growth process, and that MEK1 still plays a crucial role in maintaining the malignant properties of ovarian cancer cells even whenmore » it fails to activate MAPK as expected.« less

  7. Risk of Epithelial Ovarian Cancer in Relation to Benign Ovarian Conditions and Ovarian Surgery

    PubMed Central

    Rossing, Mary Anne; Cushing-Haugen, Kara L.; Wicklund, Kristine G.; Doherty, Jennifer A.; Weiss, Noel S.

    2009-01-01

    Objective Some forms of ovarian neoplasms may be preventable through the removal of precursor lesions. We assessed risk associated with a prior diagnosis of, and ovarian surgery following, ovarian cysts and endometriosis, with a focus on characterizing risk among tumor subgroups. Methods Information was collected during in-person interviews with 812 women with ovarian cancer diagnosed in western Washington State from 2002–2005 and 1,313 population-based controls. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results The risk of a borderline mucinous ovarian tumor associated with a history of an ovarian cyst was increased (OR=1.7, 95% CI 1.0–2.8) but did not vary notably according to receipt of subsequent ovarian surgery. While risk of invasive epithelial ovarian cancer was slightly increased among women with a cyst who had no subsequent ovarian surgery, it was reduced when a cyst diagnosis was followed by surgery (OR= 0.6, 95% CI 0.4–0.9). This reduction in risk was most evident for serous invasive tumors. Women with a history of endometriosis had a three-fold increased risk of endometrioid and clear cell invasive tumors, with a lesser risk increase among women who underwent subsequent ovarian surgery. Conclusions Our results suggest differences in the relation of ovarian cysts and endometriosis with risk of specific subtypes of ovarian cancer, as well as the possibility that ovarian surgery in women with these conditions may lower the risk of invasive disease. PMID:18704718

  8. Somatostatin receptors in differentiated ovarian tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reubi, J.C.; Horisberger, U.; Klijn, J.G.

    1991-05-01

    The presence of somatostatin receptors was investigated in 57 primary human ovarian tumors using in vitro receptor autoradiography with three different somatostatin radioligands, {sup 125}I-(Tyr11)-somatostatin-14, {sup 125}I-(Leu8, D-Trp22, Tyr25)-somatostatin-28, or {sup 125}I-(Tyr3)-SMS 201-995. Three cases, all belonging to epithelial tumors, were receptor positive; specifically 1 of 42 adenocarcinomas, 1 of 3 borderline malignancies, and 1 of 2 cystadenomas. Four other epithelial tumors (3 fibroadenomas, 1 Brenner tumor), 4 sex cord-stromal tumors (2 fibrothecomas, 2 granulosa cell tumors), and 2 germ cell tumors (1 dysgerminoma, 1 teratoma) were receptor negative. In the positive cases, the somatostatin receptors were localized on epithelialmore » cells exclusively, were of high affinity (KD = 4.6 nmol/l (nanomolar)), and specific for somatostatin analogs. These receptors bound somatostatin-14 and somatostatin-28 radioligands with a higher affinity than the octapeptide (Tyr3)-SMS 201-995. Healthy ovarian tissue had no somatostatin receptors. A subpopulation of relatively well-differentiated ovarian tumors, therefore, was identified pathobiochemically on the basis of its somatostatin receptor content. This small group of somatostatin receptor-positive tumors may be a target for in vivo diagnostic imaging with somatostatin ligands.« less

  9. Optimizing patient derived mesenchymal stem cells as virus carriers for a Phase I clinical trial in ovarian cancer

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cells (MSC) can serve as carriers to deliver oncolytic measles virus (MV) to ovarian tumors. In preparation for a clinical trial to use MSC as MV carriers, we obtained cells from ovarian cancer patients and evaluated feasibility and safety of this approach. Methods MSC from adipose tissues of healthy donors (hMSC) and nine ovarian cancer patients (ovMSC) were characterized for susceptibility to virus infection and tumor homing abilities. Results Adipose tissue (range 0.16-3.96 grams) from newly diagnosed and recurrent ovarian cancer patients yielded about 7.41×106 cells at passage 1 (range 4–9 days). Phenotype and doubling times of MSC were similar between ovarian patients and healthy controls. The time to harvest of 3.0×108 cells (clinical dose) could be achieved by day 14 (range, 9–17 days). Two of nine samples tested had an abnormal karyotype represented by trisomy 20. Despite receiving up to 1.6×109 MSC/kg, no tumors were seen in SCID beige mice and MSC did not promote the growth of SKOV3 human ovarian cancer cells in mice. The ovMSC migrated towards primary ovarian cancer samples in chemotaxis assays and to ovarian tumors in athymic mice. Using non-invasive SPECT-CT imaging, we saw rapid co-localization, within 5–8 minutes of intraperitoneal administration of MV infected MSC to the ovarian tumors. Importantly, MSC can be pre-infected with MV, stored in liquid nitrogen and thawed on the day of infusion into mice without loss of activity. MV infected MSC, but not virus alone, significantly prolonged the survival of measles immune ovarian cancer bearing animals. Conclusions These studies confirmed the feasibility of using patient derived MSC as carriers for oncolytic MV therapy. We propose an approach where MSC from ovarian cancer patients will be expanded, frozen and validated to ensure compliance with the release criteria. On the treatment day, the cells will be thawed, washed, mixed with virus, briefly centrifuged and

  10. Activation of apoptotic pathway in normal, cancer ovarian cells by epothilone B.

    PubMed

    Rogalska, Aneta; Szula, Ewa; Gajek, Arkadiusz; Marczak, Agnieszka; Jóźwiak, Zofia

    2013-09-01

    The epothilones, a new class of microtubule-targeting agents, seem to be a very promising alternative to the current strategy of cancer treatment. We have analyzed the aspects of epothilone B (Epo B) on cellular metabolism of tumor (OV-90) and normal (MM 14) ovarian cells. The observed effects were compared with those of paclitaxel (PTX), which is now a standard for the treatment of ovarian cancer. The results provide direct evidence that Epo B is considerably more cytotoxic to human OV-90 ovarian cancer cells than PTX. We have found, that antitumor efficacy of this new drug is related to its apoptosis-inducing ability, which was confirmed during measurements typical markers of the process. Epo B induced changes in morphology of cells, mitochondrial membrane potential and cytochrome c release. Also a slight increase of the intracellular calcium level was observed. Moreover, we have found that ROS production, stimulated by Epo B, is directly involved in the induction of apoptosis via mitochondrial pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  12. Chemosensitizing effects of metformin on cisplatin- and paclitaxel-resistant ovarian cancer cell lines.

    PubMed

    Dos Santos Guimarães, Isabella; Ladislau-Magescky, Taciane; Tessarollo, Nayara Gusmão; Dos Santos, Diandra Zipinotti; Gimba, Etel Rodrigues Pereira; Sternberg, Cinthya; Silva, Ian Victor; Rangel, Leticia Batista Azevedo

    2017-11-21

    Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy. Primary cytoreductive surgery with adjuvant taxane-platinum chemotherapy is the standard treatment to fight ovarian cancer, however, their side effects are severe, and chemoresistance emerges at high rates. Therefore, EOC clinic urges for novel treatment strategies to reverse chemoresistance and to improve the survival rates. Metformin has been shown to act in synergy with certain anti-cancer agents, overcoming chemoresistance in various types of tumors. This paper aims to investigate the use of metformin as a new treatment option for cisplatin- and paclitaxel-resistant ovarian cancer. The effects of metformin alone or in combination with conventional drugs on resistant EOC cell lines were investigated using the MTT assay for cell proliferation; Flow Cytometry analysis for cell cycle and the mRNA expression was analyzed using the real-time PCR technique. We found that metformin exhibited antiproliferative effects in paclitaxel-resistant A2780-PR, and in cisplatin-resistant ACRP cell lines. The combined therapy containing conventional drugs and metformin improved the effect of the treatment in cell proliferation rate, especially in the resistant cells. We found that metformin, in clinical relevant doses, could significantly reduce the mRNA expression of inflammatory cytokines and NF-κB signaling pathway. Taken together, our observations suggest that metformin inhibits the inflammatory pathway induced by paclitaxel and cisplatin treatment. Furthermore, metformin in combination with paclitaxel or cisplatin improved the sensitivity in drug-resistant ovarian cancer cells. Therefore, metformin may be beneficial treatment strategy, particularly in patients with tumors refractory to platinum and taxanes. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. An HCG-rich microenvironment contributes to ovarian cancer cell differentiation into endothelioid cells in a three-dimensional culture system.

    PubMed

    Su, Min; Fan, Chao; Gao, Sainan; Shen, Aiguo; Wang, Xiaoying; Zhang, Yuquan

    2015-11-01

    We investigated the expression of human chorionic gonadotropin (HCG) and its effects on vasculogenic mimicry (VM) formation in ovarian cancer cells under normoxic and hypoxic conditions in three-dimensional matrices preconditioned by an endothelial-trophoblast cell co-culture system. The co-culture model was established using human umbilical vein endothelial cells (HUVECs) and HTR-8 trophoblast cells in a three-dimensional culture system. The co-cultured cells were removed with NH4OH, and ovarian cancer cells were implanted into the preconditioned matrix. VM was identified morphologically and by detecting vascular markers expressed by cancer cells. The specificity of the effects of exogenous HCG in the microenvironment was assessed by inhibition with a neutralizing anti-HCG antibody. HCG siRNA was used to knock down endogenous HCG expression in OVCAR-3 ovarian cancer cells. HTR-8 cells 'fingerprinted' HUVECs to form capillary-like tube structures in co-cultures. In the preconditioned HCG-rich microenvironment, the number of vessel-like network structures formed by HCG receptor-positive OVCAR-3 cells and the expression levels of CD31, VEGF and factor VIII were significantly increased. The preconditioned HCG-rich microenvironment significantly increased the expression of hypoxia inducible factor-1α (HIF‑1α) and VM formation in OVCAR-3 cells under hypoxic conditions. Treatment with a neutralizing anti-HCG antibody but not HCG siRNA significantly inhibited the formation of vessel-like network structures. HCG in the microenvironment contributes to OVCAR-3 differentiation into endothelioid cells in three-dimensional matrices preconditioned with an endothelial-trophoblast cell co-culture system. HCG may synergistically enhance hypoxia-induced vascular markers and HIF-1α expression. These findings would provide perspectives on new therapeutic targets for ovarian cancer.

  14. Improved Killing of Ovarian Cancer Stem Cells by Combining a Novel Chimeric Antigen Receptor-Based Immunotherapy and Chemotherapy.

    PubMed

    Klapdor, Rüdiger; Wang, Shuo; Hacker, Ulrich; Büning, Hildegard; Morgan, Michael; Dörk, Thilo; Hillemanns, Peter; Schambach, Axel

    2017-10-01

    Ovarian cancer represents the most lethal gynecological cancer. Although cytoreductive chemotherapy and surgery lead to complete macroscopic tumor removal, most of the patients in advanced stages suffer from recurrent disease and subsequently die. This may be explained by the activity of cancer stem cells (CSC), which are a subpopulation of cells with an elevated chemoresistance and an increased capacity for self-renewal and metastatic spread. Specifically targeting these cells by adoptive immunotherapy represents a promising strategy to reduce the risk for recurrent disease. This study selected the widely accepted CSC marker CD133 as a target for a chimeric antigen receptor (CAR)-based immunotherapeutic approach to treat ovarian cancer. A lentiviral vector was generated encoding a third-generation anti-CD133-CAR, and clinically used NK92 cells were transduced. These engineered natural killer (NK) cells showed specific killing against CD133-positive ovarian cancer cell lines and primary ovarian cancer cells cultured from sequential ascites harvests. Additionally, specific activation of these engineered NK cells was demonstrated via interferon-gamma secretion assays. To improve clinical efficacy of ovarian cancer treatment, the effect of the chemotherapeutic agent cisplatin was evaluated together with CAR-transduced NK cell treatment. It was demonstrated that NK cells remain cytotoxic and active under cisplatin treatment and, importantly, that sequential treatment with cisplatin followed by CAR-NK cells led to the strongest killing effect. The specific eradication of ovarian CSCs by anti-CD133-CAR expressing NK92 cells represents a promising strategy and, when confirmed in vivo, shall be the basis of future clinical studies with the aim to prevent recurrent disease.

  15. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells

    PubMed Central

    Lang, Fangfang; Qin, Zhaoyang; Li, Fang; Zhang, Huilin; Fang, Zhenghui; Hao, Enkui

    2015-01-01

    Resveratrol (trans-3,4,5’ –trihydroxystilbene) is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3) was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS) generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells. PMID:26067645

  16. Inhibition of the CSF-1 receptor sensitizes ovarian cancer cells to cisplatin.

    PubMed

    Yu, Rong; Jin, Hao; Jin, Congcong; Huang, Xuefeng; Lin, Jinju; Teng, Yili

    2018-03-01

    Ovarian cancer is one of the most common female malignancies, and cisplatin-based chemotherapy is routinely used in locally advanced ovarian cancer patients. Acquired or de novo cisplatin resistance remains the barrier to patient survival, and the mechanisms of cisplatin resistance are still not well understood. In the current study, we found that colony-stimulating-factor-1 receptor (CSF-1R) was upregulated in cisplatin-resistant SK-OV-3 and CaoV-3 cells. Colony-stimulating-factor-1 receptor knockdown suppressed proliferation and enhanced apoptosis in cisplatin-resistant SK-OV-3 and CaoV-3 cells. However, CSF-1R overexpression had inverse effects. While parental SK-OV-3 and CaoV-3 cells were more resistant to cisplatin after CSF-1R overexpression, CSF-1R knockdown in SK-OV-3 and CaoV-3 cells promoted cisplatin sensitivity. Overexpression and knockdown studies also showed that CSF-1R significantly promoted active AKT and ERK1/2 signalling pathways in cisplatin-resistant cells. Furthermore, a combination of cisplatin and CSF-1R inhibitor effectively inhibited tumour growth in xenografts. Taken together, our results provide the first evidence that CSF-1R inhibition can sensitize cisplatin-refractory ovarian cancer cells. This study may help to increase understanding of the molecular mechanisms underlying cisplatin resistance in tumours. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapy-resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo.

    PubMed

    English, Diana P; Bellone, Stefania; Schwab, Carlton L; Roque, Dana M; Lopez, Salvatore; Bortolomai, Ileana; Cocco, Emiliano; Bonazzoli, Elena; Chatterjee, Sudeshna; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-02-01

    Solitomab is a novel, bispecific, single-chain antibody that targets epithelial cell adhesion molecule (EpCAM) on tumor cells and also contains a cluster of differentiation 3 (CD3) (T-cell coreceptor) binding region. The authors evaluated the in vitro activity of solitomab against primary chemotherapy-resistant epithelial ovarian carcinoma cell lines as well as malignant cells in ascites. EpCAM expression was evaluated by flow cytometry in 5 primary ovarian cancer cell lines and in 42 fresh ovarian tumor cell cultures in ascites from patients with mainly advanced or recurrent, chemotherapy-resistant disease. The potential activity of solitomab against EpCAM-positive tumor cells was evaluated by flow cytometry, proliferation, and 4-hour chromium-release, cell-mediated cytotoxicity assays. EpCAM expression was detected by flow cytometry in approximately 80% of the fresh ovarian tumors and primary ovarian tumor cell lines tested. EpCAM-positive, chemotherapy-resistant cell lines were identified as resistant to natural killer cell-mediated or T-cell-mediated killing after exposure to peripheral blood lymphocytes in 4-hour chromium-release assays (mean±standard error of the mean, 3.6%±0.7% of cells killed after incubation of EpCAM-positive cell lines with control bispecific antibody). In contrast, after incubation with solitomab, EpCAM-positive, chemotherapy-resistant cells became highly sensitive to T-cell cytotoxicity (mean±standard error of the mean, 28.2%±2.05% of cells killed; P<.0001) after exposure to peripheral blood lymphocytes. Ex vivo incubation of autologous tumor-associated lymphocytes with EpCAM-expressing malignant cells in ascites with solitomab resulted in a significant increase in T-cell activation markers and a reduction in the number of viable ovarian tumor cells in ascites (P<.001). Solitomab may represent a novel, potentially effective agent for the treatment of chemotherapy-resistant ovarian cancers that overexpress EpCAM. © 2014 American

  18. Mechanisms of the HRSL3 tumor suppressor function in ovarian carcinoma cells.

    PubMed

    Nazarenko, Irina; Schäfer, Reinhold; Sers, Christine

    2007-04-15

    HRSL3 (also known as H-REV107-1) belongs to a class II tumor suppressor gene family and is downregulated in several human tumors including ovarian carcinomas. To unravel the mechanism of HRSL3 tumor suppressor action, we performed a yeast two-hybrid screen and identified the alpha-isoform of the regulatory subunit A of protein phosphatase 2A (PR65alpha) as a new interaction partner of HRSL3. Interaction between HRSL3 and PR65alpha was confirmed in vitro and by co-immunoprecipitation in mammalian cells. We demonstrate that HRSL3 binds to the endogenous PR65alpha, thereby partially sequestering the catalytic subunit PR36 from the PR65 protein complex, and inhibiting PP2A catalytic activity. Furthermore, binding of HRSL3 to PR65 induces apoptosis in ovarian carcinoma cells in a caspase-dependent manner. Using several mutant HRSL3 constructs, we identified the N-terminal proline-rich region within the HRSL3 protein as the domain that is relevant for both binding of PR65alpha and induction of programmed cell death. This suggests that the negative impact of HRSL3 onto PP2A activity is important for the HRSL3 pro-apoptotic function and indicates a role of PP2A in survival of human ovarian carcinomas. The analysis of distinct PP2A target molecules revealed PKCzeta as being involved in HRSL3 action. These data implicate HRSL3 as a signaling regulatory molecule, which is functionally involved in the oncogenic network mediating growth and survival of ovarian cancer cells.

  19. Intraovarian Transplantation of Female Germline Stem Cells Rescue Ovarian Function in Chemotherapy-Injured Ovaries.

    PubMed

    Xiong, Jiaqiang; Lu, Zhiyong; Wu, Meng; Zhang, Jinjin; Cheng, Jing; Luo, Aiyue; Shen, Wei; Fang, Li; Zhou, Su; Wang, Shixuan

    2015-01-01

    Early menopause and infertility often occur in female cancer patients after chemotherapy (CTx). For these patients, oocyte/embryo cryopreservation or ovarian tissue cryopreservation is the current modality for fertility preservation. However, the above methods are limited in the long-term protection of ovarian function, especially for fertility preservation (very few females with cancer have achieved pregnancy with cryopreserved ovarian tissue or eggs until now). In addition, the above methods are subject to their scope (females with no husband or prepubertal females with no mature oocytes). Thus, many females who suffer from cancers would not adopt the above methods pre- and post-CTx due to their uncertainty, safety and cost-effectiveness. Therefore, millions of women have achieved long-term survival after thorough CTx treatment and have desired to rescue their ovarian function and fertility with economic, durable and reliable methods. Recently, some studies showed that mice with infertility caused by CTx can produce normal offspring through intraovarian injection of exogenous female germline stem cells (FGSCs). Though exogenous FGSC can be derived from mice without immune rejection in the same strain, it is difficult to obtain human female germline stem cells (hFGSCs), and immune rejection could occur between different individuals. In this study, infertility in mice was caused by CTx, and the ability of FGSCs to restore ovarian function or even produce offspring was assessed. We had successfully isolated and purified the FGSCs from adult female mice two weeks after CTx. After infection with GFP-carrying virus, the FGSCs were transplanted into ovaries of mice with infertility caused by CTx. Finally, ovarian function was restored and the recipients produced offspring long-term. These findings showed that mice with CTx possessed FGSCs, restoring ovarian function and avoiding immune rejection from exogenous germline stem cells.

  20. Down-regulation of HECTD3 by HER2 inhibition makes serous ovarian cancer cells sensitive to platinum treatment.

    PubMed

    Shu, Tong; Li, Yi; Wu, Xiaowei; Li, Bin; Liu, Zhihua

    2017-12-28

    Resistance to platinum-based chemotherapy is a major cause of treatment failure in patients with epithelial ovarian cancer and predicts a poor prognosis. Previously, we found that HECTD3 confers cancer cell resistance to apoptosis. However, the significance of HECTD3 expression in ovarian cancer and its regulatory mechanisms were unknown. Here, we found that HECTD3 depletion promotes carboplatin-induced apoptosis in both an ovarian cancer cell model and a xenograft mouse model. Moreover, high HECTD3 expression is significantly associated with poor platinum response and prognosis in ovarian cancer patients. We further demonstrated that HER2 can up-regulate HECTD3 expression through activating STAT3. Furthermore, HER2 inhibitors, such as lapatinib, down-regulate HECTD3 expression and thus promote the chemosensitivity of ovarian cancer cells to carboplatin. Lapatinib combined with carboplatin also significantly inhibits serous ovarian carcinoma growth compared with each drug alone in a xenograft mouse model. HECTD3 may be considered a promising molecular predictor of platinum chemosensitivity and prognosis for serous ovarian cancer. Through decreasing HECTD3, lapatinib possesses significantly increased anti-tumor activity when combined with carboplatin compared with each agent alone, which provides an optional therapeutic regimen for serous ovarian cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Inhibition of ovarian cancer cell proliferation by Pien Tze Huang via the AKT-mTOR pathway

    PubMed Central

    HE, FAN; WU, HUI-NI; CAI, MU-YAN; LI, CHANG-PENG; ZHANG, XIN; WAN, QUAN; TANG, SHUANG-BO; CHENG, JIAN-DING

    2014-01-01

    Pien Tze Huang (PZH) is a well-known Chinese medicine that has been used as a therapeutic drug in the treatment of a number of diseases, such as hepatocellular carcinoma and colon cancer. However, few studies have analyzed the effects of PZH on ovarian cancer cell proliferation. In the present study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays, cell cycle and apoptosis rate analyses and western blotting were conducted to investigate the effects of PZH on the proliferation rate of ovarian cancer cells and its potential molecular pathway. The results showed that PZH inhibits the proliferation of the human ovarian cancer OVCAR-3 cell line by blocking the progression of the cell cycle from the G1 to S phase, however, PZH did not induce OVCAR-3 cell apoptosis. Increased PZH concentration may downregulate the expression of AKT, phosphorylated (p)-AKT, mammalian target of rapamycin (mTOR) and p-mTOR proteins in the OVCAR-3 cell line. In addition, it was observed that PZH may suppress the protein expression of cyclin-dependent kinase (CDK)4 and CDK6. Overall, the results of the present study indicated that PZH may inhibit ovarian cancer cell proliferation by modulating the activity of the AKT-mTOR pathway. PMID:24932287

  2. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

    PubMed

    Korch, Christopher; Spillman, Monique A; Jackson, Twila A; Jacobsen, Britta M; Murphy, Susan K; Lessey, Bruce A; Jordan, V Craig; Bradford, Andrew P

    2012-10-01

    Cell lines derived from human ovarian and endometrial cancers, and their immortalized non-malignant counterparts, are critical tools to investigate and characterize molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel therapeutics. To determine the extent of misidentification, contamination and redundancy, with evident consequences for the validity of research based upon these models, we undertook a systematic analysis and cataloging of endometrial and ovarian cell lines. Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR), p53 nucleotide polymorphisms and microsatellite instability was performed. Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five (A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was reportedly derived, and all ECC-1 isolates were genotyped as Ishikawa cells, MCF-7 breast cancer cells, or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer cells, respectively. Results demonstrate significant misidentification, duplication, and loss of integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a simple and economical method to verify and validate studies undertaken with these models. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Phosphoproteomics of Primary Cells Reveals Druggable Kinase Signatures in Ovarian Cancer.

    PubMed

    Francavilla, Chiara; Lupia, Michela; Tsafou, Kalliopi; Villa, Alessandra; Kowalczyk, Katarzyna; Rakownikow Jersie-Christensen, Rosa; Bertalot, Giovanni; Confalonieri, Stefano; Brunak, Søren; Jensen, Lars J; Cavallaro, Ugo; Olsen, Jesper V

    2017-03-28

    Our understanding of the molecular determinants of cancer is still inadequate because of cancer heterogeneity. Here, using epithelial ovarian cancer (EOC) as a model system, we analyzed a minute amount of patient-derived epithelial cells from either healthy or cancerous tissues by single-shot mass-spectrometry-based phosphoproteomics. Using a multi-disciplinary approach, we demonstrated that primary cells recapitulate tissue complexity and represent a valuable source of differentially expressed proteins and phosphorylation sites that discriminate cancer from healthy cells. Furthermore, we uncovered kinase signatures associated with EOC. In particular, CDK7 targets were characterized in both EOC primary cells and ovarian cancer cell lines. We showed that CDK7 controls cell proliferation and that pharmacological inhibition of CDK7 selectively represses EOC cell proliferation. Our approach defines the molecular landscape of EOC, paving the way for efficient therapeutic approaches for patients. Finally, we highlight the potential of phosphoproteomics to identify clinically relevant and druggable pathways in cancer. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. ß3 integrin modulates transforming growth factor beta induced (TGFBI) function and paclitaxel response in ovarian cancer cells.

    PubMed

    Tumbarello, David A; Temple, Jillian; Brenton, James D

    2012-05-28

    The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.

  5. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells.

    PubMed

    Srivastava, Amit Kumar; Han, Chunhua; Zhao, Ran; Cui, Tiantian; Dai, Yuntao; Mao, Charlene; Zhao, Weiqiang; Zhang, Xiaoli; Yu, Jianhua; Wang, Qi-En

    2015-04-07

    Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment.

  6. Anticancer immune reactivity and long-term survival after treatment of metastatic ovarian cancer with dendritic cells

    PubMed Central

    BERNAL, SAMUEL D.; ONA, ENRIQUE T.; RIEGO-JAVIER, AILEEN; DE VILLA, ROMULO; CRISTAL-LUNA, GLORIA R.; LAGUATAN, JOSEPHINE B.; BATAC, EUNICE R.; CANLAS, OSCAR Q.

    2012-01-01

    Hematopoietic stem cells collected by leukapheresis of a patient with metastatic ovarian carcinoma (OVCA) were induced into dendritic cell (DC) differentiation and fused with liposomal constructs of autologous and allogeneic ovarian carcinoma antigens (DC-OVCA). The proliferation of autologous T cells induced by DCs was determined by [3H]-thymidine uptake. Maximal T-cell proliferation was observed in co-cultures of DCs fused with liposomal OVCA constructs compared with intact autologous OVCA cells. The combination of autologous and allogeneic liposomal OVCA constructs induced greater T-cell proliferation than either alone. The cytotoxicity of DC-activated T cells against various target cells were analyzed by a 51Cr-release assay. The combination of autologous and allogeneic liposomal OVCA constructs showed the highest stimulation of T cell-mediated cytotoxicity against OVCA cells, but had minimal cytotoxicity against normal fibroblasts or leukemia cells. The liposomal preparations of DC-OVCA were injected monthly into a patient with metastatic ovarian carcinoma whose tumors progressed following multiple courses of chemotherapy. DCs analyzed from the patient post-immunization showed 2- to 3-fold greater OVCA cytotoxicity compared to pre-immunization DCs. Immunoblots using the patient's serum showed reactivity with a number of proteins from ovarian cancer extracts, but not in normal fibroblasts and breast cancer. Following the DC-OVCA treatment, the metastatic lesions progressively decreased in size to the point of being undetectable by serial CAT scans. Seven years following the initial diagnosis, the patient continues to be free of cancer. This report described the anticancer immune reactivity and anti-tumor response induced by DCs sensitized with liposomal constructs of OVCA antigens. Immune cell therapy may therefore be a useful adjunct to surgery and chemotherapy for the treatment of ovarian cancer. PMID:22740858

  7. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  8. NOXA-Induced Alterations in the Bax/Smac Axis Enhance Sensitivity of Ovarian Cancer Cells to Cisplatin

    PubMed Central

    Lin, Chao; Zhao, Xin-yu; Li, Lei; Liu, Huan-yi; Cao, Kang; Wan, Yang; Liu, Xin-yu; Nie, Chun-lai; Liu, Lei; Tong, Ai-ping; Deng, Hong-xin; Li, Jiong; Yuan, Zhu; Wei, Yu-quan

    2012-01-01

    Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy. PMID:22590594

  9. Differential effects of rapalogues, dual kinase inhibitors on human ovarian carcinoma cells in vitro

    PubMed Central

    ROGERS-BROADWAY, KARLY-RAI; CHUDASAMA, DIMPLE; PADOS, GEORGE; TSOLAKIDIS, DIMITRIS; GOUMENOU, ANASTASIA; HALL, MARCIA; KARTERIS, EMMANOUIL

    2016-01-01

    Ovarian cancer is the second most common gynaecological malignancy and was diagnosed in over 7,000 women in 2011 in the UK. There are currently no reliable biomarkers available for use in a regular screening assay for ovarian cancer and due to characteristic late presentation (78% in stages III and IV) ovarian cancer has a low survival rate (35% after 10 years). The mTOR pathway is a central regulator of growth, proliferation, apoptosis and angiogenesis; providing balance between available resources such as amino acids and growth factors, and stresses such as hypoxia, to control cellular behaviour accordingly. Emerging data links mTOR with the aetiopathogenesis of ovarian cancer. We hypothesised that mTOR inhibitors could play a therapeutic role in ovarian cancer treatment. In this study we began by validating the expression of four main mTOR pathway components, mTOR, DEPTOR, rictor and raptor, at gene and protein level in in vitro models of endometrioid (MDAH-2774) and clear cell (SKOV3) ovarian cancer using qPCR and ImageStream technology. Using a wound healing assay we show that inhibition of the mTOR pathway using rapamycin, rapalogues, resveratrol and NVP BEZ-235 induces a cytostatic and not cytotoxic response up to 18 h in these cell lines. We extended these findings up to 72 h with a proliferation assay and show that the effects of inhibition of the mTOR pathway are primarily mediated by the dephosphorylation of p70S6 kinase. We show that mTOR inhibition does not involve alteration of mTOR pathway components or induce caspase 9 cleavage. Preclinical studies including ovarian tissue of ovarian cancer patients, unaffected controls and patients with unrelated gynaecological conditions show that DEPTOR is reliably upregulated in ovarian cancer. PMID:27211906

  10. Cranberry Proanthocyanidins are Cytotoxic to Human Cancer Cells and Sensitize Platinum-Resistant Ovarian Cancer Cells to Paraplatin

    PubMed Central

    Singh, Ajay P.; Singh, Rakesh K.; Kim, Kyu Kwang; Satyan, K. S.; Nussbaum, Roger; Torres, Monica; Brard, Laurent; Vorsa, Nicholi

    2010-01-01

    Polyphenolic extracts of the principal flavonoid classes present in cranberry were screened in vitro for cytotoxicity against solid tumor cells lines, identifying two fractions composed principally of proanthocyanidins (PACs) with potential anticancer activity. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) analysis of the proanthocyanidins (PACs) fractions indicated the presence of A-type PACs with 1–4 linkages containing between 2–8 epicatechin units with a maximum of 1 epigallocatechin unit. PACs exhibited in vitro cytotoxicity against platinum-resistant human ovarian, neuroblastoma and prostate cancer cell lines (IC50 = 79–479 μg/mL) but were non-cytotoxic to lung fibroblast cells (IC50 > 1000 μg/ml). SKOV-3 ovarian cancer cells treated with PACs exhibited classic apoptotic changes. PACs acted synergistically with paraplatin in SKOV-3 cells. Pretreatment of SKOV-3 cells with PACs (106 μg/ ml) resulted in a significant reduction of the paraplatin IC50 value. Similarly, in a BrdU incorporation assay, co-treatment of SKOV-3 cells with PACs and paraplatin revealed reduced cell proliferation at lower concentrations than with either individually. In SKOV-3 cell cultures co-treated with PAC-1 and paraplatin, an HPLC analysis indicated differential quantitative presence of various PAC oligomers such as DP-8, -9, -11 and -14 indicating either selective binding or uptake. Cranberry proanthocyanidins exhibit cell-line specific cytotoxicity, induce apoptotic markers and augment cytotoxicity of paraplatin in platinum-resistant SKOV-3 ovarian cancer cells. PMID:19172579

  11. High-Throughput Platform for Patient-Derived, Small Cell Number, Three-Dimensional Ovarian Cancer Spheroids

    DTIC Science & Technology

    2014-09-01

    these small cell number spheroids show 3-D morphology (Figure 3). We also observed differences in the expression of mesenchymal markers when...Scale bar =100 µm. Figure 3: Small cell number spheroids demonstrate 3-D morphology . 3-D reconstructions of confocal z-stacks are shown for...formation was observed with the addition of MSCs, and subsequent co-culture in hanging drop plates preserved spheroid morphology indicated in the phase

  12. Ovarian cancer stem cells: still an elusive entity?

    PubMed

    Lupia, Michela; Cavallaro, Ugo

    2017-03-20

    The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed, ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC component.

  13. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.

    PubMed

    Ferraresi, Alessandra; Phadngam, Suratchanee; Morani, Federica; Galetto, Alessandra; Alabiso, Oscar; Chiorino, Giovanna; Isidoro, Ciro

    2017-03-01

    Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Characterization of three new serous epithelial ovarian cancer cell lines

    PubMed Central

    Ouellet, Véronique; Zietarska, Magdalena; Portelance, Lise; Lafontaine, Julie; Madore, Jason; Puiffe, Marie-Line; Arcand, Suzanna L; Shen, Zhen; Hébert, Josée; Tonin, Patricia N; Provencher, Diane M; Mes-Masson, Anne-Marie

    2008-01-01

    Background Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Methods In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice. Results While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease. Conclusion This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient. PMID:18507860

  15. Transformation of Epithelial Ovarian Cancer Stemlike Cells into Mesenchymal Lineage via EMT Results in Cellular Heterogeneity and Supports Tumor Engraftment

    PubMed Central

    Jiang, Hua; Lin, Xiaolong; Liu, Yingtao; Gong, Wenjia; Ma, Xiaoling; Yu, Yinhua; Xie, Yi; Sun, Xiaoxi; Feng, Youji; Janzen, Viktor; Chen, Tong

    2012-01-01

    Ovarian cancers are heterogeneous and contain stemlike cells that are able to self-renew and are responsible for sustained tumor growth. Metastasis in the peritoneal cavity occurs more frequently in ovarian cancer than in other malignancies, but the underlying mechanism remains largely unknown. We have identified that ovarian cancer stemlike cells (CSCs), which were defined as side population (SP) cells, were present in patients’ ascitic fluid and mesenchymally transformed cell lines, ES-2 and HO-8910PM. SP cells, which were sorted from both cell lines and implanted into immunocompromised mice, were localized to the xenografted tumor boundary. In addition, SP cells exhibited an epithelial phenotype and showed a distinct gene expression profile with reduced expression of cell adhesion molecules (CAMs), indicating that SP cells exert an important role in ovarian cancer progression on the basis of their delicate interaction with the surrounding microenvironment and anatomical localization in tumors. In contrast, non-SP cells exhibited a more mesenchymal phenotype and showed more increased invasive potential than SP cells. This heterogeneity was observed as an endogenous transformation via the epithelial–mesenchymal transition (EMT) process. Inhibition of the EMT process by Snail1 silencing reduced the SP cell frequency, and affected their invasive capacity and engraftment. These findings illustrate the interplay between epithelial ovarian CSCs and the EMT, and exert a link to explain tumor heterogeneity and its necessity for ovarian cancer maintenance, metastasis and progression. PMID:22801793

  16. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency.

    PubMed

    Su, Jing; Ding, Lijun; Cheng, Jie; Yang, Jun; Li, Xin'an; Yan, Guijun; Sun, Haixiang; Dai, Jianwu; Hu, Yali

    2016-05-01

    Does the transplantation of adipose-derived stem cells (ADSCs) on soluble collagen scaffolds (collagen/ADSCs) have better therapeutic effect than transplantation of ADSCs alone, to treat premature ovarian insufficiency (POI) in a rat model induced by Tripterygium Glycosides (TG)? The transplantation of collagen/ADSCs increased the short-term retention of ADSCs in ovaries and contributed to long-term restoration of ovarian function, as well as the fertility of rats with TG-induced ovarian damage. About 50% of young women in China, who have been treated with TG, have subsequently developed ovarian insufficiency. Rats exhibit similar symptoms to these patients when given an equivalent dose of TG. Transplantation of ADSCs improves ovarian function impaired by chemotherapy in rodent models. After the administration of TG, 54 POI model rats were randomly assigned to 4 groups: phosphate buffered saline (PBS) ( ITALIC! n = 14), collagen ( ITALIC! n = 11), ADSCs ( ITALIC! n = 16) and collagen/ADSCs ( ITALIC! n = 13). Seventeen normal rats were assigned as control group. The retention of ADSCs in ovaries was confirmed immediately or at 3, 7, 14 and 28 days after transplantation ( ITALIC! n = 9). Four weeks after transplantation, ovarian function was evaluated from estrous cycle, estradiol level, the follicle number, granulosa cell proliferation and a fertility test. To establish the POI model, rats were administered 60 mg TG/kg/day intragastrically for 50 days. The estrous cycles were assessed by vaginal smear. The concentration of plasma estradiol in diestrus stage was measured using a radioimmunoassay kit. Disordered estrous cycles and low serum estradiol levels indicated the successful establishment of the POI model. Four types of suspensions (PBS, collagen, ADSCs and collagen/ADSCs) were transplanted directly into the core of the ovaries. The short-term retention of ADSCs in ovaries was evaluated by small-animal positron emission tomography images immediately after

  17. Hsp90 Is a Novel Target Molecule of CDDO-Me in Inhibiting Proliferation of Ovarian Cancer Cells.

    PubMed

    Qin, Dong-Jun; Tang, Cai-Xia; Yang, Li; Lei, Hu; Wei, Wei; Wang, Ying-Ying; Ma, Chun-Min; Gao, Feng-Hou; Xu, Han-Zhang; Wu, Ying-Li

    2015-01-01

    Synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9(11)-dien-28-oate (CDDO-Me) has been shown as a promising agent against ovarian cancer. However, the underlying mechanism is not well understood. Here, we demonstrate that CDDO-Me directly interacts with Hsp90 in cells by cellular thermal shift assay. CDDO-Me treatment leads to upregulation of Hsp70 and degradation of Hsp90 clients (ErbB2 and Akt), indicating the inhibition of Hsp90 by CDDO-Me in cells. Knockdown of Hsp90 significantly inhibits cell proliferation and enhances the anti-proliferation effect of CDDO-Me in H08910 ovarian cancer cells. Dithiothreitol inhibits the interaction of CDDO-Me with Hsp90 in cells and abrogates CDDO-Me induced upregulation of Hsp70, degradation of Akt and cell proliferation inhibition. This suggests the anti-ovarian cancer effect of CDDO-Me is possibly mediated by the formation of Michael adducts between CDDO-Me and reactive nucleophiles on Hsp90. This study identifies Hsp90 as a novel target protein of CDDO-Me, and provides a novel insight into the mechanism of action of CDDO-Me in ovarian cancer cells.

  18. Inhibitory Effects of the Four Main Theaflavin Derivatives Found in Black Tea on Ovarian Cancer Cells.

    PubMed

    Gao, Ying; Rankin, Gary O; Tu, Youying; Chen, Yi Charlie

    2016-02-01

    Some polyphenols induce apoptosis and inhibit angiogenesis. Consumption of black tea, rich in polyphenols, has been found to reduce ovarian cancer risk. Theaflavin (TF1), theaflavin-3-gallate (TF2a), theaflavin-3'-gallate (TF2b) and theaflavin-3, 3'-digallate (TF3) are four main theaflavin derivatives found in black tea. Cell proliferation assay, Hoechst 33342 staining assay, Caspase-Glo Assay, western blot, human umbilical vein endothelial cell tube formation assay and vascular endothelial growth factor (VEGF) enzyme-linked immunosorbent assay were performed. All four theaflavin derivatives reduced viability of ovarian cancer cells at lower concentrations than with normal ovarian cells. TF1 mainly mediated apoptosis via the intrinsic pathway, while the others via the intrinsic and extrinsic pathways. TF1 inhibited tube formation via reducing VEGF secretion in a hypoxia-inducible factor 1α-independent manner, while the others in a HIF1α-dependent way. All four theaflavin derivatives inhibited ovarian cancer cells. Some of the effects and mechanisms of TF1 are different from those of the other three theaflavin derivatives. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. HSP27 Knockdown Increases Cytoplasmic p21 and Cisplatin Sensitivity in Ovarian Carcinoma Cells.

    PubMed

    Lu, Hao; Sun, Chaoyang; Zhou, Ting; Zhou, Bo; Guo, Ensong; Shan, Wanying; Xia, Meng; Li, Kezhen; Weng, Danhui; Meng, Li; Xu, Xiaoyan; Hu, Junbo; Ma, Ding; Chen, Gang

    2016-01-01

    Drug resistance is the leading cause of chemotherapy failure in the treatment of ovarian cancer. So far, little is known about the mechanism of chemoresistance in ovarian cancer. In this study, we explored the mechanism that HSP27 was involved in cisplatin resistance of ovarian cancer both in vitro and clinically. HSP27 protein was found to be upregulated and expressed in cisplatin-resistant ovarian cancer cell line C13*, and HSP27 siRNA transfection reversed the chemoresistance of C13*. We found that HSP27 exerted its chemoresistant role by inhibiting p21 transferring from the nucleus to the plasma through the activation of phosphorylated-Akt pathway. These findings have implications for clinical trials aimed at a potential therapeutic target for ovarian tumors that are refractory to conventional treatment.

  20. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells.

    PubMed

    Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S; Costa, Júlia

    2013-01-01

    Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.

  1. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  2. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrighetti, Noemi, E-mail: Noemi.Arrighetti@istitu

    The occurrence of drug resistance limits the efficacy of platinum compounds in the cure of ovarian carcinoma. Since microRNAs (miRNAs) may contribute to this phenomenon by regulating different aspects of tumor cell response, the aim of this study was to exploit the analysis of expression of miRNAs in platinum sensitive/resistant cells in an attempt to identify potential regulators of drug response. MiR-483-3p, which may participate in apoptosis and cell proliferation regulation, was found up-regulated in 4 platinum resistant variants, particularly in the IGROV-1/Pt1 subline, versus parental cells. Transfection of a synthetic precursor of miR-483-3p in IGROV-1 parental cells elicited amore » marked up-regulation of the miRNA levels. Growth-inhibition and colony-forming assays indicated that miR-483-3p over-expression reduced cell growth and conferred mild levels of cisplatin resistance in IGROV-1 cells, by interference with their proliferative potential. Predicted targets of miR-483-3p included PRKCA (encoding PKC-alpha), previously reported to be associated to platinum-resistance in ovarian carcinoma. We found that miR-483-3p directly targeted PRKCA in IGROV-1 cells. In keeping with this finding, cisplatin sensitivity of IGROV-1 cells decreased upon molecular/pharmacological inhibition of PKC-alpha. Overall, our results suggest that overexpression of miR-483-3p by ovarian carcinoma platinum-resistant cells may interfere with their proliferation, thus protecting them from DNA damage induced by platinum compounds and ultimately representing a drug-resistance mechanism. The impairment of cell growth may account for low levels of drug resistance that could be relevant in the clinical setting. - Highlights: • miR-483-3p is up-regulated in ovarian carcinoma cells resistant to platinum drugs. • Ectopic expression of miR-483-3p in IGROV-1 confers mild levels of Pt-resistance. • Overexpression of miR-483-3p down-regulates PRKCA levels in ovarian carcinoma cells.

  3. Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3

    PubMed Central

    Zou, Bingyu; Wang, Hailian; Liu, Yilong; Qi, Ping; Lei, Tiantian; Sun, Minghan; Wang, Yi

    2017-01-01

    Ovarian cancer is the most lethal gynecological malignancy in the world. Our previous studies showed that mangiferin, purified from plant source, possessed anti-neoplasm effect on human lung adenocarcinoma A549 cells. This study aimed to determine the apoptosis-inducing effect of mangiferin on human ovarian carcinoma OVCAR3 cells. By in vitro studies, we found mangiferin significantly inhibited viability of OVCAR3 cells, and remarkably increased the sensitivity of OVCAR3 cells to cisplatin. In addition, the activation of caspase-dependent apoptosis was observed in mangiferin treated ovarian cancer cells. Importantly, we observed an obviously downregulated Notch expression after mangiferin treatment, indicating the crucial role of Notch in mangiferin mediated apoptosis. In contrast, overexpression of Notch3 abrogated the apoptosis-inducing efficacy of mangiferin, further demonstrating that mangiferin induced apoptosis via Notch pathway. Furthermore, OVCAR3 cell xenograft models revealed that mangiferin treatment inhibited tumor growth and expanded survival of tumor xenograft mice. Based on these results, we concluded that mangiferin could significantly inhibit the proliferation and induce apoptosis in OVCAR3 cells. Our study also suggested the anti-neoplasm effect of mangiferin might be via the regulation of Notch3. Taken together, by targeting cell apoptosis pathways and enhancing the response to cisplatin treatment, mangiferin may represent a potential new drug for the treatment of human ovarian cancer. PMID:28714011

  4. Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3.

    PubMed

    Zou, Bingyu; Wang, Hailian; Liu, Yilong; Qi, Ping; Lei, Tiantian; Sun, Minghan; Wang, Yi

    2017-09-01

    Ovarian cancer is the most lethal gynecological malignancy in the world. Our previous studies showed that mangiferin, purified from plant source, possessed anti-neoplasm effect on human lung adenocarcinoma A549 cells. This study aimed to determine the apoptosis-inducing effect of mangiferin on human ovarian carcinoma OVCAR3 cells. By in vitro studies, we found mangiferin significantly inhibited viability of OVCAR3 cells, and remarkably increased the sensitivity of OVCAR3 cells to cisplatin. In addition, the activation of caspase-dependent apoptosis was observed in mangiferin treated ovarian cancer cells. Importantly, we observed an obviously downregulated Notch expression after mangiferin treatment, indicating the crucial role of Notch in mangiferin mediated apoptosis. In contrast, overexpression of Notch3 abrogated the apoptosis-inducing efficacy of mangiferin, further demonstrating that mangiferin induced apoptosis via Notch pathway. Furthermore, OVCAR3 cell xenograft models revealed that mangiferin treatment inhibited tumor growth and expanded survival of tumor xenograft mice. Based on these results, we concluded that mangiferin could significantly inhibit the proliferation and induce apoptosis in OVCAR3 cells. Our study also suggested the anti-neoplasm effect of mangiferin might be via the regulation of Notch3. Taken together, by targeting cell apoptosis pathways and enhancing the response to cisplatin treatment, mangiferin may represent a potential new drug for the treatment of human ovarian cancer.

  5. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soyeon; Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul; Lee, Jae-Jung

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effectmore » of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR

  6. Ovarian malignant mixed germ cell tumor with clear cell carcinoma in a postmenopausal woman.

    PubMed

    Yu, Xiu-Jie; Zhang, Lin; Liu, Zai-Ping; Shi, Yi-Quan; Liu, Yi-Xin

    2014-01-01

    Malignant germ cell tumors of the ovary are very rare and account for about 2-5% of all ovarian tumors of germ origin. Most patients are adolescent and young women, approximately two-thirds of them are under 20 years of age, occasionally in postmenopausal women. But clear cell carcinoma usually occurs in older patients (median age: 57-year old), and closely related with endometriosis. Here we report a case of a 55-year old woman with right ovarian mass that discovered by B ultrasonic. Her serum levels of human chorionic gonadotropin (hCG) and α-fetoprotein (AFP) were elevated. Pathological examination revealed the tumor to be a mixed germ cell tumor (yolk sac tumor, embryonal carcinoma and mature teratoma) with clear cell carcinoma in a background of endometriosis. Immunohistochemical staining showed SALL4 and PLAP were positive in germ cell tumor area, hCG, CD30 and OCT4 were positive in epithelial-like cells and giant synctiotrophoblastic cells, AFP, AAT, CD117 and Glyp3 were positive in yolk sac component, EMA and CK7 were positive in clear cell carcinoma, CD10 was positive in endometrial cells of endometriotic area. She was treated with surgery followed by seven courses of chemotherapy. She is well and serum levels of hCG and AFP have been decreased to normal levels.

  7. Photodynamic action of LED-activated pyropheophorbide-α methyl ester in cisplatin-resistant human ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Xu, C. S.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; He, Y.; Leung, A. W. N.

    2009-04-01

    Cisplatin-resistance is a major obstacle for the successful therapy to ovarian cancer, and exploring novel approach to deactivate cisplatin-resistant ovarian cells will improve the clinical outcomes. Our present study showed that there was no dark cytotoxicity of MPPa in the COC1/DDP cells at the dose of 0.25 - 4 μM, and LED-activated MPPa resulted in drug dose- and light-dependent cytotoxicity. Apoptotic rate 6 h after LED-activated MPPa (2 μM) increased to 16.71% under the light energy of 1 J/cm2. Confocal laser scanning microscopy showed that MPPa mainly localized in the intracellular membrane system, namely the endoplasmic reticulum, Golgi apparatus, lysosomes and mitochondria in the COC1/DDP cells. Mitochondrial membrane potential (ΔΨm) was collapsed when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. These data demonstrated that LED-activated MPPa significantly deactivated cisplatin-resistant ovarian cell line COC1/DDP cells and enhanced apoptosis and decreased ΔΨm, which suggests LED is an efficient light source for PDT and LED-activated MPPa can be developed as new modality for treating cisplatin-resistant ovarian.

  8. Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues.

    PubMed

    Chen, Jin-Long; Chen, Fang; Zhang, Ting-Ting; Liu, Nai-Fu

    2016-06-01

    Epithelial ovarian cancer (EOC), the sixth most common cancer in women worldwide, is the most commonly fatal gynecologic malignancy in developed countries. One of the main reasons for this is that relatively little was known about the molecular events responsible for the development of this highly aggressive disease. In the present study, we demonstrated that salt‑inducible kinase 1 (SIK1; which is also known as MSK/SIK/SNF1LK) was downregulated in ovarian cancer tissue samples. Using HEY ovarian cancer cells, we noted that SIK1 overexpression inhibited proliferation as well as cancer stem cell-associated traits. Silencing SIK1 promoted the proliferation of the EG ovarian cancer cell line. We performed an analysis of potential microRNAs (miRNAs or miRs) target sites using three commonly used prediction algorithms: miRanda, TargetScan and PicTar. All three algorithms predicted that miR-141 targets the 3'UTR of SIK1. Subsequent experiments not only confirmed this prediction, but also showed that miR-141 was associated with the progression of this disease. Finally, we found that miR-141 promoted proliferation of EG cells, whereas silencing miR-141 restored SIK1 expression and inhibited the proliferation of the HEY cells. Elucidating the molecular mechanism of ovarian cancer not only enables us to further understand the pathogenesis and progression of the disease, but also provides new targets for effective therapies.

  9. Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles.

    PubMed

    Hatzirodos, Nicholas; Hummitzsch, Katja; Irving-Rodgers, Helen F; Rodgers, Raymond J

    2014-01-01

    The theca interna layer of the ovarian follicle forms during the antral stage of follicle development and lies adjacent to and directly outside the follicular basal lamina. It supplies androgens and communicates with the granulosa cells and the oocyte by extracellular signaling. To better understand developmental changes in the theca interna, we undertook transcriptome profiling of the theca interna from small (3-5 mm, n = 10) and large (9-12 mm, n = 5) healthy antral bovine follicles, representing a calculated >7-fold increase in the amount of thecal tissue. Principal Component Analysis and hierarchical classification of the signal intensity plots for the arrays showed no clustering of the theca interna samples into groups depending on follicle size or subcategories of small follicles. From the over 23,000 probe sets analysed, only 76 were differentially expressed between large and small healthy follicles. Some of the differentially expressed genes were associated with processes such as myoblast differentiation, protein ubiquitination, nitric oxide and transforming growth factor β signaling. The most significant pathway affected from our analyses was found to be Wnt signaling, which was suppressed in large follicles via down-regulation of WNT2B and up-regulation of the inhibitor FRZB. These changes in the transcriptional profile could have been due to changes in cellular function or alternatively since the theca interna is composed of a number of different cell types it could have been due to any systematic change in the volume density of any particular cell type. However, our study suggests that the transcriptional profile of the theca interna is relatively stable during antral follicle development unlike that of granulosa cells observed previously. Thus both the cellular composition and cellular behavior of the theca interna and its contribution to follicular development appear to be relatively constant throughout the follicle growth phase examined.

  10. Transcriptome Profiling of the Theca Interna in Transition from Small to Large Antral Ovarian Follicles

    PubMed Central

    Hatzirodos, Nicholas; Hummitzsch, Katja; Irving-Rodgers, Helen F.; Rodgers, Raymond J.

    2014-01-01

    The theca interna layer of the ovarian follicle forms during the antral stage of follicle development and lies adjacent to and directly outside the follicular basal lamina. It supplies androgens and communicates with the granulosa cells and the oocyte by extracellular signaling. To better understand developmental changes in the theca interna, we undertook transcriptome profiling of the theca interna from small (3–5 mm, n = 10) and large (9–12 mm, n = 5) healthy antral bovine follicles, representing a calculated >7-fold increase in the amount of thecal tissue. Principal Component Analysis and hierarchical classification of the signal intensity plots for the arrays showed no clustering of the theca interna samples into groups depending on follicle size or subcategories of small follicles. From the over 23,000 probe sets analysed, only 76 were differentially expressed between large and small healthy follicles. Some of the differentially expressed genes were associated with processes such as myoblast differentiation, protein ubiquitination, nitric oxide and transforming growth factor β signaling. The most significant pathway affected from our analyses was found to be Wnt signaling, which was suppressed in large follicles via down-regulation of WNT2B and up-regulation of the inhibitor FRZB. These changes in the transcriptional profile could have been due to changes in cellular function or alternatively since the theca interna is composed of a number of different cell types it could have been due to any systematic change in the volume density of any particular cell type. However, our study suggests that the transcriptional profile of the theca interna is relatively stable during antral follicle development unlike that of granulosa cells observed previously. Thus both the cellular composition and cellular behavior of the theca interna and its contribution to follicular development appear to be relatively constant throughout the follicle growth phase examined

  11. A case of hirsutism due to bilateral diffuse ovarian Leydig cell hyperplasia in a post-menopausal woman.

    PubMed

    Ali, F S.M.; Stanaway, S E.R.S.; Zakhour, H D.; Spearing, G; Bowen-Jones, D

    2003-11-01

    Hyperandrogenism in females usually results from ovarian or adrenal pathology. We present a case of virilizaton due to very rare bilateral ovarian diffuse interstitial proliferation of Leydig cells with no tumour or hilar cell hyperplasia identified. Interestingly, the case was further complicated by the finding of high levels of testosterone in one adrenal vein on selective venous sampling (SVS), resulting in an unnecessary unilateral adrenalectomy. Further sampling found high levels also in the ovarian veins, and the condition was finally cured by bilateral oophorectomy.

  12. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells.

    PubMed

    Fan, Li; Ma, Yalin; Liu, Ying; Zheng, Dongping; Huang, Guangrong

    2014-11-15

    The polyphenolic flavonoid silymarin that is the milk thistle extract has been found to possess an anti-cancer effect against various human epithelial cancers. In this study, to explore the regulative effect of silymarin on human ovarian cancer line A2780s and PA-1 cells, 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay and flow cytometry were respectively used to determine the inhibitory effect of silymarin on the both cell lines, and to measure their cell cycle progression. Apoptosis induction and mitochondrial membrane potential damage were separately detected by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assay and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide staining. Additionally, western blotting was applied to determine cytochrome C release and expression levels of p53, p21, p27, p16, CDK2, Bax, Bcl-2, procaspase-9, procaspase-3, cleaved caspase-9 and caspase-3 proteins. The activity of caspase-9 and caspase-3 was measured using Caspase-Glo-9 and Caspase-Glo-3 assay. The results indicated that silymarin effectively suppressed cell growth in a dose- and time-dependent manner, and arrested cell cycle progression at G1/S phase in A2780s and PA-1 cells via up-regulation of p53, p21, and p27 protein expression, and down-regulation of CDK2 protein expression. Additionally, silymarin treatment for 24h at 50 and 100µg/ml resulted in a reduction of mitochondrial membrane potential and cytochrome C release, and significantly induced apoptosis in A2780s and PA-1 cells by increasing Bax and decreasing Bcl-2 protein expression, and activation of caspase-9 and caspase-3. Therefore, silymarin is a possible potential candidate for the prevention and treatment of ovarian cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Monoclonal antibody against human ovarian tumor-associated antigens.

    PubMed

    Poels, L G; Peters, D; van Megen, Y; Vooijs, G P; Verheyen, R N; Willemen, A; van Niekerk, C C; Jap, P H; Mungyer, G; Kenemans, P

    1986-05-01

    Mouse monoclonal antibodies (OV-TL 3) were raised against human ovarian tumor-associated antigens for diagnostic purposes. A cloned hybridoma cell line was obtained by fusion of murine myeloma cells with spleen lymphocytes from BALB/c mice immunized with a tumor cell suspension prepared from an ovarian endometrioid carcinoma. The antibodies were initially screened for their ability to bind on frozen sections of human ovarian carcinoma tissue and a negative reaction on gastric carcinoma tissue by indirect immunofluorescence. The reactivity of the selected OV-TL 3 clone (IgG1 subclass) was studied on normal and neoplastic tissues as well as on a cell line derived from the original tumor cell suspension used for immunization. OV-TL 3 antibodies stained frozen sections of human ovarian carcinomas of the following histological types: serous, mucinous, endometrioid, and clear cell. No reaction was found with breast cancers or other nongynecological tumors. No differences in staining pattern were observed between primary and metastatic ovarian carcinomas. OV-TL 3 antibodies brightly stained ovarian carcinoma cell clusters in ascitic fluids and left unstained mesothelial cells and peripheral blood cells. The OV-TL 3-defined antigen also remained strongly expressed on a cell line derived from the endometrioid ovarian carcinoma originally used for generation of OV-TL 3 clone. Reactivity was weak and irregular in a few ovarian cysts, while traces of fluorescence were sometimes detected in epithelial cells lining the female genital tract. In only 3 specimens of 15 endometrium carcinomas was weak focal reactivity with OV-TL 3 antibodies observed. The results of the immunofluorescence study were confirmed by the more sensitive avidin-biotin method and by 125I-labeled OV-TL 3 antibodies. Thus OV-TL 3 recognizes a common antigen for most ovarian carcinomas and may be a useful tool for rapid diagnosis of ovarian carcinomas.

  14. Microchip ELISA coupled with cell phone to detect ovarian cancer HE4 biomarker in urine.

    PubMed

    Wang, ShuQi; Akbas, Ragip; Demirci, Utkan

    2015-01-01

    Ovarian cancer is a leading cause of death from gynecologic cancers in the USA, and early diagnosis can potentially increase 5-year survival rate. Detection of biomarkers derived from hyperplasia of epithelial tissue by enzyme-linked immunosorbent assay (ELISA) proves to be a practical way of early diagnosis of ovarian cancer. However, ELISA is commonly performed in a laboratory setting, and it cannot be used in a clinical setting for on-site consultation. We have shown a microchip ELISA that detects HE4, an ovarian cancer biomarker, from urine using a cell phone integrated with a mobile application for imaging and data analysis. In microchip ELISA, HE4 from urine was first absorbed on the surface; the primary and secondary antibodies were subsequently anchored on the surface via immuno-reaction; and addition of substrate led to color development because of enzymatic labeling. The microchip after color development was imaged using a cell phone, and the color intensity was analyzed by an integrated mobile application. By comparing with an ELISA standard curve, the concentration of HE4 was reported on the cell phone screen. The presented microchip ELISA coupled with a cell phone is portable as opposed to traditional ELISA, and this method can facilitate the detection of ovarian cancer at the point-of-care (POC).

  15. microRNA-340 induces apoptosis by downregulation of BAG3 in ovarian cancer SKOV3 cells.

    PubMed

    Qu, Fei; Wang, Xiufen

    2017-08-01

    Aberrant expression of miR-340 has been found in several kinds of cancers including ovarian cancer. Pro-apoptotic and anti-metastasis roles of miR-340 in ovarian cancer have also been reported; however, the underling molecular mechanisms by which miR-340 suppresses ovarian cancer are still unclear. This study focused on the role and molecular mechanism of miR-340 in ovarian cancer. Human ovarian carcinoma SKOV3 cells were used and transfected with miR-340 mimic, miR-340 inhibitor and their correspondingly negative controls (mimic control and inhibitor control). Thereafter, cell viability, apoptosis, and the expressions of apoptosis-associated factors and BAG3 were respectively assessed by MTT assay, flow cytometry, qRT-PCR and Western blotting. SKOV3 cells were then co-transfected with miR-340 inhibitor and BAG3 targeted siRNA, then cell viability, apoptosis and the expression of apoptosis-associated factors were retested. Besides, the expressions of main factors in PI3K/AKT pathway were detected. Overexpression of miR-340 suppressed BAG3 cells viability (P < 0.05), but improved apoptosis (P < 0.001). BAG3 was negatively regulated by miR-340 (P < 0.05 or P < 0.01). BAG3 silence significantly induced cell apoptosis (P < 0.001), and abolished miR-340 suppression-induced increase in cell viability (P < 0.001). Besides, BAG3 silence abolished miR-340 suppression-induced activation of PI3K and AKT. This study revealed the tumor suppressive role of miR-340 in SKOV3 cells by negative regulation of BAG3. PI3K/AKT pathway might be involved in the regulation of miR-340 and BAG3.

  16. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis.

    PubMed

    Wang, Xiaoyu; Zhang, Yiting; Lin, Haiyingjie; Liu, Yan; Tan, Yi; Lin, Jie; Gao, Fenze; Lin, Shaoqiang

    2017-01-22

    Emerging evidence indicates that β-galactoside-α2,3-sialyltransferase III (ST3Gal3) involves in development, inflammation, neoplastic transformation, and metastasis. However, the role of ST3Gal3 in regulating cancer chemoresistance remains elusive. Herein, we investigated the functional effects of ST3Gal3 in cisplatin-resistant ovarian cancer cells. We found that the levels of ST3Gal3 mRNA differed significantly among ovarian cancer cell lines. HO8910PM cells that have high invasive and metastatic capacity express elevated ST3Gal3 mRNA and are resistant to cisplatin, comparing to SKOV3 cells that have a lower level of ST3Gal3 expression and are more chemosensitive to cisplatin. We found that the expression of ST3Gal3 has reverse correlation with the dosage of cisplatin used in both SKOV3 and HO8910PM cells, and high dose of cisplatin could down-regulate ST3Gal3 expression. We then examined the functional effects of ST3Gal3 knockdown in cancer cell lines using FACS analysis. The number of apoptotic cells was much higher in cells if ST3Gal3 expression was knocked down by siRNA and/or by treating cells with higher dosage of cisplatin in comparison to control cells. Interestingly, in HO8910PM cells with ST3Gal3 knockdown, the levels of caspase 8 and caspase 3 proteins increased, which was more obvious in cells treated with both ST3Gal3 knockdown and cisplatin, suggesting that ST3Gal3 knockdown synergistically enhanced cisplatin-induced apoptosis in ovarian cancer cells. Taken together, these results uncover an alternative mechanism of cisplatin-resistance through ST3Gal3 and open a window for effective prevention of chemoresistance and relapse of ovarian cancer by targeting ST3Gal3. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The G-Protein-Coupled Estrogen Receptor (GPER/GPR30) in Ovarian Granulosa Cell Tumors

    PubMed Central

    Heublein, Sabine; Mayr, Doris; Friese, Klaus; Jarrin-Franco, Maria Cristina; Lenhard, Miriam; Mayerhofer, Artur; Jeschke, Udo

    2014-01-01

    Ovarian granulosa cell tumors (GCTs) are thought to arise from cells of the ovarian follicle and comprise a rare entity of ovarian masses. We recently identified the G-protein-coupled estrogen receptor (GPER/GPR30) to be present in granulosa cells, to be regulated by gonadotropins in epithelial ovarian cancer and to be differentially expressed throughout folliculogenesis. Thus, supposing a possible role of GPER in GCTs, this study aimed to analyze GPER in GCTs. GPER immunoreactivity in GCTs (n = 26; n (primary diagnosis) = 15, n (recurrence) = 11) was studied and correlated with the main clinicopathological variables. Positive GPER staining was identified in 53.8% (14/26) of GCTs and there was no significant relation of GPER with tumor size or lymph node status. Those cases presenting with strong GPER intensity at primary diagnosis showed a significant reduced overall survival (p = 0.002). Due to the fact that GPER is regulated by estrogens, as well as gonadotropins, GPER may also be affected by endocrine therapies applied to GCT patients. Moreover, with our data supposing GPER to be associated with GCT prognosis, GPER might be considered as a possible confounder when assessing the efficacy of hormone-based therapeutic approaches in GCTs. PMID:25167139

  18. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells.

    PubMed

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. © 2013 Elsevier Inc. All rights reserved.

  19. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    PubMed

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  20. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits.

    PubMed

    Yazdekhasti, Hossein; Rajabi, Zahra; Parvari, Soraya; Abbasi, Mehdi

    2016-10-20

    Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.

  1. Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction

    PubMed Central

    Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela

    2014-01-01

    Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660

  2. Demographic, Clinical, and Prognostic Factors of Ovarian Clear Cell Adenocarcinomas According to Endometriosis Status.

    PubMed

    Schnack, Tine H; Høgdall, Estrid; Thomsen, Lotte Nedergaard; Høgdall, Claus

    2017-11-01

    Women with endometriosis carry an increased risk for ovarian clear cell adenocarcinomas (CCCs). Clear cell adenocarcinoma may develop from endometriosis lesions. Few studies have compared clinical and prognostic factors and overall survival in patients diagnosed as having CCC according to endometriosis status. Population-based prospectively collected data on CCC with coexisting pelvic (including ovarian; n = 80) and ovarian (n = 46) endometriosis or without endometriosis (n = 95) were obtained through the Danish Gynecological Cancer Database. χ Test, independent-samples t test, logistic regression, Kaplan-Meier test, and Cox regression were used. Statistical tests were 2 sided. P values less than 0.05 were considered statistically significant. Patients with CCC and pelvic or ovarian endometriosis were significantly younger than CCC patients without endometriosis, and a higher proportion of them were nulliparous (28% and 31% vs 17% (P = 0.07 and P = 0.09). Accordingly, a significantly higher proportion of women without endometriosis had given birth to more than 1 child. Interestingly, a significantly higher proportion of patients with ovarian endometriosis had pure CCCs (97.8% vs 82.1%; P = 0.001) as compared with patients without endometriosis. Overall survival was poorer among CCC patients with concomitant ovarian endometriosis (hazard ratio, 2.56 [95% confidence interval, 1.29-5.02], in the multivariate analysis. Age at CCC diagnosis and parity as well as histology differ between CCC patients with and without concomitant endometriosis. Furthermore, CCC patients with concomitant ovarian endometriosis have a poorer prognosis compared with endometriosis-negative CCC patients. These differences warrant further research to determine whether CCCs with and without concomitant endometriosis develop through distinct pathogenic pathways.

  3. X-ray microimaging of cisplatin distribution in ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Kiyozuka, Yasuhiko; Takemoto, Kuniko; Yamamoto, Akitsugu; Guttmann, Peter; Tsubura, Airo; Kihara, Hiroshi

    2000-05-01

    X-ray microscopy has the possibility to be in use for elemental analysis of tissue and cells especially under physiological conditions with high lateral resolution. In X-ray microimaging cisdiamminedichloroplatinum II (cisplatin: CDDP), an anticancer agent, which has a platinum atom at its functional center gives sufficient contrast against organic material at sub-cellular level. We analyzed the enhance effect and intracellular distribution of CDDP in human ovarian cancer cells with the transmission X-ray microscope at BESSY, Berlin. Two human ovarian cancer cell lines (MN-1 and EC) were treated with 1 and 10 μg/ml of CDDP for 4 hours and compared with untreated cells X-ray images of CDDP-treated samples show clearly labeled nucleoli, periphery of the nucleus and mitochondria, in a concentration-dependent manner. CDDP binds to DNA molecules via the formation of intra- or-inter-strand cross-links. Higher contrasts at the periphery of nucleus and nucleoli suggest the distribution of tightly packed heterochromatin. In addition, results show the possibility that CDDP binds to mitochondrial DNA. Biological function of cisplatin is not only the inhibition of DNA replication but is suggested to disturb mitochondrial function and RNA synthesis in the nucleolus.

  4. The effects of whole ovarian perfusion and cryopreservation on endothelial cell-related gene expression in the ovarian medulla and pedicle.

    PubMed

    Onions, V J; Webb, R; Pincott-Allen, C; Picton, H M; Campbell, B K

    2013-04-01

    Fertility preservation by whole ovarian cryopreservation requires successful cryopreservation of both the ovary and its vascular supply. Previous work has indicated detrimental effects of both perfusion and cryopreservation on the ovarian vasculature. This study assessed the effects of blood perfusion, alone or in combination with cryopreservation, on functional effects in the follicle population and ovarian function in vivo following short-term autotransplantation of the tissue after vascular reanastomosis and measured acute changes in endothelial cell-related gene expression within the ovarian medulla and pedicle. Following autotransplantation for 7 days, primordial, transitional and primary follicle densities were significantly reduced (P < 0.05) and stromal Ki67 and caspase-3 expression significantly increased (P < 0.05) in cryopreserved but not fresh or perfused whole ovaries. There was evidence of clot formation and fluorescent microsphere (FMS) extravasation in the medulla of all cryopreserved ovaries, indicating vascular damage. Utilizing a customized RT-PCR array or conventional RT-PCR, we found that perfusion alone resulted in down-regulation in the expression of caspase 6 and thrombospondin 1 (THBS1) genes in the medulla. Following additional cryopreservation, endothelial nitric oxide synthase (eNOS), endothelin 1, endothelin receptor A and Bcl-2 expression were significantly (P < 0.05) down-regulated. In the pedicle, both perfusion and cryopreservation caused a (P < 0.05) down-regulation of eNOS and THBS1, and an up-regulation in Bax expression. Perfusion also caused a down-regulation of TNF and up-regulation of endothelin-2 expression (P < 0.05). In conclusion, this study has identified a number of endothelial cell-related genes expressed in the medulla which are acutely affected by both cryopreservation and perfusion, supporting the hypothesis that both interventions have deleterious effects on endothelial cell function.

  5. Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer

    PubMed Central

    Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.

    2018-01-01

    Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915

  6. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis

    PubMed Central

    Yin, Mingzhu; Zhou, Huanjiao Jenny; Zhang, Jiqin; Lin, Caixia; Li, Hongmei; Li, Xia; Li, Yonghao; Zhang, Haifeng; Breckenridge, David G.; Ji, Weidong

    2017-01-01

    We have recently reported that tumor-associated macrophages (TAMs) promote early transcoelomic metastasis of ovarian cancer by facilitating TAM–ovarian cancer cell spheroid formation. ASK1 is known to be important for macrophage activation and inflammation-mediated tumorigenesis. In the present study, we show that ASK1 deficiency attenuates TAM-spheroid formation and ovarian cancer progression in an orthotopic ovarian cancer model. Interestingly, ASK1 in stroma, but not in TAMs, is critical for peritoneal tumor growth of ovarian cancer. Moreover, overexpression of an ASK1 inhibitory protein (suppressor of cytokine signaling-1; SOCS1) in vascular endothelium attenuates vascular permeability, TAM infiltration, and ovarian cancer growth. Mechanistically, we show that ASK1 mediates degradation of endothelial junction protein VE-cadherin via a lysosomal pathway to promote macrophage transmigration. Importantly, a pharmacological ASK1 inhibitor prevents tumor-induced vascular leakage, macrophage infiltration, and tumor growth in two mouse models. Since transcoelomic metastasis is also associated with many other cancers, such as pancreatic and colon cancers, our study provides ASK1 as a therapeutic target for the treatment of ovarian cancer and other transcoelomic metastasis cancers. PMID:28931753

  7. Resistance to cisplatin and paclitaxel does not affect the sensitivity of human ovarian cancer cells to antiprogestin-induced cytotoxicity.

    PubMed

    Gamarra-Luques, Carlos D; Hapon, Maria B; Goyeneche, Alicia A; Telleria, Carlos M

    2014-01-01

    Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times. IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1) and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality. Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher concentrations causing lethality

  8. Resistance to cisplatin and paclitaxel does not affect the sensitivity of human ovarian cancer cells to antiprogestin-induced cytotoxicity

    PubMed Central

    2014-01-01

    Background Antiprogestin compounds have been shown to be effective in blocking the growth of ovarian cancer cells of different genetic backgrounds. Herein we studied the anti-ovarian cancer effect of a series of antiprogestins sharing the chemical backbone of the most characterized antiprogestin, mifepristone, but with unique modifications in position C-17 of the steroid ring. We assessed the effect of mifepristone-like antiprogestins on the growth of ovarian cancer cells sensitive to the standard combination therapy cisplatin-paclitaxel or made double-resistant upon six cycles of pulse-selection with the drugs used at clinically relevant concentrations and exposure times. Methods IGROV-1 and SKOV-3 cells were pulsed with 20 μM cisplatin for 1 h followed by 100 nM paclitaxel for 3 h once a week for six weeks. The cells that did not die and repopulate the culture after the chemotherapies were termed Platinum-Taxane-EScape cells (PTES). Parental cells were compared against their PTES derivatives in their responses to further platinum-taxane treatments. Moreover, both ovarian cancer cells and their PTES siblings were exposed to escalating doses of the various antiprogestin derivatives. We assessed cell growth, viability and sub-G1 DNA content using microcapillary cytometry. Cyclin-dependent kinase inhibitors p21cip1 and p27kip1 and cleavage of downstream caspase-3 substrate PARP were used to assess whether cell fate, as a consequence of treatment, was limited to cytostasis or progressed to lethality. Results Cells subjected to six pulse-selection cycles of cisplatin-paclitaxel gave rise to sibling derivatives that displayed ~2-7 fold reduction in their sensitivities to further chemotherapy. However, regardless of the sensitivity the cells developed to the combination cisplatin-paclitaxel, they displayed similar sensitivity to the antiprogestins, which blocked their growth in a dose-related manner, with lower concentrations causing cytostasis, and higher

  9. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells.

    PubMed

    Wang, Dan; Xiang, Tong; Zhao, Zhongquan; Lin, Kailong; Yin, Pin; Jiang, Lupin; Liang, Zhiqing; Zhu, Bo

    2016-11-15

    Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer.

  10. Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish ( Danio rerio)

    NASA Astrophysics Data System (ADS)

    Dayal, Navami; Thakur, Mansee; Patil, Poonam; Singh, Dipty; Vanage, Geeta; Joshi, D. S.

    2016-10-01

    Gold nanoparticles (AuNPs) have attracted a lot of attention due to their usage in consumer- and therapy-based biomedical applications. These particles are frequently the medium-sized particles within the range of 10-50 nm. A number of scientific reports have addressed the cytotoxic potential of these NPs. However, their genotoxic potential with respect to reproductive aspects remains unclear. For assessment of safety and risks associated with AuNPs to female reproductive system, adult female zebrafish (Danio rerio) were exposed in vivo to 20 μg/g/day of AuNPs of two different sizes. AuNPs of 15 nm (type I) and 47 nm (type II) in diameters were administered orally to female zebrafish for a period of 28 days (chronic). The ability of these AuNPs to gain access to female reproductive organs was confirmed by their accumulation pattern through inductive coupled plasma mass spectroscopy. Gonads were assessed for changes in ovarian morphology at histopathological level followed by the confirmation of bioaccumulation of AuNPs using transmission electron microscopy. Using comet assay, strand breaks in DNA of ovarian cells were investigated. Chronic exposure to type I and II AuNPs showed distinctive patterns of bioaccumulation in ovaries. Interestingly, accumulated NPs resulted in gross cellular alterations in different cell types of ovarian tissue. Comet assay analysis revealed extensive number of strand breaks in ovarian cells from the NP exposed fishes. In conclusion, AuNPs ranging between 10 and 50 nm are capable of gaining access to ovaries of zebrafish and potential enough to cause strand breaks in ovarian cells. The findings of the present study highlight the adverse effects of these NPs to female reproductive system. It opens up further avenues for research on effects of these NPs on F1 generation descending from the exposed fishes.

  11. Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145.

    PubMed

    Zhou, Junbo; Gong, Jian; Ding, Chun; Chen, Guiqin

    2015-08-01

    Ovarian cancer is one of the most malignant types of cancer of the female human reproductive track, posing a severe threat to the health of the female population. Numerous previous studies have demonstrated that microRNA (miR)-145 is downregulated in ovarian cancer, and that quercetin can inhibit the growth of cancer cells via regulating the expression of miRs. Therefore, the present study investigated the effect of quercetin on the expression of miR-145 in SKOV-3 and A2780 human ovarian cancer cell lines. The results revealed that the expression levels of cleaved caspase-3 in the SKOV-3 and A2780 cells were significantly increased following treatment to induce overexpression of miR-145 compared with treatment with quercetin alone (P<0.01). However, the expression of cleaved caspase-3 in the anti-miR-145 (miR-145 inhibitor) group of cells was markedly decreased compared with that in the miR-145 overexpression group (P<0.01). Taken together, the results suggested that treatment with quercetin induced the apoptosis of human ovarian carcinoma cells through activation of the extrinsic death receptor mediated and intrinsic mitochondrial apoptotic pathways.

  12. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: A Novel Compound Capable of Inducing Cell Death in Epithelial Ovarian Cancer Stem Cells

    PubMed Central

    Green, Jamie M.; Alvero, Ayesha B.; Kohen, Fortune; Mor, Gil

    2009-01-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this study was to determine the effect of N-t-boc-Daidzein, a novel daidzain derivative, on OCSCs. The efficacy of this compound was evaluated in OCSC and mature ovarian cancer cell (mOCC) lines isolated from malignant ovarian cancer asicites. Cells were treated with increasing concentrations of N-t-boc-Daidzein (0.003–10 μM) and cell growth was monitored by “real time in vitro micro-imaging” using the IncuCyte system. Cell viability was measured using the CellTiter 96 Assay. Apoptosis was determined by Caspase-Glo 3/7, 8, and 9 assays. The components of the apoptotic cascade were characterized by Western blot analysis. N-t-boc-Daidzein was able to significantly inhibit cell growth and decrease cell viability of OCSC as well as mOCC cells in a dose and time dependent maner. This effect was due to the induction of apoptosis, which is characterized by caspase activation, XIAP and AKT degradation, and mitochondrial depolarization. This study describes a novel compound that can target the OCSCs. These findings may provide vital aide in improving overall survival in patients with EOC. PMID:19738422

  13. 7-(O)-Carboxymethyl daidzein conjugated to N-t-Boc-hexylenediamine: a novel compound capable of inducing cell death in epithelial ovarian cancer stem cells.

    PubMed

    Green, Jamie M; Alvero, Ayesha B; Kohen, Fortune; Mor, Gil

    2009-09-01

    One of the major difficulties in the treatment of epithelial ovarian cancer (EOC) is the high rate of recurrent disease. This is thought to be due to the survival of a population of chemo-resistant cells within the tumor, the ovarian cancer stem cells (OCSCs), that are able to regenerate the tumor following chemotherapy. Therefore, the identification of a compund that can target the OCSCs is one of the main steps in improving overall survival of ovarian cancer patients. The objective of this study was to determine the effect of N-t-boc-Daidzein, a novel daidzain derivative, on OCSCs. The efficacy of this compound was evaluated in OCSC and mature ovarian cancer cell (mOCC) lines isolated from malignant ovarian cancer asicites. Cells were treated with increasing concentrations of N-t-boc-Daidzein (0.003-10 microM) and cell growth was monitored by "real time in vitro micro-imaging" using the IncuCyte system. Cell viability was measured using the CellTiter 96 Assay. Apoptosis was determined by Caspase-Glo 3/7, 8 and 9 assays. The components of the apoptotic cascade were characterized by western blot analysis. N-t-boc-Daidzein was able to significantly inhibit cell growth and decrease cell viability of OCSC as well as mOCC cells in a dose and time dependent maner. This effect was due to the induction of apoptosis, which is characterized by caspase activation, XIAP and AKT degradation, and mitochondrial depolarization. This study describes a novel compound that can target the OCSCs. These findings may provide vital aide in improving overall survival in patients with EOC.

  14. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications

    PubMed Central

    Moravek, Molly B.; Yin, Ping; Ono, Masanori; Coon V, John S.; Dyson, Matthew T.; Navarro, Antonia; Marsh, Erica E.; Chakravarti, Debabrata; Kim, J. Julie; Wei, Jian-Jun; Bulun, Serdar E.

    2015-01-01

    BACKGROUND Uterine leiomyoma is the most common benign tumor in women and is thought to arise from the clonal expansion of a single myometrial smooth muscle cell transformed by a cellular insult. Leiomyomas cause a variety of symptoms, including abnormal uterine bleeding, pelvic pain, bladder or bowel dysfunction, and recurrent pregnancy loss, and are the most common indication for hysterectomy in the USA. A slow rate of cell proliferation, combined with the production of copious amounts of extracellular matrix, accounts for tumor expansion. A common salient feature of leiomyomas is their responsiveness to steroid hormones, thus providing an opportunity for intervention. METHODS A comprehensive search of PUBMED was conducted to identify peer-reviewed literature published since 1980 pertinent to the roles of steroid hormones and somatic stem cells in leiomyoma, including literature on therapeutics that target steroid hormone action in leiomyoma. Reviewed articles were restricted to English language only. Studies in both animals and humans were reviewed for the manuscript. RESULTS Estrogen stimulates the growth of leiomyomas, which are exposed to this hormone not only through ovarian steroidogenesis, but also through local conversion of androgens by aromatase within the tumors themselves. The primary action of estrogen, together with its receptor estrogen receptor α (ERα), is likely mediated via induction of progesterone receptor (PR) expression, thereby allowing leiomyoma responsiveness to progesterone. Progesterone has been shown to stimulate the growth of leiomyoma through a set of key genes that regulate both apoptosis and proliferation. Given these findings, aromatase inhibitors and antiprogestins have been developed for the treatment of leiomyoma, but neither treatment results in complete regression of leiomyoma, and tumors recur after treatment is stopped. Recently, distinct cell populations were discovered in leiomyomas; a small population showed stem

  15. Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications.

    PubMed

    Moravek, Molly B; Yin, Ping; Ono, Masanori; Coon, John S; Dyson, Matthew T; Navarro, Antonia; Marsh, Erica E; Chakravarti, Debabrata; Kim, J Julie; Wei, Jian-Jun; Bulun, Serdar E

    2015-01-01

    Uterine leiomyoma is the most common benign tumor in women and is thought to arise from the clonal expansion of a single myometrial smooth muscle cell transformed by a cellular insult. Leiomyomas cause a variety of symptoms, including abnormal uterine bleeding, pelvic pain, bladder or bowel dysfunction, and recurrent pregnancy loss, and are the most common indication for hysterectomy in the USA. A slow rate of cell proliferation, combined with the production of copious amounts of extracellular matrix, accounts for tumor expansion. A common salient feature of leiomyomas is their responsiveness to steroid hormones, thus providing an opportunity for intervention. A comprehensive search of PUBMED was conducted to identify peer-reviewed literature published since 1980 pertinent to the roles of steroid hormones and somatic stem cells in leiomyoma, including literature on therapeutics that target steroid hormone action in leiomyoma. Reviewed articles were restricted to English language only. Studies in both animals and humans were reviewed for the manuscript. Estrogen stimulates the growth of leiomyomas, which are exposed to this hormone not only through ovarian steroidogenesis, but also through local conversion of androgens by aromatase within the tumors themselves. The primary action of estrogen, together with its receptor estrogen receptor α (ERα), is likely mediated via induction of progesterone receptor (PR) expression, thereby allowing leiomyoma responsiveness to progesterone. Progesterone has been shown to stimulate the growth of leiomyoma through a set of key genes that regulate both apoptosis and proliferation. Given these findings, aromatase inhibitors and antiprogestins have been developed for the treatment of leiomyoma, but neither treatment results in complete regression of leiomyoma, and tumors recur after treatment is stopped. Recently, distinct cell populations were discovered in leiomyomas; a small population showed stem-progenitor cell properties, and

  16. [Effects of dihydroartiminisin on proliferation and phosphorylation of mitogen-activated protein kinase in epithelial ovarian cancer cell lines].

    PubMed

    Tan, Xian-Jie; Plouet, Jean; Lang, Jing-He; Wu, Ming; Shen, Keng

    2008-09-01

    To determine the effect of dihydroartiminisin on the proliferation and phosphorylation of mitogen-activated protein kinase (MAPK) in SKOV3 and OVCAR3 ovarian cancer cell lines. Methyl thiazolyl tetrazolium assay was performed to evaluate the anti-proliferative effect of dihydroartiminisin in SKOV3 and OVCAR3 cells, and Western blot was used to determine its effect on phosphorylation level of MAPK, including extra-cell regulated kinase (ERK) 1/2 and p38 protein kinase, in the two cell lines. Dihydroartiminisin inhibited the proliferation of ovarian cancer cells in vitro, with a mean of 50% inhibition concentration (IC(50)) at 72 h of (9.0 +/- 1.4) micromol/L for SKOV3 and (5.5 +/- 1.2) micromol/L for OVCAR3 respectively. Compared to cells without dihydroartiminisin treatment, phosphorylation level of ERK 1/2 in SKOV3 and OVCAR3 cells treated with dihydroartiminisin decreased by 64.2% and 75.3% respectively (P < 0.05), while phosphorylation of p38 protein kinase in SKOV3 and OVCAR3 only decreased by 8.5%and 6.4%respectively (P > 0.05). Dihydroartiminisin can inhibit the proliferation of ovarian cancer cell in vitro, probably through down-regulation of the phosphorylation of ERK 1/2 in ovarian cancer cells.

  17. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2009-04-01

    expression of genes involved in metastasis using a focused microarray approach. We have used Human Tumor Metastasis Microarray (Oligo GE array from...ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ovarian cancer cells...PI3K, and STAT3 in the cytosol. PELP1/MNAR regulates meiosis via its interactions with heterotimeric Gbc protein, androgen receptor (AR), and by

  18. Tumor infiltrating lymphocytes in ovarian cancer

    PubMed Central

    Santoiemma, Phillip P; Powell, Daniel J

    2015-01-01

    The accumulation of tumor infiltrating lymphocytes (TILs) in ovarian cancer is prognostic for increased survival while increases in immunosuppressive regulatory T-cells (Tregs) are associated with poor outcomes. Approaches that bolster tumor-reactive TILs may limit tumor progression. However, identifying tumor-reactive TILs in ovarian cancer has been challenging, though adoptive TIL therapy in patients has been encouraging. Other forms of TIL immunomodulation remain under investigation including Treg depletion, antibody-based checkpoint modification, activation and amplification using dendritic cells, antigen presenting cells or IL-2 cytokine culture, adjuvant cytokine injections, and gene-engineered T-cells. Many approaches to TIL manipulation inhibit ovarian cancer progression in preclinical or clinical studies as monotherapy. Here, we review the impact of TILs in ovarian cancer and attempts to mobilize TILs to halt tumor progression. We conclude that effective TIL therapy for ovarian cancer is at the brink of translation and optimal TIL activity may require combined methodologies to deliver clinically-relevant treatment. PMID:25894333

  19. Abdominal emergency in elderly: a case of small bowel obstruction and ischemia caused by bulky IA ovarian cancer.

    PubMed

    Assenza, M; Campana, G; Centonze, L; Simonelli, L; Romeo, V; Marchese, S; Andreoli, C; Modini, C

    2013-01-01

    Bowel obstruction resulting from colorectal and ovarian cancer is a serious and distressing complication of these malignancies. This may be caused by diffuse peritoneal carcinomatosis, bulky masses filling the pelvis and abdomen or postoperative adhesions, and should be carefully worked out by pre-operative imaging. We report the case of a small bowel obstruction and intestinal ischemia caused by a bulky (20x40 cm in diameter) cystic ovarian neoplasm that was found to be a stage IA G2 cystadenocarcinoma, successfully managed by uterus-sparing surgery.

  20. Role of GPER on proliferation, migration and invasion in ligand-independent manner in human ovarian cancer cell line SKOV3.

    PubMed

    Yan, Yan; Jiang, Xueli; Zhao, Ying; Wen, Haixia; Liu, Guoyi

    2015-12-01

    G protein-coupled estrogen receptor (GPER) is identified as a critical estrogen receptor, in addition to the classical estrogen receptors ERα and ERβ. In ERα-negative ovarian cancer cells, our previous studies have found that estrogen stimulated cell proliferation and metastasis via GPER. However, the ligand-independent function of GPER in ovarian cancer cells is still not clear. Herein, we describe that GPER has a co-expression with ERα and ERβ, which are first determined in SKOV3 ovarian cancer cell line. In the absence of estrogen, GPER depletion by specific siRNA inhibits the proliferation, migration and invasion of SKOV3 cells. Whereas abrogation of ERα or ERβ by specific antagonist MPP and PHTPP has the opposite effects for stimulation of cell growth. Markedly, GPER knockdown attenuates MPP or PHTPP-induced cell proliferation, migration and invasion. Furthermore, GPER modulates protein expression of the cell cycle critical components, c-fos and cyclin D1 and factors for cancer cell invasion and metastasis, matrix metalloproteinase 2 (MMP-2) and MMP-9. These findings establish that GPER ligand-independently stimulates the proliferation, migration and invasion of SKOV3 cells. Knockdown of GPER attenuates the progression of ovarian cancer that caused by functional loss of ERα or ERβ. Targeting GPER provides new aspect as a potential therapeutic strategy in ovarian cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  1. The relationship between cisplatin resistance and histone deacetylase isoform overexpression in epithelial ovarian cancer cell lines

    PubMed Central

    Kim, Min-Gyun; Pak, Jhang Ho; Choi, Won Ho; Park, Jeong-Yeol; Nam, Joo-Hyun

    2012-01-01

    Objective To investigate the relationship between cisplatin resistance and histone deacetylase (HDAC) isoform overexpression in ovarian cancer cell lines. Methods Expression of four HDAC isoforms (HDAC 1, 2, 3, and 4) in two ovarian cancer cell lines, SKOV3 and OVCAR3, exposed to various concentrations of cisplatin was examined by western blot analyses. Cells were transfected with plasmid DNA of each HDAC. The overexpression of protein and mRNA of each HDAC was confirmed by western blot and reverse transcriptase-polymerase chain reaction analyses, respectively. The cell viability of the SKOV3 and OVCAR3 cells transfected with HDAC plasmid DNA was measured using the cell counting kit-8 assay after treatment with cisplatin. Results The 50% inhibitory concentration of the SKOV3 and OVCAR3 cells can be determined 15-24 hours after treatment with 15 µg/mL cisplatin. The expression level of acetylated histone 3 protein in SKOV3 cells increased after exposure to cisplatin. Compared with control cells at 24 hours after cisplatin exposure, the viability of SKOV3 cells overexpressing HDAC 1 and 3 increased by 15% and 13% (p<0.05), respectively. On the other hand, OVCAR3 cells that overexpressed HDAC 2 and 4 exhibited increased cell viability by 23% and 20% (p<0.05), respectively, compared with control cells 24 hours after exposure to cisplatin. Conclusion In SKOV3 and OVCAR3 epithelial ovarian cancer cell lines, the correlation between HDAC overexpression and cisplatin resistance was confirmed. However, the specific HDAC isoform associated with resistance to cisplatin varied depending on the ovarian cancer cell line. These results may suggest that each HDAC isoform conveys cisplatin resistance via different mechanisms. PMID:22808361

  2. Immunotherapy in ovarian cancer.

    PubMed

    Odunsi, K

    2017-11-01

    Immunological destruction of tumors is a multistep, coordinated process that can be modulated or targeted at several critical points to elicit tumor rejection. These steps in the cancer immunity cycle include: (i) generation of sufficient numbers of effector T cells with high avidity recognition of tumor antigens in vivo; (ii) trafficking and infiltration into the tumor; (iii) overcoming inhibitory networks in the tumor microenvironment; (iv) direct recognition of tumor antigens and generation of an effector anti-tumor response; and (v) persistence of the anti-tumor T cells. In an effort to understand whether the immune system plays a role in controlling ovarian cancer, our group and others demonstrated that the presence of tumor infiltrating lymphocytes (TILs) is associated with improved clinical outcome in ovarian cancer patients. Recently, we hypothesized that the quality of infiltrating T cells could also be a critical determinant of outcome in ovarian cancer patients. In the past decade, several immune-based interventions have gained regulatory approval in many solid tumors and hematologic malignancies. These interventions include immune checkpoint blockade, cancer vaccines, and adoptive cell therapy. There are currently no approved immune therapies for ovarian cancer. Immunotherapy in ovarian cancer will have to consider the immune suppressive networks within the ovarian tumor microenvironment; therefore, a major direction is to develop biomarkers that would predict responsiveness to different types of immunotherapies, and allow for treatment selection based on the results. Moreover, such biomarkers would allow rational combination of immunotherapies, while minimizing toxicities. In this review, the current understanding of the host immune response in ovarian cancer patients will be briefly reviewed, progress in immune therapies, and future directions for exploiting immune based strategies for long lasting durable cure. © The Author 2017. Published by Oxford

  3. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    PubMed

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  4. Lysophosphatidic Acid Up-Regulates Hexokinase II and Glycolysis to Promote Proliferation of Ovarian Cancer Cells1

    PubMed Central

    Mukherjee, Abir; Ma, Yibao; Yuan, Fang; Gong, Yongling; Fang, Zhenyu; Mohamed, Esraa M.; Berrios, Erika; Shao, Huanjie; Fang, Xianjun

    2015-01-01

    Lysophosphatidic acid (LPA), a blood-borne lipid mediator, is present in elevated concentrations in ascites of ovarian cancer patients and other malignant effusions. LPA is a potent mitogen in cancer cells. The mechanism linking LPA signal to cancer cell proliferation is not well understood. Little is known about whether LPA affects glucose metabolism to accommodate rapid proliferation of cancer cells. Here we describe that in ovarian cancer cells, LPA enhances glycolytic rate and lactate efflux. A real time PCR-based miniarray showed that hexokinase II (HK2) was the most dramatically induced glycolytic gene to promote glycolysis in LPA-treated cells. Analysis of the human HK2 gene promoter identified the sterol regulatory element-binding protein as the primary mediator of LPA-induced HK2 transcription. The effects of LPA on HK2 and glycolysis rely on LPA2, an LPA receptor subtype overexpressed in ovarian cancer and many other malignancies. We further examined the general role of growth factor-induced glycolysis in cell proliferation. Like LPA, epidermal growth factor (EGF) elicited robust glycolytic and proliferative responses in ovarian cancer cells. Insulin-like growth factor 1 (IGF-1) and insulin, however, potently stimulated cell proliferation but only modestly induced glycolysis. Consistent with their differential effects on glycolysis, LPA and EGF-dependent cell proliferation was highly sensitive to glycolytic inhibition while the growth-promoting effect of IGF-1 or insulin was more resistant. These results indicate that LPA- and EGF-induced cell proliferation selectively involves up-regulation of HK2 and glycolytic metabolism. The work is the first to implicate LPA signaling in promotion of glucose metabolism in cancer cells. PMID:26476080

  5. Cell Cycle Target-based Therapy for Ovarian Cancer

    DTIC Science & Technology

    2008-09-01

    induces apoptosis in quiescent ovarian cancer cells. Strong inducers of apoptosis included flufenamic acid, flurbiprofen, celebrex and finasteride ...Thus, a whole panel of NSAIDs including Aspirin, Ibuprofen, Exisulind, Acetaminophen, Naproxen, NS-398, Celecoxib, Diclofenac, Finasteride ...Naproxen, 200µM NS-398, 50µM Celecoxib, 200µM Diclofenac, 50µM Finasteride , 200µM Flufenamic acid, 40µM Meloxican, 50µM Ebselen, 20nM Flurbiprofen or

  6. Ovarian hilus-cell hyperplasia and high serum testosterone in a patient with postmenopausal virilization.

    PubMed

    Delibasi, Tuncay; Erdogan, Murat F; Serinsöz, Ebru; Kaygusuz, Gulsah; Erdogan, Gurbuz; Sertçelik, Ayse

    2007-09-01

    To describe a woman with postmenopausal virilization and hirsutism caused by hilus-cell hyperplasia. We present a case report including laboratory, radiographic, and pathologic findings in a patient with postmenopausal hirsutism and virilization caused by ovarian hilus-cell hyperplasia as well as a brief review of the literature. A 60-year-old postmenopausal woman presented with extensive hirsutism, male-pattern hair loss, and clitoromegaly. The patient's plasma testosterone levels were very high, but computed tomography showed the adrenal glands to be normal in size. Pelvic ultrasonography revealed a cystic lesion in the left ovary. After bilateral salpingo-oophorectomy, histologic examination demonstrated a diffuse pattern of hilus-cell hyperplasia in the ovarian hilum. In the differential diagnosis of postmenopausal virilization, hilus-cell hyperplasia, although rare, should be considered.

  7. Silencing of BAG3 promotes the sensitivity of ovarian cancer cells to cisplatin via inhibition of autophagy.

    PubMed

    Qiu, Shuang; Sun, Liang; Jin, Ye; An, Qi; Weng, Changjiang; Zheng, Jianhua

    2017-07-01

    Ovarian cancer is the most lethal disease among all gynecological malignancies. Interval cytoreductive surgery and cisplatin‑based chemotherapy are the recommended therapeutic strategies. However, acquired resistance to cisplatin remains a big challenge for the overall survival and prognosis in ovarian cancer. Complicated molecular mechanisms are involved in the process. At present, increasing evidence indicates that autophagy plays an important role in the prosurvival and resistance against chemotherapy. In the present study, as a novel autophagy regulator, BCL2‑associated athanogene 3 (BAG3) was investigated to study its role in cisplatin sensitivity in epithelial ovarian cancer. However, whether BAG3 participates in cisplatin sensitivity by inducing autophagy and the underlying mechanism in ovarian cancer cells remain to be clarified. Through the use of quantitative real-time PCR, western blot analysis, CCK-8 and immunofluorescence assays our data revealed that cisplatin-induced autophagy protected ovarian cancer cells from the toxicity of the drug and that this process was regulated by BAG3. Silencing of BAG3 increased cisplatin-induced apoptosis. The results also revealed BAG3 as a potential therapeutic target which enhanced the efficacy of cisplatin in ovarian cancer.

  8. Role of PELP1 in EGFR-ER Signaling Crosstalk in Ovarian Cancer Cells

    DTIC Science & Technology

    2007-04-01

    known about PELP1 role in ovarian cancer progression. Analysis of human genome databases and SAGE data suggested deregulation of PELP1 expression in ...Tulane University, New Orleans, LA Introduction PELP1 down regulation reduces tumorigenic potential in vivo PELP1 expression is deregulated in human ...decreases the tumorigenic potential of OVCAR3 cancer cells in nude mice model IHC studies using human ovarian cancer tissue array (n=123) showed that PELP1

  9. Malignant ovarian germ cell tumor - role of surgical staging and gonadal dysgenesis.

    PubMed

    Lin, Ken Y; Bryant, Stefanie; Miller, David S; Kehoe, Siobhan M; Richardson, Debra L; Lea, Jayanthi S

    2014-07-01

    To evaluate the effect of comprehensive surgical staging and gonadal dysgenesis on the outcomes of patients with malignant ovarian germ cell tumor. We performed a retrospective review of patients with ovarian germ cell tumors who were treated at our institution between 1976 and 2012. Malignant ovarian germ cell tumors (MOGCTs) were identified in 50 females. The median age was 24 years (range 13 to 49). Of all MOGCT patients, 42% had dysgerminoma, 20% immature teratoma, 16% endodermal sinus tumor, and 22% mixed germ cell tumor. Univariate analyses revealed that the lack of surgical staging (p=0.048) and endodermal sinus tumor (p=0.0085) were associated with disease recurrence, while age at diagnosis, ethnicity, and stage of the disease were not. Multivariate analyses revealed that the lack of surgical staging (p=0.029) and endodermal sinus tumor (p=0.016) were independently associated with disease recurrence. In addition, 7 patients (14%) had 46 XY karyotype, including 6 with pure dysgerminoma and 1 with mixed germ cell tumor. Five had Swyer syndrome and 2 had complete androgen insensitivity syndrome. Concurrent gonadoblastoma was found in 5 of the patients. No difference was found in the mean age at presentation, stage distribution, or recurrence rate for MOGCT patients with or without XY phenotype. Comprehensive surgical staging was associated with a lower rate of recurrence. Fourteen percent of phenotypic females with MOGCT and 29% of those with dysgerminoma had XY karyotype. The clinical outcome of these patients is similar to that of MOGCT patients with XX karyotype. Published by Elsevier Inc.

  10. Inter-observer variability in the classification of ovarian cancer cell type using microscopy: a pilot study

    NASA Astrophysics Data System (ADS)

    Gavrielides, Marios A.; Ronnett, Brigitte M.; Vang, Russell; Seidman, Jeffrey D.

    2015-03-01

    Studies have shown that different cell types of ovarian carcinoma have different molecular profiles, exhibit different behavior, and that patients could benefit from typespecific treatment. Different cell types display different histopathology features, and different criteria are used for each cell type classification. Inter-observer variability for the task of classifying ovarian cancer cell types is an under-examined area of research. This study served as a pilot study to quantify observer variability related to the classification of ovarian cancer cell types and to extract valuable data for designing a validation study of digital pathology (DP) for this task. Three observers with expertise in gynecologic pathology reviewed 114 cases of ovarian cancer with optical microscopy, with specific guidelines for classifications into distinct cell types. For 93 cases all 3 pathologists agreed on the same cell type, for 18 cases 2 out of 3 agreed, and for 3 cases there was no agreement. Across cell types with a minimum sample size of 10 cases, agreement between all three observers was {91.1%, 80.0%, 90.0%, 78.6%, 100.0%, 61.5%} for the high grade serous carcinoma, low grade serous carcinoma, endometrioid, mucinous, clear cell, and carcinosarcoma cell types respectively. These results indicate that unanimous agreement varied over a fairly wide range. However, additional research is needed to determine the importance of these differences in comparison studies. These results will be used to aid in the design and sizing of such a study comparing optical and digital pathology. In addition, the results will help in understanding the potential role computer-aided diagnosis has in helping to improve the agreement of pathologists for this task.

  11. Dysregulated Estrogen Receptor Signaling in the Hypothalamic-Pituitary-Ovarian Axis Leads to Ovarian Epithelial Tumorigenesis in Mice

    PubMed Central

    Laws, Mary J.; Kannan, Athilakshmi; Pawar, Sandeep; Haschek, Wanda M.; Bagchi, Milan K.; Bagchi, Indrani C.

    2014-01-01

    The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis. PMID:24603706

  12. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer.

    PubMed

    Zhao, Yawei; Cui, Lianzhi; Pan, Yue; Shao, Dan; Zheng, Xiao; Zhang, Fan; Zhang, Hansi; He, Kan; Chen, Li

    2017-12-01

    Cytotoxic chemotherapy is an effective and traditional treatment of ovarian cancer. However, chemotherapy-induced apoptosis may also trigger and ultimately accelerate the repopulation of the small number of adjacent surviving cells. This study mainly focused on the tumour cell repopulation caused by chemotherapy in ovarian cancer and the adjunctive/synergistic effect of Berberine on the prevention of tumour repopulation. The transwell system was used to mimic the co-culture of surviving ovarian cancer cells in the microenvironment of cytotoxic chemotherapy-treated dying cells. Tumour cell proliferation was observed by crystal violet staining. AA and PGE 2 levels were measured by ELISA, and changes of protein expression were analysed by Western blot. Chemotherapy drug VP16 treatment triggered AA pathway, leading to the elevated PGE 2 level, and ultimately enhanced the repopulation of ovarian cancer cells. Berberine can block the caspase 3-iPLA 2 -AA-COX-2-PGE 2 pathway by inhibiting the expression of iPLA 2 and COX-2. Berberine can also reverse the increased phosphorylation of FAK caused by abnormal PGE 2 level and thus reverse the repopulation of ovarian cancer cells after VP16 treatment. Our observation suggested that Berberine could inhibit the chemotherapy-induced repopulation of ovarian cancer cells by suppressing the AA pathway and phosphorylation of FAK. And these findings implicated a novel combined use of Berberine and chemotherapeutics, which might prevent ovarian cancer recurrence by abrogating early tumour repopulation. © 2017 John Wiley & Sons Ltd.

  13. Clinical Use of Programmed Cell Death-1 and Its Ligand Expression as Discriminatory and Predictive Markers in Ovarian Cancer.

    PubMed

    Chatterjee, Jayanta; Dai, Wei; Aziz, Nor Haslinda Abd; Teo, Pei Yun; Wahba, John; Phelps, David L; Maine, Christian J; Whilding, Lynsey M; Dina, Roberto; Trevisan, Giorgia; Flower, Kirsty J; George, Andrew J T; Ghaem-Maghami, Sadaf

    2017-07-01

    Purpose: We aimed to establish whether programmed cell death-1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, in ovarian cancer tumor tissue and blood, could be used as biomarkers for discrimination of tumor histology and prognosis of ovarian cancer. Experimental Design: Immune cells were separated from blood, ascites, and tumor tissue obtained from women with suspected ovarian cancer and studied for the differential expression of possible immune biomarkers using flow cytometry. PD-L1 expression on tumor-associated inflammatory cells was assessed by immunohistochemistry and tissue microarray. Plasma soluble PD-L1 was measured using sandwich ELISA. The relationships among immune markers were explored using hierarchical cluster analyses. Results: Biomarkers from the discovery cohort that associated with PD-L1 + cells were found. PD-L1 + CD14 + cells and PD-L1 + CD11c + cells in the monocyte gate showed a distinct expression pattern when comparing benign tumors and epithelial ovarian cancers (EOCs)-confirmed in the validation cohort. Receiver operating characteristic curves showed PD-L1 + and PD-L1 + CD14 + cells in the monocyte gate performed better than the well-established tumor marker CA-125 alone. Plasma soluble PD-L1 was elevated in patients with EOC compared with healthy women and patients with benign ovarian tumors. Low total PD-1 + expression on lymphocytes was associated with improved survival. Conclusions: Differential expression of immunological markers relating to the PD-1/PD-L1 pathway in blood can be used as potential diagnostic and prognostic markers in EOC. These data have implications for the development and trial of anti-PD-1/PD-L1 therapy in ovarian cancer. Clin Cancer Res; 23(13); 3453-60. ©2016 AACR . ©2016 American Association for Cancer Research.

  14. Targeting Src in Mucinous Ovarian Carcinoma

    PubMed Central

    Matsuo, Koji; Nishimura, Masato; Bottsford-Miller, Justin N.; Huang1, Jie; Komurov, Kakajan; Armaiz-Pena, Guillermo N.; Shahzad, Mian M. K.; Stone, Rebecca L.; Roh, Ju Won; Sanguino, Angela M.; Lu, Chunhua; Im, Dwight D.; Rosenshien, Neil B.; Sakakibara, Atsuko; Nagano, Tadayoshi; Yamasaki, Masato; Enomoto, Takayuki; Kimura, Tadashi; Ram, Prahlad T.; Schmeler, Kathleen M.; Gallick, Gary E.; Wong, Kwong K.; Frumovitz, Michael; Sood, Anil K.

    2014-01-01

    PURPOSE Mucinous ovarian carcinomas have a distinct clinical pattern compared to other subtypes of ovarian carcinoma. Here, we evaluated (i) stage-specific clinical significance of mucinous ovarian carcinomas in a large cohort and (ii) the functional role of src kinase in pre-clinical models of mucinous ovarian carcinoma. EXPERIMENTAL DESIGN 1302 ovarian cancer patients including 122 (9.4%) cases of mucinous carcinoma were evaluated for survival analyses. Biological effects of src kinase inhibition were tested in a novel orthotopic mucinous ovarian cancer model (RMUG-S-ip2) using dasatinib-based therapy. RESULTS Patients with advanced-stage mucinous ovarian cancer had significantly worse survival compared to those with serous histology: median overall survival, 1.67 versus 3.41 years, p=0.002; and median survival time after recurrence of 0.53 versus 1.66 years, p<0.0001. Among multiple ovarian cancer cell lines, RMUG-S-ip2 mucinous ovarian cancer cells showed the highest src kinase activity. Moreover, oxaliplatin treatment induced phosphorylation of src kinase. This induced activity by oxaliplatin therapy was inhibited by concurrent administration of dasatinib. Targeting src with dasatinib in vivo showed significant anti-tumor effects in the RMUG-S-ip2 model, but not in the serous ovarian carcinoma (SKOV3-TR) model. Combination therapy of oxaliplatin with dasatinib further demonstrated significant effects on reducing cell viability, increasing apoptosis, and in vivo anti-tumor effects in the RMUG-S-ip2 model. CONCLUSIONS Our results suggest that poor survival of women with mucinous ovarian carcinoma is associated with resistance to cytotoxic therapy. Targeting src kinase with combination of dasatinib and oxaliplatin may be an attractive approach in this disease. PMID:21737505

  15. Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice.

    PubMed

    Mereness, Amanda L; Murphy, Zachary C; Forrestel, Andrew C; Butler, Susan; Ko, CheMyong; Richards, JoAnne S; Sellix, Michael T

    2016-02-01

    Rhythmic events in female reproductive physiology, including ovulation, are tightly controlled by the circadian timing system. The molecular clock, a feedback loop oscillator of clock gene transcription factors, dictates rhythms of gene expression in the hypothalamo-pituitary-ovarian axis. Circadian disruption due to environmental factors (eg, shift work) or genetic manipulation of the clock has negative impacts on fertility. Although the central pacemaker in the suprachiasmatic nucleus classically regulates the timing of ovulation, we have shown that this rhythm also depends on phasic sensitivity to LH. We hypothesized that this rhythm relies on clock function in a specific cellular compartment of the ovarian follicle. To test this hypothesis we generated mice with deletion of the Bmal1 locus in ovarian granulosa cells (GCs) (Granulosa Cell Bmal1 KO; GCKO) or theca cells (TCs) (Theca Cell Bmal1 KO; TCKO). Reproductive cycles, preovulatory LH secretion, ovarian morphology and behavior were not grossly altered in GCKO or TCKO mice. We detected phasic sensitivity to LH in wild-type littermate control (LC) and GCKO mice but not TCKO mice. This decline in sensitivity to LH is coincident with impaired fertility and altered patterns of LH receptor (Lhcgr) mRNA abundance in the ovary of TCKO mice. These data suggest that the TC is a pacemaker that contributes to the timing and amplitude of ovulation by modulating phasic sensitivity to LH. The TC clock may play a critical role in circadian disruption-mediated reproductive pathology and could be a target for chronobiotic management of infertility due to environmental circadian disruption and/or hormone-dependent reprogramming in women.

  16. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    PubMed

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  17. Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line.

    PubMed

    Wu, Yimin; Lu, Yunzhe; Hu, Yanfen; Li, Rong

    2005-11-01

    In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105. Copyright 2005 Wiley-Liss, Inc.

  18. VE-cadherin cleavage by ovarian cancer microparticles induces β-catenin phosphorylation in endothelial cells

    PubMed Central

    Thawadi, Hamda Al; Abu-Kaoud, Nadine; Farsi, Haleema Al; Hoarau-Véchot, Jessica; Rafii, Shahin; Rafii, Arash; Pasquier, Jennifer

    2016-01-01

    Microparticles (MPs) are increasingly recognized as important mediators of cell-cell communication in tumour growth and metastasis by facilitating angiogenesis-related processes. While the effects of the MPs on recipient cells are usually well described in the literature, the leading process remains unclear. Here we isolated MPs from ovarian cancer cells and investigated their effect on endothelial cells. First, we demonstrated that ovarian cancer MPs trigger β-catenin activation in endothelial cells, inducing the upregulation of Wnt/β-catenin target genes and an increase of angiogenic properties. We showed that this MPs mediated activation of β-catenin in ECs was Wnt/Frizzled independent; but dependent on VE-cadherin localization disruption, αVβ3 integrin activation and MMP activity. Finally, we revealed that Rac1 and AKT were responsible for β-catenin phosphorylation and translocation to the nucleus. Overall, our results indicate that MPs released from cancer cells could play a major role in neo-angiogenesis through activation of beta catenin pathway in endothelial cells. PMID:26700621

  19. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    PubMed

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  20. Synergistic efficacy in human ovarian cancer cells by histone deacetylase inhibitor TSA and proteasome inhibitor PS-341.

    PubMed

    Fang, Yong; Hu, Yi; Wu, Peng; Wang, Beibei; Tian, Yuan; Xia, Xi; Zhang, Qinghua; Chen, Tong; Jiang, Xuefeng; Ma, Quanfu; Xu, Gang; Wang, Shixuan; Zhou, Jianfeng; Ma, Ding; Meng, Li

    2011-05-01

    Histone deacetylase inhibitors and proteasome inhibitor are all emerging as new classes of anticancer agents. We chose TSA and PS-341 to identify whether they have a synergistic efficacy on human ovarian cancer cells. After incubated with 500 nM TSA or/and 40 nM PS-341, we found that combined groups resulted in a striking increase of apoptosis and G2/M blocking rates, no matter in A2780, cisplatin-sensitive ovarian cancer cell line OV2008 or its resistant variant C13*. This demonstrated that TSA interacted synergistically with PS-341, which raised the possibility that combined the two drugs may represent a novel strategy in ovarian cancer.

  1. The sebaceous gland antigen defined by the OM-1 monoclonal antibody is expressed at high density on the surface of ovarian carcinoma cells.

    PubMed

    de Kretser, T A; Thorne, H J; Jacobs, D J; Jose, D G

    1985-09-01

    A monoclonal antibody, designated OM-1, was raised against ovarian serous papillary cystadenocarcinoma (stage IV) cells. This antibody was found to react strongly with primary and metastatic ovarian serous cystadenocarcinomas and endometrioid carcinomas but the antigen detected was either absent or at very low levels in ovarian mucinous adenocarcinomas, clear cell carcinomas, benign serous and mucinous cystadenomas and Brenner tumours. The OM-1 antibody gave no detectable reaction with 93 other human tumours, including examples of breast and colon adenocarcinomas. In normal tissues the OM-1 antibody reacted with normal sebaceous gland cells, lung type II pneumocytes and placental syncytial trophoblasts. In the normal ovary OM-1 reactivity was confined to extremely weak staining of the surface epithelium. No reaction with any other ovarian cell type could be detected. No evidence of reaction with other normal cell populations present in 24 adult and seven foetal tissues was found. The antigen detected is compared with other ovarian tumour-associated antigens. The OM-1 antibody is likely to prove of value in the detection and diagnosis of ovarian carcinoma.

  2. Developmental Programming: Gestational Exposure to Excess Testosterone Alters Expression of Ovarian Matrix Metalloproteases and Their Target Proteins.

    PubMed

    Puttabyatappa, Muraly; Irwin, Ashleigh; Martin, Jacob D; Mesquitta, Makeda; Veiga-Lopez, Almudena; Padmanabhan, Vasantha

    2018-06-01

    Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifests reproductive defects that include multifollicular ovarian phenotype. Women with PCOS manifest increased ovarian matrix metalloproteinases (MMPs) activity. We tested the hypothesis that gestational T excess in sheep would alter ovarian expression of MMPs, tissue inhibitors of MMP (TIMP) and their target proteins laminin B (LAMB), collagen, tumor necrosis factor alpha (TNF), and connexin 43 (GJA1) consistent with increased MMP activity and that these changes are developmentally regulated. The ovarian content of these proteins was quantified by immunohistochemistry in fetal day 90, 140, and adult (21 months of age) ovaries. Prenatal T excess lowered GJA1 protein content in stroma and granulosa cells of primary follicles from fetal day 90 ovaries and decreased stromal MMP9, TIMP1, and LAMB in fetal day 140 ovaries. In the adult, prenatal T-treatment (1) increased MMP9 in theca cells of large preantral follicles and stroma, TNF in granulosa cells of small and large preantral follicles and theca cells of large preantral and antral follicles, and GJA1 in stroma, theca cells of large preantral follicles, and granulosa cells of antral follicles and (2) reduced TIMP1 in stroma, theca cells of large preantral and antral follicles, LAMB in stroma and small prenatral follicles, and collagen content in stroma and around antral follicles. These findings suggest a net increase in MMP activity and its target proteins TNF and GJA1 in prenatal T-treated adult but not in fetal ovaries and their potential involvement in the development of multifollicular morphology.

  3. Transplantation of an alginate-matrigel matrix containing isolated ovarian cells: first step in developing a biodegradable scaffold to transplant isolated preantral follicles and ovarian cells.

    PubMed

    Vanacker, Julie; Luyckx, Valérie; Dolmans, Marie-Madeleine; Des Rieux, Anne; Jaeger, Jonathan; Van Langendonckt, Anne; Donnez, Jacques; Amorim, Christiani A

    2012-09-01

    For women diagnosed with leukemia, transplantation of cryopreserved ovarian tissue after disease remission is not advisable. Therefore, to restore fertility in these patients, we aim to develop a biodegradable artificial ovary that offers an environment where isolated follicles and ovarian cells (OCs) can survive and grow. Four NMRI mice were ovariectomized and their ovaries used to isolate OCs. Groups of 50,000 OCs were embedded in an alginate-matrigel matrix for further fixation (fresh controls), one week of in vitro culture (IVC) or heterotopic autografting. OC proliferation (Ki67), apoptosis (TUNEL), scaffold degradation, vessel formation (CD34) and inflammation (CD45) were analyzed. Ki67-positive OCs were found in 2.3%, 9.0% and 15.5% cells of cases in fresh, IVC and grafted beads respectively, while cells were TUNEL-positive in 0%, 1.5% and 6.9% of cases. After IVC or grafting, the beads degraded, losing their original round aspect, and infiltrating blood capillaries could be observed in the grafted beads. CD34-positive cells and 22% CD45-positive cells were found around and inside the matrix. In conclusion, our results demonstrate that an alginate-based matrix is a promising proposition to graft isolated OCs. After transplantation, this matrix was able to degrade, allowed vascularization and elicited a low inflammatory response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells.

    PubMed

    Greve, Tine; Clasen-Linde, Erik; Andersen, Morten T; Andersen, Mette K; Sørensen, Stine D; Rosendahl, Mikkel; Ralfkiaer, Elisabeth; Andersen, Claus Yding

    2012-11-22

    Some women suffering from leukemia require bone marrow transplantation to be cured. Bone marrow transplantation is associated with a high risk of sterility, and some patients are offered fertility preservation by cryopreservation of the ovarian cortex. Transplantation of the ovarian cortex to women cured of leukemia who became menopausal is currently not performed because of the risk of introducing the disease. In this study, individual pieces of ovarian cortex intended for reimplantation from 25 patients with leukemia were transplanted to each of 25 nude mice for 20 weeks. The ovarian cortex was examined before and after transplantation by histology and immunohistochemistry, and RT-quantitative PCR (in the 7 patients with a known marker). Seventeen patients had the ovarian cortex retrieved when they were in complete remission. Before transplantation, 4 of 7 pieces (2 from patients in complete remission) of ovarian cortex had a positive RT-quantitative PCR. After transplantation, none of the mice revealed any sign of disease, neither in the pieces of ovarian cortex transplanted nor in any of the murine organs evaluated. Thus, the ovaries from patients in complete remission do not appear to contain viable malignant cells contrasting ovarian tissue retrieved before treatment.

  5. Targeting Aurora Kinase with MK-0457 Inhibits Ovarian Cancer Growth

    PubMed Central

    Lin, Yvonne G.; Immaneni, Anand; Merritt, William M.; Mangala, Lingegowda S.; Kim, SeungWook; Shahzad, Mian M.K.; Tsang, Yvonne T.M.; Armaiz-Pena, Guillermo N.; Lu, Chunhua; Kamat, Aparna A.; Han, Liz Y.; Spannuth, WhitneyA.; Nick, Alpa M.; Landen, Charles N.; Wong, Kwong K.; Gray, Michael J.; Coleman, Robert L.; Bodurka, Diane C.; Brinkley, William R.; Sood, Anil K.

    2009-01-01

    Purpose The Aurora kinase family plays pivotal roles in mitotic integrity and cell cycle.We sought to determine the effects of inhibiting Aurora kinase on ovarian cancer growth in an orthotopic mouse model using a small molecule pan-Aurora kinase inhibitor, MK-0457. Experimental Design We examined cell cycle regulatory effects and ascertained the therapeutic efficacy of Aurora kinase inhibition both alone and combined with docetaxel using both in vitro and in vivo ovarian cancer models. Results In vitro cytotoxicity assays with HeyA8 and SKOV3ip1 cells revealed >10-fold greater docetaxel cytotoxicity in combination with MK-0457. After in vivo dose kinetics were determined using phospho-histone H3 status, therapy experiments with the chemosensitive HeyA8 and SKOV3ip1as well as the chemoresistant HeyA8-MDR and A2780-CP20 models showed that Aurora kinase inhibition alone significantly reduced tumor burden compared with controls (P values < 0.01). Combination treatment with docetaxel resulted in significantly improved reduction in tumor growth beyond that afforded by docetaxel alone (P ≤ 0.03). Proliferating cell nuclear antigen immunohistochemistry revealed that MK-0457 alone and in combination with docetaxel significantly reduced cellular proliferation (P values < 0.001). Compared with controls, treatment with MK-0457 alone and in combination with docetaxel also significantly increased tumor cell apoptosis by ∼3-fold (P < 0.01). Remarkably, compared with docetaxel monotherapy, MK-0457 combined with docetaxel resulted in significantly increased tumor cell apoptosis. Conclusions Aurora kinase inhibition significantly reduces tumor burden and cell proliferation and increases tumor cell apoptosis in this preclinical orthotopic model of ovarian cancer. The role of Aurora kinase inhibition in ovarian cancer merits further investigation in clinical trials. PMID:18765535

  6. Estradiol attenuates EGF-induced rapid uPAR mobilization and cell migration via the G-protein-coupled receptor 30 in ovarian cancer cells.

    PubMed

    Henic, Emir; Noskova, Vera; Høyer-Hansen, Gunilla; Hansson, Stefan; Casslén, Bertil

    2009-02-01

    Epidermal growth factor (EGF) stimulates proliferation and migration in ovarian cancer cells, and high tumor expression of the EGF system correlates with poor prognosis. Epidermal growth factor upregulates urokinase plasminogen activator receptor (uPAR) on the cell surface via 3 distinct mechanisms: rapid mobilization of uPAR from detergent-resistant domains, increased mRNA, and decreased degradation. G-protein-coupled receptor 30 (GPR30) is a newly identified membrane estrogen receptor (ER).The objective of this study was to explore the effects of 17beta-estradiol (E(2)) on uPAR expression and cell migration in ovarian cancer cells and further to identify the ER involved.We used 7 ovarian cancer cell lines, cell migration assay, cellular binding of (125)I-uPA, cellular degradation of (125)I-uPA/PAI-1 complex, enzyme-linked immunosorbent assay for uPAR, solid-phase enzyme immunoassay for ERalpha, and quantitative polymerase chain reaction. Estradiol attenuates the stimulatory effect of EGF on cell migration and uPAR expression. Specifically, E(2) reduces the very rapid increase of detergent extractable uPAR, which occurs within minutes of EGF stimulation and probably represents mobilization of uPAR from detergent-resistant domains such as lipid rafts. Estradiol influenced neither the amount of uPAR mRNA nor the rate of uPAR degradation or solubilization. The nuclear ER antagonists ICI 182780 and tamoxifen, which are GPR30 agonists, as well as the specifically constructed GPR30 agonist G1, mimicked the effect of E(2) on uPAR expression and cell migration. OVCAR-3 cells express mRNA for GPR30.Estradiol attenuates EGF-induced mobilization of ligated uPAR from detergent-resistant domains and subsequent migration in ovarian cancer cells. The response to various ER ligands indicates that this effect is mediated via the membrane ER GPR30.

  7. Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers.

    PubMed

    Singh, Garima; Roy, Jyoti; Rout, Pratiti; Mallick, Bibekanand

    2018-01-01

    PIWI-interacting (piRNAs), ~23-36 nucleotide-long small non-coding RNAs (sncRNAs), earlier believed to be germline-specific, have now been identified in somatic cells, including cancer cells. These sncRNAs impact critical biological processes by fine-tuning gene expression at post-transcriptional and epigenetic levels. The expression of piRNAs in ovarian cancer, the most lethal gynecologic cancer is largely uncharted. In this study, we investigated the expression of PIWILs by qRT-PCR and western blotting and then identified piRNA transcriptomes in tissues of normal ovary and two most prevalent epithelial ovarian cancer subtypes, serous and endometrioid by small RNA sequencing. We detected 219, 256 and 234 piRNAs in normal ovary, endometrioid and serous ovarian cancer samples respectively. We observed piRNAs are encoded from various genomic regions, among which introns harbor the majority of them. Surprisingly, piRNAs originated from different genomic contexts showed the varied level of conservations across vertebrates. The functional analysis of predicted targets of differentially expressed piRNAs revealed these could modulate key processes and pathways involved in ovarian oncogenesis. Our study provides the first comprehensive piRNA landscape in these samples and a useful resource for further functional studies to decipher new mechanistic views of piRNA-mediated gene regulatory networks affecting ovarian oncogenesis. The RNA-seq data is submitted to GEO database (GSE83794).

  8. Cell of Origin: Exploring an Alternative Contributor to Ovarian Cancer

    DTIC Science & Technology

    2014-09-01

    previously shown that DDX4 is expressed in ovarian carcinomas and its expression is associated with age and the serous histophenotype. Thus, we analyzed...oncogenic alleles of human TP53, AKT1, KRAS, and PIK3CA were constructed and initially validated in both a human endometrial cancer cell line and mouse...AKT1, KRAS, or PIK3CA were successfully constructed. 9. The viral constructs were initially validated in a human endometrial cancer cell line and

  9. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs.

    PubMed

    Chen, Shuo; Jiao, Jin-Wen; Sun, Kai-Xuan; Zong, Zhi-Hong; Zhao, Yang

    2015-01-01

    Accumulating studies reveal that aberrant microRNA (miRNA) expression can affect the development of chemotherapy drug resistance by modulating the expression of relevant target proteins. The aim of this study was to investigate the role of miR-133b in the development of drug resistance in ovarian cancer cells. We examined the levels of miR-133b expression in ovarian carcinoma tissues and the human ovarian carcinoma cell lines (A2780, A2780/DDP and A2780/Taxol, respectively). We determined the cell viability of these cell lines treated with cisplatin or paclitaxel in the presence or absence of miR-133b or anti-miR-133b transfection using the MTT assay. Reverse transcription polymerase chain reaction and Western blotting were used to assess the mRNA and protein expression levels of two drug-resistance-related genes: glutathione S-transferase (GST)-π and multidrug resistance protein 1 (MDR1). The dual-luciferase reporter assay was used to detect the promoter activity of GST-π in the presence and absence of miR-133b. The expression of miR-133b was significantly lower in primary resistant ovarian carcinomas than in the chemotherapy-sensitive carcinomas (P<0.05), and the same results were found in primary resistant ovarian cell lines (A2780/Taxol and A2780/DDP) compared to the chemotherapy-sensitive cell line (A2780; P<0.05). Following miR-133b transfection, four cell lines showed increased sensitivity to paclitaxel and cisplatin, while anti-miR-133b transfection reduced cell sensitivity to paclitaxel and cisplatin. Dual-luciferase reporter assay showed that miR-133b interacted with the 3'-untranslated region of GST-π. Compared to controls, the mRNA and protein levels of MDR1 and GST-π were downregulated after miR-133b transfection and upregulated after anti-miR-133b transfection. MicroRNA-133b may reduce ovarian cancer drug resistance by silencing the expression of the drug-resistance-related proteins, GST-π and MDR1. In future, the combination of miR-133b with

  10. TRX-E-002-1 Induces c-Jun-Dependent Apoptosis in Ovarian Cancer Stem Cells and Prevents Recurrence In Vivo.

    PubMed

    Alvero, Ayesha B; Heaton, Andrew; Lima, Eydis; Pitruzzello, Mary; Sumi, Natalia; Yang-Hartwich, Yang; Cardenas, Carlos; Steinmacher, Sahra; Silasi, Dan-Arin; Brown, David; Mor, Gil

    2016-06-01

    Chemoresistance is a major hurdle in the management of patients with epithelial ovarian cancer and is responsible for its high mortality. Studies have shown that chemoresistance is due to the presence of a subgroup of cancer cells with stemness properties and a high capacity for tumor repair. We have developed a library of super-benzopyran analogues to generate potent compounds that can induce cell death in chemoresistant cancer stem cells. TRX-E-002-1 is identified as the most potent analogue and can induce cell death in all chemoresistant CD44(+)/MyD88(+) ovarian cancer stem cells tested (IC50 = 50 nmol/L). TRX-E-002-1 is also potent against spheroid cultures formed from cancer stem cells, chemosensitive CD44(-)/MyD88(-) ovarian cancer cells, and heterogeneous cultures of ovarian cancer cells. Cell death was associated with the phosphorylation and increased levels of c-Jun and induction of caspases. In vivo, TRX-E-002-1 given as daily intraperitoneal monotherapy at 100 mg/kg significantly decreased intraperitoneal tumor burden compared with vehicle control. When given in combination with cisplatin, animals receiving the combination of cisplatin and TRX-E-002-1 showed decreased tumor burden compared with each monotherapy. Finally, TRX-E-002-1 given as maintenance treatment after paclitaxel significantly delayed disease recurrence. Our results suggest that TRX-E-002-1 may fill the current need for better therapeutic options in the control and management of recurrent ovarian cancer and may help improve patient survival. Mol Cancer Ther; 15(6); 1279-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. KRAS Genomic Status Predicts the Sensitivity of Ovarian Cancer Cells to Decitabine | Office of Cancer Genomics

    Cancer.gov

    Decitabine, a cancer therapeutic that inhibits DNA methylation, produces variable antitumor response rates in patients with solid tumors that might be leveraged clinically with identification of a predictive biomarker. In this study, we profiled the response of human ovarian, melanoma, and breast cancer cells treated with decitabine, finding that RAS/MEK/ERK pathway activation and DNMT1 expression correlated with cytotoxic activity. Further, we showed that KRAS genomic status predicted decitabine sensitivity in low-grade and high-grade serous ovarian cancer cells.

  12. Amplification and overexpression of aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells.

    PubMed

    Chung, C M; Man, C; Jin, Y; Jin, C; Guan, X Y; Wang, Q; Wan, T S K; Cheung, A L M; Tsao, S W

    2005-07-01

    Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled P1 artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis. Copyright (c) 2005 Wiley-Liss, Inc.

  13. Large-scale evaluation of common variation in regulatory T cell-related genes and ovarian cancer outcome.

    PubMed

    Charbonneau, Bridget; Moysich, Kirsten B; Kalli, Kimberly R; Oberg, Ann L; Vierkant, Robert A; Fogarty, Zachary C; Block, Matthew S; Maurer, Matthew J; Goergen, Krista M; Fridley, Brooke L; Cunningham, Julie M; Rider, David N; Preston, Claudia; Hartmann, Lynn C; Lawrenson, Kate; Wang, Chen; Tyrer, Jonathan; Song, Honglin; deFazio, Anna; Johnatty, Sharon E; Doherty, Jennifer A; Phelan, Catherine M; Sellers, Thomas A; Ramirez, Starr M; Vitonis, Allison F; Terry, Kathryn L; Van Den Berg, David; Pike, Malcolm C; Wu, Anna H; Berchuck, Andrew; Gentry-Maharaj, Aleksandra; Ramus, Susan J; Diergaarde, Brenda; Shen, Howard; Jensen, Allan; Menkiszak, Janusz; Cybulski, Cezary; Lubiłski, Jan; Ziogas, Argyrios; Rothstein, Joseph H; McGuire, Valerie; Sieh, Weiva; Lester, Jenny; Walsh, Christine; Vergote, Ignace; Lambrechts, Sandrina; Despierre, Evelyn; Garcia-Closas, Montserrat; Yang, Hannah; Brinton, Louise A; Spiewankiewicz, Beata; Rzepecka, Iwona K; Dansonka-Mieszkowska, Agnieszka; Seibold, Petra; Rudolph, Anja; Paddock, Lisa E; Orlow, Irene; Lundvall, Lene; Olson, Sara H; Hogdall, Claus K; Schwaab, Ira; du Bois, Andreas; Harter, Philipp; Flanagan, James M; Brown, Robert; Paul, James; Ekici, Arif B; Beckmann, Matthias W; Hein, Alexander; Eccles, Diana; Lurie, Galina; Hays, Laura E; Bean, Yukie T; Pejovic, Tanja; Goodman, Marc T; Campbell, Ian; Fasching, Peter A; Konecny, Gottfried; Kaye, Stanley B; Heitz, Florian; Hogdall, Estrid; Bandera, Elisa V; Chang-Claude, Jenny; Kupryjanczyk, Jolanta; Wentzensen, Nicolas; Lambrechts, Diether; Karlan, Beth Y; Whittemore, Alice S; Culver, Hoda Anton; Gronwald, Jacek; Levine, Douglas A; Kjaer, Susanne K; Menon, Usha; Schildkraut, Joellen M; Pearce, Celeste Leigh; Cramer, Daniel W; Rossing, Mary Anne; Chenevix-Trench, Georgia; Pharoah, Paul D P; Gayther, Simon A; Ness, Roberta B; Odunsi, Kunle; Sucheston, Lara E; Knutson, Keith L; Goode, Ellen L

    2014-04-01

    The presence of regulatory T cells (Treg) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag single-nucleotide polymorphisms (SNP) in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in 10,084 women with invasive epithelial ovarian cancer, including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous carcinoma cases of European descent across 28 studies from the Ovarian Cancer Association Consortium (OCAC). The strongest associations were found for endometrioid carcinoma and IL2RA SNPs rs11256497 [HR, 1.42; 95% confidence interval (CI), 1.22-1.64; P = 5.7 × 10(-6)], rs791587 (HR, 1.36; 95% CI, 1.17-1.57; P = 6.2 × 10(-5)), rs2476491 (HR, = 1.40; 95% CI, 1.19-1.64; P = 5.6 × 10(-5)), and rs10795763 (HR, 1.35; 95% CI, 1.17-1.57; P = 7.9 × 10(-5)), and for clear cell carcinoma and CTLA4 SNP rs231775 (HR, 0.67; 95% CI, 0.54-0.82; P = 9.3 × 10(-5)) after adjustment for age, study site, population stratification, stage, grade, and oral contraceptive use. The rs231775 allele associated with improved survival in our study also results in an amino acid change in CTLA4 and previously has been reported to be associated with autoimmune conditions. Thus, we found evidence that SNPs in genes related to Tregs seem to play a role in ovarian cancer survival, particularly in patients with clear cell and endometrioid epithelial ovarian cancer.

  14. Exosomes: an overview of biogenesis, composition and role in ovarian cancer

    PubMed Central

    2014-01-01

    Exosomes are tiny membrane-bound vesicles that are over produced by most proliferating cell types during normal and pathological states. Their levels are up-regulated during pregnancy and disease states such as cancer. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, microRNAs and small RNAs that are representative to their cellular origin and shuttle from a donor cell to a recipient cell. From intercellular communication to tumor proliferation, exosomes carry out a diverse range of functions, both helpful and harmful. Useful as biomarkers, exosomes may be applicable in diagnostic assessments as well as cell-free anti-tumor vaccines. Exosomes of ovarian cancer contain different set of proteins and miRNAs compared to exosomes of normal, cancer-free individuals. These molecules may be used as multiple “barcode” for the development of a diagnostic tool for early detection of ovarian cancer. PMID:24460816

  15. Biological Basis for Chemoprevention of Ovarian Cancer

    DTIC Science & Technology

    1999-10-01

    potent apoptotic effect on ovarian epithelial cells, the use of levonorgestrel in chemoprevention of ovarian cancer is being explored in chickens and...women. A chemoprevention trial is ongoing in chickens and we will begin a trial to determine whether levonorgestrel induces apoptosis in the ovarian...subsequent studies performed in vitro, we have induced apoptosis in epithelial cells treated with the progestin levonorgestrel . Progestin mediated apoptotic

  16. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzato, Annalisa; Biolatti, Marta; Institute for Cancer Research at Candiolo, Candiolo, Torino

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancermore » cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.« less

  17. Pooled analysis of the prognostic relevance of disseminated tumor cells in the bone marrow of patients with ovarian cancer.

    PubMed

    Fehm, Tanja; Banys, Malgorzata; Rack, Brigitte; Janni, Wolfgang; Marth, Christian; Blassl, Christina; Hartkopf, Andreas; Trope, Claes; Kimmig, Rainer; Krawczyk, Natalia; Wallwiener, Diethelm; Wimberger, Pauline; Kasimir-Bauer, Sabine

    2013-06-01

    Detection of disseminated tumor cells (DTCs) in the bone marrow (BM) of patients with breast cancer is associated with poor outcomes. Recent studies demonstrated that DTCs may serve as a prognostic factor in ovarian cancer. The aim of this 3-center study was to evaluate the impact of BM status on survival in a large cohort of patients with ovarian cancer. Four hundred ninety-five patients with primary ovarian cancer were included in this 3-center prospective study. Bone marrow aspirates were collected intraoperatively from the iliac crest. Disseminated tumor cells were identified by antibody staining and by cytomorphology. Clinical outcome was correlated with the presence of DTCs. Disseminated tumor cells were detected in 27% of all BM aspirates. The number of cytokeratin-positive cells ranged from 1 to 42 per 2 × 10⁶ mononuclear cells. Disseminated tumor cell status did correlate with histologic subtype but not with any of the other established clinicopathologic factors. The overall survival was significantly shorter among DTC-positive patients compared to DTC-negative patients (51 months; 95% confidence interval, 37-65 months vs 33 months; 95% confidence interval, 23-43 months; P = 0.023). In the multivariate analysis, BM status, International Federation of Gynecology and Obstetrics stage, nodal status, resection status, and age were independent predictors of reduced overall survival, whereas only BM status, International Federation of Gynecology and Obstetrics stage, and resection status independently predicted progression-free survival. Tumor cell dissemination into the BM is a common phenomenon in ovarian cancer. Disseminated tumor cell detection has the potential to become an important biomarker for prognostication and disease monitoring in patients with ovarian cancer.

  18. Altered Stem Cell Receptor Activity in the Ovarian Surface Epithelium by Exogenous Zinc and/or Progesterone.

    PubMed

    Oktem, G; Sahin, C; Dilsiz, O Y; Demiray, S B; Goker, E N T; Tavmergen, E

    2015-05-01

    Ovarian surface epithelium (OSE) has the characteristics of a stem cell and the potential for differentiation. Previous studies on this subject have succeeded in deriving oocytes from OSE stem cells, leading to the belief that OSE could be used for infertility treatment. Each rat (n = 10) was subjected to zinc and/or progesterone injection for 5 days after conception. After a 6-day implantation period, ovarian tissues were removed and comprehensive immunohistochemical analysis of stem cell markers was conducted: Sox2, Klf4, Oct3/4, c-Myc, CD117, CD90, SSEA-1 and Notch pathway analysis; Notch1, Jagged1, and Delta1 in the OSE and ovarian stromal cells were evaluated after treatment with zinc, progesterone, or both. Progesterone moderately affected Sox2 expression (p < 0.001), while zinc application strongly affected Klf4 and Oct3/4 and immunoreactivity (p < 0.001). CD90 immunoreactivity was decreased in the OSE and stroma of the progesterone group (p = 0.006) compared with the zinc (p = 0.244) and zinc/progesterone groups (p = 0.910). On the other hand, SSEA-1 showed moderate staining in the OSE and weak staining in stromal cells in animals treated with zinc (p = 0.727), progesterone (p = 0.626), and zinc/progesterone (p = 0.371), with no differences compared with control. Zinc application affected Notch pathway immunoreactivity, with a significant increase in Notch1 (p = 0.0015) and Jagged1 (p < 0.001). The expression of putative stem cell markers in the OSE was verified and stem cell receptor activity was raised in the OSE and ovarian stromal cells by zinc and progesterone. Thus, this increased expression allows the therapeutic use of zinc and progesterone in ovary-related infertility and brings a different perspective to reproductive medicine. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Analysis of epothilone B-induced cell death in normal ovarian cells.

    PubMed

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2013-12-01

    We have investigated the mode of cell death induced by a new microtubule-stabilizing agent, epothilone B (EpoB, patupilone), and a clinically used medicine, paclitaxel (PTX), in normal ovarian cells. Using fluorescence microscopy, polyacrylamide gel electrophoresis preceding Western blot analysis, as well as spectrofluorimetric and colorimetric detection, we demonstrate that, compared to EpoB, PTX induced high time-dependent morphological and biochemical changes typical of apoptosis. Induction of apoptosis followed an early increase in p53 levels. Apoptosis reached its maximum at 24-48 h. At the same time, there was a significant increase in caspase-9 and -3 activity and PARP fragmentation, which suggests that an intrinsic path was involved. Apoptosis in MM14 cells was increased more by PTX than EpoB, and also induced more necrosis responsible for inflammation (1.4-fold) than EpoB. © 2013 International Federation for Cell Biology.

  20. Ovarian morphology and function during growth hormone therapy of short girls born small for gestational age.

    PubMed

    Tinggaard, Jeanette; Jensen, Rikke Beck; Sundberg, Karin; Birkebæk, Niels; Christiansen, Peter; Ellermann, Annie; Holm, Kirsten; Jeppesen, Eva Mosfeldt; Kremke, Britta; Marcinski, Pawel; Pedersen, Carsten; Saurbrey, Nina; Thisted, Ebbe; Main, Katharina M; Juul, Anders

    2014-12-01

    To study the effect of growth hormone (GH) treatment on ovarian and uterine morphology and function in short, prepubertal small-for-gestational-age (SGA) girls. A multinational, randomized controlled trial on safety and efficacy of GH therapy in short, prepubertal children born SGA. Not applicable. A subgroup of 18 Danish girls born SGA included in North European SGA Study (NESGAS). One year of GH treatment (67 μg/kg/day) followed by 2 years of randomized GH treatment (67 μg/kg/day, 35 μg/kg/day, or IGF-I titrated). Data on anthropometrics, reproductive hormones, and ultrasonographic examination of the internal genitalia were collected during 36 months of GH treatment. Uterine and ovarian volume increased significantly during 3 years of treatment (64% and 110%, respectively) but remained low within normal reference ranges. Ovarian follicles became visible in 58% after 1 year compared with 28% before GH therapy. Anti-Müllerian hormone increased significantly during the 3 years of GH therapy but remained within the normal range. Precocious puberty was observed in one girl; another girl developed multicystic ovaries. GH treatment was associated with statistically significant growth of the internal genitalia, but remained within the normal range. As altered pubertal development and ovarian morphology were found in 2 of 18 girls, monitoring of puberty and ovarian function during GH therapy in SGA girls is prudent. Altogether, the findings are reassuring. However, long-term effects of GH treatment on adult reproductive function remain unknown. EudraCT 2005-001507-19. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. IKKβ Regulates VEGF Expression and Is a Potential Therapeutic Target for Ovarian Cancer as an Antiangiogenic Treatment.

    PubMed

    Kinose, Yasuto; Sawada, Kenjiro; Makino, Hiroshi; Ogura, Tomonori; Mizuno, Tomoko; Suzuki, Noriko; Fujikawa, Tomoyuki; Morii, Eiichi; Nakamura, Koji; Sawada, Ikuko; Toda, Aska; Hashimoto, Kae; Isobe, Aki; Mabuchi, Seiji; Ohta, Tsuyoshi; Itai, Akiko; Morishige, Ken-ichirou; Kurachi, Hirohisa; Kimura, Tadashi

    2015-04-01

    The prolongation of progression-free survival (PFS) in patients with advanced ovarian cancer by antiangiogenic therapy has been shown in several clinical trials. However, although an anti-VEGF antibody (bevacizumab) is the only option currently available, its efficacy is limited and it is not cost effective for use in all patients. Therefore, the development of a novel antiangiogenic drug, especially composed of small-molecule compounds, could be a powerful armament for ovarian cancer treatment. As NF-κB signaling has the potential to regulate VEGF expression, we determined to identify whether VEGF expression is associated with NF-κB activation and to investigate the possibility of a novel IKKβ inhibitor, IMD-0354 (IMMD Inc.), as an antiangiogenic drug. Tissue microarrays from 94 ovarian cancer tissues were constructed and immunohistochemical analyses performed. We revealed that IKK phosphorylation is an independent prognostic factor (PFS: 26.1 vs. 49.8 months, P = 0.011), and is positively correlated with high VEGF expression. In in vitro analyses, IMD-0354 robustly inhibited adhesive and invasive activities of ovarian cancer cells without impairing cell viabilities. IMD-0354 significantly suppressed VEGF production from cancer cells, which led to the inhibition of angiogenesis. In a xenograft model, the treatment of IMD-0354 significantly inhibited peritoneal dissemination with a marked reduction of intratumoral blood vessel formation followed by the inhibition of VEGF expression from cancer cells. IMD-0354 is a stable small-molecule drug and has already been administered safely to humans in other trials. Antiangiogenic therapy targeting IKKβ is a potential future option to treat ovarian cancer. ©2015 American Association for Cancer Research.

  2. Ovarian Stem Cells-the Pros and Cons.

    PubMed

    Evron, Ayelet; Blumenfeld, Zeev

    2013-03-20

    The potential for postnatal de novo oogenesis in mammals and in humans has become very controversial in the fields of reproductive science and biology. Historically, it has been thought that females of most mammalian species lose the ability to produce oocytes at birth. A contemporary understanding of stem cell biology together with novel experimental methods has challenged the model of a prenatal fixed ovarian primordial follicle pool that declines with age. Researchers have suggested replenishment of post-natal oocytes by germ-line stem cells (GSCs). According to this theory, GSCs produce oocytes and primordial follicles throughout the lifetime of the adult female. This review describes recent approaches supporting the revolutionary idea of de novo oogenesis in mammals and humans of reproductive-age and provides counter arguments from opponents of this novel and innovative concept.

  3. Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis

    PubMed Central

    Saldanha, Sabita N.; Tollefsbol, Trygve O.

    2013-01-01

    Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review. PMID:24105793

  4. CD8+ T cells induce complete regression of advanced ovarian cancers by an interleukin (IL)-2/IL-15 dependent mechanism.

    PubMed

    Yang, Taimei; Wall, Erika M; Milne, Katy; Theiss, Patty; Watson, Peter; Nelson, Brad H

    2007-12-01

    In vitro studies suggest that ovarian cancer evades immune rejection by fostering an immunosuppressive environment within the peritoneum; however, the functional responses of ovarian cancer-specific T cells have not been directly investigated in vivo. Therefore, we developed a new murine model to enable tracking of tumor-specific CD8(+) T-cell responses to advanced ovarian tumors. The ovarian tumor cell line ID8 was transfected to stably express an epitope-tagged version of HER-2/neu (designated Neu(OT-I/OT-II)). After i.p. injection into C57BL/6 mice, ID8 cells expressing Neu(OT-I/OT-II) gave rise to disseminated serous adenocarcinomas with extensive ascites. CD8(+) T cells expressing a transgenic T-cell receptor specific for the OT-I epitope of Neu(OT-I/OT-II) were adoptively transferred into tumor-bearing mice, and functional responses were monitored. Cytokine signaling requirements were evaluated by comparing the responses of wild-type donor T cells with those with genetic deletion of the interleukin (IL)-2/IL-15 receptor beta subunit (CD122) or the IL-2 receptor alpha subunit (CD25). On adoptive transfer into tumor-bearing hosts, wild-type OT-I T cells underwent a striking proliferative response, reaching peak densities of approximately 40% and approximately 90% of CD8(+) T cells in peripheral blood and ascites, respectively. OT-I cells infiltrated and destroyed tumor tissue, and ascites completely resolved within 10 days. By contrast, CD122(-/-) OT-I cells and CD25(-/-) OT-I cells proliferated in blood but failed to accumulate in ascites or tumor tissue or induce tumor regression. Contrary to expectation, advanced ovarian cancers can support extraordinary CD8(+) T-cell proliferation and antitumor activity through an IL-2/IL-15-dependent mechanism.

  5. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed

    Yanagibashi, T; Gorai, I; Nakazawa, T; Miyagi, E; Hirahara, F; Kitamura, H; Minaguchi, H

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression.

  6. MV-NIS or Investigator's Choice Chemotherapy in Treating Patients With Ovarian, Fallopian, or Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-27

    Fallopian Tube Transitional Cell Carcinoma; Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Endometrioid Tumor; Malignant Ovarian Serous Tumor; Ovarian Seromucinous Carcinoma; Ovarian Transitional Cell Carcinoma; Primary Peritoneal Serous Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  7. Gene therapy for human ovarian cancer cells using efficient expression of Fas gene combined with γδT cells.

    PubMed

    Lin, Jiajing; Zeng, Dingyuan; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting

    2017-10-01

    Low tissue specificity and efficiency of exogenous gene expression are the two major obstacles in tumor‑targeted gene therapy. The Fas cell surface death receptor (Fas)/Fas ligand pathway is one of the primary pathways responsible for the regulation of cell apoptosis. The aim of the present study was to explore whether the regulation of tumor specific promoters and a two‑step transcriptional amplification system (TSTA) assured efficient, targeted expression of their downstream Fas gene in human ovarian cancer cells, and to assess the killing effect of γδT cells on these cells with high Fas expression. Three shuttle plasmids containing different control elements of the human telomerase reverse transcriptase (hTERT) promoter and/or TSTA were constructed and packaged into adenovirus 5 (Ad5) vectors for the expression of exogenous Fas gene. The human ovarian cancer cell line SKOV3 and a control human embryonic lung fibroblast cell line were transfected with Ad5‑hTERT‑Fas or Ad5‑hTERT‑TSTA‑Fas. Fas mRNA and protein expression were examined by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. γδT lymphocytes were isolated, cultured and mixed at different ratios with SKOV3 cells with Fas expression in order to assess the killing effect of γδT cells. hTERT promoter induced the specific expression of FAS gene in SKOV3 cells, and the TSTA strategy increased FAS expression by 14.2‑fold. The killing effect of γδT cells increased with the expression level of Fas and the effector‑target cell ratio. The killing rate for SKOV3 cells with high FAS expression was 72.5% at an effector‑target cell ratio of 40:1. The regulators of hTERT promoter and TSTA assure the efficient and targeted expression of their downstream Fas gene in SKOV3 cells. The killing effect of γδT cells for ovarian cancer cells with relatively high Fas expression was improved.

  8. The nerve growth factor alters calreticulin translocation from the endoplasmic reticulum to the cell surface and its signaling pathway in epithelial ovarian cancer cells.

    PubMed

    Vera, Carolina Andrea; Oróstica, Lorena; Gabler, Fernando; Ferreira, Arturo; Selman, Alberto; Vega, Margarita; Romero, Carmen Aurora

    2017-04-01

    Ovarian cancer is the seventh most common cancer among women worldwide, causing approximately 120,000 deaths every year. Immunotherapy, designed to boost the body's natural defenses against cancer, appears to be a promising option against ovarian cancer. Calreticulin (CRT) is an endoplasmic reticulum (ER) resident chaperone that, translocated to the cell membrane after ER stress, allows cancer cells to be recognized by the immune system. The nerve growth factor (NGF) is a pro-angiogenic molecule overexpressed in this cancer. In the present study, we aimed to determine weather NGF has an effect in CRT translocation induced by cytotoxic and ER stress. We treated A2780 ovarian cancer cells with NGF, thapsigargin (Tg), an ER stress inducer and mitoxantrone (Mtx), a chemotherapeutic drug; CRT subcellular localization was analyzed by immunofluorescence followed by confocal microscopy. In order to determine NGF effect on Mtx and Tg-induced CRT translocation from the ER to the cell membrane, cells were preincubated with NGF prior to Mtx or Tg treatment and CRT translocation to the cell surface was determined by flow cytometry. In addition, by western blot analyses, we evaluated proteins associated with the CRT translocation pathway, both in A2780 cells and human ovarian samples. We also measured NGF effect on cell apoptosis induced by Mtx. Our results indicate that Mtx and Tg, but not NGF, induce CRT translocation to the cell membrane. NGF, however, inhibited CRT translocation induced by Mtx, while it had no effect on Tg-induced CRT exposure. NGF also diminished cell death induced by Mtx. NGF effect on CRT translocation could have consequences in immunotherapy, potentially lessening the effectiveness of this type of treatment.

  9. Papillary Tubal Hyperplasia. The Putative Precursor of Ovarian Atypical Proliferative (Borderline) Serous Tumors, Noninvasive Implants and Endosalpingiosis

    PubMed Central

    Kurman, Robert J.; Vang, Russell; Junge, Jette; Hannibal, Charlotte Gerd; Kjaer, Susanne K.; Shih, Ie-Ming

    2011-01-01

    In contrast to the controversy regarding the terminology and behavior of ovarian noninvasive low-grade serous tumors (atypical proliferative serous tumor [APST] and serous borderline tumor [SBT]), little attention has been directed to their origin. Similarly, until recently, proliferative lesions in the fallopian tube have not been extensively studied. The recent proposal that ovarian high-grade serous carcinomas are derived from intraepithelial carcinoma in the fallopian tube prompted us to evaluate the possible role of the fallopian tube in the genesis of low-grade serous tumors. We have identified a lesion, designated “papillary tubal hyperplasia (PTH)”, characterized by small rounded clusters of tubal epithelial cells and small papillae, with or without associated psammoma bodies, that are present within the tubal lumen and which are frequently associated with APSTs. Twenty-two cases in this study were selected from a population-based study in Denmark of approximately 1000 patients with low-grade ovarian serous tumors in whom implants were identified on the fallopian tube. Seven additional cases were seen recently in consultation at The Johns Hopkins Hospital (JHH). These 7 cases were not associated with an ovarian tumor. Papillary tubal hyperplasia was found in 20 (91%) of the 22 cases in the Danish study. Based on this association of PTH with APSTs with implants and the close morphologic resemblance of PTH, not only to the primary ovarian APSTs but also to the noninvasive epithelial implants and endosalpingiosis, we speculate that the small papillae and clusters of cells from the fallopian tubes implant on ovarian and peritoneal surfaces to produce these lesions. The 7 JHH cases of PTH that were not associated with an ovarian tumor support the view that PTH is the likely precursor lesion. We propose a model for the development of ovarian and extraovarian low-grade serous proliferations (APST, noninvasive epithelial implants and endosalpingiosis) that

  10. Preliminary studies on LED-activated pyropheophorbide-α methyl ester killing cisplatin-resistant ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Yong; Xu, Chuan Shan; Xia, Xin Shu; Yu, He Ping; Bai, Ding Qun; He, Yong; Xu, Jing; Wang, Ping; Wang, Xin Na; Leung, Albert Wing Nang

    2009-05-01

    In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125-8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.

  11. Ovarian Cancer Is an Imported Disease: Fact or Fiction?

    PubMed Central

    Kuhn, Elisabetta; Kurman, Robert J.

    2012-01-01

    The cell of origin of ovarian cancer has been long debated. The current paradigm is that epithelial ovarian cancer (EOC) arises from the ovarian surface epithelium (OSE). OSE is composed of flat, nondescript cells more closely resembling the mesothelium lining the peritoneal cavity, with which it is continuous, rather than the various histologic types of ovarian carcinoma (serous, endometrioid, and clear cell carcinoma), which have a Müllerian phenotype. Accordingly, it has been argued that the OSE undergoes a process termed “metaplasia” to account for this profound morphologic transformation. Recent molecular and clinicopathologic studies not only have failed to support this hypothesis but also have provided evidence that EOC stems from Müllerian-derived extraovarian cells that involve the ovary secondarily, thereby calling into question the very existence of primary EOC. This new model of ovarian carcinogenesis proposes that fallopian tube epithelium (benign or malignant) implants on the ovary to give rise to both high-grade and low-grade serous carcinomas, and that endometrial tissue implants on the ovary and produces endometriosis, which can undergo malignant transformation into endometrioid and clear cell carcinoma. Thus, ultimately EOC is not ovarian in origin but rather is secondary, and it is logical to conclude that the only true primary ovarian neoplasms are germ cell and gonadal stromal tumors analogous to tumors in the testis. If this new model is confirmed, it has profound implications for the early detection and treatment of “ovarian cancer.” PMID:22506137

  12. Effect of stem cell transplantation of premature ovarian failure in animal models and patients: A meta-analysis and case report.

    PubMed

    Chen, Lei; Guo, Shilei; Wei, Cui; Li, Honglan; Wang, Haiya; Xu, Yan

    2018-05-01

    Stem cell transplantation has been considered a promising therapeutic approach for premature ovarian failure (POF). However, to date, no quantitative data analysis of stem cell therapy for POF has been performed. Therefore, the present study performed a meta-analysis to assess the efficacy of stem cell transplantation in improving ovarian function in animal models of POF. In addition, a case report of a patient with POF subjected to stem cell treatment was included to demonstrate that stem cell therapy also contributes to the recovery of ovarian function in patients. Published studies were identified by a systematic review of the PubMed, Embase, and Cochrane's library databases, and references cited in associated reviews were also considered. Data regarding follicle-stimulating hormone (FSH), estradiol (E2), ovarian weight, follicle count, the number of pregnancies and other parameters, including delivery route and cell type, were extracted. Pooled analysis, sensitivity analyses, subgroup analyses and meta-regression were performed. In the case of POF, transvaginal ultrasound (TVS), abdominal ultrasound (TAS) and color Doppler flow imaging (CDFI) were performed to observe the endometrial morphology and blood flow signals in the patient. Overall, pooled results from 16 pre-clinical studies demonstrated that stem cell-based therapy significantly improved FSH levels [standardized mean difference (SMD)=-1.330; 95% confidence interval (CI), -(2.095-0.565); P=0.001], E2 levels (SMD=2.334; 95% CI, 1.350-3.319; P<0.001), ovarian weight (SMD=1.310; 95% CI, 0.157-2.463; P=0.026), follicle count (SMD=1.871; 95% CI, 1.226-2.516; P<0.001), and the number of pregnancies (risk ratio=1.715, 95% CI, 1.213-2.424; P=0.002). The results of TVS and TAS demonstrated improved ovarian size and endometrial thickness in the patient with POF after MSC treatment. Of note, a rich blood flow signal in the endometrium was observed on CDFI. It appeared that stem cell-based therapy may be an

  13. Ovarian clear cell carcinoma--bad endometriosis or bad endometrium?

    PubMed

    Gounaris, Ioannis; Charnock-Jones, D Stephen; Brenton, James D

    2011-10-01

    It has become increasingly clear that the four main histological subtypes of epithelial ovarian cancer (EOC), high-grade serous, endometrioid, clear cell and mucinous, are entities with different epidemiologies, clinical presentations, responses to treatment, and ultimate outcomes. In fact, for all intents and purposes, they can be considered different diseases, their only common denominator being that they frequently involve the ovary and pelvic organs. However, clinical practice has not caught up with these insights and the treatment of EOC is that of a single disease entity. In part, this is because we lack detailed knowledge of the molecular mechanisms driving the pathogenesis of each disease, which is vital in order to develop therapeutic approaches against common driver events. In the last few years, mutations in ARID1A and PIK3CA have been described in a substantial fraction of cases of ovarian clear cell carcinoma, yet the paper by Yamamoto et al in this issue of The Journal of Pathology reveals that PIK3CA mutations can be detected in precursor endometriosis tissues. These and other recent observations underscore the importance of investigating whether mutations in the eutopic endometrium actually predispose to endometriosis and eventually to malignancy. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of prostate and ovarian tumor cells in culture.

    PubMed

    Xuan, Jian-Ai; Schneider, Doug; Toy, Pam; Lin, Rick; Newton, Alicia; Zhu, Ying; Finster, Silke; Vogel, David; Mintzer, Bob; Dinter, Harald; Light, David; Parry, Renate; Polokoff, Mark; Whitlow, Marc; Wu, Qingyu; Parry, Gordon

    2006-04-01

    Hepsin is a type II transmembrane serine protease that is expressed in normal liver, and at lower levels in kidney, pancreas, and testis. Several studies have shown that hepsin mRNA is significantly elevated in most prostate tumors, as well as a significant fraction of ovarian and renal cell carcinomas and hepatomas. Although the overexpression of mRNA in these tumors has been extensively documented, there has been conflicting literature on whether hepsin plays a role in tumor cell growth and progression. Early literature implied a role for hepsin in human tumor cell proliferation, whereas recent studies with a transgenic mouse model for prostate cancer support a role for hepsin in tumor progression and metastases. To evaluate this issue further, we have expressed an activatable form of hepsin, and have generated a set of monoclonal antibodies that neutralize enzyme activity. The neutralizing antibodies inhibit hepsin enzymatic activity in biochemical and cell-based assays. Selected neutralizing and nonneutralizing antibodies were used in cell-based assays with tumor cells to evaluate the effect of antibodies on tumor cell growth and invasion. Neutralizing antibodies failed to inhibit the growth of prostate, ovarian, and hepatoma cell lines in culture. However, potent inhibitory effects of the antibodies were seen on invasion of ovarian and prostate cells in transwell-based invasion assays. These results support a role for hepsin in tumor cell progression but not in primary tumor growth. Consistent with this, immunohistochemical experiments with a mouse monoclonal antibody reveal progressively increased staining of prostate tumors with advanced disease, and in particular, extensive staining of bone metastatic lesions.

  15. Laparoscopic Treatment of Mixed Malignant Ovarian Germ Cell Tumor in a 16-Year-Old Female Adolescent.

    PubMed

    Friedman, Caroline; Fenster, Tamatha

    2016-12-01

    Malignant ovarian germ cell tumors are rare entities, although they account for a large proportion of ovarian masses in young women. These tumors have traditionally been removed via laparotomy, because of their large size and solid nature. The use of laparoscopy for treatment of adnexal masses in adolescents has been heavily debated and poorly studied to date. A 16-year-old female patient presented with abdominal pain and an 11-cm adnexal mass on ultrasound. An emergent laparoscopic salpingo-oophorectomy was performed without complication. Pathology revealed a mixed malignant ovarian germ cell tumor. Laparoscopic fertility-sparing surgery offers many benefits over laparotomy, and should be considered in cases of young women with large adnexal masses, even if potential for malignancy exists. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  16. Changes in O-Linked N-Acetylglucosamine (O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells*

    PubMed Central

    de Queiroz, Rafaela Muniz; Madan, Rashna; Chien, Jeremy; Dias, Wagner Barbosa; Slawson, Chad

    2016-01-01

    O-GlcNAcylation is a dynamic post-translational modification consisting of the addition of a single N-acetylglucosamine sugar to serine and threonine residues in proteins by the enzyme O-linked β-N-acetylglucosamine transferase (OGT), whereas the enzyme O-GlcNAcase (OGA) removes the modification. In cancer, tumor samples present with altered O-GlcNAcylation; however, changes in O-GlcNAcylation are not consistent between tumor types. Interestingly, the tumor suppressor p53 is modified by O-GlcNAc, and most solid tumors contain mutations in p53 leading to the loss of p53 function. Because ovarian cancer has a high frequency of p53 mutation rates, we decided to investigate the relationship between O-GlcNAcylation and p53 function in ovarian cancer. We measured a significant decrease in O-GlcNAcylation of tumor tissue in an ovarian tumor microarray. Furthermore, O-GlcNAcylation was increased, and OGA protein and mRNA levels were decreased in ovarian tumor cell lines not expressing the protein p53. Treatment with the OGA inhibitor Thiamet-G (TMG), silencing of OGA, or overexpression of OGA and OGT led to p53 stabilization, increased nuclear localization, and increased protein and mRNA levels of p53 target genes. These data suggest that changes in O-GlcNAc homeostasis activate the p53 pathway. Combination treatment of the chemotherapeutic cisplatin with TMG decreased tumor cell growth and enhanced cell cycle arrest without impairing cytotoxicity. The effects of TMG on tumor cell growth were partially dependent on wild type p53 activation. In conclusion, changes in O-GlcNAc homeostasis activate the wild type p53 pathway in ovarian cancer cells, and OGA inhibition has the potential as an adjuvant treatment for ovarian carcinoma. PMID:27402830

  17. Antimetastatic effects of cordycepin mediated by the inhibition of mitochondrial activity and estrogen-related receptor α in human ovarian carcinoma cells

    PubMed Central

    Wang, Chia-Woei; Hsu, Wei-Hsuan; Tai, Chen-Jei

    2017-01-01

    Cordycepin (3′-deoxyadenosine) is a compound for antitumor, which has been found to exert antiangiogenic, antimetastatic, and antiproliferative effects, as well as inducing apoptosis. However, the association between cancer metastasis and mitochondrial activity in cordycepin-treated ovarian carcinoma cells remains unclear. The 50 and 100 μM of cordycepin inhibits mitochondrial fusion and induces mitochondrial fission, respectively. These suggested that cordycepin showed the down-regulation of mitochondrial function and limitation of energy production. Because of activation of mitochondria and generation of energy are needed in cancer cell migration/invasion. After 24 h treatment, cordycepin suppresses epithelial–mesenchymal transition and migration in ovarian carcinoma cells through inhibiting estrogen-related receptor (ERR)-α. The ERRα is a co-transcription factor for gene expressions associated with mitochondrial fusion. Our results indicate that cordycepin suppresses metastasis and migration of ovarian carcinoma cells via inhibiting mitochondrial activity in non-toxic concentrations, and cordycepin has potential benefits in ovarian cancer therapy. PMID:27966445

  18. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau.

    PubMed

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M; Stein, Jenna; Dransfield, Daniel T; Zarrella, Bianca; Growdon, Whitfield B; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R

    2018-05-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn + cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo , depleting STn + tumor cells. In summary, STn + cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn + CSC and STn + non-CSC populations.

  19. Metformin and Chemotherapy in Treating Patients With Stage III-IV Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-04-17

    Brenner Tumor; Malignant Ascites; Malignant Pleural Effusion; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mixed Epithelial Carcinoma; Ovarian Serous Cystadenocarcinoma; Ovarian Undifferentiated Adenocarcinoma; Recurrent Fallopian Tube Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Primary Peritoneal Cavity Cancer; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIA Primary Peritoneal Cavity Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIB Primary Peritoneal Cavity Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IIIC Primary Peritoneal Cavity Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Primary Peritoneal Cavity Cancer

  20. Interleukins affect equine endometrial cell function: modulatory action of ovarian steroids.

    PubMed

    Szóstek, Anna Z; Galvão, Antonio M; Hojo, Takuo; Okuda, Kiyoshi; Skarzynski, Dariusz J

    2014-01-01

    The aim of the present study was to investigate the interaction between ovarian steroids, interleukins and prostaglandins (PG) in equine epithelial and stromal cells in vitro. In Experiment 1, cells were exposed to IL-1α (10 ng/mL), IL-1β (10 ng/mL) or IL-6 (10 ng/mL) for 24 h and cell proliferation was determined using MTT. In Experiment 2, cells were exposed to progesterone (P4; 10(-7) M); 17-β estradiol (E2; 10(-9) M) or P4+E2 for 24 h and later medium was replaced with a fresh one treated with IL-1α, IL-1β or IL-6 (10 ng/mL, each) for 24 h. The oxytocin (OT; 10(-7) M) was used as a positive control. In Experiment 3, cells were exposed to P4 (10(-7) M), E2 (10(-9) M) or P4+E2 for 24 h and the IL receptor mRNAs transcription was determined using Real-time PCR. Prostaglandins concentration was determined using the direct enzyme immunoassay (EIA) method. Our findings reveal a functional linking between ovarian steroids and IL-stimulated PG secretion by equine endometrial cells. This interaction could be one of the mechanisms responsible for endometrial local orchestrating events during the estrous cycle and early pregnancy.

  1. Interleukins Affect Equine Endometrial Cell Function: Modulatory Action of Ovarian Steroids

    PubMed Central

    Szóstek, Anna Z.; Galvão, Antonio M.; Hojo, Takuo; Okuda, Kiyoshi; Skarzynski, Dariusz J.

    2014-01-01

    The aim of the present study was to investigate the interaction between ovarian steroids, interleukins and prostaglandins (PG) in equine epithelial and stromal cells in vitro. In Experiment 1, cells were exposed to IL-1α (10 ng/mL), IL-1β (10 ng/mL) or IL-6 (10 ng/mL) for 24 h and cell proliferation was determined using MTT. In Experiment 2, cells were exposed to progesterone (P4; 10−7 M); 17-β estradiol (E2; 10−9 M) or P4+E2 for 24 h and later medium was replaced with a fresh one treated with IL-1α, IL-1β or IL-6 (10 ng/mL, each) for 24 h. The oxytocin (OT; 10−7 M) was used as a positive control. In Experiment 3, cells were exposed to P4 (10−7 M), E2 (10−9 M) or P4+E2 for 24 h and the IL receptor mRNAs transcription was determined using Real-time PCR. Prostaglandins concentration was determined using the direct enzyme immunoassay (EIA) method. Our findings reveal a functional linking between ovarian steroids and IL-stimulated PG secretion by equine endometrial cells. This interaction could be one of the mechanisms responsible for endometrial local orchestrating events during the estrous cycle and early pregnancy. PMID:24719522

  2. Elevated β-catenin activity contributes to carboplatin resistance in A2780cp ovarian cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barghout, Samir H.; Zepeda, Nubia; Xu, Zhihua

    Ovarian cancer is the fifth leading cause of cancer-related mortalities in women. Epithelial ovarian cancer (EOC) represents approximately 90% of all ovarian malignancies. Most EOC patients are diagnosed at advanced stages and current chemotherapy regimens are ineffective against advanced EOC due to the development of chemoresistance. It is important to better understand the molecular mechanisms underlying acquired resistance to effectively manage this disease. In this study, we examined the expression of the Wnt/β-catenin signaling components in the paired cisplatin-sensitive (A2780s) and cisplatin-resistant (A2780cp) EOC cell lines. Our results showed that several negative regulators of Wnt signaling are downregulated, whereas amore » few Wnt ligands and known Wnt/β-catenin target genes are upregulated in A2780cp cells compared to A2780s cells, suggesting that Wnt/β-catenin signaling is more active in A2780cp cells. Further analysis revealed nuclear localization of β-catenin and higher β-catenin transcriptional activity in A2780cp cells compared to A2780s cells. Finally, we demonstrated that chemical inhibition of β-catenin transcriptional activity by its inhibitor CCT036477 sensitized A2780cp cells to carboplatin, supporting a role for β-catenin in carboplatin resistance in A2780cp cells. In conclusion, our data suggest that increased Wnt/β-catenin signaling activity contributes to carboplatin resistance in A2780cp cells. - Highlights: • Wnt ligands and target genes are upregulated in cisplatin resistant A2780cp cells. • Negative regulators of Wnt signaling are down-regulated in A2780cp cells. • β-catenin transcriptional activity is higher in A2780cp cells compared to A2780s cells. • Inhibition of β-catenin activity increases carboplatin cytotoxicity in A2780cp cells.« less

  3. BIM-Mediated AKT Phosphorylation Is a Key Modulator of Arsenic Trioxide-Induced Apoptosis in Cisplatin-Sensitive and -Resistant Ovarian Cancer Cells

    PubMed Central

    Yuan, Zhu; Wang, Fang; Zhao, Zhiwei; Zhao, Xinyu; Qiu, Ji; Nie, Chunlai; Wei, Yuquan

    2011-01-01

    Background Chemo-resistance to cisplatin-centered cancer therapy is a major obstacle to the effective treatment of human ovarian cancer. Previous reports indicated that arsenic trioxide (ATO) induces cell apoptosis in both drug-sensitive and -resistant ovarian cancer cells. Principal Findings In this study, we determined the molecular mechanism of ATO-induced apoptosis in ovarian cancer cells. Our data demonstrated that ATO induced cell apoptosis by decreasing levels of phosphorylated AKT (p-AKT) and activating caspase-3 and caspase-9. Importantly, BIM played a critical role in ATO-induced apoptosis. The inhibition of BIM expression prevented AKT dephosphorylation and inhibited caspase-3 activation during cell apoptosis. However, surprisingly, gene silencing of AKT or FOXO3A had little effect on BIM expression and phosphorylation. Moreover, the activation of caspase-3 by ATO treatment improved AKT dephosphorylation, not only by cleaving the regulatory A subunit of protein phosphatase 2A (PP2A), but also by increasing its activation. Furthermore, our data indicated that the c-Jun N-terminal kinases (JNK) pathway is involved in the regulation of BIM expression. Conclusions We demonstrated the roles of BIM in ATO-induced apoptosis and the molecular mechanisms of BIM expression regulated by ATO during ovarian cancer cell apoptosis. Our findings suggest that BIM plays an important role in regulating p-AKT by activating caspase-3 and that BIM mediates the level of AKT phosphorylation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells. PMID:21655183

  4. High-level secretion of tissue factor-rich extracellular vesicles from ovarian cancer cells mediated by filamin-A and protease-activated receptors.

    PubMed

    Koizume, Shiro; Ito, Shin; Yoshioka, Yusuke; Kanayama, Tomohiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Yamada, Roppei; Ochiya, Takahiro; Ruf, Wolfram; Miyagi, Etsuko; Hirahara, Fumiki; Miyagi, Yohei

    2016-01-01

    Thromboembolic events occur frequently in ovarian cancer patients. Tissue factor (TF) is often overexpressed in tumours, including ovarian clear-cell carcinoma (CCC), a subtype with a generally poor prognosis. TF-coagulation factor VII (fVII) complexes on the cell surface activate downstream coagulation mechanisms. Moreover, cancer cells secrete extracellular vesicles (EVs), which act as vehicles for TF. We therefore examined the characteristics of EVs produced by ovarian cancer cells of various histological subtypes. CCC cells secreted high levels of TF within EVs, while the high-TF expressing breast cancer cell line MDA-MB-231 shed fewer TF-positive EVs. We also found that CCC tumours with hypoxic tissue areas synthesised TF and fVII in vivo, rendering the blood of xenograft mice bearing these tumours hypercoagulable compared with mice bearing MDA-MB-231 tumours. Incorporation of TF into EVs and secretion of EVs from CCC cells exposed to hypoxia were both dependent on the actin-binding protein, filamin-A (filA). Furthermore, production of these EVs was dependent on different protease-activated receptors (PARs) on the cell surface. These results show that CCC cells could produce large numbers of TF-positive EVs dependent upon filA and PARs. This phenomenon may be the mechanism underlying the increased incidence of venous thromboembolism in ovarian cancer patients.

  5. Bitter Melon (Momordica charantia) Extract Inhibits Tumorigenicity and Overcomes Cisplatin-Resistance in Ovarian Cancer Cells Through Targeting AMPK Signaling Cascade.

    PubMed

    Yung, Mingo M H; Ross, Fiona A; Hardie, D Grahame; Leung, Thomas H Y; Zhan, Jinbiao; Ngan, Hextan Y S; Chan, David W

    2016-09-01

    Objective Acquired chemoresistance is a major obstacle in the clinical management of ovarian cancer. Therefore, searching for alternative therapeutic modalities is urgently needed. Bitter melon (Momordica charantia) is a traditional dietary fruit, but its extract also shows potential medicinal values in human diabetes and cancers. Here, we sought to investigate the extract of bitter melon (BME) in antitumorigenic and cisplatin-induced cytotoxicity in ovarian cancer cells. Three varieties of bitter melon were used to prepare the BME. Ovarian cancer cell lines, human immortalized epithelial ovarian cells (HOSEs), and nude mice were used to evaluate the cell cytotoxicity, cisplatin resistance, and tumor inhibitory effect of BME. The molecular mechanism of BME was examined by Western blotting. Cotreatment with BME and cisplatin markedly attenuated tumor growth in vitro and in vivo in a mouse xenograft model, whereas there was no observable toxicity in HOSEs or in nude mice in vivo Interestingly, the antitumorigenic effects of BME varied with different varieties of bitter melon, suggesting that the amount of antitumorigenic substances may vary. Studies of the molecular mechanism demonstrated that BME activates AMP-activated protein kinase (AMPK) in an AMP-independent but CaMKK (Ca(2+)/calmodulin-dependent protein kinase)-dependent manner, exerting anticancer effects through activation of AMPK and suppression of the mTOR/p70S6K and/or the AKT/ERK/FOXM1 (Forkhead Box M1) signaling cascade. BME functions as a natural AMPK activator in the inhibition of ovarian cancer cell growth and might be useful as a supplement to improve the efficacy of cisplatin-based chemotherapy in ovarian cancer. © The Author(s) 2015.

  6. Role of CTGF in sensitivity to hyperthermia in ovarian and uterine cancers

    DOE PAGES

    Hatakeyama, Hiroto; Wu, Sherry Y.; Lyons, Yasmin A.; ...

    2016-11-01

    Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. Lastly, CTGF silencingmore » aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.« less

  7. Stages of Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer

    MedlinePlus

    ... of Ovarian Germ Cell Tumors Ovarian Low Malignant Potential Tumors Symptoms, Tests, Prognosis, & Stages Treatment of Ovarian Low Malignant Potential Tumors Prevention of Ovarian, Fallopian Tube, & Primary Peritoneal ...

  8. Pro-apoptotic activity of new analog of anthracyclines--WP 631 in advanced ovarian cancer cell line.

    PubMed

    Gajek, Arkadiusz; Denel, Marta; Bukowska, Barbara; Rogalska, Aneta; Marczak, Agnieszka

    2014-03-01

    In this work we investigated the mode of cell death induced by WP 631, a novel anthracycline antibiotic, in the ovarian cancer cell line (OV-90) derived from the malignant ascites of a patient diagnosed with advanced disease. The effects were compared with those of doxorubicin (DOX), a first generation anthracycline. The ability of WP 631 to induce apoptosis and necrosis was examined by double staining with Annexin V and propidium iodide, measurements of the level of intracellular calcium ions and cytochrome c, PARP cleavage. We also investigated the possible involvement of the caspases activation, DNA degradation (comet assay) and intracellular reactive oxygen species (ROS) production in the development of the apoptotic events and their significance for drug efficiency. The results obtained clearly demonstrate that antiproliferative capacity of WP 631 in tested cell line was a few times greater than that of DOX. Furthermore, ovarian cancer cells treated with WP 631 showed a higher mean level of basal DNA damage in comparison to DOX. In conclusion, WP 631 is able to induce caspase - dependent apoptosis in human ovarian cancer cells. Obtained results suggested that WP 631 may be a candidate for further evaluation as chemotherapeutic agents for human cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Label free quantitative proteomics analysis on the cisplatin resistance in ovarian cancer cells.

    PubMed

    Wang, F; Zhu, Y; Fang, S; Li, S; Liu, S

    2017-05-20

    Quantitative proteomics has been made great progress in recent years. Label free quantitative proteomics analysis based on the mass spectrometry is widely used. Using this technique, we determined the differentially expressed proteins in the cisplatin-sensitive ovarian cancer cells COC1 and cisplatin-resistant cells COC1/DDP before and after the application of cisplatin. Using the GO analysis, we classified those proteins into different subgroups bases on their cellular component, biological process, and molecular function. We also used KEGG pathway analysis to determine the key signal pathways that those proteins were involved in. There are 710 differential proteins between COC1 and COC1/DDP cells, 783 between COC1 and COC1/DDP cells treated with cisplatin, 917 between the COC1/DDP cells and COC1/DDP cells treated with LaCl3, 775 between COC1/DDP cells treated with cisplatin and COC1/DDP cells treated with cisplatin and LaCl3. Among the same 411 differentially expressed proteins in cisplatin-sensitive COC1 cells and cisplain-resistant COC1/DDP cells before and after cisplatin treatment, 14% of them were localized on the cell membrane. According to the KEGG results, differentially expressed proteins were classified into 21 groups. The most abundant proteins were involved in spliceosome. This study lays a foundation for deciphering the mechanism for drug resistance in ovarian tumor.

  10. Toward understanding the genetics of regulatory T cells in ovarian cancer.

    PubMed

    Derycke, Melissa S; Charbonneau, Bridget; Preston, Claudia C; Kalli, Kimberly R; Knutson, Keith L; Rider, David N; Goode, Ellen L

    2013-06-01

    Tumor-infiltrating regulatory T cells (Tregs) promote immune evasion and are associated with poor disease outcome in patients affected by various malignancies. We have recently demonstrated that several, inherited single nucleotide polymorphisms affecting Treg-related genes influence the survival of ovarian cancer patients, providing novel insights into possible mechanisms of immune escape.

  11. Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp.

    PubMed

    Zhao, Ran; Qin, Wenjun; Qin, Ruihuan; Han, Jing; Li, Can; Wang, Yisheng; Xu, Congjian

    2017-01-01

    Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal β1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.

  12. GPER-1 acts as a tumor suppressor in ovarian cancer

    PubMed Central

    2013-01-01

    Background It is known that the new membrane-bound estrogen receptor GPER-1 acts suppressive in breast cancer cells and its expression decreases during disease progression. This study was conducted to evaluate the GPER-1 expression in ovarian cancer and its correlation with progression. Its function was tested in vitro in ovarian cancer cells. Patients and methods GPER-1 expression was analyzed by immunohistochemistry in 35 benign ovarian tumors, 35 tumors of low-malignant potential and in 124 ovarian cancers. GPER-1 expression was correlated to the prospectively evaluated disease-free survival of ovarian cancer patients. We also tested GPER-1 expression in ovarian cancer cells and the effect of GPER-1 stimulation on cell growth. Results GPER-1 expression was significantly lower in ovarian cancer tissue than in benign and low-malignant ovarian tumors. GPER-1 expression was observed in 83.1% of malignant tumors and was higher in early stage cancers and tumors with high histological differentiation. GPER-1 expression was associated with favourable clinical outcome. The difference in 2-year disease-free survival by GPER-1 expression was significant, 28.6% for GPER-1 negative and 59.2% for GPER-1 positive cases (p = 0.002). GPER-1 expression was observed in SKOV-3 and OVCAR-3 ovarian cancer cell lines. G-1, a selective GPER-1 agonist, suppressed proliferation of the two cell types via inhibition of cell cycle progression in G2/M phase and stimulation of caspase-dependent apoptosis. The blockade in G2/M phase was associated with increased expression of cyclin B1 and Cdc2 and phosphorylation of histone 3. Conclusion GPER-1 emerges as a new tumor suppressor with unsuspected therapeutic potential for ovarian cancer. PMID:23849542

  13. Functional role and prognostic significance of CD157 in ovarian carcinoma.

    PubMed

    Ortolan, Erika; Arisio, Riccardo; Morone, Simona; Bovino, Paola; Lo-Buono, Nicola; Nacci, Giulia; Parrotta, Rossella; Katsaros, Dionyssios; Rapa, Ida; Migliaretti, Giuseppe; Ferrero, Enza; Volante, Marco; Funaro, Ada

    2010-08-04

    CD157, an ADP-ribosyl cyclase-related cell surface molecule, regulates leukocyte diapedesis during inflammation. Because CD157 is expressed in mesothelial cells and diapedesis resembles tumor cell migration, we investigated the role of CD157 in ovarian carcinoma. We assayed surgically obtained ovarian cancer and mesothelial cells and both native and engineered ovarian cancer cell lines for CD157 expression using flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR), and for adhesion to extracellular matrices, migration, and invasion using cell-based assays. We investigated invasion of human peritoneal mesothelial cells by serous ovarian cancer cells with a three-dimensional coculture model. Experiments were performed with or without CD157-blocking antibodies. CD157 expression in tissue sections from ovarian cancer patients (n = 88) was examined by immunohistochemistry, quantified by histological score (H score), and categorized as at or above or below the median value of 60, and compared with clinical parameters. Statistical tests were two-sided. CD157 was expressed by ovarian cancer cells and mesothelium, and it potentiated the adhesion, migration, and invasion of serous ovarian cancer cells through different extracellular matrices. CD157-transfected ovarian cancer cells migrated twice as much as CD157-negative control cells (P = .001). Blockage of CD157 inhibited mesothelial invasion by serous ovarian cancer cells in a three-dimensional model. CD157 was expressed in 82 (93%) of the 88 epithelial ovarian cancer tissue specimens. In serous ovarian cancer, patients with CD157 H scores of 60 or greater had statistically significantly shorter disease-free survival and overall survival than patients with lower CD157 H scores (CD157 H score > or =60 vs <60: median disease-free survival = 18 months, 95% confidence interval [CI] = 5.92 to 30.07 vs unreached, P = .005; CD157 H score > or =60 vs <60: median overall survival = 45 months, 95% CI = 21

  14. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    DTIC Science & Technology

    2017-07-01

    AWARD NUMBER: W81XWH-15-1-0095 TITLE: Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT TERMS Obesity , Ovarian

  15. Three-photon imaging of ovarian cancer

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Amirsolaimani, Babak; Rice, Photini; Hatch, Kenneth; Kieu, Khanh

    2016-02-01

    Optical imaging methods have the potential to detect ovarian cancer at an early, curable stage. Optical imaging has the disadvantage that high resolution techniques require access to the tissue of interest, but miniature endoscopes that traverse the natural orifice of the reproductive tract, or access the ovaries and fallopian tubes through a small incision in the vagina wall, can provide a minimally-invasive solution. We have imaged both rodent and human ovaries and fallopian tubes with a variety of endoscope-compatible modalities. The recent development of fiber-coupled femtosecond lasers will enable endoscopic multiphoton microscopy (MPM). We demonstrated two- and three-photon excited fluorescence (2PEF, 3PEF), and second- and third-harmonic generation microscopy (SHG, THG) in human ovarian and fallopian tube tissue. A study was undertaken to understand the mechanisms of contrast in these images. Six patients (normal, cystadenoma, and ovarian adenocarcinoma) provided ovarian and fallopian tube biopsies. The tissue was imaged with three-dimensional optical coherence tomography, multiphoton microscopy, and frozen for histological sectioning. Tissue sections were stained with hematoxylin and eosin, Masson's trichrome, and Sudan black. Approximately 1 μm resolution images were obtained with an excitation source at 1550 nm. 2PEF signal was absent. SHG signal was mainly from collagen. 3PEF and THG signal came from a variety of sources, including a strong signal from fatty connective tissue and red blood cells. Adenocarcinoma was characterized by loss of SHG signal, whereas cystic abnormalities showed strong SHG. There was limited overlap of two- and three- photon signals, suggesting that three-photon imaging can provide additional information for early diagnosis of ovarian cancer.

  16. SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells.

    PubMed

    Wu, Yao; Gao, Wei-Nan; Xue, Ya-Nan; Zhang, Li-Chao; Zhang, Juan-Juan; Lu, Sheng-Yao; Yan, Xiao-Yu; Yu, Hui-Mei; Su, Jing; Sun, Lian-Kun

    2018-06-15

    Increasing evidence suggests that mitochondrial respiratory chain complex I participates in carcinogenesis and cancer progression by providing energy and maintaining mitochondrial function. However, the role of complex I in ovarian cancer is largely unknown. In this study we showed that metformin, considered to be an inhibitor of complex I, simultaneously inhibited cell growth and induced mitochondrial-related apoptosis in human ovarian cancer cells. Metformin interrupted cellular energy metabolism mainly by causing damage to complex I that impacted mitochondrial function. Additionally, treatment with metformin increased the activation of sirtuin 3 (SIRT3), a mitochondrial deacetylase. We demonstrated that SIRT3 overexpression aggravated metformin-induced apoptosis, energy stress and mitochondrial dysfunction. Moreover, treatment with metformin or SIRT3 overexpression increased activation of AMP-activated protein kinase (AMPK), a major sensor of cellular energy status. AMPK compensated for energy loss by increasing glycolysis. The impact of this was assessed by reducing glucose levels in the media or by using inhibitors (2-deoxyglucose, Compound C) of glycolysis and AMPK. The combination of these factors with metformin intensified cytotoxicity through further downregulation of ATP. Our study outlines an important role for SIRT3 in the antitumor effect of mitochondrial complex I inhibitors in human ovarian cancer cells. This effect appears to be mediated by induction of energy stress and apoptosis. Strategies that target the mitochondria could be enhanced by modulating glycolysis to further aggravate energy stress that may increase the antitumor effect. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Ovarian phagocyte subsets and their distinct tissue distribution patterns.

    PubMed

    Carlock, Colin; Wu, Jean; Zhou, Cindy; Ross, April; Adams, Henry; Lou, Yahuan

    2013-01-01

    Ovarian macrophages, which play critical roles in various ovarian events, are probably derived from multiple lineages. Thus, a systemic classification of their subsets is a necessary first step for determination of their functions. Utilizing antibodies to five phagocyte markers, i.e. IA/IE (major histocompatibility complex class II), F4/80, CD11b (Mac-1), CD11c, and CD68, this study investigated subsets of ovarian phagocytes in mice. Three-color immunofluorescence and flow cytometry, together with morphological observation on isolated ovarian cells, demonstrated complicated phenotypes of ovarian phagocytes. Four macrophage and one dendritic cell subset, in addition to many minor phagocyte subsets, were identified. A dendritic cell-like population with a unique phenotype of CD11c(high)IA/IE⁻F4/80⁻ was also frequently observed. A preliminary age-dependent study showed dramatic increases in IA/IE⁺ macrophages and IA/IE⁺ dendritic cells after puberty. Furthermore, immunofluorescences on ovarian sections showed that each subset displayed a distinct tissue distribution pattern. The pattern for each subset may hint to their role in an ovarian function. In addition, partial isolation of ovarian macrophage subset using CD11b antibodies was attempted. Establishment of this isolation method may have provided us a tool for more precise investigation of each subset's functions at the cellular and molecular levels.

  18. Activation of acetyl-coenzyme A carboxylase is involved in Taxol-induced ovarian cancer cell death

    PubMed Central

    WU, JIANG; JI, FANG; DI, WEN; CHEN, HONGDUO; WAN, YINSHENG

    2011-01-01

    Acetyl-coenzyme A carboxylase (ACC) is an attractive target for research into the treatment of a variety of human diseases, including diabetes, obesity and cancer. Mounting evidence suggests that the inhibition of ACC induced of cancer cell apoptosis. However, whether the inhibition of ACC regulates apoptosis in CaOV3 cancer cells has yet to be addressed. This study investigated the cytotoxic mechanism of action of ACC inhibition. Results showed that 5-(tetradecyloxy)-2-furoic acid (TOFA), an ACC inhibitor, enhanced Taxol-induced CaOV3 human ovarian cancer cell apoptosis. Notably, when TOFA was administered as a monotherapy, it induced CaOV3 cell apoptosis. Pre-treatment with the EGFR inhibitor PD153035 was found to markedly enhance ACC phosphorylation, whereas AMP-activated protein kinase (AMPK) activator AICAR was found to marginally enhance ACC phosphorylation. Taken together, the data showed ACC is a potential novel molecular target of Taxol. Additionally, ACC inhibition partially contributed to the cytotoxic effect of Taxol in ovarian cancer cells. PMID:22866118

  19. Activation of acetyl-coenzyme A carboxylase is involved in Taxol-induced ovarian cancer cell death.

    PubMed

    Wu, Jiang; Ji, Fang; DI, Wen; Chen, Hongduo; Wan, Yinsheng

    2011-05-01

    Acetyl-coenzyme A carboxylase (ACC) is an attractive target for research into the treatment of a variety of human diseases, including diabetes, obesity and cancer. Mounting evidence suggests that the inhibition of ACC induced of cancer cell apoptosis. However, whether the inhibition of ACC regulates apoptosis in CaOV3 cancer cells has yet to be addressed. This study investigated the cytotoxic mechanism of action of ACC inhibition. Results showed that 5-(tetradecyloxy)-2-furoic acid (TOFA), an ACC inhibitor, enhanced Taxol-induced CaOV3 human ovarian cancer cell apoptosis. Notably, when TOFA was administered as a monotherapy, it induced CaOV3 cell apoptosis. Pre-treatment with the EGFR inhibitor PD153035 was found to markedly enhance ACC phosphorylation, whereas AMP-activated protein kinase (AMPK) activator AICAR was found to marginally enhance ACC phosphorylation. Taken together, the data showed ACC is a potential novel molecular target of Taxol. Additionally, ACC inhibition partially contributed to the cytotoxic effect of Taxol in ovarian cancer cells.

  20. Palliative Care in Improving Quality of Life and Symptoms in Patients With Stage III-IV Pancreatic or Ovarian Cancer

    ClinicalTrials.gov

    2014-12-18

    Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Stage III Pancreatic Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Epithelial Cancer; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Epithelial Cancer; Stage IIIC Ovarian Germ Cell Tumor; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor; Stage IV Pancreatic Cancer

  1. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy.

    PubMed

    Feng, Xue; Li, Ling; Jiang, Hong; Jiang, Keping; Jin, Ye; Zheng, Jianhua

    2014-02-14

    Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau

    PubMed Central

    Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A.; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M.; Stein, Jenna; Dransfield, Daniel T.; Zarrella, Bianca; Growdon, Whitfield B.; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R.

    2018-01-01

    Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations. PMID:29796189

  3. Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression

    DTIC Science & Technology

    2016-05-01

    AWARD NUMBER: W81XWH-15-1-0095 TITLE: Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Investigate the Role of Obesity in Ovarian Cancer Initiation and Progression 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1...pathways in ovarian stem cells and in transformed ovarian cells affected by obesity that lead to ovarian cancer initiation and progression. 15. SUBJECT

  4. Biological Basis for Chemoprevention of Ovarian Cancer

    DTIC Science & Technology

    2000-10-01

    potent apoptotic effect on ovarian epithelial cells, the use of levonorgestrel in chemoprevention of ovarian cancer is being explored in chickens and women...A chemoprevention trial is ongoing in chickens and we will begin a trial to determine whether levonorgestrel induces apoptosis in the ovarian epithelium of women undergoing oophorectomy.

  5. Concomitant endometriosis in malignant and borderline ovarian tumours.

    PubMed

    Oral, Engin; Aydin, Ovgu; Kumbak, Banu Aygun; İlvan, Sennur; Yilmaz, Handan; Tustas, Esra; Bese, Tugan; Demirkiran, Fuat; Arvas, Macit

    2018-06-08

    The aim of the study was to reveal the prevalence of concomitant endometriosis in malignant and borderline ovarian tumours. A retrospective analysis was performed of 530 patients with malignant ovarian tumours and 131 with borderline ovarian tumours, who underwent surgery in our hospital between 1995 and 2011. Forty-eight (7.3%) of 661 patients with malignant and borderline ovarian tumours were associated with endometriosis. Of the 48 endometriosis cases, 73% of those were atypical. Infertility was noted in 38% of patients with endometriosis-associated ovarian tumours. The most frequently endometriosis-associated subtypes were endometrioid (33%) and clear cell (18%) histologies. Of endometriosis-associated endometrioid and clear cell ovarian tumours, 70% were early stage and 60% were premenopausal. The prevalence of concomitant endometriosis in borderline tumours (12%) was found to be significantly higher than that found in the malignant ones (6%; p = .02). Of 32 endometriosis-associated malignant ovarian tumours, 69% were FIGO stages I and II. In conclusion, ovarian endometriosis is seen with both malignant and borderline ovarian tumours, the association being significant with borderline tumours. Fortunately, the endometriosis-associated malignant ovarian tumours are mostly early stage. Impact statement What is already known on this subject? Epidemiologic data suggest that endometriosis has malignant potential. However, a subgroup of women with endometriosis at a high risk for ovarian cancer is yet to be clarified. Currently, endometriosis and ovarian cancer association does not seem to have a clinical implication. What do the results of this study add? The findings of this study revealed that nearly 75% of endometriosis-associated ovarian tumours were of atypical endometriosis. Half of endometriosis-associated ovarian tumour cases were of endometrioid/clear cell histology and 70% were early-stage. Endometriosis was significantly associated with borderline

  6. Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin.

    PubMed

    Zhao, Sufen; Ye, Gang; Fu, Guodong; Cheng, Jian-Xin; Yang, Burton B; Peng, Chun

    2011-05-01

    Ganoderma lucidum is a herbal mushroom known to have many health benefits, including the inhibition of tumor cell growth. However, the effect of Ganoderma lucidum on epithelial ovarian cancer (EOC), the most fatal gynecological malignancy, has not yet been reported. In this study, we determined whether Ganoderma lucidum regulates EOC cell activity. Using several cell lines derived from EOC, we found that Ganoderma lucidum strongly decreased cell numbers in a dose-dependent manner. Ganoderma lucidum also inhibited colony formation, cell migration and spheroid formation. In particular, Ganoderma lucidum was effective in inhibiting cell growth in both chemosensitive and chemoresistant cells and the treatment with Ganoderma lucidum significantly enhanced the effect of cisplatin on EOC cells. Furthermore, Ganoderma lucidum induced cell cycle arrest at the G2/M phase and also induced apoptosis by activating caspase 3. Finally, Ganoderma lucidum increased p53 but inhibited Akt expression. Taken together, these findings suggest that Ganoderma lucidum exerts multiple anti-tumor effects on ovarian cancer cells and can enhance the sensitivity of EOC cells to cisplatin.

  7. FOXO3a-mediated suppression of the self-renewal capacity of sphere-forming cells derived from the ovarian cancer SKOV3 cell line by 7-difluoromethoxyl-5,4'-di-n-octyl genistein.

    PubMed

    Ning, Yingxia; Luo, Chaoyuan; Ren, Kaiqun; Quan, Meifang; Cao, Jianguo

    2014-05-01

    Carcinogenesis is predominantly dependent on the cancer stem cells (CSCs) residing or populating within the cancer. We previously demonstrated that the novel synthetic genistein analogue, 7-difluoromethoxyl-5,4'-di-n-octylgenistein (DFOG), induced apoptotic cell death of ovarian and gastric cancer cells. The present study demonstrated that sphere‑forming cells (SFCs) derived from the ovarian cancer cell-line SKOV3 possessed ovarian cancer stem-like cell (OCSLC) properties, including self-renewal and high tumorigenicity. DFOG may be effective in inhibiting the self‑renewal capacity of SFCs derived from the SKOV3 cell line. DFOG decreased the level of phosphorylated FOXO3a protein in SKOV3 cell‑derived SFCs. The inhibition of FOXO3a expression by siRNA significantly attenuated the ability of DFOG to inhibit the self-renewal capacity of SKOV3-derived SFCs. Our results suggested that DFOG has been demonstrated to significantly inhibit the self-renewal capacity of ovarian cancer stem cells (OCSCs) through a mechanism partly dependent on the activation of FOXO3a.

  8. High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis.

    PubMed

    Yi, Huan; Ye, Jun; Yang, Xiao-Mei; Zhang, Li-Wen; Zhang, Zhi-Gang; Chen, Ya-Ping

    2015-01-01

    Ovarian cancer, the most lethal gynecological cancer, related closely to tumor stage. High-grade ovarian cancer always results in a late diagnose and high recurrence, which reduce survival within five years. Until recently, curable therapy is still under research and anti-angiogenesis proves a promising way. Tumor-derived exosomes are essential in tumor migration and metastases such as angiogenesis is enhanced by exosomes. In our study, we have made comparison between high-grade and unlikely high-grade serous ovarian cancer cells on exosomal function of endothelial cells proliferation, migration and tube formation. Exosomes derived from high-grade ovarian cancer have a profound impact on angiogenesis with comparison to unlikely high-grade ovarian cancer. Proteomic profiles revealed some potential proteins involved in exosomal function of angiogenesis such as ATF2, MTA1, ROCK1/2 and so on. Therefore, exosomes plays an influential role in angiogenesis in ovarian serous cancer and also function more effectively in high-grade ovarian cancer cells.

  9. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less

  10. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells.

    PubMed

    Taratula, Olena; Dani, Raj Kumar; Schumann, Canan; Xu, Hong; Wang, Andrew; Song, Han; Dhagat, Pallavi; Taratula, Oleh

    2013-12-15

    A multifunctional tumor-targeting delivery system was developed and evaluated for an efficient treatment of drug-resistant ovarian cancer by combinatorial therapeutic modality based on chemotherapy and mild hyperthermia. The engineered iron oxide nanoparticle (IONPs)-based nanocarrier served as an efficient delivery vehicle for doxorubicin and provided the ability to heat cancer cells remotely upon exposure to an alternating magnetic field (AMF). The nanocarrier was additionally modified with polyethylene glycol and LHRH peptide to improve its biocompatibility and ability to target tumor cells. The synthesized delivery system has an average size of 97.1 nm and a zeta potential close to zero, both parameters favorable for increased stability in biological media and decreased elimination by the immune system. The nanocarrier demonstrated faster drug release in acidic conditions that mimic the tumor environment. It was also observed that the LHRH targeted delivery system could effectively enter drug resistant ovarian cancer cells, and the fate of doxorubicin was tracked with fluorescence microscope. Mild hyperthermia (40°C) generated by IONPs under exposure to AMF synergistically increased the cytotoxicity of doxorubicin delivered by the developed nanocarrier to cancer cells. Thus, the developed IONPs-based delivery system has high potential in the effective treatment of ovarian cancer by combinatorial approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Canine ovarian neoplasms: a clinicopathologic study of 71 cases, including histology of 12 granulosa cell tumors.

    PubMed

    Patnaik, A K; Greenlee, P G

    1987-11-01

    In a retrospective study of 71 primary ovarian tumors in the dog, epithelial tumors (46%) were more common than sex cord stromal (34%) and germ cell tumors (20%). There were more adenocarcinomas (64%) than adenomas. Sex cord stromal tumors were equally divided into Sertoli-Leydig (12/24) and granulosa cell tumors (12/24). There were equal numbers (7/14) of dysgerminomas and teratomas among the germ cell tumors. Most teratomas (6/7) were malignant. Most granulosa cell tumors were solid; two were mostly cystic. Patterns included sheets of round and ovoid to spindle-shaped cells separated by thin, fibrovascular stroma; neoplastic cells formed rosettes or Call-Exner bodies. In some areas, neoplastic cells were in cords or columns and formed cyst-like structures. Four granulosa cell tumors were macrofollicular, having cysts lined with granulosa cells. Median ages of dogs with different ovarian neoplasms were similar; all were more than 10 years old, except the dogs with teratoma (mean age, 4 years). Most neoplasms were unilateral (84%), except the Sertoli-Leydig cell tumors, many of which were bilateral (36%). Size of ovarian neoplasms varied (2 cm3 to 15,000 cm3). Twenty-nine percent of neoplasms metastasized; adenocarcinomas (48%) and malignant teratomas (50%) had the highest rates, and distant metastasis was more common in malignant teratoma. Endometrial hyperplasia was in 67% of the dogs; it was most common in dogs with sex cord stromal tumors (95%). Uterine malignancy was not seen in dogs with granulosa cell tumors, although hyperplasia endometrium was in all dogs with this tumor. Cysts in the contralateral ovaries were most common in dogs with sex cord stromal tumors.

  12. Multiple blocks in the engagement of oxidative phosphorylation in putative ovarian cancer stem cells: implication for maintenance therapy with glycolysis inhibitors.

    PubMed

    Alvero, Ayesha B; Montagna, Michele K; Sumi, Natalia J; Joo, Won Duk; Graham, Emma; Mor, Gil

    2014-09-30

    Survival rate in ovarian cancer has not improved since chemotherapy was introduced a few decades ago. The dismal prognosis is mostly due to disease recurrence where majority of the patients succumb to the disease. The demonstration that tumors are comprised of subfractions of cancer cells displaying heterogeneity in stemness potential, chemoresistance, and tumor repair capacity suggests that recurrence may be driven by the chemoresistant cancer stem cells. Thus to improve patient survival, novel therapies should eradicate this cancer cell population. We show that in contrast to the more differentiated ovarian cancer cells, the putative CD44+/MyD88+ ovarian cancer stem cells express lower levels of pyruvate dehydrogenase, Cox-I, Cox-II, and Cox-IV, and higher levels of UCP2. Together, this molecular phenotype establishes a bioenergetic profile that prefers the use of glycolysis over oxidative phosphorylation to generate ATP. This bioenergetic profile is conserved in vivo and therefore a maintenance regimen of 2-deoxyglucose administered after Paclitaxel treatment is able to delay the progression of recurrent tumors and decrease tumor burden in mice. Our findings strongly suggest the value of maintenance with glycolysis inhibitors with the goal of improving survival in ovarian cancer patients.

  13. MicroRNA-136 inhibits cancer stem cell activity and enhances the anti-tumor effect of paclitaxel against chemoresistant ovarian cancer cells by targeting Notch3.

    PubMed

    Jeong, Ju-Yeon; Kang, Haeyoun; Kim, Tae Hoen; Kim, Gwangil; Heo, Jin-Hyung; Kwon, Ah-Young; Kim, Sewha; Jung, Sang-Geun; An, Hee-Jung

    2017-02-01

    To identify microRNAs (miRNAs) regulating Notch3 expression in association with paclitaxel resistance, candidate miRNAs targeting Notch3 were predicted using TargetScan. We found that miR-136 directly targets Notch3, and miR-136 was significantly downregulated in OSC tissues relative to normal control tissues, and low expression of miR-136 correlated with poor overall in ovarian cancer patients. Artificial miR-136 overexpression significantly reduced cell viability, proliferation, Cancer stem cell (CSC) spheroid formation, and angiogenesis, and increased apoptosis in paclitaxel-resistant SKpac cells compared with the effects of paclitaxel alone. miR-136 overexpression downregulated cell survival- (survivin, DNA-PK, pS6, S6) and cell cycle- (Cyclin D1, NF-κB) related proteins, and anti-apoptotic proteins (BCL2, and BCL-XL), and upregulated pro-apoptotic proteins (Bim, Bid, and Bax). Taken together, miR-136 targets the Notch3 oncogene and functions as a tumor suppressor. miR-136 overexpression resensitized paclitaxel-resistant ovarian cancer cells and reduced CSC activities, suggesting a promising new target for the treatment of chemoresistant ovarian cancers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Tumor cell-intrinsic PD-L1 promotes tumor-initiating cell generation and functions in melanoma and ovarian cancer

    PubMed Central

    Gupta, Harshita B; Clark, Curtis A; Yuan, Bin; Sareddy, Gangadhara; Pandeswara, Srilakshmi; Padron, Alvaro S; Hurez, Vincent; Conejo-Garcia, José; Vadlamudi, Ratna; Li, Rong; Curiel, Tyler J

    2016-01-01

    As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells (TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses. PMID:28798885

  15. Inhibition of IGF-1-Mediated Cellular Migration and Invasion by Migracin A in Ovarian Clear Cell Carcinoma Cells.

    PubMed

    Ukaji, Tamami; Lin, Yinzhi; Banno, Kouji; Okada, Shoshiro; Umezawa, Kazuo

    2015-01-01

    Previously we isolated migracin A from a Streptomyces culture filtrate as an inhibitor of cancer cell migration. In the present research, we found that migracin A inhibited migration and invasion of ovarian clear cell carcinoma ES-2 cells. In the course of our mechanistic study, migracin A was shown to enhance vasohibin-1 expression in an angiogenesis array. We also confirmed that it increased the mRNA expression of this protein. Moreover, overexpression of vasohibin-1 lowered the migration but not the invasion of ES-2 cells. Then, we looked for another target protein employing a motility array, and found that migracin A lowered the IGF-1 expression. Knockdown of IGF-1 by siRNA decreased the migration and invasion of ES-2 cells. Migracin A also decreased Akt phosphorylation involved in the downstream signaling. Crosstalk analysis indicated that overexpression of vasohibin-1 decreased the IGF-1 expression. On the other hand, it showed no direct anticancer activity in terms of the ES-2 growth in agar. Migracin A inhibited the migration and IGF-1 expression in not only ES-2 but also another ovarian clear cell carcinoma JHOC-5 cells. In addition, it also inhibited capillary tube formation of human umbilical vein endothelial cells. Since its cytotoxicity is very low, migracin A may be a candidate for an anti-metastasis agent not exhibiting prominent toxicity.

  16. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer.

    PubMed

    Castellvi, Josep; Garcia, Angel; Rojo, Federico; Ruiz-Marcellan, Carmen; Gil, Antonio; Baselga, Jose; Ramon y Cajal, Santiago

    2006-10-15

    Growth factor receptors and cell signaling factors play a crucial role in human carcinomas and have been studied in ovarian tumors with varying results. Cell signaling involves multiple pathways and a myriad of factors that can be mutated or amplified. Cell signaling is driven through the mammalian target of rapamycin (mTOR) and extracellular regulated kinase (ERK) pathways and by some downstream molecules, such as 4E binding protein 1 (4EBP1), eukaryotic initiation factor 4E, and p70 ribosomal protein S6 kinase (p70S6K). The objectives of this study were to analyze the real role that these pathways play in ovarian cancer, to correlate them with clinicopathologic characteristics, and to identify the factors that transmit individual proliferation signals and are associated with pathologic grade and prognosis, regardless specific oncogenic alterations upstream. One hundred twenty-nine ovarian epithelial tumors were studied, including 20 serous cystadenomas, 7 mucinous cystadenomas, 11 serous borderline tumors, 16 mucinous borderline tumors, 29 serous carcinomas, 16 endometrioid carcinomas, 15 clear cell carcinomas, and 15 mucinous carcinomas. Tissue microarrays were constructed, and immunohistochemistry for the receptors epidermal growth factor receptor (EGFR) and c-erb-B2 was performed and with phosphorylated antibodies for protein kinase B (AKT), 4EBP1, p70S6K, S6, and ERK. Among 129 ovarian neoplasms, 17.8% were positive for c-erb-B2, 9.3% were positive for EGFR, 47.3% were positive for phosphorylated AKT (p-AKT), 58.9% were positive for p-ERK, 41.1% were positive for p-4EBP1, 26.4% were positive for p70S6K, and 15.5% were positive for p-S6. Although EGFR, p-AKT, and p-ERK expression did not differ between benign, borderline, or malignant tumors, c-erb-B2, p-4EBP1, p-p70S6K, and p-S6 were expressed significantly more often in malignant tumors. Only p-4EBP1 expression demonstrated prognostic significance (P = .005), and only surgical stage and p-4EBP1 expression

  17. Comparison of submerged and unsubmerged printing of ovarian cancer cells.

    PubMed

    Davidoff, Sherry N; Au, David; Smith, Samuel; Brooks, Amanda E; Brooks, Benjamin D

    2015-01-01

    A high-throughput cell based assay would greatly aid in the development and screening of ovarian cancer drug candidates. Previously, a three-dimensional microfluidic printer that is not only capable of controlling the location of cell deposition, but also of maintaining a liquid, nutrient rich environment to preserve cellular phenotype has been developed (Wasatch Microfluidics). In this study, we investigated the impact (i.e., viability, density, and phenotype) of depositing cells on a surface submerged in cell culture media. It was determined that submersion of the microfluidic print head in cell media did not alter the cell density, viability, or phenotype.. This article describes an in depth study detailing the impact of one of the fundamental components of a 3D microfluidic cell printer designed to mimic the in vivo cell environment. Development of such a tool holds promise as a high-throughput drug-screening platform for new cancer therapeutics.

  18. Treatment Option Overview (Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer)

    MedlinePlus

    ... of Ovarian Germ Cell Tumors Ovarian Low Malignant Potential Tumors Symptoms, Tests, Prognosis, & Stages Treatment of Ovarian Low Malignant Potential Tumors Prevention of Ovarian, Fallopian Tube, & Primary Peritoneal ...

  19. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients.

    PubMed

    Pochechueva, Tatiana; Alam, Shahidul; Schötzau, Andreas; Chinarev, Alexander; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2017-02-10

    Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P < 0.05). A combination with the clinically used tumour marker CA125 increased the diagnostic performance (AUC 0.8711). We next compared suspension array with standard flow cytometry in plasma samples and found that the level of anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.

  20. Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids.

    PubMed

    Carduner, Ludovic; Picot, Cédric R; Leroy-Dudal, Johanne; Blay, Lyvia; Kellouche, Sabrina; Carreiras, Franck

    2014-01-15

    Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation. The above data indicate that ovarian cancer cells can resist anoikis in the spheroid state by arrest in the cell cycle or through activation of αv-integrin-ERK-mediated survival signals. Such signaling might result in the selection of resistant cells within disseminating spheroids, favoring further relapse in ovarian cancers. © 2013 Elsevier Inc. All rights reserved.

  1. The Anti-Mullerian hormone and ovarian cancer.

    PubMed

    La Marca, Antonio; Volpe, Annibale

    2007-01-01

    The Anti-Mullerian hormone (AMH), which is produced by fetal Sertoli cells, is responsible for regression of Mullerian ducts, the anlagen for uterus and Fallopian tubes, during male sex differentiation. Ovarian granulosa cells also secrete AMH from late in fetal life. The patterns of expression of AMH and its type II receptor in the post-natal ovary indicate that AMH may play an important role in ovarian folliculogenesis. Recent advances in the physiological role of AMH has stimulated interest in the significance of AMH as a diagnostic marker and therapeutic agent for ovarian cancer. Currently, AMH has been shown to be a circulating marker specifically for granulosa cell tumour (GCT). Its diagnostic performance seems to be very good, with a sensitivity ranging between 76 and 93%. In patients treated for GCT, AMH may be used post-operatively as marker for the efficacy of surgery and for disease recurrence. Based on the physiological inhibitory role of AMH in the Mullerian ducts, it has been proposed that AMH may inhibit epithelial ovarian cancer cell both in vitro and in vivo. These observations will be the basis for future research aiming to investigate the possible clinical role of AMH as neo-adjuvant, or most probably adjuvant, therapy for ovarian cancer.

  2. Follicle Depletion Provides a Permissive Environment for Ovarian Carcinogenesis

    PubMed Central

    Wang, Ying; Cai, Kathy Qi; Smith, Elizabeth R.; Yeasky, Toni M.; Moore, Robert; Ganjei-Azar, Parvin; Klein-Szanto, Andres J.; Godwin, Andrew K.; Hamilton, Thomas C.

    2016-01-01

    We modeled the etiology of postmenopausal biology on ovarian cancer risk using germ cell-deficient white-spotting variant (Wv) mice, incorporating oncogenic mutations. Ovarian cancer incidence is highest in peri- and postmenopausal women, and epidemiological studies have established the impact of reproductive factors on ovarian cancer risk. Menopause as a result of ovarian follicle depletion is thought to contribute to higher cancer risk. As a consequence of follicle depletion, female Wv mice develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis frequently found in postmenopausal human ovaries. Lineage tracing using MISR2-Cre indicated that the tubular adenomas that developed in Wv mice were largely derived from the MISR2 lineage, which marked only a fraction of ovarian surface and oviduct epithelial cells in wild-type tissues. Deletion of p27, either heterozygous or homozygous, was able to convert the benign tubular adenomas into more proliferative tumors. Restricted deletion of p53 in Wv/Wv mice by either intrabursal injection of adenoviral Cre or inclusion of the MISR2-Cre transgene also resulted in augmented tumor growth. This finding suggests that follicle depletion provides a permissive ovarian environment for oncogenic transformation of epithelial cells, presenting a mechanism for the increased ovarian cancer risk in postmenopausal women. PMID:27354067

  3. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer.

    PubMed

    Adib, Samane; Valojerdi, Mojtaba Rezazadeh

    2017-10-01

    The ability of ovarian theca stem cells to differentiate into oocyte and theca cells may lead to a major advancement in reproductive biology and infertility treatments. However, there is little information about function, growth and differentiation potential of these immature cells. In this study adult sheep theca stem cells (TSCs) characteristics, and differentiation potential into osteocyte-like cells (OSLCs), adipocyte-like cells (ALCs), theca progenitor-like cells (TPCs), and oocyte-like cells (OLCs) were investigated. TSCs were isolated, cultured, and compared with mesenchymal stem cells (MSCs), fibroblast cells (FCs), and pluripotent embryonic ovarian cells (EO). Adherent TSCs were morphologically similar to FCs. Cell cycle analysis showed high proliferation capacity of TSCs. TSCs were positive for the mesenchymal cells surface markers, and also expressed POU5F1. Differentiation potential of TSCs into OSLCs and ALCs were confirmed by alizarin red and oil red staining respectively. OSTEOCALCIN and COL1 were expressed in OSLCs. ALCs were positive for PPARα and LPL. TPCs expressed theca specific genes (GLI2, GLI3, PTCH1, CYP17A1, 3β-HSD and LHR) and secreted testosterone, dehydroepiandrostenedione (DHEA), androstenedione, progesterone and estradiol. Lipid droplets in these steroid cells were viewed by oil red staining. OLCs expressed oocyte-specific marker genes including, ZP3, ZP2, GDF9, SYCP3, PRDM1, STELLA, FRAGILIS, DAZL, as well as POU5F1, and showed separated sphere structure. Our results indicated that TSCs derived from ovarian follicles contain MSCs and pluripotent stem cells (PSCs) that can be differentiated into lineages of mesenchymal origin and are capable of differentiation into TPCs and OLCs under in vitro conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Inhibition of nuclear factor-kappa B enhances the tumor growth of ovarian cancer cell line derived from a low-grade papillary serous carcinoma in p53-independent pathway.

    PubMed

    Xiao, Xue; Yang, Gong; Bai, Peng; Gui, Shunping; Nyuyen, Tri M Bui; Mercado-Uribe, Imelda; Yang, Mei; Zou, Juan; Li, Qintong; Xiao, Jianguo; Chang, Bin; Liu, Guangzhi; Wang, He; Liu, Jinsong

    2016-08-02

    NF-kB can function as an oncogene or tumor suppressor depending on cancer types. The role of NF-kB in low-grade serous ovarian cancer, however, has never been tested. We sought to elucidate the function of NF-kB in the low-grade serous ovarian cancer. The ovarian cancer cell line, HOC-7, derived from a low-grade papillary serous carcinoma. Introduction of a dominant negative mutant, IkBαM, which resulted in decrease of NF-kB function in ovarian cancer cell lines. The transcription ability, tumorigenesis, cell proliferation and apoptosis were observed in derivative cell lines in comparison with parental cells. Western blot analysis indicated increased expression of the anti-apoptotic proteins Bcl-xL and reduced expression of the pro-apoptotic proteins Bax, Bad, and Bid in HOC-7/IĸBαM cell. Further investigations validate this conclusion in KRAS wildtype cell line SKOV3. Interesting, NF-kB can exert its pro-apoptotic effect by activating mitogen-activated protein kinase (MAPK) phosphorylation in SKOV3 ovarian cancer cell, whereas opposite changes detected in p-MEK in HOC-7 ovarian cancer cell, the same as some chemoresistant ovarian cancer cell lines. In vivo animal assay performed on BALB/athymic mice showed that injection of HOC-7 induced subcutaneous tumor growth, which was completely regressed within 7 weeks. In comparison, HOC-7/IĸBαM cells caused sustained tumor growth and abrogated tumor regression, suggesting that knock-down of NF-kB by IĸBαM promoted sustained tumor growth and delayed tumor regression in HOC-7 cells. Our results demonstrated that NF-kB may function as a tumor suppressor by facilitating regression of low grade ovarian serous carcinoma through activating pro-apoptotic pathways.

  5. Very small embryonic-like stem cells: implications in reproductive biology.

    PubMed

    Bhartiya, Deepa; Unni, Sreepoorna; Parte, Seema; Anand, Sandhya

    2013-01-01

    The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.

  6. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug.

    PubMed

    Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram

    2014-11-01

    Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Notch3-specific inhibition using siRNA knockdown or GSI sensitizes paclitaxel-resistant ovarian cancer cells.

    PubMed

    Kang, Haeyoun; Jeong, Ju-Yeon; Song, Ji-Ye; Kim, Tae Heon; Kim, Gwangil; Huh, Jin Hyung; Kwon, Ah-Young; Jung, Sang Geun; An, Hee Jung

    2016-07-01

    Notch signaling plays an important role in ovarian cancer chemoresistance, which is responsible for recurrence. Gamma-secretase inhibitor (GSI) is a broad-spectrum Notch inhibitor, but it has serious side effects. The efficacy of Notch3-specific inhibition in paclitaxel-resistant ovarian cancers was assessed in this study, which has not yet been evaluated relative to GSI. To analyze the effect of Notch3-specific inhibition on paclitaxel-resistant ovarian cancers, we compared cell viability, apoptosis, cell migration, angiogenesis, cell cycle, and spheroid formation after treatment with either Notch3 siRNA or GSI in paclitaxel-resistant SKpac cells and parental SKOV3 cells. Expression levels of survival, cell cycle, and apoptosis-related proteins were measured and compared between groups. Notch3 was significantly overexpressed in chemoresistant cancer tissues and cell lines relative to chemosensitive group. In paclitaxel-resistant cancer cells, Notch inhibition significantly reduced viability, migration, and angiogenesis and increased apoptosis, thereby boosting sensitivity to paclitaxel. Spheroid formation was also significantly reduced. Both Notch3 siRNA-treated cells and GSI-treated cells arrested in the G2/M phase of the cell cycle. Proteins of cell survival, cyclin D1 and cyclin D3 were reduced, whereas p21 and p27 were elevated. Both GSI and Notch3 siRNA treatment reduced expression of anti-apoptotic proteins (BCL-W, BCL2, and BCL-XL) and increased expression of pro-apoptotic proteins (Bad, Bak, Bim, Bid, and Bax). These results indicate that Notch3-specific inhibition sensitizes paclitaxel-resistant cancer cells to paclitaxel treatment, with an efficacy comparable to that of GSI. This approach would be likely to avoid the side effects of broad-spectrum GSI treatment. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Role of chemokine network in the development and progression of ovarian cancer: a potential novel pharmacological target.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development.

  9. Role of Chemokine Network in the Development and Progression of Ovarian Cancer: A Potential Novel Pharmacological Target

    PubMed Central

    Barbieri, Federica; Bajetto, Adriana; Florio, Tullio

    2010-01-01

    Ovarian cancer is the most common type of gynecologic malignancy. Despite advances in surgery and chemotherapy, the survival rate is still low since most ovarian cancers relapse and become drug-resistant. Chemokines are small chemoattractant peptides mainly involved in the immune responses. More recently, chemokines were also demonstrated to regulate extra-immunological functions. It was shown that the chemokine network plays crucial functions in the tumorigenesis in several tissues. In particular the imbalanced or aberrant expression of CXCL12 and its receptor CXCR4 strongly affects cancer cell proliferation, recruitment of immunosuppressive cells, neovascularization, and metastasization. In the last years, several molecules able to target CXCR4 or CXCL12 have been developed to interfere with tumor growth, including pharmacological inhibitors, antagonists, and specific antibodies. This chemokine ligand/receptor pair was also proposed to represent an innovative therapeutic target for the treatment of ovarian cancer. Thus, a thorough understanding of ovarian cancer biology, and how chemokines may control these different biological activities might lead to the development of more effective therapies. This paper will focus on the current biology of CXCL12/CXCR4 axis in the context of understanding their potential role in ovarian cancer development. PMID:20049170

  10. Paradigm Shift in the Management Strategy for Epithelial Ovarian Cancer.

    PubMed

    Fujiwara, Keiichi; McAlpine, Jessica N; Lheureux, Stephanie; Matsumura, Noriomi; Oza, Amit M

    2016-01-01

    The hypothesis on the pathogenesis of epithelial ovarian cancer continues to evolve. Although epithelial ovarian cancer had been assumed to arise from the coelomic epithelium of the ovarian surface, it is now becoming clearer that the majority of serous carcinomas arise from epithelium of the distal fallopian tube, whereas clear cell and endometrioid cancers arise from endometriosis. Molecular and genomic characteristics of epithelial ovarian cancer have been extensively investigated. Our understanding of pathogenesis of the various histologic types of ovarian cancer have begun to inform changes to the strategies for management of epithelial ovarian cancer, which represent a paradigm shift not only for treatment but also for prevention, which previously had not been considered achievable. In this article, we will discuss novel attempts at the prevention of high-grade serous ovarian cancer and treatment strategies for two distinct entities in epithelial ovarian cancer: low-grade serous and clear cell ovarian carcinomas, which are relatively rare and resistant to conventional chemotherapy.

  11. [Effects of dihydroartiminisin on the adhesion, migration, and invasion of epithelial ovarian cancer cells].

    PubMed

    Tan, Xian-Jie; Lang, Jing-He; Plouet, Jean; Wu, Ming; Shen, Keng

    2008-10-14

    To investigate the effects of dihydroartiminisin (DHA) on the adhesion, migration, and invasion ovarian cancer cells. Human ovarian cancer cells of the lines SKOV3 and OVCAR3 were cultured. Suspensions of SKOV3 and OVCAR3 cells were treated with DHA of the concentrations of 0.5, 2.5, 12.5, and 62.5 micromol/L respectively, and then inoculated on the plate coated with Matrigel. MTT method was used to -determine the adhesion rate. Transwell membrane chamber model was used to evaluate the effect of DHA on the migration and invasion of the SKOV3 and OVCAR3 cells. Western blotting and reverse transcriptase polymerase chain reaction were used to detect the effect of DHA on the phosphorylation of focal adhesion kinase (FAK) and on the effect of expression of metal matrix proteinases (MMPs) and their tissue inhibitors (TIMPs) respectively. (1) Compared to the cells without DHA treatment, the cell adhesion ability levels of the SKOV3 and OVCAR3 cells treated with 12.5 micromol/L DHA decreased by 76.1% and 57.9% respectively (P < 0.05), while their migration ability levels decreased by 59.3% and 69.7% respectively (P < 0.05). (2) Both SKOV3 and OVCAR3 showed weak invasion ability, and DHA only showed a slight inhibitory effect on the cell invasion of these 2 lines (both P > 0.05). (3) Compared to the cells without DHA treatment, the phosphorylation level of FAK of the SKOV3 and OVCAR3 cells treated with 12.5 micromol/L DHA decreased by 42.9% and 44.8% respectively (both P < 0.05). (4) RT-PCR showed mRNA expression of MMP2, TIMP1, and TIMP2, but not mRNA expression of MMP9 in both SKOV3 and OVCAR3 cells. The mRNA expression levels of the SKOV3 and OVCAR3 cells treated with 12.5 micromol/L DHA increased by 1.5 and 2.6 times respectively (both P < 0.05). DHA has inhibitory effects on the adhesion and migration of epithelial ovarian cancer cells, which may be related to its down-regulation of the phosphorylation of FAK in these cells.

  12. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer

    PubMed Central

    Hampras, Shalaka S.; Sucheston-Campbell, Lara E.; Cannioto, Rikki; Chang-Claude, Jenny; Modugno, Francesmary; Dörk, Thilo; Hillemanns, Peter; Preus, Leah; Knutson, Keith L.; Wallace, Paul K.; Hong, Chi-Chen; Friel, Grace; Davis, Warren; Nesline, Mary; Pearce, Celeste L.; Kelemen, Linda E.; Goodman, Marc T.; Bandera, Elisa V.; Terry, Kathryn L.; Schoof, Nils; Eng, Kevin H.; Clay, Alyssa; Singh, Prashant K.; Joseph, Janine M.; Aben, Katja K.H.; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bean, Yukie; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Cook, Linda S.; Cramer, Daniel W.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; du Bois, Andreas; Dürst, Matthias; Easton, Doug; Eccles, Diana; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A.T.; Hogdall, Claus; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kellar, Melissa; Kelley, Joseph L.; Kiemeney, Lambertus A.; Klapdor, Rüdiger; Kolomeyevskaya, Nonna; Krakstad, Camilla; Kjaer, Susanne K.; Kruszka, Bridget; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashikant; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lissowska, Jolanta; Liu, Song; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F.A.G.; Matsuo, Keitaro; McGuire, Valeria; McLaughlin, John R.; McNeish, Ian; Menon, Usha; Moes-Sosnowska, Joanna; Narod, Steven A.; Nedergaard, Lotte; Nevanlinna, Heli; Nickels, Stefan; Olson, Sara H.; Orlow, Irene; Weber, Rachel Palmieri; Paul, James; Pejovic, Tanja; Pelttari, Liisa M.; Perkins, Barbara; Permuth-Wey, Jenny; Pike, Malcolm C.; Plisiecka-Halasa, Joanna; Poole, Elizabeth M.; Risch, Harvey A.; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schmitt, Kristina; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Tangen, Ingvild L.; Teo, Soo-Hwang; Thompson, Pamela J.; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S.; Tyrer, Jonathan; van Altena, Anna M.; Vergote, Ignace; Vierkant, Robert A.; Walsh, Christine; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Gayther, Simon A.; Ramus, Susan J.; Sellers, Thomas A.; Schildkraut, Joellen M.; Phelan, Catherine M.; Berchuck, Andrew; Chenevix-Trench, Georgia; Cunningham, Julie M.; Pharoah, Paul P.; Ness, Roberta B.; Odunsi, Kunle; Goode, Ellen L.; Moysich, Kirsten B.

    2016-01-01

    Background Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. Methods In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. Results The most significant global associations for all genes in the pathway were seen in endometrioid (p = 0.082) and clear cell (p = 0.083), with the most significant gene level association seen with (p = 0.001) and clear cell EOC. Gene associations with histotypes at< 0.05 included:(p = 0.005 and = 0.008, serous and high-grade serous, respectively), (p = 0.035, endometrioid and mucinous), (p = 0.03, mucinous), (p = 0.022, clear cell), (p = 0.021 endometrioid) and (p = 0.017 and = 0.025, endometrioid and mucinous, respectively). Conclusions Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients. PMID:27533245

  13. Overexpression of SnoN/SkiL, amplified at the 3q26.2 locus, in ovarian cancers: A role in ovarian pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanjundan, Meera; Cheng, Kwai Wa; Zhang, Fan

    2008-07-18

    High-resolution array comparative genomic hybridization of 235 serous epithelial ovarian cancers demonstrated a regional increase at 3q26.2 encompassing SnoN/SkiL, a coregulator of SMAD/TGF{beta} signaling. SnoN RNA transcripts were elevated in {approx}80% of advanced stage serous epithelial ovarian cancers. In both immortalized normal (TIOSE) and ovarian carcinoma cell lines (OVCA), SnoN RNA levels were increased by TGF{beta} stimulation and altered by LY294002 and JNK II inhibitor treatment suggesting that the PI3K and JNK signaling pathways may regulate TGF{beta}-induced increases in SnoN RNA. In TIOSE, SnoN protein levels were reduced 15min post TGF{beta}-stimulation, likely by proteosome-mediated degradation. In contrast, in OVCA, SnoNmore » levels were elevated 3h post-stimulation potentially as a result of inhibition of the proteosome. To elucidate the role of SnoN in ovarian tumorigenesis, we explored the effects of both increasing and decreasing SnoN levels. In both TIOSE and OVCA, SnoN siRNA decreased cell growth between 20 and 50% concurrent with increased p21 levels. In TIOSE, transient expression of SnoN repressed TGF{beta} induction of PAI-1 promoters with little effect on the p21 promoter or resultant cell growth. In contrast to the effects of transient expression, stable expression of SnoN in TIOSE led to growth arrest through induction of senescence. Collectively, these results implicate SnoN levels in multiple roles during ovarian carcinogenesis: promoting cellular proliferation in ovarian cancer cells and as a positive mediator of cell cycle arrest and senescence in non-transformed ovarian epithelial cells.« less

  14. Basigin-2 is the predominant basigin isoform that promotes tumor cell migration and invasion and correlates with poor prognosis in epithelial ovarian cancer

    PubMed Central

    2013-01-01

    Background Basigin, which has four isoforms, has been demonstrated to be involved in progression of various human cancers. The aim of this study was to examine the prognostic value of basigin-2 protein expression in epithelial ovarian cancer. Furthermore, the function of basigin-2 in ovarian cancer was further investigated in cell culture models. Methods Immunohistochemistry staining was performed to investigate basigin-2 expression in a total of 146 ovarian tissue specimens. Kaplan Meier analysis and Cox proportional hazards model were applied to assess the relationship between basigin-2 and progression-free survival (PFS) and overall survival (OS). Real-time PCR, RT-PCR and western blot were used to explore basigin-2, basigin-3 and basigin-4 expression in ovarian cancer cell lines and tissues. To evaluate possible contributions of basigin-2 to MMP secretion and cell migration and invasion, the overexpression vectors pcDNA3.1-basigin-2 and basigin-2 siRNA were transfected into HO-8910 and HO-8910 PM cells respectively. Results High basigin-2 expression was associated with lymph-vascular space involvement, lymph node metastasis and poor prognosis of epithelial ovarian cancer. Multivariate analyses indicated that basigin-2 positivity was an independent prognostic factor for PFS (P = 0.006) and OS (P = 0.019), respectively. Overexpression of basigin-2 increased the secretion of MMP-2/9 and cancer cell migration and invasion of HO-8910 cells, whereas knockdown of basigin-2 reduced active MMP-2/9 production, migration and invasion of HO-8910 PM cells. Conclusions The expression of basigin-2 might be an independent prognostic marker and basigin-2 inhibition would be a potential strategy for epithelial ovarian cancer patients, especially in inhibiting and preventing cancer cell invasion and metastasis. PMID:23566400

  15. Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium.

    PubMed

    Wentzensen, Nicolas; Poole, Elizabeth M; Trabert, Britton; White, Emily; Arslan, Alan A; Patel, Alpa V; Setiawan, V Wendy; Visvanathan, Kala; Weiderpass, Elisabete; Adami, Hans-Olov; Black, Amanda; Bernstein, Leslie; Brinton, Louise A; Buring, Julie; Butler, Lesley M; Chamosa, Saioa; Clendenen, Tess V; Dossus, Laure; Fortner, Renee; Gapstur, Susan M; Gaudet, Mia M; Gram, Inger T; Hartge, Patricia; Hoffman-Bolton, Judith; Idahl, Annika; Jones, Michael; Kaaks, Rudolf; Kirsh, Victoria; Koh, Woon-Puay; Lacey, James V; Lee, I-Min; Lundin, Eva; Merritt, Melissa A; Onland-Moret, N Charlotte; Peters, Ulrike; Poynter, Jenny N; Rinaldi, Sabina; Robien, Kim; Rohan, Thomas; Sandler, Dale P; Schairer, Catherine; Schouten, Leo J; Sjöholm, Louise K; Sieri, Sabina; Swerdlow, Anthony; Tjonneland, Anna; Travis, Ruth; Trichopoulou, Antonia; van den Brandt, Piet A; Wilkens, Lynne; Wolk, Alicja; Yang, Hannah P; Zeleniuch-Jacquotte, Anne; Tworoger, Shelley S

    2016-08-20

    An understanding of the etiologic heterogeneity of ovarian cancer is important for improving prevention, early detection, and therapeutic approaches. We evaluated 14 hormonal, reproductive, and lifestyle factors by histologic subtype in the Ovarian Cancer Cohort Consortium (OC3). Among 1.3 million women from 21 studies, 5,584 invasive epithelial ovarian cancers were identified (3,378 serous, 606 endometrioid, 331 mucinous, 269 clear cell, 1,000 other). By using competing-risks Cox proportional hazards regression stratified by study and birth year and adjusted for age, parity, and oral contraceptive use, we assessed associations for all invasive cancers by histology. Heterogeneity was evaluated by likelihood ratio test. Most risk factors exhibited significant heterogeneity by histology. Higher parity was most strongly associated with endometrioid (relative risk [RR] per birth, 0.78; 95% CI, 0.74 to 0.83) and clear cell (RR, 0.68; 95% CI, 0.61 to 0.76) carcinomas (P value for heterogeneity [P-het] < .001). Similarly, age at menopause, endometriosis, and tubal ligation were only associated with endometrioid and clear cell tumors (P-het ≤ .01). Family history of breast cancer (P-het = .008) had modest heterogeneity. Smoking was associated with an increased risk of mucinous (RR per 20 pack-years, 1.26; 95% CI, 1.08 to 1.46) but a decreased risk of clear cell (RR, 0.72; 95% CI, 0.55 to 0.94) tumors (P-het = .004). Unsupervised clustering by risk factors separated endometrioid, clear cell, and low-grade serous carcinomas from high-grade serous and mucinous carcinomas. The heterogeneous associations of risk factors with ovarian cancer subtypes emphasize the importance of conducting etiologic studies by ovarian cancer subtypes. Most established risk factors were more strongly associated with nonserous carcinomas, which demonstrate challenges for risk prediction of serous cancers, the most fatal subtype. © 2016 by American Society of Clinical Oncology.

  16. Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium

    PubMed Central

    Poole, Elizabeth M.; Trabert, Britton; White, Emily; Arslan, Alan A.; Patel, Alpa V.; Setiawan, V. Wendy; Visvanathan, Kala; Weiderpass, Elisabete; Adami, Hans-Olov; Black, Amanda; Bernstein, Leslie; Brinton, Louise A.; Buring, Julie; Butler, Lesley M.; Chamosa, Saioa; Clendenen, Tess V.; Dossus, Laure; Fortner, Renee; Gapstur, Susan M.; Gaudet, Mia M.; Gram, Inger T.; Hartge, Patricia; Hoffman-Bolton, Judith; Idahl, Annika; Jones, Michael; Kaaks, Rudolf; Kirsh, Victoria; Koh, Woon-Puay; Lacey, James V.; Lee, I-Min; Lundin, Eva; Merritt, Melissa A.; Onland-Moret, N. Charlotte; Peters, Ulrike; Poynter, Jenny N.; Rinaldi, Sabina; Robien, Kim; Rohan, Thomas; Sandler, Dale P.; Schairer, Catherine; Schouten, Leo J.; Sjöholm, Louise K.; Sieri, Sabina; Swerdlow, Anthony; Tjonneland, Anna; Travis, Ruth; Trichopoulou, Antonia; van den Brandt, Piet A.; Wilkens, Lynne; Wolk, Alicja; Yang, Hannah P.; Zeleniuch-Jacquotte, Anne; Tworoger, Shelley S.

    2016-01-01

    Purpose An understanding of the etiologic heterogeneity of ovarian cancer is important for improving prevention, early detection, and therapeutic approaches. We evaluated 14 hormonal, reproductive, and lifestyle factors by histologic subtype in the Ovarian Cancer Cohort Consortium (OC3). Patients and Methods Among 1.3 million women from 21 studies, 5,584 invasive epithelial ovarian cancers were identified (3,378 serous, 606 endometrioid, 331 mucinous, 269 clear cell, 1,000 other). By using competing-risks Cox proportional hazards regression stratified by study and birth year and adjusted for age, parity, and oral contraceptive use, we assessed associations for all invasive cancers by histology. Heterogeneity was evaluated by likelihood ratio test. Results Most risk factors exhibited significant heterogeneity by histology. Higher parity was most strongly associated with endometrioid (relative risk [RR] per birth, 0.78; 95% CI, 0.74 to 0.83) and clear cell (RR, 0.68; 95% CI, 0.61 to 0.76) carcinomas (P value for heterogeneity [P-het] < .001). Similarly, age at menopause, endometriosis, and tubal ligation were only associated with endometrioid and clear cell tumors (P-het ≤ .01). Family history of breast cancer (P-het = .008) had modest heterogeneity. Smoking was associated with an increased risk of mucinous (RR per 20 pack-years, 1.26; 95% CI, 1.08 to 1.46) but a decreased risk of clear cell (RR, 0.72; 95% CI, 0.55 to 0.94) tumors (P-het = .004). Unsupervised clustering by risk factors separated endometrioid, clear cell, and low-grade serous carcinomas from high-grade serous and mucinous carcinomas. Conclusion The heterogeneous associations of risk factors with ovarian cancer subtypes emphasize the importance of conducting etiologic studies by ovarian cancer subtypes. Most established risk factors were more strongly associated with nonserous carcinomas, which demonstrate challenges for risk prediction of serous cancers, the most fatal subtype. PMID:27325851

  17. Curcumin Induces G2/M Arrest and Apoptosis in Cisplatin-Resistant Human Ovarian Cancer Cells by Modulating Akt and p38 MAPK

    PubMed Central

    Weir, Nathan M.; Selvendiran, Karuppaiyah; Kutala, Vijay Kumar; Tong, Liyue; Vishwanath, Shilpa; Rajaram, Murugesan; Tridandapani, Susheela; Anant, Shrikant; Kuppusamy, Periannan

    2007-01-01

    Curcumin, a major active component of turmeric, is known to induce apoptosis in several types of cancer cells, but little is known about its activity in chemoresistant cells. Hence, the aim of the present study was to investigate the anticancer properties of curcumin in cisplatin-resistant human ovarian cancer cells in vitro. The results indicated that curcumin inhibited the proliferation of both cisplatin-resistant (CR) and sensitive (CS) human ovarian cancer cells almost equally. Enhanced superoxide generation was observed in both CR and CS cells treated with curcumin. Curcumin induced G2/M phase cell-cycle arrest in CR cells by enhancing the p53 phosphorylation and apoptosis through the activation of caspase-3 followed by PARP degradation. Curcumin also inhibited the phosphorylation of Akt while the phosphorylation of p38 MAPK was enhanced. In summary, our results showed that curcumin inhibits the proliferation of cisplatin-resistant ovarian cancer cells through the induction of superoxide generation, G2/M arrest, and apoptosis. PMID:17218783

  18. Transfer of chromosome 3 fragments suppresses tumorigenicity of an ovarian cancer cell line monoallelic for chromosome 3p.

    PubMed

    Cody, N A L; Ouellet, V; Manderson, E N; Quinn, M C J; Filali-Mouhim, A; Tellis, P; Zietarska, M; Provencher, D M; Mes-Masson, A-M; Chevrette, M; Tonin, P N

    2007-01-25

    Multiple chromosome 3p tumor suppressor genes (TSG) have been proposed in the pathogenesis of ovarian cancer based on complex patterns of 3p loss. To attain functional evidence in support of TSGs and identify candidate regions, we applied a chromosome transfer method involving cell fusions of the tumorigenic OV90 human ovarian cancer cell line, monoallelic for 3p and an irradiated mouse cell line containing a human chromosome 3 in order to derive OV90 hybrids containing normal 3p fragments. The resulting hybrids showed complete or incomplete suppression of tumorigenicity in nude mouse xenograft assays, and varied in their ability to form colonies in soft agarose and three-dimensional spheroids in a manner consistent with alteration of their in vivo tumorigenic phenotypes. Expression microarray analysis identified a set of common differentially expressed genes, such as SPARC, DAB2 and VEGF, some of which have been shown implicated in ovarian cancer. Genotyping assays revealed that they harbored normal 3p fragments, some of which overlapped candidate TSG regions (3p25-p26, 3p24 and 3p14-pcen) identified previously in loss of heterozygosity analyses of ovarian cancers. However, only the 3p12-pcen region was acquired in common by all hybrids where expression microarray analysis identified differentially expressed genes. The correlation of 3p12-pcen transfer and tumor suppression with a concerted re-programming of the cellular transcriptome suggest that the putative TSG may have affected key underlying events in ovarian cancer.

  19. Inhibition of the Nuclear Export Receptor XPO1 as a Therapeutic Target for Platinum-Resistant Ovarian Cancer.

    PubMed

    Chen, Ying; Camacho, Sandra Catalina; Silvers, Thomas R; Razak, Albiruni R A; Gabrail, Nashat Y; Gerecitano, John F; Kalir, Eva; Pereira, Elena; Evans, Brad R; Ramus, Susan J; Huang, Fei; Priedigkeit, Nolan; Rodriguez, Estefania; Donovan, Michael; Khan, Faisal; Kalir, Tamara; Sebra, Robert; Uzilov, Andrew; Chen, Rong; Sinha, Rileen; Halpert, Richard; Billaud, Jean-Noel; Shacham, Sharon; McCauley, Dilara; Landesman, Yosef; Rashal, Tami; Kauffman, Michael; Mirza, Mansoor R; Mau-Sørensen, Morten; Dottino, Peter; Martignetti, John A

    2017-03-15

    Purpose: The high fatality-to-case ratio of ovarian cancer is directly related to platinum resistance. Exportin-1 (XPO1) is a nuclear exporter that mediates nuclear export of multiple tumor suppressors. We investigated possible clinicopathologic correlations of XPO1 expression levels and evaluated the efficacy of XPO1 inhibition as a therapeutic strategy in platinum-sensitive and -resistant ovarian cancer. Experimental Design: XPO1 expression levels were analyzed to define clinicopathologic correlates using both TCGA/GEO datasets and tissue microarrays (TMA). The effect of XPO1 inhibition, using the small-molecule inhibitors KPT-185 and KPT-330 (selinexor) alone or in combination with a platinum agent on cell viability, apoptosis, and the transcriptome was tested in immortalized and patient-derived ovarian cancer cell lines (PDCL) and platinum-resistant mice (PDX). Seven patients with late-stage, recurrent, and heavily pretreated ovarian cancer were treated with an oral XPO1 inhibitor. Results: XPO1 RNA overexpression and protein nuclear localization were correlated with decreased survival and platinum resistance in ovarian cancer. Targeted XPO1 inhibition decreased cell viability and synergistically restored platinum sensitivity in both immortalized ovarian cancer cells and PDCL. The XPO1 inhibitor-mediated apoptosis occurred through both p53-dependent and p53-independent signaling pathways. Selinexor treatment, alone and in combination with platinum, markedly decreased tumor growth and prolonged survival in platinum-resistant PDX and mice. In selinexor-treated patients, tumor growth was halted in 3 of 5 patients, including one with a partial response, and was safely tolerated by all. Conclusions: Taken together, these results provide evidence that XPO1 inhibition represents a new therapeutic strategy for overcoming platinum resistance in women with ovarian cancer. Clin Cancer Res; 23(6); 1552-63. ©2016 AACR . ©2016 American Association for Cancer Research.

  20. Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones.

    PubMed

    Cree, Lynsey M; Hammond, Elizabeth R; Shelling, Andrew N; Berg, Martin C; Peek, John C; Green, Mark P

    2015-06-01

    Does maternal ageing and ovarian stimulation alter mitochondrial DNA (mtDNA) copy number and gene expression of oocytes and cumulus cells from a novel bovine model for human IVF? Oocytes collected from females with identical nuclear genetics show decreased mtDNA copy number and increased expression of an endoplasmic reticulum (ER) stress gene with repect to ovarian stimulation, whilst differences in the expression of genes involved in mitochondrial function, antioxidant protection and apoptosis were evident in relation to maternal ageing and the degree of ovarian stimulation in cumulus cells. Oocyte quality declines with advancing maternal age; however, the underlying mechanism, as well as the effects of ovarian stimulation are poorly understood. Human studies investigating these effects are often limited by differences in age and ovarian stimulation regimens within a patient cohort, as well as genetic and environmental variability. A novel bovine cross-sectional maternal age model for human IVF was undertaken. Follicles were aspirated from young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian clones following multiple unstimulated, mild and standard ovarian stimulation cycles. These bovine cloned females were generated by the process of somatic cell nuclear transfer (SCNT) from the same founder and represent a homogeneous population with reduced genetic and environmental variability. Maternal age and ovarian stimulation effects were investigated in relation to mtDNA copy number, and the expression of 19 genes involved in mitochondrial function, antioxidant protection, oocyte-cumulus cell signalling and follicle development in both oocytes and cumulus cells. Young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian bovine clones were maintained as one herd. Stimulation cycles were based on the long GnRH agonist down-regulation regimen used in human fertility clinics. Follicle growth

  1. Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.

    PubMed

    Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M

    2017-11-01

    Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.

  2. Papillary Thyroid Microcarcinoma Arising Within a Mature Ovarian Teratoma: Case Report and Review of the Literature.

    PubMed

    Pineyro, Maria M; Pereda, Jimena; Schou, Pamela; de Los Santos, Karina; de la Peña, Soledad; Caserta, Benedicta; Pisabarro, Raul

    2017-01-01

    Mature cystic teratoma is the most common kind of ovarian germ cell tumor. Malignant transformation is uncommon, with thyroid cancer rarely found. Papillary thyroid microcarcinoma has rarely been described as associated with ovarian teratomas. We report a case of a 34-year-old woman who presented with abdominal pain and an ovarian mass. After surgery, the patient was diagnosed with a follicular variant papillary thyroid microcarcinoma that arose within a mature cystic ovarian teratoma. Based on the small size of the primary lesion and patient preferences, no further treatment was performed. To our knowledge, this is the third reported case of papillary thyroid microcarcinoma arising within a mature ovarian teratoma without struma ovarii. There is no consensus on the surgical approach and postoperative management of this condition. Whether further therapy with total thyroidectomy and radioiodine ablation may be beneficial is unknown. In conclusion, papillary thyroid microcarcinoma can also arise within mature ovarian teratomas. Although a favorable prognosis is anticipated, there is limited information about its history or prognosis.

  3. Papillary Thyroid Microcarcinoma Arising Within a Mature Ovarian Teratoma: Case Report and Review of the Literature

    PubMed Central

    Pineyro, Maria M; Pereda, Jimena; Schou, Pamela; de los Santos, Karina; de la Peña, Soledad; Caserta, Benedicta; Pisabarro, Raul

    2017-01-01

    Mature cystic teratoma is the most common kind of ovarian germ cell tumor. Malignant transformation is uncommon, with thyroid cancer rarely found. Papillary thyroid microcarcinoma has rarely been described as associated with ovarian teratomas. We report a case of a 34-year-old woman who presented with abdominal pain and an ovarian mass. After surgery, the patient was diagnosed with a follicular variant papillary thyroid microcarcinoma that arose within a mature cystic ovarian teratoma. Based on the small size of the primary lesion and patient preferences, no further treatment was performed. To our knowledge, this is the third reported case of papillary thyroid microcarcinoma arising within a mature ovarian teratoma without struma ovarii. There is no consensus on the surgical approach and postoperative management of this condition. Whether further therapy with total thyroidectomy and radioiodine ablation may be beneficial is unknown. In conclusion, papillary thyroid microcarcinoma can also arise within mature ovarian teratomas. Although a favorable prognosis is anticipated, there is limited information about its history or prognosis. PMID:28615984

  4. Retrograde trafficking of tracer protein by the internal ovarian epithelium in gravid goodeid teleosts.

    PubMed

    Schindler, J F

    1990-02-01

    Gravid goodeid females harbor embryos in a preformed ovarian cavity for prolonged periods of gestation. Various nutrients for embryonic growth are provided by the internal ovarian epithelium (IOE). Its cells flatten during late stages of gestation and form an attenuated layer of cytoplasm covering a dense network of protruding capillaries, with the nuclear domains mostly recessing between the vascular meshes. The IOE in both Xenotoca eiseni and Girardinichthys viviparus exhibit morphological features associated with vesicular transport of macromolecules. The amounts of rough endoplasmic reticulum in the IOE cells seem insufficient to effectively synthesise proteinaceous secretions. Apparently, it rather serves as a transit route for serum-derived products. Cationized ferritin (CF) was injected into the ovarian cavity of gravid females. The electrostatic ligand spotwise attached to the luminal surface of the IOE and gained access by adsorptive micropinocytosis. Many tracer molecules were sequestered into lysosome-like vacuoles that became increasingly swollen after prolonged incubation intervals. In addition, CF traversed the IOE within small vesicles. At the basal pole of the cells the contents of transcytotic vesicles were evacuated, and localization of small CF-clusters was regularly in the basement lamina, in the underlying connective tissue, in vacuoles within migrant cells, in vesicular compartments of the capillary endothelia, in capillary lumina, and in intravascular leucocytes. Tracer molecules were never observed to enter stacked Golgi cisternae. Since the cationic marker probably follows retrograde pathways of the protein secretion, the experimental data support the morphologically derived conclusions that postulate a major role for the IOE in transepithelial transport.

  5. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle

    PubMed Central

    Dupont, Joëlle; Scaramuzzi, Rex J.

    2016-01-01

    Data derived principally from peripheral tissues (fat, muscle and liver) show that insulin signals via diverse interconnecting intracellular pathways and that some of the major intersecting points (known as critical nodes) are the IRSs (insulin receptor substrates), PI3K (phosphoinositide kinase)/Akt and MAPK (mitogen-activated protein kinase). Most of these insulin pathways are probably also active in the ovary and their ability to interact with each other and also with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) signalling pathways enables insulin to exert direct modulating influences on ovarian function. The present paper reviews the intracellular actions of insulin and the uptake of glucose by ovarian tissues (granulosa, theca and oocyte) during the oestrous/menstrual cycle of some rodent, primate and ruminant species. Insulin signals through diverse pathways and these are discussed with specific reference to follicular cell types (granulosa, theca and oocyte). The signalling pathways for FSH in granulosa cells and LH in granulosa and theca cells are summarized. The roles of glucose and of insulin-mediated uptake of glucose in folliculogenesis are discussed. It is suggested that glucose in addition to its well-established role of providing energy for cellular function may also have insulin-mediated signalling functions in ovarian cells, involving AMPK (AMP-dependent protein kinase) and/or hexosamine. Potential interactions of insulin signalling with FSH or LH signalling at critical nodes are identified and the available evidence for such interactions in ovarian cells is discussed. Finally the action of the insulin-sensitizing drugs metformin and the thiazolidinedione rosiglitazone on follicular cells is reviewed. PMID:27234585

  6. Epithelial Membrane Protein-2 is a Novel Therapeutic Target in Ovarian Cancer

    PubMed Central

    Fu, Maoyong; Maresh, Erin L.; Soslow, Robert A.; Alavi, Mohammad; Mah, Vei; Zhou, Qin; Iasonos, Alexia; Goodglick, Lee; Gordon, Lynn K.; Braun, Jonathan; Wadehra, Madhuri

    2010-01-01

    Purpose The tetraspan protein epithelial membrane protein-2 (EMP2) has been shown to regulate the surface display and signaling from select integrin pairs, and it was recently identified as a prognostic biomarker in human endometrial cancer. In this study, we assessed the role of EMP2 in human ovarian cancer. Experimental Design We examined the expression of EMP2 within a population of women with ovarian cancer using tissue microarray assay technology. We evaluated the efficacy of EMP2-directed antibody therapy using a fully human recombinant bivalent antibody fragment (diabody) in vitro and ovarian cancer xenograft models in vivo. Results EMP2 was found to be highly expressed in over 70% of serous and endometrioid ovarian tumors compared to non-malignant ovarian epithelium using a human ovarian cancer tissue microarray. Using anti-EMP2 diabody, we evaluated the in vitro response of 9 human ovarian cancer cell lines with detectable EMP2 expression. Treatment of human ovarian cancer cell lines with anti-EMP2 diabodies induced cell death and retarded cell growth, and these response rates correlated with cellular EMP2 expression. We next assessed the effects of anti-EMP2 diabodies in mice bearing xenografts from the ovarian endometrioid carcinoma cell line OVCAR5. Anti-EMP2 diabodies significantly suppressed tumor growth and induced cell death in OVCAR5 xenografts. Conclusions These findings indicate that EMP2 is expressed in the majority of ovarian tumors and it may be a feasible target in vivo. PMID:20670949

  7. Development of a Mouse Model of Menopausal Ovarian Cancer

    PubMed Central

    Smith, Elizabeth R.; Wang, Ying; Xu, Xiang-Xi

    2014-01-01

    Despite significant understanding of the genetic mutations involved in ovarian epithelial cancer and advances in genomic approaches for expression and mutation profiling of tumor tissues, several key questions in ovarian cancer biology remain enigmatic: the mechanism for the well-established impact of reproductive factors on ovarian cancer risk remains obscure; cell of origin of ovarian cancer continue to be debated; and the precursor lesion, sequence, or events in progression remain to be defined. Suitable mouse models should complement the analysis of human tumor tissues and may provide clues to these questions currently perplexing ovarian cancer biology. A potentially useful model is the germ cell-deficient Wv (white spotting variant) mutant mouse line, which may be used to study the impact of menopausal physiology on the increased risk of ovarian cancer. The Wv mice harbor a point mutation in c-Kit that reduces the receptor tyrosine kinase activity to about 1–5% (it is not a null mutation). Homozygous Wv mutant females have a reduced ovarian germ cell reservoir at birth and the follicles are rapidly depleted upon reaching reproductive maturity, but other biological phenotypes are minimal and the mice have a normal life span. The loss of ovarian function precipitates changes in hormonal and metabolic activity that model features of menopause in humans. As a consequence of follicle depletion, the Wv ovaries develop ovarian tubular adenomas, a benign epithelial tumor corresponding to surface epithelial invaginations and papillomatosis that mark human ovarian aging. Ongoing work will test the possibility of converting the benign epithelial tubular adenomas into neoplastic tumors by addition of an oncogenic mutation, such as of Tp53, to model the genotype and biology of serous ovarian cancer. Model based on the Wv mice may have the potential to gain biological and etiological insights into ovarian cancer development and prevention. PMID:24616881

  8. NANOG regulates epithelial-mesenchymal transition and chemoresistance in ovarian cancer.

    PubMed

    Qin, Shan; Li, Yanfang; Cao, Xuexia; Du, Jiexian; Huang, Xianghua

    2017-02-28

    A key transcription factor associated with poor prognosis and resistance to chemotherapy in ovarian cancer is NANOG. However, the mechanism by which NANOG functions remains undefined. It has been suggested that epithelial-to-mesenchymal transition (EMT) also contributes to development of drug resistance in different cancers. We thus determined whether NANOG expression was associated with EMT and chemoresistance in epithelial ovarian cancer cells. NANOG expression was increased in epithelial ovarian cancer cell lines compared with its expression in normal epithelial ovarian cell lines. NANOG expression in SKOV-3 or OV2008 cells directly correlated with high expression of mesenchymal cell markers and inversely with low expression of epithelial cell marker. RNAi-mediated silencing of NANOG in SKOV-3 reversed the expression of mesenchymal cell markers and restored expression of E-cadherin. Reversibly, stable overexpression of NANOG in Moody cells increased expression of N-cadherin whereas down-regulating expression of E-cadherin, cumulatively indicating that NANOG plays an important role in maintaining the mesenchymal cell markers. Modulating NANOG expression did not have any effect on proliferation or colony formation. Susceptibility to cisplatin increased in SKOV-3 cells on down-regulating NANOG and reversible results were obtained in Moody cells post-overexpression of NANOG. NANOG silencing in SKOV-3 and OV2008 robustly attenuated in vitro migration and invasion. NANOG expression exhibited a biphasic pattern in patients with ovarian cancer and expression was directly correlated to chemoresistance retrospectively. Cumulatively, our data demonstrate that NANOG expression modulates chemosensitivity and EMT resistance in ovarian cancer. © 2017 The Author(s).

  9. Cellular glutathione level does not predict ovarian cancer cells' resistance after initial or repeated exposure to cisplatin.

    PubMed

    Nikounezhad, Nastaran; Nakhjavani, Maryam; Shirazi, Farshad H

    2017-05-01

    Cisplatin resistance development is a major obstacle in ovarian cancer treatment. One of the most important mechanisms underlying cisplatin resistance is drug detoxification by glutathione. In the present study, the importance of initial or repeated exposure to cisplatin in glutathione dependent resistance was investigated. To this purpose, some cisplatin sensitive and resistant variants of human ovarian cancer cell lines providing an appropriate range of cisplatin sensitivity were selected. Clonogenic survival assay was performed to evaluate cisplatin resistance and intracellular contents of reduced (GSH) and oxidized (GSSG) glutathione were analyzed using an HPLC method. Our results indicated that the intracellular GSH and GSSG concentrations were nearly equal in A2780 and A2780CP cells, while the A2780CP cells showed 14 times more resistance than the A2780 cells after initial exposure to cisplatin. A2780-R1 and A2780-R3 cells which have been repeatedly exposed to cisplatin also showed no significant difference in glutathione content, even though A2780-R3 was about two times more resistant than A2780-R1. Moreover, intracellular GSH/GSSG ratio decreased in the resistant cells, reflecting a shift towards a more oxidizing intracellular environment indicative of oxidative stress. As a conclusion, it seems that although the intracellular glutathione concentration increases after repeated exposure to cisplatin, there is no clear correlation between the intracellular GSH content in ovarian cancer cells and their resistance to cisplatin neither after initial nor after repeated exposure to this drug.

  10. The construction of cDNA library and the screening of related antigen of ascitic tumor cells of ovarian cancer.

    PubMed

    Hou, Q; Chen, K; Shan, Z

    2015-01-01

    To construct the cDNA library of the ascites tumor cells of ovarian cancer, which can be used to screen the related antigen for the early diagnosis of ovarian cancer and therapeutic targets of immune treatment. Four cases of ovarian serous cystadenocarcinoma, two cases of ovarian mucinous cystadenocarcinoma, and two cases of ovarian endometrial carcinoma in patients with ascitic tumor cells which were used to construct the cDNA library. To screen the ovarian cancer antigen gene, evaluate the enzyme, and analyze nucleotide sequence, serological analysis of recombinant tumor cDNA expression libraries (SEREX) and suppression subtractive hybridization technique (SSH) techniques were utilized. The detection method of recombinant expression-based serological mini-arrays (SMARTA) was used to detect the ovarian cancer antigen and the positive reaction of 105 cases of ovarian cancer patients and 105 normal women's autoantibodies correspondingly in serum. After two rounds of serologic screening and glycosides sequencing analysis, 59 candidates of ovarian cancer antigen gene fragments were finally identified, which corresponded to 50 genes. They were then divided into six categories: (1) the homologous genes which related to the known ovarian cancer genes, such as BARD 1 gene, etc; (2) the homologous genes which were associated with other tumors, such as TM4SFI gene, etc; (3) the genes which were expressed in a special organization, such as ILF3, FXR1 gene, etc; (4) the genes which were the same with some protein genes of special function, such as TIZ, ClD gene; (5) the homologous genes which possessed the same source with embryonic genes, such as PKHD1 gene, etc; (6) the remaining genes were the unknown genes without the homologous sequence in the gene pool, such as OV-189 genes. SEREX technology combined with SSH method is an effective research strategy which can filter tumor antigen with high specific character; the corresponding autoantibodies of TM4SFl, ClD, TIZ, BARDI

  11. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination.

    PubMed

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-Ichirou; Kimura, Tadashi

    2017-10-27

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer.

  12. PTN Signaling: Components and Mechanistic Insights in Human Ovarian Cancer

    PubMed Central

    Sethi, Geetika; Kwon, Youngjoo; Burkhalter, Rebecca J; Pathak, Harsh B.; Madan, Rashna; McHugh, Sarah; Atay, Safinur; Murthy, Smruthi; Tawfik, Ossama W.; Godwin, Andrew K.

    2015-01-01

    Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (p<0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian

  13. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice.

    PubMed

    Hu, Weihua; Wang, Jing; He, Xiangfeng; Zhang, Hongyi; Yu, Fangliu; Jiang, Longwei; Chen, Dengyu; Chen, Junsong; Dou, Jun

    2011-01-01

    Ovarian cancer causes more deaths than any other cancer of the female reproductive system, and its overall cure rate remains low. The present study investigated human umbilical blood mononuclear cell (UBMC)-derived mesenchymal stem cells (UBMC-MSCs) as interleukin-21 (IL-21) gene delivery vehicles for ovarian cancer therapy in nude mice. MSCs were isolated from UBMCs and the expanded cells were phenotyped by flow cytometry. Cultured UBMCs were differentiated into osteocytes and adipocytes using appropriate media and then the UBMC-MSCs were transfected with recombinant pIRES2-IL-21-enhancement green fluorescent protein. UBMC-MSCs expressing IL-21 were named as UBMC-MSC-IL-21. Mice with A2780 ovarian cancer were treated with UBMC-MSC-IL-21 intravenously, and the therapeutic efficacy was evaluated by the tumor volume and mouse survival. To address the mechanism of UBMC-MSC-IL-21 against ovarian cancer, the expression of IL-21, natural killer glucoprotein 2 domain and major histocompatibility complex class I chain-related molecules A/B were detected in UBMC-MSC-IL-21 and in the tumor sites. Interferon-γ-secreting splenocyte numbers and natural killer cytotoxicity were significantly increased in the UBMC-MSC-IL-21-treated mice as compared with the UBMC-MSCs or the UBMC-MSC-mock plasmid-treated mice. Most notably, tumor growth was delayed and survival was prolonged in ovarian-cancer-bearing mice treated with UBMC-MSC-IL-21. Our data provide important evidence that UBMC-MSCs can serve as vehicles for IL-21 gene delivery and inhibit the established tumor. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  14. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions.

    PubMed

    Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran

    2018-06-01

    Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Treatment Options by Stage (Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer)

    MedlinePlus

    ... of Ovarian Germ Cell Tumors Ovarian Low Malignant Potential Tumors Symptoms, Tests, Prognosis, & Stages Treatment of Ovarian Low Malignant Potential Tumors Prevention of Ovarian, Fallopian Tube, & Primary Peritoneal ...

  16. Successful treatment of ovarian cancer with apatinib combined with chemotherapy

    PubMed Central

    Zhang, Mingzi; Tian, Zhongkai; Sun, Yehong

    2017-01-01

    Abstract Rationale: The standard treatment for ovarian cancer is chemotherapy with 2 drugs (taxanes and platinum drugs). However, the traditional combination of the 2 drugs has many adverse effects (AEs) and the cancer cells will quickly become resistant to the drugs. Apatinib is a small-molecule antiangiogenic agent which has shown promising therapeutic effects against diverse tumor types, but it still remains unknown whether apatinib has an antitumor effect in patients with ovarian cancer. Herein, we present a successfully treated case of ovarian cancer using chemotherapy and apatinib, in order to demonstrate the effectiveness of this new combined regimen in ovarian cancer. Patients concerns: A 51-year-old Chinese woman presented with ovarian cancer >4.5 years. The disease and the cancer antigen 125 (CA-125) had been controlled well by surgical treatment and following chemotherapy. However, the drugs could not control the disease anymore as the CA-125 level was significantly increasing. Diagnosis: Ovarian cancer. Interventions: The patient was treated with apatinib combined with epirubicin. Apatinib was administered orally, at an initial daily dose of 500 mg, and was then reduced to 250 mg qd after the appearance of intolerable hand–foot syndrome (HFS) and oral ulcer. Then, the oral ulcer disappeared and the HFS was controlled by dose adjustment, oral vitamin B6, and hand cream application. Outcomes: The CA-125 reverted to the normal value after treatment with the new regimen. Magnetic resonance imaging showed that the original tumor lesions had disappeared. Apatinib monotherapy as maintenance therapy was then used to successfully control the cancer with a complete response. Our study is the first, to our knowledge, to report the therapeutic effects of apatinib and epirubicin on ovarian cancer. Lessons: Apatinib combined with chemotherapy and apatinib monotherapy as maintenance therapy could be a new therapeutic strategy for ovarian cancer, especially

  17. A Molecularly Targeted Theranostic Probe for Ovarian Cancer

    PubMed Central

    Chen, Wenxue; Bardhan, Rizia; Bartels, Marc; Perez-Torres, Carlos; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer and consequently ovarian cancer has a high mortality rate. While HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be employed as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2 overexpressing and drug resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging (MRI) agent. Both immunofluorescence staining and MRI successfully demonstrate that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near infrared (NIR) laser result in selective destruction of cancer cells through photothermal ablation. We also demonstrate that NIR light therapy and the nanocomplexes by themselves are non-cytotoxic in vitro. To the best of our knowledge, this is the first demonstration of a successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image guided photo-thermal therapy of ovarian cancer as well as other HER2 overexpressing cancers. PMID:20371708

  18. Long non-coding RNA ZFAS1 interacts with miR-150-5p to regulate Sp1 expression and ovarian cancer cell malignancy.

    PubMed

    Xia, Bairong; Hou, Yan; Chen, Hong; Yang, Shanshan; Liu, Tianbo; Lin, Mei; Lou, Ge

    2017-03-21

    We reported that long non-coding RNA ZFAS1 was upregulated in epithelial ovarian cancer tissues, and was negatively correlated to the overall survival rate of patients with epithelial ovarian cancer in this study. While depletion of ZFAS1 inhibited proliferation, migration, and development of chemoresistance, overexpression of ZFAS1 exhibited an even higher proliferation rate, migration activity, and chemoresistance in epithelial ovarian cancer cell lines. We further found miR-150-5p was a potential target of ZFAS1, which was downregulated in epithelial ovarian cancer tissue. MiR-150-5p subsequently inhibited expression of transcription factor Sp1, as evidence by luciferase assays. Inhibition of miR-150-5p rescued the suppressed proliferation and migration induced by depletion of ZFAS1 in epithelial ovarian cancer cells, at least in part. Taken together, our findings revealed a critical role of ZFAS1/miR-150-5p/Sp1 axis in promoting proliferation rate, migration activity, and development of chemoresistance in epithelial ovarian cancer. And ZFAS1/miR-150-5p may serve as novel markers and therapeutic targets of epithelial ovarian cancer.

  19. ADH1B promotes mesothelial clearance and ovarian cancer infiltration.

    PubMed

    Gharpure, Kshipra M; Lara, Olivia D; Wen, Yunfei; Pradeep, Sunila; LaFargue, Chris; Ivan, Cristina; Rupaimoole, Rajesha; Hu, Wei; Mangala, Lingegowda S; Wu, Sherry Y; Nagaraja, Archana S; Baggerly, Keith; Sood, Anil K

    2018-05-18

    Primary debulking surgery followed by adjuvant chemotherapy is the standard treatment for ovarian cancer. Residual disease after primary surgery is associated with poor patient outcome. Previously, we discovered ADH1B to be a molecular biomarker of residual disease. In the current study, we investigated the functional role of ADH1B in promoting ovarian cancer cell invasiveness and contributing to residual disease. We discovered that ADH1B overexpression leads to a more infiltrative cancer cell phenotype, promotes metastasis, increases the adhesion of cancer cells to mesothelial cells, and increases extracellular matrix degradation. Live cell imaging revealed that ADH1B-overexpressing cancer cells efficiently cleared the mesothelial cell layer compared to control cells. Moreover, gene array analysis revealed that ADH1B affects several pathways related to the migration and invasion of cancer cells. We also discovered that hypoxia increases ADH1B expression in ovarian cancer cells. Collectively, these findings indicate that ADH1B plays an important role in the pathways that promote ovarian cancer cell infiltration and may increase the likelihood of residual disease following surgery.

  20. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    PubMed

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  1. Ovarian surface epithelium at the junction area contains cancer-prone stem cell niche

    PubMed Central

    Flesken-Nikitin, Andrea; Hwang, Chang-Il; Cheng, Chieh-Yang; Michurina, Tatyana V.; Enikolopov, Grigori; Nikitin, Alexander Yu.

    2014-01-01

    Epithelial ovarian cancer (EOC) is the fifth-leading cause of cancer death among women in the United States, but its pathogenesis is poorly understood 1-3. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, while others have been shown to originate in epithelial tissue stem cells 4-6. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been unequivocally defined. Here we identify the hilum region of the mouse ovary, the transitional/junction area between OSE, mesothelium and tubal (oviductal) epithelium as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are slowly-cycling and express stem/progenitor cell markers ALDH1, Lgr5, Lef1, CD133, and CK6b. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and by long-term lineage tracing assays. Importantly, the hilum cells exhibit increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are frequently altered in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma 7,8. Our study experimentally supports the notion that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis. PMID:23467088

  2. Ovarian Cancer Stroma: Pathophysiology and the Roles in Cancer Development

    PubMed Central

    Furuya, Mitsuko

    2012-01-01

    Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers. PMID:24213462

  3. The O-methylated isoflavone, formononetin, inhibits human ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation.

    PubMed

    Park, Sunwoo; Bazer, Fuller W; Lim, Whasun; Song, Gwonhwa

    2018-05-15

    Formononetin is an isoflavone that is extracted from red clovers or soy. It has anti-oxidant, anti-proliferative, and anti-tumor effects against cells in various diseases. Several cohort studies have indicated that phytoestrogen intake, including formononetin, could reduce the risk of various carcinogenesis. In fact, many case-control studies have indicated the potential value of flavonoids as drug supplements in the treatment of many cancer patients. However, the toxic effects and the anti-cancer mechanism of formononetin in ovarian cancer are unknown. We investigated the toxicological mechanism of formononetin in ES2 and OV90 ovarian cancer cells. Formononetin suppressed cell proliferation through sub G0/G1 phase arrest and increased apoptosis in both cell lines. Furthermore, it induced loss of mitochondrial membrane potential and generation of reactive oxygen species in ES2 and OV90 cells. The formononetin-mediated regulation of cell proliferation and apoptosis involved decreased phosphorylation of ERK1/2, P90RSK, AKT, P70S6K, and S6 proteins, and increased phosphorylation of P38 protein in ES2 and OV90 cells. Co-treatment of formononetin with pharmacological inhibitors (LY294002 or U0126) revealed additional anti-proliferative effects on the two human ovarian cancer cell types. Conclusively, the results indicate the potential value of formononetin as an anti-cancer agent in human ovarian cancer. © 2018 Wiley Periodicals, Inc.

  4. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase ( p < 0.05) in expression of apoptotic genes ( Bcl2, Bax, p53) and 13.2- to 27.1-fold increase ( p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  5. Cleistopholine isolated from Enicosanthellum pulchrum exhibits apoptogenic properties in human ovarian cancer cells.

    PubMed

    Nordin, Noraziah; Majid, Nazia Abdul; Mohan, Syam; Dehghan, Firouzeh; Karimian, Hamed; Rahman, Mashitoh Abdul; Ali, Hapipah Mohd; Hashim, Najihah Mohd

    2016-04-15

    Cleistopholine is a natural alkaloid present in plants with numerous biological activities. However, cleistopholine has yet to be isolated using modern techniques and the mechanism by which this alkaloid induces apoptosis in cancer cells remains to be elucidated. This study aims to isolate cleistopholine from the roots of Enicosanthellum pulchrum by using preparative-HPLC technique and explore the mechanism by which this alkaloid induces apoptosis in human ovarian cancer (CAOV-3) cells in vitro from 24 to 72 h. This compound may be developed as an anticancer agent that induces apoptosis in ovarian cancer cells. Cytotoxicity was assessed via the cell viability assay and changes in cell morphology were observed via the acridine orange/propidium iodide (AO/PI) assay. The involvement of apoptotic pathways was evaluated through caspase analysis and multiple cytotoxicity assays. Meanwhile, early and late apoptotic events via the Annexin V-FITC and DNA laddering assays, respectively. The mechanism of apoptosis was explored at the molecular level by evaluating the expression of specific genes and proteins. In addition, the proliferation of CAOV-3-cells treated with cleistopholine was analysed using the cell cycle arrest assay. The IC50 of cleistopholine (61.4 µM) was comparable with that of the positive control cisplatin (62.8 µM) at 24 h of treatment. Apoptos is was evidenced by cell membrane blebbing, chromatin compression and formation of apoptotic bodies. The initial phase of apoptosis was detected at 24 h by the increase in Annexin V-FITC binding to cell membranes. A DNA ladder was formed at 48 h, indicating DNA fragmentation in the final phase of apoptosis. The mitochondria participated in the process by stimulating the intrinsic pathway via caspase 9 with a reduction in mitochondrial membrane potential (MMP) and an increase in cytochrome c release. Cell death was further validated through the mRNA and protein overexpression of Bax, caspase 3 and caspase 9 in the

  6. Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer.

    PubMed

    Hampras, Shalaka S; Sucheston-Campbell, Lara E; Cannioto, Rikki; Chang-Claude, Jenny; Modugno, Francesmary; Dörk, Thilo; Hillemanns, Peter; Preus, Leah; Knutson, Keith L; Wallace, Paul K; Hong, Chi-Chen; Friel, Grace; Davis, Warren; Nesline, Mary; Pearce, Celeste L; Kelemen, Linda E; Goodman, Marc T; Bandera, Elisa V; Terry, Kathryn L; Schoof, Nils; Eng, Kevin H; Clay, Alyssa; Singh, Prashant K; Joseph, Janine M; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Baker, Helen; Bean, Yukie; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bruinsma, Fiona; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Cook, Linda S; Cramer, Daniel W; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; Dennis, Joe; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; du Bois, Andreas; Dürst, Matthias; Easton, Doug; Eccles, Diana; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hasmad, Hanis Nazihah; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hogdall, Claus; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kelley, Joseph L; Kiemeney, Lambertus A; Klapdor, Rüdiger; Kolomeyevskaya, Nonna; Krakstad, Camilla; Kjaer, Susanne K; Kruszka, Bridget; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashikant; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lissowska, Jolanta; Liu, Song; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valeria; McLaughlin, John R; McNeish, Ian; Menon, Usha; Moes-Sosnowska, Joanna; Narod, Steven A; Nedergaard, Lotte; Nevanlinna, Heli; Nickels, Stefan; Olson, Sara H; Orlow, Irene; Weber, Rachel Palmieri; Paul, James; Pejovic, Tanja; Pelttari, Liisa M; Perkins, Barbara; Permuth-Wey, Jenny; Pike, Malcolm C; Plisiecka-Halasa, Joanna; Poole, Elizabeth M; Risch, Harvey A; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schmitt, Kristina; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Tangen, Ingvild L; Teo, Soo-Hwang; Thompson, Pamela J; Timorek, Agnieszka; Tsai, Ya-Yu; Tworoger, Shelley S; Tyrer, Jonathan; van Altena, Anna M; Vergote, Ignace; Vierkant, Robert A; Walsh, Christine; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Gayther, Simon A; Ramus, Susan J; Sellers, Thomas A; Schildkraut, Joellen M; Phelan, Catherine M; Berchuck, Andrew; Chenevix-Trench, Georgia; Cunningham, Julie M; Pharoah, Paul P; Ness, Roberta B; Odunsi, Kunle; Goode, Ellen L; Moysich, Kirsten B

    2016-10-25

    Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer. In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients. The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively). Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.

  7. Large-Scale Evaluation of Common Variation in Regulatory T Cell-Related Genes and Ovarian Cancer Outcome

    PubMed Central

    Charbonneau, Bridget; Moysich, Kirsten B.; Kalli, Kimberly R.; Oberg, Ann L.; Vierkant, Robert A.; Fogarty, Zachary C.; Block, Matthew S.; Maurer, Matthew J.; Goergen, Krista M.; Fridley, Brooke L.; Cunningham, Julie M.; Rider, David N.; Preston, Claudia; Hartmann, Lynn C.; Lawrenson, Kate; Wang, Chen; Tyrer, Jonathan; Song, Honglin; deFazio, Anna; Johnatty, Sharon E.; Doherty, Jennifer A.; Phelan, Catherine M.; Sellers, Thomas A.; Ramirez, Starr M.; Vitonis, Allison F.; Terry, Kathryn L.; Van Den Berg, David; Pike, Malcolm C.; Wu, Anna H.; Berchuck, Andrew; Gentry-Maharaj, Aleksandra; Ramus, Susan J.; Diergaarde, Brenda; Shen, Howard; Jensen, Allan; Menkiszak, Janusz; Cybulski, Cezary; Lubiński, Jan; Ziogas, Argyrios; Rothstein, Joseph H.; McGuire, Valerie; Sieh, Weiva; Lester, Jenny; Walsh, Christine; Vergote, Ignace; Lambrechts, Sandrina; Despierre, Evelyn; Garcia-Closas, Montserrat; Yang, Hannah; Brinton, Louise A.; Spiewankiewicz, Beata; Rzepecka, Iwona K.; Dansonka-Mieszkowska, Agnieszka; Seibold, Petra; Rudolph, Anja; Paddock, Lisa E.; Orlow, Irene; Lundvall, Lene; Olson, Sara H.; Hogdall, Claus K.; Schwaab, Ira; du Bois, Andreas; Harter, Philipp; Flanagan, James M.; Brown, Robert; Paul, James; Ekici, Arif B.; Beckmann, Matthias W.; Hein, Alexander; Eccles, Diana; Lurie, Galina; Hays, Laura E.; Bean, Yukie T.; Pejovic, Tanja; Goodman, Marc T.; Campbell, Ian; Fasching, Peter A.; Konecny, Gottfried; Kaye, Stanley B.; Heitz, Florian; Hogdall, Estrid; Bandera, Elisa V.; Chang-Claude, Jenny; Kupryjanczyk, Jolanta; Wentzensen, Nicolas; Lambrechts, Diether; Karlan, Beth Y.; Whittemore, Alice S.; Culver, Hoda Anton; Gronwald, Jacek; Levine, Douglas A.; Kjaer, Susanne K.; Menon, Usha; Schildkraut, Joellen M.; Pearce, Celeste Leigh; Cramer, Daniel W.; Rossing, Mary Anne; Chenevix-Trench, Georgia; Pharoah, Paul D.P.; Gayther, Simon A.; Ness, Roberta B.; Odunsi, Kunle; Sucheston, Lara E.; Knutson, Keith L.; Goode, Ellen L.

    2014-01-01

    The presence of regulatory T cells (Tregs) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag SNPs in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, 1L17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBR1, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in 10,084 women with invasive epithelial ovarian cancer, including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous carcinoma cases of European descent across 28 studies from the Ovarian Cancer Association Consortium (OCAC). The strongest associations were found for endometrioid carcinoma and IL2RA SNPs rs11256497 [HR=1.42, 95% CI: 1.22–1.64; p=5.7 × 10−6], rs791587 [HR=1.36, 95% CI:1.17–1.57; p=6.2 × 10−5], rs2476491 [HR=1.40, 95% CI: 1.191.64; p=5.6 × 10−5], and rs10795763 [HR=1.35, 95% CI: 1.17–1.57; p=7.9 × 10−5], and for clear cell carcinoma and CTLA4 SNP rs231775 [HR=0.67, 95% CI: 0.54–0.82; p=9.3 × 10−5] after adjustment for age, study site, population stratification, stage, grade, and oral contraceptive use. The rs231775 allele associated with improved survival in our study also results in an amino acid change in CTLA4 and previously has been reported to be associated with autoimmune conditions. Thus, we found evidence that SNPs in genes related to Tregs appear to play a role in ovarian cancer survival, particularly in patients with clear cell and endometrioid EOC. PMID:24764580

  8. The role of mTOR in ovarian cancer, polycystic ovary syndrome and ovarian aging.

    PubMed

    Liu, Jin; Wu, Dai-Chao; Qu, Li-Hua; Liao, Hong-Qing; Li, Mei-Xiang

    2018-05-12

    The mammalian target of rapamycin, mTOR, is a serine-threonine protein kinase downstream of the phosphatidylinositol 3-kinase (PI3K)-AKT axis. The pathway can regulate cell growth, proliferation, and survival by activating ribosomal kinases. Recent studies have implicated the mTOR signaling pathway in ovarian neoplasms, polycystic ovary syndrome (PCOS) and premature ovarian failure (POF). Preclinical investigations have demonstrated that the PI3K/AKT/mTOR pathway is frequently activated in the control of various ovarian functions. mTOR allows cancer cells to escape the normal biochemical system and regulates the balance between apoptosis and survival. Some recent studies have suggested that involvement of the mTOR signaling system is an important pathophysiological basis of PCOS. Overexpression of the mTOR pathway can impair the interaction of cumulus cells, lead to insulin resistance, and affect the growth of follicles directly. The roles of mTOR signaling in follicular development have been extensively studied in recent years; abnormalities in this process lead to a series of pathologies such as POF and infertility. To improve understanding of the role of the mTOR signaling pathway in the pathogenesis and development of ovarian diseases, here we review the roles of mTOR signaling in such diseases and discuss the corresponding therapeutic strategies that target this pathway. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  9. Targeting Serous Epithelial Ovarian Cancer with Designer Zinc Finger Transcription Factors*

    PubMed Central

    Lara, Haydee; Wang, Yuhua; Beltran, Adriana S.; Juárez-Moreno, Karla; Yuan, Xinni; Kato, Sumie; Leisewitz, Andrea V.; Cuello Fredes, Mauricio; Licea, Alexei F.; Connolly, Denise C.; Huang, Leaf; Blancafort, Pilar

    2012-01-01

    Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers. PMID:22782891

  10. Ovarian Sertoli-Leydig cell tumor with heterologous elements of gastrointestinal type associated with elevated serum alpha-fetoprotein level: an unusual case and literature review

    PubMed Central

    Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana

    2014-01-01

    Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker. PMID:25926909

  11. Ovarian Sertoli-Leydig cell tumor with heterologous elements of gastrointestinal type associated with elevated serum alpha-fetoprotein level: an unusual case and literature review.

    PubMed

    Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana

    2014-11-01

    Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker.

  12. Soluble VEGF receptor 1 (sFLT1) induces non-apoptotic death in ovarian and colorectal cancer cells

    PubMed Central

    Miyake, Tatsuya; Kumasawa, Keiichi; Sato, Noriko; Takiuchi, Tsuyoshi; Nakamura, Hitomi; Kimura, Tadashi

    2016-01-01

    Soluble Vascular Endothelial Growth Factor Receptor 1 (sVEGFR1/sFLT1) is an angiogenesis inhibitor that competes with angiogenic factors such as VEGF and Placental Growth Factor (PlGF). Imbalances of VEGF and sFLT1 levels can cause pathological conditions such as tumour growth or preeclampsia. We observed direct damage caused by sFLT1 in tumour cells. We exposed several kinds of cells derived from ovarian and colorectal cancers as well as HEK293T cells to sFLT1 in two ways, transfection and exogenous application. The cell morphology and an LDH assay revealed cytotoxicity. Additional experiments were performed to clarify how sFLT1 injured cells. In this study, non-apoptotic cell damage was found to be induced by sFLT1. Moreover, sFLT1 showed an anti-tumour effect in a mouse model of ovarian cancer. Our results suggest that sFLT1 has potential as a cancer therapeutic candidate. PMID:27103202

  13. SGI-1776, an imidazo pyridazine compound, inhibits the proliferation of ovarian cancer cells by inactivating Pim-1.

    PubMed

    Xie, Jing; Bai, Jun

    2014-07-01

    To investigate the antitumor effect of SGI-1776 on human ovarian cancer HO-8910 cells and its molecular mechanism. HO-8910 cells were cultured in vitro, and the proliferation inhibitory effects of SGI- 1776 were determined by MTT assay and colony formation assay. The effect of SGI-1776 on the distribution of cell cycle phase was observed by flow cytometry with propidium iodide (PI) staining. The inhibition rate of migration and invasion were valued by transwell cell assay. Multiple molecular techniques, such as ELISA, Western blot, siRNA and cDNA transfection were used to explore the molecular mechanism. SGI-1776 presented dramatic anti-tumor activity against HO-8910 cells in vitro, inhibited the cells proliferation and colony formation, and attenuated the migration and invasion in a dosedependent manner, accompanied by cell cycle arrest in G1 phase. SGI-1776 caused the proliferation inhibition with concomitant decrease in Pim-1 kinase activity, down-regulated the expression of Pim-1 protein and and its downstream genes, such as CDK6, pCDK6, CDK4, pCDK4, CDK2 and pCDK2, and increased the expression of P21 and P27. Down-regulation expression of Pim-1 by siRNA followed SGI-1776 treatment resulted in enhanced cell proliferation inhibition rate and attenuated migration/invasion. Up-regulation of Pim-1 by cDNA transfection attenuated SGI- 1776-induced cell proliferation inhibition and its migration/invasion. Pim-1 mediates the biological effect of SGI-1776 in human ovarian cancer HO-8910 cells, suggesting Pim-1 might be a novel target for human ovarian cancer.

  14. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats.

    PubMed

    Zheng, Qin; Li, Yulin; Zhang, Dandan; Cui, Xinyuan; Dai, Kuixing; Yang, Yu; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2017-10-26

    Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS.

  15. ANP promotes proliferation and inhibits apoptosis of ovarian granulosa cells by NPRA/PGRMC1/EGFR complex and improves ovary functions of PCOS rats

    PubMed Central

    Zheng, Qin; Li, Yulin; Zhang, Dandan; Cui, Xinyuan; Dai, Kuixing; Yang, Yu; Liu, Shuai; Tan, Jichun; Yan, Qiu

    2017-01-01

    Polycystic ovary syndrome (PCOS) is a complicated reproductive endocrine disease characterized by polycystic ovaries, hyperandrogenism and anovulation. It is one of the main causes of infertility. RU486 is an antagonist of progesterone receptor, and most commonly used as a contraceptive. However, whether RU486 is correlated with PCOS remains unclear. Atrial natriuretic peptide (ANP) is a small peptide with natriuretic and diuretic functions, and its availability to be used in PCOS treatment is unknown. Here, we showed that the serum ANP level was lower in PCOS patients than that in healthy women, and it was also decreased in the serum and ovarian tissues of RU486-induced PCOS rats compared with the control rats. We also found that RU486 inhibited the proliferation and promoted the apoptosis of human KGN ovarian granulosa cells by downregulating progesterone receptor membrane component 1 (PGRMC1). Meantime, ANP promoted the proliferation and inhibited the apoptosis of KGN cells through upregulating ANP receptor A (NPRA). The promotive effects of ANP on ovarian functions were mediated through the formation of an NPRA/PGRMC1/EGFR complex, which further activated MAPK/ERK signaling and transcription factor AP1. Moreover, ANP treatment reversed the PCOS symptoms, and improved the fertility of RU486-induced PCOS rats. Collectively, these findings highlight that RU486 is associated with the pathogenesis of PCOS, and ANP treatment may be a promising therapeutic option for PCOS. PMID:29072679

  16. Anti-tumor and Anti-angiogenic Effects of Aspirin-PC in Ovarian Cancer

    PubMed Central

    Huang, Yan; Lichtenberger, Lenard M.; Taylor, Morgan; Bottsford-Miller, Justin N.; Haemmerle, Monika; Wagner, Michael J.; Lyons, Yasmin; Pradeep, Sunila; Hu, Wei; Previs, Rebecca A.; Hansen, Jean M.; Fang, Dexing; Dorniak, Piotr L.; Filant, Justyna; Dial, Elizabeth J.; Shen, Fangrong; Hatakeyama, Hiroto; Sood, Anil K.

    2016-01-01

    To determine the efficacy of a novel and safer (for gastrointestinal tract) aspirin (aspirin-PC) in preclinical models of ovarian cancer, in vitro dose-response studies were performed to compare the growth-inhibitory effect of aspirin-PC vs. aspirin on 3 human (A2780, SKOV3ip1, HeyA8), and a mouse (ID8) ovarian cancer cell line over an 8-day culture period. In the in vivo studies, the aspirin test drugs were studied alone and in the presence of a VEGF-A inhibitor (bevacizumab or B20), due to an emerging role for platelets in tumor growth following anti-angiogenic therapy, and we examined their underlying mechanisms. Aspirin-PC was more potent (vs. aspirin) in blocking the growth of both human and mouse ovarian cancer cells in monolayer culture. Using in vivo model systems of ovarian cancer, we found that aspirin-PC significantly reduced ovarian cancer growth by 50–90% (depending on the ovarian cell line/density). The efficacy was further enhanced in combination with Bevacizumab or B20. The growth-inhibitory effect on ovarian tumor mass and number of tumor nodules was evident, but less pronounced for aspirin and the VEGF inhibitors alone. There was no detectable gastrointestinal toxicity. Both aspirin and aspirin-PC also inhibited cell proliferation, angiogenesis and increased apoptosis of ovarian cancer cells. In conclusion, PC-associated aspirin markedly inhibits the growth of ovarian cancer cells, which exceeds that of the parent drug, in both cell culture and in mouse model systems. We also found that both aspirin-PC and aspirin have robust anti-neoplastic action in the presence of VEGF blocking drugs. PMID:27638860

  17. Mechanical Stimulation in Preventing Bone Density Loss in Patients Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2012-07-05

    Cell Lymphoma; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Neuroblastoma; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Splenic Marginal Zone Lymphoma; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Hodgkin Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Malignant Testicular Germ Cell Tumor; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Small Lymphocytic Lymphoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Hodgkin Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Breast Cancer; Stage IV Chronic Lymphocytic Leukemia

  18. Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases.

    PubMed

    Bukovsky, Antonin

    2015-02-25

    In vitro maturation (IVM) and in vitro fertilization (IVF) technologies are facing with growing demands of older women to conceive. Although ovarian stem cells (OSCs) of older women are capable of producing in vitro fresh oocyte-like cells (OLCs), such cells cannot respond to IVM and IVF due to the lack of granulosa cells required for their maturation. Follicular renewal is also dependent on support of circulating blood mononuclear cells. They induce intermediary stages of meiosis (metaphase I chromosomal duplication and crossover, anaphase, telophase, and cytokinesis) in newly emerging ovarian germ cells, as for the first time demonstrated here, induce formation of granulosa cells, and stimulate follicular growth and development. A pretreatment of OSC culture with mononuclear cells collected from blood of a young healthy fertile woman may cause differentiation of bipotential OSCs into both developing germ and granulosa cells. A small blood volume replacement may enable treatment of ovarian infertility in vivo. The transferred mononuclear cells may temporarily rejuvenate virtually all tissues, including improvement of the function of endocrine tissues. Formation of new follicles and their development may be sufficient for IVM and IVF. The novel proposed in vitro approaches may be used as a second possibility. Infertility of human males affects almost a half of the infertility cases worldwide. Small blood volume replacement from young healthy fertile men may also be easy approach for the improvement of sperm quality in older or other affected men. In addition, body rejuvenation by small blood volume replacement from young healthy individuals of the same sex could represent a decline of in vitro methodology in favor of in vivo treatment for human functional diseases. Here we propose for the first time that blood mononuclear cells are essential for rejuvenation of those tissues, where immune system components participate in an appropriate division and differentiation

  19. Laparoscopic ovarian biopsy pick-up method for goats.

    PubMed

    Brandão, Fabiana A S; Alves, Benner G; Alves, Kele A; Souza, Samara S; Silva, Yago P; Freitas, Vicente J F; Teixeira, Dárcio I A; Gastal, Eduardo L

    2018-02-01

    Biopsy pick-up (BPU) has been considered a safe method to harvest ovarian fragments from live animals. However, no studies have been reported on the use of BPU to collect in vivo ovarian tissue in goats. The goals of this study were: (i) to test different biopsy needle sizes to collect ovarian tissue in situ using the BPU method (Experiment 1), and (ii) to study ovarian tissue features such as preantral follicle density, morphology, class distribution, and stromal cell density in ovarian fragments obtained in vivo through a laparoscopic BPU method (Experiment 2). In Experiment 1, goat ovaries (n = 20) were collected in a slaughterhouse and subjected to in situ BPU. Three needles (16, 18, and 20G) were tested. In Experiment 2, the most efficient biopsy needle from Experiment 1 was used to perform laparoscopic BPU in goats (n = 8). In Experiment 1, the recovery rate was greater (P < 0.05; range 50-62%) with 16G and 18G needles than the 20G (17%) needle. The mean weight of ovarian fragments collected by the 16G needle was greater (P < 0.05) than the 18G and the 20G needle. In Experiment 2, 62 biopsy attempts were performed and 52 ovarian fragments were collected (90% success rate). Overall, 2054 preantral follicles were recorded in 5882 histological sections analyzed. Mean preantral follicular density was 28.4 ± 1.3 follicles per cm 2 . The follicular density differed (P < 0.05) among animals and ovarian fragments within the same animal. The mean stromal cell density in the ovarian fragments was 37.1 ± 0.5 cells per 2500 μm 2 , and differed (P < 0.05) among animals. Moreover, preantral follicle density and stromal cell density were associated (P < 0.001). The percentage of morphologically normal follicles was 70.1 ± 1.2, and differed (P < 0.05) among animals. The majority (79%) of the morphologically normal follicles was classified as primordial follicles, and differed (P < 0.05) among animals and between ovaries. In summary, a

  20. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    PubMed

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  1. Polyglutamate Paclitaxel and Carboplatin in Treating Patients With Ovarian Epithelial, Peritoneal, or Fallopian Tube Cancer

    ClinicalTrials.gov

    2015-05-07

    Fallopian Tube Carcinoma; Malignant Ovarian Mixed Epithelial Tumor; Ovarian Brenner Tumor; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Primary Peritoneal Carcinoma; Stage III Ovarian Cancer; Stage IV Ovarian Cancer; Undifferentiated Ovarian Carcinoma

  2. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination

    PubMed Central

    Nakatsuka, Erika; Sawada, Kenjiro; Nakamura, Koji; Yoshimura, Akihito; Kinose, Yasuto; Kodama, Michiko; Hashimoto, Kae; Mabuchi, Seiji; Makino, Hiroshi; Morii, Eiichi; Yamaguchi, Yoichi; Yanase, Takeshi; Itai, Akiko; Morishige, Ken-ichirou; Kimura, Tadashi

    2017-01-01

    In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer. PMID:29163796

  3. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche.

    PubMed

    Flesken-Nikitin, Andrea; Hwang, Chang-Il; Cheng, Chieh-Yang; Michurina, Tatyana V; Enikolopov, Grigori; Nikitin, Alexander Yu

    2013-03-14

    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer deaths among women in the United States, but its pathogenesis is poorly understood. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, whereas others have been shown to originate in epithelial tissue stem cells. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been defined unequivocally. Here we identify the hilum region of the mouse ovary, the transitional (or junction) area between the OSE, mesothelium and tubal (oviductal) epithelium, as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are cycling slowly and express stem and/or progenitor cell markers ALDH1, LGR5, LEF1, CD133 and CK6B. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and long-term lineage-tracing assays. Importantly, the hilum cells show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma. Our study supports experimentally the idea that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis.

  4. CD10-/ALDH- cells are the sole cisplatin-resistant component of a novel ovarian cancer stem cell hierarchy.

    PubMed

    Ffrench, Brendan; Gasch, Claudia; Hokamp, Karsten; Spillane, Cathy; Blackshields, Gordon; Mahgoub, Thamir Mahmoud; Bates, Mark; Kehoe, Louise; Mooney, Aoibhinn; Doyle, Ronan; Doyle, Brendan; O'Donnell, Dearbhaile; Gleeson, Noreen; Hennessy, Bryan T; Stordal, Britta; O'Riain, Ciaran; Lambkin, Helen; O'Toole, Sharon; O'Leary, John J; Gallagher, Michael F

    2017-10-19

    It is long established that tumour-initiating cancer stem cells (CSCs) possess chemoresistant properties. However, little is known of the mechanisms involved, particularly with respect to the organisation of CSCs as stem-progenitor-differentiated cell hierarchies. Here we aimed to elucidate the relationship between CSC hierarchies and chemoresistance in an ovarian cancer model. Using a single cell-based approach to CSC discovery and validation, we report a novel, four-component CSC hierarchy based around the markers cluster of differentiation 10 (CD10) and aldehyde dehydrogenase (ALDH). In a change to our understanding of CSC biology, resistance to chemotherapy drug cisplatin was found to be the sole property of CD10 - /ALDH - CSCs, while all four CSC types were sensitive to chemotherapy drug paclitaxel. Cisplatin treatment quickly altered the hierarchy, resulting in a three-component hierarchy dominated by the cisplatin-resistant CD10 - /ALDH - CSC. This organisation was found to be hard-wired in a long-term cisplatin-adapted model, where again CD10 - /ALDH - CSCs were the sole cisplatin-resistant component, and all CSC types remained paclitaxel-sensitive. Molecular analysis indicated that cisplatin resistance is associated with inherent- and adaptive-specific drug efflux and DNA-damage repair mechanisms. Clinically, low CD10 expression was consistent with a specific set of ovarian cancer patient samples. Collectively, these data advance our understanding of the relationship between CSC hierarchies and chemoresistance, which was shown to be CSC- and drug-type specific, and facilitated by specific and synergistic inherent and adaptive mechanisms. Furthermore, our data indicate that primary stage targeting of CD10 - /ALDH - CSCs in specific ovarian cancer patients in future may facilitate targeting of recurrent disease, before it ever develops.

  5. Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells

    PubMed Central

    Guduru, Rakesh; Liang, Ping; Runowicz, Carolyn; Nair, Madhavan; Atluri, Venkata; Khizroev, Sakhrat

    2013-01-01

    The nanotechnology capable of high-specificity targeted delivery of anti-neoplastic drugs would be a significant breakthrough in Cancer in general and Ovarian Cancer in particular. We addressed this challenge through a new physical concept that exploited (i) the difference in the membrane electric properties between the tumor and healthy cells and (ii) the capability of magneto-electric nanoparticles (MENs) to serve as nanosized converters of remote magnetic field energy into the MENs' intrinsic electric field energy. This capability allows to remotely control the membrane electric fields and consequently trigger high-specificity drug uptake through creation of localized nano-electroporation sites. In in-vitro studies on human ovarian carcinoma cell (SKOV-3) and healthy cell (HOMEC) lines, we applied a 30-Oe d.c. field to trigger high-specificity uptake of paclitaxel loaded on 30-nm CoFe2O4@BaTiO3 MENs. The drug penetrated through the membrane and completely eradicated the tumor within 24 hours without affecting the normal cells. PMID:24129652

  6. Magneto-electric nanoparticles to enable field-controlled high-specificity drug delivery to eradicate ovarian cancer cells.

    PubMed

    Guduru, Rakesh; Liang, Ping; Runowicz, Carolyn; Nair, Madhavan; Atluri, Venkata; Khizroev, Sakhrat

    2013-10-16

    The nanotechnology capable of high-specificity targeted delivery of anti-neoplastic drugs would be a significant breakthrough in Cancer in general and Ovarian Cancer in particular. We addressed this challenge through a new physical concept that exploited (i) the difference in the membrane electric properties between the tumor and healthy cells and (ii) the capability of magneto-electric nanoparticles (MENs) to serve as nanosized converters of remote magnetic field energy into the MENs' intrinsic electric field energy. This capability allows to remotely control the membrane electric fields and consequently trigger high-specificity drug uptake through creation of localized nano-electroporation sites. In in-vitro studies on human ovarian carcinoma cell (SKOV-3) and healthy cell (HOMEC) lines, we applied a 30-Oe d.c. field to trigger high-specificity uptake of paclitaxel loaded on 30-nm CoFe₂O₄ @BaTiO₃ MENs. The drug penetrated through the membrane and completely eradicated the tumor within 24 hours without affecting the normal cells.

  7. Pembrolizumab, Bevacizumab, and Cyclophosphamide in Treating Patients With Recurrent Ovarian, Fallopian Tube, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2018-05-03

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Serous Adenocarcinoma; Primary Peritoneal Serous Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  8. Secretome Identifies Tenascin-X as a Potent Marker of Ovarian Cancer

    PubMed Central

    Kramer, Marianne; Pierredon, Sandra; Ribaux, Pascale; Tille, Jean-Christophe; Cohen, Marie

    2015-01-01

    CA-125 has been a valuable marker for the follow-up of ovarian cancer patients but it is not sensitive enough to be used as diagnostic marker. We had already used secretomic methods to identify proteins differentially secreted by serous ovarian cancer cells compared to healthy ovarian cells. Here, we evaluated the secretion of these proteins by ovarian cancer cells during the follow-up of one patient. Proteins that correlated with CA-125 levels were screened using serum samples from ovarian cancer patients as well as benign and healthy controls. Tenascin-X secretion was shown to correlate with CA-125 value in the initial case study. The immunohistochemical detection of increased amount of tenascin-X in ovarian cancer tissues compared to healthy tissues confirms the potent interest in tenascin-X as marker. We then quantified the tenascin-X level in serum of patients and identified tenascin-X as potent marker for ovarian cancer, showing that secretomic analysis is suitable for the identification of protein biomarkers when combined with protein immunoassay. Using this method, we determined tenascin-X as a new potent marker for serous ovarian cancer. PMID:26090390

  9. Chemosensitivity of BRCA1-Mutated Ovarian Cancer Cells and Established Cytotoxic Agents.

    PubMed

    van Haaften, Caroline; van Eendenburg, Jaap; Boot, Arnoud; Corver, Willem E; Haans, Lucien; van Wezel, Tom; Trimbos, J Baptist

    2017-10-01

    Serous adenocarcinomas that arise in patients with inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 are initially well treatable with platinum/paclitaxel. For recurrent disease in patients with BRCA1 or BRCA2 mutations, olaparib treatment is available. To study additional therapeutic regimens, a better understanding of the cellular and molecular mechanisms of the tumors in in vitro models is important. From a high-grade serous ovarian tumor of a BRCA1 mutation carrier, we established 3 distinct cell line subclones, OVCA-TR3.1, -2, and -3. Immunohistochemical characterization, flow cytometric analyses, chemosensitivity, and somatic mutation profiling were performed. The cell lines expressed AE1/AE3, Pax8, WT-1, OC125, estrogen receptor (ER), and p53, comparable to the primary tumor. Synergism could be shown in the combination treatment eremophila-1-(10)-11(13)-dien-12,8β-olide (EPD), with cisplatin, whereas combination with olaparib did not show synergism. Eremophila-1-(10)-11(13)-dien-12,8β-olide, a sesquiterpene lactone, is a novel chemotherapeutic agent. The inherited BRCA1 c.2989_2990dupAA mutation was confirmed in the cell lines. Loss of heterozygosity of BRCA1 was detected in each cell line, as well as a homozygous TP53 c.722C>A mutation. Flow cytometry showed that all cell lines had a distinct DNA index. Three new isogenic ovarian cancer cell lines were developed from a patient with a germ line BRCA1 mutation. Chemosensitivity profiling of the cell lines showed high tolerance for olaparib. Treatment with EPD proved synergistic with cisplatin. The effects of EPD will be further investigated for future clinical efficacy.

  10. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance.

    PubMed

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-05-10

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells.

  11. Tuba-ovarian auto-amputation caused by ovarian teratoma in an adolescent girl.

    PubMed

    Atıcı, Ahmet; Yılmaz, Engin; Karaman, Ayşe; Apaydın, Sema; Afşarlar, Çağatay Evrim

    2017-01-01

    Atıcı A, Yılmaz E, Karaman A, Apaydın S, Afşarlar ÇE. Tuba-ovarian auto-amputation caused by ovarian teratoma in an adolescent girl. Turk J Pediatr 2017; 59: 90-92. Ovarian auto-amputation is an extremely rare condition commonly encountered in the perinatal period. Spontaneous or secondary torsion of the ovary caused by an ovarian lesion may result in infarction and subsequent auto-amputation of the ovary. This paper demonstrates a case that underwent laparoscopic appendectomy with an incidental calcified auto-amputated right ovary. A 16-year-old adolescent girl was admitted to our department with a history of one-day abdominal pain. Physical examination of the patient revealed abdominal tenderness and rigidity on right lower quadrant. Her white blood cell count was 11x103/mL, and C-reactive protein was 69 mg/L. The patient underwent a laparoscopic appendectomy with a provisional diagnosis of acute appendicitis, and further exploration revealed a 2x2 cm white ovoid mass floating freely in the pelvis. The left ovary was clearly identified in its usual localization, but the right tuba was blindly ending without any fimbria or ovary. Postoperative course of the patient was uneventful, and she was discharged on postoperative day 2. The histopathological examination revealed a necrotic calcified ovarian teratoma. Auto-amputated ovary is a rare occasion mostly encountered during perinatal period, and it may be unilateral or bilateral. An auto-amputated ovarian mass may rarely be a teratoma although the most common cause of auto-amputation during perinatal and adolescent period is ovarian torsion due to an ovarian cyst.

  12. Elesclomol Sodium and Paclitaxel in Treating Patients With Recurrent or Persistent Ovarian Epithelial Cancer, Fallopian Tube Cancer, or Primary Peritoneal Cancer

    ClinicalTrials.gov

    2017-05-02

    Fallopian Tube Clear Cell Adenocarcinoma; Fallopian Tube Endometrioid Adenocarcinoma; Fallopian Tube Mucinous Adenocarcinoma; Fallopian Tube Serous Adenocarcinoma; Fallopian Tube Transitional Cell Carcinoma; Ovarian Brenner Tumor; Ovarian Clear Cell Adenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Adenocarcinoma; Ovarian Seromucinous Carcinoma; Ovarian Serous Adenocarcinoma; Ovarian Transitional Cell Tumor; Primary Peritoneal Serous Adenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Undifferentiated Fallopian Tube Carcinoma; Undifferentiated Ovarian Carcinoma

  13. Paclitaxel and Carboplatin or Bleomycin Sulfate, Etoposide Phosphate, and Cisplatin in Treating Patients With Advanced or Recurrent Sex Cord-Ovarian Stromal Tumors

    ClinicalTrials.gov

    2018-02-14

    Ovarian Granulosa Cell Tumor; Ovarian Gynandroblastoma; Ovarian Sertoli-Leydig Cell Tumor; Ovarian Sex Cord Tumor With Annular Tubules; Ovarian Sex Cord-Stromal Tumor; Ovarian Sex Cord-Stromal Tumor of Mixed or Unclassified Cell Types; Ovarian Steroid Cell Tumor

  14. Expression and activity analysis of a new fusion protein targeting ovarian cancer cells.

    PubMed

    Su, Manman; Chang, Weiqin; Wang, Dingding; Cui, Manhua; Lin, Yang; Wu, Shuying; Xu, Tianmin

    2015-09-01

    The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17‑34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound‑healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI‑pPICZα demonstrated that the DNA‑encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.

  15. Imatinib Mesylate in Treating Patients With Progressive, Refractory, or Recurrent Stage II or Stage III Testicular or Ovarian Cancer

    ClinicalTrials.gov

    2013-01-15

    Ovarian Dysgerminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage II Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage III Ovarian Germ Cell Tumor; Testicular Seminoma

  16. Aurora-A Oncogene in Human Ovarian Cancer

    DTIC Science & Technology

    2006-11-01

    AD_________________ Award Number: W81XWH-05-1-0021 TITLE: Aurora-A Oncogene in Human Ovarian... in Human Ovarian Cancer 5b. GRANT NUMBER W81XWH-05-1-0021 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Jin Q. Cheng, M.D...is frequently altered in human ovarian cancer (1). Overexpressing Aurora-A induces centrosome amplification and G2/M cell cycle progression

  17. The Analysis of Cell Cycle-related Proteins in Ovarian Clear Cell Carcinoma Versus High-grade Serous Carcinoma.

    PubMed

    Hazama, Yukiko; Moriya, Takuya; Sugihara, Mika; Sano, Rikiya; Shiota, Mitsuru; Nakamura, Takafumi; Shimoya, Koichiro

    2017-10-10

    In Japan, the frequency of ovarian clear cell carcinoma (CCC) is twice as high as that in the United States and Europe. Often, patient prognosis of CCC is poor because of chemoresistance. Here, we focus on the cell cycle, which is one of the mechanisms of chemoresistance. To detect the informative markers and improve the strategy of chemotherapy for CCC, we performed immunochemical staining of cell cycle-related proteins in ovarian malignant tumors. We detected that each of the 29 samples of CCC and high-grade serous carcinoma (HGSC) were necessary to reveal the significant differences in immunostaining and prognosis. We performed the immunostaining analysis using the antibodies of cell cycle-related proteins such as Ki-67, Cdt1, MCM7, and geminin. The positive rate of Cdt1 in the CCC group was significantly higher than that in the HGSC group (P<0.0001). However, the positive rate of geminin in the HGSC group was significantly higher than that in the CCC group (P<0.0001). The overall survival of CCC patients with high labeling index of Cdt1 was significantly worse than that of CCC patients with low labeling index of Cdt1 (P=0.004). The study results suggested that the cancer cells of CCC and HGSC exist in the G1 phase and S, G2, and M phases, respectively. The differences in cell cycle of CCC might be one of the reasons for chemotherapy resistance. Further investigations are necessary to reveal the usefulness of Cdt1 as a biomarker in CCC.

  18. Oncolytic virotherapy for ovarian cancer

    PubMed Central

    Li, Shoudong; Tong, Jessica; Rahman, Masmudur M; Shepherd, Trevor G; McFadden, Grant

    2012-01-01

    In the past two decades, more than 20 viruses with selective tropism for tumor cells have been developed as oncolytic viruses (OVs) for treatments of a variety of malignancies. Of these viruses, eleven have been tested in human ovarian cancer models in preclinical studies. So far, nine phase I or II clinical trials have been conducted or initiated using four different types of OVs in patients with recurrent ovarian cancers. In this article, we summarize the different OVs that are being assessed as therapeutics for ovarian cancer. We also present an overview of recent advances in identification of key genetic or immune-response pathways involved in tumorigenesis of ovarian cancer, which provides a better understanding of the tumor specificities and oncolytic properties of OVs. In addition, we discuss how next-generation OVs could be genetically modified or integrated into multimodality regimens to improve clinical outcomes based on recent advances in ovarian cancer biology. PMID:25977900

  19. Activated T-cell Therapy, Low-Dose Aldesleukin, and Sargramostim in Treating Patients With Ovarian, Fallopian Tube, or Primary Peritoneal Cancer That is Stage III-IV, Refractory, or Recurrent

    ClinicalTrials.gov

    2016-02-15

    Malignant Ovarian Clear Cell Tumor; Malignant Ovarian Serous Tumor; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  20. Engineered gold nanoparticles for identification of novel ovarian biomarkers

    NASA Astrophysics Data System (ADS)

    Giri, Karuna

    Ovarian cancer is a leading cause of cancer related death among women in the US and worldwide. The disease has a high mortality rate due to limited tools available that can diagnose ovarian cancer at an early stage and the lack of effective treatments for disease free survival at late stages. Identification of proteins specifically expressed/overexpressed in ovarian cancer could lead to identification of novel diagnostic biomarkers and therapeutic targets that improve patient outcomes. In this regard, mass spectrometry is a powerful tool to probe the proteome of a cancer cell. It can aid discovery of proteins important for the pathophysiology of ovarian cancer. These proteins in turn could serve as diagnostic and treatment biomarkers of the disease. However, a limitation of mass spectrometry based proteomic analyses is that the technique lacks sensitivity and is biased against detection of low abundance proteins. With current approaches to biomarker discovery, we may therefore be overlooking candidate proteins that are important for ovarian cancer. This study presents a new approach to enrich low abundance proteins and subsequently detect them with mass spectrometry. Gold nanoparticles (AuNPs) and functionalization of their surfaces provide an excellent opportunity to capture and enrich low abundance proteins. First, the study focused on conducting an extensive investigation of the time evolution of nanoparticle-protein interaction and understanding drivers of protein attachment on nanoparticle surface. The adsorption of proteins to AuNPs was found to be highly dynamic with multiple attachment and detachment events which decreased over time. Initially, electrostatic forces played an important role in protein binding and structurally flexible proteins such as those involved in RNA processing were more likely to bind to AuNPs. More importantly, the feasibility and success of protein enrichment by AuNPs was evaluated. The AuNPs based approach was able to detect

  1. Ovulatory Induction of SCG2 in Human, Nonhuman Primate, and Rodent Granulosa Cells Stimulates Ovarian Angiogenesis.

    PubMed

    Hannon, Patrick R; Duffy, Diane M; Rosewell, Katherine L; Brännström, Mats; Akin, James W; Curry, Thomas E

    2018-06-01

    The luteinizing hormone (LH) surge is essential for ovulation, but the intrafollicular factors induced by LH that mediate ovulatory processes (e.g., angiogenesis) are poorly understood, especially in women. The role of secretogranin II (SCG2) and its cleaved bioactive peptide, secretoneurin (SN), were investigated as potential mediators of ovulation by testing the hypothesis that SCG2/SN is induced in granulosa cells by human chorionic gonadotropin (hCG), via a downstream LH receptor signaling mechanism, and stimulates ovarian angiogenesis. Humans, nonhuman primates, and rodents were treated with hCG in vivo resulting in a significant increase in the messenger RNA and protein levels of SCG2 in granulosa cells collected early during the periovulatory period and just prior to ovulation (humans: 12 to 34 hours; monkeys: 12 to 36 hours; rodents: 4 to 12 hours post-hCG). This induction by hCG was recapitulated in an in vitro culture system utilizing granulosa-lutein cells from in vitro fertilization patients. Using this system, inhibition of downstream LH receptor signaling pathways revealed that the initial induction of SCG2 is regulated, in part, by epidermal growth factor receptor signaling. Further, human ovarian microvascular endothelial cells were treated with SN (1 to 100 ng/mL) and subjected to angiogenesis assays. SN significantly increased endothelial cell migration and new sprout formation, suggesting induction of ovarian angiogenesis. These results establish that SCG2 is increased in granulosa cells across species during the periovulatory period and that SN may mediate ovulatory angiogenesis in the human ovary. These findings provide insight into the regulation of human ovulation and fertility.

  2. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells.

    PubMed

    Zhou, Weibo; Han, Wan Fang; Landree, Leslie E; Thupari, Jagan N; Pinn, Michael L; Bililign, Tsion; Kim, Eun Kyoung; Vadlamudi, Aravinda; Medghalchi, Susan M; El Meskini, Rajaa; Ronnett, Gabriele V; Townsend, Craig A; Kuhajda, Francis P

    2007-04-01

    Fatty acid synthase (FAS), the enzyme responsible for the de novo synthesis of fatty acids, is highly expressed in ovarian cancers and most common human carcinomas. Inhibition of FAS and activation of AMP-activated protein kinase (AMPK) have been shown to be cytotoxic to human cancer cells in vitro and in vivo. In this report, we explore the cytotoxic mechanism of action of FAS inhibition and show that C93, a synthetic FAS inhibitor, increases the AMP/ATP ratio, activating AMPK in SKOV3 human ovarian cancer cells, which leads to cytotoxicity. As a physiologic consequence of AMPK activation, acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid synthesis, was phosphorylated and inhibited whereas glucose oxidation was increased. Despite these attempts to conserve energy, the AMP/ATP ratio increased with worsening cellular redox status. Pretreatment of SKOV3 cells with compound C, an AMPK inhibitor, substantially rescued the cells from C93 cytotoxicity, indicating its dependence on AMPK activation. 5-(Tetradecyloxy)-2-furoic acid, an ACC inhibitor, did not activate AMPK despite inhibiting fatty acid synthesis pathway activity and was not significantly cytotoxic to SKOV3 cells. This indicates that substrate accumulation from FAS inhibition triggering AMPK activation, not end-product depletion of fatty acids, is likely responsible for AMPK activation. C93 also exhibited significant antitumor activity and apoptosis against SKOV3 xenografts in athymic mice without significant weight loss or cytotoxicity to proliferating cellular compartments such as bone marrow, gastrointestinal tract, or skin. Thus, pharmacologic FAS inhibition selectively activates AMPK in ovarian cancer cells, inducing cytotoxicity while sparing most normal human tissues from the pleiotropic effects of AMPK activation.

  3. Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro.

    PubMed

    Sun, Liping; Li, Dong; Song, Kun; Wei, Jianlu; Yao, Shu; Li, Zhao; Su, Xuantao; Ju, Xiuli; Chao, Lan; Deng, Xiaohui; Kong, Beihua; Li, Li

    2017-05-31

    Human umbilical cord mesenchymal stem cells (huMSCs) can treat primary ovarian insufficiency (POI) related to ovarian granulosa cell (OGC) apoptosis caused by cisplatin chemotherapy. Exosomes are a class of membranous vesicles with diameters of 30-200 nm that are constitutively released by eukaryotic cells. Exosomes mediate local cell-to-cell communication by transferring microRNAs and proteins. In the present study, we demonstrated the effects of exosomes derived from huMSCs (huMSC-EXOs) on a cisplatin-induced OGC model in vitro and discussed the preliminary mechanisms involved in these effects. We successfully extracted huMSC-EXOs from huMSC culture supernatant and observed the effective uptake of exosomes by cells with fluorescent staining. Using flow cytometry (with annexin-V/PI labelling), we found that huMSC-EXOs increased the number of living cells. Western blotting showed that the expression of Bcl-2 and caspase-3 were upregulated, whilst the expression of Bax, cleaved caspase-3 and cleaved PARP were downregulated to protect OGCs. These results suggest that huMSC-EXOs can be used to prevent and treat chemotherapy-induced OGC apoptosis in vitro. Therefore, this work provides insight and further evidence of stem cell function and indicates that huMSC-EXOs protect OGCs from cisplatin-induced injury in vitro.

  4. Everolimus exhibits anti-tumorigenic activity in obesity-induced ovarian cancer.

    PubMed

    Guo, Hui; Zhong, Yan; Jackson, Amanda L; Clark, Leslie H; Kilgore, Josh; Zhang, Lu; Han, Jianjun; Sheng, Xiugui; Gilliam, Timothy P; Gehrig, Paola A; Zhou, Chunxiao; Bae-Jump, Victoria L

    2016-04-12

    Everolimus inhibits mTOR kinase activity and its downstream targets by acting on mTORC1 and has anti-tumorigenic activity in ovarian cancer. Clinical and epidemiologic data find that obesity is associated with worse outcomes in ovarian cancer. In addition, obesity leads to hyperactivation of the mTOR pathway in epithelial tissues, suggesting that mTOR inhibitors may be a logical choice for treatment in obesity-driven cancers. However, it remains unclear if obesity impacts the effect of everolimus on tumor growth in ovarian cancer. The present study was aimed at evaluating the effects of everolimus on cytotoxicity, cell metabolism, apoptosis, cell cycle, cell stress and invasion in human ovarian cancer cells. A genetically engineered mouse model of serous ovarian cancer fed a high fat diet or low fat diet allowed further investigation into the inter-relationship between everolimus and obesity in vivo. Everolimus significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, reduced invasion and caused cellular stress via inhibition of mTOR pathways in vitro. Hypoglycemic conditions enhanced the sensitivity of cells to everolimus through the disruption of glycolysis. Moreover, everolimus was found to inhibit ovarian tumor growth in both obese and lean mice. This reduction coincided with a decrease in expression of Ki-67 and phosphorylated-S6, as well as an increase in cleaved caspase 3 and phosphorylated-AKT. Metabolite profiling revealed that everolimus was able to alter tumor metabolism through different metabolic pathways in the obese and lean mice. Our findings support that everolimus may be a promising therapeutic agent for obesity-driven ovarian cancers.

  5. Leptin stimulation of cell cycle and inhibition of apoptosis gene and protein expression in OVCAR-3 ovarian cancer cells.

    PubMed

    Ptak, Anna; Kolaczkowska, Elzbieta; Gregoraszczuk, Ewa L

    2013-04-01

    The OVCAR-3 cell line expressing the long (ObRb) and short (ObRt) isoforms of leptin receptor mRNA was used to analyze the effect of leptin on the expression of selected genes and proteins involved in the cell cycle and apoptosis. OVCAR-3 cells were exposed to 2, 20, 40, and 100 ng/ml of leptin. Cell proliferation was determined using the alamarBlue cell viability test and flow cytometry. Apoptosis was measured using a cellular DNA fragmentation ELISA kit. The expression of selected cell cycle and apoptosis genes was evaluated by real-time PCR and confirmed by western blot. The stimulatory action of leptin on cell proliferation was observed as an increase in cells in the S and G2/M phases. Up-regulation of genes responsible for inducing cell proliferation and suppression of genes responsible for inhibition of proliferation were noted. Western blots revealed increased expression of cyclins D and A and inhibition of p21WAF1/CIP1 protein expression by leptin. Inhibition of DNA fragmentation was observed under all leptin doses. Suppression of genes involved in the extrinsic and intrinsic apoptotic pathway was observed. Western blots illustrated decreased Bad, TNFR1, and caspase 6 protein expression in response to leptin treatment. Leptin promotes ovarian cancer cell line growth by up-regulating genes and proteins responsible for inducing cell proliferation as well as down-regulating pro-apoptotic genes and proteins in apoptotic pathways. Results of this study warrant examining the relationship between the risk of ovarian cancer and elevated leptin levels in obese women.

  6. Ovarian tissue cryopreservation in girls undergoing haematopoietic stem cell transplant: experience of a single centre.

    PubMed

    Biasin, E; Salvagno, F; Berger, M; Nesi, F; Quarello, P; Vassallo, E; Evangelista, F; Marchino, G L; Revelli, A; Benedetto, C; Fagioli, F

    2015-09-01

    Fertility after childhood haemopoietic stem cell transplant (HSCT) is a major concern. Conditioning regimens before HSCT present a high risk (>80%) of ovarian failure. Since 2000, we have proposed cryopreservation of ovarian tissue to female patients undergoing HSCT at our centre, to preserve future fertility. After clinical and haematological evaluation, the patients underwent ovarian tissue collection by laparoscopy. The tissue was analysed by histologic examination to detect any tumour contamination and then frozen following the slow freezing procedure and cryopreserved in liquid nitrogen. From August 2000 to September 2013, 47 patients planned to receive HSCT, underwent ovarian tissue cryopreservation. The median age at diagnosis was 11.1 years and at the time of procedure it was 13 years, respectively. Twenty-four patients were not pubertal at the time of storage, whereas 23 patients had already experienced menarche. The median time between laparoscopy and HSCT was 25 days. Twenty-six out of 28 evaluable patients (93%) developed hypergonadotropic hypogonadism at a median time of 23.3 months after HSCT. One patient required autologous orthotopic transplantation that resulted in one live birth. Results show a very high rate of iatrogenic hypergonadotropic hypogonadism, highlighting the need for fertility preservation in these patients.

  7. Keratin 5 overexpression is associated with serous ovarian cancer recurrence and chemotherapy resistance.

    PubMed

    Ricciardelli, Carmela; Lokman, Noor A; Pyragius, Carmen E; Ween, Miranda P; Macpherson, Anne M; Ruszkiewicz, Andrew; Hoffmann, Peter; Oehler, Martin K

    2017-03-14

    This study investigated the clinical significance of keratin 5 and 6 expression in serous ovarian cancer progression and chemotherapy resistance. KRT5 and KRT6 (KRT6A, KRT6B & KRT6C) gene expression was assessed in publically available serous ovarian cancer data sets, ovarian cancer cell lines and primary serous ovarian cancer cells. Monoclonal antibodies which detect both K5/6 or only K5 were used to assess protein expression in ovarian cancer cell lines and a cohort of high grade serous ovarian carcinomas at surgery (n = 117) and after neoadjuvant chemotherapy (n = 21). Survival analyses showed that high KRT5 mRNA in stage III/IV serous ovarian cancers was significantly associated with reduced progression-free (HR 1.38, P < 0.0001) and overall survival (HR 1.28, P = 0.013) whilst high KRT6 mRNA was only associated with reduced progression-free survival (HR 1.2, P = 0.031). Both high K5/6 (≥ 10%, HR 1.78 95% CI; 1.03-2.65, P = 0.017) and high K5 (≥ 10%, HR 1.90, 95% CI; 1.12-3.19, P = 0.017) were associated with an increased risk of disease recurrence. KRT5 but not KRT6C mRNA expression was increased in chemotherapy resistant primary serous ovarian cancer cells compared to chemotherapy sensitive cells. The proportion of serous ovarian carcinomas with high K5/6 or high K5 immunostaining was significantly increased following neoadjuvant chemotherapy. K5 can be used to predict serous ovarian cancer prognosis and identify cancer cells that are resistant to chemotherapy. Developing strategies to target K5 may therefore improve serous ovarian cancer survival.

  8. JNK-1 Inhibition Leads to Antitumor Activity in Ovarian Cancer

    PubMed Central

    Vivas-Mejia, Pablo; Benito, Juliana Maria; Fernandez, Ariel; Han, Hee-Dong; Mangala, Lingegowda; Rodriguez-Aguayo, Cristian; Chavez-Reyes, Arturo; Lin, Yvonne G.; Nick, Alpa M.; Stone, Rebecca L.; Kim, Hye Sun; Claret, Francois-Xavier; Bornmann, William; Hennessy, Bryan TJ.; Sanguino, Angela; Peng, Zhengong; Sood, Anil K.; Lopez-Berestein, Gabriel

    2011-01-01

    Purpose To demonstrate the functional, clinical and biological significance of JNK-1 in ovarian carcinoma. Experimental Design Analysis of the impact of JNK on 116 epithelial ovarian cancers was conducted. The role of JNK in vitro and in experimental models of ovarian cancer was assessed. We studied the role of WBZ_4, a novel JNK inhibitor redesigned from imatinib based on targeting wrapping defects, in cell lines and in experimental models of ovarian cancer. Results We found a significant association of pJNK with progression free survival in the 116 epithelial ovarian cancers obtained at primary debulking therapy. WBZ_4 led to cell growth inhibition and increased apoptosis in a dose dependent fashion in four ovarian cancer cell lines. In vivo, while imatinib had no effect on tumor growth, WBZ_4 inhibited tumor growth in orthotopic murine models of ovarian cancer. The anti-tumor effect was further increased in combination with docetaxel. Silencing of JNK-1 with systemically administered siRNA led to significantly reduced tumor weights as compared to non-silencing siRNA controls, indicating that indeed the antitumor effects observed were due to JNK-1 inhibition. Conclusions These studies identify JNK-1 as an attractive therapeutic target in ovarian carcinoma and that the re-designed WBZ_4 compound should be considered for further clinical development. PMID:20028751

  9. Effect of Procyanidin-rich Extract from Natural Cocoa Powder on Cellular Viability, Cell Cycle Progression, and Chemoresistance in Human Epithelial Ovarian Carcinoma Cell Lines

    PubMed Central

    Taparia, Shruti; Khanna, Aparna

    2016-01-01

    Background: Over the last 400 years, cocoa and chocolate have been described as having potential medicinal value, being consumed as a beverage or eaten as food. Concentration–dependant, antiproliferation, and cytotoxic effects of some of their polyphenolic constituents have been demonstrated against various cancers. Such an effect remains to be demonstrated in ovarian cancer Objective: To investigate the effect of cocoa procyanidins against ovarian cancer in vitro using OAW42 and OVCAR3 cell lines. Materials and Methods: Cocoa procyanidins were extracted and enriched from non alkalized cocoa powder. The polyphenolic content and antioxidant activity were determined. Effect on cell viability was determined after the treatment with ≤1000 μg/mL cocoa procyanidin-rich extract on OAW42 and OVCAR3 and normal human dermal fibroblasts. Similarly, chemosensitization effect was determined by pretreating cancer cell lines with extract followed by doxorubicin hydrochloride treatment. The effect of treatment on cell cycle and P-glycoprotein (P-gp) expression was determined using flow cytometry. Results: The cocoa extract showed high polyphenolic content and antioxidant activity. Treatment with extract caused cytotoxicity and chemosensitization in OAW42 and OVCAR3 cell lines. Normal dermal fibroblasts showed an increase in cell viability post treatment with extract. Treatment with extract affected the cell cycle and an increasing percentage of cells in hypodiploid sub-G1/G0 phase was observed. Treatment of OVCAR3 with the extract caused reduction of P-gp expression. Conclusion: Cocoa procyanidins were found to be selectively cytotoxic against epithelial ovarian cancer, interfered with the normal cell cycle and sensitized cells to subsequent chemotherapeutic treatment. Chemosensitization was found to be associated with P-gp reduction in OVCAR3 cells. SUMMARY Among the naturally occurring flavonoids, procyanidins have been shown to be effective against cancersNon alkalized

  10. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells.

    PubMed

    Bai, Ding-Ping; Zhang, Xi-Feng; Zhang, Guo-Liang; Huang, Yi-Fan; Gurunathan, Sangiliyandi

    2017-01-01

    Zinc oxide nanoparticles (ZnO NPs) are frequently used in industrial products such as paint, surface coating, and cosmetics, and recently, they have been explored in biologic and biomedical applications. Therefore, this study was undertaken to investigate the effect of ZnO NPs on cytotoxicity, apoptosis, and autophagy in human ovarian cancer cells (SKOV3). ZnO NPs with a crystalline size of 20 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The cytotoxicity, apoptosis, and autophagy were examined using a series of cellular assays. Exposure of cells to ZnO NPs resulted in a dose-dependent loss of cell viability, and the characteristic apoptotic features such as rounding and loss of adherence, enhanced reactive oxygen species generation, and loss of mitochondrial membrane potential were observed in the ZnO NP-treated cells. Furthermore, the cells treated with ZnO NPs showed significant double-strand DNA breaks, which are gained evidences from significant number of γ-H 2 AX and Rad51 expressed cells. ZnO NP-treated cells showed upregulation of p53 and LC3, indicating that ZnO NPs are able to upregulate apoptosis and autophagy. Finally, the Western blot analysis revealed upregulation of Bax, caspase-9, Rad51, γ-H 2 AX, p53, and LC3 and downregulation of Bcl-2. The study findings demonstrated that the ZnO NPs are able to induce significant cytotoxicity, apoptosis, and autophagy in human ovarian cells through reactive oxygen species generation and oxidative stress. Therefore, this study suggests that ZnO NPs are suitable and inherent anticancer agents due to their several favorable characteristic features including favorable band gap, electrostatic charge, surface chemistry, and potentiation of redox cycling cascades.

  11. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells

    PubMed Central

    Zhang, Guo-Liang; Huang, Yi-Fan; Gurunathan, Sangiliyandi

    2017-01-01

    Background Zinc oxide nanoparticles (ZnO NPs) are frequently used in industrial products such as paint, surface coating, and cosmetics, and recently, they have been explored in biologic and biomedical applications. Therefore, this study was undertaken to investigate the effect of ZnO NPs on cytotoxicity, apoptosis, and autophagy in human ovarian cancer cells (SKOV3). Methods ZnO NPs with a crystalline size of 20 nm were characterized with various analytical techniques, including ultraviolet-visible spectroscopy, X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy. The cytotoxicity, apoptosis, and autophagy were examined using a series of cellular assays. Results Exposure of cells to ZnO NPs resulted in a dose-dependent loss of cell viability, and the characteristic apoptotic features such as rounding and loss of adherence, enhanced reactive oxygen species generation, and loss of mitochondrial membrane potential were observed in the ZnO NP-treated cells. Furthermore, the cells treated with ZnO NPs showed significant double-strand DNA breaks, which are gained evidences from significant number of γ-H2AX and Rad51 expressed cells. ZnO NP-treated cells showed upregulation of p53 and LC3, indicating that ZnO NPs are able to upregulate apoptosis and autophagy. Finally, the Western blot analysis revealed upregulation of Bax, caspase-9, Rad51, γ-H2AX, p53, and LC3 and downregulation of Bcl-2. Conclusion The study findings demonstrated that the ZnO NPs are able to induce significant cytotoxicity, apoptosis, and autophagy in human ovarian cells through reactive oxygen species generation and oxidative stress. Therefore, this study suggests that ZnO NPs are suitable and inherent anticancer agents due to their several favorable characteristic features including favorable band gap, electrostatic charge, surface chemistry, and potentiation of redox cycling cascades. PMID:28919752

  12. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway.

    PubMed

    Yang, Yeong-In; Lee, Kyung-Tae; Park, Hee-Juhn; Kim, Tae Jin; Choi, Youn Seok; Shih, Ie-Ming; Choi, Jung-Hye

    2012-12-01

    Paclitaxel (Taxol) is currently used as the front-line chemotherapeutic agent for several cancers including ovarian carcinoma; however, the drug frequently induces drug resistance through multiple mechanisms. The new strategy of using natural compounds in combination therapies is highly attractive because those compounds may enhance the efficacy of chemotherapy. In this study, we found that tectorigenin, an isoflavonoid isolated from flower of Pueraria thunbergiana, enhanced the growth-inhibitory effect of paclitaxel in paclitaxel-resistant ovarian cancer cells (MPSC1(TR), A2780(TR) and SKOV3(TR)) as well as their naive counterparts. The combination of tectorigenin with paclitaxel resulted in a synergistic apoptosis compared with either agent alone through activation of caspases-3, -8 and -9. Treatment with tectorigenin inhibited the nuclear translocation of NFκB and the expression of NFκB-dependent genes such as FLIP, XIAP, Bcl-2, Bcl-xL and COX-2, which are known to be associated with chemoresistance. In addition, the tectorigenin-paclitaxel combination inhibited the phosphorylation of IκB and IKK and the activation of Akt in paclitaxel-resistant cancer cells. Moreover, tectorigenin-paclitaxel-induced cell growth inhibition was enhanced by pretreatment with the Akt inhibitor LY294002 or overexpression of the dominant negative Akt (Akt-DN), but reduced by overexpression of constitutively activated Akt (Akt-Myr). Furthermore, we found that Akt-Myr, at least in part, reversed tectorigenin-paclitaxel-induced nuclear translocation of NFκB and the phosphorylation of IκB and IKK. These data suggest that tectorigenin could sensitize paclitaxel-resistant human ovarian cancer cells through inactivation of the Akt/IKK/IκB/NFκB signaling pathway, and promise a new intervention to chemosensitize paclitaxel-induced cytotoxicity in ovarian cancer.

  13. Metformin, at concentrations corresponding to the treatment of diabetes, potentiates the cytotoxic effects of carboplatin in cultures of ovarian cancer cells.

    PubMed

    Erices, Rafaela; Bravo, Maria Loreto; Gonzalez, Pamela; Oliva, Bárbara; Racordon, Dusan; Garrido, Marcelo; Ibañez, Carolina; Kato, Sumie; Brañes, Jorge; Pizarro, Javier; Barriga, Maria Isabel; Barra, Alejandro; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Cuello, Mauricio A; Owen, Gareth I

    2013-12-01

    The use of the type 2 diabetics drug metformin has been correlated with enhanced progression-free survival in ovarian cancer. The literature has speculated that this enhancement is due to the high concentration of metformin directly causing cancer cell death. However, this explanation does not fit with clinical data reporting that the women exposed to constant micromolar concentrations of metformin, as present in the treatment of diabetes, respond better to chemotherapy. Herein, our aim was to examine whether micromolar concentrations of metformin alone could bring about cancer cell death and whether micromolar metformin could increase the cytotoxic effect of commonly used chemotherapies in A2780 and SKOV3 cell lines and primary cultured cancer cells isolated from the peritoneal fluid of patients with advanced ovarian cancer. Our results in cell lines demonstrate that no significant loss of viability or change in cell cycle was observed with micromolar metformin alone; however, we observed cytotoxicity with micromolar metformin in combination with chemotherapy at concentrations where the chemotherapy alone produced no loss in viability. We demonstrate that previous exposure and maintenance of metformin in conjunction with carboplatin produces a synergistic enhancement in cytotoxicity of A2780 and SKOV3 cells (55% and 43%, respectively). Furthermore, in 5 (44%) of the 11 ovarian cancer primary cultures, micromolar metformin improved the cytotoxic response to carboplatin but not paclitaxel or doxorubicin. In conclusion, we present data that support the need for a clinical study to evaluate the adjuvant maintenance or prescription of currently approved doses of metformin during the chemotherapeutic treatment of ovarian cancer.

  14. Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles.

    PubMed

    Mendez, Uziel; Zhou, Hong; Shikanov, Ariella

    2018-01-01

    The functional unit within the ovary is the ovarian follicle, which is also a morphological unit composed of three basic cell types: the oocyte, granulosa, and theca cells. Similar to human ovarian follicles, mouse follicles can be isolated from their ovarian environment and cultured in vitro to study folliculogenesis, or follicle development for days or weeks. Over the course of the last decade, follicle culture in a three-dimensional (3D) environment exponentially improved the outcomes of in vitro folliculogenesis. Follicle culture in 3D environments preserves follicle architecture and promotes the cross talk between cells in the follicle. Hydrogels, such as polyethylene glycol (PEG), have been used for various physiological systems for regenerative purposes because they provide a 3D environment similar to soft tissues, allow diffusion of nutrients, and can be readily modified to present biological signals, including cell adhesion ligands and proteolytic degradation facilitated by enzymes secreted by the encapsulated cells. This chapter outlines the application of PEG hydrogels to the follicle culture, including the procedures to isolate, encapsulate, and culture mouse ovarian follicles. The tunable properties of PEG hydrogels support co-encapsulation of ovarian follicles with somatic cells, which further promote follicle survival and growth in vitro through paracrine and juxtacrine interactions.

  15. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.

    PubMed

    Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro

    2016-09-23

    Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expressionmore » levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.« less

  17. Cervical embryonal rhabdomyosarcoma and ovarian Sertoli–Leydig cell tumour: a more than coincidental association of two rare neoplasms?

    PubMed Central

    McClean, Gareth E; Kurian, Susy; Walter, Noel; Kekre, A; McCluggage, W Glenn

    2007-01-01

    A case in which an embryonal rhabdomyosarcoma of the cervix and an ovarian Sertoli–Leydig cell tumour of intermediate differentiation occurred in a 13‐year‐old girl is described. Although initially considered as a chance association, a review of the literature showed the co‐occurrence of these two uncommon neoplasms in three previous cases. The reason for this association, which is thought to be more than coincidental, is not known, although an underlying genetic abnormality is a possibility. The ovarian tumour in this case was characterised by the presence of foci of cells with extremely pleomorphic nuclei, which initially raised the possibility of metastatic rhabdomyosarcoma. These were interpreted as foci of bizarre nuclei within the Sertoli–Leydig cell tumour. PMID:17347287

  18. Platinum resistance in breast and ovarian cancer cell lines.

    PubMed

    Eckstein, Niels

    2011-10-04

    Breast and ovarian cancers are among the 10 leading cancer types in females with mortalities of 15% and 6%, respectively. Despite tremendous efforts to conquer malignant diseases, the war on cancer declared by Richard Nixon four decades ago seems to be lost. Approximately 21,800 women in the US will be diagnosed with ovarian cancer in 2011. Therefore, its incidence is relatively low compared to breast cancer with 207.090 prognosed cases in 2011. However, overall survival unmasks ovarian cancer as the most deadly gynecological neoplasia. Platinum-based chemotherapy is emerging as an upcoming treatment modality especially in triple negative breast cancer. However, in ovarian cancer Platinum-complexes for a long time are established as first line treatment. Emergence of a resistant phenotype is a major hurdle in curative cancer therapy approaches and many scientists around the world are focussing on this issue. This review covers new findings in this field during the past decade.

  19. Multidrug Resistance Protein 1 Deficiency Promotes Doxorubicin-Induced Ovarian Toxicity in Female Mice.

    PubMed

    Wang, Yingzheng; Liu, Mingjun; Zhang, Jiyang; Liu, Yuwen; Kopp, Megan; Zheng, Weiwei; Xiao, Shuo

    2018-05-01

    Multidrug resistance protein 1 (MDR1), a phase III drug transporter that exports substrates out of cells, has been discovered in both cancerous and normal tissues. The over expression of MDR1 in cancer cells contributes to multiple drug resistance, whereas the MDR1 in normal tissues protects them from chemical-induced toxicity. Currently, the role of MDR1 in the ovary has not been entirely understood. Our objective is to determine the function of MDR1 in protecting against chemotherapy-induced ovarian toxicity. Using both the in vivo transgenic mouse model and in vitro follicle culture model, we investigated the expression of MDR1 in the ovary, the effect of MDR1 deficiency on doxorubicin (DOX)-induced ovarian toxicity, and the ovarian steroid hormonal regulation of MDR1. Results showed that the MDR1 was expressed in the ovarian epithelial cells, stroma cells, theca cell layers, endothelial cells, and luteal cells. The lack of MDR1 did not affect female ovarian function and fertility; however, its deficiency significantly exacerbated the DOX-induced ovarian toxicity in both in vivo and in vitro models. The MDR1 showed significantly higher expression levels in the ovaries at estrus and metestrus stages than those at proestrus and diestrus stages. However, this dynamic expression pattern was not regulated by the ovarian steroid hormones of estrogen (E2) and progesterone (P4) but correlated to the number and status of corpus luteum. In conclusion, our study demonstrates that the lack of MDR1 promotes DOX-induced ovarian toxicity, suggesting the critical role of MDR1 in protecting female ovarian functions during chemotherapy.

  20. Human cord blood mononuclear cell transplantation for the treatment of premature ovarian failure in nude mice

    PubMed Central

    Dang, Jianhong; Jin, Zhijun; Liu, Xiaojun; Hu, Dian; Wang, Zhifeng

    2015-01-01

    Objective: This study explored the potential of human cord blood mononuclear cell (HCMNC) transplantation as a treatment for premature ovarian failure (POF) in a nude mouse model. Methods: Female nude mice were randomly divided into three groups; a normal control group (n = 35), a POF group (POF plus vehicle, n = 35) and a POF plus cell transplantation group (HCMNCs were implanted into the ovaries, n = 35). HCMNCs were isolated by Ficoll density gradient centrifugation and labeled with BrdU. Four weeks after transplantation, the nude mice were sacrificed to determine serum levels of E2, FSH and LH as indicators of ovarian function, and the ovaries were examined both histologically and immunochemically. Results: The transplanted HCMNCs survived in the transplantation group and were detected by BrdU. In the transplantation group, serum levels of E2 significantly increased while serum levels of FSH and LH significantly decreased compared to the POF control group. Additionally, the transplantation group had a recovery in follicle number. Conclusion: HCMNCs can be successfully transplanted into the ovaries of nude mice and can improve ovarian function in POF. PMID:26064319